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ABSTRACT
Most of the current adaptive systems support single task ac-
tivities. The rise in the number of daily interactive devices
and sources of information made multitasking an integral ac-
tivity in our daily life. Affect-aware systems show exciting
potential to support the user, however, they focus on the in-
duced effect of an additional task in terms of cognitive load
and stress, rather than the influence of the number of tasks i.e.
multitasking. This paper presents indicators of the number of
tasks being performed by the user using a set of bio-sensors.
A preliminary user study was conducted with two follow-up
explorations. Our findings imply that we can distinguish be-
tween the number of tasks performed based on high-end as
well as cheap Heart Rate sensors. Additionally, tasks num-
ber correlates with other signals, namely wrist and forehead
temperature. We provide empirical evidence showing how to
differentiate between single- and dual-tasking activities.

CCS Concepts
•Human-centered computing ! User studies;

Author Keywords
Multitasking, Affective Computing, Galvanic Skin
Conductance, Heart Rate, Thermal Imaging

INTRODUCTION
The wide range of daily devices, tools and information sources
made multitasking an integral daily activity in our life. How-
ever, our mental and cognitive performance degrades while
performing more than one task simultaneously [35]. On the
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other hand, the continuous and increasing sources of informa-
tion, as well as side tasks might be having a positive effect on
the achievement of the primary task in hand.

Current ubiquitous sensors and technologies focus on support-
ing users while performing focused tasks [4, 19, 20]. However,
single focused tasks nowadays are rarely experienced, users
are often interrupted by side channels of information e.g. noti-
fications [53, 56]. On the other hand, there is a vast increase in
technological support of multitasking e.g. large displays. This
drew the interest of the researchers to explore how to build
interfaces that support multitasking [30]. However, in order to
build systems that consider, support and adapt to the number
of tasks in hand, a clear understanding of how multitasking
influences our state is required.

Previous work showed that multitasking can trigger changes
in the mental and cognitive needs and states of the user [11,
16]. There has been an obvious need to involve affect-aware
systems in many applications [4, 47]. Different approaches
include subjective analysis of user’s state and assessment of
physiological signals. The tendency towards using unobtrusive
bio-sensors has seen a recent increase due to their feasibility of
usage outside the labs. Advances in miniaturization and mass
production have brought down the prices of these sensors
making consumer-grade trackers readily available. Hence,
investigating how to sense internal states in a robust, accurate,
timely, and unobtrusive way is yet an open challenge.

Where there has been vast amount of work to estimate
stress [33, 14, 41, 43], and cognitive load [36, 25, 49, 40].
We aim to estimate the internal psychological state of the user
during multitasking itself rather than the induced changes, by
using commercial bio-sensors. In this paper, we describe a
preliminary study and two follow up explorations to assess
the internal state of the user that occurs due to experiencing
multitasking. Using subjective measures might not be infor-
mative about the user’s state due to the timing, as measures are
usually collected after the task performance. Moreover, bio-
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signals are involuntary in nature and are hard to fake. Hence,
commercial unobtrusive bio-sensors can be advantageous in
detecting multitasking. Moreover, it ensures their applicability
in scalable real life situations, as well as their reach to the
economically-challenged groups.

We present a method for estimating the number of tasks cur-
rently performed (single vs. dual tasks) based on the bio-data
of the users using commercial bio-sensors. Our method works
with off-the-shelf hardware and is applicable for ubiquitous
computing environments. It utilizes one of the cheapest sen-
sors set commercially available, which opens up new opportu-
nities for large scale deployments of state-aware technologies,
as well as the involvement of the developing countries in the
research field.

In our work, we advance the state-of-the-art of automatic
multitasking estimation through the following contributions:

• We propose a method for differentiating between single- vs.
multi-tasking by computing a set of bio-signals including,
heart rate, heart rate variability, galvanic skin response and
skin temperature.

• We demonstrate the validity of our metrics through a user
study, showing that single- vs. multi-tasking activities
strongly correlate with bio-signals.

• We validate the afford-ability in terms of costs of utilizing
and deploying these sensors in educational institutes in
developing countries.

• We release our dataset as open source for future researchers
to build upon, replicate, and extend 1.

BACKGROUND AND RELATED WORK
Over the past years -as technology and HCI became in demand-
, researches were carried out as a mean to detect emotions so
that computers can learn to interact with humans, and cus-
tomize themselves according to their needs. Biofeedback
technology comes in all colors, starting with wearable sensors
that can be used day to day, to wired equipment that is only to
be used in laboratories.

Human emotions and cognitive states tend to show themselves
in many cues starting from posture, gestures, speech and
text [46], to the rhythm of key strokes, tone of voice [17], heart
rate, heart-rate variability, skin conductivity [19], eye activity
[23, 24], facial-electroencephalogram [55] and skin tempera-
ture [34, 4]. Devices used in physiological signal based state
recognition systems range from contact-free cameras [32], and
tracking bands, to Electromechanical film (EMFi) chairs [6].
Researchers have investigated the effectiveness of different
bio-signals measurements in detecting users’ states. Our work
builds on three strands of prior work: (1) indicators for user’s
internal state to (2) measure mental workload and (3) how
low-cost devices could be used to detect user’s states.

Bio-Signals as Internal State Indicators
Intuitively, physiological changes can indicate the onset of
certain internal states [4, 19], e.g. a dangerous situation that
1https://github.com/affective17/Multitasking-Detection

triggers a sense of fear causes a fight-or-flight response in
which heart rate is elevated, sweat gland activity is activated
which increases skin conductance, and the distribution of heat
over regions such as the face change. Using the appropriate
sensors to measure and record changes that occur in response
to stimuli is therefore an appropriate way of automatically
detecting different mental and emotional states.

Heart Rate (HR) is an important factor in affective comput-
ing. The spontaneous rhythm of the heart shows its ability to
adapt to and perform in different situations [18]. HR changes
from beat to beat; it increases upon inhalation, and decreases
upon exhalation. Therefore, there exists no fixed heart rate for
a person, but rather a naturally occurring series of irregularity
in its rate, which is also known as heart rate variability [33].
Accordingly, the more the heart’s rhythm fluctuates from the
baseline, the better an individual is able to cope with physical
and psychological strain, such as that caused by stress [5, 39].
This means the less regular the heartbeat is, the higher the
heart rate variability, and vise versa.

Heart Rate Variability (HRV) is used to measure a per-
son’s Autonomic Nervous Systems (ANS) activity, which con-
trols involuntary actions such as heartbeat rates, breathing
rate, blood pressure, and sweating [49]. The Sympathetic
Nervous System (SNS) is referred to as the fight and flight
system, where any activity in it results in altering the heart
rate. HRV measures are calculated from the respiratory rate,
and classified into multiple components such as Low Fre-
quency (LF), High Frequency (HF), Low Frequency to High
Frequency (LF/HF) power ratio, and RR beat-to-beat inter-
val [50].RR intervals are small changes (milliseconds) in the
intervals between successive heartbeats, this is different from
heart rate, which just averages the number of beats per minute.
According to [39], LF and HF components change upon sym-
pathetic activity. Moreover, LF/HF ratio reflects sympatho-
vagal interaction without defining the individual contribution
of each component of the ANS [31]. Finally, the RR interval
reflects the time taken to complete a cardiac cycle. The higher
the heart rate, the smaller the magnitude of the variation in RR
interval [12, 26].

Galvanic Skin Response (GSR) is an autonomic physiologi-
cal signal that is extracted from the level of sweat in the skin.
It is one form of Electrodermal activity (EDA) that reflects
the skin’s ability to conduct electricity, and considered as a
credible measurement of affect state [7, 19]. It is considered
to be a useful index of changes in sympathetic arousal that
are tractable to cognitive states, as it is the only autonomic
psychological variable that is not contaminated by parasym-
pathetic activity [10]. Research and empirical data have long
linked GSR and its variation to changes in autonomic arousal
as well as SNS changes [45].

Skin Temperature is an effective indicator for objectively
evaluating human sensations, because it is controlled by sym-
pathetic nerve activity which reflects the course of information
processing in the brain. When the SNS is activated, muscles
tense up and blood pressure increases, upon which blood flow
is diverted from different parts of the body like fingertips, toes
or the digestive tract and supplied to the vital parts, where the
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body will sacrifice outer limbs to feed blood to more impor-
tant organs like the brain, which leads to the skin temperature
decreasing or increasing according to the blood flow [40, 43].
Moreover, there is a high correlation among user’s state and
skin temperatures of nose and forehead [37, 4].

Informed by the literature, various bio-signals of the human
body like HR, HR, GSR, and skin temperature are connected
to the ANS and SNS activity. Hence, observed changes in
these involuntarily changing metrics can analyzed to give
insights about user’s affect. In this work, we aim to utilize
these indicators to investigate and explore user’s state during
multitasking as opposed to single task.

Measuring User’s Mental State
User’s viewpoints are either categorical, or dimensional [51].
They can be characterized in terms of judged valence and
arousal, where valence measures whether the current state is
positive or negative while arousal indicates whether the user
is calm or triggered [29]. For example, stress is defined by
increased arousal and negative valence. Reliably and auto-
matically recognizing mental load can be of much help in
many contexts, where arousing situations are managed and
their effects can be minimized.

HR: Many studies have explored the possibility of state de-
tection using HR measurements. Taelman et al. [50], [37]
and [33] suggest that HR changes significantly with respect
to the mental state. On the other hand, McDuff et al. [32]
found no significant difference between HR means in the rest
and cognitive load induced by performing tasks conditions.
Moreover, many studies explored the possibility of detect-
ing different states using unobtrusive wearable sensors and
reported an increase in HR mean upon exposure to mental
tasks [54, 37, 41, 14], while Kranjec et al. [28] found that HR
decelerated in response to negative stimuli as compared with
responses to positive and neutral ones.

HRV: Burns et al. [12] reported that HR and HRV are use-
ful in measuring valence, where negative emotions have a
stronger influence on them compared to positive or neutral
ones. Taelman et al. [50] investigated the effect of task based
mental load on HRV components. Results showed that mean
RR interval decreased significantly, with a tendency for ele-
vated (LF/HF) ratio during performing the task compared to
the rest condition. Moreover, Melillo et al. [33] reported that
HRV features measurements increase as an indication of low
resiliency. McDuff et al. [32] addressed remote measurement
of HR and HRV changes using a digital camera, where Stroop
color tasks [22] were used to induce and classify restful versus
stress states. Results showed that HRV was a stronger predic-
tor of user’s state compared to HR ratings, as LF and (LF/HF)
components increased during performing the task. Choi et
al. [14] used a time series heart monitor to explore the effect
of single tasks on HRV measurements. Results indicated that
RR beat to beat interval changes upon exposure to the Stroop
task, with an increase in its mean. Salai et al. [41] used the
same test to serve as a source of mental stress, where HF and
LF features increased, while mean RR decreased.

GSR: Many studies examined GSR signals for user state mea-
surement during performing tasks. Different studies reported
increase in GSR during performing tasks that require mental
load [37, 9, 36, 25, 49, 27]. Khawaji et al. [25] investigated
how stress is associated with cognitive load and trust. They
concluded that high mental load or low interpersonal trust
can induce stress, and consequently, results in increased GSR.
Additionally, Sun et al. [49] presented a multimodal approach
to model states affected by both mental and physical activities
using accelerometer, Electrocardiography (ECG) and GSR
sensors. They reported that both HR and GSR increase with
performing activities.

Figure 1: Previous studies on mental workload recognition
using bio-signals and their results

Skin Temperature: Thermal imaging has penetrated the HCI
field recently [1, 2, 3]. Thermal imaging is an applicant
methodology for non-contact human state appraisal. It has the
capability of quantifying blood stream induced by different
mental or physical activities. Puri et al. [40] explored the
enthusiastic conditions of users finishing an adaptation of the
Stroop color test using thermal imaging. Facial features were
extracted with the forehead chosen to be the Region of Inter-
est (ROI). Results gave confirmation that thermal imaging is
a reasonable technique for measuring single task based load.
Hence, studies exploring different load levels [4], with differ-
ent hardware standards and cost would be beneficial for many
affect-aware systems applications.

Due to the various applications of mental state assessment
in affect-aware systems, a co-found has been established by
extensive research for mental load that is provoked by task
accomplishment. Literature in this context offered support
for the applicability of defining task based mental load using
bio-signals. However, most of the studies elicited mental
workload using different methods, alternating in the nature of
the tasks, their number, and objectives, with the aim of using
such methods as a tool to elicit cognitive load or stress, then
testing how the stressful state affects physiological signals.
They focused mainly on monitoring and supporting the user
during focused task and the additional task was used to elicit
stress/cognitive load.

With the age of ubiquitous computing and multiple devices
integrated in our daily life, the need to investigate the influence
of the number of performed tasks is required. In this work,
we are interested in analyzing and comparing the effect of
different number of tasks on the user’s state rather than using
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an additional task to elicit a stressful or cognitively demanding
state. Accordingly, we are investigating this matter on an
abstract level, where we start by a preliminary analysis of
user’s states while considering one factor, namely the number
of tasks (single vs. dual).

State Detection using Low-Cost Sensors
Studies have investigated detecting mental state using different
low-cost bio-sensors. Sun et al. [41] performed a validation
study to compare a low cost HR sensor against a high standard
device for stress detection. Test results approved the reliability
of the affordable sensor in detecting features that change upon
performing single task, namely the Stroop color test. Choi et
al. [14] managed to assess mental load induced by a single task
condition using a consumer-grade HR transmitter (Polar T31)
and a custom-made respiration sensor. On the other hand, Ol-
lander [37] investigated how well a wearable sensor performs
in stress detection. Synchronized signals from a monitoring
wristband, namely (Empatica E4) were compared against sta-
tionary laboratory equipment. Results showed that output
signals do not correspond very well to each other, specially
for the GSR measurements.

Contact-less sensors are advantageous to use with affect aware
systems. McDuff et al. [32] showed that HRV components
can be remotely captured using a low-cost digital camera
and used to detect cognitive load. Additionally, Bousefsaf et
al. [9] introduced a low-cost framework for detecting workload
changes, where they exhibited a strong correlation between
the trends of a webcam and contact skin conductance traces
recognizing the task performing state.

As informed by the literature, most of the work done in low
cost sensors addresses scalability of using them in mental load
detection (Figure1). In this work, we are aiming at having a
clear understanding of how multitasking influence user’s state
through investigating the effect of number of tasks being held
at a time on the bio-signals of the user. Moreover, we want to
collect the required bio-data using affordable devices with the
aim of focusing on the feasibility of utilizing this technology
in educational institutes in developing countries.

DETECTING MULTITASKING USING BIO-SIGNALS
Bio-signals is particularly promising for inferring user states
for several reasons. They are readable using commercial
sensors in both wearable and unobtrusive manner. In this
work, our aim is to differentiate between different user’s states
due to number of tasks, namely zero, single and dual task
conditions through bio-signals. An initial exploration was
conducted using high end HR sensor.
We compared between a commercial and a high state of
the art sensor results with the aim of validating the usage
of commercial sensors to be useful for all learning groups,
specially those in developing countries i.e economically
challenged.

Additionally, a set of unobtrusive commercial bio-sensors
was chosen with the aim of testing the effect of the tasks on
different bio-signals so that users can use them during the day,
and not just be limited to the lab usage. We decided to hold

the comparison between high and low end sensors in one bio-
signal only (Heart Rate) because of the feasibility of finding
both sensors and buying them in our developing country. In
summary, in this work we focus on the following research
questions:

1. Can we distinguish between single and multitasking (dual-
task) using high end commercially available bio-sensor?
More specifically, do the changes in heart rate recorded
by high end sensor correlate with the nature of the task ?
(RQ1)

2. Can we still distinguish between single and multitasking
when using the cheap version of the sensors? (RQ2)

3. Are other signals from commercial sensors -namely heart
rate variability, galvanic skin response and skin temperature-
capable of distinguishing between the number of tasks as
well? (RQ3)

STUDY
To answer our research questions and to test our hypothesis
of using the bio-signals to elicit multitasking, we conducted a
user study in which we recorded the participant’s heart rate,
heart rate variability, galvanic skin response and skin (nose,
forehead and wrist) temperature during three tasks:

1. Relaxing as the baseline.

2. Single-task activities.

3. Dual-task activity.

Design
We designed our study as a repeated-measures design. We
studied the effect of the number of concurrent tasks on the
heart rate. For the baseline we asked the participants to relax.

Single Task
The single tasks we provided five different tasks, We chose
these tasks for their simplistic single nature:

1. recalling the numbers in a list in both reversed and original
order,

2. recalling the nth number of the same list,

3. performing an arithmetic task,

4. sorting a list of names in an alphabetical order,

5. recalling the alphabet then reversing it.

Multitask
For the multitasking task, we merged both the Stroop color
test [22] and arithmetic tasks together. We used a mash-up of
the number test used by Orllander [37] and the additional task
used in Bousefsaf’s [9]. Participants were asked to subtract 13
from 1022 continuously while solving the Stroop color test. A
countdown is started once they are given the color test, as well
as a constant reminder to answer the mathematical question.
The arithmetic tasks were provided orally by the experiment
moderator, and they were asked to answer orally as well. The
Stroop color test was given to them on the laptop screen. This
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Figure 2: Study setup consisting of participant performing the
tasks.

way , the participants were required to think about the correct
answer for the mathematical task before it times out while
solving the stroop color test which was timed as well.

To overcome the order effect of the repeated-measures exper-
imental design, the order of the tasks was counter-balanced
using a Latin Square.

Apparatus
Our experimental setup consisted of an HP Notebook -14-
ac115tx laptop as shown in Figure 2. Participants were wear-
ing the Polar H6 chest belt [21] measuring HR, and the Em-
patica E4 wristband [48] measuring HR, HRV, GSR and wrist
temperature. It is worth noting that Empatica E4 is embedded
with a photoplethysmography sensor of 64 Hertz sampling
frequency. It measures changes in light absorption that pro-
vides blood volume pulse from which HR and HRV can be
derived. Thus, it is considered to be a high end commercial
sensor that costs 1448.84 Euros, with 28 times the price of the
commercial Polar H6 sensor that costs around 61.63 Euros.

Additionally, a thermal camera (FLIR One android 2) measur-
ing facial skin temperature was attached to a phone placed
one meter away from the participant. The optical resolution
of our camera was 160⇥120 pixels. It is able to measure
temperatures between -20�C and 120�C, and operates with a
thermal sensitivity of 0.18�C. It is a commercial camera that
costs 170.95 Euros, which is the cheapest thermal camera in
the market compared to the high end thermal cameras that cost
starting from 300 to 120,000 Euros.

The wavelengths captured by the camera are in the spectral
range between 8µm and 14µm. The lens we use provides a
46�⇥ 35� field of view. The thermal camera is charged and
operates via male micro USB connected to an android phone,
and the images are stored on the mobile and then transferred
for analysis. It provides temperature information in the form
of 16-bit color values encoding the temperature information.
The participants were asked to look to the front facing the

2http://www.flir.com/flirone/android/

thermal camera placed at 1m from the participants and the
screen as shown in Figure 2.

Data Collection
To answer the research questions, we built a system that cap-
tures the reading from the attached sensors and a data pro-
cessing software that recognizes and analyzes the user’s heart
rate, heart rate variability, galvanic skin response and skin
temperature as described below.

Heart Rate
HR data was collected from both the Polar H6 chest belt
and the Empatica E4 wristband. Analysis was performed
on both data, with the H6 data being ran through a simple
algorithm that detects inconsistencies. Inter beat interval files
were inputted to Kubios HRV Standard (ver. 3.0.0) 3, and
medium artifact correction was carried out, which outputted
both HR and HRV data.

Galvanic Skin Response
Electrodermal activity is how an individual’s sweat glands
react. It is decomposed into phasic and tonic components,
with the phasic component rapidly changing (known as the
skin conductance response), and the tonic one slowly changing
(known as the skin conductance level). Empatica E4 produces
EDA files which contain both components. Hence, analyses
were performed to separate both components, and extract
phasic data. Moreover, averaging across the whole signal gives
inaccurate results for GSR [8]. Therefore, decomposition was
performed where averages were then taken for each phase
period, followed by taking means for each task.

Heart Rate Variability
HRV has many components such as RR intervals, HF, LF and
LF/HF power ratio. Different analysis methods can be used to
analyze HRV signals such as time-domain methods, frequency
domain methods, and geometrical methods [13]. Time do-
main analysis is commonly used for long-time data recordings,
while the frequency domain is commonly used for short-term
recordings [52]. Since each task in our experiment lasted for
five minutes, and geometrical methods are not significantly af-
fected by changes in the breathing rate [38], frequency domain
method was more suitable to use.

Frequency domain analysis can be decomposed into different
methods, with its two most common methods being auto-
regressive spectral estimation and Fourier techniques [15].
According to [42, 31], auto-regressive technique is parametric
model that produces smoother spectral components, but at
the same time might remove valuable data. Hence, all spec-
tral components were obtained in each subject using the Fast
Fourier Transform (FFT) method on Kubios HRV (ver. 3.0)3,
where all input data was subjected to medium artifact correc-
tion. Outputs are HF power, LF power, LF/HF power ratio
and RR beat to beat intervals.

Skin Temperature
Our skin temperature metrics included the wrist, nose and
forehead temperatures.
3http://www.kubios.com/
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Wrist Temperature
For analysis, single and dual tasks were compared with the
baseline [44]. The Empatica E4 output temperature values
with a sampling rate of four samples per second. Averages
were taken for each task for each individual participant.

Figure 3: Region of Interest Identification.

Facial Temperature
Using the commercial FLIR One thermal camera, we extracted
the forehead and nose temperature from the radiometric pic-
tures. We took the mean temperature during each task so that
we can study the difference between the increasing number of
tasks. we extracted the data of each thermal image we took
using ThermaCam Researcher Professional 2.10 4. Firstly, we
changed the iron scale into grey scale. Secondly, we put one
region on the forehead and the other on the nose using 15⇥15,
30⇥30 pixels window on the nose and forehead respectively
as shown in Figure 3.

Participants and Procedure
We invited 20 participants (11 females) with an average age of
20.45 years (SD = 1.14) using university mailing lists. After
arriving in the lab, participants signed a consent form and
were briefed with the purpose of the study along with the in-
structions and descriptions of the experiment. Next, we asked
participants to perform the set of single and dual tasks, each
for five minutes. Such duration was chosen because HR com-
putation requires data chunks of at least five minutes [41]. The
study took approximately 30 minutes (15 minutes tasks and
15 minutes introduction and sensors setup). During the en-
tire experiment, we recorded the participant’s heart rate, heart
rate variability, galvanic skin response and skin temperature.
The order of the tasks was counter-balanced using balanced
Latin-square.

RESULTS

RQ1: Heart Rate as an Indicator of Number of Tasks
In order to answer RQ1, we analyzed the effect of the number
of tasks on the recorded heart rate as our dependent variable.
In this phase we only analyzed the heart rate captured from
the Empatica E4, as it is the high end version of the heart rate
detection methods.

Effect of Number of Tasks on Heart Rate (Empatica E4)
We tested the effect of the TASKS NUMBER on the HEART
RATE with a one-way ANOVA. We found a large signifi-
cant effect of TASKS NUMBER on the HEART RATE mean
4https://thermacam-researcher-pro.software.informer.com/2.1/

(F2,38 = 4.66, p < .0.05,ges = 0.20). Regarding the homo-
geneity test, variances of the distributions in the population
were equal. Also, the dependent variable was normally dis-
tributed in each group.
Bonferroni-corrected post-hoc tests found a statistically sig-
nificant difference between all number of tasks (p < 0.01),
except between the baseline and single task conditions (Table
1). The mean increase in the heart rate between the increasing
number of tasks was of 3.05 (Figure 4).

RQ2: Does it still hold when using the cheap version ?
In order to answer RQ2, we analyzed the effect of the number
of tasks on the recorded heart rate as our dependent variable.
In this phase we analyzed the heart rate captured from the
Polar H6 and compared it to the outcome from the Empatica
E4 sensor. The main aim of this evaluation is to asses the
performance of the cheap and affordable heart rate sensor as
opposed to the expensive version.

Effect of Number of Tasks on Heart Rate (Polar H6)
We tested the effect of the TASKS NUMBER on the HEART
RATE with a one-way ANOVA. Mauchly’s test showed a vio-
lation of sphericity against TASKS NUMBER (0.516, p<0.05),
so we report Greenhouse-Geisser-corrected (GGe = 0.67) val-
ues. We found a large significant effect of TASKS NUMBER on
the HEART RATE mean (F1.34,25.61 = 8.78, p < 0.005,ges =
0.32).
Bonferroni-corrected post-hoc tests found a statistically sig-
nificant difference between the baseline and the dual task
conditions (p < 0.01), as well as the single and the dual task
conditions (p < 0.05). However, no significance was found
between the baseline and single task conditions (Table 1).
The mean increase between the increasing number of tasks
measured using the low-cost Polar H6 chest belt was of 1.675.

Figure 4 shows average HR measurements of both sensors
through the different number of tasks. Readings captured
by the two sensors were close to each other with maximum
difference of 1.88 beats in the baseline phase. This can be due
to the differences in algorithms used to calculate HR in each
sensor.

Figure 4: Average HR data from both sensors in different
number of tasks

RQ3: Are other signals from commercial sensors capable
of distinguishing between the number of tasks?
In order to answer RQ3, we analyzed the effect of the number
of tasks on the recorded bio-signals. We used five metrics as
our dependent variables:
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1. Increase in Galvanic Skin Response.

2. Variation in Heart Rate Variability components, namely:

(a) Low Frequency(LF),
(b) High Frequency(HF),
(c) Low Frequency to High Frequency (LF/HF) power

ratio,
(d) and RR inter beat intervals.

3. Decrease in wrist temperature.

4. Increase in nose temperature.

5. Increase in forehead temperature.

Effect of Number of Tasks on Galvanic Skin Response
We tested the effect of TASKS NUMBER on the GALVANIC
SKIN RESPONSE with a one-way ANOVA. We found no sig-
nificant effect of TASKS NUMBER on the GALVANIC SKIN
RESPONSE (p=0.12).

However, difference was noted upon conducting paired sample
t-test between baseline (M=1.2, SD=1.9) and dual task (M=1.5,
SD=2.4) conditions; t(19)=-1.81, (p<0.1)(Table 1).

Effect of Number of Tasks on Heart Rate Variability
Tests were administered for LF, HF, RR and LF/HF power
ratio using a comparison between baseline, single and dual
tasks.

We tested the effect of the TASKS NUMBER on the HF Power
component with a one-way ANOVA. We found a large signifi-
cant effect of TASKS NUMBER on the HF POWER component
(F2,22 = 9.78, p<0.001,ges = 0.47) (Figure (5a)). Regarding
the homogeneity test, variances of the distributions in the pop-
ulation were equal. Also, the dependent variable was normally
distributed in each group.
Bonferroni-corrected post-hoc tests found a statistically sig-
nificant difference between baseline and single task (p<0.05),
as well as baseline and dual task conditions (p<0.01). How-
ever, no significance was found between single and dual task
conditions (Table 1).

Regarding the LF Power component, it is suggested that the
low frequency component which indicates sympathetic ner-
vous system arousal generally tends to increase in the major-
ity of people upon performing tasks(Figure (5b)). However,
ANOVA results showed no significant difference between the
three tested states.

Regarding the (LF/HF) Power Ratio component, no signifi-
cant difference was found for the zero-dual nor the single-dual
task comparison. However, significant difference was found
between the baseline (M=168.27, SD=231.01) compared to
the dual task condition(M=25.48, SD=20.61), (p<0.05).

For the RR intervals, results showed that 76.92% of the par-
ticipants experienced a decrease in it during the dual task
phase compared to the single phase (Figure 5d). Performing
one-way ANOVA test, Mauchly’s test showed a violation of
sphericity against TASKS NUMBER (0.54, p=0.07), so we re-
port Greenhouse-Geisser-corrected (GGe = 0.688) values. We

found an effect of TASKS NUMBER on the RR component
(F1.3,16.5 = 3.312, p<0.1,ges = 0.216).
Bonferroni-corrected post-hoc tests found no statistically sig-
nificant difference between all number of tasks, except be-
tween the zero and dual task conditions (p < .05) (Table 1).

Figure (5c) shows that average HRV power ratio LF/HF power
ratio values for the dual task condition decreased noticeably
compared to both baseline and single-task phases, with an
average difference of 128.42. This shows that the average
increase in the HF component was greater than the increase in
LF component as shown in Figure 5. Increase in HF compo-
nent is due to the rapid breath rates induced by stress provoked
by the multitasking condition.

Such results further justify the increases noticed in the HF
power component, as HF is directly tied to respiration rate.
Since RR interval and HR are inversely proportional, RR inter-
vals decreasing means an increase in heart rate. An increase
in heart rate means an increase in respiratory rate and hence
justifies the increase in the HF values.

Effect of Number of Tasks on Skin Temperature
Wrist Temperature
We tested the effect of the TASKS NUMBER on the WRIST
TEMPERATURE with a one-way ANOVA. Mauchly’s test
showed a violation of sphericity against TASK NUMBER
(0.34, p<.001), so we report Greenhouse-Geisser-corrected
(GGe = 0.601) values. We found a large significant effect of
TASKS NUMBER on the WRIST TEMPERATURE (F1.2,22.8 =
5.97, p<0.05,ges = 0.24).
Bonferroni-corrected post-hoc tests found a statistically signifi-
cant difference between both baseline-dual task (p < 0.01) and
single-dual task comparisons (p < 0.05), while baseline-single
task conditions comparison showed no significant difference
(Table 1). The mean decrease in temperature between increas-
ing number of task was of 0.09 degrees Celsius (Figure 6).

Nose Temperature
we investigated the effect of the TASK NUMBER on the NOSE
TEMPERATURE with a one-way ANOVA. We found no signif-
icant effect of TASKS NUMBER on the NOSE TEMPERATURE
(p=0.24). Paired sample t-tests found no statistically signifi-
cant difference between all content types. The mean increase
in temperature between increasing number of tasks was of 0.21
degrees Celsius (Figure 6), where 61.9% of the participants
experienced an increase in their nose temperature during both
single and multitasking activities.

Forehead Temperature
examining the effect of the TASK NUMBER on the FORE-
HEAD TEMPERATURE with a one-way ANOVA. We found a
large significant effect of TASK NUMBER on the FOREHEAD
TEMPERATURE (F1.28,34.65 = 12.54, p < 0.001,ges = 0.40).
Regarding the homogeneity test, variances of the distributions
in the population were equal. Also, the dependent variable
was normally distributed in each group.
Bonferroni-corrected post-hoc tests found a statistically signif-
icant difference between all content types (p < 0.01), except
between single and dual tasks conditions (Table 1). The mean
increase in temperature between increasing number of tasks
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(a) High Frequency (b) Low Frequency

(c) (LF/HF) Power Ratio (d) RR Interval

Figure 5: Average of HRV components for different number of tasks

Figure 6: Skin temperature means for different number of
tasks

was of 0.36 degrees Celsius (Figure 6), where 76.19% of the
participants experienced an increase in their forehead tem-
perature during the single task, and 95.24% experienced an
increase in the same area performing the multitasking activity.

Figure 6 shows a comparison between skin temperature of the
the three regions of interest (wrist, nose, and forehead) across
different number of tasks.

In summary, we found statistically significant effects of task
numbers on the following:

1. Heart rate recorded from Empatica E4 relatively expensive
commercial sensor (p = 0.015)

2. Heart rate recorded from Polar H6 low cost sensor (p =
0.003)

3. Hear rate variability HF component (p = 0.001)

4. Heart rate variability RR component (p = 0.07)

5. Wrist temperature (p = 0.008)

6. Forehead temperature from very low cost thermal camera.
(p < 0.001)

DISCUSSION
Educated by previous work, we conjectured that changing
different user states with different number of task assignments
would prompt an adjustment in the participants’ bio-signals,
we wanted to test the possibility of distinguishing between
single and multitasking states using relatively low-cost bio-
sensors.

Three tasks variations were tested on different metrics: 1)
Relaxing as the baseline, 2) Single-task activities, and 3) Dual-
task activity. The tested metrics were heart rate, heart rate vari-
ability with four tested components (HF, LF, LF/HF power
ratio, and RR intervals), galvanic skin response and skin tem-
perature with three regions of interest (wrist, forehead and
nose). Our findings were as follows:

Regarding the HEART RATE, readings captured from the Em-
patica E4 wristband were firstly analyzed -as it is the high
end HR measurement device version- to see whether it can
be used as an indicator of number of tasks or not (RQ1). We
found a large significant effect of tasks number on the heart
rate measurements, where a statistically significant difference
was found between all number of tasks, except between the
baseline and single task conditions (Table 1).
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Afterwards, a first follow up was held through analyzing read-
ings captured by the low-cost heart rate chest belt (Polar H6)
and comparing them with those of the high end Empatica E4
sensor with the aim of knowing whether the correlation still
holds when using the cheap version of the heart rate sensor
(RQ2). The Polar H6 chest belt results showed that even
though it is relatively cheap in comparison to the Empatica E4
sensor, it can still be used in different task number recognition
using HR measurements (Table 1).

Tasks Number Effect

Sensor Metric 0 Vs. 1 0 Vs. 2 1 Vs. 2

Polar H6 HR 0.344 0.006*** 0.005***

Empatica E4

HR 0.995 0.004*** 0.031**
LF 0.119 0.118 0.773
HF 0.028** 0.004*** 0.419

(LF/HF) 0.343 0.042** 0.275
RR 0.241 0.025** 0.209

GSR 0.162 0.087* 0.199
Wrist 0.248 0.003*** 0.023**

Flir One Nose 0.144 0.168 0.552
Forehead 0.002*** 0.001*** 0.149

*** p < 0.01, ** p < 0.05, * p < 0.1

Table 1: Results Summary.

Based on these results, the rest of the recorded bio-signals
were analyzed with the aim of detecting if they are capable of
distinguishing between the number of tasks given that they are
extracted from affordable, low-end sensors (RQ3).
Accordingly, five metrics were measured: GSR, HRV and
wrist temperature using the Empatica E4 commercially avail-
able wristband, in addition to nose and forehead temperature
measured by the low-end thermal camera FLIR One.

Regarding the Heart Rate Variability, upon administering the
tests, noticeable increase was found in LF and HF components
under single and dual tasks conditions compared to the base-
line phase (Figures 5b, 5a). These results suggest that the
LF component which indicates sympathetic nervous system
arousal generally tends to increase under the increasing num-
ber of tasks in the majority of the participants. Additionally,
most of the subjects experienced a decrease in the (LF/HF)
dual task condition ratio compared to the baseline (Figure 5c).
This shows that the average increase in the HF component
due to the rapid breath rates was greater than the increase in
LF component. Moreover, subjects experienced a decrease
in RR intervals during the dual task condition (Figure 5d),
which justifies the increases in HF power, as HF is directly
tied to respiration rate. Since RR interval and HR are inversely
proportional, RR intervals decreasing means an increase in
HR, which was confirmed by the HR analysis. To sum up, the
results confirm the studies that has considered HRV to be one
of the important components in affect recognition along with
HR measurements [12, 50, 33, 32].

Regarding the Galvanic Skin Response, no significant effect
of tasks number was found on the skin conductivity of the

participants. However, results suggests that the skin conduc-
tance response increases considerably during exposure to the
dual task condition compared to the baseline, which confirms
the literature reporting that GSR increases with high cognitive
load activities [34, 36, 9, 25, 37].

Regarding the skin temperature, three ROIs were investigated
being: wrist temperature measured using the Empatica E4
sensor, along with forehead, nose temperature measured using
the low-end Flir One thermal camera.

For the Wrist Temperature, test results showed a large effect
of tasks number on the measurements, where participants ex-
perienced a significant decrease in writs temperature with the
increasing number of tasks (Figure 6). We found a statistically
significant difference between all task types, except between
the baseline and single task conditions (Table 1), which comes
in line with HR, GSR and HRV analysis results, where no
significance was found between the baseline and the single
task conditions due to the lack of pressure during the single
task.

Concerning the facial temperature, statistically significant dif-
ference was found in the Forehead Temperature between all
task types, except between single and dual tasks conditions
(Table 1). The dual tasks made a noticeable change in the
forehead temperature as mentioned in previous work [40, 43].
This increase was observed while imposing a sympathetic ac-
tion and that was reflected in our experiment when 95.24% of
participants had their forehead temperature increased under
multitasking. It is worth noting that no significant difference
in Nose Temperature was found neither during the single nor
the multitasking conditions. However, most of the partici-
pants experienced an increase in the nose temperature with the
increasing number of tasks (Figure 6).

Our findings about the increasing facial temperature, and the
decreasing wrist temperature with the increasing number of
tasks support the literature [37], where hands temperature de-
creases as a result of blood being shunned away and diverted to
more important parts such as the brain, which hence supports
the increase in the forehead temperature.

Table 1 summarizes the results of the effect of different tasks
number on our measured bio-signals. To sum up, the three
research questions were answered using the experimental anal-
ysis results as follows:

• RQ1: Changes in heart rate measured using a commercially
available sensor can distinguish between baseline versus
multitasking activities, in addition to single versus multi-
tasking activities.

• RQ2: Measuring the heart rate using a cheap, low-end
sensor revealed that we can still distinguish the changing
nature of the tasks.

• RQ3: Some other signals from commercial sensors are
capable of accurate distinguishing between the tasks num-
ber as well, namely the wrist temperature and the forehead
temperature, while other signals, namely the heart rate vari-
ability and the skin conductivity showed unified patterns in
their change with no significance.
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Involvement of Developing Countries
Embracing cross-cultural development, as well as involvement
of devolving countries in the research community is of a great
importance. While certain research fields are not accessible
to developing countries due to the cost of the hardware, we
investigate the usage of relatively cheap sensors as an initial
step towards their involvement in the affective computing
community. This study was held by local researchers with
local participants in a newly established research lab of an
educational institution in a developing country. This was done
with the aim of involving different affect-aware studies and
applications in this institution.

Both researchers and participants gave positive feedback about
the study, the local researchers reported that they were excited
to start working with affordable hardware than can be em-
bedded in their studies for diverse affect-aware applications.
Moreover, the participants were interested in exploring the
sensors, and using them during the experiment. They reported
that they would like to use adaptive systems in their daily
life activities given that they are built using user friendly sen-
sors. We envision the involvement of the developing countries
would yield the emerging of diverse and tailored set of appli-
cations that would be designed, implemented and deployed by
and for developing countries.

To sum up, our findings reflect that using affordable methods
to meet local requirements of the economically challenged re-
search groups is fruitful, it is for these reasons that we believe
it is critical for developing countries to start creating their own
research clusters.

LIMITATIONS AND FUTURE WORK
Although our findings suggest the feasibility of using afford-
able commercial sensors in distinguishing between different
number of tasks using different bio-signals measurements, our
approach have its own limitations. Single-task activities might
not have been challenging enough for the participants to get
aroused; this explains the analysis showing that there was no
significant difference noted between baseline and single-task
conditions in most of the bio-signals. Accordingly, it is rec-
ommended to hold further studies that explore more engaging
activities. Additionally, extra validation is needed for the GSR,
and HRV signals either from other sensors or other experimen-
tal conditions to reassure their capability of distinguishing
between the increasing number of tasks. Moreover, we used
an artificial task to elicit multitasking. It would be interesting
to investigate the effect of naturalistic multitasking task on the
measured bio-signals.

In future work, our results can be used to generalize the effect
of different states on bio-signals using different commercial
sensors. Wider scenarios can be considered including dif-
ferent number of tasks and mental load levels with various
natures and difficulties in specific contexts like education. Ad-
ditionally, difference between dominant and non-dominant
side measurements of the wristband can be investigated, along
with using cheaper sensors for different signals and comparing
them with their advanced counterparts. Regarding thermal
imaging, more ROIs other than forehead and nose can be con-
sidered. Furthermore, this work can be extended to include

indicators that measure both arousal and valence like eye and
brain activities to insure the accuracy of the results, and embed
the outcomes into machine learning systems that detect and
predict levels of difficulty faced by the users.

Moreover, our work highlight the potential of using bio-
sensors to distinguish between number of tasks being per-
formed. We hope our work could inform future research to
build a model to investigate with which accuracy the number
of tasks can be differentiated.

CONCLUSION
Nowadays multitasking is heavily included in our daily life
routine in different contexts. Ubiquitous computing sensors
and affect-aware systems have the capability to support users
during performing their tasks through sensing their internal
states and adapting their behavior accordingly. Hence, a clear
understanding of the effect of multitasking on the user’s affect
is needed in order to build adaptive systems that interpret and
consider the number of tasks in hands.

This study questioned the ability of using commercial bio-
sensors to estimate the state of the user during multitasking
itself rather than the induced changes. We investigated the im-
pact of number of tasks on different signals namely HR, HRV,
GSR and skin temperature. A set of unobtrusive commercial
sensors was chosen so that they can be used during the day,
and not just be limited to lab usage. The tasks variations were
as follows: Relaxing as the baseline, Single-task and Dual-task
activities.

A preliminary study was conducted on HR measurements us-
ing a high-end commercial sensor. This was followed by a first
follow-up exploration in which we compared the results of
this sensor with those of a low-cost chest belt with the aim of
validating the usage of affordable sensors to be useful for all
groups in developing countries. Findings showed that changes
measured using the commercial HR sensor can distinguish
between baseline versus multitasking, and single versus multi-
tasking activities. Using the low-end HR sensor revealed that
the correlation still holds with the changing nature of the tasks.

A second follow-up exploration with the aim of testing other
signals from commercial sensors showed that they are capable
of accurately distinguishing between user’s states performing
different number of tasks, namely wrist and forehead tempera-
ture; while other signals like HRV and GSR showed unified
patterns in their change with no significance.

Our results can be used with the adaptive systems currently
being established in developing countries such as mood based
applications that help those who might struggle in expressing
themselves during multitasking based workload.
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