
Baustoffe aus Recyclaten und Nebenprodukten REA-Gips

Universität München
Institut für Werkstoffe des Bauwesens

REA-Gips Verfahren

Der REA-Gips aus den Rauchgas-Entschwefelungs-Anlagen nach den Kalkwaschverfahren ist in der Regel ein sehr reiner und hochwertiger, dem Naturgips vergleichbarer Rohstoff.

Universität München
Institut für Werkstoffe des Bauweser

REA-Gips Verfahren

- Im Wäscher wird das Rauchgas von Schwefeldioxid gereinigt.
- Über die Sprühebenen wird Kalkmilchsuspension in den Rauchgasstrom eingeblasen, dabei wird das Schwefeldioxid gebunden.

Universität München
Institut für Werkstoffe des Bauwesens

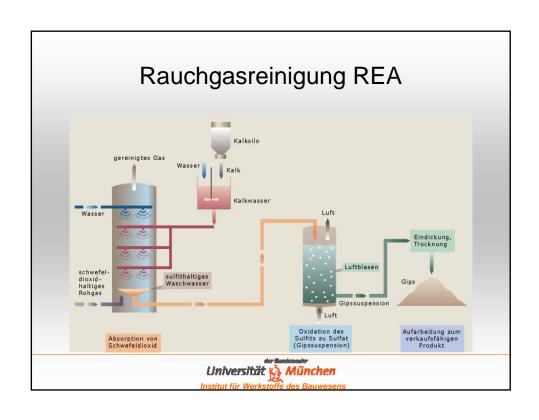
REA-Gips Verfahren

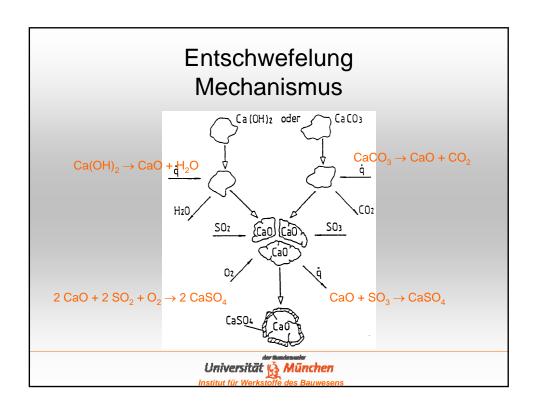
- Unter Zugabe von Oxidationsluft bildet sich im sogenannten Wäschersumpf der Gips.
- Die Eindickung der Gipssuspension erfolgt durch Hydrozyklonabscheidung. Dabei wird die Gipssuspension in Wasser und Schlamm getrennt.

Universität München
Institut für Werkstoffe des Bauwesen

REA-Gips Verfahren

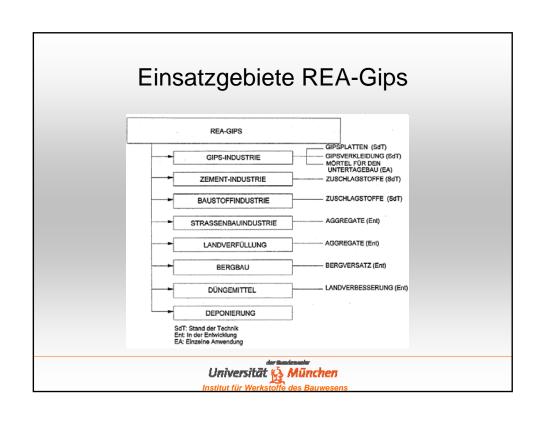
- Der Gipsschlamm wird auf Vakuumbandfiltern entwässert.
 - Der nach dem Bandfilter anfallende feuchte REA-Gips weist noch nicht die spezifischen Eigenschaften eines in der Zement- bzw. Baugipsindustrie verwertbaren Produktes auf.


Universität München
Institut für Werkstoffe des Bauwesens


REA-Gips Verfahren

- Der feuchte Filterkuchen muss getrocknet und brikettiert werden.
- Das Verfahren erzeugt ein hochwertiges Produkt, das für die Baugipsindustrie verwertbar ist.

Universität München
Institut für Werkstoffe des Bauwesens



Rauchgasreinigung REA-Gips

Parameter	Einheit	Naturgips	REA-Gips
Gipsgehalt	%	95,3	98,2
pH-Wert	%	7,0	6,5
Normfarbwert	%	83	77
Geruch		Neutral	Neutral
MgO	%	0,02	0,02
Na ₂ O	%	0,01	0,02
K₂Ō	%	0,02	0,01
Chlorid	ppm	20	60
Calciumsulfit	%	0	<0,01
Kohlenstoff-Bestandteile	%	0	0,01
Aluminiumoxid	%	0,1	0,03
Eisen-III-Oxid	%	0,1	0,03
Siliciumdioxid	%	1,2	0,2
Ca- und Mg-carbonat	%	2,7	0,3
Schüttdichte	g/dm³	1020	1000
d ₅₀	μm	43	33
> 90 µm	%	32,9	0,2
> 32 µm	%	59,3	53,5

Universität München
Institut für Werkstoffe des Bauwesens

Rauchgasreinigung mit dem Sprüh-Absorptions-Verfahren (SAV)

- Beim SAV-Verfahren fällt als Reststoff ein Mischprodukt an, das üblicherweise als SAV-Stabilisat bezeichnet wird.
- SAV-Produkte bestehen im wesentlichen aus Kalziumsulfit-Halbhydrat, Gips, Kalziumcarbonat, unverbrauchtem Kalziumhydroxid, Kalziumchlorid und Flugasche.
- Derartige Produkte ergeben nach einer gezielten Vermischung mit Flugasche und Wasser Materialien, die normalerweise den bautechnischen, klimatologischen und wasserwirtschaftlichen Anforderungen für die Landschaftsverfüllung genügen.

Universität München

SAV-Stabilisate Einsatzgebiete

- SAV-Stabilisate werden zum überwiegenden Teil auf Deponien gelagert.
- In Einzelfällen wird das Material im Bergbau zur Verfüllung stillgelegter Gruben, als Beimengung zum Bergbaumörtel oder als Baustoff für Lärmschutzwälle und Straßendämme verwendet.
- Das Sprüh-Absorptions-Endprodukt besteht normalerweise aus Partikeln mit einem Durchmesser von 1 bis 80 mm.

Universität München