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Figure 1: In this work, we explore the use of thermal cameras to capture a user’s foot for implicit identification.We investigate
the influence of different floor types (carpet, laminate, and linoleum) as well as the influence of footwear (socks, own shoes,
standard shoes). With AUC scores up to 98.9%, we show that feet’s thermal features can be used as biometrics.

ABSTRACT
We propose a novel method for seamlessly identifying users by

combining thermal and visible feet features. While it is known that

users’ feet have unique characteristics, these have so far been un-

derutilized for biometric identification, as observing those features

often requires the removal of shoes and socks. As thermal cameras

are becoming ubiquitous, we foresee a new form of identification,

using feet features and heat traces to reconstruct the footprint

even while wearing shoes or socks. We collected a dataset of users’

feet (𝑁 = 21), wearing three types of footwear (personal shoes,

standard shoes, and socks) on three floor types (carpet, laminate,

and linoleum). By combining visual and thermal features, an AUC

between 91.1% and 98.9%, depending on floor type and shoe type
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can be achieved, with personal shoes on linoleum floor performing

best. Our findings demonstrate the potential of thermal imaging

for continuous and unobtrusive user identification.
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1 INTRODUCTION
The omnipresent use of the term ’smart environment’ suggests

that Mark Weiser’s vision of a world in which computers weave

themselves into the fabric of everyday life [75] has become true –
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a vision in which environments adapt to the users and their con-

text. However, taking a closer look at what is today considered a

smart environment – at least from a commercial perspective – is

disillusioning. Technologies that turn on/off lights and heating or

open/closewindows, depending onwhether users are at home, build

on knowledge about user presence rather than on user identity.

As a result of this, truly personalized applications for smart en-

vironments often remain concepts, yet exciting ones. Consider the

simple examples of an environment that adapts to an individual

user, for example, by playing the user’s favorite music or automati-

cally turning on the user’s favorite TV show. Or an environment

using knowledge of the identity of a user for security purposes,

triggering an alarm as a non-legitimate user is detected.

A major reason for which personalization today is rarely seen

in smart environments is that the deployment of technology to

identify users is a non-trivial task. Generally, approaches should

work implicitly, that is without the need for interaction by users,

as well as continuously [12]. This is difficult with technologies,

such as fingerprint sensors. Approaches for implicit identification

include augmenting floors with sensors capable of identifying users

[50] or the use of cameras to enable identification based on face

recognition or gait [14]. However, also such solutions come with

challenges: They are often costly due to the large number of sensors

needed. And the placement of the sensors to optimally capture the

information required for identification is difficult. Consider a cam-

era to identify users from the characteristics of the face. This would

require a set of cameras placed around a space to continuously

capture the face of the user.

In this paper, we propose and explore a novel solution to this

challenge, which is the use of thermal imaging to identify users from
the thermal characteristics of their feet and the heat traces left behind.
We demonstrate that using a thermal imaging camera deployed at

a top view setup allows for seamlessly identifying users of a smart

environment (cf. Figure 1). As part of our investigation, we explore

how the type of footwear, as well as the type of floor, influence our

approach, so as to demonstrate the feasibility of the approach in

different settings (cf. Section 3).

Our research approach is as follows: First, we built a detection

system, to capture the data necessary to identify users. Second, we

collect a data set of thermal images under realistic conditions: we

capture data from three floor types (carpet, wood, and linoleum)

and from users wearing different footwear (socks, personal shoes,

standard shoes). Third, we built predictive models, demonstrating

how floor types and footwear influence identification accuracy.

Our results show that by using visual features only, an accuracy

of 73.1% to 84.1% can be achieved. In contrast, the use of thermal

features yields accuracies of 89.1% to 98.8%. Combining visual and

thermal features further improves accuracy: a classifier identifying

users independent of the footwear and floor type can predict users’

identity with 91.7%. In the best case (personal shoes on a linoleum

floor) an accuracy of up to 98.9% can be achieved.

We release both our system implementation and our dataset as

open source for researchers to build upon, replicate, and extend

our work
1
. We hope our system provides an easy-to-build and

1
http://tiny.cc/HotFoot

deploy solution for smart environment applications that rely upon

identifying users.

Contribution Statement.We advance the state-of-the-art in user

identification through the following contributions (according to

Wobbrock et al.’s classification of research contributions in HCI

[76]). (1) We propose a novel approach for identifying users based

on the thermal and visual features of their feet. (2) We provide

a proof-of-concept implementation and collect a dataset, both of

which we release as open source for future research. (3) We report

on an exploration of the accuracy of our approach, investigating

the influence of floor type and footwear.

2 BACKGROUND AND RELATEDWORK
Our work draws from several strands of prior research, most impor-

tantly, foot-based interaction, biometric identification, including

relevant ML techniques, and applications of thermal imaging.

2.1 Foot-Based Interaction
Different approaches exist that enable users to interact with their

feet. An overview of work on foot-based interaction in the HCI com-

munity is provided by Velloso et al. [72]. Prior approaches vary in

level of sophistication and regarding the used technology. A simple

example is Vote-with-your-Feet [67]. Here, two tangible buttons

on the ground enable users to cast a vote for a question shown

on a public display. A second example is ShoeSense, an approach

using a sensor on the shoe to identify gestures, for example, for

controlling a music player [15]. Richter et al. proposed a similar

solution to identify tabletop users based on their shoes, captured

by top-view depth cameras attached to the tabletop [57]. Another

work identified infants from footprints [13, 41]. While many other

interaction examples exist, the identification of people based on

foot characteristics has received little attention [29, 49, 50]. Ap-

proaches mainly focused on providing a proof of concept as to how

individuals [10, 37] can be identified based on image processing as

well as based on floor sensors [73].

2.2 Biometric Identification
Identifying people based on their feet is a biometric approach. We

briefly introduce the fundamentals behind biometric identifica-

tion approaches, provide some examples, and then explain how a

biometrics-based system can be built.

2.2.1 Definition and Fundamentals. According to Jain et al., ‘bio-

metrics’ refers to the process of identifying a person based on their

physiological or behavioral traits [35]. They considered the identifi-

cation based on biometric features as a novel and robust technique,

capable to overcome limitations of traditional, possession-based

(i.e. keys or tokens) and knowledge-based (i.e. passwords, PINs, pat-

terns) authentication approaches. The authors defined four criteria

to be fulfilled so that a physiological or behavioral trait qualifies as a

biometric feature: they should be universal and unique, i.e. everyone
should have the feature while at the same time being distinctive

among people. Furthermore, they should be permanent, that is the
feature should stay consistent over time, and collectable, that is
being measurable quantitatively [35]. The efficiency of a practical

http://tiny.cc/HotFoot
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biometric system is evaluated using three additional criteria: perfor-
mance, that is high identification accuracy rates; acceptability, that
is the willingness of people to adopt the system; and circumvention,
that is the robustness of the system to spoofing attacks [36].

It is worth noting that (as opposed to knowledge or token-based

schemes) biometric approaches provide a probability of users’ iden-

tity. As a result, biometric identification systems rely on a threshold,

beyond which the system considers the identity of an individual to

be confirmed [45, 51]. A high threshold (for example, 99.9% accu-

racy) increases security but comes at the expense of users’ being

falsely rejected. Hence, what is an acceptable accuracy strongly

depends on the use case. Whereas for authentication a higher accu-

racy is desirable, for use cases in which identification serves as a

means to personalize content a lower accuracy might be acceptable.

2.2.2 Examples of Biometric Systems. Much research exists on bio-

metric identification based on physiological features. The most

explored approach is recognition based on facial features [1, 34, 39].

Additionally, hand geometry, including palm [19, 27, 46, 82], fin-

ger [11, 18, 80], and finger-knuckle prints [48], as well as ear recog-

nition [2] have been investigated. To improve accuracy, researchers

adopted a multi-modal approach, combining two or more features,

such as face and fingerprint [31], or face and handprint [61].

More recently, biometric approaches based on human behavior

shifted into focus. Researchers primarily focused on the use of

gait [58, 74], keystroke dynamics [16, 63, 83], touch gestures [47, 53],

and mouse movements [64, 81].

Some research exists, that tried to identify users from foot char-

acteristics. Existing research mainly provided a proof of concept

as to how individuals can be identified based on image process-

ing [10, 37] as well as based on floor sensors [73]. Both approaches

differ in the capturing technique: the former approach captures data

on feet characteristics through a sensor installed in a fixed posi-

tion, whereas the latter approach requires multiple pressure sensors

integrated into the floor to identify a person while walking [78].

2.2.3 Machine Learning Models for Biometric Identification. All
biometric-based identification systems follow a similar design ap-

proach [22, 56]. Initially, user data on the biometric feature of inter-

est is acquired using sensors (cameras, inertial sensors, etc.). This

data then serves as a basis for building a classifier, used later on

to predict the identity of a user. To do so, in a preprocessing step,

the most important features (i.e. those features most unique to

single users) are identified and then used as input for training the

classifier through machine learning (ML) or deep learning (DL). Ul-

timately, user data for identification is captured and tested against

the classifier, returning a probability for the identity of the current

user.

Technical advances in ML algorithms allowed the performance

and robustness of biometric systems to be considerably enhanced [14,

38, 65]. For instance, Darwish et al. proposed a task-independent

method that leveraged gaze data to build a predictive model for

biometric identification [65]. The authors engineered a large set of

eye movement features and built a random decision forest model

that successfully identified people with an average accuracy of 88%.

Due to their ability to learn features from heterogeneous datasets,

deep learning models are now extensively used for biometric au-

thentication and verification [70]. For instance, multiple attempts

have been made to train convolution and recurrent neural networks

to learn features and develop models that can distinguish between

large numbers of individuals by leveraging physical (e.g., facial

images [66], finger [68] and palm prints [23]) and behavioral (e.g.,

gait [79] and keystrokes [69]) identifiers.

2.3 Thermal Imaging
2.3.1 Functionality. Thermal cameras capture the far-infrared spec-

trum (i.e. wavelengths between 7.5 and 13 𝜇𝑚). This enables captur-

ing the heat map of the camera’s field of view. As thermal cameras

operate in a different spectrum than RGB cameras, they are capable

of capturing distinctive properties of the spectrum. For instance,

thermal cameras capture heat radiation and reflections [5, 8, 62],

which can then be visualized using a false color mapping.

2.3.2 Research in HCI. Thermal imaging has been used in several

application areas in HCI. For example, prior work utilized ther-

mal reflection to capture users’ hand movements and thus enable

gesture interaction [6, 26, 62]. As thermal imaging works indepen-

dently of lighting conditions, it has been used as an alternative for

detecting faces and hands as well as their properties based on RGB

data. Thermal imaging provides information about the observed

skin temperature, which can be used to infer the physiological and

cognitive state of users [4, 7, 32, 33]. Another thermal property

captured by thermal imaging is heat transfer. Thermal imaging is

capable of detecting actions even after being performed. When a

user interacts with a surface, the heat is transferred from the user’s

hand to the surface, leaving behind a heat/cold trace taking time to

decay. Thus, the trace is recognizable by a thermal camera even af-

ter interaction takes place. Heat traces have been utilized for input

detection [40, 62], device state detection [55], reconstructing PIN

and authentication patterns [3], extracting veins patterns [25], as

well as for forensic identification based on thermal hand print [19].

One example where thermal imaging has been used to identify

people from behavior is the work of Cho et al. [19]. The authors

applied the Heat-Earth Mover’s Distance (HEMD) similarity metric,

to identify people based on their handprints’ thermal images.

2.3.3 Foot-related Thermal Imaging Research. A few examples ex-

ist, where thermal cameras have been used in research related to

human feet and walking behavior. One example is research in law

enforcement and forensics [20, 77], where heat traces left from

shoes have been used to verify how much time a person has spent

in a room. In medicine, researchers captured the temperature of

diabetic patients’ feet to assess their health status [54].

2.4 Summary
We learn that human feet have been at the focus of HCI research

with a main focus on interaction, showing that human feet are a

rich source of information. At the same time, thermal imaging has

several applications in HCI, though research on identifying humans

from thermal imaging data is scarce. In our work, we explore user

identification as an application area that fuses knowledge from the

aforementioned areas of research. Hereby we draw from a third

strand or prior work, that is, work on biometric identification. The

ability to identify people from different physiological and behav-

ioral traits motivated our attempt to identify users from their feet

thermal properties.
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3 HOTFOOT: CONCEPT & METHODOLOGY
Prior work demonstrated that people can generally be identified

from the geometric features of their feet [50, 71]. At the same time,

this approach is limited in that it requires users to take off shoes,

making it impractical for use in many everyday life scenarios. With

thermal imaging, additional knowledge on users’ feet becomes avail-

able: (a) the thermal radiation from the feet and (b) the heat traces

left behind on the floor. In the following, we introduce use cases and

explain the concept behind our work from a technical perspective

(which features are available and can be used for identification),

and present the main questions driving our research.

3.1 Use Cases
We envision an environment equipped with top-mounted thermal

cameras (e.g., on the ceiling integrated with smoke detectors). These

can capture both users’ feet and heat traces. This data can then

serve as input for an identification system.

3.1.1 Application Scenarios. Multiple applications can benefit from

this light-independent, seamless, and affordable identificationmethod.

In a smart home environment, a user could be identified based on

their feet’s thermal characteristics and, accordingly, the smart home

could adapt the settings to personal preferences. Furthermore, our

work could be used in (semi-) public places, such as offices or airports.

Applications could show personalized way finding information. As

the approach does not require hand interaction, users could carry

objects and still be identified based on their foot biometrics. Also,

the approach could be used for continuous, implicit authentica-
tion, for example, in a work setting. The advantage is that users do

not need to explicitly engage with an authentication task, such as

entering a password or PIN. We explore the following settings:

Identifying UsersWearing the Same Shoes in Environments
with Consistent Floor Type We explore how well our approach

works in a setting in which users wear the same shoes and in which

the floor consists of consistent material. An example would be the

airport scenario.

Identifying UsersWearing the Same Shoes in Environments
with Different Floor Types We explore settings in which users

wear the same shoes, but floor types differ. An example is a work

setting where the floor in different rooms consists of different ma-

terials.

Identifying UsersWearing Different Shoes in Environments
with Consistent Floor Type We look at settings where the same

type of floor is used across rooms, but where people change shoes.

Examples could be at home, where people may wear street shoes

in the entrance area and socks or slippers in other parts of the

home. Similarly, in work settings, people may be required to change

footwear (e.g., hospital clogs). Another example of this setting is

cases in which users revisit the same location with different shoes.

Identifying UsersWearing Different Shoes in Environments
with Different Floor Type Finally, environments exist where peo-

ple wear different footwear and which consist of different floor

types. Examples could be again home or work environments where

people use different types of shoes but with different types of floors.

3.2 Feature Selection
A thermal camera captures temperatures as thermal and visual data,

allowing thermal and visual features to be derived. In the following,

we explain how different features are derived from the thermal

imaging data.

3.2.1 Visual Features. A thermal camera generates false color im-

ages. We extract the visual features by analyzing the recorded

video frames. We use open CV libraries to extract those features.

We compared different, commonly used feature extractors, mainly

Speed-Up Robust Features (SURF) [17] and Scale-Invariant Feature

Transform (SIFT) [42]. The latter one yielded better results for our

data.

3.2.2 Thermal Features. We also use heat traces and thermal fea-

tures of the foot. Heat traces emerge from heat transfer, a phenome-

non when two objects (feet and floor) come in contact. The amount

of heat transferred relies on the surfaces’ thermal properties, com-

monly referred to as thermal contact conductance [21].

As an object gets in touch with a surface, heat is transmitted and

absorbed by the surface, causing a temperature change at the point

of contact, leading to a heat trace left on the surface (i.e. footprint).

The amount of the transferred heat influences the quality of the

footprint (i.e. the thermal and visual features) and, hence, the iden-

tification performance. The amount of heat transferred 𝑇𝑐𝑜𝑛𝑡𝑎𝑐𝑡
depends on the temperature of the contact objects (𝑇𝐹𝑜𝑜𝑡𝑤𝑒𝑎𝑟 and

𝑇𝐹𝑙𝑜𝑜𝑟 ) and their thermal penetration coefficient (𝑏), where 𝑏 is the
product of thermal conductivity (K), thermal density (P), and spe-

cific heat capacity (C) [52]. (𝑇𝑐𝑜𝑛𝑡𝑎𝑐𝑡 ) is quantified as follows:

𝑇𝑐𝑜𝑛𝑡𝑎𝑐𝑡 =
𝑏𝐹𝑜𝑜𝑡𝑤𝑒𝑎𝑟𝑇𝐹𝑜𝑜𝑡𝑤𝑒𝑎𝑟 + 𝑏𝐹𝑙𝑜𝑜𝑟𝑇𝐹𝑙𝑜𝑜𝑟

𝑏𝐹𝑜𝑜𝑡𝑤𝑒𝑎𝑟 + 𝑏𝐹𝑙𝑜𝑜𝑟
(1)

𝑏 =
√
𝐾.𝑃 .𝐶 (2)

Different footwear and floor types have different thermal prop-

erties which influence the amount of heat transferred 𝑇𝑐𝑜𝑛𝑡𝑎𝑐𝑡 (as

depicted in Equation 1). For instance, linoleum, carpet, and lami-
nate have different thermal conductivity [9]. These differences will

influence the thermal penetration coefficient which in turn will

influence the 𝑇𝑐𝑜𝑛𝑡𝑎𝑐𝑡 . In other words, the heat trace as well as the

heat signature of the users’ feet will be different. As this difference

is likely to influence identification performance, we investigate the

influence of the different floor types and footwear on identification

accuracy.

The thermal data are exported from the camera, representing

the non-visual temperature values such as min, max, and average

temperatures. As thermal cameras are insensitive to color variations,

the identification is not affected by different factors such as skin,

socks, or shoe colors. Additionally, thermal imaging is contactless

and non-invasive. Users are not required to take off shoes or socks.

We define six regions of interest (ROIs): heel, middle, and toe

areas for both feet. These regions are selected based on prior work

on classifying the feet into the abovementioned regions [60]. Ad-

ditionally, feet have different shapes in nature. We expect them to

exhibit different thermal characteristics upon walking. Thermal

information is derived from the temperature data for each ROI.

Thermal and visual features are determined for both the feet (i.e.,

as users appear) and the footprints (i.e., after leaving).
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Figure 2: Left: Experimental setup consisting of a thermal camera facing the three different floors. Right: Sample of the ROIs
of the feet and traces of one participant in different shoes and on Laminate being monitored by the thermal camera (Right-
FootHeel, RightFootMid, RightFootToes, LeftFootHeel, LeftFootMid, and LeftFootToes).

3.3 Research Questions & Research Approach
Our investigation is guided by the following research questions:

RQ1 – How accurately can users be identified based on foot

features captured by a thermal camera?

RQ2 – How do different floor types (i.e. thermal properties)

influence the identification performance?

RQ3 – Howdoes footwear influence identification performance?

To answer these questions, the following research approach, com-

monly applied in biometrics research, is employed: first, we collect

a data set of thermal images under different conditions. Second, we

build four different classifiers, according to the settings described

above. Third, we evaluate the performance of the classifiers.

4 STEP 1: COLLECTING THERMAL IMAGES
FOR FOOT-BASED USER IDENTIFICATION

We collected a dataset in a controlled environment to investigate

how accurately users can be identified based on their feet using

visual and thermal features. We consider different floor types and

footwear, to understand the influence on identification accuracy.

4.1 Experimental Design
The data collection follows a repeated measure within-subject de-

sign, i.e., data from participants were collected in all conditions.

The two independent variables are Floor Type and Footwear

with three levels each. For the Floor Type, we chose to collect data

for three of the most commonly used flooring types [30]: carpet,
laminate, and linoleum. In addition, each floor type has different

thermal properties (cf. section 3.2.2). Footwear comprises socks,
personal shoes, and white, low-cut sneakers (standard shoes) pro-
vided in fitting sizes. For each of the 3 × 3 conditions, we recorded

thermal videos of participants’ feet and the resulting heat trace per

Floor Type and per Footwear. Each condition was captured three

times,allowing us later to use two samples per user and condition

for training and the remaining sample for testing.

4.2 Apparatus
We used the Optris PI450 thermal camera

2
, along with the Optris PI

Connect software
3
for data extraction. The camera was mounted on

a rail 1m above the floor (cf. Figure 2–left), facing different flooring

types that are already placed side-by-side. The camera has an optical

resolution of 382×288 pixels, a frame rate of 80 Hz, and captures

temperatures between -20
◦
C and 900

◦
C, with thermal sensitivity of

0.04
◦
C. The thermal camera is connected to a 14" windows operated

laptop via USB for power supply and data transfer.

The Optris PI connect software used has a built-in automated an-

notation function, using the so-called measure areas
4
of 75× 65 pix-

els. We annotated the regions of interest including RightFootHeel,

RightFootMid, RightFootToes, LeftFootHeel, LeftFootMid, and Left-

FootToes (cf. Figure 2–right). Using the Optris PI connect built-in

save option, we saved the temperature values of the annotated

regions in CSV files, corresponding to a participant per condition.

In each recording session, we created two files: a data file con-

taining the thermal data of the six feet regions, along with the

corresponding timestamps, and the thermal imaging feed stored as

Radiometric Audio Video Interleave.

4.3 Participants and Procedure
We invited 21 participants (8 females, 13 males) via social networks

and mailing lists. The age ranged from 18 to 58 years (M = 27.45, SD

= 8.67). We also recorded participants’ weight, height, and shoe size

(cf. Macdonald et al. [44]). Participants’ weights ranged from 53 to

89 kg (M = 69.31, SD = 10.51). Height ranged from 155 to 189 cm (M

= 174.22, SD = 7.89). Participants’ shoe sizes varied between 37 and

46 (M = 41.5, SD = 2.55, European size system). All participants

2
https://www.optris.global/thermal-imager-optris-pi-400i-pi-450i, last accessed: Feb-

ruary 15, 2023

3
https://www.optris.global/downloads-software, last accessed: February 15, 2023

4
https://www.optris.com/software-tutorial-pix-connect-measure-areas, last accessed:

February 15, 2023

https://www.optris.global/thermal-imager-optris-pi-400i-pi-450i
https://www.optris.global/downloads-software
https://www.optris.com/software-tutorial-pix-connect-measure-areas
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Figure 3: Visual Feature Extraction Pipeline

were healthy individuals with neither amputated limbs nor any

chronic disease influencing their body or feet temperature.

We asked participants to bring socks and their everyday shoes.

The data collection was conducted in a lab space
5
. After welcom-

ing participants, we asked them to fill out a consent form and a

demographic questionnaire. Each recording session started with

personal socks, followed by personal shoes and standard shoes.

Each session began with capturing the floor. Participants were

asked to step on and off three predefined spots on each floor type,

to ensure that the feet are placed correctly for the automatic an-

notation of the regions of interest. Furthermore, this allowed us to

parallelize the recordings without risking heat being transferred

by mistake, affecting consecutive recordings. For each pre-defined

spot, participants were asked to step on the marked spot in the

field of view (FOV) of the camera and immediately step out, to cap-

ture realistic behavior, as shown in Figure 2–left. The camera kept

recording the scene after both feet were out of view for 3 minutes to

capture the feet’s heat trace. The process was conducted for all floor

types, three times with socks only, three times with participants

wearing their own shoes, and three times with participants wearing

the standard shoe.

For each participant, we captured 27 recordings (3 floor types

× 3 footwear × 3 repetitions). The data acquisition resulted in a

total number of 567 recordings (21 participants × 27 recordings

per participant). The average duration of the study was 60 min-

utes in a maintained room temperature of 24
◦𝐶 . Participants were

compensated with 10 EUR.

4.4 Data Processing
We performed a series of prepossessing steps to extract the foot

features for each recording. First, we marked the step-in frame, i.e.

the framewhere the participant’s foot appeared in the camera’s FOV.

To ensure consistent data capturing and analysis across participants,

we systematically identified the temperature change threshold for

automatic detection of the step-in time. A minimum threshold of

1.5◦𝐶 , in 7 consecutive frames showed the best results. Similarly,

the step-out frame is marked, when the temperature significantly

decreases over the course of 7 consecutive frames. All detected

temperatures before the step-in are discarded.

For the visual analysis, additional pre-processing steps were

performed for each frame. We used the OpenCV library
6
for image

processing and feature extraction as follows:

5
All local health and hygiene regulations to prevent the spread of COVID-19 and

create a safe study environment were implemented.

6
https://opencv.org/, last accessed: February 15, 2023

(1) Noise filtering:We applied a 5 × 5 median filter to smooth

the image and converted the output to gray-scale.

(2) Background Subtraction: We applied an inverse binary.

Resulting images were used to find feet contours.

(3) Features Extraction: We used the Scale-Invariant Feature

Transform (SIFT) algorithm [42], to extract the key points

and descriptors, as shown in Figure 3.

4.4.1 Thermal Features. The thermal model is based on the thermal

information extracted from the data files. As depicted in Figure 2–

right, we defined three regions of interest for each foot, representing

the toes, middle and heel areas, resulting in a total of six different

regions per recording session. We extracted seven different thermal

features, as shown in Table 1: the maximum temperature value, the

minimum temperature value, the difference between the maximum

and minimum values, the arithmetic mean and standard deviation

of the whole foot’s temperature between the step-in and step-out

frames, the temperature distribution, i.e. (the weight of the region

temperature among all 6 regions, computed as the average of the

region over the average of both feet; the 6 regions distributions

add up to a total of 1), the maximum temperature detected in all

six regions, and the time required for the thermal traces to decay

over time [3]. We chose to collect both feet and resulting heat

traces in addition to the decay time. This allowed us to obtain a

comprehensive understanding of possible thermal features, suitable

to be adopted in various use case scenarios.

4.4.2 Visual Features. The second model is based on the visual

features extracted from the thermal video frames. In each video, we

use four frames with both participants’ feet visible in the camera

FOV, to generate the visual biometric features. Every frame was

counted as an individual instance. This led to a total of 108 (4

frames × 3 repetitions × 3 floor type × 3 footwear) different frames

to identify an individual, and 2268 frames for all 21 participants.

4.5 Limitations
Our work has several limitations. Firstly, we simulate the best-

case scenario for identification (i.e. clean foot heat traces without

overlaps from previous steps). We acknowledge that in real-world

scenarios this might be different. We believe with more advanced

pre-processing of the data, traces could be restored properly. Addi-

tionally, participants had only one type of personal shoes, stepped

onto a single type of floor, and the process of stepping in and out

of the camera ensured no overlapping. The aim of the study was

to investigate the viability of thermal imaging and the captured

features to identify users.

Secondly, we recorded data in a single session only. However,

previous works showed that thermal prints collected in a single

session were robust and yielded a robust identification [19].

Thirdly, we opted for SIFT features extraction as an initial explo-

ration of our approach. Furthermore, we only considered a single set

of hyperparameters for our classifiers. Future work could consider

the latest feature extraction techniques as well as optimize hyper-

parameter values, so as to obtain a better understanding of how the

accuracy of the proposed approach could be further enhanced.

https://opencv.org/
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Table 1: Description of the Thermal Features.

Thermal Feature Description

Maximum Region Temperature maximum temperature value of each foot region.

Minimum Region Temperature minimum temperature value of each foot region.

Difference between Maximum and Minimum Temperatures difference between the min and max values of each foot region

Mean and Standard deviation of Foot Temperature overall average and the standard deviation temperature per foot.

Temperature Distribution weight of the region temperature relative to all 6 regions

Maximum Foot Temperature maximum temperature per foot

Decay time time it takes for the heat trace to disappear.

Fourthly, we tested our approach with 21 people only. While

future work could explore how the approach scales to larger popula-

tions, our exploration still demonstrates the utility of the approach

for home settings or environments with a moderately sized user

group. Lastly, we focus on individuals with two healthy feet, leaving

an investigation of people with chronically cold feet or people with

only one limb for future work.

5 STEP 2: CLASSIFICATION
We modeled the task of biometric identification as a multi-class

classification problem, where a feature vector was fed into a clas-

sifier to predict one of the 21 classes that correspond to the iden-

tity of the participant. We built four classifiers that correspond

to the settings described in subsection 3.1: (1) a floor-dependent,
footwear-dependent classifier, trained on data of all participants us-

ing the same floor and footwear condition respectively; (2) a floor-
dependent, footwear-independent classifier, trained on data from

the same floor but data from different footwear conditions; (3)

a footwear-independent, floor-dependent classifier trained on data

from the same floor but different footwear conditions; and (4) a

footwear-independent, floor-independent classifier trained on data

from different floor and different footwear conditions.

To build classifiers capable of identifying users, we split the

data of each user into a training set and a test set. We do not have

a validation set, as we are not changing the hyperparameters of

our classifiers [59]. We opted for leaving one-sample out rather

than one-participant out, as we are classifying participants, not

conditions. This was possible as for each condition, three samples

have been collected per user. In line with prior work on biometric

identification [24], we used two of the samples for training the

classifier and one sample for testing.

To train the classifiers, we experimented with Logistic Regres-

sion, Extreme Gradient Boosting (XGBoost), and Random Forest

models. We observed that the Random Forest model provided the

best performance score across the testing folds. Therefore, we

trained all our proposed classifiers with a Random Forest model on

the dataset of 21 participants. We tuned the Random Forest model

with 100 trees, a maximum tree depth of 80, 5 samples for splitting

the internal node, 2 samples to be at a leaf node, and entropy as the

splitting criteria for building the tree. To assess the performance of

the classifiers, we used the Area Under the ROC Curve (AUC) and

𝐹1-Score [28], similar to related work. The 𝐹1-Score is the weighted

average of precision and recall. The AUC score represents the ability

of a classifier to distinguish between classes and provides a measure

of performance across all classification thresholds. For both metrics,

the score ranges from 0 to 1, with 0 being the lowest and 1 being

the highest value the model can achieve regarding performance.

In the remainder of this section, we provide more details on the four

different classifiers. Later, Table 2 shows the results corresponding

to footwear-dependent and floor-dependent classifiers, presented

in 5.1. The values in the rows of Table 3 result from the classifiers

explained in 5.2, 5.3, and 5.4, respectively.

5.1 Footwear-Dependent and Floor-Dependent
Classifier

First, we built a classifier for the case in which users wear only

one type of footwear and in which only one type of floor exists.

This could be a typical office setting. This constrained setting is

expected to yield the highest accuracy. To do so, we trained and

evaluated the classifier 9 times using all features – once for each

footwear/floor combination. For example, we trained the classifier

on the data of the socks only footwear using carpet flooring and then
evaluated the classifier on the data of the socks only footwear and

carpet flooring. We split the data based on the number of samples

of each participant for the specified conditions. For this purpose,

we used leave-one sample-out cross-validation which ensured that

for each participant the classifier was trained on two samples in

the specific condition, and was tested on the third sample (the total

number of samples per participant for the specified conditions was

three).

5.2 Footwear-Dependent and
Floor-Independent Classifier

Second, we built a classifier for cases in which users wear the same

footwear but on different types of floors. This corresponds for ex-

ample to the setting of an office, in which users over the day wear

the same pair of shoes, but where there are different types of floors

in the aisles, offices, and coffee kitchens. This classifier was built

by training on the data of all participants with the same footwear

conditions but different floor conditions. To do this, we trained

and evaluated the classifier 3 times using all features – each time

for specific footwear but different floor conditions. For example,

we trained the classifier on the data of a particular footwear con-

dition using linoleum and laminate floor condition and evaluated

the classifier on the data of the same footwear but the carpet floor
condition. The reported results, in the next sections, are averaged

by footwear condition but split by the floor condition on which it

was evaluated.
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Table 2: Random forest model Performance for footwear-dependent floor-dependent conditions.

Visual Thermal Visual & Thermal
Condition 𝐹1-Score AUC 𝐹1-Score AUC 𝐹1-Score AUC

Linoleum-Personal Shoes 21.7 ± 4.1% 81.6 ± 4.8% 61.1 ± 7.2% 98.8 ± 0.8% 86.8 ± 4.7% 98.9 ± 0.9%

Linoleum-Dedicated Shoes 21.8 ± 6.2% 82.8 ± 1.2% 63.9 ± 1.3% 98.2 ± 1.3% 70.2 ± 7.5% 97.1 ± 1.1%

Linoleum-Socks Only 30.8 ± 0.3% 84.1 ± 1.7% 46.1 ± 0.2% 95.8 ± 1.3% 63.1 ± 1.2% 95.1 ± 2.5%

Laminate-Personal Shoes 24.7 ± 3.1% 79.5 ± 0.6% 49.3 ± 0.9% 91.5 ± 1.3% 56.3 ± 0.1% 95.2 ± 1.6%

Laminate-Dedicated Shoes 20.1 ± 3.1% 81.1 ± 2.0% 46.5 ± 1.6% 89.1 ± 5.5% 51.9 ± 0.9% 89.6 ± 0.5%

Laminate-Socks Only 18.5 ± 0.5% 77.8 ± 0.5% 44.9 ± 1.2% 91.3 ± 0.8% 49.9 ± 0.7% 91.9 ± 0.2%

Carpet-Personal Shoes 21.3 ± 4.1% 78.9 ± 2.6% 74.8 ± 1.7% 97.9 ± 0.4% 74.2 ± 1.4% 97.2 ± 3.2%

Carpet-Dedicated Shoes 23.8 ± 7.0% 78.9 ± 2.2% 60.1 ± 1.4% 97.7 ± 0.4% 69.5 ± 0.8% 98.2 ± 1.1%

Carpet-Socks Only 21.3 ± 2.0% 73.1 ± 1.1% 40.4 ± 4.2% 94.1 ± 2.4% 55.1 ± 0.5% 96.0 ± 0.1%

Table 3: Random forest performance for classifiers that are either floor-independent (i.e., tested with one type of floor and
trained with the other two types of floors), footwear-independent (i.e., tested with one type of footwear and trained with the
other two types of footwear), or floor- and footwear-independent (i.e., testedwithfloor and footwear unknown to the classifier).
The reported results are averaged by the dependent condition (e.g., footwear dependent - floor independent classifiers are
averaged over all three types of footwear).

Visual Thermal Visual & Thermal
Classifier Testing Condition (Training Conditions) 𝐹1-Score AUC 𝐹1-Score AUC 𝐹1-Score AUC

Footwear Dependent- Laminate(Linoleum & Carpet) 20.7 ± 2.4% 76.4 ± 2.1% 50.4 ± 3.5% 92.9 ± 2.7% 55.4 ± 8.9% 91.9 ± 2.1%

Floor Independent Linoleum (Laminate & Carpet) 23.4 ± 3.4% 80.7 ± 1.7% 63.6 ± 3.1% 96.1 ± 1.2% 70.3 ± 4.5% 96.5 ± 0.7%

Carpet (Laminate & Linoleum) 18.2 ± 1.3% 74.7 ± 1.5% 57.7 ± 2.5% 94.9 ± 2.8% 57.1 ± 5.0% 96.1 ± 0.07%

Footwear Independent- Personal Shoes (Same Shoes & Socks) 22.6 ± 3.7% 80.1 ± 2.7% 61.7 ± 1.1% 96.1 ± 1.3% 69.4 ± 0.1% 96.1 ± 1.9%

Floor Dependent Same Shoes (Personal Shoes & Socks) 21.9 ± 5.4% 80.9 ± 1.8% 56.9 ± 1.4% 95.0 ± 2.4% 63.9 ± 0.8% 95.1 ± 2.4%

Socks Only (Personal Shoes & Same Shoes) 23.5 ± 1.9% 78.4 ± 2.8% 43.8 ± 0.6% 93.7 ± 1.4% 56.1 ± 0.4% 94.3 ± 1.9%

Footwear Independent- 16.15 ± 2.6 72.9 ± 1.5% 47.6 ± 1.2% 91.6 ± 2.8% 51.2 ± 2.6% 91.7 ± 1.5%

Floor Independent

5.3 Footwear-Independent and
Floor-Dependent Classifier

Third, we built a classifier to reflect settings in which users would

change their shoes but where the floor type would be consistent.

This could be a workplace setting with the same floor being used

everywhere but where for certain tasks users would switch their

shoes (e.g., safety shoes or specific shoes to work in an operating

theater). This classifier was built by training on the data of all

participants with the same floor conditions but different footwear

conditions. We trained and evaluated the classifier 3 times, each

time for a specific floor condition but different footwear conditions.

For instance, we trained the classifier on the data of a particular floor

condition using socks only as well as personal shoes and evaluated

the classifier on the data of the same floor but with the data from

the standard shoes condition. The results in the next sections are

averaged by floor type but split by the footwear condition on which

it was evaluated.

5.4 Footwear-Independent and
Floor-Independent Classifier

Finally, we built a classifier to reflect completely unconstrained

settings with users wearing different shoes and using different

types of floors. This could be a home environment in which the

corridor, kitchen, and living room would have different types of

flooring and where users could wear street shoes, slippers, or socks.

This classifier was built by training on the data of all participants

with different floor and different footwear conditions. We evaluated

the condition-independent classifier by training it 3 times using

leave-one footwear-out cross-validation three times – one for each

floor condition. Each time, we trained it on the data of the two

footwear and for the two-floor conditions and evaluated it on the

data of the third-floor condition and from the last footwear. The

reported results are averaged over all footwear and floor conditions.

6 STEP 3: EVALUATION
We first report and compare the performance of classifiers trained

on thermal, visual, and the combination of both features. Further-

more, we explore the reasons why certain visual and thermal fea-

tures have more impact on the performance of the built classifiers

for the task of biometric identification. We report the 𝐹1 Score

and AUC to evaluate the classification performance of the models,

shown in Table 2 and Table 3. Furthermore, we report the precision

and accuracy scores of the built classifiers, reported in Tables 4 and

5.

6.1 Classification Performance per Condition
Our results show that the proposed approach of leveraging visual

and thermal features for predicting the user’s identity is gener-

ally feasible (see Tables 2 and 3). For all features (i.e., visual and

thermal) footwear-dependent, floor-dependent classifier outper-

forms the other three classifiers with an average AUC score of

96% and 𝐹1-Score of 64%. The high performance of this classifier is

expected because it is trained and evaluated on the same footwear
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Figure 4: Left: Top ten important features for footwear-independent floor-independent model trained on thermal features.
Right: Top ten important features for footwear-independent floor-independent model trained on visual features.

and floor condition. Hence, the classifier overfits a particular floor

and footwear and gives high performance for that condition. In

practice, the built classifier can be deployed in an identification

system that works for a particular footwear and floor conditions.

Furthermore, we built footwear-independent, floor-dependent and
footwear-dependent, floor-independent classifiers. For the entire fea-
ture set, both classifiers had similar performance, as the average

AUC score for the classifiers was 95%. Lastly, to propose a generic

and robust classifier (footwear-independent, floor-independent clas-
sifier) that could predict the identity of a user for any floor and

footwear condition. Our results show that, although the built footwear-

independent, floor-independent classifier, had a lower classification

performance (AUC = 91.7%) compared to all other classifiers, it can

still generalize reasonably well to any new floor and footwear and

can predict new users’ identity.

6.2 Classification Performance per Feature Set
The results in Tables 2 and 3 suggest that for all four types of classi-

fiers, a significant improvement in model performance is observed

when trained on the combination of visual and thermal features

compared to using the thermal and visual features independently.

This increase in classification performance can be explained by the

fact that both feature sets capture different characteristics of users’

feet: thermal features capture the heat traces of the foot regions

and visual captures the structural property of the feet. Thus, when

both feature sets are combined in a single model, the classifiers’

performance is enhanced substantially. For instance, we observe

that for the footwear-independent floor-independent classifier, the

prediction accuracy of the model increases the AUC score by 2%

on average when trained on the combination of visual and thermal

features compared to using just the thermal and feature set.

Furthermore, we observed that for all types of classifiers, the

prediction accuracy of the models is much higher when trained on

just the thermal features compared to using the visual feature alone

(see Table 2 and Table 3). This observation suggests that if a single

input modality is to be used for the biometric authentication tasks,

thermal data input could more accurately predict the identity of

the user than using the feet’s visual data.

6.3 Feature Importance
We used the SHapley Additive exPlanations (SHAP) algorithm [43]

to investigate the importance of features on the performance of

the footwear-independent floor-independent models trained on the

visual-only and thermal-only feature sets. We chose this specific

model for exploring feature importance, as it can be generalized to

new floor and footwear conditions. The SHAP algorithm explains

the output of a machine learning model by computing the contri-

bution of each feature to its prediction. We use the SHapley values

of the top 10 features obtained from this algorithm to plot feature

importance on the model’s prediction. Features in the plots (Figure

4) are ordered by decreasing importance.

As observed in Figure 4–left, the classifier trained on thermal

features relies heavily on the average temperature observed in

various feet regions (e.g., heels and toes). Similarly, we observed

that the feature capturing the difference between the maximum

and minimum temperature occurring in various feet regions (e.g.,

heels and toes) also significantly contributed to correctly predicting

the identity of participants. This result could be explained by the

fact that the thermal temperature of participants’ feet can vary for

different regions, leading to heterogeneous heat traces of the foot

regions and, consequently, impacting the classifier’s decision to

predict the identity of the participants. We also observed that vision

features extracted from the heel, toes, and leg regions (e.g., center
at left heel and center at right middle) impacts the model decision

for biometric authentication (Figure 4–right). This observation sug-

gests that the structural properties of participants’ toes, heels, and

lower-leg region may be distinctive and can be used to predict user

identity.

7 DISCUSSION
In this paper, we propose a novel approach, leveraging visual and

thermal features for foot-based identification. Our approach anal-

yses thermal images to extract distinct heat traces and structural

properties of various regions of users’ feet. Based on these fea-

tures, we built and evaluated classifiers that can accurately predict

the identity of the users. Below, we discuss the most important

observations from our exploration of the results.



CHI ’23, April 23-April 28, 2023, Hamburg, Germany Saad et al.

7.1 Practical Relevance
According to Jain et al. [36], four factors qualify a human charac-

teristic as a biometric trait. We reflect on how the use of the feet’s

thermal traces meets these criteria and briefly discuss how HotFoot
can serve as a biometric identification system.

Regarding universality, our approach depends on analyzing hu-

mans’ feet as a biological feature. This feature is available among

the majority of the population. At the same time, it cannot be ap-

plied in cases where people rely on wheelchairs or lack limbs. The

second factor is distinctiveness. We showed that thermal traces can

be used to distinguish and, thus, identify people with reasonable

accuracy. Furthermore, the proposed features can be measured

quantitatively (i.e. are collectable). Unless an injury occurs, feet’s

thermal traces are invariant over time, meeting the permanence
criterion. In summary, our approach is broadly applicable in cases

where user identification is beneficial (for example, to personalize

content). However, if the need for identification is a requirement

(for example, constantly verifying users’ identity in a secure en-

vironment), alternatives are needed in case users do not have the

necessary features.

Jain et al. propose three metrics to assess the practicality of a bio-

metric identification system [36]. The first criterion is performance,
in terms of accuracy and speed. The results show that our solutions

can achieve high accuracies, depending on the setting. Speed is

comparable to other biometric identification systems, such as fin-

gerprint or face identification. While building the predictive models

requires time for training, comparing a user’s traits against the

predictive model is possible continuously and in real-time. Based

on non-formal feedback from our participants, they consider the

proposed identification system to be socially acceptable, and can

imagine it to be incorporated in everyday situations. Finally, users

cannot easily mimic the limb’s heat traces of other users, thus mak-

ing the approach robust with regard to circumvention. Future work
should evaluate the resilience of the proposed approach against

impersonation attacks in case it is sought to be used for security

purposes. We can only speculate about how well the approach

scales to a larger user number. A difference from other biometric

approaches, though, is the influence of footwear. In populations

with homogenous footwear, accuracy might be affected.

7.2 Classifiers Performance
Regarding RQ1 on how accurately our approach performs when

it comes to identifying people based on their thermal and visual

features, our results show that vision- and thermal-based biometric

identification classification is generally feasible, achieving an AUC

score between 91.7% and 98.9%. The highest prediction accuracy

can be achieved in situations with consistent floor types and people

wearing the same footwear. This makes the approach suitable for

work environments in which the objective is to make sure that only

legitimate users are present. For cases in which people need to be

identified while walking on different floor types and using different

shoes, the accuracy is lower. In practice, this means that in about

one out of 12 cases, the user is identified incorrectly. This might

still be acceptable in cases where content is personalized to users.

7.3 Influence of Footwear and Floor Type
To answer RQ2 and RQ3, we examined the effect of different footwear

and floor types on identification accuracy. Floor type has a rather

small effect on identification accuracy. We observed that laminate
floor leads to a slightly lower accuracy compared to the AUC scores

of carpet or linoleum floors. This could be explained by the observa-

tion that laminate surfaces are more strongly reflecting heat traces,

affecting the accuracy for both thermal and visual features.

The effect is more pronounced for footwear. The socks condition
performed worse than both the personal and standard shoes. An

explanation for this could be that in case of wearing socks, the

temperature of the foot is more strongly affected by the surrounding

environment, leading to a more consistent temperature of feet

across users, making individuals more difficult to discriminate.

8 CONCLUSION
In this work, we explored the use of thermal imaging to identify

users based on the visual and thermal features of their feet. At

the outset of our work, we identified different feature sets (visual,

thermal, and the combination of thermal and visual features) and

subsequently explored how accurately they allow the user to be

identified while wearing different footwear as well as on different

types of floors. We used the extracted features to train different

classifiers, demonstrating that different use cases can be supported

by our approach. Our classifiers achieved AUC scores up to 98.9%.

We found that there is an increase in classification accuracy when

using the combination of visual and thermal features as opposed to

using visual or thermal features alone.

We see our work as proof of concept and hope other researchers

use it as a point of departure as they create novel applications

and user interfaces enabled by the ability to identify people seam-

lessly in smart environments. Our work enables a broad range of

subsequent research, including but not limited to increasing the

accuracy under different conditions, investigating threat models in

security use cases, and understanding the challenges of real-world

deployments.
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Table 4: Precision and Accuracy scores of Random forest model for footwear-dependent floor-dependent conditions.

Visual Thermal Visual & Thermal
Condition Precision Accuracy Precision Accuracy Precision Accuracy

Linoleum-Personal Shoes 24.7 ± 6.1% 25.4 ± 4.7% 57.8 ± 7.8% 69.8 ± 5.8% 85.1 ± 5.5% 90.9 ± 0.3%

Linoleum-Dedicated Shoes 23.9 ± 8.4% 24.2 ± 4.5% 60.3 ± 1.4% 69.8 ± 1.1% 68.5 ± 8.1% 75.5 ± 0.6%

Linoleum-Socks Only 42.3 ± 2.1% 55.5 ± 2.2% 42.3 ± 0.2% 55.5 ± 1.3% 63.4 ± 2.1% 68.2 ± 1.4%

Laminate-Personal Shoes 29. ± 4.4% 27.3 ± 2.5% 46.6 ± 0.8% 55.5 ± 0.9% 55.2 ± 0.1% 62.3 ± 1.0%

Laminate-Dedicated Shoes 21.0 ± 4.0% 24.2 ± 2.0% 43.1 ± 1.6% 53.9 ± 1.5% 51.2 ± 0.1% 58.3 ± 0.8%

Laminate-Socks Only 22.3 ± 2.1% 20.6 ± 0.2% 41.8 ± 1.2% 52.3 ± 0.1% 49.6 ± 0.7% 55.9 ± 0.7%

Carpet-Personal Shoes 23.0 ± 1.6% 25.7 ± 5.1% 74.8 ± 1.7% 97.9 ± 0.4% 74.5 ± 1.6% 78.1 ± 1.1%

Carpet-Dedicated Shoes 25.0 ± 7.0% 27.3 ± 7.1% 57.2 ± 1.8% 68.2 ± 0.1% 72.2 ± 0.6% 74.2 ± 7.1%

Carpet-Socks Only 25.0 ± 2.0% 73.1 ± 1.1% 37.3 ± 4.2% 47.6 ± 6.7% 57.6 ± 0.4% 60.3 ± 4.8%

Table 5: Precision andAccuracy scores of Random forestmodel for footwear-dependent floor-independent classifier, footwear-
independent floor-dependent classifier and footwear-in dependent floor-independent classifier. Similar to Table 3, the re-
ported results are averaged by the dependent condition but split by the independent condition on which it was evaluated.

Visual Thermal Visual & Thermal
Classifier Testing Condition (Training Conditions) Precision Accuracy Precision Accuracy Precision Accuracy

Footwear Dependent- Laminate(Linoleum & Carpet) 21.8 ± 1.6% 23.1 ± 2.3% 55.7 ± 4.1% 53.9 ± 5.9% 59.6 ± 7.1% 58.4 ± 0.7%

Floor Independent Linoleum (Laminate & Carpet) 24.3 ± 3.5% 27.2 ± 2.9% 68.1 ± 4.6% 66.6 ± 4.6% 73.9 ± 5.0% 72.1 ± 0.4%

Carpet (Laminate & Linoleum) 18.7 ± 1.0% 20.6 ± 1.1% 61.5 ± 4.9% 59.7 ± 4.5% 61.1 ± 4.0% 60.0 ± 4.0%

Footwear Independent- Personal Shoes (Same Shoes & Socks) 25.5 ± 5.5% 25.6 ± 5.1% 58.3 ± 1.5% 67.1 ± 1.5% 71.3 ± 1.2% 69.9 ± 1.1%

Floor Dependent Same Shoes (Personal Shoes & Socks) 25.5 ± 0.7% 23.3 ± 2.1% 56.9 ± 1.4% 53.3 ± 1.5% 63.3 ± 1.6% 69.9 ± 7.2%

Socks Only (Personal Shoes & Same Shoes) 25.5 ± 3.1% 37.4 ± 2.4% 40.8 ± 4.1% 51.1 ± 2.1% 56.3 ± 0.4% 63.3 ± 1.1%

Footwear Independent- 17.6 ± 3.6 17.4 ± 2.3% 53.3 ± 0.7% 48.6 ± 7.1% 56.7 ± 2.5% 51.9 ± 2.1%

Floor Independent
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