Fakultät für Bauingenieurwesen und Umweltwissenschaften Institut für Werkstoffe des Bauwesens Univ.-Prof. Dr.-Ing. K.-Ch. Thienel

Bachelorprüfung

Prüfungsfach: Werkstoffe des Bauwesens II am: 30.06.2016

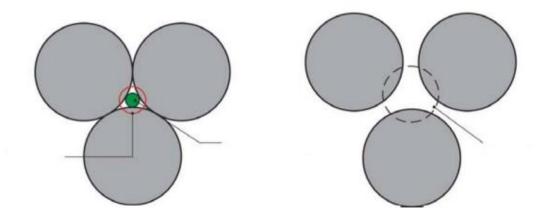
Die Aufgaben sind nachvollziehbar (mit Rechengang) zu lösen. Die Antworten sind zu begründen.

Hilfsmittel: ausschließlich Taschenrechner!

NAME:	
MATRNR.:	
Mögliche Punktzahl: 100	

Erreichte Punktzahl:

Note:


Gesteinskörnung (9)

Aufgabe 1: (3 Punkte)

Ihr Bauherr grübelt, ob er aus ästhetischen Gründen lieber Opalsandstein oder Münchner Kies als Gesteinskörnung für seine neue, frei bewitterte Garage wählen soll. Zu welcher Gesteinskörnung raten Sie ihm? Mit Begründung!

Aufgabe 2: (3 Punkte)

Ergänzen Sie die Graphik um die Begriffe für Gesteinskörnung im Zusammenhang mit der Packung!

Aufgabe 3: (2 Punkte)

Nennen Sie je eine natürliche und eine künstliche leichte Gesteinskörnung!

Aufgabe 4: (1 Punkt)

Nennen Sie zwei physikalische Anforderungen an die Gesteinskörnung!

Mauerwerk und Künstliche Steine (9)

Aufgabe 5: (1 Punkt)

Was versteht man unter dem Begriff "Sintern" beim Brennen keramischer Mauersteine?

Aufgabe 6: (2 Punkte)

- a) In welchem Herstellungsschritt erhalten Kalksandsteine und Porenbetonsteine ihre baurelevanten Festigkeiten?
- b) Wie nennt man die festigkeitsgebenden Hydratphasen, die dabei entstehen?

Aufgabe 7: (3 Punkte)

Nennen Sie je eine stoffliche, konstruktive und bauausführende Möglichkeit, um die Mauertragfähigkeit zu erhöhen!

Stofflich:

Konstruktiv:

Bauausführung:

Aufgabe 8: (3 Punkte)

An einer mehrlagig verputzten Ziegelsteinfassade sind ca. 0,5 mm breite Risse entstanden. Die deutlich sichtbaren Risse sind in Abständen von etwa 50 cm großflächig über die Fassade verteilt.

- a) Wie hätten die Risse vermieden werden können und was muss dabei beachtet werden?
- b) Warum sollte bei mehrlagigen Putzaufbauten einige Tage gewartet werden bis eine weitere Lage aufgebracht werden kann?

Mineralische Bindemittel (19)

Aufgabe 9: (2 Punkte)

Erläutern Sie die Bezeichnung "CEM II/B-V 32,5 R" gemäß DIN EN 197.

- CEM II:
- B-V:
- 32,5:
- R:

Aufgabe 10: (7,5 Punkte)

- a) Aus welchen Rohstoffen wird Klinker hergestellt?
- b) Nennen Sie die vier Hauptklinkerphasen in Zementschreibweise!
- c) Beschreiben Sie die Festigkeitsentwicklung und Hydratationswärme der einzelnen Klinkerphasen.

Aufgabe 11: (3 Punkte)

- a) Was versteht man unter dem sogenannten "Löffelbinder"-Effekt?
- b) Welche Klinkerphase ist für den Effekt verantwortlich?
- c) Durch welche Maßnahme kann er unterbunden werden?

Aufgabe 12: (1 Punkt)

Nennen Sie zwei Anwendungsmöglichkeiten für Gips im Bauwesen

Aufgabe 13: (5,5 Punkte)

- a) Beschreiben Sie anhand einer Skizze und mit allen relevanten Bezeichnungen den Kreislauf von Luftkalk.
- b) Weshalb muss der sogenannte "Löschvorgang" vollständig abgeschlossen sein?

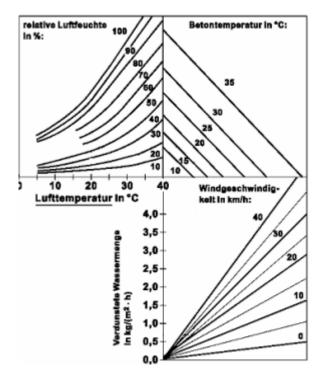
Frischbeton (12)

Aufgabe 14: (3 Punkte)

Auf welche Frischbetoneigenschaften können während des Ausbreitversuches Rückschlüsse gezogen werden?

Aufgabe 15: (4 Punkte)

Erklären Sie stichpunktartig das Druckausgleichsverfahren nach DIN EN 12350-7 zur Bestimmung des Luftporengehaltes von Frischbeton!


Aufgabe 16: (2 Punkte)

- a) Was versteht man unter der Nachbehandlung von Beton?
- b) Bestimmen Sie die verdunstete Wassermenge eines Betons mit dem aufgeführten Diagramm unter folgenden Randbedingungen:

Betontemperatur: 25 °C Lufttemperatur: 30 °C

Windgeschwindigkeit: 20 km/h

Relative Luftfeuchte: 40 %

Aufgabe 17: (3 Punkte)

- a) Welche Bestandteile einer Betonrezeptur umfasst der Begriff "Mehlkorn"?
- b) Nennen Sie jeweils einen Vor- und einen Nachteil eines hohen Mehlkorngehaltes!

Festbeton (12)

Aufgabe 18: (3 Punkte)

Mit welchen betontechnologischen Maßnahmen kann eine niedrige Festbetonrohdichte erzielt werden? Nennen Sie drei Maßnahmen

Aufgabe 19: (8 Punkte)

Nach DIN EN 206-1wird die Betondruckfestigkeit im Alter von 28 Tagen standardmäßig am Würfel und Zylinder bestimmt.

- a) Nennen Sie jeweils einen Vorteil dieser Normprüfkörper bei Druckversuchen.
- b) An welchem dieser Normprüfkörper wird die niedrigere Druckfestigkeit ermittelt? Begründen Sie Ihre Antwort!
- c) Skizzieren Sie den Beanspruchungszustand in einem Betonwürfel mit und ohne Querdehnungsbehinderung während der Druckfestigkeitsprüfung!

Aufgabe 20: (3,5 Punkte)

- a) Nennen Sie drei Nachbehandlungsverfahren, mit denen Austrocknen von Beton vermieden werden kann!
- b) Welche Auswirkung hat eine fehlende Feuchtigkeit währen der Erhärtung auf die Betonfestigkeit? Mit Begründung.
- c) Welche Auswirkung hat eine Austrocknung nach der Erhärtung auf die Betonfestigkeit? Mit Begründung.

Aufgabe 21: (6,5 Punkte)

- a) Was versteht man unter Carbonatisierung von Beton? Erklären Sie den Vorgang anhand der zugehörigen chemischen Gleichung!
- b) Welchen Einfluss hat die Carbonatisierung auf Stahlbeton?
- c) Mit der Phenolphtalein-Methode kann die Carbonatisierungstiefe von Betonprobekörpern bestimmt werden. Erklären Sie stichpunktartig das Verfahren!

Glas (3)

Aufgabe 22: (3 Punkte)

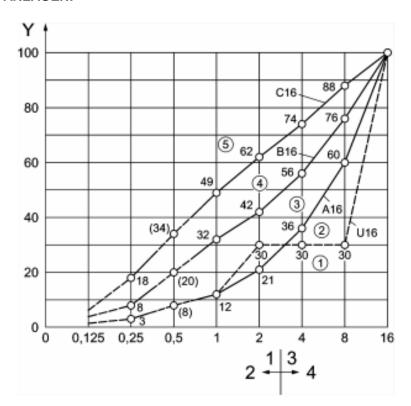
- a) Aus welchen Komponenten setzt sich der Wärmefluss durch konventionelles Isolierglas ohne Wärmeschutzbeschichtung zusammen?
- b) Nennen Sie drei Faktoren, die die Schalldämmung von Isoliergläsern positiv beeinflussen!

Betonentwurf (27)

Aufgabe 23: (27 Punkte)

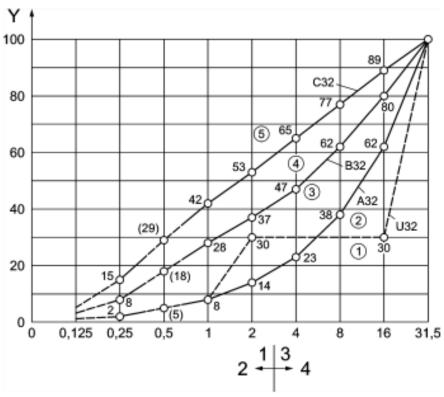
Im Zuge von vermehrt auftretenden Hochwasserkatastrophen, soll für die am Inn-Ufer liegende Universität Passau eine Hochwasserschutzwand errichtet werden. Die Statik dieses Bauteils erfordert einen Beton mit einer Festigkeitsklasse von C 40/50. Als Zemente stehen Ihnen zur Auswahl: CEM I 42,5 N und CEM II / A-S 42,5 N-LH $(\rho_Z = 3,1 \text{ kg/dm}^3)$

Zusätzlich zum Zementgehalt soll der Beton einen Silikastaub-Anteil ($\rho_D = 1.7$ kg/dm³) von 7 M.-% des Zementes besitzen. Für einen reibungslosen Einbau des Frischbetons soll der Beton eine weiche Konsistenz aufweisen.

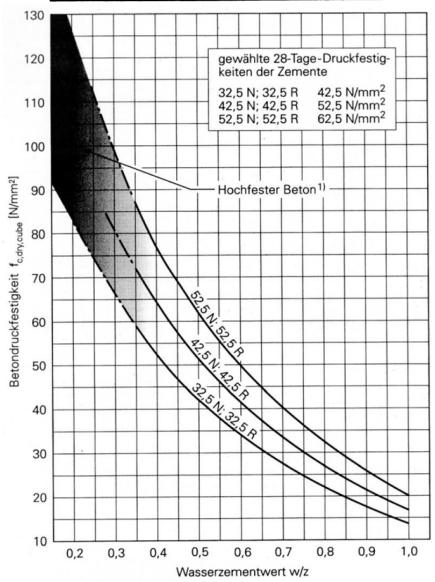

Als Gesteinskörnung steht Ihnen Kalkstein ($\rho_K = 2.7 \text{ kg/dm}^3$) zur Verfügung. Die Eigenfeuchte der Fraktion 0/4 beträgt 1,7 M.-%. Die Sollsieblinie soll einer gröbkörnigen Sieblinie mit einem Größtkorn von 32 mm entsprechen. Der anzustrebende Luftgehalt ist sinnvoll zu wählen.

				Sie	ebrückst	and in N	/lasse-%	ı					
		auf den Einzelsieben [Sieblochweiten in mm]											
Korngruppe	0	0 0,125 0,250 0,5 1 2 4 8 16 32											
0/4	2,7	8,4	15,8	14,9	22,8	34,7	0,7	0	0	0			
0,64/16				0	1,8	3,4	47,1	46,5	1,2	0			
16/32					0	0,9	3,6	5,0	86,8	1,7			

- a) Bestimmen Sie 2 maßgebende Expositionsklassen und alle zugehörigen Mindestbzw. Maximalwerte!
- b) Wählen Sie die grobkörnige Sollsieblinie aus einer der 4 Sieblinien des gegebenen Diagramms, bestimmen Sie die kumulativen Siebdurchgänge und mit Hilfe des Unterkornverfahrens die einzelnen Anteile der Kornfraktionen, die Ist-Sieblinie sowie die Körnungsziffer (k-Wert) zur Wasserbestimmung.
- c) Bestimmen Sie aus dem gegebenen Diagramm den Wasseranspruch für 1m³
 Beton!
- d) Bestimmen Sie den Zement- und Silikastaubgehalt für 1m³ Beton!
- e) Bestimmen Sie die Masse der Gesteinskörnung und das Zugabewasser für 1m³
 Beton und fassen Sie alle Bestandteile Ihres ermittelten Betons noch einmal zusammen!
- f) Bestimmen Sie die Frischbetonrohdichte!
- g) Weshalb verliert der Einfluss der Zementnormdruckfestigkeit bei hochfestem Beton an Bedeutung?
- h) Aufgrund der hohen Preise für Silikastaub, möchte der Bauherr Flugasche als Betonzusatzstoff einsetzen. Was würden Sie dem Bauherren aus betontechnologischer Sicht raten? Begründung!


Beachten Sie dabei folgende Anlagen und geben Sie Erläuterungen für gewählte Werte an. Nutzen Sie die Möglichkeit in die Diagramme zu zeichnen, um Werte kenntlich zu machen.

ANLAGEN:

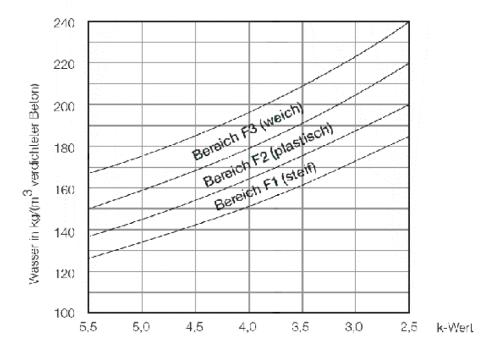


Legende:

- 1 Maschenweite [mm]
- 2 Maschensiebe
- 3 Lochweite [mm]
- 4 Quadratlochsiebe
- Y Siebdurchgang [Vol.-%]

Konsistenzbeschreibung	Klasse	Wert
sehr steif	-	-
steif	F1	≤ 340
plastisch	F2	350 bis 410
weich	F3	420 bis 480
sehr weich	F4	490 bis 550
fließfähig	F5	560 bis 620
sehr fließfähig	F6	≥ 630 %

Bei hochfestem Beton verliert der Einfluss der Zementnormdruckfestigkeit an Bedeutung.


Klassenbezeichnung	Beschreibung der Umgebung	Beispiele für die Zuordnung von Expositionsklassen
1 Kein Korrosions- oder	Angriffsrisiko	
X0	Alle Umgebungsbedingungen außer XF und XA	Unbewehrte Fundamente ohne Frost, unbewehrte Innenbauteile
2 Korrosion, ausgelöst	durch Carbonatisierung	
XC1	trocken oder ständig feucht	Beton in Innenräumen
XC2	nass, selten trocken	Beton der ständig in Wasser getaucht ist, Wasserbehälter, Gründungsbauteile
XC3	mäßige Feuchte	offene Hallen, gewerbliche Küchen, Bäder, Wäschereien, Viehstelle
XC4	wechselnd nass und trocken	Außenbauteile mit direkter Beregnung
3 Korrosion, ausgelöst	durch Chloride, ausgenommen Me	
XD1	mäßige Feuchte	Betonoberflächen, die chlorhaltigem Sprühnebel ausgesetzt sind, Einzelgaragen
XD2	nass, selten trocken	Solebäder, Beton, der chlorhaltigen Industrieabwässern ausgesetzt ist
XD3	wechselnd nass und trocken	Teile von Brücken mit Spritzwasser, Fahrbahndecken, Parkdecks
4 Korrosion, ausgelöst	durch Chloride aus Meerwasser	
XS1	salzhaltige Luft, aber kein direkter Kontakt zum Meerwasser	Außenbauteile in Küstennähe
XS2	ständig unter Wasser	Bauteile in Hafenanlagen (ständig unter Wasser)
XS3	Tidebereich, Spritzwasser- und Sprühnebelbereiche	Kaumauern in Hafenanlagen
5 Frostangriff mit und o	nne Taumittel	
XF1	mäßige Wassersättigung ohne Taumittel	Außenbauteile
XF2	mäßige Wassersättigung mit Taumittel	Betonbauteile im Sprühnebelbereich von Meerwasser, Bauteile im Sprühnebel- und Spritzwasserbereich von taumittelbehandelten Verkehrsflächen, soweit nicht F4
XF3	hohe Wassersättigung ohne Taumittel	offene Wasserbehälter, Bauteile in der Wasserwechselzone
XF4	hohe Wassersättigung mit Taumittel	Verkehrsflächen mit Taumitteln, Meerwasserbauteile in der Wasserwechselzone, Räumerlaufbahnen von Kläranlagen
6 Chemischer Angriff		
XA1	chemisch schwach angreifende Umgebung	Behälter von Kläranlagen, Güllebehälter
XA2	chemisch mäßig angreifende Umgebung	Bauteile in betonangreifenden Böden
XA3	chemisch stark angreifende Umgebung	Industrieabwasseranlagen mit chemisch angreifenden Abwässern
7 Betonkorrosion durch	Verschleißbeanspruchung	
XM1	mäßige Verschleißbeanspruchung	Industrieböden mit Beanspruchung durch luftbereifte Fahrzeuge
XM2	starke Verschleißbeanspruchung	Industrieböden mit Beanspruchung durch luft- oder gummibereifte Gabelstapler
XM3	sehr starke Verschleißbeanspruchung	Industrieböden mit Beanspruchung durch elastomer- oder stahlrollenbereifte Gabelstapler oder Kettenfahrzeuge

		Kein					Bewehru	ngskorrosio	1							
		Angriffs- risiko durch	durch	durch Karbonatisierung verursachte durch Chloride					durch Karbonatisierung verursachte durch Chloride verursachte			rsachte Ko	Corrosion			
		Korrosion		Ko	orrosion		Chloride a	ußer aus M	eerwasser	Chloride aus Meerwasse						
Nr.	Expositionsklassen	X0 a	XC1	XC2	XC3	XC4	XD1	XD2	XD3	XS1	XS2	XS3				
1	Höchstzulässiger w/z	-	- 0,75 0,65 0,60 0,55 0,50				0,50	0,45								
2	Mindestdruckfestig- keitsklasse ^c	C8/10	C16	5/20	C20/25	C25/30	C30/37e	C35/45 e	C35/45e							
3	Mindestzement- gehalt d in kg/m ³	-	24	40	260	280	300	320 b	320 b							
4	Mindestzementge- halt d bei Anrechnung von Zusatzstoffen in kg/m³	-	24	40	240	270	270	270	270	Siehe XD1	Siehe XD2	Siehe XD3				
5	Mindestluftgehalt in %	-		-	-	-	-	-	-							
6	Andere Anforde- rungen	-				-										

- a Nur für Beton ohne Bewehrung oder eingebettetes Metall.
- $^{\rm b}$ Für massige Bauteile (kleinste Bauteilabmessung $80\,\mathrm{cm})$ gilt der Mindestzementgehalt von $300\,\mathrm{kg/m^3}.$
- c Gilt nicht f
 ür Leichtbeton.
- d Bei einem Größtkorn der Gesteinskörnung von $63\,\mathrm{mm}$ darf der Zementgehalt um $30\,\mathrm{kg/m^3}$ reduziert werden. In diesem Fall darf b nicht angewendet werden.
- Bei Verwendung von Luftporenbeton, z.B. aufgrund gleichzeitiger Anforderungen aus der Expositionsklasse XF, eine Festigkeitsklasse niedriger.

			Betonangriff											
			Frostangriff						essive che Umgebun		Verschleißangriff ^h			
Nr.	Expositionsklassen	XF1	XI	-2	X	F3	XF4	XA1	XA2	XA3	XM1	XM	2	XM3
1	Höchstzulässiger w/z	0,60	0,55 g	0,50 g	0,55	0,50	0,50 g	0,60	0,50	0,45	0,55	0,55	0,45	0,45
2	Mindestdruckfestigkeits- klasse ^c	C25/30	C25/30	C35/45	C25/30	C35/45	C30/37	C25/30	C35/45 e	C35/45 e	C30/37 e	C30/37 e	C35/45 e	C35/45 e
3	Mindestzementgehalt ^d in kg/m ³	280	300	320	300	320	320	280	320	320	300 i	300 i	320 i	320 i
4	Mindestzementgehalt ^d bei Anrechnung von Zusatzstoffen in kg/m ³	270	g	g	270	270	g	270	270	270	270	270	270	270
5	Mindestluftgehalt in %	-	f	-	f	-	fj	-	-	-	-	-	-	-
6	Andere Anforderungen	Gesteinskörnungen mit Regelanforderungen und zusätzlich Widerstand gegen Frost bzw. Frost und Taumittel (siehe DIN 4226-1) F4 MS ₂₅ F2 M						-	-	t	-	Ober- flächenbe- handlung des Betons ^k	-	Hartstoffe nach DIN 1100

- Siehe Fußnoten in Tabelle F.2.1.
- d Siehe Fußnoten in Tabelle F.2.1.
- e Siehe Fußnoten in Tabelle F.2.1.
- f Der mittlere Luftgehalt im Frischbeton unmittelbar vor dem Einbau muss bei einem Größtkorn der Gesteinskörnung von 8 mm ≥ 5,5 % Volumenanteil, 16 mm ≥ 4,5 % Volumenanteil, 32 mm ≥ 4,0 % Volumenanteil und 63 mm ≥ 3,5 % Volumenanteil betragen. Einzelwerte dürfen diese Anforderungen um höchstens 0,5 % Volumenanteil unterschreiten.
- 9 Zusatzstoffe des Typs II dürfen zugesetzt, aber nicht auf den Zementgehalt oder den w/z angerechnet werden.
- h Die Gesteinskörnungen bis 4 mm Größtkorn müssen überwiegend aus Quarz oder aus Stoffen mindestens gleicher Härte bestehen, das gröbere Korn aus Gestein oder künstlichen Stoffen mit hohem Verschleißwiderstand. Die Körner aller Gesteinskörnungen sollen mäßig raue Oberfläche und gedrungene Gestalt haben. Das Gesteinskorngemisch soll möglichst grobkörnig sein.
- $^{\mathrm{i}}$ Höchstzementgehalt $360\,\mathrm{kg/m^3}$, jedoch nicht bei hochfesten Betonen
- Erdfeuchter Beton mit $w/z \le 0.40$ darf ohne Luftporen hergestellt werden.
- k Z. B. Vakuumieren und Flügelglätten des Betons
- Schutzmaßnahmen siehe 5.3.2

Lösung Aufgabe 22:

Aufgabenteil b)

Korngruppe	0	0,125	0,250	0,5	1	2	4	8	16	32