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Foreword 
 
After more than two years of limited social and scientific interactions due to the Covid-19 
pandemic, it was a pleasure to welcome more than 300 participants in person and about 60 
online participants at MTNS 2022 in Bayreuth. Submissions to MTNS 2022 were possible as 
extended abstracts and full papers. The accepted full papers that were presented at the 
conference are published in IFAC PapersOnline https://www.sciencedirect.com/journal/ifac-
papersonline/vol/55/issue/30. In this volume you find the extended abstracts that were 
presented at the conference. Further, you also find the titles of the plenary and semi-plenary 
talks as well as their abstracts resp. links to the corresponding full papers. 
 
We hope you enjoy these abstracts and to see you in person at MTNS in the future. 
 
The Editors 
M. H. Baumann, L. Grüne, B. Jacob, and K. Worthmann 
  

https://www.sciencedirect.com/journal/ifac-papersonline/vol/55/issue/30
https://www.sciencedirect.com/journal/ifac-papersonline/vol/55/issue/30


 IV 

Plenary Talks 
 

• Claudio De Persis (University of Groningen, The Netherlands) 
 

On data-driven control 
 
Abstract. We present a technique to design controllers from data for systems whose model 
is imprecisely known. The technique is based on collecting measurements of low complexity 
from the systems and using them for the synthesis of controllers, which is reduced to the 
solution of data-dependent semidefinite programs. The method provides stability 
certificates in the presence of perturbations on the dataset. 
 
 

• Luz de Teresa (National Autonomous University of Mexico, Mexico City, Mexico) 
 

Some results on hierarchical control for parabolic equations 
 
Abstract. In classical control theory, we usually have a state equation or system and just one 
control, with the mission of achieving a predetermined goal. Sometimes, the goal is to 
minimize a cost function in a prescribed family of admissible controls; this is the optimal 
control viewpoint. A more interesting situation arises when several (in general, conflictive or 
contradictory) objectives are considered. This may happen, for example, if the cost function 
is the sum of several terms and it is not clear how to average. It can also be expectable to 
have more than one control acting on the equation. 
 
In this talk, we present an overview of the known results on this subject for the heat 
equation. We will recall the results of Araruna and collaborators where hierarchic exact 
controllability results were established for linear and semilinear heat equations. In this 
research, and in the seminal papers by J.-L. Lions, the main idea is to work with one primary 
control (the leader) and one or several secondary controls (the followers). For each possible 
leader, the associated followers try to minimize a functional (or reach equilibrium if there is 
more than one cost objective function). Then, the leader is chosen such that the associated 
state satisfies a final time constraint. We will present the recent result with E. Fernández-
Cara et al., where we accomplish optimal control and controllability tasks with a hierarchy of 
controls. This time, however, the controllability goal will be commended to the follower, 
while the choice of the leader will be subject to an optimal control problem. It will be seen 
that this makes the problem more difficult to handle (essentially because we must work all 
the time in a very restrictive class of leader controls). 
 
  



 V 

• Weinan E (Peking University, China and Princeton University, NJ, USA) 
 

Deep Learning and Optimal Control 
 
Abstract. There is a close analogy between deep learning and optimal control. This analogy 
can be exploited to develop deep learning-based algorithms for optimal control, and optimal 
control-based algorithms for deep learning. I will discuss the progress made along these 
directions. 
 
Full paper Weinan E, Jiequn Han, Jihao Long “Empowering Optimal Control with Machine 
Learning: A Perspective from Model Predictive Control” available in the IFAC PapersOnline 
volume of MTNS 2022 https://doi.org/10.1016/j.ifacol.2022.11.039. 
 
 

• Maria Elena Valcher (University of Padova, Italy) 
 

Opinion dynamics models: A mathematical abstraction of individuals’ behaviours and 
interactions 

 
Abstract. The talk will focus on the main mechanisms influencing opinion dynamics, like 
homophily, mutual appraisal, and bounded confidence. Some classic opinion dynamics 
models, as well as some recent ones, will be presented. Interesting open problems as well as 
promising research directions will be proposed. 
 
 

• George Weiss (Tel Aviv University, Israel) 
 

Lax-Phillips semigroups for nonlinear systems 
 
Abstract. We briefly recall the basics about Lax-Phillips semigroups for well-posed linear 
systems, and the definition of well-posed nonlinear systems via nonlinear Lax Phillips 
semigroups. Then we concentrate on two results concerning well-posed nonlinear systems: 
 
We investigate a special class of nonlinear systems that are obtained by modifying the 
second order differential equation that is part of the description of conservative linear 
systems "out of thin air" introduced by M. Tucsnak and G. Weiss in 2003. The differential 
equation contains a nonlinear damping term that is maximal monotone and possibly set-
valued. We show that this new class of nonlinear systems is incrementally scattering passive 
(hence well-posed). Our approach uses the theory of maximal monotone operators and the 
Crandall-Pazy theorem about nonlinear contraction semigroups, which we apply to the Lax-
Phillips semigroup of the system. 
 
We investigate the class of incrementally scattering passive nonlinear systems, as defined in 
some earlier papers of ours. We show that these can be defined by a differential inclusion 
and a formula defining the current output in term of the current state and the current input. 
Our approach uses the theory of maximal monotone operators. 
 
The talk is based on joint work with Shantanu Singh.  

https://doi.org/10.1016/j.ifacol.2022.11.039
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Semi-Plenary Talks 
 

• Roland Herzog (University of Heidelberg, Germany) 
 

The role of the metric in numerical linear algebra and optimization 
 
Abstract. Many algorithms in everyday use implicitly employ the Euclidean inner product of 
the underlying space. While this is convenient and user-friendly on the one hand, it also 
turns out that the Euclidean metric may not be the one yielding the best performance of the 
respective algorithm. In this talk we revisit the role of the metric in a number of well-known 
algorithms in numerical linear algebra and optimization, and demonstrate the potential of 
user-defined metrics in each case. 
 
 

• Anna-Lena Horlemann-Trautmann (University of St. Gallen, Switzerland) 
 

The densities of good codes in various metric spaces 
 
Abstract. The densities of codes with certain properties have always been of interest in 
classical coding theory, in particular to understand how many of such codes exist and how 
likely a random code will have the prescribed properties. Further applications of density 
results of codes appear in code-based cryptography, where it is important that the set of 
codes with a certain property is large enough to outgo brute force attacks. In this talk we will 
present various density results for optimal or close-to-optimal codes in different metric 
spaces with different types of linearity. In particular, we will show when optimal codes in the 
Hamming, rank and sum-rank metric are dense and when they are sparse. 
 
 

• Boris Houska (ShanghaiTech University, China) 
 

Global Optimal Control: Opportunities and Challenges 
 
Abstract. Optimal control theory, algorithms, and software for analyzing and computing 
local solutions of linear and nonlinear optimal control problems have reached a high level of 
maturity, finding their way into industry. In the context of many applications, locally optimal 
control inputs can be computed within the milli- and microsecond range. This is in sharp 
contrast to the development of algorithms for locating global minimizers of non-convex 
optimal control problems, which is hindered by several key issues, including the overall 
complexity of generic optimal control problems and their curse of dimensionality. This talk 
reviews and discusses recent solutions that address these rather fundamental challenges 
including novel types of Branch & Lift methods as well as modern Koopman-Pontryagin 
operator based lifting methods for global optimal control. Various numerical experiments 
will be used to illustrate the effectiveness of these approaches. The talk concludes with an 
assessment of the state of the art and highlights important avenues for future research. 
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• Achim Ilchmann (Technische Universität Ilmenau, Germany) 
 

Funnel control – history and perspectives 
 
Abstract. The control objective in funnel control is output feedback control such that the 
norm of the error e(t) of the closed-loop system remains inside a prespecified funnel with 
boundary 𝜑−1(t), i.e. ‖e(t)‖ < 𝜑−1(t) for all t > 0. In other words, prescribed transient 
behaviour as well as asymptotic accuracy is achieved. Typical features of funnel control 
are: 
 
Simplicity of the feedback law. The feedback does not invoke any identification scheme, 
but is – for example in the relative degree one case – a time-varying error feedback of the 
form u(t) = − 1 / (1 − 𝜑(t) ‖e(t)‖) e(t), e(t) := y(t) − 𝑦𝑟𝑒𝑓(t), where 𝑦𝑟𝑒𝑓(·) denotes a 
sufficiently smooth bounded signal with bounded derivative. 
Note that the gain k(t) = − 1 / (1 − 𝜑(t) ‖e(t)‖) is large if, and only if, the error is close to the 
funnel boundary. 
 
Funnel control is feasible for a whole class of input-output systems, which is characterized 
by structural assumptions, e.g., well-defined relative degree and stable zero dynamics. 
 
After two decades of high-gain adaptive control, funnel control was introduced in 2002. 
First results were on linear, single-input, single-output, time-invariant systems with relative 
degree one and being minimum phase. From then on feasibility of funnel control was 
shown for other system classes such as multi-input, multi-output, nonlinear, infinite 
dimensional, perturbed systems, unknown control directions – provided they have stable 
zero dynamics and satisfy certain assumptions on the high-frequency gain. A particular 
challenge was to show feasibility for systems with higher relative degree, and to design a 
funnel controllers for systems described by partial differential equations. Funnel control 
was applied to various applications such as control in chemical reactor models, industrial 
servo-systems, wind turbine systems, electrical circuits, to name but a few. Recently, 
funnel control has been investigated in combination with model predictive control and 
applied to magnetic levitation systems. 
 
 

• Christopher M. Kellett (Australian National University, Canberra, Australia) 
 

Discontinuous Feedbacks for Stabilization and Combined Stabilization and Safety 
 
Abstract. It has long been known that asymptotic controllability of a nonlinear system to a 
desired equilibrium or target set require discontinuous controllers for feedback stabilization, 
which, in turn, is equivalent to the existence of a nonsmooth control Lyapunov function. 
More recently, results combining stabilization and safety, captured by so-called barrier 
functions, have been proposed. This also gives rise to the need for discontinuous feedback 
controllers, though for slightly different reasons. In this talk, we summarise these results and 
present a hybrid feedback solution to the combined stabilization and safety problem for a 
non-trivial class of systems. 
  



 VIII 

• Dante Kalise (Imperial College London, UK) 
 
High-dimensional approximation of Hamilton-Jacobi-Bellman PDEs in deterministic optimal 

 
Abstract. Optimal feedback synthesis for nonlinear dynamics -a fundamental problem in 
optimal control- is enabled by solving fully nonlinear Hamilton-Jacobi-Bellman type PDEs 
arising in dynamic programming. While our theoretical understanding of dynamic 
programming and HJB PDEs has seen a remarkable development over the last decades, the 
numerical approximation of HJB-based feedback laws has remained largely an open problem 
due to the curse of dimensionality. More precisely, the associated HJB PDE must be solved 
over the state space of the dynamics, which is extremely high-dimensional in applications 
such as distributed parameter systems or agent-based models. 
 
In this talk we will review recent approaches regarding the effective numerical 
approximation of very high-dimensional HJB PDEs. We will explore modern scientific 
computing methods based on tensor decompositions of the value function of the control 
problem, and the construction of data-driven schemes in supervised and semi-supervised 
learning environments. We will highlight some novel research directions at the intersection 
of control theory, scientific computing, and statistical machine learning. 
 
 

• Yann Le Gorrec (National Engineering Institute in Mechanics and Microtechnologies 
"ENSMM", Besançon, France) 

 
Control design for distributed parameter systems – the port Hamiltonian approach 

 
Abstract. This talk is concerned with the control of distributed parameter systems defined 
on a 1D spatial domain using the port Hamiltonian framework. We consider two different 
cases: when actuators and sensors are located within the spatial domain and when the 
actuator is situated at the boundary of the spatial domain, leading to a boundary control 
system (BCS). In the first case we show how dynamic extensions and structural invariants 
can be used to change the internal properties of the system when the system is fully 
actuated, and how it can be done in an approximate way when the system is actuated using 
piecewise continuous actuators stemming from the use of patches. Asymptotic stability is 
achieved using damping injection. In the boundary-controlled case we show how the closed 
loop energy function can be partially shaped, modifying the minimum and a part of the 
shape of this function and how damping injection can be used to guarantee asymptotic 
convergence. We end with some some extensions of the proposed results to irreversible 
thermodynamic systems. 
 
  



 IX 

• Masaaki Nagahara (The University of Kitakyushu, Japan) 
 

Compressed sensing and maximum hands-off control 
 
Abstract. Compressed sensing has been actively researched in the field of signal processing 
and machine learning. More recently, the method has been applied to control problems. In 
this talk, we will briefly review compressed sensing for vectors, and then introduce the 
maximum hands-off control for continuous-time systems, which aims at finding the sparsest 
control under control constraints. 
 
Full paper Masaaki Nagahara “Compressed sensing and maximum hands-off control” 
available in the IFAC PapersOnline volume of MTNS 2022 
https://doi.org/10.1016/j.ifacol.2022.11.097. 
 
 

• Na Li (Harvard University, Cambridge, MA, USA) 
 

Scalable distributed control and learning of networked dynamical systems 
 
Abstract. Recent radical evolution in distributed sensing, computation, communication, and 
actuation has fostered the emergence of cyber-physical network systems. Regardless of the 
specific application, one central goal is to shape the network collective behavior through the 
design of admissible local decision-making algorithms. This is nontrivial due to various 
challenges such as the local connectivity, system complexity and uncertainty, limited 
information structure, and the complex intertwined physics and human interactions. 
 
In this talk, I will present our recent progress in formally advancing the systematic design of 
distributed coordination in network systems via harnessing special properties of the 
underlying problems and systems. In particular, we will present three examples and discuss 
three type of properties, i) how to use network structure to ensure the performance of the 
local controllers; ii) how to use the information and communication structure to develop 
distributed learning rules; iii) how to use domain-specific properties to further improve the 
efficiency of the distributed control and learning algorithms. 
 
  

https://doi.org/10.1016/j.ifacol.2022.11.097


 X 

• Jacquelien M. A. Scherpen (University of Groningen, The Netherlands) 
 

Extended (differential) balancing for model reduction of linear and nonlinear dynamical 
systems 

 
Abstract. In this talk, we will develop extended balancing and its structure preservation 
possibilities for linear systems, as well as extended balancing theory for nonlinear systems in 
the contraction framework. For the latter, we introduce the concept of the extended 
differential observability Gramian and inverse of the extended differential controllability 
Gramian for nonlinear dynamical systems and show their correspondence with generalized 
differential Gramians. We also provide how extended (differential) balancing can be utilized 
for model reduction to get a smaller apriori error bound in comparison with generalized 
(differential balancing). We will focus on preserving the structure of a port-Hamiltonian 
system with help of extended balancing in both the linear and nonlinear systems setting. 
 
 

• Sanne ter Horst (North-West University, Potchefstroom, South Africa) 
 

Convex invertible cones and Nevanlinna-Pick interpolation 
 
Abstract. Nevanlinna-Pick interpolation developed from a topic in classical complex analysis 
to a useful tool for solving various problems in control theory and electrical engineering. 
Over the years many extensions of the original problem were considered, including 
extensions to different function spaces, nonstationary problems, several variable settings 
and interpolation with matrix and operator points. In this talk we discuss a variation on 
Nevanlinna-Pick interpolation for positive real odd functions evaluated in real matrix points. 
This problem was studied by Cohen and Lewkowicz using convex invertible cones and the 
Lyapunov order, making interesting connections with stability theory. The solution requires 
an analysis of linear matrix maps using representations that go back to work of R.D. Hill from 
the 1970s and focusses, in particular, on the question when positive linear matrix maps are 
completely positive. If time permits, some possible extensions to multidimensional systems 
will briefly be discussed. 
 
Full paper S. ter Horst, A. van der Merwe “Convex invertible cones and Nevanlinna-Pick 
interpolation: The suboptimal case” available in the IFAC PapersOnline volume of MTNS 
2022 https://doi.org/10.1016/j.ifacol.2022.11.050. 
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• Claudia Schillings (Free University Berlin, Germany) 
 

A General Framework for Machine Learning-based Optimization Under Uncertainty 
 
Abstract. Approaches to decision making and learning mainly rely on optimization 
techniques to achieve “best” values for parameters and decision variables. In most practical 
settings, however, the optimization takes place in the presence of uncertainty about model 
correctness, data relevance, and numerous other factors that influence the resulting 
solutions. For complex processes modeled by nonlinear ordinary and partial differential 
equations, the incorporation of these uncertainties typically results in high or even infinite 
dimensional problems in terms of the uncertain parameters as well as the optimization 
variables, which in many cases are not solvable with current state of the art methods. One 
promising potential remedy to this issue lies in the approximation of the forward problems 
using novel techniques arising in uncertainty quantification and machine learning. 
 
We propose in this talk a general framework for machine learning based optimization under 
uncertainty and inverse problems. Our approach replaces the complex forward model by a 
surrogate, e.g. a neural network, which is learned simultaneously in a one-shot sense when 
estimating the unknown parameters from data or solving the optimal control problem. By 
establishing a link to the Bayesian approach, an algorithmic framework is developed which 
ensures the feasibility of the parameter estimate / control w.r. to the forward model. 
 
This is joint work with Philipp Guth (U Mannheim) and Simon Weissmann (U Heidelberg). 
 
 



Stability of solutions for controlled nonlinear
systems under perturbation of state

constraints

Pierre-Cyril Aubin-Frankowski ∗

∗ INRIA Paris, France (e-mail: pierre-cyril.aubin@inria.fr).

Abstract: This paper tackles the problem of nonlinear systems, with sublinear growth but
unbounded control, under perturbation of some time-varying state constraints. It is shown that,
given a trajectory to be approximated, one can find a neighboring one that lies in the interior
of the constraints, and which can be made arbitrarily close to the reference trajectory both
in L∞-distance and L2-control cost. This result is an important tool to prove the convergence
of approximation schemes of state constraints based on interior solutions and is applicable to
control-affine systems.

Keywords: Nonlinear control systems, Control of constrained systems, Time-varying systems,
Interior trajectories

1. INTRODUCTION

We consider a nonlinear system with unbounded control
and state constraints

x′(t) = f(t, x(t), u(t)), for a.e. t ∈ [0, T ], (1)
x(t) ∈ A0,t := {x | h(t, x) ≤ 0}, for all t ∈ [0, T ], (2)

where f : [0, T ] × RN × RM → RN and h : [0, T ] ×
RN → RP . Given a reference trajectory x̄(·), such that
h(0, x̄(0)) < 0, with control ū(·) satisfying (1)-(2), our
goal is to design a trajectory xϵ(·) with the same initial
condition and some control uϵ(·), chosen such that xϵ(·)
can be made arbitrarily L∞-close to x̄(·), with uϵ(·) having
almost the same L2-norm as ū(·), while also satisfying (1)
and the following tightened constraints:

xϵ(t) ∈ Aϵ,t := {x | ϵ + h(t, x) ≤ 0} for all t ∈ [0, T ]. (3)

This construction is crucial to prove the convergence of
approximation schemes of the constraints from within,
in the sense that if (x̄(·), ū(·)) is the solution of some
optimal control problem with quadratic cost in control,
then (xϵ(·), uϵ(·)) would be almost optimal while strictly
interior. Such schemes were used by the author in Aubin-
Frankowski (2021) for linear f and h, leveraging convexity
of the set of trajectories for which (1)-(2) hold. Here we
provide instead assumptions on f and h designed originally
by Bettiol et al. (2012) for bounded differential inclusions
with time-invariant constraints. We further improve on
their construction to have both an estimate on the L2-
norm and to cover unbounded systems (1) and time-
varying constraints (2). This analysis can be related also to
Bettiol and Vinter (2011) where time-dependent bounded
systems are considered. The prototypical cases we are in-
terested in are constrained nonlinear control-affine systems
as studied e.g. in a more restrictive setting in (Cannarsa
and Castelpietra, 2008, Section 4).

Figure 1. Illustration of the trajectories and constraints
considered in Theorem 1.

2. MAIN RESULT

Notations. The integer interval is written [[i, j]] = {i, i +
1, . . . , j}. We denote by R+ the set of nonnegative reals,
and use the shorthand Lp(0, T ) for Lp([0, T ],Rd) with
p ∈ {1, 2, ∞}, and Lp

+ when the output set is Rd
+. The

set Bd is the closed Euclidean unit ball of Rd of center 0.
Given a set A ⊂ Rd, Int(A) designates its interior, ∂A its
boundary, and dA(·) is the Euclidean distance to A.
We call f -trajectories the solutions of (1) for measurable
controls u(·). For any ϵ ∈ RP

+, define
Aϵ := {(t, x) | t ∈ [0, T ], x ∈ Aϵ,t}.

A trajectory is said to be Aϵ-feasible if (3) holds, for
instance x̄(·) is A0-feasible by assumption. We define the
maximal constraint violation ρϵ,[t0,t1](x(·)) of a trajectory
on an interval [t0, t1] ⊂ [0, T ] as follows

ρϵ,[t0,t1](x(·)) := sup
t∈[t0,t1]

dAϵ,t
(x(t)).
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We assume from now on that the control ū(·) belongs to
L∞(0, T ). This restriction is due to (H-6) below since we
use a time-delay in the construction of the control uϵ(·)
that is ill-suited to track the distance between controls. If
f(t, ·, u) is kf (t)-Lipschitz for any u ∈ RM , then we may
just assume that ū(·) ∈ L2(0, T ).
(H-1) (Regular perturbation of A)

∀ λ > 0, ∃ ϵ > 0,

∀ (t, x) ∈ A0 ∩ ([0, T ] × ∥x̄(·)∥L∞(0,T )BN ),
dAϵ,t

(x) ≤ λ.

(H-2) (Uniform continuity from the right of d∂Aϵ,t
w.r.t. ϵ

and t) There exist ϵ0 > 0, ∆0 > 0, and a continuous
function ωA(·) ∈ C0(R+,R+) such that ωA(0) = 0
and, for all ϵ ≤ ϵ0, and all (t, x) ∈ A0 ∩ ([0, T ] ×
2∥x̄(·)∥L∞(0,T )BN ),

∀ δ ∈ [0, min(∆0, T−t)], ∥d∂Aϵ,t+δ
(x)−d∂Aϵ,t

(x)∥ ≤ ωA(δ).

(H-3) (Sublinear growth of f w.r.t. x and u)
∃ θ(·) ∈ L2

+(0, T ), ∀ t ∈ [0, T ], ∀ x ∈ RN , ∀ u ∈ RM ,

∥f(t, x, u)∥ ≤ θ(t)(1 + ∥x∥ + ∥u∥).

(H-4) (Inward-pointing condition) There exist ϵ0 > 0,
Mu > 0, Mv > 0, ξ > 0, and η > 0 such that for all
ϵ ≤ ϵ0 and all (t, x) ∈ (∂Aϵ +(0, ηBN ))∩Aϵ ∩([0, T ]×
(1+2∥x̄(·)∥L∞(0,T ))BN ), we can find u ∈ MuBM such
that v := f(t, x, u) belongs to MvBN and

y + δ(v + ξBN ) ⊂ Aϵ,t+δ (4)
for all δ ∈ [0, ξ] and all y ∈ (x + ξBN ) ∩ Aϵ,t.

(H-5) (Left local absolute continuity of f w.r.t. t)
∃ γ(·) ∈ L1

+(0, T ), ∃ βu(·) ∈ L2
+(0, T ),

∀ 0 ≤ s < t ≤ T, ∀ x ∈ (1 + 2∥x̄(·)∥L∞(0,T ))BN ,

∀ us ∈ (Mu + ∥ū(s)∥)BM , ∃ ut ∈ us + βu(s)BM ,

∥f(t, x, ut) − f(s, x, us)∥ ≤
∫ t

s

γ (σ) dσ.

Let R := e∥θ(·)∥L1(0,T )
[
1 + ∥x̄(·)∥L∞(0,T )

+ (1 + Mu)∥θ(·)∥L1(0,T )

+ ∥θ(·)∥L2(0,T )(∥ū(·)∥L2(0,T ) + ∥βu(·)∥L2(0,T ))
]

. (5)

(H-6) (Local Lipschitz continuity of f w.r.t. x)
∃ kf (·) ∈ L2

+(0, T ), ∀ t ∈ [0, T ], ∀ x, y ∈ RBN ,

∀ u ∈ (Mu + ∥ū(·)∥L∞(0,T ))BM ,

∥f(t, x, u) − f(t, y, u)∥ ≤ kf (t)∥x − y∥.

(H-7) (Hölderian selection of the controls in (H-5))
∃ γ(·) ∈ L1

+(0, T ), ∃ α ∈]0, 1], ∃ ku(·) ∈ L2
+(0, T ),

∀ 0 ≤ s < t ≤ T, ∀ x ∈ (1 + 2∥x̄(·)∥L∞(0,T ))BN ,

∀ us ∈ (Mu + ∥ū(s)∥)BM , ∃ ut ∈ us + (t − s)αku(s)BM ,

∥f(t, x, ut) − f(s, x, us)∥ ≤
∫ t

s

γ (σ) dσ.

Theorem 1. Under assumptions (H-1)-(H-6), for any λ >
0, there exists ϵ > 0 and a f -trajectory xϵ(·) on [0, T ] such
that xϵ(0) = x̄(0), xϵ(t) ∈ Int Aϵ,t for all t ∈ [0, T ], and

∥x̄(·) − xϵ(·)∥L∞(0,T ) ≤ λ.

Moreover if (H-7) is satisfied, then, for any mapping R(·) ∈
C0([0, T ],RM,M ) with positive semidefinite matrix values,
one can choose ϵ > 0 and xϵ(·) such that the controls uϵ(·)
satisfy∣∣∣∥R(·)1/2ū(·)∥2

L2(0,T ) − ∥R(·)1/2uϵ(·)∥2
L2(0,T )

∣∣∣ ≤ λ.

Discussion of the assumptions: The properties (H-1)
and (H-2) imposed on the constraint set can for instance be
derived from the C1,1-regularity of h, coupled with the as-
sumptions that the Jacobian ∂h(t,x)

∂x of h at all (t, x) ∈ ∂A0
is surjective. The classical growth assumption (H-3) pre-
vents in turn finite-time explosion of the trajectories. The
Lipschitzianity (H-6) guarantees their uniqueness and was
designed to encompass control-affine systems of the form
x′(t) = a(t, x) + b(t, x)u with k̃f (t)-Lipschitz functions
a(t, ·) and b(t, ·), for some k̃f (·) ∈ L2(0, T ). The other
assumptions are more technical and inspired by Bettiol
et al. (2012). Inward-pointing conditions such as (H-4),
which can be deduced from a normal cone formulation
(Bettiol et al., 2012, Lemma 5.3), have been shown to yield
the L∞-bounds we seek. The time regularity (H-5) was
introduced to tackle discontinuities in the dynamics, and
showcased on a civil engineering example (Bettiol et al.,
2012, Section 4). We adapt it to control systems and refine
it in (H-7).
Note that state constraints of order 2 (or more), e.g.
ẍ = u with x constrained, do not enter into the proposed
framework as the inward-pointing assumption does not
hold in these cases, being limited to “order 1 constraints”.
The proof can in principle be adapted to systems f̃ with
control constraints following a Lipschitz (or Hölderian)
closed-valued map t ; U(t) by considering the projection
over U(t) and f(t, x, u) = f̃(t, x, projU(t)(u)) assuming
that this f satisfies the above assumptions.
Idea of the proof: The overall strategy to construct a
neighboring Aϵ-feasible trajectory can be related to that of
Bettiol et al. (2012). Modifying it to unbounded controls
and time-varying constraints is however not straightfor-
ward. We start by considering small subintervals [0, T ] =⋃

i∈[[0,N0−1]][ti, ti+1] and proceed iteratively. If the ith-
trajectory stays in Aϵ over [ti, ti+1], we move to the next
time interval. Otherwise for the (i + 1)th-trajectory over
[ti, ti+1], (H-4) provides us with an inward-pointing control
to stay in Aϵ for a short time. Then we apply a delayed
control of the ith-trajectory for the rest of [ti, ti+1], and the
original control ū(·) over [ti+1, T ]. By monitoring several
quantities, we can show that the resulting control after
N0 iterations is L2-close from ū(·) and that the obtained
trajectory is in Aϵ.
Example: Consider an electric motor

x′(t) = a(t, x) + b(t, u),
with a bounded a ∈ C1,1([0, 2] × R,R) and constraints
h(x) = 1 − |x|, for controls u ∈ R. The motor suffers an
incident at T = 1. If it is a power surge
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b(t, u) = b̃(t)u =
{

u if t ∈ [0, 1]
u/ 4

√
t − 1 if t ∈]1, 2] ,

then (H-3) holds for θ ≡ b̃ + ∥f∥∞. It remains to check
(H-7). For s < t ≤ 1, take ut = us. For s < 1 < t,
set ut = 4

√
t − 1us, so |ut − us| ≤ |us| ≤

4√t−s
4
√

|1−s|
|us|. For

s = 1 < t, take also ut = 4
√

t − 1us, thus |ut − us| ≤ |us|.
For 1 < s ≤ t, set ut =

4√t−1
4√s−1 us, so, by subadditivity of

4
√

·,

|ut − us| ≤
4
√

t − 1 − 4
√

s − 1
4
√

|1 − s|
|us| ≤

4
√

t − s
4
√

|1 − s|
|us|.

Hence (H-7) is indeed satisfied for γ ≡ 0, ku(s) =
1

4
√

|1−s|
(Mu + |ū(s)|) and α = 1

4 . If the incident consists in
a power decline

b(t, u) =
{ arctan(u) if t ∈ [0, 1]

(1 −
√

t − 1
2 ) arctan(u) if t ∈]1, 2]

,

then the system is bounded and (H-7) holds with ut = us,
γ(σ) = 1

4
√

σ−1 for σ ∈]1, 2] and γ(σ) = 0 otherwise. In both
cases (H-4) is satisfied, so perturbing the constraints still
allows for a trajectory and control close to the reference
ones as per Theorem 1.
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Separating invariants for matrix tuples up
to similarity

J. Volčič ∗

∗ Department of Mathematics, Drexel University, PA, USA

Abstract: The talk considers evaluations of linear matrix pencils L = T0 + x1T1 + · · ·+ xmTm

on matrix tuples as L(X1, . . . , Xm) = I⊗T0+X1⊗T1+ · · ·+Xm⊗Tm. It is shown that ranks of
linear matrix pencils constitute a collection of separating invariants for simultaneous similarity
of matrix tuples. That is, m-tuples X and Y of n×n matrices are simultaneously similar if and
only if rkL(X) = rkL(Y ) for all linear matrix pencils L of size mn. Variants of this property for
some other group actions are also discussed.

Keywords: Simultaneous similarity, linear matrix pencil, rank-preserving map.

Two tuples of n × n matrices X = (X1, . . . , Xm) and
Y = (Y1, . . . , Ym) over a field are (simultaneously) similar
if there exists P ∈ GLn such that Yi = PXiP

−1 for
i = 1, . . . ,m. The classification of matrix tuples up to
similarity has been deemed a “hopeless problem”. Never-
theless, the study of simultaneous similarity and related
group actions on matrix tuples is crucial in multiple areas
of mathematics, ranging from operator theory, invariant
and representation theory and algebraic geometry to al-
gebraic statistics and computational complexity. A promi-
nent facet of simultaneous similarity is finding a (natural)
collection of separating invariants, which is the topic of
this talk. A related problem is that of the orbit closure
inclusion: determine whether a matrix tuple X belongs
to the closure of the similarity orbit of a matrix tuple Y .
This problem is fundamental to geometric invariant theory
and geometric complexity theory. Note that X and Y are
similar if and only if X is in the orbit closure of Y and Y
is in the orbit closure of X.

Curto and Herrero (1985) conjectured that X lies in
the closure of the similarity orbit of Y if and only if
rkf(X) ≤ rkf(Y ) for every noncommutative polynomial
f in m variables. Hadwin and Larson (2003) gave a coun-
terexample to the (even weaker) two-sided Curto–Herrero
conjecture: they presented matrix tuples x and Y that
are not similar but rkf(X) = rkf(Y ) for every non-
commutative polynomial f . Furthermore, they proposed
an ameliorated conjecture: X lies in the closure of the
similarity orbit of Y if and only if rkF (X) ≤ rkF (Y ) for
every matrix noncommutative polynomial F (i.e., a matrix
of noncommutative polynomials).

This talk presents the affirmative answer to two-sided
version of the Hadwin–Larson conjecture.

Theorem 1. [Derksen et al. (2021)] The following are
equivalent for X,Y ∈ Matmn :

(1) X and Y are similar;
(2) for every T = (T0, . . . , Tm) ∈ Matm+1

mn ,

rk (I ⊗ T0 +X1 ⊗ T1 + · · ·Xm ⊗ Tm)
= rk (I ⊗ T0 + Y1 ⊗ T1 + · · ·Ym ⊗ Tm) .

In other words, ranks of linear matrix pencils evaluated
at matrix tuples constitute a collection of separating
invariants for simultaneous similarity. Similar results hold
for the actions of unitary, orthogonal and symplectic
groups, and for the left-right action of the general linear
group.

Moreover, the talk provides a counterexample to the
general version of the Hadwin–Larson conjecture: there are
two pairs X and Y of 4× 4 matrices such that rkF (X) ≤
rkF (Y ) for all matrix noncommutative polynomials F but
X does not lie the closure of the similarity orbit of Y .

This talk is based on joint work with Harm Derksen, Igor
Klep and Visu Makam.
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Globally positive trace polynomials

J. Volčič ∗

∗ Department of Mathematics, Drexel University, PA, USA

Abstract: A trace polynomial is a polynomial in noncommuting variables and traces of their
products. It is positive if its evaluations on all symmetric matrices, or more generally, self-
adjoint operators from tracial von Neumann algebras, attain only positive semidefinite values.
A Positivstellensatz for positive univariate trace polynomials is presented, and a characterization
of trace-positive multivariate noncommutative polynomials is discussed.

Keywords: Trace polynomial, Positivstellensatz, moment problem.

Trace polynomials are real polynomials in noncommuting
variables x1, . . . , xd and their formal traces tr(xi1 . . . xiℓ).
Such expressions can be naturally evaluated on tuples
of matrices, where the trace symbols are evaluated as
normalized traces; or more generally, on tuples of operators
from a tracial von Neumann algebra. Trace polynomials
as matricial/operator functions originated in invariant
theory, and more recently emerged in free probability and
quantum information theory.

This talk discusses positive trace polynomials, i.e., those
that can attain only positive semidefinite values when eval-
uated on tuples of symmetric matrices, or more generally
self-adjoint operators. This topic is well understood when
evaluations are restricted to either matrix tuples of a fixed
dimension (Klep et al. (2018)) or bounded domains in
tracial von Neumann algebras (Klep et al. (2022)). On the
other hand, results are very scarce in the global case, when
restrictions on dimensions and boundedness are dropped.

The majority of the talk is dedicated to the univariate
case (d = 1 and x1 = x). Univariate trace polynomials
form a commutative polynomial ring (in countably many
variables), and several sum-of-squares positivity certifi-
cates (Positivstellensätze) in commutative rings are pro-
vided by real algebraic geometry. However, this theory
does not appear to directly apply to our setup. First,
matrix evaluations of trace polynomials are just a special
class of homomorphisms on trace polynomials. Second, the
dimension-free context addresses positivity on matrices of
all sizes, hence on a countable disjoint union of real affine
spaces; there is no bound (with respect to the degree of
a univariate trace polynomial) on the size of matrices for
which positivity needs to be verified.

Therefore a different approach is required. To demonstrate
it, consider the inequality

tr(X4)tr(X2) + 2tr(X3)tr(X2)tr(X)
≥ tr(X4)tr(X)2 + tr(X3)2 + tr(X2)3

(1)

for all symmetric matrices X (and normalized trace tr).
One way to certify (1) is by noticing that the trace poly-
nomial f = tr(x4)(tr(x2) − tr(x)2) + 2tr(x3)tr(x2)tr(x) −
tr(x3)2 − tr(x2)3 satisfies

tr
((

x− tr(x)
)2)

· f

= tr
((

(tr(x)2 − tr(x2))x2 + (tr(x3)− tr(x2)tr(x))x

+tr(x2)2 − tr(x3)tr(x)
)2)

,

where we view tr as an idempotent linear endomorphism
of trace polynomials in a natural way. More generally,
the following tracial analog of Artin’s solution to Hilbert’s
17th problem holds.

Theorem 1. [Klep et al. (2021)] A univariate trace poly-
nomial is positive on all symmetric matrices if and only if
it is a quotient of sums of products of traces of squares of
trace polynomials.

It turns out that in the multivariate case (d > 1), traces of
squares of polynomials are are not sufficient for describing
positivity. For example, the tracial analog of Motzkin’s
example,

tr(x1x
4
2x1 + x2x

4
1x2 − 3x1x

2
2x1 + 1)

is positive for all pairs of symmetric matrices, but cannot
be described by traces of squares of noncommutatve poly-
nomials. Nevertheless, a characterization of trace-positive
noncommutative polynomials in terms of noncommutative
rational functions is given, based on a solution of the
unbounded tracial moment problem.

This talk is based on joint work with Igor Klep and James
Pascoe.
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Bézout Identity in Pseudoratoinal
Transfer Functions

Extended abstract for MTNS 2022
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Abstract: Coprime factorizations of transfer functions play various important roles, e.g., minimality of
realizations, stabilizability of systems, etc. This paper studies the Bézout condition over the ring E ′(R−)
of distributions of compact support and the ring M(R−) of measures with compact support. These
spaces are known to play crucial roles in minimality of state space representations and controllability
of behaviors. We give a detailed review of the results obtained thus far, as well as discussions on a new
attempt of deriving general results from that for measures. It is clarified that there is a technical gap in
generalizing the result for M(R−) to that for E ′(R−). A detailed study of a concrete example is given.

Keywords: Bézout identity, pseudorationality, distributions, Gel’fand representation, delay-differential
systems
AMS subject classification: 46F10, 46J15

1. INTRODUCTION

This short note studies the issue of coprimeness for a certain
class of infinite-dimensional systems.

In particular, we study the Bézout identity (or Bézout condition)
px+qy = 1 (1)

in an algebra appropriate for a class of distributed parameter
systems.

The first author has introduced the class of pseudorational im-
pulse responses or transfer functions, and developed realization
theory, various spectral analysis, and coprimeness conditions
Yamamoto (1988, 1989). The present article is an extended
abstract version of the paper for MTNS 2020. For more back-
ground explanations, we refer the reader to Yamamoto and
Bonnet (2021).

2. PSEUDORATIONALITY

Let D ′ denotes the space of distributions on R. Let E ′(R) be its
subspace consisting of those having compact support. E ′(R−)
is also its subspace with support contained in the negative
? The present article is an extended abstract version of the paper Yamamoto
and Bonnet (2021) for MTNS 2020.
1 This author was supported in part by the Japan Society for the Promotion of
Science under Grants-in-Aid for Scientific Research No. 19H02161. The author
also wishes to thank DIGITEO and Laboratoire des Signaux et Systemes (L2S,
UMR CNRS), CNRS-CentraleSupelec-University Paris-Sud and Inria Saclay
for their financial support while part of this research was conducted.

half line (−∞,0]. D ′+ denotes the subspace of D ′ consisting
of elements having support bounded on the left. Distributions
such as Dirac’s delta δa placed at a ∈ R, its derivative δ ′a are
examples of elements in E ′(R). If a ≤ 0, then they belong to
E ′(R−).
We consider fraction representations over E ′(R−).
Definition 2.1. An impulse response function G (suppG ⊂
[0,∞)) is said to be pseudorational (Yamamoto (1988)) if there
exist q, p ∈ E ′(R−) such that

(1) G = q−1 ∗ p where the inverse is taken with respect to
convolution and belongs to D ′+;

(2) ordq−1 = −ordq, where ordq denotes the order of a
distribution q (Schwartz (1966)). 2

If this condition is satisfied, we call (p,q) a pseudorational
pair. The Laplace transform q̂−1 p̂ is called a pseudorational
transfer function.

The delay-differential equation:

ẋ(t) = x(t−1)+u(t)

y(t) = x(t),

admits the representation

y = (δ ′−1−δ )−1 ∗δ−1 ∗u,
and hence it is pseudorational.
2 Roughly speaking, the order of a distribution α is the least integer r such that
α = (d/dt)rβ for some measure β .
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The main problem that concerns us here is the following:
Problem Given a pseudorational pair (p,q) ∈ E ′(R−) ×
E ′(R−), characterize a condition under which p and q satisfy
the Bézout identity:

p∗ x+q∗ y = δ (2)
for some x,y ∈ E ′(R−).
If we consider E ′(R) instead of E ′(R−), it gives a necessary
and sufficient condition for the controllability of the behavior
defined over D ′ (Yamamoto (2016)). Actually, the Bézout con-
dition over E ′(R) is in close relationship with that in E ′(R−)
(Yamamoto (2016)).

3. COPRIMENESS IN E ′(R−)

We first translate (2) to a divisibility condition by considering
the principal ideal (q) = q∗E ′(R−) generated by q in E ′(R−).
Note first that (2) is easily seen to be equivalent to

p∗φ = δ mod q. (3)
for some φ ∈ E ′(R−). In other words,

[p]∗ [φ ] = [δ ] (4)
in E ′(R−)/(q). This means that the equivalence class [p] is
invertible in the quotient algebra E ′(R−)/(q).
Condition (4) by itself is not so easy to handle because of the
intricate topology of E ′(R−). However, because q has compact
support, the following remarkable property holds:
Proposition 3.1. Take any T > 0 such that suppq ⊂ (−T,0].
Then

E ′(R−)/(q)∼= E ′([−T,0])/(q) (5)

Proof Let π be the projection operator
π : D ′→D ′(0,∞) : ψ 7→ ψ|(0,∞) (6)

where D ′(0,∞) is the space of distributions with support con-
tained in (0,∞). Given ψ ∈ D ′, define the following operator
πq as

π
q : E ′(R−)→ E ′(R−) : ψ 7→ q∗π(q−1 ∗ψ). (7)

Now for a distribution ψ ∈D ′+, define `(ψ) as
`(ψ) := inf{t ∈ suppψ} (8)

where suppψ denotes the support of ψ . We note from Ya-
mamoto and Bonnet (2021) that `(α ∗ β ) = `(α) + `(β ) for
α,β ∈D ′+.

Take any x ∈ E ′(R−) along with πqx. We claim that πqx
belongs to E ′(R−) (hence (7) is well defined as a map from
E ′(R−) into itself) and that x∼= πqx mod q. We have

q−1∗(x−π
qx)= q−1∗x−q−1∗q∗π(q−1x)= q−1∗x−π(q−1∗x).

The last term φ := q−1 ∗ x− π(q−1 ∗ x) belongs to E ′(R−)
because q−1 ∗ x− πq−1 ∗ x must be zero on (0,∞). That is to
say,

x−π
qx = q∗φ ∈ q∗E ′(R−) = (q).

This also shows that πqx = x−q∗φ ∈ E ′(R−). In other words,
[x] = [πqx] in E ′(R−)/(q). Moreover, since `(π(q−1 ∗ x)) ≥ 0
and `(q) ≥ −T , the support of πqx = q ∗ π(q−1 ∗ x) must be
contained in [−T,0] by `(q∗π(q−1 ∗x)) = `(q)+`(π(q−1 ∗x)).
That is, for every x ∈ E ′(R−), there always exists an element
πqx such that suppπqx ⊂ [−T,0], and x ∼= πqx mod q. This
proves (5). 2

Remark 3.2. Proposition 3.1 claims that as far as a pseudo-
rational impulse response is concerned, we can confine our

attention to those inputs with support contained in [−T,0] with
−T < `(q). This result is not so surprising if we pay proper
attention to the compact-support property of q. Since q has
bounded support, its maximum length should determine the
maximum length of memory needed to reconstruct the state or
future outputs. This can be easily guessed once we resort to the
analogy with realization theory for discrete-time linear systems:
The degree of the denominator polynomial q(z) determines the
dimension of the state in the standard reachable realization, and
the degree here exactly corresponds to the length of the support
of q here. The projection scheme used above is an analogy to
the finite-dimensional theory developed by Fuhrmann (1976).

4. GEL’FAND ALGEBRA STRUCTURE OF THE SPACE
OF MEASURES

We have seen that the existence of the Bézout condition reduces
to the invertibility of [p] in the quotient algebra E ′(R−)/(q).
It is also seen that this space E ′(R−)/(q) is isomorphic to
E ′([−T,0])/(q) for some T > 0 so that its structure is quite
simplified. However, the space E ′(R−)/(q) is still not that
easy to tackle due to a rather complex topological structure of
E ′(R−)/(q).
We now choose to confine ourselves to the subspace M(R−)
that is the subspace of E ′(R−) consisting of measures, i.e.,
those with elements of order 0. As shown in Proposition 3.1,
M(R−)/(q) ∼= M([−T,0])/(q) for some T > 0. (Proposition
3.1 claims this fact for E ′(R−), but the proof remains essen-
tially the same.) Note that ordq−1 = −ordq = 0 by condi-
tion (2) of Definition 2.1, so that q−1 is also a measure.) We
here observe that the space M([−T,0])/(q) has a remarkable
advantage over E ′([−T,0])/(q) in that it can be regarded as
a Banach space with respect to the strong dual topology as
the dual space of the space of continuous functions C[−T,0].
Furthermore, it inherits a natural algebra structure induced from
M(R−) (with respect to convolution) with the unity element
[δ ]. In other words, it is a Gel’fand algebra (Gel’fand et al.
(1964); Berberian (1973)).

A Gel’fand algebra is known to have a remarkable property in
that the invertibility of an element can be well tested by char-
acterizing the space of its maximal ideals (Berberian (1973);
Gel’fand et al. (1964)). This fact is best suited to study the
invertibility condition (4).

Let us now make the following Assumption:

Assumption 1 There exists σ ∈ R such that p̂(s) and q̂(s) do
not vanish on {s|Res≥ σ}.
For the validity of Assumption 1, we note the following. Since
(p,q) is a pseudorational pair, q−1 ∈ D ′+. Then there exists
σ ∈ R such that 1/q̂(s) is of polynomial order for Res ≥ σ

according to Schwartz (1961). Hence q̂(s) do not vanish for
Res ≥ σ . Likewise, if there exists p−1 ∈ D ′+, the same is true
of p̂(s).

If Assumption 1 is satisfied we may assume that σ can be taken
to be zero, without loss of generality. For if necessary, we can
always shift the complex variable as s 7→ s−σ , and this clearly
does not affect the coprimeness relationship.

The following theorem was first given in Yamamoto (2007), but
we here give a more complete proof for the sake of complete-
ness.
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Theorem 4.1. Let p,q ∈ M(R−), and satisfy Assumption 1.
Suppose that there exists c > 0,a ∈ R such that

|p̂(s)|+ |q̂(s)| ≥ c > 0 (9)
for every s∈C−= {s∈C|Res≤ 0}. Then the (p,q) is a Bézout
pair, i.e., satisfies the Bézout identity (2).

For the proof, we need some preliminaries. The question
here is to find a condition under which [p] is invertible in
M([−T,0])/(q). By Gel’fand representation theory (Berberian
(1973); Gel’fand et al. (1964)), an element [p] is invertible if
and only if it belongs to no maximal ideals.

Consider the Laplace transform of elements in M(R−). It is
easy to see that this is a subalgebra of H∞(C−). Then, as in
Hoffman (1962), we see that the correspondence

ψ 7→ ψ̂(s)
considered for s ∈ C− gives the Gel’fand representation.

What is then a maximal ideal in M(R−)? Take any λ ∈ C−,
and consider the point evaluation

φλ : f 7→ f̂ (λ ). (10)
It is easy to see that φλ is a complex homomorphism (i.e.,
homomorphism from M(R−) to C), and hence kerφλ is a
maximal ideal of M(R−). Observe however that this does not
necessarily yield a maximal ideal in M(R−)/(q), because in
order to be an ideal in this space, this ideal should contain (q).
In other words, q̂ should vanish there. If M is given by

Mλ = { f | f̂ (λ ) = 0},
then this means that λ should be a zero of q̂ for Mλ ⊃ (q). Now
let

λ1,λ2, . . . ,λn, . . . (11)
be the set of zeros of q̂. Then we have maximal ideals

Mλ1 ,Mλ2 , . . . ,Mλn , . . .

of M(R−)/(q). But these are not all. There are other maximal
ideals that are centered at “infinity”.

To see this, let us first start with the following proposition:
Proposition 4.2. Let f ∈M(R−), and suppose that φ( f ) = 0
for some complex homomorphism, i.e., f belongs to a maximal
ideal kerφ . Suppose also that φ does not agree with any of Mλn
as given above. Then there exists a sequence µn such that

• µn→ ∞ and
• f̂ (µn)→ 0 as n→ ∞

Proof Suppose there exists no such µn. Then there exists
δ > 0 and R > 0 such that | f̂ (s)| ≥ δ for |s| ≥ R. In view
of the Hadamard factorization that gives rise to an infinite
product representation of q̂(s) as linear factors of 1− s/µn
(Boas (1954)), it follows that either

(1) f̂ (s) has infinitely many zeros, or
(2) f̂ (s) has only finitely many zeros.

The first case is clearly impossible by | f̂ (s)| ≥ δ . Hence f̂
has only finitely many zeros. But this yields f̂ (s) = eαsP(s)
where P is a polynomial. Note that α ≥ 0 because the inverse
Laplace transform of f̂ is a measure in M(R−). Since α = 0
just corresponds to a constant, we assume α 6= 0, so that α > 0.
But then eαs can have infinitely many zeros along the imaginary
axis, and this contradicts | f̂ (s)| ≥ δ for |s| ≥ R. Hence f̂ must
be a polynomial. But this is again impossible unless f̂ is a
(nonzero) constant because the inverse Laplace transform of f̂

must be a measure. Therefore f̂ must be a constant. But this
yields φ(1) = 0, which clearly means that φ annihilates the
whole space, and this contradicts the fact that φ is a nontrivial
complex homomorphism (or kerφ is a maximal ideal). 2

In particular, this holds also for q. Then if M is a maximal
ideal of M(R−)/(q), then π−1(M) is clearly a maximal ideal
of M(R−), and this should contain (q).

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1 Suppose (9) holds, but p belongs to
a maximal ideal in M(R−)/(q). If p belongs to one of Mλn ,
then this would clearly contradict (9). Hence assume that p̂
vanishes at no λn, n = 1,2, . . .. Then by Proposition 4.2, there
exists µn such that µn→ ∞ and p̂(µn)→ 0. Since this maximal
ideal should contain q, q̂ should also vanish there, and hence
a suitable subsequence of q̂(µn) should go to 0. This clearly
contradicts (9). 2

Here are some examples:

Example 4.3. The pair (es/2 − 1,es − 1) is not a Bezout pair.
The pair possesses infinitely many common zeros.

Example 4.4. The pair (es,es/2−1) is a Bezout pair. It is easy
to check (9). This can also be directly verified by es− (es/2−
1)(es/2 +1) = 1.
Remark 4.5. Condition (9) is the same as that in the celebrated
Corona theorem by Carleson for H∞ (Duren (1970); Garnett
(1981)). One should of course be careful not to confuse the
present result with the Corona theorem, because such condi-
tions crucially depend on the choice of a ring. The proof here is
good deal simpler than that of the monstrous Corona theorem
(Duren (1970); Garnett (1981)). This is because the algebra
M(R−)/(q) is much “smaller” than H∞, and the way it yields
“cancellation at infinity” is quite much restricted by the discrete
zeros {λn}whereas in the case of the Corona theorem, there are
almost arbitrary ways in which such sequences go to infinity.

5. EXTENSION TO E ′(R−)

It is thus quite tempting to try to generalize the above result to
the general case of E ′(R−) or E ′(R).
We first make the following assumption:

Assumption 2: The algebraic multiplicity of each zero λn of
q̂(s) is globally bounded.

Observe the following Theorem 5.1 obtained in Yamamoto
(2007, 2016).
Theorem 5.1. Let q−1 ∗ p be pseudorational, and suppose that
there exists a nonnegative integer m such that

|λ m
n p̂(λn)| ≥ c > 0,n = 1,2, . . . (12)

Then the pair (p,q) satisfies the Bézout identity (2) for some
φ ,ψ ∈ E ′(R−).

The proof given in Yamamoto (2007, 2016) is fairly com-
plicated and highly technical. It does involve some elaborate
analysis of complex analytic functions of exponential type, and
some deep facts of their growth orders.

It is thus tempting to try to give a proof by using Theorem 4.1,
extending the result for M(R−) to E ′(R−).
Let us first prepare some pertinent facts on the structure of
E ′(R−). Since every element of E ′(R−) has compact support,
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it is of finite order (Schwartz (1966)). That is, for every ψ ∈
E ′(R−), there exists r ≥ 0 such that

ψ = (d/dt)r
ψ0 (13)

for some ψ0 ∈M(R−) and r ≥ 0. This readily implies
E ′(R−) = ∪∞

r=0(d/dt)M(R−). (14)
In other words, the algebra E ′(R−) is derived as the differenti-
ated union of measures.

We now suppose that we are given a pseudorational pair (p,q)
belonging to E ′(R−). Since E ′(R−) is the nested union of
differentiated measures, we may hope that we can reduce
the coprimeness problem of E ′(R−) into that of M(R−). A
procedure like the Euclid division algorithm can be a hint for
this.

Suppose for the moment that p is of order 0 and q is of order
1. Suppose also that q̂(s) has one real zero, say, λ . Then the
inverse Laplace transform of q̂(s)/(s− λ ) should be of order
zero because the division by s−λ should act as an integration.
Therefore, both p and L−1[q̂(s)/(s− λ )] should be of order
zero, i.e., measure.

Then it is naturally expected that the coprimeness of (p,q)
should reduce to that of (p,L−1[q̂(s)/(s−λ )]).

In fact, if (p,q0 ∗ q1) is coprime in a ring R, (p,q1) is coprime
and vice versa. So it is natural to expect that the Bézout
condition of (p,q) is translated to that of (p,L−1[q̂(s)/(s−λ )])
where the latter belong to the space of measures M(R−), where
Theorem 4.1 is available.

However, this seemingly reasonable idea unfortunately does not
work. The following counterexample shows why.
Example 5.2. Consider the pair (δ ′−1 − δ ,δ−1). This pair is
clearly pseudorational. The element δ ′−1− δ has order 1, and
δ−1 has order 0, i.e., measure. They admit Laplace transforms
ses−1 and es, respectively. They satisfy the Bézout identity

(ses−1) · (−1)+ s · es = 1, (15)
or

(δ ′−1−δ )∗ (−δ )+δ
′ ∗δ−1 = δ , (16)

and hence the pair is coprime over E ′(R−).
The former element ses− 1 has one positive zero, say α . This
means that (ses−1)/(s−α) (or its inverse Laplace transform)
has order 0 because division by s−α entails in integration of
δ ′−1− δ once, whereby yielding an element of order zero, i.e.,
a measure.

In other words, the pair (or the respective inverse Laplace
transforms) (ses−1)/(s−α),es) belongs to M(R−), and they
are coprime over E ′(R−). However, this does not guarantee
that this pair admits a coprime factorization over M(R−) in
the sense of Theorem 4.1.

To see this, observe that ses− 1 admits infinitely many zeros
λn such that Reλn → −∞. (This can easily be seen by noting
that it is the characteristic function of the retarded delay-
differential equation ẋ = x(t−1)+u.) Indeed, λneλn = 1 admits
infinitely many solutions such that eλn = 1/λn, n= 1,2, . . .. This
also implies that p̂(λn)→ 0 as n→ ∞. That is, it contradicts
condition (9) of Theorem 4.1, and cannot be a Bézout pair in
M(R−).

In other words, the pair can admit a Bézout identity over
E ′(R−) with x,y ∈ E ′(R−), but it cannot satisfy a Bézout

condition over the algebra of M(R−) because the latter algebra
is much smaller than E ′(R−) and does not give as much
freedom as that induced by E ′(R−). This can be more directly
seen by noting the identity s · es + (ses − 1)/(s− α) · (α −
s) = 1 This looks trivial and not any different from (15). The
difference here is that the multiplying factor α − s that makes
the pair (ses− 1)/(s−α),es) satisfy the Bézout identity does
not belong to (the Laplace transform of) M(R−). To cover
this situation, we do need Theorem 5.1, which cannot be,
unfortunately, covered as a natural variant of Theorem 4.1.

In fact, at the zeros λn of q̂, eλn = 1/λn holds, so that the p̂(λn)
clearly satisfy condition (12) for m = 1. This condition can also
be rewritten as

|sp̂(s)|+ |sq̂(s)| ≥ c > 0,∀s ∈ C−. (17)

6. CONCLUDING REMARKS

We have seen that the space M(R−) of measures admits a
Gel’fand algebra structure, and it yields a concrete Corona-like
condition (9) for the Bézout identity for a pseudorational pair
(p,q). We have also pursued to derive the general condition
(12) for the Bézout identity over E ′(R−), but also seen that
a straightforward reduction idea does not work. The modified
generalized Corona-like condition (17) may, however, suggest
that there could still be a possibility of generalizing (9) to a
more general context in E ′(R−).
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Schwartz, L. (1961). Méthodes Mathématiques pour les Sci-
ences Physiques. Hermann.
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Funnel control with internal model and
anti-windup for input-saturated

mechatronic systems

Christoph M. Hackl ∗
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Abstract: Funnel control (FC) in combination with internal model (IM) achieves asymptotic
tracking but feasibility of IM-FC in presence of input saturation (if e.g. a feasibility condition is
satisfied) is unclear. Here, both aspects are brought together to obtain a closed-loop system
comprising of funnel controller, serial interconnection of internal model with anti-windup
and input-saturated high-gain stabilizable system which achieves prescribed transient and
asymptotic accuracy if a feasibility conditions is satisfied (Hackl, 2017, Chapter 10). It will
be illustrated that in presence of actuator saturation, funnel control with internal model but
without anti-windup might exhibit integrator windup deteriorating control performance and
resulting in instability of the closed-loop system. The theory of funnel control of input-saturated
systems will be extended to allow for the application of funnel control with internal model to
input-saturated systems by introducing an anti-windup strategy called conditional integration.
The proposed approach is implemented and illustrated for a simple relative-degree-two system.

Keywords: adaptive control, funnel control, input saturation, anti-windup, internal model,
feasibility condition

1. INTRODUCTION

The use of funnel control (see Ilchmann et al. (2002)) in
combination with internal model emerges from the well
known fact that e.g. proportional-integral (PI) controllers
or internal models in general are very beneficial to improve
the control performance and, in particular, the asymp-
totic accuracy of closed-loop systems (see Wonham (1985);
Isidori and Byrnes (1990)). That is why PI controllers are
so popular in industry (see (Schröder, 2009, p. 81-82)).
For speed control of mechatronic systems, this idea of
connecting a PI-like internal model in series to a non-
identifier based adaptive controller was first published
in Schuster et al. (2004). For position control, a similar
result has been published in Hackl (2011). Funnel control
in conjunction with a linear internal model, i.e. IM-funnel
control, applied to linear systems, can achieve asymptotic
tracking and prescribed transient accuracy (see Ilchmann
and Ryan (2006)). For mechatronic systems, funnel control
with PI-like internal model, i.e. PI-funnel control gives
steady state accuracy as well. However, it is not proven
that steady state will be reached (see e.g. Ilchmann and
Schuster (2009); Hackl et al. (2011); Hackl and Kennel
(2012)). Except the publications Hackl (2013, 2015) on PI-
funnel control with anti-windup, this far, from a theoretical
point of view, funnel control with internal model is solely
admissible for mechatronic systems without input satura-
tion. In this extended abstract, it will be shown that the
advantageous effects of IM-FC remain even in presence of
actuator saturation if a simple conditional integration anti-
windup strategy is implemented; as without it, the internal
model might lead to instability of the input-saturated
closed-loop system.

2. FUNNEL CONTROL WITH INTERNAL MODEL &
ANTI-WINDUP FOR INPUT-SATURATED SYSTEMS

Funnel control is a proportional (and, for higher rela-
tive degrees, a proportional-derivative) control strategy.
However, no integral control action is incorporated. It is
well known (see Khalil (2000)) that already for exogenous
signals which asymptotically converge to constant limits
(e.g. constant references and/or disturbances), simple pro-
portional controllers do not achieve steady state accuracy,
i.e. limt→∞ e(t) ̸= 0; the tracking error e(t) := yref(t) −
y(t) does not tend to zero. To achieve that, at least,
integral control action is required. For more complex

funnel con-
troller (FC1)

IM (10) with
anti-windup

d

dt
x = Ax+ bus

+g(t,x,Tx)

y = c
⊤
x

e

ny

yyref v u us

satûdu

−

W
1,∞

system (1) of class S
sat

1 with û < ∞

(a) Relative-degree-one case.

funnel con-
troller (FC2)

IM (10) with
anti-windup

d

dt
x = Ax+ bus

+g(t,x,Tx)

y = c
⊤
x

e

ny

nẏ

yyref

ė ẏẏref

v u us

satûdu

−

−W
2,∞

system (1) of class S
sat

2 with û < ∞

(b) Relative-degree-two case.

Fig. 1. Funnel control with internal model and anti-windup of input-
saturated systems of form (1).

references and/or disturbances (e.g. for sinusoidal or ramp-
like signals), internal models are beneficial and can be used
in combination with funnel control. Howoever, for input-
saturated systems, the interconnection of internal model
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and system does not work as easily as for unsaturated
systems (see (Hackl, 2017, Chapter 7 & 10)). The input
saturation is located between internal model and input-
saturated system (see Fig. 1) and might yield windup of
(one or several of) the states of the internal model. There-
fore, oscillations in the system output and/or system states
will occur (see (Åström and Murray, 2008, Section 10.4)).
Moreover, boundedness of the states of the internal model
and/or closed-loop system stability are not guaranteed for
input-saturated systems. It will be shown that the internal
model affects the feasibility condition and a simple anti-
windup strategy (conditional integration) must be adopted
to ensure boundedness of the internal model states and
closed-loop stability.

2.1 Considered system class
In mechatronics, the dominant dynamics of most systems
can be modelled as relative-degree-one or relative-degree-
two systems with stable internal dynamics (minimum-
phase property), known sign of the high-frequency gain
and exponentially bounded perturbation (see Hackl (2017)).

The following system classes Ssat
1 and Ssat

2 are considered:
Let n,m ∈ N, h ≥ 0, (A, b, c) ∈ Rn×n × Rn × Rn and
g : [−h,∞)× Rn × Rm → Rn. A dynamical system, given
by the functional differential equation

ẋ(t)=Ax(t)+b sat
û

(
u(t)+du(t)

)
+ g

(
t,x(t), (Tx)(t)

)
y(t)= c⊤x(t), x|[−h,0] = x0(·) ∈ C

(
[−h, 0]; Rn) }

(1)
with input saturation

sat
û
: R → [−û, û], x 7→ sat

û
(x) :=


û , x ≥ û

x ,−û < x < û

−û , x ≤ −û
,

saturation level 0 < û ≤ ∞, input disturbance du : [−h,∞) →
R, operator T : C([−h,∞);Rn) → L∞

loc(R≥0;R
m), control

input u : R≥0 → R and regulated output y(·), is of Class

Ssat
1 or Ssat

2 iff the following system properties (sp) hold:

(sp1) For Ssat
1 , the relative degree is one and the sign of

the high-frequency gain is known, i.e.

r = 1 ⇐⇒ γ0 := c⊤b ̸= 0 and sign(γ0) known; (2)

or, for Ssat
2 , the relative degree is two and the sign

of the high-frequency gain is known, i.e.

r = 2 ⇐⇒ c⊤b = 0 ∧ γ0 := c⊤Ab ̸= 0

∧ ∀(t,x,w) ∈ [−h,∞)× Rn × Rm :

c⊤g(t,x,w) = 0 and sign(γ0) known; (3)

(sp2) the unperturbed system is minimum-phase, i.e.

∀ s ∈ C≥0 : det

[
sIn −A b

c⊤ 0

]
̸= 0; (4)

(sp3) the operator is of class T (see Ilchmann et al.
(2002)) and the input disturbance is bounded, i.e.

T ∈ T and du(·) ∈ L∞([−h,∞);R); (5)

(sp4) the function g : [−h,∞) × Rn × Rm → Rn is a
Caratheodory function (see Ilchmann et al. (2002))
and exponentially bounded with respect to the output

y = c⊤x, i.e. for unknown q ≥ 0, the following holds

∃Mg > 0∃q ≥ 0 for a.a. t ∈ [−h,∞)∀(x,w) ∈ Rn ×Rm :

∥g(t,x,w)∥ ≤Mg

[
1 + exp

(
|c⊤x|q

)]
; (6)

(sp5) for Ssat
1 , the regulated output y(·) is available for

feedback; or, for Ssat
2 , the regulated output y(·) and

its derivative ẏ(·) are available for feedback

System (1) can represent nonlinear input-saturated dy-
namical mechatronic systems with bounded input dis-
turbance and exponentially bounded nonlinear perturba-
tions. System examples are speed, position or current
controlled electrical drives or elastic servo systems (see
Hackl (2017)). Due to the nonlinear perturbation function
g(·, ·, ·), the system dynamics are nonlinear in exogenous
(time-varying) signals, system state x(·) and functional
perturbation (Tx)(·). Input disturbance du(·) in (1) al-
lows to incorporate bounded actuator deviations and/or
feedforward commands, whereas time-dependent and func-
tional perturbations in (1) account for e.g. time-varying
electrical/mechanical loads and nonlinear friction effects.

v

d
u

γ
im

0

Aim

bim c
⊤

im

ximẋim

u

sat
û

f
δ

aw
(·) as in (7)

us

Internal model with anti-windup

Fig. 2. Internal model (10) with anti-windup due to decision
functions (7).

2.2 Funnel controllers for systems of class Ssat
1 and Ssat

2

Despite the existence of several funnel controller variants,
in this paper, the most simple funnel controllers with gain
scaling for systems of class Ssat

1 and Ssat
2 with tracking

error e(t) = yref(t)− y(t) are considered:

• Funnel controller for systems of class Ssat
1 :

v(t)=sign(γ0)k(t)e(t) where k(t)=
ς(t)

ψ(t)− |e(t)

(FC1)

• Funnel controller for systems of class Ssat
2 :

v(t)=sign(γ0)
(
k0(t)

2e(t) + k0(t)k1(t)ė(t)
)
where

k0(t)=
ς0(t)

ψ0(t)− |e(t)|
and k1(t)=

ς1(t)

ψ1(t)− |ė(t)|
.

(FC2)

The gain scaling functions ς(·), ς1(·) and ς2(·) and the
funnel boundaries ψ(·), ψ0(·) and ψ1(·) are element of

the Sobolov space (i.e. W1,∞(R≥0, [λ,∞))), bounded away
from zero and have essentially bounded derivatives (for
details see (Hackl, 2017, Chapter 9)). The reference signals

yref(·) are element ofW1,∞(R≥0,R) for S
sat
1 systems and of

W2,∞(R≥0,R) for S
sat
2 systems (see Ilchmann et al. (2002)

and Hackl et al. (2013), respectively).
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2.3 Internal model with anti-windup

In order to guarantee anti-windup and boundedness of
the states of the internal model, a simple conditional
integration approach is proposed. To do so, the internal
model must be equipped with two anti-windup decision
functions (see Fig. 2). The proposed anti-windup decision

functions are Lipschitz continuous. i.e. f
δ(·)
∆,û

: R → [0, 1],

u 7→ f
δ(·)
∆,û

(u) :=


0, u < −û

δ(u), −û ≤ u ≤ −û + ∆

1, −û + ∆ < u < û − ∆

δ(−u), û − ∆ ≤ u ≤ û

0, u > û,

(7)

where ∆ > û and, for I∆ := [−û, −û+∆] ∪ [û−∆, û],

δ(·) ∈
{
f(·) ∈ CL(I∆; [0, 1]) ∣∣∣∣ f(−û)=f(û) = 0, and

f(∆− û)=f(û−∆)=1

}
.

For examples, please refer to (Hackl, 2017, Chapter 10).
The following lemma shows that for a proper internal
model design in combination with two decision functions,
the output of the internal will remain bounded for all time
and for any continuous input.

Lemma 1. (Internal model with anti-windup). For p ∈ N,

Aim :=


0 1 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0

0 . . . . . . 0 1

−â0 −â1 . . . −âp−2 −âp−1

 ∈ Rp×p
,

bim :=
(
0, ·, ·, 0, 1

)⊤
∈ Rp

, and

cim :=
(̂
c0, . . . , ĉp−1

)⊤
∈ Rp

,


(8)

let the internal model

d
dt xim(t) = Aimxim(t) + bim v(t)

u(t) = c⊤imxim(t) + γim0 v(t)
,

deg(Dim) =: p ∈ N,
xim(0) = x0

im ∈ Rp,

sign(γim0 ) = sign(γ0)


(9)

be a minimal realization. With anti-windup, it is given by

d
dt xim(t) = f

δ(·)
∆,û

(
c⊤imxim(t)+γ

im
0 v(t)

)
· fδ(·)

∆,û

(
γim0 v(t)

)
·

·
[
Aimxim(t) + bim v(t)

]
u(t) = c⊤imxim(t)︸ ︷︷ ︸

=:uim(t)

+γim0 v(t), xim(0) = x0
im ∈ Rp

with (Aim, bim, cim) as in (8) and f
δ(·)
∆,û

(·) as in (7)


(10)

and, for û > ∆ > 0, v(·) ∈ C(R≥0;R), the following hold:

(i) there exists a unique solution xim : [0, T ) → Rp,
T ∈ (0,∞] which can be maximally extended;

(ii) the solution xim : [0, T ) → Rp is global, i.e. T = ∞;

(iii) the sub-output uim(·) = c⊤imxim(·) of the internal
model (10) is uniformly bounded, i.e.

∀ t ≥ 0: |uim(t)| ≤Muim
:= max{û, |c⊤imx

0
im|}+ û; (11)

(iv) there exists Mxim
≥ 1 such that ∥xim(t)∥ ≤ Mxim

for all t ≥ 0, if the polynomial N̂im(s) = ĉp−1 s
p−1 +

· · ·+ ĉ1 s+ ĉ0 is Hurwitz.

The proof can be found in (Hackl, 2017, Lemma 10.6).

2.4 Closed-loop system

In Hopfe et al. (2010) and Hackl et al. (2013), it
was shown that funnel control is applicable for input-
saturated relative-degree-one and relative-degree-two sys-
tems (of e.g. class Ssat

1 or Ssat
2 ), if a feasibility condition

ûfeas ≤ û <∞ is satisfied. The feasibility bound ûfeas

depends on system parameters, disturbances, perturba-
tions, internal dynamics and controller design (e.g. funnel
boundary). It is usually (very) conservative. In view of
Lemma 1, the internal model with anti-windup is uni-
formly bounded and can be considered as globally bounded
input perturbation to the input-saturated system of class
Ssat
1 or Ssat

2 . Therefore, the feasibility bound ûfeas must be
adjusted and will also depend on the output bound Muim

as in (11) of the internal model. Due to space limitations,
full theorems and proofs are omitted but can be found in
Chapter 10 of Hackl et al. (2017) for system class Ssat

1 and

Ssat
2 (see Theorem 10.7 and Theorem 10.9, respectively).

3. IMPLEMENTATION AND SIMULATION RESULTS

To illustrate the difference between the closed-loop per-
formance of IM-funnel controller (FC2)+(9) without anti-
windup [ ] and IM-funnel controller (FC2)+(10) with
anti-windup [ ], both are applied to a simple system

ÿ(t) = γ0 satû
(
u(t)

)︸ ︷︷ ︸
=:us(t)

, (y(0),ẏ(0))⊤=(0,0)⊤∈ R2,
with γ0 = 3 and û = 7,

}
(12)

with relative degree two and input saturation. The satu-
rated input is denoted by us. Output y(·) and its derivative
ẏ(·) are available for feedback. It is easy to see that, for

known sign(γ0), system (12) is element of class Ssat
2 and,

hence, IM-funnel control (FC2)+(10) with anti-windup is
admissible if û is sufficiently large. The chosen reference
yref(·) (see Fig. 3a) allows for an internal model design to
reduplicate a constant signal and a sinusoidal signal with
angular frequency ω0 = 2π0.5 = π rad

s . The design yields

Fim(s) = 1 + 9 s
2
+(27−ω

2
0) s+27

s
3
+ω

2
0s

=: 1 + N̂im(s)
Dim(s) (13)

in the frequency domain. Clearly, (13) has positive high-

frequency gain γim0 = 1 and it is minimum-phase as the

numerator N̂im(s) = 9 s2 + (27− ω2
0) s+ 27 is Hurwitz for

all ω2
0 < 27. To implement the internal model (10) with

anti-windup in state space, a minimal realization of (13)
must be found resulting in the following internal model
system matrix and input and output coupling vectors

Aim:=

[
0 1 0

0 0 1

0 −ω
2
0 0

]
, bim:=

(
0

0

1

)
and cim:=

(
27

(27 − ω
2
0)

9

)
. (14)

The implemented anti-windup decision function f
δ(·)
∆,û

(·)
has the parameters ∆ = 0.5 and û = 7 and the function

δ : I∆ → [0, 1], u 7→ δ(u) := 1
2

(
sin

(
π
∆ (u+ û)− π

2

)
+ 1

)
was used. The funnel controller (FC2) is equipped with
exponential funnel boundary (ψ0(t), ψ1(t)) :=

(
(Λ0 −

λ0) exp
(
− t

Texp

)
+ λ0,

Λ0−λ0

Texp
exp

(
− t

Texp

)
+ λ1

)⊤
(with

Λ0 = 7.5, λ0 = 0.1, Texp = 0.77 s and λ1 = 5) and
gain scaling functions ς0(t) = ψ0(t) and ς1(t) = 2ψ1(t) =
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Fig. 3. Simulation results for set-point tracking of input-saturated
closed-loop systems (12), (FC2)+(9) without anti-windup [ ]
and (12), (FC2)+(10) with anti-windup [ ].
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(a) IM sub-output uim(·).
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(b) norm of IM state ∥xim(·)∥.

Fig. 4. Simulation results for internal model (IM) sub-output and
state of input-saturated closed-loop systems (12), (FC2)+(9)
without anti-windup [ ] and (12), (FC2)+(10) with anti-
windup [ ].

2ψ1(t). The closed-loop systems (12), (FC2)+(9) [ ]
and (12), (FC2)+(10) [ ] are implemented in Mat-
lab/Simulink with numerical solver ode4 (Runge-Kutta)

and fixed-step size of 1·10−4 s. The comparative simulation
is run for 10 s. Control objective is reference tracking of
yref(·) as depicted in Fig. 3a. The simulation results are
shown in Fig. 3 and Fig. 4. Due to windup of the internal
model state xim(·), the IM-funnel controller (FC2)+(9)
without anti-windup [ ] becomes unstable. Its con-
trol action u(·) is saturated for almost all time t ≥
5 s. The error and its derivative cross their respective
funnel boundaries at ≈ 5.8 s and ≈ 6.2 s, respectively.
Accordingly, the gains k0(·) and k1(·) of the IM-funnel
controller (FC2)+(9) without anti-windup [ ] change
their signs and eventually diverge. In contrast, the IM-
funnel controller (FC2)+(10) with anti-windup [ ] en-
sures tracking with prescribed transient accuracy. Its gains
remain bounded. Moreover, due to conditional integration,
the norm of the state ∥xim(·)∥ and the output uim(·) of
the internal model (10) with anti-windup [ ] remains
much smaller than that of IM-funnel controller (FC2)+(9)
without anti-windup [ ]. Both bounds,Muim

= 2û = 14

and Mxim
= 67.4 are by far exceeded by the IM-funnel

control (FC2)+(9) without anti-windup [ ], whereas the
closed-loop system with IM-funnel controller (FC2)+(10)
with anti-windup [ ] does not get close to both bounds.

4. CONCLUSION

Funnel control with internal model and anti-windup for
input-saturated systems with relative degree one or two
has been discussed. It has been shown that internal mod-
els are beneficial to improve asymptotic accuracy of the
closed-loop system. However, in presence of input satura-
tion the internal model must be equipped with an anti-
windup strategy (conditional integration) to assure uni-
form boundedness of the internal model and to avoid insta-
bility of the closed-loop system. The well-known feasibility
condition of funnel control for input-saturated systems
must be adjusted in view of the ultimate boundedness of
the internal model. Then, available results (theorems) can
be re-applied to establish closed-loop system stability. Sim-
ulation results were presented to illustrate the beneficial
aspects of internal models with anti-windup. The talk will
discuss several mechatronic applications in more detail.
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Abstract: We consider tracking control for uncertain nonlinear multi-input, multi-output
systems modelled by functional differential equations, in the presence of input constraints. The
objective is to guarantee the evolution of the tracking error within a performance funnel with
prescribed asymptotic shape. We design a novel funnel controller which, in order to satisfy the
input constraints, contains a dynamic component which widens the funnel boundary whenever
the input saturation is active. This design is model-free, of low-complexity and extends earlier
funnel control approaches.
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1. INTRODUCTION

We study funnel control for the class of nonlinear systems
modelled by the r-th order functional differential equation

y(r)(t) = f
(
d(t), T (y, ẏ, . . . , y(r−1))(t), u(t)

)
,

y|[−h,0] = y0 ∈ Cr−1([−h, 0],Rm),
(1)

with unknown nonlinear function f ∈ C(Rp × Rq ×
Rm,Rm) and unknown operator T which satisfy a sec-
tor bound property (see Section 1.1), unknown bounded
disturbance d and unknown initial trajectory y0 in the
presence of input constraints

u(t) = sat(v(t)) (2)

with known saturation function sat and control func-
tion v provided by the to-be-designed controller. Here,
we propose a novel control design, which is feasible for
the aforementioned class of systems, i.e., it satisfies the
input constraints imposed by (2), and achieves tracking
of a given reference signal with prescribed performance of
the tracking error whenever the saturation is not active,
that is u(t) = v(t) – in this case the controller exhibits
the same performance as the funnel controllers proposed
in Berger et al. (2021, 2018). When the saturation is active
the performance funnel, which defines the domain for the
evolution of the tracking error, is widened according to
a dynamic equation describing the funnel boundaries, so
that the input constraints are still met. As soon as the
saturation becomes inactive again, the performance funnel
recovers its desired shape exponentially fast.

The concept of funnel control was developed in the seminal
work (Ilchmann et al., 2002) (see also the recent survey
in Berger et al. (2021)) and proved advantageous in a
variety of applications such as control of industrial servo-
systems (Hackl, 2017), electrical circuits (Berger and Reis,

⋆ Funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – Project-ID 471539468.

2014), peak inspiratory pressure (Pomprapa et al., 2015)
and adaptive cruise control (Berger and Rauert, 2020).

Funnel control with input saturation was first investigated
in Ilchmann and Trenn (2004) for the specific application
of chemical reactor models and in a more general con-
text in Hopfe et al. (2010a,b) for systems with relative
degree one and in Hackl et al. (2013) for systems with
relative degree two; this approach has been applied to
funnel control with anti-windup for synchronous machines
in Hackl (2015). However, in the aforementioned works
it was simply shown that classical funnel control is fea-
sible for a sufficiently large saturation bound – here this
bound can be arbitrarily small. Another approach to fun-
nel control with guaranteed input constraints is bang-bang
funnel control, introduced in Liberzon and Trenn (2013)
for (undisturbed) nonlinear single-input, single-output sys-
tems with arbitrary relative degree. However, the bang-
bang funnel control design requires various complicated
feasibility assumptions and in particular the two control
values must be sufficiently large.

A relative of funnel control is prescribed performance
control, developed in Bechlioulis and Rovithakis (2008),
see also the important work Bechlioulis and Rovithakis
(2014) where the complexity issue of this approach has
been solved. The problem of input constraints has been
addressed within this approach e.g. in Li and Xiang (2018),
where neural networks are used to approximate the non-
linearities, and in Cheng et al. (2019), where additionally
a neural observer is incorporated in the controller design.
In the work Wang et al. (2019) no approximations are
needed (and hence the controller is of low complexity),
however the proof contains an error and simulations also
show that the proposed controller is infeasible in general.
The problem is that the scaling parameter κ in the χ-
dynamics is chosen as a constant, but actually it needs to
depend on the input.
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Funnel control for systems with arbitrary relative degree
was considered in Berger et al. (2021, 2018). The novel
input-constrained funnel control design that we propose
here extends these approaches in the following aspects:

• Compared to Berger et al. (2018) a much more general
class of systems is allowed here, similar to Berger
et al. (2021). However, we do not require the restric-
tive high-gain property of the nonlinearity f or the
minimum phase property (characterized by a BIBO
property of the operator T ) imposed in Berger et al.
(2021). On the other hand, we require a sector bound
property of f and T . This condition cannot be dis-
pensed in general, because of the input saturation.

• The new controller is able to handle arbitrary input
constraints (2). Even if the saturation is never active,
i.e., u(t) = v(t) for all t ≥ 0 for any solution of
the closed-loop system, then the new controller is
able to guarantee a prescribed performance of the
tracking error as in Berger et al. (2021, 2018), with
exponentially decaying funnel boundaries.

1.1 System Class

We consider functional differential equations of the
form (1) incorporating an operator T of the following class.

Definition 1. For n, q ∈ N and h ≥ 0 the set Tn,qh denotes
the class of operators T : C([−h,∞),Rn) → L∞

loc(R≥0,Rq)
with the following properties.

(P1) T is causal, i.e., for all ζ, ξ ∈ C([−h,∞),Rn) and
all t ≥ 0,

ζ|[−h,t] = ξ|[−h,t] =⇒ T (ζ)|[0,t] = T (ξ)|[0,t].
(P2) T is locally Lipschitz, i.e., for each t ≥ 0 and

all ξ ∈ C([−h, t],Rn), there exist positive constants
c0, δ, τ > 0 such that, for all ζ1, ζ2 ∈ C([−h,∞),Rn)
with ζi|[−h,t] = ξ and ∥ζi(s) − ξ(t)∥ < δ for all
s ∈ [t, t+ τ ] and i = 1, 2, we have

ess sup
s∈[t,t+τ ]

∥T (ζ1)(s)− T (ζ2)(s)∥

≤ c0 sup
s∈[t,t+τ ]

∥ζ1(s)− ζ2(s)∥.

(P3) T locally maps bounded functions to bounded
functions, i.e., for all τ > 0 and all c1 > 0, there
exists c2 > 0 such that, for all ζ ∈ C([−h, τ ],Rn),

sup
t∈[−h,τ ]

∥ζ(t)∥ ≤ c1 =⇒ ess sup
t∈[0,τ ]

∥T (ζ)(t)∥ ≤ c2.

We stress that property (P3) in the operator class Tn,qh
is weaker than the respective property required in Berger
et al. (2021, 2018), where it essentially needs to hold for
“τ = ∞” (and hence corresponds to a minimum phase
property), while for our purposes a local version suffices.

Next we introduce a sector bound property of f ∈ C(Rp×
Rq × Rm,Rm) and T ∈ Trm,qh as follows.

(P4) For all y0 ∈ Cr−1([−h, 0],Rm) there exist
M1, . . . ,Mr+1 ∈ C(R≥0 × Rp × Rm,R≥0) such that
for all t ≥ 0, all (d, v) ∈ Rp × Rm and all ζ1, . . . , ζr ∈
C([−h, t],Rm) we have:

∥f(d, T (ζ1, . . . , ζr)(t), v)∥ ≤M1(t, d, v)

+M2(t, d, v)∥ζ1|[−h,t]∥∞+. . .+Mr+1(t, d, v)∥ζr|[−h,t]∥∞

Note that the functions Mi in (P4) depend on the initial
history y0 in (1). We like to note that the sector bound
property (P4) cannot be dispensed in the presence of (ar-
bitrary) input constraints in general. Otherwise, already
for simple system of the form

ẏ(t) = y(t)2 + u(t), y(0) = 1, u(t) = sat(v(t))

solutions may exhibit a blow-up when the input con-
straints are “too tight”.

We are now in the position to define the class of systems to
be considered here. We stress that the high-gain property
of system (1) required in earlier approaches, see e.g. Berger
et al. (2021), is not needed here.

Definition 2. For m, r ∈ N we say that system (1) belongs
to the system class Nm,r, written (d, f, T ) ∈ Nm,r, if
d ∈ L∞(R≥0,Rp), f ∈ C(Rp × Rq × Rm,Rm), T ∈ Trm,qh
for some p, q ∈ N, h ≥ 0 and (f, T ) satisfy property (P4).

In contrast to earlier approaches as in Berger et al. (2021,
2018), here we consider an additional function sat in (1),
which represents an input saturation. If sat = idRm , then
the results from Berger et al. (2021, 2018) could be applied.
For this reason, we consider a proper input saturation,
which has the following, quite general, property.

(P5) sat ∈ C(Rm,Rm) is bounded and there exists θ > 0
such that for all v ∈ Rm with ∥v∥ ≤ θ we have
sat(v) = v.

We stress that the input saturation function sat must be
known to the controller and it can be viewed as a design
parameter, chosen according to the specific requirements
of the application at hand. The above property (P5) allows
for a large variety of possible saturations, apart from
the standard saturation sati(v) = vi for |vi| ≤ M and
sati(v) = sgn(vi)M for |vi| > M for all i = 1, . . . ,m.

1.2 Control objective

The objective is to design a dynamic output derivative
feedback strategy such that for any reference signal yref ∈
Cr(R≥0,Rm) the tracking error e = y−yref evolves within
a performance funnel

Fψ := { (t, e) ∈ R≥0 × Rm | ∥e∥ < ψ(t)} ,
see Fig. 1, which has a prescribed shape of the form
ψ(t) = ae−bt + c whenever the saturation in (2) is not
active, i.e., sat(v(t)) = v(t), and ψ(t) is allowed to become
larger when the saturation is active. The specific shape
of the performance funnel should be determined by a
dynamic part of the control law.

Fig. 1. Error evolution in a funnel Fψ with boundary ψ(t).

It is usually the hallmark of funnel control that the funnel
boundary is prescribed a priori and can be freely chosen by
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the designer, see e.g. Berger et al. (2021, 2018); Ilchmann
et al. (2002). Here we do not allow for an arbitrary funnel
boundary in order to be able to change its shape by means
of a differential equation. However, we allow to prescribe
the “asymptotic shape” ψ(t) = ae−bt + c under inactive
saturation, that is the positive parameters a, b, c can be
chosen as desired.

2. FUNNEL CONTROL STRUCTURE

We introduce the following input-constrained funnel con-
troller for systems (1), (2).

e1(t) = e(t) = y(t)− yref(t),

ei+1(t) = e(i)(t) + ki(t)ei(t), i = 1, . . . , r − 1,

ki(t) =
(
1− ∥ei(t)∥2

ψi(t)2

)−1

, i = 1, . . . , r,

ψ̇i(t) = piψi+1(t)− αiψi(t) + βi − pi
βi+1

αi+1
,

ψi(0) = ψ0
i , i = 1, . . . , r − 1,

ψ̇r(t) = −αrψr(t) + βr + ψr(t)
κ(v(t))
∥er(t)∥ ,

ψr(0) = ψ0
r ,

κ(v(t)) = ∥v(t)− sat(v(t))∥,
v(t) = N

(
kr(t)

)
er(t)

(3)

with the controller design parameters

α1>α2>. . .>αr>0, pi>1 for i = 1, . . . , r−1,

βi>0, ψ0
i >

βi
αi

for i = 1, . . . , r,

N ∈ C(R≥0,R) a surjection.

(4)

Furthermore in (3) we assume that the instantaneous val-
ues of the output y(t) and its derivatives ẏ(t), . . . , y(r−1)(t)
are available for feedback, thus (3) is a dynamic output
derivative feedback controller.

The first three equations of the controller (3) are basically
a combination of the two designs from Berger et al. (2021,
2018), appended by the dynamics for the funnel bound-
aries in the subsequent three equations. This contrasts
classical funnel control approaches, where the performance
funnels are always prescribed a priori. Here, they are
determined by a dynamical system, which is influenced by
the input and an auxiliary error variable. Since the funnel
functions are then used to determine these quantities in
turn, a feedback structure arises, for which we seek to
prove existence of global solutions.

The surjective function N in (4) serves the purpose of
accommodating for possibly unknown control directions.
With its help the controller is able to “probe” for the
appropriate sign of the control signal. For more details
see also (Berger et al., 2021, Rem. 1.8).

The distinguishing feature of the novel control design (3)
is that it is feasible under arbitrary input constraints (2).
The controller (3) always guarantees the evolution of
the tracking error within a performance funnel, whose
boundary is determined by a dynamic part of the con-
troller as mentioned above. If the saturation is not active,
then (asymptotically) the funnel boundary is of the form

ψ(t) = ae−bt + c with positive design parameters a, b, c;
if the saturation is active, i.e., v(t) ̸= sat(v(t)), then the
boundary is widened by the dynamics of the controller in
order to guarantee the input constraints. After a period of
active saturation, the boundary recovers to its prescribed
shape exponentially fast.

We emphasize that the controller (3) introduces several
possible singularities in the closed-loop differential equa-
tion. In order to prove the existence of a global solution, it
must be ensured that ∥ei(t)∥ ≤ εiψi(t) for some εi ∈ (0, 1)
and that κ(v(t)) = 0 whenever ∥er(t)∥ < δ for some
δ > 0. Furthermore, compared to classical funnel control
approaches as in Berger et al. (2021, 2018), the funnel
boundaries ψi are not prescribed here, and in particular
it is not known a priori that they are bounded. Hence,
solutions may potentially get unbounded in finite time,
i.e., exhibit a blow-up. Therefore, the feasibility proof of
the control design is a highly nontrivial task.

3. FUNNEL CONTROL – MAIN RESULTS

In this section we show that the application of the
funnel controller (3) to a system (1) under input con-
straints (2) leads to a closed-loop initial-value problem
which has a global solution. By a solution of (1), (2), (3)
on [−h, ω) we mean a tuple of functions (y, ψ1, . . . , ψr) ∈
Cr−1([−h, ω),Rm)×C([−h, ω),R)r with ω ∈ (0,∞], which
satisfies y|[−h,0] = y0, ψi(0) = ψ0

i for all i = 1, . . . , r and

(y(r−1), ψ1, . . . , ψr)|[0,ω) is locally absolutely continuous
and satisfies the differential equations in (1) and (3) with u
defined by (2), (3) for almost all t ∈ [0, ω); (y, ψ1, . . . , ψr)
is called maximal, if it has no right extension that is also
a solution.

Next we present the main result.

Theorem 3. Consider a system (1) with (d, f, T ) ∈ Nm,r

for m, r ∈ N, under input saturation (2) with saturation
function sat that satisfies (P5). Let y0 ∈ Cr−1([−h, 0],Rm)
be the initial trajectory, yref ∈ Cr(R≥0,Rm) the reference
signal and choose funnel control design parameters as
in (4). Set e = y− yref and assume that the instantaneous
values e(t), ė(t), . . . , e(r−1)(t) are available for feedback
and satisfy, using the variables e1, . . . , er defined in (3),
that

∀ i = 1, . . . , r : ∥ei(0)∥ < ψ0
i . (5)

Then the funnel controller (3) applied to (1), (2) yields an
initial-value problem which has a solution, every solution
can be maximally extended and every maximal solution
(y, ψ1, . . . , ψr) : [−h, ω) → Rm+r, ω ∈ (0,∞], has the
following properties:

(1) global existence: ω = ∞;
(2) the functions e1, . . . , er evolve in their respective

performance funnels in the sense:

∀ i = 1, . . . , r − 1 ∃ εi ∈ (0, 1) ∀ t ≥ 0 :

∥ei(t)∥ ≤ εiψi(t) and ∥er(t)∥ < ψr(t);

(3) if the saturation is not active on some interval
[t0, t1) ⊆ R≥0 with t1 ∈ (t0,∞], i.e., v(t) = sat(v(t))
for all t ∈ [t0, t1), then the performance funnels
exponentially recover to their prescribed shape, i.e.,

ψi(t) ≤ βi

αi
+
∑r

j=i
µj(t0)νije

−αj(t−t0)

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



for all i = 1, . . . , r and all t ∈ [t0, t1), where µi(t0) :=

ψi(t0) − βi

αi
, νii := 1 and νij :=

∏j−1
k=i

pk
αk−αj

for

i = 1, . . . , r and j = i+ 1, . . . , r.

We stress that although Theorem 3 provides the existence
of a global solution of the closed-loop system, it cannot
be concluded that the funnel boundaries ψ1, . . . , ψr are
bounded in general. However, statement (iii) provides
that a posteriori the funnel boundaries recover to their
prescribed shape on any interval where the saturation is
not active; in particular, if t1 = ∞, then they are bounded.

Nevertheless, it is possible to show global boundedness
of ψ1, . . . , ψr for sufficiently large saturation bound, i.e.,
sat(v) = v for all v ∈ Rm with ∥v∥ ≤M and M > 0 suffi-
ciently large. For this we require additional assumptions,
i.e., a bounded reference signal with bounded derivatives
and the system class Nm,r

BIR considered for funnel control
in Berger et al. (2021). We do not recall the precise
definition of Nm,r

BIR here, which can be found in (Berger
et al., 2021, Def. 1.5), but only highlight the differences
with Nm,r: For Nm,r

BIR property (P3) needs to hold with
“τ = ∞” (and hence becomes a bounded-input, bounded-
output stability property) and system (1) needs to satisfy
an additional high-gain property.

Theorem 4. Consider a system (1) with (d, f, T ) ∈ Nm,r
BIR

for m, r ∈ N. Choose funnel control design parameters as
in (4), ε ∈ (0, 1) and K > 0. Then there exists M > 0
(depending on ε and K) such that

• for all saturation functions sat which satisfy (P5) with
θ =M ,

• for all y0 ∈ Cr−1([−h, 0],Rm) with ∥ei(0)∥ ≤ εψ0
i ,

i = 1, . . . , r, and

• for all yref ∈ W r,∞(R≥0,Rm) with ∥y(i)ref∥∞ ≤ K,
i = 0, . . . , r,

there exists a solution (y, ψ1, . . . , ψr) : [−h, ω) → Rm+r,
ω ∈ (0,∞], of (1), (2), (3) which can be maximally
extended to a global solution (i.e., ω = ∞) that satisfies

(1) y ∈ W r,∞([−h,∞),Rm) and ψi ∈ L∞(R≥0,R) for
i = 1, . . . , r;

(2) ki ∈ L∞(R≥0,R) for i = 1, . . . , r and v ∈
L∞(R≥0,Rm) with ∥v(t)∥ ≤ M for all t ≥ 0, for the
quantities defined in (3).

We stress that Theorem 4 provides an explicit relation
between the initial values and the saturation bound M .
The initial values y(0), ẏ(0), . . . , y(r−1)(0) are essentially
confined to a bounded set, the size of which is quantified
by ε ∈ (0, 1), for which the relations ∥ei(0)∥ ≤ εψ0

i hold
for i = 1, . . . , r. If ε is made smaller, allowing only a
smaller set of initial values, then it is also possible to
choose a smaller saturation boundM in general (although
M ≥ M∗ > 0 even for ε → 0 and K → 0, where M∗

depends on the system and controller parameters).
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1. INTRODUCTION

We study output tracking for linear minimum phase sys-
tems with arbitrary relative degree under possible output
measurement losses. Such phenomena are of significant
practical relevance whenever signals are transmitted over
large distances or via digital communication networks and
may hence be prone to signal losses or package dropouts.
In the presence of output measurement losses the per-
formance of closed-loop control strategies may seriously
deteriorate and even lead to instability. In the present
paper we present a reliable strategy for linear systems
which is able to guarantee a prescribed margin for the
tracking error and after any period of possible output
measurement losses it is able to recapture the error within
this time-varying margin by appropriately shifting it.

Output measurement losses are typically considered
within the framework of networked control systems, see
e.g. Garćıa-Rivera and Barreiro (2007); Wang and Yang
(2009); Cloosterman et al. (2010); Nešić and Teel (2004).
Within this approach, event-triggered controllers have
been designed in order to guarantee global asymptotic
stability, see Lehmann and Lunze (2012); Blind and
Allgöwer (2014); Linsenmayer et al. (2019) for linear sys-
tems and Wang and Lemmon (2011); Dolk and Heemels
(2017) for nonlinear systems. H∞ control approaches have
been considered in Gao and Chen (2008); Tang et al.
(2016) and model predictive control in de la Pena and
Christofides (2007); Lješnjanin et al. (2014). However, as
far as the authors are aware, tracking control with pre-
scribed performance bounds for the tracking error has not
yet been considered. To achieve this, in the present paper
we use the methodology of funnel control.

The concept of funnel control goes back to the seminal
work Ilchmann et al. (2002), see also the survey in Berger
et al. (2021c). The funnel controller proved to be the

? Funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – Project-ID 362536361.

appropriate tool for tracking problems in various appli-
cations such as control of industrial servo-systems Hackl
(2017) and underactuated multibody systems Berger et al.
(2021b, 2019), control of electrical circuits Berger and Reis
(2014); Senfelds and Paugurs (2014), control of peak in-
spiratory pressure Pomprapa et al. (2015), adaptive cruise
control Berger and Rauert (2020) and even the control
of infinite-dimensional systems such as a boundary con-
trolled heat equation Reis and Selig (2015), a moving water
tank Berger et al. (2022) and defibrillation processes of the
human heart Berger et al. (2021a).

The novel funnel control design that we present in this
paper relies on an intrinsic “availability function” which
encodes (as a binary value) whether the output measure-
ment is available at some time instant, or if the measure-
ment is lost. As a consequence, no a priori information
about the time instants where the measurement is lost or
recaptured is necessary. Then the basic idea for the control
design is simply to employ a classical funnel controller on
each interval where the output is available, set the input to
zero when it is not available and restart the controller when
the output signal is received again. Because we restrict
ourselves to linear systems no blow-up may occur when the
input is zero. The crucial obstacle in the feasibility proof of
the control design in our main result Theorem 5 is to show
that the resulting control input in the closed-loop system
is globally bounded. To this end, we require appropriate
assumptions on the maximal duration of measurement
losses and the minimal time of measurement availability,
which we summarize in Section 1.2. The bounds for these
durations essentially depend on the internal dynamics of
the system – if the internal dynamics are absent, no restric-
tions must be made. However, if they are present a key step
is to find an invariant set for the internal dynamics and
to choose the initial width of the performance funnel large
enough – this is elaborated in Section 1.3.
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1.1 Nomenclature

We use the following notation, where I ⊆ R denotes an
interval and R≥0 := [0,∞). N is the set of positive integers;

C− := { z ∈ C |Rez < 0}; ‖x‖ :=
√
x>x is the Euclidean

norm of x ∈ Rn; Gln(R) is the set of invertible matri-
ces A ∈ Rn×n; for A ∈ Gln(R) we write A > 0 (A < 0) if
A is positive (negative) definite; σ(A) ⊆ C is the spectrum
of a matrix A ∈ Rn×n; L∞(I;Rp) is the Lebesgue space of
measurable and essentially bounded functions f : I → Rp
with norm ‖f‖∞ := ess supt∈I ‖f(t)‖; Wk,∞(I;Rp) is the
Sobolev space of k-times weakly differentiable functions
f : I → Rp such that f, . . . , f (k) ∈ L∞(I;Rp); Ck(I;Rp)
is the set of k-times continuously differentiable functions
f : I → Rp, C(I;Rp) = C0(I;Rp); f |J is the restriction of
f : I → Rn to J ⊆ I.

1.2 System class

We consider linear systems of the form

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ Rn,
y(t) = Cx(t),

(1)

where A ∈ Rn×n and B,C> ∈ Rn×m; in particular, the
dimensions of the input u(t) and the output y(t) coincide.
We assume that the system has strict relative degree
r ∈ N, i.e., CAkB = 0 for all k = 0, . . . , r − 2, and
Γ := CAr−1B ∈ Glm(R). Then, a straightforward gen-
eralization of (Ilchmann and Wirth, 2013, Thm. 3) yields
that there exist Ri ∈ Rm×m, S, P> ∈ Rm×(n−rm) and
Q ∈ R(n−rm)×(n−rm) such that system (1) is equivalent to

y(r)(t) =
r∑
i=1

Riy
(i−1)(t) + Sη(t) + Γu(t),

η̇(t) = Qη(t) + Py(t)

(2)

with initial conditions

(y(0), . . . , y(r−1)(0)) = (y0
0 , . . . , y

0
r−1) ∈ Rrm,

η(0) = η0 ∈ Rn−rm.
We introduce the system class under consideration.

Definition 1. For r,m ∈ N a system (2) belongs to the
system class Σr,m, if

(i) the high-gain matrix Γ ∈ Glm(R) is sign definite 1 ;
w.l.o.g. we assume Γ + Γ> > 0,

(ii) the system is minimum phase, i.e., σ(Q) ⊆ C−.

We write (A,B,C) ∈ Σr,m.

We record the following, the proof of which is straightfor-
ward.

Lemma 2. For L ∈ Rp×p with σ(L) ⊆ C− there exists
0 < K = K> such that KL+ L>K = −Ip, and

∀ t ≥ 0 : ‖eLt‖ ≤
√
‖K−1‖‖K‖ e−

1
2‖K‖ t.

In virtue of Lemma 2, for Q from (2) let

M :=
√
‖K−1‖‖K‖, µ :=

1

2‖K‖
, (3)

where KQ+Q>K = −In−rm. If n− rm = 0, then we set
M := 0 and µ := 1.

1 That is, for any v ∈ Rm we have v>Γv = 0 if, and only if, v = 0.

Since we consider situations where the output measure-
ment signal may be lost for some time, we propose as-
sumptions relating the maximal duration of measurement
losses and minimal time of measurement availability. The
package dropouts in the system and the accompanying lost
information of the measurements y(t) are not assumed to
happen in a priori known time intervals. We only assume
that it is possible to determine, at every time instant t,
whether the measurement of y(t) is available or not; if
the availability is not certain, then it should be rendered
“unavailable” (this also encompasses the situation that,
after a dropout, the availability of the measurement is only
determined with some delay). Based on this we define an
“availability function”

a(t) =

{
1, measurement of y(t) available,

0, measurement of y(t) not available.
(4)

Let (t−k ), (t+k ) be sequences with t±k ↗ ∞ and t−k < t+k <

t−k+1 < t+k+1 such that

{ t ≥ 0 | a(t) = 1} =
⋃
k∈N

(t+k , t
−
k+1],

{ t ≥ 0 | a(t) = 0} =
⋃
k∈N

(t−k , t
+
k ],

(5)

that is, on the interval (t+k , t
−
k+1] the signal is available, and

on the interval (t−k , t
+
k ] the signal is not available. Note,

that it is also possible that both sequences contain only
finitely many points, then either a(t) = 1 for t ≥ t+N or

a(t) = 0 for t ≥ t−N for some N ∈ N. Now, we assume the
following on the maximal duration of measurement losses
and the minimal time of measurement availability.

Assumption 1. Let p := ‖P‖, s := ‖S‖ and β := 1 +
spM
µ +

∑r
i=1 ‖Ri‖ be given by the system parameters,

M,µ from (3) and q, Ar be the constants introduced in
Section 1.3. The signal is lost for at most ∆ > 0, i.e., for
t±k as in (5) we have |t−k − t

+
k | ≤ ∆ for all k ∈ N, such that

for some κ ≥ 2 and θ > s we have that ∆ satisfies

spM∆2eβ∆ ≤ 1, (∆1)

pM2∆eβ∆ ≤ q

Ar
· µ(κ− 1)

2κθ
. (∆2)

Assumption 2. The signal is available for at least δ > 0,
i.e., for t±k as in (5) we have |t+k − t

−
k+1| ≥ δ for all k ∈ N,

such that for ∆, β, κ, θ from Assumption 1 and M,µ
from (3) we have that δ satisfies

eµδ ≥ 2κM
(
M + p∆eβ∆(1 + sM2∆)

)
, (δ1)

eµδ ≥ 2
κ

θ
(1 + sM2). (δ2)

Remark 3. For systems with trivial internal dynamics (the
second equation in (2) is not present) Assumptions 1 & 2
are much weaker. In this case we have p = 0, s = 0
and M = 0 with which the inequalities (∆1), (∆2)
and (δ1), (δ2) are always satisfied (for θ = 2κ). Hence,
arbitrary ∆ > 0 and δ > 0 are possible so that |t−k −
t+k | ≤ ∆ and |t+k − t

−
k+1| ≥ δ for all k ∈ N. So the only

(implicit) requirement is that the sequence (|t−k − t
+
k |) is

bounded.

1.3 Control objective, design parameters and feedback law

Control objective We aim to find a control scheme
which achieves tracking of a given reference trajectory
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with prescribed transient behavior of the error, where the
measurement output is subject to dropouts. To be more
precise, for a system (2) with (A,B,C) ∈ Σr,m and a given
reference signal yref ∈ Wr,∞(R≥0;Rm) the output y tracks
the reference in the sense that the error e(·) := y(·) −
yref(·), whenever the measurement of y is available to the
controller, evolves within a prescribed performance funnel

Fϕ := { (t, e) ∈ R≥0 × Rm |ϕ(t)‖e‖ < 1} ,

where ϕ belongs to the set Φ of monotonically increasing
functions introduced below.

Φ :=

φ ∈ C1(R≥0;R)

∣∣∣∣∣∣∣
∀ t2 ≥ t1 ≥ 0 :
0 < φ(t1) ≤ φ(t2),
∃ d > 0 ∀ t ≥ 0 :

|φ̇(t)| ≤ d(1 + φ(t))

 .

The performance funnel Fϕ joins the two objectives of
e(t) approaching zero with prescribed transient behavior
and asymptotic accuracy. Its boundary is given by the
reciprocal of ϕ. We stress that ϕ may be unbounded and
in this case (and if no measurement losses occur for t ≥ T
for some T > 0) asymptotic tracking may be achieved, i.e.,
limt→∞ e(t) = 0.

Design parameters In order to formulate the control
law, which achieves the control objective, we introduce the
following design parameters. Step 1. Choose q ∈ (0, 1) and
define the bijection α : [0, 1)→ [1,∞) via α(s) = 1/(1−s).
For k ≥ 0 define the function

Ak(s) =
k∑
j=0

sj ,

and set

Ar := Ar(α(q2)).

Step 2. For ∆, δ, p, s, β, κ, θ from Assumptions 1 & 2,

respectively, xref(·) := (yref(·), ẏref(·), . . . , y(r−1)
ref (·)), and

M,µ from (3) choose η∗ > 0 with

η∗ ≥ max


p

µ
‖yref‖∞eµδ, ‖xref‖∞eµδ,

‖xref‖∞(1 + eβ∆)eµδ−β∆

∆

 , (6)

and set

E := θ∆eβ∆η∗ > 0.

Step 3. Let ϕ0 ∈ Φ such that

ϕ0,min := 2κpM2

µ(κ−1)η∗ ≤ ϕ0(0) ≤ q
ArE

=: ϕ0,max, (φ1)

which is possible by (∆2).

Step 4. Now, we choose some additional constants which
are necessary to exploit (Berger et al., 2021c, Cor. 1.10).
Let α̂†(z) = z/(1+z), and define α̃(s) := 2sα′(s)+α(s) =
(1+s)/(1−s)2. Further, let µ0 := ess supt≥0(|ϕ̇0(t)|/ϕ0(t))

which by properties of Φ satisfies µ0 ≤ d(1+ϕ0(0))
ϕ0(0) for

some d > 0. Then, in virtue of (Berger et al., 2021c,
Eq. (12)), for k = 1, . . . , r − 1 we recursively define the
constants c0 = 0 and

e0
1 := ϕ0(0)e(0),

c1 := max{‖e0
1‖2, α̂†(1 + µ0), q2}1/2 < 1,

µk := 1 + µ0

(
1 + ck−1α(c2k−1)

)
+ α̃(c2k−1)

(
µk−1 + ck−1α(c2k−1)

)
,

e0
k := ϕ0(0)e(k−1)(0) + α(‖e0

k−1‖2)e0
k−1,

ck := max{‖e0
k‖2, α̂†(µk), q2}1/2 < 1,

where e(i)(0) = y0
i − y

(i)
ref(0) for i = 0, . . . , r − 1, and set

C :=
∑r−1
i=1 ci + ci−1α(c2i−1) + (1 + cr−1α(c2r−1)).

Step 5. We refine the function ϕ0 ∈ Φ satisfying (φ1) such
that for an intermediate ρ ∈ (0, δ)

ϕ0(ρ) ≥ max
{
Ceµδ

η∗ , C eµδ

∆η∗

}
. (φ2)

Remark 4. We note that the purpose of the constant q cho-
sen in Step 1 of the design procedure is to determine the
initial width of the performance funnel, described by the
upper bound for ϕ0(0) in (φ1). Then again, condition (φ2)
ensures that its width (and hence the tracking error) is
not too large before the signal possibly vanishes the next
time.

Feedback law The idea for the controller design is to
choose a funnel function ϕ0 ∈ Φ (as in the previous
subsection) which is reset whenever a(t) = 0. Then, as
soon as a(t∗) = 1 for some t∗ ≥ 0 and the measurement
is available again, the funnel controller from Berger et al.
(2021c) is restarted with ϕ(t) = ϕ0(t−t∗) so that ϕ(t∗) > 0
and the performance funnel is sufficiently large at t∗ to
ensure applicability of (Berger et al., 2021c, Thm. 1.9).
For feasibility we assume that the availability function
a(·) from (4) is left-continuous and has only finitely many
jumps in each compact interval. With this, and recalling
α(s) = 1/(1 − s), we introduce the following control law
for systems (2) under possible output measurement losses:

τ(t) =

{
t, a(t) = 0,

τ(t−), a(t) = 1,

ϕ(t) =

{
0, a(t) = 0,

ϕ0(t− τ(t)), a(t) = 1,

e1(t) = ϕ(t)e(t) = ϕ(t)
(
y(t)− yref(t)

)
,

ei+1(t) = ϕ(t)e(i)(t)+α(‖ei(t)‖2)ei(t), i = 1, . . . , r−1,

u(t) = −a(t)α(‖er(t)‖2)er(t).
(7)

Note that if Γ + Γ> < 0 the proposed control would read
u(t) = a(t)α(‖er(t)‖2)er(t).

If the output measurement is always available, i.e., a(t) =
1 for all t ≥ 0, then the controller (7) coincides with that
proposed in Berger et al. (2021c) and the existence of a
global solution of the closed-loop system follows from the
results presented there. Since it is not known a priori when
output measurement losses occur, the funnel function ϕ
cannot be globally defined in advance. Therefore, ϕ is
defined online as part of the control law (7); it is equal
to a shifted version of the reference funnel function ϕ0

whenever measurements are available, and zero otherwise.
Note that the loss of the system’s output signal possibly
introduces a discontinuity in the control signal.
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2. MAIN RESULT

We show that the application of the funnel controller (7)
to a system (2) under possible output measurement losses
leads to a closed-loop initial-value problem which has a
global solution. By a solution of (2), (7) on [0, ω) we mean
a function (y, η) ∈ Cr−1([0, ω),Rm) × C([0, ω),Rn−rm)
with ω ∈ (0,∞], which satisfies (y(0), . . . , y(r−1)(0)) =
(y0

0 , . . . , y
0
r−1), η(0) = η0 and (y(r−1), η)|[0,ω) is locally

absolutely continuous and satisfies (2) with u defined
by (7) for almost all t ∈ [0, ω); (y, η) is called maximal,
if it has no right extension that is also a solution.

Theorem 5. Consider a system (2) with (A,B,C) ∈ Σr,m
and initial values (y0

0 , . . . , y
0
r−1) ∈ Rrm and η0 ∈ Rn−rm.

Let yref ∈ Wr,∞(R≥0;Rm), a(·) be as in (4) and choose
design parameters η∗ as in (6), and ϕ0 ∈ Φ satisfy-
ing (φ1),(φ2). If the initial conditions

∀ i = 1, . . . , r : ‖ei(0)‖ < 1, ‖η0‖ ≤ η∗

are satisfied, then the control scheme (7) applied to sys-
tem (2) yields an initial value problem which has a solu-
tion, every solution can be extended to a maximal solution
and every maximal solution (y, η) : [0, ω)→ Rm × Rn−rm
has the following properties:

(i) the solution is global, i.e., ω =∞,
(ii) the tracking error e(t) = y(t)−yref(t) evolves within

the funnel boundaries, i.e., for all t ≥ 0 we have
ϕ(t)‖e(t)‖ < 1,

(iii) the input control signal is globally bounded, i.e.,
u ∈ L∞(R≥0;Rm), and y ∈ Wr,∞(R≥0;Rm).
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Abstract: The model reduction problem by least squares moment matching is studied. A recent
time-domain characterization of least squares moment matching for linear systems is used to
define a notion of least squares moment matching for nonlinear systems. Models achieving least
squares moment matching are shown to minimize an a priori error bound on the worst case r.m.s.
gain of an error system with respect to a given family of signals, thus providing new insights on
the linear theory.

Keywords: Model reduction, nonlinear systems, least squares, moment matching.

1. INTRODUCTION

Model reduction is art of approximating of a system
while retaining its most essential properties (Antoulas,
2005). A classical solution to this problem relies on the
notion of moment matching (Antoulas, 2005). For linear
systems, the main idea is to use rational interpolation
theory to ensure that the coefficients of the Laurent series
expansion of the transfer functions of the original system
and of its approximant coincide at given points of the
complex plane up to a given order. Following the seminal
contributions (Grimme, 1997; Gallivan et al., 2004, 2006),
moment matching extended to nonlinear systems using
invariance equations and steady-state responses (Astolfi,
2010). This, in turn, has led to the development of new
model reduction methods for several classes of systems,
including time-delay systems (Scarciotti and Astolfi, 2016)
and systems with singularities (Padoan and Astolfi, 2019).

A significant limitation of methods based on moment
matching is that the interpolation conditions are required to
hold exactly, which, for some purposes, is an unnecessarily
stringent assumption. Furthermore, methods based on
moment matching do not provide a priori guarantees on
the quality of approximation in general. Least squares
moment matching provides a particularly interesting so-
lution to both issues (Aguirre, 1992; Smith and Lucas,
1995; Gugercin and Antoulas, 2006), requiring that the
interpolation conditions imposed by moment matching are
satisfied only in a least squares sense. Least squares moment
matching thus overcomes the issues mentioned above by
minimizing an optimization criterion, which directly yields
a priori error bounds and, under certain assumptions,
guaranteed stability properties (Gugercin and Antoulas,
2006). For linear systems, there is a vast literature on least
squares moment matching (Aguirre, 1992; Smith and Lucas,
1995; Gugercin and Antoulas, 2006; Mayo and Antoulas,
2007; Nakatsukasa et al., 2018), with deep connections to
Padé approximation (Aguirre, 1992) and Prony’s method
for filter design (Gugercin and Antoulas, 2006). Yet, the
notion of least squares moment matching does not have a
nonlinear counterpart to date.

Goal of this work is to present a unifying notion of
least squares moment matching for linear and nonlinear
systems. The main ingredient of our approach is the
formalism introduced in (Astolfi, 2010), where moments
of nonlinear systems have been defined and characterized
using tools from output regulation theory (Isidori, 1995).
The starting point of our discussion is a new time-domain
characterization of least squares moment matching for
linear systems first presented in (Padoan, 2021), which
relies on the solution of a constrained optimization problem
involving a Sylvester equation. In close analogy with the
results obtained in (Padoan, 2021) for linear systems,
models achieving least squares moment matching are
defined in terms of a constrained optimization problem
involving an invariance equation and shown to minimize
an a priori error bound on the worst case r.m.s. gain of an
error system with respect to a given family of signals.

The remainder of this work is organized as follows. Section 2
is dedicated to the model reduction problem by least
squares moment matching for linear systems. Section 3
provides a unifying notion of least squares moment match-
ing and a direct nonlinear counterpart of the linear theory.
Section 4 concludes this work with a summary and an
outlook to future research directions.

Notation: Z+, R and C denote the set of non-negative
integers, of real numbers, and of complex numbers, re-
spectively. C− denotes the set of complex numbers with
negative real part. ek denotes the vector with the k-th
entry equal to one and all other entries equal to zero.
I denotes the identity matrix. J0 denotes the matrix
with ones on the superdiagonal and zeros elsewhere. Js?
denotes the Jordan block associated with the eigenvalue
s? ∈ C, i.e. Js? = s?I + J0. σ(A) denotes the spectrum of
the matrix A ∈ Rn×n. MT denotes the transpose of the
matrix M ∈ Rp×m. ‖ · ‖2 and ‖ · ‖2∗ denote the Euclidean
2-norm on Rn and the corresponding dual norm (Boyd and
Vandenberghe, 2004, p.637), respectively. Finally, f (k)(·)
denotes the derivative of order k ∈ Z+ of the function f(·),
provided it exists, with f (0)(·) = f(·) by convention.
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2. LINEAR SYSTEMS

Consider a system described by the equations

ẋ = Ax+Bu, y = Cx, (1)

in which x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R and A ∈ Rn×n,
B ∈ Rn×1 and C ∈ R1×n are constant matrices, with
transfer function defined as

W (s) = C(sI −A)−1B.

The system (1) is assumed to be minimal, i.e. controllable
and observable.

Definition 1. (Antoulas, 2005, p.345) The moment of order
k ∈ Z+ of system (1) at s? ∈ C, with s? 6∈ σ(A), is defined
as the complex number

ηk(s?) =
(−1)k

k!
W (k)(s?).

Given distinct interpolation points {si}Ni=1, with si ∈ C
and si 6∈ σ(A), and the corresponding orders of interpola-
tion {ki}Ni=1, with ki ∈ Z+, model reduction by moment
matching consists in finding a system

ξ̇ = Fξ +Gv, ψ = Hξ, (2)

where ξ(t) ∈ Rr, v(t) ∈ R, ψ(t) ∈ R and F ∈ Rr×r,G ∈ Rr×1

and H ∈ R1×r are constant matrices, the transfer function
of which

Ŵ (s) = H(sI − F )−1G

satisfies the interpolation conditions

ηj(si) = η̂j(si), j ∈ {0, . . . , ki}, i ∈ {1, . . . , N}, (3)

where ηj(si) and η̂j(si) denote the moments of order
j of the systems (1) and (2) at si, respectively. The
system (2) is referred to as a model (of system (1)) and
is said to achieve moment matching (at {si}Ni=1) if the
interpolation conditions (3) hold (Antoulas, 2005, Chapter
11). Furthermore, if r < n, then (2) is said to be a reduced
order model (of system (1)).

We are interested in the following problem. Suppose that
the number of interpolation conditions

ν =
N∑
i=1

(ki + 1)

is larger than the number of moments that can be matched,
i.e. ν > 2r (Antoulas, 2005, Chapter 11). In this case, the
interpolation conditions (3) give rise to an overdetermined
system of equations which can be solved in a least squares
sense, leading directly to the model reduction problem by
least squares moment matching.

Problem 1. Consider system (1). Let {si}Ni=1 be a set of
distinct interpolation points, with si ∈ C and si 6∈ σ(A),
and let {ki}Ni=1 be the corresponding orders of interpolation,

with ki ∈ Z+. Let ν =
∑N
i=1(ki + 1) and r ∈ Z+, with

2r < ν. Find, if possible, a model (2) of order r which
minimizes the index

J =
N∑
i=1

ki∑
j=0

|ηj(si)− η̂j(si)|2 . (4)

The model (2) is said to achieve least squares moment
matching (at {si}Ni=1) if it minimizes the index (4).

2.1 Least squares moment matching for linear systems

Following (Padoan, 2021), we begin our analysis with a
characterization of least squares moment matching in terms
of the solutions of the optimization problem

minimize ‖(CΠ−HP )T‖22∗
subject to AΠ +BL = ΠS,

FP +GL = PS,
σ(F ) ∩ σ(S) = ∅,

(5)

for a given non-singular matrix T ∈ Rν×ν , where F ∈ Rr×r,
G ∈ Rr×1, H ∈ R1×r and P ∈ Rr×ν are the optimization
variables, and A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n, S ∈ Rν×ν
and L ∈ R1×ν are problem data. To this end, we first
introduce some basic assumptions.

(A1) The matrix S ∈ Rν×ν is non-derogatory 1 and has
characteristic polynomial

χS(s) =
N∏
i=1

(s− si)ki+1. (6)

(A2) The matrix L ∈ R1×ν is such that the pair (S,L) is
observable.

(A3) The matrix T ∈ Rν×ν is non-singular and such that

ST = TJ, LT = Λ, (7)

with J = diag(Js1 , . . . , JsN ) and Λ = [ eT1 · · · eT1 ].

Theorem 2. Consider system (1) and the model (2). Sup-
pose Assumptions (A1)-(A3) hold. Assume σ(A) ∩ σ(S) = ∅.
Then the model (2) achieves least squares moment matching
at σ(S) if and only if there exists a matrix P ∈ Rr×ν
such that (F,G,H, P ) is a solution of the optimization
problem (5).

Least squares moment matching admits a nice interpre-
tation in terms of the steady-state behavior of the error
system

ẋ = Ax+Bu, ξ̇ = Fξ +Gu, e = Cx−Hξ, (8)

in which x(t) ∈ Rn, ξ(t) ∈ Rr, u(t) ∈ R, and e(t) ∈ R.
Specifically, suppose that both the system (1) and the
model (2) are driven by a signal generator described by
the equations

ω̇ = Sω, θ = Lω, (9)

with ω(t) ∈ Rν and θ(t) ∈ R. Furthermore, suppose that all
solutions of the signal generator (9) are periodic and that
the steady-state output response 2 ess of the interconnected
system (9)-(8), with u = θ, is well-defined. Then achieving
least squares moment matching corresponds to minimizing
an upper bound of the worst case r.m.s. gain of the error
system (8) with respect to the family of signals produced
by the signal generator (9), defined as (Boyd and Barratt,
1991, p.98)

γrms = sup
ω(·)∈W

‖ess‖rms
‖ω‖rms

(10)

where ‖ω‖rms is the r.m.s. value of the signal ω(t) ∈ Rν ,
defined as (Boyd and Barratt, 1991, p.86)

‖ω‖rms =

(
lim
τ→∞

1

τ

∫ τ

0

‖ω(t)‖22 dt
)1/2

, (11)

1 A matrix is non-derogatory if its characteristic polynomials and its
minimal polynomial coincide (Horn and Johnson, 1994, p.178).
2 See (Isidori, 1995, Chapter 8).
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provided the limit exists, while W is the family of signals
produced by (9) with non-zero r.m.s. value.

Theorem 3. Consider system (1), the model (2) and the
signal generator (9). Suppose Assumptions (A1)-(A3) hold.
Assume that σ(A) ∪ σ(F ) ⊂ C−, S + ST = 0 and (S, ω(0))
is controllable. Then the following statements hold.

(i) The steady-state output response of the intercon-
nected system (9)-(8), with u = θ, is well-defined and
uniquely determined by the moments of the error
system (8) at σ(S).

(ii) The worst case r.m.s. gain of the error system (8)
with respect to the family of signals produced by the
signal generator (9) is well-defined and such that

γrms ≤ ‖CΠ−HP‖2∗ , (12)

with Π ∈ Rn×ν and P ∈ Rr×ν the (unique) solutions
of the Sylvester equations

AΠ +BL = ΠS. (13)

and
FP +GL = PS, (14)

respectively.
(iii) The error bound (12) is minimized if the model (2)

achieves least squares moment matching at σ(S) and
if the matrix T ∈ Rν×ν is orthogonal 3 .

3. NONLINEAR SYSTEMS

Consider a system described by the equations 4

ẋ = f(x, u), y = h(x), (15)

with x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R, and f : Rn × R→ Rn,
g : Rn → Rn and h : Rn → R such that f(0, 0) = 0 and
h(0) = 0, and a signal generator described by the equations

ω̇ = s(ω), θ = l(ω), (16)

in which ω(t) ∈ Ω and θ(t) ∈ R, with Ω ⊂ Rν a sufficiently
small 5 open, connected, invariant set containing the origin,
while the mappings s : Ω→ Ω and h : Ω→ R are such
that s(0) = 0 and l(0) = 0, respectively. The system (15)
is assumed to be minimal, i.e. (locally) accessible and
observable 6 at the origin.

We begin by recalling the definition of moment of a
nonlinear system from (Astolfi, 2010). To this end, we
first introduce some basic assumptions.

(A1)∗ The matrix S = ∂s
∂ω (0) is non-derogatory.

(A2)∗ The system (16) is (locally) observable at the origin.
(A3)∗ The partial differential equation

f(π(ω), l(ω)) =
∂π

∂ω
(ω)s(ω), (17)

admits a unique solution π(·), locally defined in the
neighbourhood Ω of the origin, such that π(0) = 0.

Definition 4. (Astolfi, 2010) Consider system (15) and the
signal generator (16). Suppose Assumptions (A1)∗-(A3)∗

hold. The moment of system (15) at (s, l) is defined as the
mapping µ(·) = h(π(·)), where π(·) is the unique solution
of the partial differential equation (17).
3 A matrix T ∈ Rn×n is orthogonal if TTT = I (Horn and Johnson,
1994, p.84).
4 All mappings are assumed to be smooth, i.e. infinitely many times
differentiable, if not otherwise stated.
5 All statements are local, although global versions can be given.
6 See (Nijmeijer and Van der Schaft, 1990) for the notion of local
accessibility and observability.

Remark 5. Assumptions (A1)∗-(A3)∗ ensure that the mo-
ment of system (15) at (s, l) is (locally) well-defined. Note
that the partial differential equation (17) admits a unique
formal (power series) solution if and only if the following
non-resonance condition holds (Huang, 2004, Lemma 4.13)

σ(A) ∩ σk(S) = ∅, k = 1, 2, . . . , (18)

in which A = ∂f
∂x (0, 0) and S = ∂s

∂ω (0), and

σk(S) =

{
λ ∈ C : λ =

ν∑
i=1

λiki, k =
ν∑
i=1

ki

}
, (19)

where λi ∈ σ(S) and ki ∈ {0, 1, . . . , k}. In particular, As-
sumption (A3)∗ holds if the equilibrium x = 0 of the system
ẋ = f(x, 0) is (locally) exponentially stable and if the signal
generator (16) is periodic.

Definition 6. (Astolfi, 2010) The system

ξ̇ = φ(ξ, v), ψ = κ(ξ), (20)

with ξ(t) ∈ Rr, v(t) ∈ R, ψ(t) ∈ R, and φ : Rr × R→ Rn,
κ : Rr → R such that φ(0, 0) = 0 and κ(0) = 0, is a model
of system (15) at (s, l) if its moment at (s, l) is (locally)
well-defined and coincides with that of system (15), i.e. if
the partial differential equation

φ(p(ω), l(ω)) =
∂p

∂ω
(ω)s(ω) (21)

possesses a unique solution p(·), locally defined in the
neighbourhood Ω of the origin, such that p(0) = 0 and

h(π(ω)) = κ(p(ω)), (22)

where π(·) is the (unique) solution of the partial differential
equation (17). In this case, system (20) is said to match the
moment of system (15) (or to achieve moment matching)
at (s, l). Furthermore, system (20) is a reduced order model
(of system (15)) at (s, l) if r < n.

3.1 Least squares moment matching for nonlinear systems

We are now in a position to introduce a nonlinear enhance-
ment of the notion of least squares moment matching.

Definition 7. Consider system (15) and the signal genera-
tor (16). Let τ : Ω→ Ω be a diffeomorphism such that
τ(0) = 0. Suppose Assumptions (A1)∗-(A3)∗ hold. The
model (20) achieves least squares moment matching at
(s, l) if the triple (φ, κ, p) is a formal (power series) solution
of the constrained the optimization problem

minimize sup
ω∈Ω

∥∥∥∥(∂µ∂ω (τ(ω))− ∂µ̂

∂ω
(τ(ω))

)
∂τ

∂ω
(ω)

∥∥∥∥
2∗

subject to φ(p(ω), l(ω)) =
∂p

∂ω
(ω)s(ω), ω ∈ Ω,

σ(F ) ∩ σk(S) = ∅, k = 1, 2, . . . ,
(23)

in which µ(·) = h(π(·)), µ̂(·) = κ(p(·)), F = ∂φ
∂ξ (0,0) and

S = ∂s
∂ω (0), where φ(·, ·), κ(·) and p(·) are the optimization

variables, while system (15) and the signal generator (16)
(and, thus, the solution π(·) of the partial differential
equation (17)) are problem data.

The model reduction problem by least squares moment
matching for nonlinear systems can be thus posed as follows.

Problem 2. Consider system (15) and the signal genera-
tor (16). Let τ : Ω→ Ω be a diffeomorphism such that
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τ(0) = 0. Suppose Assumptions (A1)∗-(A3)∗ hold. Let
r ∈ Z+, with 2r < ν. Find, if possible, a model (20) of
order r achieves least squares moment matching at (s, l).

We now characterize least squares moment matching in
terms of the steady-state behavior of the error system

ẋ = f(x, u), ξ̇ = φ(ξ, u), e = h(x)− κ(ξ), (24)

in which x(t) ∈ Rn, ξ(t) ∈ Rr, u(t) ∈ R, and e(t) ∈ R.
Generalizing Theorem 3, one may show that if the steady-
state output response ess of the interconnected system (16)-
(24), with u = θ, is (locally) well-defined and if all solutions
of the signal generator (9) are periodic, then achieving least
squares moment matching corresponds to minimizing an
upper bound of the worst case r.m.s. gain of the error
system (24) with respect to the family of signals produced
by the signal generator (9), defined as 7

γrms = sup
ω(·)∈W

‖ess‖rms
‖ω‖rms

, (25)

where W is the family of signals produced by (16) with
non-zero r.m.s. value.

Theorem 8. Consider system (15), the signal generator (16)
and the model (20). Let τ : Ω→ Ω be a diffeomorphism
such that τ(0) = 0. Suppose Assumptions (A1)∗-(A3)∗

hold. Assume that the zero equilibrium of the system
ẋ = f(x, 0), ξ̇ = φ(ξ, 0) is locally exponentially stable, that
all solutions of system (16) are periodic, and that the pair
(s, ω(0)) is exciting 8 . Then the following statements hold.

(i) The steady-state output response of the intercon-
nected system (16)-(24), with u = θ, is (locally) well-
defined and uniquely determined by the moment of
the error system (24) at (s, l).

(ii) The worst case r.m.s. gain of the error system (24)
with respect to the family of signals produced by the
signal generator (9) is well-defined and such that

γrms ≤ sup
ω∈Ω

∥∥∥∥∂µ∂ω (ω)− ∂µ̂

∂ω
(ω)

∥∥∥∥
2∗
, (26)

where µ(·) and µ̂(·) are the moments of systems (15)
and (20) at (s, l), respectively.

(iii) The error bound (26) is minimized if the model (20)
achieves least squares moment matching at (s, l) and
if the mapping τ(·) is an isometry 9 (on Ω).

4. CONCLUSION

The model reduction problem by least squares moment
matching has been studied. A recent time-domain charac-
terization of least squares moment matching has been used
to define a notion of least squares moment matching for
nonlinear systems. The results presented in this work can
be used to obtain new families of models achieving least
squares moment matching both for linear and nonlinear
systems. The natural geometric and system-theoretic inter-
pretations of such families will be discussed in detail in a
future publication.

7 See (Isidori and Astolfi, 1992) for closely the related notion of H∞
gain of a nonlinear system.
8 See (Padoan et al., 2017) for the definition.
9 See (Lee, 2013, p.332) for the definition.
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Abstract: In this extended abstract, we present a time-domain data-driven technique for model reduction
by moment matching of linear systems. We propose an algorithm, based on the so-called swapped
interconnection, that (asymptotically) approximates an arbitrary number of moments of the system from
a single time-domain sample. A family of reduced-order models that match the estimated moments is
derived. Finally, the use of the proposed algorithm is demonstrated on the problem of model reduction of
an atmospheric storm track model.
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1. INTRODUCTION

In a wide range of modern engineering problems, where large-
scale systems are under consideration, high-order mathematical
models are commonly constructed to describe the dynamics
of those systems for the model-based analysis, control and
prediction. However, in practice, the high dimensionality of
these models poses a considerable challenge to nowadays
computational power, in spite of its rapid advancement. To ease
this computational burden, the problem of model reduction aims
at reducing the complexity (e.g. dimensionality) of dynamical
models. Informally, model reduction can be considered as the
problem of approximating the important behaviours (i.e. input-
output mapping) of a certain model by a simplified description,
e.g., a lower-order model. For linear systems, model reduction
techniques have been extensively studied for decades, see, e.g.,
Adamjan et al. (1971); Moore (1981); Meyer (1990). A popular
family of methods is based on the interpolation framework and
Krylov projection theory, see, e.g., Kimura (1986); Georgiou
(1999); Byrnes et al. (2001). This class is also commonly
referred to as moment matching methods since the resulting
reduced-order models match exactly the “moments” of the
original system at specific frequencies.

Recently, to largely obviate the conventional need of a
state-space model of the system to be reduced, some data-
driven model reduction methods have been proposed in the
interpolation-based moment matching framework. Among these
works, we mention the seminal work of Mayo and Antoulas
(2007) which introduced the so-called Loewner framework,
which leverages frequency-domain samples for model reduction
by moment matching. This extended abstract is based on a
different framework introduced by (e.g. Scarciotti and Astolfi
(2017)) which focuses on time-domain measurements to con-
struct families of reduced-order models which asymptotically
match the moments over time, for both linear and nonlinear
systems. The experimental formulation of that approach is based
on output measurements of an interconnection where the signal

generator drives the system to be reduced, which we refer to as
the “direct” interconnection in the rest of this paper.

In this work, we study a direct counterpart of Scarciotti and
Astolfi (2017) based on a “swapped” interconnection – the
system output drives a (generalized) signal generator. We show
that the method proposed in this paper has some surprising
advantages over Scarciotti and Astolfi (2017) in terms of sample
efficiency. Also, we note that the results of this paper provide a
necessary preliminary step for the development of data-driven
model reduction techniques for nonlinear systems.

The remainder of this paper is organized as follows. In Section
2.1 we recall the theory of moment matching. Section 2.2
presents a data-driven approach that estimates the moments
asymptotically, together with the associated reduced-order mod-
els. Finally, in Section 2.3, the proposed approach is demon-
strated by a storm track model.

Notation R and C denote the sets of real numbers and complex
numbers respectively. R≥0 (R>0) denotes the set of non-negative
(positive) real numbers. C0 (C<0) denotes the set of complex
numbers with zero (negative) real part. The set of non-negative
integers is denoted by Z≥0. The identity matrix is denoted by the
symbol I , and σ(A) denotes the spectrum of a square matrix A.
The symbol ⊗ represents the Kronecker product. The operator
vec(A) indicates the vectorization of a matrix A ∈ Rn×m. A⊤

denotes the transpose of any matrix A. ι denotes the imaginary
unit.

2. DATA-DRIVEN MOMENT MATCHING BY SWAPPED
INTERCONNECTION

2.1 Moment Matching via System Interconnections – Recalled

In this section we recall the notion of moment for linear systems
and its relation to the steady-state of certain interconnections.
First consider a linear, single-input, single-output (SISO) 1 ,
1 The results can be easily extended to systems with multiple inputs and multiple
outputs.
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Fig. 1. Diagrammatic illustrations of the direct interconnection
(a) and the swapped interconnection (b).

continuous-time system, described by equations of the form
ẋ = Ax+Bu, y = Cx, (1)

with state x(t) ∈ Rn, input u(t) ∈ R, output y(t) ∈ R,
A ∈ Rn×n, B ∈ Rn×1 and C ∈ R1×n. The associated transfer
function is W (s) = C(sI − A)−1B. Assume system (1) is
minimal, i.e., both controllable and observable. In the following
we define the moments of system (1).
Definition 1. The 0-moment of system (1) at si ∈ C\σ(A) is the
complex number η0(si) =W (si). The k-moment of system (1)

at si is the complex number ηk(si) = (−1)k

k!

[
dk

dsk
W (s)

]
s=si

,

where k ≥ 1 is an integer.

Definition 1 is a direct characterization of moments based on
the transfer function and consequently it can only be used for
linear, time-invariant systems. To obviate this restriction, Astolfi
(2010a) noted that the moments are in a one-to-one relation with
the (well-defined) steady-state responses of interconnections
between the system and some “signal generators”. Consider the
signal generator

ω̇ = Sω, θ = Lω, (2)
with ω(t) ∈ Rν , u(t) ∈ R, S ∈ Rν×ν and L ∈ R1×ν , and the
interconnection between this generator and system (1), namely

ω̇ = Sω, ẋ = Ax+BLω, y = Cx. (3)
This interconnection is schematically represented in Fig. 1(a)
and is called direct interconnection. Likewise, consider the
signal generator

ϖ̇ = Qϖ +Rκ, d = ϖ +Υx, (4)
with ϖ(t) ∈ Rν , κ(t) ∈ R, d(t) ∈ Rν , Q ∈ Rν×ν , R ∈ Rν×1

and Υ ∈ Rν×ν , and the interconnection between this generator
and system (1), namely
ẋ = Ax+Bu, ϖ̇ = Qϖ+RCx, d = ϖ+Υx. (5)

This interconnection is schematically represented in Fig. 1(b)
with u = δ0, where δ0 indicates the Dirac-delta, and is called
swapped interconnection.

To streamline the presentation, we now introduce a series of
assumptions.
Assumption 1. For the signal generator (2), the pair (S,L)
is observable. For the signal generator (4), the pair (Q,R) is
controllable.
Assumption 2. System (1) is asymptotically stable, i.e., σ(A) ⊂
C<0. The matrix S has simple eigenvalues with σ(S) ⊂ C0. The
pair (S, ω0) is excitable (see Padoan et al. (2016)).
Assumption 3. System (1) is asymptotically stable. The matrix
Q has simple eigenvalues with σ(Q) ⊂ C0. The initial condition
x(0) is 0.

Note that under the asymptotic stability of system (1), the
assumption that the initial condition of the system is zero is
without loss of generality.

We now recall a result that connects moments with the steady
states of interconnections (3) and (5).
Theorem 1 (see Astolfi (2010b)). Let si ∈ C \ σ(A), for
i = 1, . . . , ρ. Consider system (1) and assume that for the
signal generators (2) and (4), the matrices S and Q are non-
derogatory 2 with characteristic polynomial p(s) =

∏ρ
i=1(s−

si)
ki , and ν =

∑ρ
i=1 ki. Then, the moments of system (1),

namely η0(s1), . . . , ηk1−1(s1), . . . , η0(sρ), . . . , ηkρ−1(sρ), are
in a one-to-one relation to

• the matrix CΠ, in which Π ∈ Rn×ν is the unique solution
of the Sylvester equation

ΠS = AΠ+BL, (6)
provided Assumption 1 holds.

• the steady state of the output y(t) of the interconnection (3),
provided that Assumptions 1 and 2 hold.

• the matrix ΥB, in which Υ ∈ Rν×n is the unique solution
of the Sylvester equation

QΥ = ΥA+RC, (7)
provided Assumption 1 holds.

• the steady state of the output d(t) of the interconnection (5),
provided that u = δ0 and Assumptions 1 and 3 hold.

Given a set of moments, Theorem 1 provides four alternative
characterizations of those moments. In particular, the fact that
moments are in one-to-one relation with certain steady states
opens the possibility of computing them from time-domain
measurements of these signals.

Throughout this paper, we focus on the swapped interconnection.
We conclude this section, by recalling a family of reduced-
order models that achieve moment matching at (Q,R), i.e., the
reduced-order models have the same moments at the frequencies
si ∈ σ(Q). This family is described by the equations

ξ̇ = (Q−RH)ξ +ΥBu, ψ = Hξ, (8)
for any H ∈ R1×ν such that σ(Q − RH) ∩ σ(Q) = ∅. This
family contains all the ν-order models which achieve moment
matching at σ(Q). In this paper we do not need the family of
reduced-order models associated to (S,L), hence, it is omitted.

2.2 On-Line Moment Matching from Experimental Data

In this section we develop a data-driven approach for (asymp-
totically) estimating the moments (more precisely ΥB) of the
system, purely based on the measurements of the state ϖ(t) of
the user-defined signal generator. We first state an instrumental
observation about the signal d(t).
Remark 1. Let Υ be the unique solution of equation (7). Note
that the signal d(t) can be expressed as the output of the system
described by

ḋ = Qd+ΥBu, χ = d. (9)
This follows from interconnection (5) and equation (7), namely

ḋ = ϖ̇ +Υẋ = Qϖ +Ry +Υ(Ax+Bu)

= Qϖ + (RC +ΥA)︸ ︷︷ ︸
QΥ

x+ΥBu = Q(ϖ +Υx) + ΥBu

= Qd+ΥBu.

We are now ready to explicitly describe the dynamics of the
signal d(t) for the interconnection (5).
2 A matrix is non-derogatory if its characteristic and minimal polynomial
coincide.
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Proposition 1. Consider the interconnection (5) with ϖ(0) = 0
and u = δ0. Suppose Assumption 3 holds. Then, for all t ∈ R≥0,
the response of system (9) is

d(t) = eQtΥB. (10)

Proof. Under the assumption that x(0) = 0 and ϖ(0) = 0, we
have that d(0) = 0. The result follows trivally by computing the
impulse response of the system (9).

Exploiting Proposition 1, we can characterize the relation
between the state of system (1) and the state of the signal
generator (4), through the matrix Υ, namely

ϖ(t) + Υx(t) = d(t) = eQtΥB, (11)
which underpins the following theorem.
Theorem 2. Consider the interconnection (5) with ϖ(0) = 0
and u = δ0. Suppose Assumptions 1 and 3 hold. Then, ΥB
characterizes the steady state ϖss(t) of ϖ(t)

ϖss(t) = eQtΥB. (12)

Proof. As system (1) is asymptotically stable (by Assumption
3), the impulse response of x(t) will exponentially decay to
zero as the time goes to infinity, i.e., limt→+∞ x(t) = 0. By
Assumption 3, Q has simple eigenvalues with σ(Q) ∈ C0.
Consequently, ϖss(t) is well defined for all times and eQt is a
signal that is persistent in time. Thus, equation (11) at steady
state reduces to (12).

We are ready to present the estimation in the following theorem.
Theorem 3. Consider the interconnection (5) with ϖ(0) = 0
and u = δ0. Suppose Assumptions 1 and 3 hold. Then,

Υ̃Bk := e−Qtkϖ(tk) (13)
is an online estimate of ΥB with the following asymptotic
property: there exist a sequence {tk} such that

lim
k→+∞

Υ̃Bk = ΥB. (14)

Proof. Multiplying e−Qt to both sides of equation (11), eval-
uated at tk, yields Υ̃Bk + ϵ(tk) = ΥB, in which ϵ(tk) =
e−QtkΥx(tk) = e−QtkΥeAtkB is an exponentially decaying
error signal. It follows by Theorem 2 that

lim
k→+∞

(
Υ̃Bk −ΥB

)
= lim

tk→+∞
ϵ(tk) = 0, (15)

as long as the time sequence {tk} indexed by k grows un-
bounded to +∞.

We summarize the above results in Algorithm 1.
Remark 2. In the original model-based method proposed
in Astolfi (2010b), the computation of the matrix Υ involves
solving the Sylvester equation (7), which has a computational
complexity 3 of order O(n3). In comparison, Algorithm 1 only
involves a matrix exponential and a matrix multiplication of
order ν, hence both have a computational complexity of roughly
O(ν3) (Al-Mohy and Higham (2010)). Thus, the proposed

3 This is the computational cost for general dense A and B, e.g., using the
classic Bartels–Stewart algorithm. If A and B are very sparse, the computational
cost can be further reduced to O(n2r) or O(nr2) by ADI method (Benner et al.
(2009)), where r is the dimension of the low-rank factor.

Algorithm 1 On-Line Approximation of ΥB.
1: Input: a sufficiently small tolerance ηΥB > 0, k = 0
2: while 1 do
3: Obtain data ϖ(tk) and record time instant tk
4: Compute Υ̃Bk

Υ̃Bk = e−Qtkϖ(tk)

5: if
∥∥∥Υ̃Bk − Υ̃Bk−1

∥∥∥ ≤ ηΥB

tk−tk−1
then

6: Break
7: end if
8: k = k + 1
9: end while

10: Return: Υ̃Bk

method is computationally efficient than the original method
as ν ≪ n.
Remark 3. A surprising advantage of the proposed approach
based on the swapped interconnection is the sample efficiency,
i.e., the number of samples required to properly estimate the
moments. In Scarciotti and Astolfi (2017), the method, which
is based on a direct interconnection, requires data from at
least ν time instants to estimate ν moments. In contrast, within
Algorithm 1, data from only one time instant suffices to fully
estimate an arbitrarily large number of moments.

More importantly, the data-driven approach under the swapped
interconnection plays a core role in paving the path for develop-
ing a data-driven framework for the two-sided moment matching
(Ionescu (2015)).

With the estimation of moments from Algorithm 1, we are able
to construct the associated reduced-order models by replacing
the moments ΥB with its online estimate Υ̃Bk. For all tk > 0,
the family of reduced-order models for system (1) at the pair
(σ(Q), tk) is defined as

ξ̇ = (Q−RHk)ξ + Υ̃Bku, ψ = Hkξ, (16)
where Hk ∈ R1×ν is a free parametrization as long as σ(Q −
RHk)∩ σ(Q) = ∅. Furthermore, Astolfi (2010a) shows that the
free matrix Hk can be chosen to enforce additional properties
of the reduced-order models, e.g., stability, passivity, prescribed
relative degree, spectrum and zeros.

2.3 Numerical Example

In this section we illustrate the use of Algorithm 1 with
the Eady Example 4 , i.e., an atmospheric storm track model
which is a widely-used benchmark (Antoulas et al. (2000))
for a variety of model reduction techniques, see e.g., An-
toulas (2005). In this work, we use the interpolation points
±0.1ι,±0.58ι,±0.8ι,±0.9ι,±1.08ι, ±1.26ι,±2.5ι,±7.0ι,
which are mostly the major peaks of the bode plot of the storm
track system. This selection results in a reduced order of 16.
The determination of the free parametrization Hk is based on
assigning the eigenvalues of Fk (see Astolfi (2010a)).

Fig. 2 shows the bode plots of the full order system (solid/blue
line) and the reduced-order model (dashed/red line) constructed
using the estimated moments Υ̃Bk obtained at the end of an
online experiment of 18 seconds. It shows that the moments
between the two systems are matched at those interpolated
frequencies (green circles). In addition, the time history of
4 The data can be downloaded at http://slicot.org/20-site/
126-benchmark-examples-for-model-reduction.
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Fig. 2. Bode plots of the storm track model (solid/blue line) and
of the data-driven reduced-order model (dashed/red line)
constructed with the approximation Υ̃Bk for tk = 18 s.
The circles represent the set of interpolation points.

Fig. 3. The surface represents the magnitude (a) and phase (b)
of the transfer function of the reduced-order model as a
function of tk, with 2.44 ≤ tk ≤ 18 s. The solid/black line
indicates the transfer function of the reduced-order model
constructed using the exact moments ΥB.

the bode plot of the reduced-order models obtained within an
experimental time interval T = {tk ∈ R : 2.44 ≤ tk ≤ 18} (of
unit second) is shown in Fig. 3. The solid/black line represents
the model obtained with the exact ΥB. The plots illustrate the
evolution of the data-driven reduced-order model over time,
demonstrating that it converges to the exact moment-matching
reduced-order model as the time goes to infinity.

3. CONCLUSIONS

We have presented a theoretical framework and a time-domain
data-driven method to solve the model reduction problem by
moment matching, without knowing the state-space model of
the linear system to be reduced. Firstly, an algorithm under the
swapped interconnection has been proposed to asymptotically

approximate the moments of an unknown system. Then, by ex-
ploiting the obtained approximations, a family of (parametrized)
reduced-order models has been given. Finally, we have illus-
trated the performances of the proposed algorithm by means of
a widely-used benchmark.
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Abstract: Recent work has demonstrated the potential of applying supervised learning to train
neural networks which approximate optimal feedback laws. In this talk, we show that some neural
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challenge, we propose some novel neural network architectures which guarantee local asymptotic
stability while still closely approximating optimal feedback laws on large domains.
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1. INTRODUCTION

Designing optimal feedback controllers for high-dimensional
nonlinear systems remains an outstanding challenge. Even
when the system dynamics are known, one needs to solve a
Hamilton-Jacobi-Bellman (HJB) partial differential equa-
tion (PDE) in as many variables as there are states, leading
to the well-known curse of dimensionality.
Recent work has demonstrated the promise of supervised
learning with neural networks (NNs) as one potential
approach for handling challenging, high-dimensional prob-
lems. The main idea is to fit a model to data gener-
ated by solving many open loop optimal control problems
(OCPs), thus obtaining an approximate optimal feedback
controller. Further details can be found in e.g. Kang
and Wilcox (2017), Izzo and Öztürk (2021), Nakamura-
Zimmerer et al. (2021a,b), and Azmi et al. (2021).
Despite progress in the methodology, much less work
has been done to study and improve the stability and
reliability of these NN controllers. To see why this is
needed, if we train a set of NNs to control a Burgers’-
type PDE (12), a surprisingly large number of these fail
to stabilize the system despite having good test accuracy.
Figure 1 shows a simulation with one such NN controller.
Tailor and Izzo (2019) have also pointed out that test
accuracy incompletely characterizes the performance of
NN controllers, and suggest some more practical evalu-
ations of optimality and stability. Izzo et al. (2021) study
linear stability near a desired equilibrium, linear time delay
stability, and stability around a nominal trajectory.
The purpose of this talk is to bring attention to stability
issues with NN-controlled systems and to discuss recent
⋆ This work was supported with funding from the Air Force Office
of Scientific Research (AFOSR) under grant FA9550-21-1-0113, the
National Science Foundation (NSF) under grant no. 2134235, and the
University of California, Santa Cruz, Baskin School of Engineering
Dissertiation Year Fellowship.

Fig. 1. Closed loop simulation of the Burgers’-type PDE
(12) showing instability. Feedback control is based on
an NN approximation of the solution of the HJB PDE;
see Nakamura-Zimmerer et al. (2021a). The top plot
shows the stateX(t, ξ), where ξ is the spatial variable.

work by Nakamura-Zimmerer et al. (2021b, 2022a,b) ex-
ploring NN architectures which can potentially mitigate
these challenges. Some of these architectures can guaran-
tee, at a minimum, local asymptotic stability (LAS) of the
system. At the same time, these NNs can still learn the
optimal feedback law and thus provide semi-global stabil-
ity and optimality. We compare the new architectures to
standard NNs by means of several practical closed loop
stability and optimality tests. As a testbed we use the
Burgers’-type PDE system (12), which is nonlinear, open
loop unstable, and high-dimensional.

2. PROBLEM SETTING

We focus on infinite horizon nonlinear OCPs of the form
minimize

u(·)∈U
J [u(·)] =

∫∞
0

L(x,u)dt,

subject to ẋ(t) = f(x,u),
x(0) = x0.

(1)
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Here x : [0,∞) → Rn is the state, u : [0,∞) → U is
the control with box constraints U ⊆ Rm, and f : Rn ×
U → Rn is a continuously differentiable (C1) vector field.
We consider running costs L : Rn×U → [0,∞) of the form

L(x,u) = q (x− xf ) + (u− uf )
T
R (u− uf ) , (2)

where (xf ,uf ) ∈ Rn × U is a (possibly unstable) equi-
librium, R ∈ Rm×m is a positive definite matrix, and
q : Rn → [0,∞) is a smooth, positive semi-definite func-
tion which is zero at xf . This standard cost function is
a natural choice for regularization or set-point tracking
problems. We make the standard assumptions that uf is
contained in an open subset of U and that the OCP (1) is
well-posed, i.e. that an optimal control u∗(t) exists such
that J [u∗(·)] <∞ and limt→∞ L (x∗(t),u∗(t)) = 0.
Due to real-time application requirements, we would like
to design a closed loop feedback controller, u = u∗ (x),
which can be evaluated online given any measurement
of x. The mathematical framework for designing such an
optimal feedback policy is the HJB equation.
Define the value function V : Rn → R as the optimal
cost-to-go of (1) starting at the point x(0) = x, i.e.
V (x) := J [u∗(·)]. Under appropriate conditions, the value
function is the solution of the steady state HJB PDE,

min
u∈U

H (x, Vx,u) = 0, V (xf ) = 0, (3)

where Vx := [∂V/∂x]
T and we define the Hamiltonian

H(x,λ,u) := L(x,u) + λTf(x,u). (4)
If (3) can be solved (in the viscosity sense), then it provides
both necessary and sufficient conditions for optimality.
Furthermore, the optimal feedback control is then ob-
tained from the the Hamiltonian minimization condition,

u∗(x) = u∗ (x;Vx(x)) = arg min
u∈U

H (x, Vx,u) . (5)

To circumvent the challenge of directly solving the HJB
equation (3), we can leverage the necessary conditions for
optimality, well-known in optimal control as Pontryagin’s
Minimum Principle (PMP):

lim
tf→∞

{
ẋ(t) = f(x,u∗(x;λ)), x(0) = x0,

λ̇(t) = −Hx(x,λ,u
∗(x;λ)), λ(tf ) = 0.

(6)

Here λ : [0,∞) → Rn is called the costate. If we
assume that the solution of (6) is optimal, then along the
trajectory x = x∗(t;x0) we have{

V (x) =
∫∞
t

L (x(s),u∗(s)) ds,
Vx(x) = λ(t), u∗(x) = u∗(t).

(7)

In supervised learning, the BVP (6) is solved for different
initial conditions in the domain of interest. This yields a
data set of optimal value function, gradient, and control
values which can be used to train feedback controllers.

3. STABILITY-ENHANCING ARCHITECTURES FOR
OPTIMAL FEEDBACK DESIGN

Our goal is to learn a feedback policy which approximates
the optimal control, i.e. û(x) ≈ u∗(x). Due to the complex
and sometimes unpredictable behavior of NNs, there is a
clear need for designing feedback controllers with built-in
stability properties.
Previously, Nakamura-Zimmerer et al. (2021b, 2022a) pro-
posed V -QRnet (originally just called QRnet), λ-QRnet,

and u-QRnet. These controllers combine a linear quadratic
regulator (LQR) with NNs. The LQR terms are good
approximations of the optimal control near xf , and empir-
ically improve stability. Meanwhile, the NNs are intended
to capture nonlinearities and thereby learn the nonlinear
optimal feedback over a large domain.
However, none of these architectures can guarantee LAS,
motivating the pursuit of alternative designs. In this talk
we describe one of the novel NN architectures introduced
in recent work by Nakamura-Zimmerer et al. (2022b).
This architecture, called, uJac-QRnet, guarantee LAS of
xf while retaining the ability to approximate the nonlinear
optimal control semi-globally.

3.1 Novel “Jacobian” QRnet controller

Here we describe the stability-enhancing architectures, u-
QRnet and uJac-QRnet, which combine NNs with local
LQR approximations. LQR is a linear state feedback law
which is computed by linearizing the nonlinear OCP (1)
about (xf ,uf ) to obtain

uLQR(x) = uf −K(x− xf ). (8)
Here K ∈ Rm×n is the LQR gain matrix and is computed
by solving a continuous algebraic Riccati equation. We
note that LQR is in fact a first order approximation of
the optimal control, i.e. [∂u∗/∂x] (xf ) = −K.
Let us first review u-QRnet from Nakamura-Zimmerer
et al. (2022a). This models the full nonlinear optimal
control by combining (8) with an NN, N : Rn → Rm:

û(x) = uLQR(x) +N (x)−N (xf ). (9)
To construct uJac-QRnet, we cancel out the linear contri-
bution of the NN:
û(x) = uLQR(x)−

[
∂N
∂x (xf )

]
(x− xf ) +N (x)−N (xf ).

(10)
The Jacobian term is key to guaranteeing LAS by con-
struction. Note that (9) and (10) are shown without
saturation constraints, but it is easy to smoothly in-
corporate these directly into the model; see Nakamura-
Zimmerer et al. (2022b) for details. Nakamura-Zimmerer
et al. (2022b) also propose a number of other models which
are not covered here.
A drawback of (10) is that the Jacobian [∂N /∂x] (xf )
must be evaluated during each forward pass during train-
ing. This makes training the model more expensive than
u-QRnet which does not include this term. After training,
however, we can store the Jacobian matrix in memory so
that it does not have to be recomputed online. Therefore
online evaluation is just as fast as u-QRnet.

3.2 Local stability guarantees and approximation capacity

Like u-QRnet (9), the new uJac-QRnet (10) automatically
makes the goal state xf an equilibrium 1 . Moreover, if we
linearize the feedback control û(·) at xf then we recover
the LQR control gain (8). This property is desirable be-
cause LQR locally asymptotically stabilizes xf , and hence
the proposed controllers provide LAS by construction.
This is stated formally in Proposition 1, whose proof is
straightforward.
1 Note that V -QRnet does not always make xf an equilibrium.
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Proposition 1. (LAS guarantee). Suppose û(·) is a feed-
back policy specified by (10). Then [∂û/∂x] (xf ) = −K
and xf is an LAS equilibrium of the NN-controlled system,
ẋ = f (x, û(x)).

LAS is a critical but bare minimum requirement. To
achieve the ultimate goal of semi-global stability and
optimality through NN training, (10) must also be able to
approximate u∗(·) with sufficient accuracy. Because u∗(·)
is in general not everywhere analytic, we cannot directly
use the Taylor series-like structure of (10) to show this is
possible. Nevertheless, for OCPs like (1) we expect u∗(·) to
be at least continuous and locally C1. Then we can apply
Theorem 2 below, which shows that NNs of the form (10)
are universal approximators for such functions.
Theorem 2. (Universal approximation). Let xf = 0 be an
interior point of the compact set X ⊂ Rn. Suppose u ∈
C (X → Rm), u(0) = 0, and u(·) is C1 in a neighborhood
of 0. Then for all ε > 0, there exists a feedforward
NN with C1 bounded, non-constant activation functions,
N ∈ C1 (X → Rm), such that for all x ∈ X,∥∥u(x)− ([∂u∂x (0)− ∂N

∂x (0)
]
x+N (x)−N (0)

)∥∥
1
< ε.
(11)

The proof applies the Stone-Weierstrass theorem and
a universal approximation theorem from Hornik (1991).
Details are given in Nakamura-Zimmerer et al. (2022b).

4. NUMERICAL RESULTS

Here we compare the proposed controllers to standard
feedforward NNs trained to approximate the value func-
tion, its gradient, and the optimal control. We refer to
these as V -NN, λ-NN, and u-NN, respectively. We also
compare to V -QRnet, λ-QRnet, and u-QRnet. The results
indicate that the new architectures are indeed able to
accurately learn the optimal feedback control while guar-
anteeing local stability.
As a testbed we revisit the Burgers’ stabilization OCP
from Nakamura-Zimmerer et al. (2021b). This is a high-
dimensional nonlinear OCP formulated by pseudospectral
discretization of an unstable version of a Burgers’ PDE.
Briefly, the problem can be summarized as{

min.
u(·)

J [u(·)] =
∫∞
0

(
xTQx+ uTRu

)
dt,

s.t. ẋ = − 1
2
Dx ◦ x+ νD2x+α ◦ x ◦ e−βx +Bu.

(12)

Here x : [0,∞) → Rn represents the PDE state X(t, ξ)
collocated at spatial coordinates ξj = cos (jπ/n), j =
1, . . . , n, u : [0,∞) → Rm is the control, D ∈ Rn×n is the
Chebyshev differentiation matrix, Q ∈ Rn×n,R ∈ Rm×m

are diagonal positive definite matrices, and “◦” denotes
elementwise multiplication. The parameters ν, β > 0,α ∈
Rn, and B ∈ Rn×m are defined in Nakamura-Zimmerer
et al. (2021b), and we take n = 64 and m = 2.
We train the NNs using supervised learning, which consists
of three steps: data generation, optimization, and evalua-
tion against test data. For details we refer the reader to
Nakamura-Zimmerer et al. (2021b, 2022b).
We generate data by solving the BVP (6) for randomly
sampled initial conditions. To get models with varying ap-
proximation accuracy, we generate training data sets with

Fig. 2. Training time and test approximation error, de-
pending on the amount of training data. Bar heights
show the medians over ten trials, error bars show the
25th and 75th percentiles, and triangles are minimum
and maximum values.

different numbers of trajectories. To account for statistical
variation, for each different data set size we conduct ten
trials with different randomly generated training trajecto-
ries and NN weight initializations. We use an independent
test data set containing 500 trajectories.
All NNs use five hidden layers with 32 neurons each.
Figure 2 shows training times and test accuracies of the
NNs. We see that, somewhat surprisingly, uJac-QRnet is
just as fast to train as u-NN and u-QRnet 2 . We also find
that uJac-QRnet has similar test accuracy statistics to the
standard NNs, confirming that they can learn complicated
nonlinear functions in practice.
Remark 3. Figures 3 to 5 show results for u-NN, u-QRnet,
and uJac-QRnet. Results for other models are similar so we
restrict the figures to these for clarity.

4.1 Local stability verification

As a first step we assess the local stability of each NN-
controlled system. Let x̄ ∈ Rn be an equilibrium 3 of
the closed loop system. The dynamics near x̄ can be
approximated by ẋ ≈ Acl (x− x̄), where

Acl :=
∂f
∂x

∣∣∣
x̄,û(x̄)

+ ∂f
∂u

∣∣∣
x̄,û(x̄)

∂û
∂x

∣∣∣
x̄

(13)

is the closed loop Jacobian. Thus, after synthesizing a
feedback controller we can easily check for local stability
by seeing if Acl is Hurwitz.
Figure 3 shows the real part of the most positive eigenvalue
of Acl for each NN. We find that standard NNs must be
trained to a high level of accuracy before they are even
locally stabilizing, which necessitates a large data set and

2 Some other novel architectures proposed by Nakamura-Zimmerer
et al. (2022b), for example λJac-QRnet which approximates the value
gradient, do take significantly longer to train than standard NNs.
However, even for these the training time is still very reasonable.
3 In general x̄ ̸= xf . An equilibrium x̄ near xf , if it exists, can be
obtained with a root-finding algorithm.
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Fig. 3. Most positive real part of closed loop Jacobian
eigenvalue. Each marker represents a single model.

Fig. 4. Worst-case failure of final state over NMC = 100
simulations. Each marker represents a single model.

Fig. 5. Percent extra cost vs. BVP data over NMC = 100
simulations. Each marker represents a single model.

long training time. On the other hand, u-QRnet and uJac-
QRnet yield LAS even when trained on small data sets
(recall Proposition 1 guarantees this for uJac-QRnet).

4.2 Monte Carlo nonlinear stability analysis

Here and in Section 4.3 we conduct Monte Carlo (MC)
simulations to analyze nonlinear closed loop stability and
performance. NMC = 100 initial conditions x

(i)
0 are ran-

domly selected with
∥∥∥x(i)

0

∥∥∥ = 1.2 ≈ maxx(j)∈Dtrain

∥∥x(j)
∥∥,

placing them at the edge of the training domain where the
NNs may be less accurate.
We stop each simulation when the system reaches a steady
state or exceeds a large final time. If the worst case
failure,max

x
(i)
0

∥∥∥x(tf ;x(i)
0

)∥∥∥, is sufficiently small then the
nonlinear system is likely semi-globally stable. Conversely,
if the controller fails to stabilize even one trajectory then
we cannot rely on it.
Figure 4 shows the worst-case failures for each NN. No-
tably, only the most accurate u-NNs successfully stabilize
the system. Furthermore, although stability on average
improves with test accuracy, some highly accurate u-NNs
fail to stabilize all trajectories. In contrast, all u-QRnets

and uJac-QRnet stabilize all MC trajectories. These empir-
ical results suggest that the proposed architectures make
the control design more reliable, consistently yielding a
stabilizing control law even with small data sets.

4.3 Monte Carlo optimality analysis

In this talk we are interested in both stability and optimal-
ity. For a given û(·), optimality can be quantified by the
accumulated cost compared to the optimal costs, V

(
x
(i)
0

)
.

Figure 5 shows the results of this analysis for the same
set of MC simulations conducted in Section 4.2. We see a
clear correlation between higher test accuracy and better
performance. All the NN controllers (if stable) follow this
trend, and moreover, their average performance is better
than LQR alone. It follows that the proposed architectures
improve stability without sacrificing optimality.
Ultimately, these results support the argument that while
machine learning can serve as an effective computational
tool, it is crucial to integrate control theory at each step
of the model design, training, and evaluation process.
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Abstract: In some applied models (as for instance of flocking or of the crowd control) it is
more natural to deal with elements of a metric space (as for instance a family of subsets of a
vector space endowed with the Hausdorff metric) rather than with vectors of a normed vector
space. We consider a generalized control system on a metric space and investigate necessary and
sufficient conditions for viability and invariance of proper subsets, describing state constraints.
As examples of application we study controlled continuity equations on the metric space of
probability measures, endowed with the Wasserstein distance, and controlled morphological
systems on the space of nonempty compact subsets of the Euclidean space endowed with the
Hausdorff metric. We also provide sufficient conditions for the existence and uniqueness of
contingent solutions to the Hamilton-Jacobi-Bellman equation on a proper metric space.

Keywords: mutational control system; viability and invariance; optimal control; Wasserstein
space; Hamilton-Jacobi inequalities.
MSC 2020: 34A06, 49L12, 49Q22.

Dynamical systems under state constraints are ubiquitous
in the literature since a long while. Indeed, in many applied
fields, as economics, finance, demography, medical sci-
ences, aerospace, sustainable development, robotics, etc.,
the models do involve pointwise constraints on trajectories.
Viability theory is an area of mathematics that stud-
ies evolutions of trajectories of dynamical systems under
state constraints and many related questions. This theory
is also a helpful tool for investigation of some classical
questions arising in control. Indeed, various problems of
control theory can be linked to viability and invariance
properties of appropriately chosen sets, as for instance the
optimal synthesis problem can be related to the viability
retroaction map on the epigraph of the value function aris-
ing in optimal control [10], solutions of Hamilton-Jacobi-
Bellman equations – to functions having viable/invariant
epigraph/hypograph under extended control systems [11],
optimal trajectories – to viable trajectories on the epigraph
of the value function for an extended control system [11],
stabilising controls – to the viability retroaction map on
the epigraph of a Lyapunov function [12]. Viability theory
is well investigated in the finite dimensional framework
and Hilbert spaces, see for instance [4, 5, 8] and the
bibliographies contained therein.

In the recent years, there is an increasing interest in
control problems stated on metric spaces, cf. [2, 9, 13,
14]. The main goal of the present paper is to extend
the viability and invariance theorems to the framework
of proper subsets of a metric space on which a subset of
transitions is fixed.

⋆ This material is based upon work supported by the Air Force Office
of Scientific Research under award number FA9550-18-1-0254.

As an application, we discuss the Hamilton-Jacobi inequal-
ities on a proper metric space. We show that under some
technical assumptions the value function of the mutational
Mayer optimal control problem is the unique contingent
solution satisfying a prescribed final time condition. Two
examples of applications are provided as well.

1. PRELIMINARIES AND BASIC DEFINITIONS

Let (E, d) be a metric space (with the metric d) and denote
by B(x, r) the closed ball centered at x ∈ E with radius
r ≥ 0. Recall that a subset K ⊂ E is called proper if
K ∩ B(x, r) is compact for any (x, r) ∈ K × R+. The
distance between two nonempty subsets K, M of E is
defined by dist(K,M) := infk∈K,m∈M d(k,m). Note that
dist(K,M) measures the proximity of sets and it is not a
distance function on subsets of E. Obviously, it is smaller
than the Hausdorff distance.

We first recall some definitions and notations from [3, 15].

A map V : [0, 1]× E → E is called transition on (E, d) if:

• ∀x ∈ E, V(0, x) = x ;
• ∀x ∈ E, ∀ t, h ∈ [0, 1[ with t+ h ≤ 1,
V(t+ h, x) = V(h, V(t, x)) ;

• α(V) := sup
x,y∈E;x̸=y

lim sup
h→0+

d(V(h, x),V(h, y))− d(x, y)

h d(x, y)
< +∞ ;

• β(V) := sup
x∈E

lim sup
h→0+

d(x, V(h, x))
h

< +∞ .

For any transitions V1, V2 on (E, d), define the pseudo
distance

dΛ(V1,V2) := sup
x∈E

lim sup
h→0+

1

h
d(V1(h, x), V2(h, x)).
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Let Θ(E) be a fixed nonempty set of transitions, T > 0
and x(·) : [0, T ] → E. For t ∈ [0, T [, the set

◦
x(t) := {V ∈ Θ(E) | lim

h→0+

1

h
d
(
V(h, x(t)), x(t+ h)

)
= 0}

is called mutation of x(·) at time t (relative to Θ(E)).

A mapping x(·) : [0, T ] → E is called primitive of V :

[0, T ] → Θ(E) if it is Lipschitz and
◦
x(t) ∋ V(t) for a.e.

t ∈ [0, T ]. The reverse sign ∋ reflects the fact that
◦
x(t)

may be multivalued, while V(t) is single-valued.
For a nonempty subset K of E and x ∈ K, the set

◦
TK(x) := {V ∈ Θ(E) | lim inf

h→0+

1

h
dist(V(h, x),K) = 0}

is called the contingent transition set to K at x.

Let T > 0, W : [0, T ]×E → R∪{+∞} and (t, x) be in the
domain of W with t < T . Below, 0 : [0, 1] × R → R and
1 : [0, 1] × R → R denote the transitions on R defined by
0(h, t) = t, 1(h, t) = t+h, for all h ∈ [0, 1], t ∈ R. For any
transition V ∈ Θ(E), the contingent directional derivative
of W at (t, x) in the direction (1,V) is defined by
◦
D↑W (t, x)(1,V) = lim

ε→0+
inf

h∈]0,ε]
y∈B(V(h,x),εh)

W (t+ h, y)−W (t, x)

h

As in [6], it is not difficult to link directional derivatives
to the contingent transition set to the epigraph of W at
(t, x).

Let (U, dU ) be a complete separable metric space of control
parameters and define the set of admissible controls by

U := {u(·) : [0,∞) → U |u(·) is Lebesgue measurable}.

2. WEAK INVARIANCE, VIABILITY AND
INVARIANCE

Consider a map f : E ×U → Θ(E). f is called continuous
if for any (x0, u0) ∈ E × U and ε > 0, there exists some
δ > 0 such that for all (x, u) ∈ E × U ,

d(x, x0) + dU (u, u0) < δ =⇒ dΛ(f(x, u), f(x0, u0)) < ε.

f(·, u) is said to be uniformly Lipschitz in u, if there is a
constant L > 0 such that

dΛ(f(x, u), f(y, u)) ≤ L d(x, y), ∀x, y ∈ E, ∀u ∈ U.

For any x0 ∈ E consider the mutational control system

[S]
◦
x(s) ∋ f(x(s), u(s)) a.e., x(0) = x0, u(·) ∈ U .

A Lipschitz mapping x(·) : [0, T ] → E is said to be a
solution to [S] on [0, T ] for some T > 0, if there exists a

control u(·) ∈ U such that
◦
x(t) ∋ f(x(t), u(t)) a.e. in [0, T ]

and x(0) = x0. If f(·, u) is uniformly Lipschitz in u, then,
by [15, Proposition 21, p. 41] and the Gronwall lemma, to
every control u(·) ∈ U corresponds at most one solution of
[S]. Below we always assume that f is continuous and that

sup
x∈E,u∈U

α(f(x, u)) < +∞; sup
x∈E,u∈U

β(f(x, u)) < +∞.

We also assume that for each x0 ∈ E and ū ∈ U there

exists a solution to
◦
x ∋ f(x, ū), x(0) = x0 defined on [0, 1].

By [15, Theorem 20, p.40] it is always the case when E
is proper. For more general metric spaces such existence
depends on the choice of Θ(E) and f .

For any x0 ∈ E and t ≥ 0, denote by St(x0) the set of
all solutions to the mutational control system [S] defined
on [0, t] and by R(t;x0) := {x(t) ∈ E |x(·) ∈ St(x0)}, the
reachable set from x0 at time t.

Consider the controlled mutational equation
◦
x(s) ∋ f(x(s), u(s)) a.e. s ≥ 0, u(·) ∈ U (1)

and let K ⊂ E be a proper nonempty set. K is called
weakly invariant under (1) if for every x0 ∈ K we have
R(t;x0) ∩K ̸= ∅ for any t ≥ 0, see [17].

K is called viable under (1) if for any x0 ∈ K, there exists
a solution x(·) of (1) with x(0) = x0 satisfying x(t) ∈ K
for all t ≥ 0.

K is called invariant under (1) if every solution x(·) of (1)
with x(0) ∈ K satisfies x(t) ∈ K for all t ≥ 0.

Clearly any viable set is weakly invariant. To illustrate
that weak invariance does not yield viability, consider the
two dimensional control system x′ = u(t) in R2 with
U = {0} × {−1, 1} and the set K equal to the unit sphere
in R2. Then every trajectory of this system staring in K
leaves it immediately. At the same time x0 ∈ R(t;x0) for
any x0 ∈ K and t ≥ 0. Therefore K is weakly invariant.

Proposition 1. (Necessary condition for weak invariance).
Assume that (U, dU ) is compact and K ⊂ E is weakly
invariant. If x ∈ K is so that for a sequence hi → 0+

sup
y∈R(hi;x)

inf
u∈U

d
(
y, f(x, u)(hi, x)

)
= o(hi), (2)

then there exists u ∈ U satisfying f(x, u) ∈
◦
TK(x). In

particular, if for every x ∈ K we can find hi → 0+

satisfying (2), then f(x, U) ∩
◦
TK(x) ̸= ∅ for every x ∈ K.

Theorem 2. (Sufficient condition for weak invariance). As-
sume that f(·, u) uniformly Lipschitz in u, that R(t;x0)
compact for all x0 ∈ K and t > 0 and that for any x ∈ K,

f(x, U) ∩
◦
TK(x) ̸= ∅. Then K is weakly invariant under

(1).

Theorem 3. (Sufficient condition for viability). Under the
assumptions of Theorem 2 suppose that for each x0 ∈ K
and t > 0, the set St(x0) is closed in the metric of uniform
convergence. Then K is viable under (1).

Under the assumptions of Theorem 2, it can be shown,
using the Ascoli-Arzelà Theorem 47.1 from [16], that every
sequence {xn(·)}n ⊂ ST (x0) has a subsequence converging
uniformly to a Lipschitz function x : [0, T ] → E. Clearly,
x(t) ∈ R(t;x0) for all t ∈ [0, T ]. This does not yield
however that x(·) ∈ ST (x0). When E is a locally com-
pact, complete metric space, using a more sophisticated
construction as in [17, Theorem of Barbashin], it is even
possible to get a Lipschitz mapping x : [0, T ] → E satisfy-
ing x(t2) ∈ R(t2; t1, x(t1)) for all 0 ≤ t1 < t2 ≤ T . Still this
does not imply that x(·) ∈ ST (x0). To illustrate that the
assumptions in the above two theorems are not equivalent,
consider a compact subset U ⊂ Rn and the control system
x′ = u(t) ∈ U, x(0) = x0. It is well known that its
reachable sets are compact, while, in general, ST (x0) is
not closed in the metric of uniform convergence.

Theorem 4. (Mutational invariance). Suppose that f(·, u)
is uniformly Lipschitz in u. Then K is invariant under (1)

if and only if f(x, U) ⊂
◦
TK(x) for each x ∈ K.
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3. HAMILTON-JACOBI INEQUALITIES

In this section, (E, d) is a proper metric space. Given an
extended lower semicontinuous cost function g : E → R ∪
{+∞} and x0 ∈ E, we associate to it the Mayer optimal
control problem

[P ] minimize g(x(1))
over all the solutions of the mutational control system [S]
defined on [0, 1].

Consider the mutational equation
◦
z(·) ∋ f(z(·), u(·)), u(·) ∈ U (3)

and define the value function V : [0, 1] × E → R ∪ {+∞}
by : for all t ∈ [0, 1] and x ∈ E, V (t, x) := inf{g(z(1)) |
z(·) is a solution to (3) on [t, 1], z(t) = x} ∈ R ∪ {±∞}.

Theorem 5. Assume that for any x ∈ E, the set S1(x) is
closed in the metric of uniform convergence. Then for any
t0 ∈ [0, 1] and x ∈ E there exist a control u(·) ∈ U and
a solution z to (3) with z(t0) = x defined on [t0, 1] and
satisfying V (t0, x) = g(z(1)).

Theorem 6. Assume that f(·, u) is uniformly Lipschitz in u
and that for any x ∈ E, there exist hi → 0+ satisfying (2).
Then, the value function V verifies the boundary condition
V (1, ·) = g(·) and the following contingent inequalities:

• for any (t, x) in the domain of V with t < 1,

sup
u∈U

◦
D↑(−V )(t, x)(1, f(x, u)) ≤ 0.

• for any (t, x) in the domain of V with t < 1,
◦
D↑V (t, x)(1, f(x, u)) ≤ 0 for some u ∈ U .

A continuous map w : [0, 1]×E → R is called a contingent
solution to the mutational Hamilton-Jacobi equation (as-
sociated with [P ], [S]) if it satisfies the boundary condition
w(1, ·) = g(·) and the above two contingent inequalities
with V replaced by w.

Theorem 7. Assume that f(·, u) is uniformly Lipschitz in
u. If g is continuous, then V is continuous. Furthermore,
if g is locally Lipschitz, then V is locally Lipschitz.

Theorem 8. Let g : E → R be continuous and f(·, u) be
uniformly Lipschitz in u. Assume that for any x ∈ E, the
set S1(x) is closed in the metric of uniform convergence
and there exist hi → 0+ satisfying (2). Then V is the
unique continuous contingent solution to the mutational
Hamilton-Jacobi equation.

4. EXAMPLES

In this section we discuss two examples where the gen-
eral results of previous sections do apply. We endow the
space Lip(RN ,RN ) of all bounded Lipschitz continuous
functions F : RN → RN with the topology of local
uniform convergence. For any F ∈ Lip(RN ,RN ), denote
by LipF the smallest Lipschitz constant of F and set
||F ||∞ := sup

x∈RN

|F (x)|. For F : RN → RN and K ⊂ RN

define (Id+ F )(K) := {x+ F (x) | x ∈ K}.

4.1 Morphological control problem

Consider the metric space K(RN ) of nonempty compact
subsets of RN supplied with the Pompeiu-Hausdorff dis-
tance: for all K1,K2 ∈ K(RN )

dH(K1,K2) := max

{
max
x∈K1

dist(x,K2), max
x∈K2

dist(x,K1)

}
.

Then (K(RN ), dH) is a proper metric space, see for
instance [15, Proposition 47, p.57].

For any F : [0,∞) → Lip(RN ,RN ), t ≥ 0 and K0 ∈
K(RN ), the set VF (·)(t,K0) := {x(t) |
x(·) ∈ W 1,1

(
[0, t],RN

)
, x′(s) = F (s)(x(s)) a.e., x(0) ∈ K0}

is called the reachable set at time t of the system governed
by F (·)(·) from the initial condition K0. The subset of
transitions is given by

Θ(K(RN )) = {VF |F ∈ Lip(RN ,RN )}.

Let f : K(RN )× U → Lip(RN ,RN ) be continuous with

sup
u∈U,K∈K(RN )

(
Lip f(K,u) + ||f(K,u)||∞

)
< +∞ . (4)

Consider the morphological control system

[M ]
◦
K(·) ∋ Vf(K(·),u(·)), u(·) ∈ U .

A map K(·) : [0, T ] → K(RN ), where T > 0, is called a
solution to [M] if K(·) is Lipschitz continuous with respect
to dH and for some u(·) ∈ U and for a.e. t ∈ [0, T ]

lim
h→0+

1

h
· dH

(
Vf(K(t),u(t))(h,K(t)),K(t+ h)

)
= 0.

Setting F (t) := f(K(t), u(t)), it follows that K(·) is the
mutational primitive of VF (·) on [0, T ]. The results from
[15, pp. 388, 113, 74 and 24] imply

Proposition 9. For any K0 ∈ K(RN ), T > 0 and u(·) ∈ U ,
there exists a solution K(·) to [M ] on [0, T ] with K(0) =
K0 and for every time t ∈ [0, T ], K(t) coincides with the
reachable set of the differential equation

x′(τ) = f
(
K(τ), u(τ)

)(
x(τ)

)
, x(0) ∈ K0.

Moreover, if f(·, u) is uniformly Lipschitz in u w.r.t. the
metric on Lip(RN ,RN ) generated by ∥ · ∥∞, then the
solution to [M] with the initial condition K0 is unique.

We shall need the following assumptions:

(H1)


(4) holds and (U, dU ) is a compact metric space;

f(·, u) is uniformly Lipschitz in u w.r.t. ∥ · ∥∞;

f(K,U) is convex for every K ∈ K(RN ).

Theorem 10. Assume (H1) and consider a closed nonempty
subset Ω ⊂ K(RN ). Then Ω is viable under [M] if and only
if for each K ∈ Ω, there exists some u ∈ U satisfying

lim inf
h→0+

1

h
dist((Id+ hf(K,u))(K),Ω) = 0.

Furthermore, Ω is invariant under [M] if and only if the
above equality holds true for each K ∈ Ω and any u ∈ U .

4.2 Control system in a Wasserstein space

Denote by P(RN ) the family of all Borel probability
measures on RN endowed with the narrow topology.
For any ∅ ̸= K ⊆ RN , denote by P(K) ⊆ P(RN ) the set of
all Borel probability measures with the support contained
in K and by Pc(RN ) the subset of all Borel probability
measures with a compact support.

We first recall some notions in P(RN ), see for instance [1].
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For any µ ∈ P(RN ) and a Borel map T : RN → RN , let
T#µ ∈ P(RN ) denote the pushforward of µ through T :

T#µ(B) := µ(T−1(B)) for any Borel set B ⊂ RN .

Denote P2(RN ) := {µ ∈ P(RN ) |
∫
RN |x|2 dµ(x) < +∞}

and by W2 the Wasserstein distance on P2(RN ), see [1].
The space (P2(RN ),W2) is called the Wasserstein space of
order 2. It is well known that (P2(RN ),W2) is complete
and separable. Furthermore, for any nonempty compact
K ⊂ RN , the set P(K) is compact in (P2(RN ),W2).

Consider a continuous map f : P2(RN )×U → Lip(RN ,RN )
such that f(·, u) is uniformly Lipschitz in u w.r.t. the met-
ric on Lip(RN ,RN ) generated by ∥ · ∥∞ and the controlled
continuity equation

[C] ∂tµ(t) +∇(f(µ(t), u(t)) · µ(t)) = 0, u(·) ∈ U .

Given T > 0, an absolutely continuous map µ(·) : [0, T ] →
P2(RN ) is a solution to [C] on [0, T ] if for some u(·) ∈ U
it solves

∂tµ(t) +∇(f(µ(t), u(t)) · µ(t)) = 0 (5)

on [0, T ] in the sense of distributions.

The existence and the representation of solutions of the
non-local continuity equation (5) for every initial condition
in Pc(RN ) were investigated in [7]. We shall assume:

(H2)


A2 := supu∈U, µ∈P2(RN ) Lip f(µ, u) < ∞;

ρ2 := supu∈U, µ∈P2(RN ) ||f(µ, u)||∞ < +∞;

(U, dU ) is a compact metric space;

f(µ,U) is convex ∀ µ ∈ P2(RN ).

Under assumptions (H2), Pc(RN ) is invariant by solutions
of [C], see [7].

Let g ∈ Lip(RN ,RN ) and for any µ0 ∈ Pc(RN ) and
h ∈ [0, 1], define Vg(h, µ0) := µ(h), where µ(·) : [0, 1] →
P2(RN ) is the distributional solution to the continuity
equation

∂tµ(t) +∇(g · µ(t)) = 0, µ(0) = µ0. (6)

Then Vg : [0, 1] × Pc(RN ) → Pc(RN ) is a transition on
(Pc(RN ),W2). For any t > 0 and µ0 ∈ Pc(RN ), consider
the sets SC

t (µ0) of solutions to [C] on [0, t] with µ(0) = µ0}
and

RC(t, µ0) := {µ(t) |µ ∈ SC
t (µ0)}.

It follows from [7] that assumption (H2) implies that for
any T > 0 and µ0 ∈ Pc(RN ) the set SC

T (µ0) is compact in
the metric of uniform convergence.

Proposition 11. Assume (H2). Then, there exists k > 0
such that for any µ0 ∈ Pc(RN ), any hn → 0+ and any
µ(hn) ∈ RC(hn, µ0) we can find un ∈ U satisfying

W2

(
µ(hn),Vf(µ0,un)(hn, µ0)

)
≤ kh2

n

andW2

(
(Id+f(µ0, un))#µ0,Vf(µ0,un)(hn, µ0)

)
≤ A2ρ2h

2
n.

The above results together with those from Section 3 allow
to deduce the following viability and invariance theorem.

Theorem 12. Assume (H2) and let Ω ⊂ Pc(RN ) be
nonempty and proper. Then Ω is viable under [C] if and
only if for each µ ∈ Ω, there exists some u ∈ U satisfying

lim inf
h→0+

1

h
dist((Id+ hf(µ, u))#µ,Ω) = 0.

Furthermore, Ω is invariant under [C] if and only if the
above equality holds true for each µ ∈ Ω and any u ∈ U .
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1. INTRODUCTION

In this study, we explore the relationship between the com-
plexity of neural networks and the internal compositional
structure of the function to be approximated. The results
shed light on the reason why using neural network approx-
imation helps to avoid the curse of dimensionality (COD).
In Section 2, we discuss the challenge of COD in feedback
control. In Section 3, we introduce four compositional
features that determine the complexity and error upper
bound of neural network approximation for dynamical and
control systems. In Section 4, several examples are given
to illustrate the widely observed phenomenon in science
and engineering that complicated functions are formed by
the composition of simple ones.
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Fig. 1. The size of data file that grows exponentially with
the space dimension. In each dimension, N = 50. The
total number of data points is Nd.

2. THE CURSE OF DIMENSIONALITY

The COD is a bottleneck in many applications of dynam-
ical systems and nonlinear control. It is a phenomenon
in which the complexity of an approximate solution grows

? This work was supported in part by U.S. Naval Research Labora-
tory - Monterey, CA and National Science Foundation

fast, such as exponentially, with the state space dimension.
For instance, consider a feedback control law

u = u(x), x ∈ Rd, u ∈ R. (1)

for a system of dimension d. If d is large and if an analytic
representation cannot be found for u(x), a numerical
approximation has to be applied to store the control
law in a digital format. If u(x) is approximated using
interpolation based on its value at grid points, the size of
the dataset increases exponentially. Specifically, suppose
we use N grid points in each dimension. Then the total
number of grid points in a d dimensional domain is Nd.
The value of u(x) over the grid forms a huge dataset
even for moderate dimensions such as d = 7 or 8. Figure
1 shows an example in which N = 50. If d = 7, the
memory needed to store the value of u(x) over the grid
using single precision is about 1TB. This number is 1PB
for d = 9 and 1EB for d = 10. Due to the limitations on
processor’s primary storage, bus speed and computation
speed, the interpolation of datasets that have such large
sizes is practically intractable, not to mention that the
computation has to be carried out in real-time for feedback
control.

3. COMPOSITIONAL FEATURES AND THE
COMPLEXITY OF NEURAL NETWORKS

For the last few years, a new trend of overcoming the COD
in nonlinear dynamics and control using deep learning has
been developed rapidly. Many examples of successfully
applying deep learning to high dimensional differential
equations and optimal control were published in which the
dimensions range from six to several hundred, well beyond
what conventional computational methods can deal with
(Han et al. (2018); Izzo et al. (2019); Nakamura-Zimmerer
et al. (2021); Kang et al. (2021a); Sirignano and Spiliopou-
los (2018); Raissi et al. (2019); B. Azmi (2020)). These
empirical successes of deep learning in overcoming the
COD inspire us to study the underlying reason why neural
networks are capable of solving so many high dimensional
problems. The philosophy in our study is based on a widely
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observed fact in science and engineering: complicated func-
tions are formed by the composition of relatively simple
functions. In Kang and Gong (2022), a set of key features
of compositional functions is defined. It can be mathe-
matically proved that these features determine the upper
bounds of neural network complexity and approximation
error. These upper bounds do not suffer from the COD.

To exemplify the compositional structure of nonlinear
systems, consider the swing equations of a power system
with Ng generators

dωi

dt
=

ω0

2Hi

(
Pm −D

ωi − ω0

ω0
− E2

iGii · · ·

−
10∑

j=1,j 6=i

EiEj [Bij sin(δi − δj) +Gij cos(δi − δj)]


dδi
dt

= ωi − ω0,

(2)
where i = 1, ..., Ng. For the ith generator, the two state
variables are δi, the rotor angle in radian, and ωi, the rotor
speed in radian per second. Other parameters include Hi

(the inertial constant of the generator), ω0 = 2π× f0 (the
synchronous angular frequency in radian per second for
an ac power system with frequency f0), D (the damping
coefficient), Pm (the mechanical power input from the
turbine), Ei (the electromotive force or internal voltage
of the generator). In addition, Gij + jBij , the mutual
admittance between Ei and Ej , is the ith row jth column
element of the admittance matrix among all electromotive
forces, and Gii is the conductance representing the local
load seen from Ei. Details about the model and its
parameters refer to Athay et al. (1979).

A power system may have tens or hundreds of generators.
This complicated system model, however, is a composition
of functions that have low input dimensions. The com-
positional structure can be represented using a layered
directed acyclic graph (DAG). For example, Figure 2 is
a DAG of the function in (2). Each colored node in the
DAG represents a nonlinear function. They are all sine and
cosine functions with a single input. Although some linear
nodes (white color) have high input dimensions, such as
the node in the output layer, it is proved in Kang and Gong
(2022) that linear nodes do not increase the complexity,
or the number of neurons, of the neural network. The
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Fig. 2. The layered DAG of the function in (2) as a
compositional function.

question we would like to answer is: how does a layered
DAG help in the effort of using deep learning to find
the trajectory or the optimal control of a system? Our
study shows that some compositional features are critical

to the required complexity of neural networks used in deep
learning. These features are briefly introduced as follows.

• |V| (complexity feature): The total number of nonlin-
ear nodes in the layered DAG, where V is the set of
nonlinear nodes of the compositional function.

• rmax (dimension feature): The largest ratio, d/m, for
all nodes in V, where d is the input dimension of the
node and m is the smoothness of the node.

• Λ (volume feature): Each nonlinear node, denote the
function by f , has a domain. Assume that the domain
is a square of edge length R. The volume feature is
defined to be the largest value in

{max{R, 1}||f ||; f ∈ V}, (3)

where || · || is the Sobolev norm

||f || = ||f ||L∞ +
∑∥∥∥∥ ∂f∂xi

∥∥∥∥
L∞

. (4)

• Lmax (Lipschitz constant feature): The largest Lips-
chitz constants associated with nonlinear nodes. Note
that this Lipschitz constant is defined based on the
layered structure of the DAG. For more details, the
readers are referred to Kang and Gong (2022).

Consider a general dynamical system

ẋ = f(x), x ∈ Rd (5)

in which f(x) ∈ Rd has a layered compositional structure.
Let φ(t,x) represents the solution of (5) in which x is the
initiate state, φ(0,x) = x.

Theorem 1. (Kang and Gong (2022)) Suppose that all
nodes in f are C1. Let D ⊂ Rd be a closed set and R > 0
be a constant. Suppose φ(t,x) ∈ [−R,R]d for t ∈ [0, T ]
and x ∈ D. Then, there always exists a deep feedforward
neural network, denoted by φNN (x), in which activation
functions are C∞. Furthermore, the network satisfies∥∥∥φNN (x)− φ(T,x)

∥∥∥
2
< (C1LmaxΛ |V|+ C2)n−1/rmax

(6)
where n is an integer that determines an upper bound
of the total number of neurons in φNN (x), i.e., the
complexity of the neural network,

# of neurons in φNN ≤
(
n1/rmax + 1

)
n |V| (7)

The constants, C1 and C2, in (6) are determined by ‖f‖2,∥∥∥∥ ∂f∂x
∥∥∥∥
2

, T and the input dimensions of the nodes in V.

It is worth to note that the error upper bound (6) depends
on Λ, Lmax and |V| as a polynomial function, rather than
an exponential function. The value of rmax depends on the
input dimensions of individual notes of f , not directly on
the overall dimension, d. Therefore, if rmax is bounded and
if Λ, Lmax and |V| do not increase exponentially with d,
the neural network approximation of φ(T,x) is free from
the COD. A similar result holds true for optimal control.
Consider a control system

ẋ = f(x,u), x ∈ D ⊂ Rd, u ∈ Rq, t ∈ [0, T ] (8)

A zero-order hold control, U = [ u1 u2 · · · uNt ] in which
uk is the constant control for t ∈ [tk−1, tk]. The goal of an
optimal control problem is to find U that minimizes the
cost function



J(x, U)
= Ψ ◦ φ(∆t;uNt , ·) · φ(∆t;uNt−1, ·) ◦ · · · ◦ φ(∆t;u1,x)

(9)
where Ψ : Rd → R is a function.

Theorem 2. Suppose that f and Ψ are compositional func-
tions in which all nodes are C2. Let D ⊂ Rd be a bounded
closed set. Assume that the Hession of J(x, U) with respect
to U is positive definite. Let U∗(x) represents the optimal
feedback control. Then, for any ε > 0, there exists a deep
neural network, U∗NN , that approximates the optimal
control. The estimation error is∥∥U∗NN (x)− U∗(x)

∥∥
2
≤ 3ε, x ∈ D (10)

The complexity of U∗NN is bounded by

n ≤ Cε−(4rmax+1+4rmax/r
f
max) (11)

where rfmax is the dimension feature of f and rmax is the
largest dimension feature of f and Ψ, C is a polynomial of
q and other compositional features of f and Ψ.

4. SOME EXAMPLES OF COMPOSITIONAL
FEATURES

According to Theorems 1 and 2, if the compositional fea-
tures of a family of systems do not increase exponentially
with d, the approximation of a trajectory or an optimal
control has a polynomial error upper bound; the complex-
ity of the neural network increases at a polynomial rate. In
the following, we use three examples to demonstrate that
this kind of polynomial relationship is not unusual.

4.1 Compositional features of power systems

The first example is the power system model in (2). Its
layered DAG is shown in Figure 2. Its compositional
features are summarized as follows.

rmax = 1, Λ = 4π, |V| = 2(Ng − 1)Ng,

Lmax = max
1≤i,j≤Ng,i6=j

{
ω0

2Hi
EiEjGij ,

ω0

2Hi
EiEjBij

}
.

(12)
The dimension feature is rmax = 1 because all nonlinear
nodes (sin(z) and cos(z)) have a single input. Here we treat
the nodes as functions in C1 although they are also in C∞.
This simplifies the formula in the derivation. The value of
Λ depends on the radius of the domain of nonlinear nodes
and their Sobolev norm (4). For each nonlinear node, the
domain of its input is bounded by 2π. Furthermore, sin(z),
cos(z) and their derivatives are all bounded by 1. Then it
is straightforward to derive the volume feature Λ = 4π.
Following the definition in Kang and Gong (2022), the
Lipschitz constant associated with a node is the Lipschitz
constant of f (not the node) with respect to the node when
the node is treated as a free variable. For example, the
nonlinear nodes in Figure 2 are cos(z) and sin(z). If one of
them, for instance the first cos(z) connecting to δi − δ1, is
treated as a variable, the Lipschitz constant of the function
associated with this node equals

ω0

2Hi
EiE1Gi1. (13)

This computation is for the first nonlinear node (j = 1)
in the ith generator. The value of Lmax in (19) is the
largest one among the numbers computed similarly for all
the Ng generators and all nonlinear nodes. For the ith

generator, 1 ≤ i ≤ Ng, there are 2(Ng − 1) nonlinear
nodes. Therefore, the total number of nonlinear nodes
is |V| = 2(Ng − 1)Ng. We would like to emphasize that
the compositional features in (12) are either constants or
polynomial functions of Ng. As such, they do not increase
exponentially with Ng. From Theorem 1, there exists a
deep neural network approximation of the power system
that avoids the COD. In fact, a similar conclusion can be
extended to the Lyapunov function of the power system,
which is proved in Kang et al. (2021b).

Theorem 3. Consider a power system (2) that has Ng

generators. Let R ⊂ R2Ng be a bounded set. Then,
there exists a solution, V (x), to Zubov’s equation (a
special Lyapunov function that characterizes the domain
of attraction) and a neural network, V NN (x), that has
nNN hyperbolic tangent neurons. They satisfy∣∣V NN (x)− V (x)

∣∣ < (C1N
2
g + C2)

Ng√
nNN

(14)

for x ∈ R, where C1 and C2 are constants independent of
Ng.

4.2 Lorenz-96 model

Consider a system of ODEs

ẋ = f(x) (15)

in which f : [−R,R]d ⊂ Rd → Rd is the vector field that
defines the Loranz-96 model in Lorenz (1996),

f =



x0(x2 − x−1)− x1 + F
x1(x3 − x0)− x2 + F

...
xi−1(xi+1 − xi−2)− xi + F

...
xd−1(xd+1 − xd−2)− xd + F


, (16)

where x−1 = xd−1, x0 = xd, xd+1 = x1 and F is a
constant. Let’s treat f as a compositional function. An
example of its layered DAG when d = 4 is shown in Figure
3. All nonlinear nodes in Figure 3 are located in the second
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Fig. 3. DAG structure of the function (16) for d = 4. For
a clear illustration, edges pointing to the first, the
second, and the third layer are shown in red, blue
and green respectively.

layer. They are defined by

f2,j(xj−1, zj) = xj−1zj , j = 1, · · · , d. (17)

All nonlinear nodes have the dimension d2,j = 2 and
the domain [−2R, 2R]2. Since f2,j is C∞, we can set the
smoothness to be any integer m ≥ 2. As an example, we
set m = 1. Then the dimension feature is rmax = 2. The
Sobolev norm of f2,j is straightforward to compute, which
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determines Λ, the volume feature. To compute the Lipchitz
constant associated with the node, f2,j , we construct the
truncation of f along the second layer, which is given by

f̄(z1, · · · , z2d) =


z1 − zd+1 + F
z2 − zd+2 + F

...
zd − z2d + F

 , (18)

where xi, 1 ≤ i ≤ d, are represented by the dummy inputs
zj , j = d + 1, · · · , 2d. The Lipschitz constant of f̄ with
respect to zj is L2,j = 1, for j = 1, · · · , d. The total number
of nonlinear nodes in the system equals the dimension, d,
because each equation in (16) has a single nonlinear node.
To summarize, the compositional features of the Lorenz-96
model are

rmax = 2, Λ = max{(2R), 1}(2R+ 4R2),
Lmax = 1, |V| = d.

(19)

There is no exponential growth in the features. They are
either constants or a linear function of d.

4.3 Burgers’ Equation

Consider the following discretized Burgers’s equation

u̇1 = −u1
u2 − u0

2∆x
+ κ

u2 + u0 − 2u1
∆x2

u̇2 = −u2
u3 − u1

2∆x
+ κ

u3 + u1 − 2u2
∆x2

...

u̇N−1 = −uN−1
uN − uN−2

2∆x
+ κ

uN + uN−2 − 2uN−1
∆x2

(20)
The discretization is based on central different in which
∆x = L/N is the parameter that represents the step size
of the state variable x ∈ [0, L]. The boundary condition
is u0 = uN = 0. The dimension of the state space is
N . The layered DAG of the function in (20) is shown in
Figure 4. Due to the viscosity term in the equation, the
solutions are stable. For initial conditions in a bounded
set, we can assume that the state variables are bounded in
[−R,R]N for some R > 0. The compositional features are
summarized in (21). They are either constants or linear
functions of N . None of them grows exponentially.

rfmax = 1,Λf =
1

2
R2 +R,Lf

max =
N

L
,
∣∣Vf

G

∣∣ = 2N. (21)

5. CONCLUSION

The relationship revealed in this study between the com-
plexity of neural networks and the compositional fea-
tures in system models illustrates the reason why deep
learning is an effective tool of overcoming the COD. The
study raises more questions than answers. Many inter-
esting problems are still widely open about the role of
compositional structure in neural network design, as well
as in the training and validation process.
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Learning stability guarantees for
data-driven constrained switching linear

systems
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Abstract: We consider stability analysis of constrained switching linear systems in which the
dynamics is unknown and whose switching signal is constrained by an automaton. We propose
a data-driven Lyapunov framework for providing probabilistic stability guarantees based on
data harvested from observations of the system. By generalizing previous results on arbitrary
switching linear systems, we show that, by sampling a finite number of observations, we are
able to construct an approximate Lyapunov function for the underlying system. Moreover, we
show that the entropy of the language accepted by the automaton allows to bound the number
of samples needed in order to reach some pre-specified accuracy.

Keywords: Stability analysis, Constrained switching linear systems, Data-driven optimization,
Scenario approach

1. INTRODUCTION

In this paper we address the problem of finding proba-
bilistic guarantees for the stability of constrained switching
linear systems whose dynamics is unknown.

Switching systems. We consider discrete-time switching
linear systems (SLS ) defined by a set A = {Ai, }i∈{1,...,m}
of m matrices. Their dynamics is given by the following
equation:

xt+1 = Aσ(t)xt (1)

for any t ∈ N, where xt ∈ R
n and σ(t) ∈ {1, . . . ,m} are

respectively the state and themode at time t. The sequence
(σ(0), σ(1), . . . ) ⊆ {1, . . . ,m}N is the switching sequence.

Switching linear systems are an important family of hybrid
systems which often arise in Cyber-Physical systems (see
Tabuada (2009)). Indeed, the interaction between continu-
ous and discrete dynamics causes hybrid behaviors which
makes the stability analysis challenging. In recent years,
many model-based stability analysis techniques have been
proposed (see Lin and Antsaklis (2009) and references
therein, or Jungers (2009)).

A constrained switching linear system (CSLS ) is a switch-
ing linear system with logical rules on its switching signal.
We represent these rules by an automaton. The stabil-
ity of CSLS has also been studied extensively (see e.g.
Dai (2011), Philippe et al. (2016) and Xu and Acikmese
(2020)). In particular, we are interested in asymptotic
stability of CSLS, whose definition is given as follows.
A CSLS whose dynamics is given by (1) is said to be
asymptotically stable (or stable, for short) if for all x0 ∈ R

n,

lim
t→∞xt = 0. (2)

Data-driven approach. In many practical applications,
the engineer cannot rely on having a model, but rather has
to analyze stability in a data-driven fashion. Most classical
data-driven methods (see e.g. Karimi and Kammer (2017),
Hjalmarsson et al. (1998) and Campi et al. (2003)) are lim-
ited to linear systems and based on classical identification
and frequency-domain approaches. These methods may
not be well suited for complex systems such as constrained
switching linear systems.

In order to tackle hybrid behaviors in switching systems,
novel data-driven stability analysis methods have been
recently developed based on scenario optimization (see
Kenanian et al. (2019), Berger et al. (2021) and Rubbens
et al. (2021)). In this paper we seek to take one more
step towards complexity. To do that, we develop a data-
driven method for providing probabilistic guarantees on
the stability of noise-free constrained switching linear
systems.

Outline. The rest of this paper is organized in two parts.
We introduce the problem that we tackle in Section 2. All
concepts needed to this end are introduced in Section 2.1,
and the problem is formulated in Section 2.2. In Section 3,
we propose a lifting result allowing us to reduce the
computation of the constrained joint spectral radius to the
joint spectral radius of a certain set of matrices. Moreover,
we state the main theorem of this paper, which extends
data-driven results from Berger et al. (2021) to constrained
switching linear systems. Finally, we investigate further
the obtained generalization. We show that the notion of
entropy can be used to characterize the number of samples
needed to reach a specified guarantee on the stability. We
will show that, under some assumptions, a smaller entropy
allows for a better probabilistic guarantee.
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2. PROBLEM SETTING

2.1 Preliminaries

In this subsection, we introduce the notions necessary to
formally present the problem that we solve in this paper.

Joint spectral radius. For arbitrary SLS, given a set of
matrices A = {A1, . . . , Am} ⊆ R

n×n, the quantity

ρ(A) = lim
t→∞ max

σ(·)∈{1,...,m}
‖Aσ(t−1) . . . Aσ(0)‖1/t (3)

is known as the joint spectral radius (JSR) of a switching
linear system defined on A. The JSR of an switching
system rules the stability of the latter:

Proposition 1. (Jungers (2009), Corollary 1.1.). Given a
set of matrices A, the switching linear system defined by
A is asymptotically stable if and only if ρ(A) < 1.

It is a well known fact that for any stable arbitrary switch-
ing linear system, there is a norm acting as a common
Lyapunov function (see Jungers (2009), Proposition 1.4.).
The following proposition gives a sufficient condition for
stability, by restricting the search to common quadratic
Lyapunov functions (CQLF ).

Proposition 2. (Jungers (2009), Proposition 2.8). Consider
a finite set of matrices A. If there exists γ ≥ 0 and a
symmetric matrix P � 0 such that ATPA � γ2P holds
for any matrix A ∈ A, then ρ(A) ≤ γ.

Constrained joint spectral radius. First, we give the
definition of an automaton. An automaton is a strongly
connected, directed and labelled graph G(V,E) with V
the set of nodes and E the set of edges. Note that we
drop the explicit writing of V and E when it is clear
from the context. The edge (v, w, σ) ∈ E between two
nodes v, w ∈ V carries the label σ ∈ {1, . . . ,m}, which
maps to a mode of the switching system. A sequence of
labels (σ(0), σ(1), . . . ) is a word in the language accepted
by the automaton G if there is a path in G carrying the
sequence as the succession of the labels on its edges. A
CSLS defined on the set of matrices Σ and constrained by
the automaton G is noted S(G,Σ). We define the set of
all possible products of matrices in Σ of length l given an
automaton G as

Πl = {Aσ(l−1)Aσ(l−2) . . . Aσ(0) :

(σ(0), σ(1), . . . , σ(l − 1)) is a word of G}. (4)

The constrained joint spectral radius (CJSR), which is a
generalization of the JSR to CSLS, was first introduced in
Dai (2011). Given a set of matrices Σ and an automaton
G, the CJSR of the constrained switching linear system
S(G,Σ) is defined as

ρ(G,Σ) = lim
t→∞max

{
‖A‖1/t : A ∈ Πt

}
. (5)

In the same way, the stability of a constrained switching
linear system is characterized by its CJSR:

Proposition 3. (Dai (2011), Corollary 2.8.). Given a set
of matrices Σ and an automaton G, the constrained
switching linear system S(G,Σ) is asymptotically stable
if and only if ρ(G,Σ) < 1.

2.2 Problem formulation

We will now formally present the problem that we solve in
this paper.

Model-based setting. Consider a given constrained
switching linear system S(G,Σ) with Σ ⊆ R

n×n. Let
Δ = S × Πl with S ⊆ R

n the unit sphere and Πl the
set of all admissible products of length l. We introduce the
following optimization problem 1 (see Berger et al. (2021)):

P(Δ) : min
P∈R

n×n

γ≥0

(γ, ||P ||2F )

s.t. P ∈ X :=
{
P : I � P � CI, P = PT

}
,

(Ax)TP (Ax) ≤ γ2lxTPx ∀(x,A) ∈ Δ,

(6)

for a large C ∈ R≥0, where ‖ · ‖F is the Frobenius norm.
We denote (γ∗(Δ), P ∗(Δ)) as the solution of optimization
problem (6).

Following Proposition 2, Program (6) allows us to study
stability in a model-based setting i.e., when Δ is known.
Indeed if γ < 1, then the ellipsoidal norm ‖ · ‖P∗(Δ) is a
CQLF for the considered CSLS (Jungers, 2009). Observe
that, in addition to the problem of Proposition 2, a tie-
breaking rule is defined in Program (6). This tie-breaking
rule allows for improving the probabilistic guarantees we
obtain in Theorem 5 (see Kenanian et al. (2019) for
details). A constraint P � CI is also added to ensure that
the set of feasible P is compact, so that the existence of a
solution is guaranteed 2 .

Data-driven setting. In this work, we analyze the same
problem in a data-driven framework: we assume that the
system is not known (i.e., A is not known in Program (6)),
but that we sample N trajectories of length l of a system
S(G,Σ). The i-th trajectory is noted (xi,0, . . . , xi,l) for i ∈
{1, . . . , N}. The trajectories are assumed to be generated
from initial states xi,0 drawn randomly, uniformly and
independently from S, the unit sphere.

For each trajectory i ∈ {1, . . . , N}, the l matrices are
generated from the automaton G(V,E) in the following
way. An initial state u0 is drawn randomly and uniformly
from V . Then a random walk of length l is performed on
G, where, from uj ∈ V , the next state uj+1 is drawn
randomly, uniformly and independently from the set of
its out-neighbours {uj+1 ∈ V : (uj , uj+1, σi(j) ∈ E} where
σi(j) is the label corresponding to the edge linking uj and
uj+1. The sequence of nodes (u0, . . . , uj , uj+1, . . . , ul) form
a switching sequence σi(0), . . . , σi(l−1), which maps to the
matrices Aσi(0), . . . , Aσi(l−1).

We define the set of N observations ωN as

ωN = {(xi,0,Ai), i = 1, . . . , N} (7)

where Ai = Aσi(l−1) . . . Aσi(0) ∈ Πl. Note that the
observations in ωN are assumed to be noise-free.

1 We note min(f(x), g(x)) the multiobjective optimization problem
where g(x) is used as a tie-breaking rule. That is, the objective is to
minimize the function f(x), and, in case there are several optimizers,
the solution is the one which minimizes g(x). Observe that the latter
is unique because the problem is quasi-convex, and because ‖ · ‖ is a
strongly convex function.
2 For more details about these additions, see Berger et al. (2021).
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We define P = Px×Pσ the probability measure on Δ with
Px the uniform distribution on S and Pσ the probability
distribution describing the distribution of paths in Πl as
explained above. Note that Pσ is not necessarily a uniform
measure.

Now, for a given set ωN , let us define the sampled opti-
mization problem P(ωN ) associated to P:

P(ωN ) : min
P∈R

n×n

γ≥0

(γ, ||P ||2F )

s.t. P ∈ X :=
{
P : I � P � CI, P = PT

}
,

(Ax)TP (Ax) ≤ γ2lxTPx ∀(x,A) ∈ ωN ,

(8)

We denote (γ∗(ωN ), P ∗(ωN )) as the solution of optimiza-
tion problem (8), and Cost(ωN ) its optimal cost. The
problem P(ωN ) defined in Program (6) is the data-driven
version of the optimization problem P(Δ) defined in Pro-
gram (8). The issue that we tackle in this paper is the in-
ference of γ∗(Δ), the solution of optimization problem (6)
from (γ∗(ωN ), P ∗(ωN )) with a certain user-defined level of
confidence.

3. MAIN RESULTS

In this section, we present our main results. First, in
Proposition 4 given an automaton G and a set of matrices
Σ, we show that the CJSR can be bounded by the classical
JSR of the set of all admissible products of a given
length Πl. Even though other reductions of the CJSR
computation problems to a simpler JSR have already
been proposed in the literature (see e.g. Dai (2011) and
Philippe et al. (2016)), to the best of our knowledge,
Proposition 4 is new, and will be useful for our purposes.
Second, we use this result in order to derive a probabilistic
guarantee allowing to relate the data-driven problem (8)
to the model-based problem (6). This guarantee is given
in Theorem 5.

Proposition 4. For all l > 0, given an automaton G and a
set of matrices Σ, the CJSR of S(G,Σ) and the JSR of
the switching linear system defined by Πl satisfy

ρ(G,Σ) ≤ ρ(Πl)
1/l. (9)

Moreover, the equality holds asymptotically i.e.,

ρ(G,Σ) = lim
l→∞

ρ(Πl)
1/l. (10)

Proposition 4 allows us to reduce the problem of approxi-
mating the CJSR to the problem of approximating the JSR
of another arbitrary switching linear system. Therefore
we can generalize previous data-driven works on arbitrary
systems. In particular, we draw our results on top of
Berger et al. (2021) in order to obtain data-driven stability
guarantees for constrained systems.

We remark that the data-driven problem (8) is a quasi-
linear optimization problem, as defined in (Berger et al.,
2021, Equation 1). Thus, a very similar analysis as in
Berger et al. (2021), based on scenario-approach results
Calafiore (2010), can be done. First, we recall the definition
of a Barabanov matrix (see Berger et al. (2021), Defintion
7). A matrix A ∈ R

n×n is said to be Barabanov if there
exists a symmetric matrix P � 0 and γ ≥ 0 such that
ATPA = γ2P .

Given Proposition 3, the following theorem generalizes
Corollary 14 of Berger et al. (2021). It gives probabilistic
guarantees for the stability of a constrained switching
linear system. In the following theorem, Φ(·, a, b) denotes
the regularized incomplete beta function for the two pa-
rameters a, b ∈ N (see Kenanian et al. (2019), Definition
2).

Theorem 5. Consider an automaton G, a set of matrices
Σ ⊆ R

n×n, samples ωN ⊂ Δ obtained as explained in
Section 2.2, a fixed length l > 0 and N ≥ d := n(n+1)/2.
Suppose Πl contains no Barabanov matrices. Consider
problem P (ωN ) with solutions γ∗(ωN ) and P ∗(ωN ). Then,
for a given level of confidence β ∈ (0, 1),

P

({
ωN ∈ ΔN : ρ(G,Σ) ≤ γ∗(ωN )

l
√
δ(β, ωN )

})
≥ β, (11)

and the function δ(β, ωN ) takes the form√
1− Φ−1(ε(β,N)κ(P ∗(ωN ))/pl,min, (n− 1)/2, 1/2).

(12)
where pl,min is the minimal probability of all matrices in

Πl, κ(P ) =
√

det(P )/λmin(P )n, and ε(β,N) takes the
closed form

ε(β,N) = 1− Φ(1− β, d+ 1, N − d). (13)

Theorem 5 provides a general way of obtaining proba-
bilistic stability guarantees. Indeed, for a given confidence
level β, if one computes an upper bound (11) strictly less
than 1, then following Proposition 3, stability holds with
probability at least β.

We now show how one can use it in practice, by deriving
a few corollaries. The following corollary holds if the
distribution of drawing a product in Πl is uniform.

Corollary 6. Suppose Pσ is a uniform measure. Then the
function δ(β, ωN ) in Theorem 5 can be written√

1− Φ−1(ε(β,N)|Πl|κ(P ∗(ωN )), (n− 1)/2, 1/2). (14)

We now show that we can push further our analysis of the
upper bound expressed in Corollary 6 by using the notion
of entropy (Lind and Marcus, 1995, Definition 4.1.1). Let
|LG,l| be the language accepted by G restricted to length
l. The entropy h(G) of G is the growth rate of |LG,l| i.e.,

h(G) = lim
l→∞

log2 |LG,l|
l

. (15)

Since |Πl| ≤ |LG,l|, the definition of the entropy gives the
following corollary.

Corollary 7. For l → ∞, the function δ(β, ωN ) in Corol-
lary 6 can be written

lim
l→∞

√
1− Φ−1(ε(β,N)2lh(G)κ(P ∗(ωN )), (n− 1)/2, 1/2).

(16)

Corollary 7 provides an asymptotic estimate of the prob-
abilistic upper bound in Theorem 5, as a function of the
entropy of the automaton G. One can see that an automa-
ton with small entropy allows for a better estimate of the
CJSR, for a fixed number of samples. This is illustrated in
Figure 1.

Now we show that we can also derive a practical bound
for any finite l > 0, unlike Corollary 7 which holds
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Fig. 1. Shape of the factor 1/ l
√
δ(β, ωN ) in Theorem 5 with

respect to the entropy, for a confidence level β = 95%,
a large l (here l = 50) and n = 2. One can see that
this factor converges to 1 as N increases, and that a
smaller entropy allows to converge faster.

asymptotically. For this we use classical results from graph
theory.

Proposition 8. Let A be the adjacency matrix of some au-
tomaton G(V,E). Let λ1 ≤ · · · ≤ λ|V | be the eigenvalues
of A. Assume A is diagonalizable. Then for any l ≥ 0,
|Πl| ≤ |V |λl

n.

Proposition 8 directly gives the following corollary.

Corollary 9. Let A be the adjacency matrix of some au-
tomaton G(V,E) Let λ1 ≤ · · · ≤ λ|V | be the eigenvalues
of A. Assume A is diagonalizable. Then for any l > 0, the
function δ(β, ωN ) in Corollary 6 can be written√

1− Φ−1(ε(β,N)|V |λl
nκ(P

∗(ωN )), (n− 1)/2, 1/2).

(17)

Corollary 9 provides a probabilistic upper bound in The-
orem 5, as a function of the largest eigenvalue of the
adjacency matrix of G. One can see that an automaton
with a small largest eigenvalue allows for a better estimate
of the CJSR, for a fixed number of samples N and length
l.

4. CONCLUSION

In this work, we extended the scope of data-driven stability
analysis of hybrid systems by generalizing previous data-
driven results to the constrained case. In particular we
have built our results on the basis of Berger et al. (2021).

We proceeded as follows. We first proposed a lifting result
allowing us to reduce the computation of the CJSR of a
given CSLS to the computation of a simpler JSR. We then
stated the main theorem of this paper, which provides
probabilistic guarantees for the stability of a given noise-
free CSLS. Finally, we claimed that in case of uniformity on
the distribution of switching sequences, we can investigate
further the obtained bound. We showed that a smaller
entropy of the automaton allows for a better guarantee
about the stability.

In further research, we plan to extend this type of method
to noisy observations. We also plan to investigate different
approaches. For example, getting rid of the lifting result
would allow to reduce the conservativism introduced by
the latter, i.e. the gap between the lifted JSR ρ(Πl)

1/l

and the true CJSR ρ(G,Σ) in (9). In this regard we
plan to directly approximate multiple Lyapunov functions
(Philippe and Jungers, 2015, Definition 2).
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Abstract: In a seminal paper Foster (1924) showed that the impedances of lumped electrical
circuits generated by inductances and capacitors are positive real odd functions (PRO for short).
For multi-port electrical systems built from inductances and capacitors one obtains matrix-
valued PRO functions, denoted PROm in the case of m×m matrix functions. Like PRO, the
class of matrix functions PROm is also a convex invertible cone, i.e., a convex cone closed under
inversion (in the form of involution). Given a minimal, Weierstrass descriptor realization for a
function in PROm, we explicitly compute a minimal, Weierstrass descriptor realization for its
involution, and through these formulas one can analyse the zero-pole structure of the function.

Keywords: Positive real odd matrix functions, convex invertible cones, descriptor systems,
system inversion, transfer function zeros and poles.

1. INTRODUCTION

Positive real odd (rational) functions, often also referred
to as positive real lossless functions, have been studied
intensively in electrical engineering since it was observed
by Foster (1924) that this class of functions, denoted
PRO, coincides with the impedances of lumped electrical
circuits generated by inductances and capacitors. Foster
also proved his famous canonical form for one-port reac-
tance functions, namely, f is in PRO if and only if it has
the form

f(z) = a0z+
s∑

k=1

akz

z2 + ω2
k

, a0 ≥ 0, ak, ωk ≥ 0, 1 ≤ k ≤ s.

From this formula it is clear that all poles are simple, lie on
in the imaginary axis iR and have positive residue. Based
on this formula, it is also possible to show that PRO is
a convex invertible cone, cic for short, that is, a convex
cone which is closed under inversion: For f ∈ PRO, also
z 7→ 1/f(z) ∈ PRO. See Cohen et al. (2007) for more on
the cic-structure of PRO. As a consequence of the fact
that PRO is a cic, for any 0 ̸≡ f ∈ PRO, the poles of
1/f are also simple and on iR, so that both the poles and
zeros of f are on iR and they interlace.

⋆ Mathematics Subject Classification (2010). Primary 34A09;
Secondary 93B50, 93B55.
⋆⋆This work is based on research supported in part by the National
Research Foundation of South Africa (Grant Numbers 118513 and
127364).
⋆ ⋆ ⋆This is a resubmission of a full paper accepted for MTNS 2020,
now shortened to an extended abstract for MTNS 2022.

Multi-port electrical systems build from inductances and
capacitors correspond to positive real odd rational matrix
functions, and they have also been studied intensively;
cf., the classical monographs Newcomb (1966); Belevitch
(1968); Anderson et al. (1973) as well as more recent work
of Berger et al. (2014); Chu et al. (2008); Reis (2010), to
name just a few. We write PROm for the class of positive
real odd rational matrix functions of size m ×m, that is,
an m×m rational matrix function F is in PROm in case

(i) Re(F (z)) ≥ 0 for all Re(z) > 0;
(ii) F (t) ∈ Rm×m for all t ∈ R;
(iii) −F (z) = F (−z)∗ for z not a pole of F .

To the best of our knowledge, the cic structure of the class
of matrix-valued PRO functions has not been studied in
detail. It is straightforward to see that PROm is a convex
cone, and also not difficult to prove that PROm is closed
under inversion (in the form of involution). However, here
we focus on explicit inversion formulas of functions in
PROm. In particular, we present two minimal realization
formulas for functions F in PROm, one of which is in
Weierstrass descriptor form, and use these to explicitly
compute minimal realization formulas of the same type for
F (z)−1. This gives another proof of the fact that PROm

is a cic, but it also provides a way to analyse the zero and
pole structure of functions in PROm.

There is also an analogue of the foster canonical form for
the matrix case. Any function F ∈ PROm can be written

F (z) = zQ+R+

s∑
j=1

1

z2 + ω2
j

(zQj +Rj) , (1.1)
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where ωj ∈ R+ and Q,R,Qj , Rj ∈ Rm×m matrices so that

Q, Qj ≥ 0, R = −RT , Rj = −RT
j , j = 1, . . . s. (1.2)

This canonical form has also been extensively studied in
the classical literature including the question how PROm

functions of the form (1.1) can be represented by a multi-
port electrical system of inductances and capacitors; cf.,
Newcomb (1966) and Anderson et al. (1973) and references
given there. However, not every rational matrix function F
of the form (1.1), with ωj ∈ R+ and Q,R,Qj , Rj matrices
satisfying (1.2) are in PROm. For instance, it is easy to
verify that the function

F (z) =
1

z2 + ω2
R, with ω ∈ R+, R = −RT ̸= 0,

is not in PROm. We are not aware of any earlier source
where necessary and sufficient conditions for a function
F of the form (1.1) to be in PROm are presented, apart
from our own work in Ter Horst et al. (2021). In the next
theorem we present such conditions.

Theorem 1.1. An m×m rational matrix function F is in
PROm if and only if F is of the form

F (z) = zQ+R+
s∑

j=1

1

z2 + ω2
j

(zQj +Rj) ,

where ωj ∈ R+, Q,R,Qj , Rj ∈ Rm×m with Q,Qj ≥ 0 and
R,Rj skew-symmetric so that

−ωjQj ≤ iRj ≤ ωjQj , j = 1, . . . , s. (1.3)

Note that since Qj and Rj are real, for (1.3) to hold it
suffices to verify one of the inequalities; indeed, because the
conjugate of a positive semidefinite matrix is also positive
semidefinite, ωjQj + iRj ≥ 0 implies ωjQj − iRj ≥ 0, and
conversely.

Furthermore, we briefly discuss the zero and pole structure
of functions in PROm, using the minimal, Weierstrass
descriptor realization for a function in PROm and its
involution.

The results presented here require rather technical and
sometimes long proofs, which can be found in Ter Horst
et al. (2021).

2. REALIZATION FORMULAS FOR PROM

In this section we provide some realization formulas for
functions in PROm and define what we mean by pole and
zero multiplicity. The formulas are not so much novel, but
are mainly required for the analysis later on.

2.1 Realization formulas

By compiling various results in Reis (2010), specifically
Proposition 7 and Theorem 8, together with basic state
space manipulations, the following transfer function rep-
resentation of PROm functions transpires.

Theorem 2.1. A function F is in PROm if and only if it
admits a realization of the form

F (z) = zM +D +BT (zIn −A)−1B, (2.1)

for some integer n ≥ 0, M,D ∈ Rm×m, B ∈ Rn×m and
A ∈ Rn×n where

M ≥ 0 −AT = A, −DT = D,

and the pair (A,B) is controllable.
(2.2)

By a direct computation one can verify that Theorem 2.1
leads to the following descriptor realization characteriza-
tion of PROm in Weierstrass form. See Dai (1989) and
Kunkel et al. (2006) for more details on descriptor systems
and the Weierstrass form.

Theorem 2.2. A function F is in PROm if and only if it
admits a minimal descriptor realization of the form

F (z) = D◦ + C◦T (zE◦ −A◦)−1B◦,

where we set q = rankM and factor M = KTK with
K ∈ Rq×m, and where we set

A◦ =

[
A 0 0
0 Iq 0
0 0 Iq

]
, E◦ =

[
In 0 0
0 0 Iq
0 0 0

]
, B◦ =

[
B
0

−K

]
, C◦ =

[
B
K
0

]
and D◦ = D, with M,D ∈ Rm×m, B ∈ Rn×m and
A ∈ Rn×n matrices satisfying (2.2).

2.2 Poles and zeros

A number z ∈ C ∪ {∞} is a pole of F ∈ PROm

simply when it is a pole of one of its entries. In the
realization formulas of Theorems 2.1 and 2.2 the finite
poles correspond to the eigenvalues of A. The multiplicity
of a finite pole z of F is then defined as the dimension
of the eigenspace of z as an eigenvalue of A, while the
multiplicity of ∞ as a pole of F is defined as rankM ,
provided M ̸= 0. Since A is real and skew-symmetric, all
poles are on iR and the multiplicities of the finite poles add
up to the McMillan degree of the proper part of F . Note
that this definition of pole multiplicity is independent of
the choice of the minimal realization.

Using the specific structure of the realizations obtained in
Theorem 2.1 one can prove that the multiplicities cannot
exceed the size of the matrix function.

Corollary 2.3. For F ∈ PROm every pole on iR, ∞
included, has a multiplicity of at most m.

In case detF (z) ̸≡ 0 we say that F is invertible, with
inverse given by the involution F (z)−1, which is also in
PROm. In this case, we define the zeros of F to be the
poles of F (z)−1 and the zero-multiplicities of F are defined
as the corresponding pole-multiplicities of F (z)−1. The cic
structure of PROm provides the following result.

Corollary 2.4. For F ∈ PROm every zero on iR, ∞
included, has a multiplicity of at most m.

3. INVERSION OF PROM FUNCTIONS

Let F ∈ PROm with detF (z) ̸≡ 0. Then F is invertible,
with inverse in PROm as well. In particular, the inverse
of F has realization formulas as in Theorems 2.1 and 2.2.
Throughout this section we assume F ∈ PROm is given
in the state space realization form of Theorem 2.1. We
express, in terms of the matrices in the realization (2.1)–
(2.2), when detF (z) ̸≡ 0, and in this case we present
realization formulas of the types in Theorems 2.1 and 2.2
for the inverse of F .

3.1 Invertibility of PROm functions

By the inversion result for descriptor systems fromMartins
et al. (2007), together with a Schur complement com-
putation, one obtains the following characterization for
invertibility of F and of its inverse.
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Proposition 3.1. Let F ∈ PROm be given by (2.1)-(2.2).
Then for any z ∈ C we have

detF (z) ̸≡ 0 ⇐⇒ det
([

zIn 0
0 zM

]
−
[

A B
−BT −D

])
̸≡ 0.

Moreover, in that case we have

F (z)−1 = [ 0 Im ]
([

zIn 0
0 zM

]
−
[

A B
−BT −D

])−1 [
0
Im

]
.

Since
[

A B
−BT −D

]
is also skew-symmetric, the invertibility

criteria of Proposition 3.1 can be expressed in terms of a
condition independent of the z variable.

Lemma 3.2. Let F ∈ PROm be given by (2.1)-(2.2). Then
detF (z) ̸≡ 0 if and only if Ker ([ BD ] |KerM ) = {0}.

3.2 Minimal realizations of F (z)−1

The realization in Proposition 3.1 will in general not be
minimal, and hence some of the poles of the resolvent may
not be poles of F (z)−1, or the multiplicities may be in-
flated. To obtain a minimal realization, we decompose the
matrices M , D and B with respect to the decomposition
of Rm given by

Rm = X1 ⊕X2 ⊕X3, (3.1)

with

X1 = KerM⊥,

X2 = Ker(PKerMD|KerM )⊥,

X3 = Ker(PKerMD|KerM ),

which yields decompositions of the form

BT =

[
BT

1

BT
2

BT
3

]
, D =

[
D11 D12 D13

−DT
12 D22 0

−DT
13 0 0

]
, M =

[
M1 0 0
0 0 0
0 0 0

]
,

(3.2)
with M1 and D22 invertible. In particular, M1 is positive
definite and D22 is invertible and real, skew-symmetric, so
that X2 must have even dimension. We set

m1 = dimX1, m2 = dimX2, m3 = dimX3,

so that m = m1 +m2 +m3 and m2 is even.

Furthermore, consider linear maps K1 and Ξ so that

K1 : X1 → Rm1 , KT
1 K1 = M1,

Ξ : X3 → Rm3 , ΞTΞ = IX3
.

(3.3)

Note that K1 is invertible and Ξ orthogonal. Define

Ã =
[

A−B2D
−1
22 BT

2 (B1+B2D
−1
22 DT

12)K
−1
1

K−T
1 (−BT

1 +D12D
−1
22 BT

2 ) −K−T
1 (D11+D12D

−1
22 DT

12)K
−1
1

]
,

B̃ =
[

B3Ξ
T

−K−T
1 D13Ξ

T

]
. (3.4)

In terms of the decomposition (3.1), the condition for

detF (z) ̸≡ 0 is equivalent to Ker
[

B3

D13

]
= {0}, or,

equivalently, Ker B̃ = {0}.
We are now ready to present the minimal Weierstrass
realization for the inverse of F .

Theorem 3.3. Let F ∈ PROm be given by (2.1)-(2.2) and
decompose B, D, M with respect to the decomposition

(3.1) of Rm as in (3.2). Define Ã and B̃ as in (3.4),

with K1 and Ξ as in (3.3), and assume Ker B̃ = {0}
so that detF (z) ̸≡ 0. Set k = n + m1 − m3 and let

Γ ∈ R(n+m1)×k be an isometry with ImΓ ⊥ Im B̃. Then

a minimal Weierstrass descriptor realization of the inverse
of F is given by

F (z)−1 = D◦
inv + C◦T

inv(zE
◦
inv −A◦

inv)
−1B◦

inv (3.5)

with

E◦
inv =

[
Ik 0 0
0 0 Im3
0 0 0

]
, A◦

inv =

[
Ainv 0 0
0 Im3

0

0 0 Im3

]
,

B◦
inv =

[
Binv
0

−Kinv

]
, C◦

inv =
[
Binv

Kinv
0

]
, (3.6)

D◦
inv =

[
0 0 M−1

1 D13Φ
−1
33

0 D−1
22 −D−1

22 ΦT
23Φ

−1
33

−Φ−1
33 DT

13M
−1
1 Φ−1

33 Φ23D
−1
22 Φ−1

33 ΞT B̃T ÃB̃ΞΦ−1
33

]
,

where we define

Ainv = ΓT ÃΓ, Kinv =
[
0 0 ΞΦ

−1/2
33

]
, (3.7)

Binv = ΓT
[

0 B2D
−1
22 (Φ12−B2D

−1
22 Φ23)Φ

−1
33

K−T
1 −K−T

1 D12D
−1
22 −K−T

1 (Φ22−D12D
−1
22 Φ23)Φ

−1
33

]
,

Φ33 = BT
3 B3 +DT

13M
−1
1 D13,

Φ23 = BT
2 B3 +DT

12M
−1
1 D13,

Φ12 = AB3 −B1M
−1
1 D13, Φ22 = BT

1 B3 −D11M
−1
1 D13

and where

ΞT B̃T ÃB̃Ξ = BT
3 AB3 −BT

3 B1M
−1
1 D13 +DT

13M
−1
1 BT

1 B3

−DT
13M

−1
1 D11M

−1
1 D13 − Φ23D

−1
22 Φ23.

Note that the descriptor realization for F (z)−1 of Theorem
3.3 has precisely the form of the realization in Theorem
2.2. Reversing the argument in Section 2.1, we also obtain
a realization of the type in Theorem 2.1.

Theorem 3.4. Let F ∈ PROm be given by (2.1)-(2.2) and
decompose B, D, M with respect to the decomposition
(3.1) of Rm as in (3.2). Assume detF (z) ̸≡ 0. Then

F (z)−1 = zMinv +Dinv +BT
inv(zIn −Ainv)

−1Binv,

where Binv and Ainv are as in (3.7), Dinv = D◦
inv and

Minv = KT
invKinv with D◦

inv as in (3.6) and Kinv as in
(3.7). Moreover, the pair (Ainv, Binv) is controllable.

Since Φ33 is invertible and Ξ an isometry, it is directly
clear from the formula of Minv that the pole multiplicity
of F (z)−1 at ∞ is equal to m3, hence ∞ is a zero of F
with multiplicity m3. To say something about the zero
multiplicities of F for finite zeros requires more analysis.

4. ZEROS AND POLES OF PROM FUNCTIONS

Recall that the zeros of F are defined as the poles of
F (z)−1. Hence, the finite zeros of F are given by the eigen-
values of Ainv with multiplicities equal to the dimensions
of the corresponding eigenspaces. Thus, to understand
the relation between zeros and poles one has to analyse
the spectrum of Ainv in relation to the spectrum of A.
There are three steps from A to Ainv that influence the
eigenvalues:

(i) The extension of A into

[
A B

−BT −D

]
=


A B1 B2 B3

−BT
1 −D11 −D12 −D13

−BT
2 DT

12 −D22 0
−BT

3 DT
13 0 0

 .

(ii) The transfer to Ã in (3.4) by taking the Schur
complement with respect to −D22.
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(iii) The compression from Ã to Ainv in (3.7) via the
isometry Γ.

The fact that all involved matrices are real skew-symmetric
simplifies matters and enables us to use the Cauchy
interlacing theorem, cf. Theorem 1 in Smith (1992), to
arrive at the following result for the poles and zeros of
functions in PROm.

Theorem 4.1. Let F ∈ PROm be given by a minimal state
space realization (2.1)-(2.2), so that F−1 has a minimal
state space realization as in Theorem 3.4. Then for any
integer j ≥ 0 we have

λ
j−m2

2
−m3

(iAinv)≤λj(iA)≤λj+1(iA)≤λ
j+

m2
2

+m1+1
(iAinv) ,

λ
j−m2

2
−m1

(iA)≤λj(iAinv)≤λj+1(iAinv)≤λ
j+

m2
2

+m3+1
(iA) .

In particular, if 0 ≤ ωj < ωj+1 are such that iωj and iωj+1

are subsequent poles of F , then in the interval (iωj , iωj+1)
on iR F can have zeros whose multiplicities do not add up
to more than m. Moreover, if 0 ≤ νj < νj+1 are such that
iνj and iνj+1 are subsequent zeros of F , then in the interval
(iνj , iνj+1) on iR F can have poles whose multiplicities do
not add up to more than m.

Note that, unlike in the scalar case, for m > 1 it is possible
that poles and zeros of F ∈ PROm occur at the same
point on iR. Hence, as in the theorem, if iωj and iωj+1

are subsequent poles of F , then zeros with a multiplicities
adding up to at most m can occur between iωj and iωj+1,
but the theorem does not exclude the possibility that F
also has zeros at iωj and iωj+1.

5. CONCLUSION

We provided realization formulas for the inverses of func-
tions in PROm. These formulas enabled us to study the
relations between zeros and poles of such functions. We
also extended results on the Foster canonical form for
functions in PROm by providing a necessary and sufficient
condition for such a canonical form to give a function
in PROm that does not seem to have appeared in the
literature before.

We specifically focused on real-valued matrix functions,
i.e., with F (t) ∈ Rm×m for t ∈ R, since without this
condition we do not expect that so much can be said
about the poles and zeros of such functions. However, we
do expect that analogous results will exist for complex-
valued lossless matrix functions regarding the realization
formulas for their inverses as well as the Foster form. This
may be a topic for future work. In this regard, it may also
be interesting to investigate the case of reciprocal matrix
functions in light of the results obtained here.
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S. ter Horst and A. Naudé, The convex invertible cone
structure of positive real odd rational matrix functions,
Oper. Matrices 15 (2021), 357–379.

P. Kunkel and V. Mehrmann, Differential-algebraic equa-
tions, Analysis and numerical solution, EMS Text-
books in Mathematics, European Mathematical Society
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Abstract: In recent years various papers appeared that concentrate on inverse problems
associated with work of Ellis and Gohberg on orthogonal matrix Wiener functions. Here we study
such an inverse problem restricting to rational matrix functions on the real line. The functions
used in stating the problem are assumed to be given by minimal state space realizations, and
the necessary and sufficient solution criterion as well as the formulas for the solution presented
here are described in terms of the matrices of the state space realizations along with solutions
to certain Lyapunov equations associated with the data.

Keywords: Inverse problem, rational matrix functions, state space realizations.

1. INTRODUCTION

The monograph by Ellis et al. (2003) collects and expands
work of the authors from about two decades on systems
of orthogonal matrix polynomials and matrix functions,
in some instances together with D.C. Lay; see Ellis et al.
(1992, 1995, 1996) for some of the original work, along with
the monograph for additional references. This work also
contains several results on related inverse problems, but
much of the work on these inverse problems, specifically
for the case of non-square matrix functions, only appeared
recently, in Kaashoek et al. (2014, 2016, 2019) and Ter
Horst et al. (2017, 2019, 2020). Here we present some of
the work that will mainly appear in Ter Horst et al. (2020).

2. FORMULATION OF THE PROBLEM

The inverse problem we consider here has a data set which
consists of four proper rational matrix functions α, β, γ, δ
with sizes given by

α(λ) ∈ Cp×p, β(λ) ∈ Cp×q,

γ(λ) ∈ Cq×p, δ(λ) ∈ Cq×q,
(2.1)

and where α and β have only poles in the open lower half
plane C−, γ and δ have poles only in the open upper half
plane C+, and with values at ∞ given by

α(∞) = Ip, β(∞) = 0, γ(∞) = 0, δ(∞) = Iq.

When the above properties are fulfilled we call {α, β, γ, δ}
an admissible rational data set.
⋆ This work is based on research supported in part by the National
Research Foundation of South Africa (Grant Numbers 118513 and
127364).
This is a resubmission of an extended abstract that was accepted for
the 2020 MTNS conference.

Given an admissible rational data set {α, β, γ, δ} the ratio-
nal version of the twofold Ellis-Gohberg inverse problem
is to find a strictly proper p × q rational matrix function
g which has all its poles in C− such that

α(λ) + g(λ)γ(λ)− Ip has poles only in C+;

g∗(λ)α(λ) + γ(λ) has poles only in C−;

δ(λ) + g∗(λ)β(λ)− Iq has poles only in C−;

g(λ)δ(λ) + β(λ) has poles only in C+.

(2.2)

Here and in the remainder, for any rational matrix func-
tion φ(λ) the adjoint of the function φ(λ) indicates func-
tion φ(λ̄)∗ and will be denoted by φ∗(λ). We shall refer to
the above problem as the twofold Rat-EG inverse problem.
Also in other contexts, EG will be used to abbreviate Ellis-
Gohberg.

We briefly mention the direct EG-problem from which the
inverse EG problem studied here is derived. The starting
point is a strictly proper p× q rational matrix function g
which has all its poles in C−, and the problem is to obtain
an admissible rational data set {α, β, γ, δ} such that (2.2)
is satisfied. Solving this problem is equivalent to solving
two linear equations, Tx1 = f1 and Tx2 = f2, where
T : X → X is a structured linear operator defined by
the given function g, and the right hand sides f1 and f2
are specific elements in X defined by g too; see formula
(1.9) in Ter Horst et al. (2019) for more details. The
solutions x1 and x2, if they exist, will uniquely determine
the requested data set {α, β, γ, δ}. Moreover, under an
additional simple finite dimensional condition, the inverse
of T can be expressed in terms of the data set {α, β, γ, δ}.
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3. OPERATOR THEORY SOLUTION

This version was investigated in the more general context
of matrix Wiener class functions on the real line in Ter
Horst et al. (2019), where necessary and sufficient condi-
tions for the existence of solutions were obtained. Also, in
case a solution exists, it is shown that this is the unique
solution and two formulas for the solution are presented.
Based on the results in Ter Horst et al. (2019), see Ter
Horst et al. (2020) for details, it is easily verified that
for the rational matrix data functions {α, β, γ, δ} of an
admissible rational data set, necessary conditions are:

(C1) α∗(λ)α(λ)− γ∗(λ)γ(λ) = Ip;

(C2) δ∗(λ)δ(λ)− β∗(λ)β(λ) = Iq;

(C3) α∗(λ)β(λ) = γ∗(λ)δ(λ).

In addition to these three equations, in the Wiener class
function inverse problem on the real line of Ter Horst
et al. (2019), two more conditions are required to obtain
necessary and sufficient conditions, and these conditions
can be formulated as the required that two operators,
determined by Hankel operators associated with the data
functions, are one-to-one; see Theorem A.1 in Ter Horst
et al. (2020). The main aim of the present research
is to express the two operator conditions in a more
computationally effective way, and use the new versions
of these conditions to obtain new representations of the
solutions.

4. STATE SPACE PRELIMINARIES

To obtain more computationally attractive solution cri-
teria and a more explicit description of the solution, we
assume our data functions are given in the form of finite
dimensional state space realizations:

α(λ) = Ip + iC1(λIn1
− iA1)

−1B1,

β(λ) = iC2(λIn2 − iA2)
−1B2,

γ(λ) = −iC3(λIn3
+ iA3)

−1B3,

δ(λ) = Iq − iC4(λIn4
+ iA4)

−1B4.

(4.3)

Here Aj , 1 ≤ j ≤ 4, is a square matrix which is
assumed to be stable, e.g., all eigenvalues of Aj are in
the open left half plane Cleft. These stability conditions
are automatically fulfilled if the realizations are minimal.
In the latter case the McMillan degrees of α, β, γ, δ are
equal to n1, n2, n3, n4, respectively. Although the functions
α, β, γ, δ in an admissible rational data set can always
be represented in this way, we shall not require the
realizations in (4.3) to be minimal.

To state our solution to the twofold Rat-EG inverse
problem we shall use the solution Pij , for i, j ∈ {1, 2} or
i, j ∈ {3, 4}, to the following Lyapunov equation associated
with the pairs (Ai, Ci) and (Aj , Cj):

A∗
iPij + PijAj + C∗

i Cj = 0,

with i, j ∈ {1, 2} or i, j ∈ {3, 4}. (4.4)

For i = j we abbreviate Pjj to Pj . We also need the
solution Qj , for 1 ≤ j ≤ 4, to the Lyapunov equation

AjQj +QjA
∗
j +BjB

∗
j = 0, 1 ≤ j ≤ 4. (4.5)

Since the matrices Aj , 1 ≤ j ≤ 4, are all stable, the
solutions Pij and Qj to the Lyapunov equations (4.4) and
(4.5) are unique, and given explicitly by

Pij =

∫ ∞

0

esA
∗
i C∗

i Cje
sAj ds, Qj =

∫ ∞

0

esAjBjB
∗
j e

sA∗
j ds.

From the latter identities it follows that the matrices Pj =
Pjj and Qj , 1 ≤ j ≤ 4, are nonnegative. Furthermore, we
have P ∗

12 = P21 and P ∗
34 = P43. See Section 3.8 in Zhou

et att. (1996) for the basic theory of Lyapunov equations;
see also Theorem I.5.5 in Gohberg et al. (1990).

5. SOLUTION IN TERMS OF STATE SPACE
REALIZATIONS

Since P2 and Q2 are nonnegative, the matrix In2
+ Q2P2

is invertible. Similarly, In3
+Q3P3 is invertible because P3

and Q3 are nonnegative. Using the matrices defined above,
we set

N1 : = P1 − P12(In2
+Q2P2)

−1Q2P21,

N4 : = P4 − P43(In3 +Q3P3)
−1Q3P34.

(5.6)

Now we are ready to formulate our first main result, which
provides necessary and sufficient conditions for the twofold
Rat-EG inverse problem.

Theorem 1. The twofold Rat-EG inverse problem associ-
ated with the rational data set {α, β, γ, δ} given by state
space realizations (4.3) has a solution if and only if the
following conditions are satisfied:

(R1) (C1 +B∗
1P1) (λIn1 − iA1)

−1B1 =
= B∗

3(λIn3 − iA∗
3)

−1P3B3;
(R2) (C4 +B∗

4P4)(λIn4 + iA4)
−1B4 =

= B∗
2(λIn2 + iA∗

2)
−1P2B2;

(R3a) B∗
1(λIn1 + iA∗

1)
−1P12B2 = B∗

3P34(λIn4 + iA4)
−1B4;

(R3b) (C2 +B∗
1P12)(λIn2 − iA2)

−1B2 =
= B∗

3(λIn3 − iA∗
3)

−1(C∗
3 + P34B4)

(R4) the matrices In1−Q1N1 and In4−Q4N4 are invertible.

Moreover, in that case the solution is unique.

In case the necessary and sufficient conditions of the
previous theorem are satisfied, it is possible to describe
the unique solution g as in the following result.

Theorem 2. Assume the functions of the rational data set
{α, β, γ, δ} are given by state space realizations (4.3), and
assume the conditions (R1)-(R4) are satisfied. Then the
unique solution g to the twofold Rat-EG inverse problem
is given by

g(λ) = −iC1(λIn1
− iA1)

−1Y1+

− iC2(λIn2 − iA2)
−1

(
Y2 − Ỹ2

)
.

Here Y2 and Ỹ2 are matrices of size n2 × q, and Y1 is a
matrix of size n1 × q, and these three matrices are defined
by

Y1 = (In1
−Q1N1)

−1Q1P12(In2
+Q2P2)

−1B2,

Y2 = (In2 +Q2P2)
−1B2,

Ỹ2 = (In2
+Q2P2)

−1Q2P21Y1.

The results of Ter Horst et al. (2019) also provide an
alternative formula for the unique solution, which can be
presented in terms of the state space formulas for the
data functions and the associated matrices as in the next
theorem.

Theorem 3. Assume the functions of the rational data set
{α, β, γ, δ} are given by state space realizations (4.3), and
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assume the conditions (R1)-(R4) are satisfied. Then the
unique solution g to the twofold Rat-EG inverse problem
is given by

g(λ) = −iX1(λIn4
− iA∗

4)
−1C∗

4+

− i
(
X2 − X̃2

)
(λIn3 − iA∗

3)
−1C∗

3 .

In this case X2 and X̃2 are matrices of size p × n3, and
X1 is a matrix of size p×n4, and these three matrices are
defined by

X1 = B∗
3(In3 + P3Q3)

−1P34Q4(In4 −N4Q4)
−1,

X2 = B∗
3(In3

+ P3Q3)
−1,

X̃2 = X1P43Q3(In3 + P3Q3)
−1.
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Birkhäuser Verlag, Basel, 1990.

S. ter Horst, M.A. Kaashoek, and F. van Schagen, The
discrete twofold Ellis-Gohberg inverse problem. J. Math.
Anal. Appl. 452 (2017), 846—870.

S. ter Horst, M.A. Kaashoek, and F. van Schagen, The
twofold Ellis-Gohberg inverse problem in an abstract
setting and applications, in: Interpolation and realiza-
tion theory with applications to control theory, Oper.
Theory Adv. Appl. 272 (2019), 155–212.

S. ter Horst, M.A. Kaashoek, and F. van Schagen, The
twofold Ellis-Gohberg inverse problem for rational ma-
trix functions on the real line, Oper. Theory Adv. Appl.
279 (2020), 145–173.

M.A. Kaashoek and F. van Schagen, The inverse problem
for Ellis-Gohberg orthogonal matrix functions, Integral
Equ. Oper. Theory 80 (2014), 527—555.

M.A. Kaashoek and F. van Schagen, The Ellis-Gohberg
inverse problem for matrix-valued Wiener functions on
the line, Oper. Matrices 10 (2016), 1009–1042.

M.A. Kaashoek and F. van Schagen, Onefold and twofold
Ellis-Gohberg inverse problems for scalar Wiener class
functions, in: Positivity and Noncommutative Analysis,
Festschrift in Honour of Ben de Pagter on the Occasion
of his 65th Birthday, Birkhäuser Verlag, Basel, 2019.
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On the Risks of Feedback-Trading

Michael Heinrich Baumann ∗

∗ University of Bayreuth, 95447 Bayreuth, Germany (e-mail:
michael.baumann@uni-bayreuth.de).

Abstract: It has been shown in the literature that for certain trading strategies based on control
techniques, namely for the so-called simultaneously long short strategies under relatively weak
market assumptions in continuous time, the so-called robust positive expectation property holds.
This means that for such strategies, if the assumptions are fulfilled, in expectation positive profits
can be proven. Of course, arguments such as trading costs or trading constraints can be used
when discussing these unexpected results. But there are also risks inherent in the strategies
themselves, such as short-selling risks, discretization risks, or momenta. In this talk, we will
present these risks and show how they can possibly be controlled.

Keywords: Feedback Trading, Financial Mathematics, Risk Measures, Skewness, Control-based
Trading Strategies, Discretization, Simultaneously Long Short Trading, Stochastic Processes

EXTENDED ABSTRACT

Trading with stocks or, in general, assets means buying
and selling them according to certain criteria. For this
purpose, there is a wide variety of investment strategies.
The strategy we will look at in this paper, the Simulta-
neously Long Short (SLS) strategy, belongs to a class of
strategies called feedback strategies. These strategies are
inspired and often analyzed by methods originating from
control theory. As the name SLS suggests, this strategy
invests both long and short, shifting more investment to
the better performing side. Short selling means to sell
assets that one does not own but only borrows. In such a
negative investment profits are obtained for falling prices
and losses for rising prices.

If we consider a single-asset market with price p(t) ≥ 0
with t = 0, h, 2h, . . . , T with h > 0 or with t ∈ [0, T ]
and denote by I(t) the investment at time t, i.e. the
number of shares held (ν(t)) times their price per unit
(p(t)), we can calculate the cumulative gain/loss via g(t) =∑t

i=1 ν((i − 1)h)(p(ih) − p((i − 1)h)) =
∑t

i=1 I((i −
1)h)

(
p(ih)

p((i−1)h) − 1
)

resp. g(t) =
∫ t

0
I(t)
p(t)dp(t). The idea

behind feedback strategies is that not only the profit is
a function of the investment, but also the investment
is a function of the profit, i.e., I(t) = f(g(t)) for an
appropriate function f . Two possible choices for feedback
strategies are the linear feedback strategies IL and IS with
fL(x) = I∗L + KL · x with I∗L,KL > 0 and fS(x) = I∗S +
KS · x with I∗S ,KS < 0. The SLS strategy is defined as
follows: ISLS = IL + IS , where I∗ := I∗L = −I∗S > 0
and K := KL = −KS > 0. Observe that when the time
axis and the price process are continuous, the strategy
IL always invests long and the strategy IS always invests
short under the same conditions. Note that it is important
that the gains of the long and the short side (gL, gS) are
calculated separately (since otherwise gain and investment
of the SLS rule would always be zero).

Performance properties of the SLS strategy are analyzed
in various papers. Expected gains are calculated for prices
governed by geometric Brownian motions (Barmish and
Primbs, 2011, 2016; Dokuchaev, 2012; Dokuchaev and
Savkin, 1998), by Merton’s jump diffusion model (Bau-
mann, 2017), by tree models (Iwarere and Barmish, 2014),
in discrete time models with constant trend (Malekpour
and Barmish, 2016; Baumann and Grüne, 2017), as well
as in models with variable trends, so-called time-varying
geometric Brownian motions (Primbs and Barmish, 2013)
and discrete time models with variable parameters (Bau-
mann, 2021), and also in other models. 1 The discrete time
models are of particular interest since they try to avoid the
joint hypotheses problem (i.e. the problem of simultane-
ously assuming a market model and the market efficiency
hypothesis). Variances of gains of SLS strategies are calcu-
lated, e.g., for geometric Brownian motions (Barmish and
Primbs, 2011), Merton’s jump diffusion model (Baumann,
2017), discrete time models with constant and varying
trends (Baumann, 2021), etc. The most interesting result
concerning SLS trading is that under certain assumptions,
in most of the mentioned models under almost all param-
eter settings the expected gain is positive. An exception
are discrete time models with varying trends (Baumann,
2021), which gives a first hint on possible risks traders
using the SLS rule—or, generally, feedback strategies—
face. In the following, we explain four risks, some obvious,
some hidden. And we show which questions might be quite
interesting for future research.

Unreasonable assumptions

In theoretical results often assumptions are made, which
might not be fulfilled in real-world. For example, trading
costs might be neglected or it may be assumed that
traders do not influence the price. There might be neither
trading delay nor restrictions. All amounts of assets (long

1 Please note that the cited literature represents only a small part
of the available literature.
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and short) may be available, and so on. Clearly, these
assumptions must not hold true in real world. One solution
would be to provide trading statistics with historical price
data. However, then the researcher faces the problem of
overfitting (Bailey et al., 2014; Wilmott, 2000). Also, p-
hacking has to be kept in mind.

Short selling

While traders cannot lose more money on long investments
than they invest, the possible loss on short sales—no
matter how small—is in principle unbounded. Even if only
a small amount is sold short, if the stock rises sharply,
for example, because the underlying company receives a
takeover bid, the investor may incur a very large loss. This
is the reason why private persons or companies without
very large financial reserves tend to avoid short sales.
However, in order to profit from falling prices resp. to
bet on falling prices, there are derivatives that have a
similar payoff profile, but whose worst case risk can be
limited. Infinitely large worst-case losses create a serious
risk. It may be possible to circumvent or hedge this risk
by means of derivatives such as put options—but how does
such a hedging strategy influence the performance of the
SLS rule?

Skewness and other higher momenta

Generally, it is rather hard or even impossible to calculate
any classical risk measures for the SLS strategy. An
exception is the case of geometric Brownian motions since
there the density of the gain/loss distribution is known
(Barmish and Primbs, 2011). A way to include risk in
the performance investigations of SLS trading might be
to calculate the skewness, which could be done with
the same methodology and under similar assumptions
as for the variance (Baumann, 2021). However, there is
a fundamental problem: it is not clear whether higher
or lower skewed gains are more risky/preferable. Highly
skewed gains mean that there is a small chance to make
high gains and a high risk to make small losses (as typically
when thinking about lottery or betting slips); low skewed
gains mean there is a small probability for a high loss and
a high chance for small gains.

For example, consider the random variables X,Y modeling
profits (defined on appropriate spaces). We assume that
X is −1 with probability 99% and 99 with 1% and Y
that is −99 with probability 1% and 1 with 99%. It holds:
E[X] = E[Y ] = 0 and V ar(X) = V ar(Y ) = 99. Clearly,
X has a high skewness (v(X) ≈ 9, 85) while Y has a small
skewness (v(Y ) ≈ −9, 85).

When considering the probability of loosing (P (X <
0) = 99%, P (Y < 0) = 1%), Y is preferable. When
considering the worst case, X is preferable. Next, we have
look at a classical risk measure, the Value at Risk (Föllmer
and Schied, 2011, Sec. 4.4). It holds V@R1%(X) = 1
and V@R1%(Y ) = −1, thus, one would prefer Y , but
V@R0.5%(X) = 1 and V@R0.5%(Y ) = 99, speaking for
X.

Discretization risks

The presumably most important risk is the discretization
risk. Baumann (2021) shows that in discrete time (and
all real trades take place in discrete time) traders face
the risk of switching trends. While sign switching trends
are not any problem for the continuous time SLS, they
are in discrete time. For all two points in time where the
sign of the trend is either positive or negative, the trader
may expect a profit. Every time the trend switches its
sign, the trader faces an expected loss. One way out would
be to modify the strategy by model assumptions or by
estimators, but this would be against the fundamental idea
of feedback trading.

CONCLUSION

While for the SLS strategy one can show performance
characteristics such as positive expected returns, both
in theory and based on backtesting, its risks have not
yet been studied in sufficient detail. In this work, we
have presented the presumably most important risks and
outlined against which risks one may or may not protect
oneself. Further research on these topics, based on theory
and backtesting, is desirable.
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1. INTRODUCTION

Semidefinite programming is a generalization of linear
programming whose feasible sets are called spectrahedral
shadows. These are convex semialgebraic sets that (are
the image under an affine linear map of a set that) can
be described by symmetric linear matrix inequalities. Ne-
mirovski (2007) asked whether every convex semialgebraic
set is a spectrahedral shadow. Later Helton and Nie (2009)
conjectured that the answer to this question is in fact
yes. This conjecture was recently disproved by Scheiderer
(2018). Further counter-examples were subsequently given
by Fawzi (2021) and Bettiol et al. (2021). However, the
techniques used in these articles were essentially the same
as the ones developed by Scheiderer (2018). In a joint work
with Manuel Bodirsky and Andreas Thom we provide new
techniques for proving that a certain semialgebraic set is
not a spectrahedral shadow. We use these to prove that
the set of all copositive matrices of size m, i.e. the cone of
all symmetric m×m matrices A such that xtAx ≥ 0 for all
x ∈ Rm≥0, is not a spectrahedral shadow whenever m ≥ 5.
In the following, we describe our techniques in more detail.

2. PRIMITIVE DEFINABILIY

LetX be a set and Ri ⊂ Xri , i ∈ I, a collection of relations
over X. A first-order formula over the relational structure
Γ = (X; {Ri : i ∈ I}) is primitive positive if it is of the
form

∃x1, . . . , xn(ψ1 ∧ · · · ∧ ψm)

where ψ1, . . . , ψm are atomic formulas formed with rela-
tions Ri, i ∈ I. In particular, no negation, disjunction,
and universal quantification is allowed. An endomorphism
of the relational structure Γ is a function f : X → X
such that Ri(x1, . . . , xri) implies Ri(f(x1), . . . , f(xri)) for
all x1, . . . , xri ∈ X and i ∈ I. An easy but important
observation is that if R is a relation over X that can be
defined using a primitive positive formula over Γ, then R
is preserved by all endomorphisms of Γ. In many cases, the

converse holds true as well. This was for instance shown
by Bodnarčuk et al. (1969) in the case when X is finite.

3. A CHARACTERIZATION OF SPECTRAHEDRAL
SHADOWS

Now let R be a real closed extension of R. We consider the
relational structure on R that is given by all spectrahedral
shadows R ⊂ Rm which are defined by matrices with
entries in R. A function f : R → R is an endomorphism
of this relational structure if and only if f is R-linear,
unital and completely positive in the sense that applying
f entry-wise to a positive semidefinite matrix over R gives
a positive semidefinite matrix. We use this observation to
prove the following abstract characterization of spectrahe-
dral shadows.
Theorem 1. Let S ⊂ Rn be a semi-algebraic set. Then S is
a spectrahedral shadow if and only if for all real closed field
extensions R of R and all R-linear, unital and completely
positive functions f : R → R the base-change S(R) ⊂ Rn

is preserved by component-wise application of f .

Here the base-change S(R) of a semialgebraic set S ⊂ Rn
is the semialgebraic subset of Rn defined by the same
inequalities as S.

4. NEW COUNTER-EXAMPLES TO THE
HELTON–NIE CONJECTURE

Relating Theorem 1 to sums of squares in the group ring
of the abelian group Qn, we are able to prove the following
criterion for the convex hull of the positive part of a toric
variety to be a spectrahedral shadow.
Theorem 2. Let S ⊂ Zm≥0 be a finite set of cardinality n.
Let X ⊂ Rn be the image of Rm≥0 under the monomial map

Rm → Rn, x 7→ (xα : α ∈ S).

The closed convex hull of X is a spectrahedral shadow
if and only if for every real closed field R and every
nonnegative polynomial P ∈ R[x1, . . . , xm] with support
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in S there is a d ∈ Z>0 such that P (xd1, . . . , xdm) is a sum
of squares of polynomials.

The cone of completely positive matrices is the closed
convex hull of the image of Rm≥0 under the monomial map
given by all monomials of degree 2. We apply Theorem 2
to the Horn polynomial
(x1+x2+x3+x4+x5)

2−4·(x1x2+x2x3+x3x4+x4x5+x5x1)
that was studied by Hall jun. and Newman (1963). Like
this, we prove that the cone of completely positive matrices
is not a spectrahedral shadow for m ≥ 5. This implies
that its dual cone, the cone of copositive matrices, is not
a spectrahedral shadow either.
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Abstract: Multi-agent systems are known to exhibit stable emergent behaviors, including
polarization, over Rn or highly symmetric nonlinear spaces. In this article, we eschew linearity
and symmetry of the underlying spaces, and study the stability of polarized equilibria of multi-
agent gradient flows evolving on general hypersurfaces. The agents attract or repel each other
according to the partition of the communication graph that is connected but otherwise arbitrary.
The hypersurfaces are outfitted with geometric features styled “dimples” and “pimples” that
characterize the absence of flatness. The signs of inter-agent couplings together with these
geometric features give rise to stable polarization under various sufficient conditions.
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1. INTRODUCTION

We study polarization in multi-agent gradient flow systems
confined to manifolds embedded in the Euclidean space.
Polarization refers to the emergent state where the agents
converge to two distinct clusters. The gradient descent
flow, being a sufficiently simple optimizing process, is
amenable to rigorous stability analysis and thus widely
adopted by many agent-based models as coordinating pro-
tocols for robot swarms. Works on nonlinear spaces is less
common than those in Rn, and are predominantly focused
on highly symmetric spaces, see Sarlette and Sepulchre
(2009); Sepulchre (2011); Lageman and Sun (2016). Possi-
ble applications in clustering algorithms, cellular division,
and social dynamics call for studies of multi-agent systems
on more general manifolds.

There are a few polarization studies on manifolds in the
literature, where the n-sphere has received the most at-
tention. Gaitonde et al. (2021) proved almost sure conver-
gence for a class of Markov processes on the hypersphere.
Hong and Strogatz (2011) found traveling wave polariza-
tion in a variant of the Kuramoto model over the unit
circle with conformist and contrarian oscillators. Ha et al.
(2020) derived stability conditions for a higher dimen-
sional Kuramoto model featuring positive and negative
couplings between agents. More elaborate state-dependent
interaction rules inspired by neuroscience are considered
by Crnkić and Jaćimović (2018) over a 3-sphere through
a quaternion formulation. Another neuronal model called
the principal component analysis flow is studied by Zhang
et al. (2021) to obtain stability of the antipodal equi-
librium. For ring graphs over the 2-sphere, Song et al.
(2017) obtained asymptotically stable polarization with
even number of agents. For more general manifolds, a

? This work is funded by the Luxembourgish state agency FNR
through their funding instrument CORE OPEN.

recent work by Aydogdu et al. (2017) explored geodesic
and chordal interactions between agents on general Rie-
mannian manifolds without stability analysis.

In view of these related works, our contribution is that we
provide rigorous stability analysis of polarized equilibria
for the multi-agent gradient descent system with arbitrary
connected network topology over more general manifolds.
Our investigation is realized by outfitting the manifolds
with special geometric features styled “dimples” and “pim-
ples”. The interplay between these geometric features and
the cooperative/antagonistic interactions among agents
then gives rise to different routes to polarization.

2. SETUP

2.1 Geometric features of the manifold

Consider a closed, connected, and orientable hypersurface
embedded in the Euclidean ambient space

Hn
D fy 2 RnC1 j c.y/ D 0g

implicitly characterized by a smooth C 2 function c W
RnC1 ! R. The hypersurface Hn separates its complement
RnC1�Hn into two disjoint sets, one where c is positive and
the other where c is negative (Lima (1988)). Without loss
of generality, we identify the former with the unbounded
set outside Hn, and the latter with the bounded set inside
Hn. The unit normal n.x/ D rc.x/=krc.x/k is outward-
pointing (i.e., pointing towards the unbounded set), where
the usual restriction applies: the gradient in RnC1 satisfies
rc.x/ ¤ 0 for every x 2 Hn.

The hypersurface Hn is equipped with special features:
dimples and pimples. To define them, introduce a height
function hx W Hn ! R with respect to a fixed x

hx.y/ WD hn.x/; yi; 8y 2 Hn:

The height function gives the altitude of a point y along
the axis spanned by n.x/. For notational convenience, if
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the fixed x carries a subscript, e.g. xi , then hxi
is shortened

as hi . Now we are ready to introduce the definitions for a
dimple and a pimple.

Definition 1. If for some x 2 Hn, y D x is a strict local
minimizer of hx.y/ in a sufficiently small neighborhood
Ix D fy 2 Hn j ky � xk < �g, then Ix is referred to as a
dimple, and x the bottom of the dimple. Similarly, if for
some x 2 Hn, y D x is a strict local maximizer of hx.y/
in a sufficiently small neighborhood Ix , then Ix is referred
to as a pimple, and x the bottom of the pimple.

Figure 1 illustrates the concepts of dimples and pimples in
R3 by some fruits and donuts.

Remark 2.1. The features Ix does not necessarily contain
only one bottom x. That is, another point y ¤ x may also
be a bottom with respect to the height function hy . It may
be that Ix has a single set of bottoms covering all or part
of Ix , or there are multiple disjoint sets of bottoms within
Ix . We require Ix to be sufficiently small in Definition 1
to exclude the latter case, by shrinking the radius � of
the neighborhood around x. However, it is not possible to
completely avoid disjoint sets of bottoms when, e.g., the
embedding of the hypersurface is not analytic.

2.2 Multi-agent networks

Evolving on the hypersurface is a homogeneous multi-
agent system with N agents, associated with an undi-
rected, connected, and weighted graph structure G D
.V; E ; A/. The adjacency matrix A D Œaij � is symmetrical
and has non-negative entries. The vertices V are divided
into two groups Vu D f1; 2; : : :M g and Vl D fMC1; : : : N g
for 1 < M < N . The edge set E is partitioned into
intragroup and intergroup sets EC D ffi; j g 2 E j i; j 2
Vu or i; j 2 Vlg and E� D ffi; j g 2 E j i 2 Vl; j 2 Vug.

Such a partition is introduced to enforce different coupling
rules over edges in EC and E�. The couplings are positive
over all edges in EC, whereas those over E� can be either
all positive or all negative.

2.3 Gradient flow dynamics

Denote the states of the agents individually by xi and
collectively by � WD .xi /

N
iD1. The agents evolve according

to a simple rule of gradient descent flow in continuous time.
Given a disagreement function V W Hn ! R with a smooth
extension NV W RnC1 ! R, the dynamics of each agent is

Pxi D � gradi V.�/ D �Pi
�
ri NV .�/

�
; (1)

where gradi is the intrinsic gradient on the tangent space
Txi

Hn at the point xi , Pi D I � n.xi /n.xi /
0 is an orthog-

onal projection matrix on Txi
Hn, and ri NV .�/ is the stan-

dard gradient in the Euclidean space of the disagreement
function.

As mentioned in �2.2, the partition of the N agents into Vu

and Vl allows us to assign attractive or repulsive intergroup
interactions. For the case of attractive intragroup coupling
and repulsive intergroup coupling, the disagreement func-
tion is

V�.�/ WD
1

2

X
fi;j g2EC

aij kxj � xik
2
�
1

2

X
fi;j g2E�

aij kxj � xik
2:

(2)

For purely attractive coupling, we simply change the sign
of the second term in (2):

VC.�/ D
1

2

X
fi;j g2E

aij kxj � xik
2: (3)

Substituting (2) and (3) into (1) respectively yields

Pxi D Pi

0@X
j2Vu

aij
�
xj � xi

�
�

X
j2Vl

aij
�
xj � xi

�1A ; i 2 Vu

Pxi D Pi

0@X
j2Vl

aij
�
xj � xi

�
�

X
j2Vu

aij
�
xj � xi

�1A ; i 2 Vl

(4)

and
Pxi D Pi

X
j2V

aij
�
xj � xi

�
; i 2 V : (5)

2.4 The assemblage

Assembling the aforementioned ingredients in �2.2 and
�2.3, we have a multi-agent gradient flow system with at-
tractive (4) or repulsive (5) intergroup interactions evolv-
ing on a hypersurface Hn. The hypersurface is equipped
with a pair of dimples or pimples as illustrated in Fig. 1,
each containing one of the two groups of agents Vu and
Vl. We are interested in possible polarization arising in
this setting as a result of the interplay between the graph
couplings and the geometry of the underlying nonlinear
space.

Definition 2. (Polarization). The agents are said to be
polarized if xi D xj for all fi; j g 2 EC and xi ¤ xj for
all fi; j g 2 E�.

Definition 2 characterizes a polarized configuration with-
out specifying whether the states are in equilibrium, limit-
cycle, or other non-stationary modes. We focus on polar-
ized equilibria and its stability properties, because gradi-
ent flows must converge to either an equilibrium or a set
of equilibria (Helmke and Moore, 1996, App. C.12).

For the definitions of Lyapunov and asymptotic stability,
while those of an equilibrium point are well known, those
of a set of equilibria is perhaps less standard. Introduce
the Hausdorff distance between two sets Y;Z � Rn,

dH.Y;Z/ WD maxfsup
y2Y

inf
´2Z
ky � ´k; sup

´2Z
inf
y2Y
ky � ´kg:

Definition 3. (Stability). A set of equilibria S is Lyapunov
stable if, for each � > 0, there is ı D ı.�/ such that
dH.x;S/jtD0 < ı implies dH.x;S/jt < � for all t � 0; is
asymptotically stable if it is stable and ı can be chosen
such that dH.x;S/jtD0 < ı implies limt!1 dH.x;S/ D 0.

We collect a few previous results and associated definitions
that will pave the way for later development.

Definition 4. (Local minimizer). A set S � M is said to
be a local minimizer of a real function f WM! R from a
metric space .M; dH/ if for some � > 0, there is an open
neighborhood N .S/ D fx 2 M j dH.x;S/ < �g such that
f jS � f .x/ for all x 2 N .S/. Moreover, if the inequality
is strict for all x 2 N .S/nS, then S is said to be a strict
local minimizer.
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Fig. 1. Fruits and donuts illustrating Definition 1. From left to right: a lemon with a pair of pimples, an apple with a
pair of dimples, a lemon donut with a pair of dimples, and an apple donut with a pair of pimples.

Definition 5. (Isolated critical). A set S � M of critical
points of a real function f W M ! R from a metric
space .M; dH/ is said to be isolated critical if for some
� > 0, there is an open neighborhood N .S/ D fx 2
M j dH.x;S/ < �g such that N .S/nS is void of critical
points.

Proposition 6. (Prop. 3 Markdahl (2021b)). Let M be a
closed manifold and take any V WM! R that is C 2. Let
S be a compact set of local minimizers of V . If S is a strict
local minimizer, then S is a Lyapunov stable equilibrium
set of Px D � gradV . If S is also isolated critical, then it is
asymptotically stable.

3. MAIN RESULTS

In this section, we present and discuss our main results
concerning the stability properties of polarized equilibria.
They arise in different combinations of attractive/repulsive
interactions with dimple/pimple geometric features, best
exemplified in Fig. 1. Despite the symmetrical shapes ex-
hibited in the figure, we emphasize that our general results
do not require any spatial symmetry of the hypersurface
embedding.

3.1 Dimple pairs with attractive intergroup couplings

Consider the setting of a pair of dimples on the hypersur-
face, one containing the group Vu and the other Vl. Thus,
we operate under the following assumption in this section:

Assumption 1. The sets Iu and Il are a pair of dimples,
and xi 2 Iu for all i 2 Vu, xi 2 Il for all i 2 Vl.

Now we investigate stability of a polarized equilibrium that
exists in the system (5) if the manifold resembles the apple
in Fig. 1. The set of interest is the following:

�� WD f� 2 .Hn/N j xi D xu ; i 2 Vu; xi D xl ; i 2 Vlg: (6)

Let ro D
1
2
kxu � xlk denote the half distance between the

dimple bottoms xu and xl.

Proposition 7. For system (5) under Assumption 1, if
there exists a pair of distinct dimple bottoms xu 2 Iu

and xl 2 Il such that

(1) xu � xl is parallel to n.xu/, and
(2) hu.xl/ is a local maximum satisfying hu.xl/ < hu.xu/,

then a strict local minimum of VC is V �C WD 2r
2
o

P
fi;j g2E� aij ,

and the corresponding strict local minimizer is �� defined
in (6).

To prove it, we look at the disagreement contributions
from E� and EC in (3) separately. Those from E� obeys

kxj � xik
2
� hxj � xi ; n.xu/i

2
D
�
hu.xj / � hu.xi /

�2
� .hu.xu/ � hu.xl//

2
D 4r2o ;

whereas those from EC are lower bounded by 0 since agents
from the same group can simply converge to a single point.
Both lower bounds are achieved simultaneously only by
the configuration �� under the conditions of 7, thus the
conclusion.

Lyapunov stability of (6) is then obtained by applying
Prop. 6 to Prop. 7. For asymptotic stability, we need Iu

and Il to live on nice manifolds.

Theorem 8. For system (5) under Assumption 1, if the two
dimples Iu and Il satisfy the properties given in Prop. 7,
and in addition, there is a neighborhood Na.�

�/ on .Hn/N

that belongs to an analytic manifold, then �� defined in
(6) is an asymptotically stable polarized equilibrium.

Proof. Following a variant (Kurdyka et al., 2000, Sec. 9)
of the  Lojasiewicz inequality valid on analytic Riemannian
manifolds, the analytic function VC.�/ in (3) behaves
in the following way in a neighborhood of the polarized
equilibrium N l.�

�/ � Na.�
�/:

jVC.�/ � VC.�
�/j˛ � �kgradVC.�/k;

for ˛ < 1 and � > 0, and where grad is the intrinsic
gradient on the tangent space. Suppose that � … �� is
an equilibrium in N l.�

�/, then gradVC.�/ D 0, c.f. (1).
Consequently, VC.�/ D VC.�

�/. However, Prop. 7 says
that the local minimum V �C is achieved only by � D ��, a
contradiction. Therefore, there is no equilibrium except ��

in N l.�
�/, rendering �� isolated critical as per Definition 5.

Thus, �� is asymptotically stable by Prop. 6. 2

3.2 Pimple pairs with repulsive intergroup couplings

Consider a pair of pimples on the hypersurface, one con-
taining the group of agents Vu and the other Vl. The
assumption in this section is then

Assumption 2. The sets Iu and Il are a pair of pimples,
and xi 2 Iu for all i 2 Vu, xi 2 Il for all i 2 Vl.

For the dynamics, we are interested in (4) with attractive
intragroup coupling and repulsive intergroup coupling cor-
responding to the disagreement function (2). Thus, we may
picture the system (4) evolving on a lemon-like manifold
in Fig. 1 left.

Denote a closed ball centered at a point x with radius r as
Br .x/. Let xo D

1
2
.xuCxl/ denote the midpoint between xu
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and xl, and recall ro as before is the half distance between
them. The following results concern the set

Clem WD f� 2 .Hn/N j

xi D x 8i 2 Vu; xi D y 8i 2 Vl; .x; y/ 2 Y g;
(7)

where Y WD f.x; y/ 2 Iu � Il j kx � yk D 2rog. This set
has at least one element �� 2 Clem. It may contain other
elements when, for instance, the pair of pimples belongs
to a sphere.

Proposition 9. For system (4) under Assumption 2, if
there exists a pair of distinct pimple bottoms xu 2 Iu

and xl 2 Il such that Iu and Il are entirely contained
in Bro.xo/, then a strict local minimum of V� is V �� WD
�2r2o

P
fi;j g2E� aij , and the corresponding strict local min-

imizer is a compact set of polarized configurations Clem

defined in (7).

Similar to the proof of Prop. 7, we look at disagreement
contributions from E� and EC separately. The main dif-
ference is that under the condition in Prop. 9, we have
kxj � xik � 2ro D kxu � xlk for all fi; j g 2 E�. Likewise,
Lyapunov stability can be concluded for Clem by applying
Prop. 6 to Prop. 9.

Theorem 10. For system (4) under Assumption 2, if the
two pimples Iu and Il satisfy the conditions given in
Prop. 9, and in addition, there is a neighborhood Na.Clem/
on .Hn/N that belongs to an analytic manifold, then Clem

defined in (7) is an asymptotically stable set of polarized
equilibria.

Theorem 10 concerns the asymptotic stability of an equi-
librium set, rather than an equilibrium point as the sin-
gleton set �� in Theorem 8. The accompanying subtlety
requires a more involved proof; the line of reasoning is
similar to the proof of (Markdahl, 2021a, Thm. 8).

Remark 3.1. The additional requirement on the analytic-
ity of the manifold in Theorems 8 and 10 is a local one.
In fact, the sole purpose of introducing the neighborhood
Na.�/ is to emphasize this local nature. We do not require
the whole manifold to be analytic for Clem or �� to be
asymptotically stable. For instance, Na.Clem/ may be a
subset of .Hn/N \MN , where Hn is the hypersurface
on which the agents inhabit, whereas M is an analytic
manifold.

3.3 Dimples and pimples on a torus

Stable polarization with a pair of dimples is found not only
in (5) as discussed in �3.1. It also exists in the system (4)
with repulsive intergroup coupling, if the normals of the
two dimples point toward each other, see the lemon donut
in Fig. 1. The stability conditions in the following result
is identical to that in Prop. 9 and Theorem 10.

Proposition 11. For system (4) under Assumption 1, if
there exists a pair of distinct dimple bottoms xu 2 Iu

and xl 2 Il such that Iu and Il are entirely contained
in Bro.xo/, then Clem defined in (7) is Lyapunov sta-
ble. Furthermore, if there is a neighborhood Na.Clem/ on
.Hn/N that belongs to an analytic manifold, then Clem is
asymptotically stable.

For the apple donut in Fig. 1 with attractive intergroup
coupling, we have the following result analogous to that

for the apple in �3.1, although the condition here has a
switched inequality (compare to Prop. 7).

Proposition 12. For system (5) under Assumption 2, if
there exists a pair of distinct pimple bottoms xu 2 Iu

and xl 2 Il such that xu � xl is parallel to n.xu/, and
hu.xl/ is a local minimum satisfying hu.xl/ > hu.xu/, then
�� defined in (6) is Lyapunov stable. Furthermore, if there
is a neighborhood Na.�

�/ on .Hn/N that belongs to an
analytic manifold, then �� is asymptotically stable.
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1. INTRODUCTION

During the last couple of years the theory of why and
when Model Predictive Control (MPC) generates stable,
feasible and near optimal closed-loop solutions has sig-
nificantly matured. In this talk we give a survey about
the contribution of the dissipativity concept in this line of
research.

2. PROBLEM FORMULATION

We present our results for discrete-time nonlinear control
systems of the form

x(k + 1) = f(x(k), u(k)), x(0) = x0 (1)

with x(k) ∈ X and u(k) ∈ U for normed vector spaces X
and U . Most of the results in this talk hold in an analogous
way for continuous time systems.

MPC then computes a control input uMPC(·) by solving a
sequence of optimal control problems on finite, overlapping
time horizons. Here, the finite horizon optimal control
problem is given as follows. For a given constraint set
Y ⊂ X × U , a terminal constraints set Xf , a stage cost
` : Y → R, a terminal cost F : Xf → R, and a time
horizon N ∈ N we define the finite horizon functional

JN (x0, u(·)) :=
N−1∑
k=0

`(x(k), u(k)) + F (x(N)), (2)

where x(·) solves (1). Then we solve

minimizeu(·)JN (x0, u(·)) (3)

subject to the constraints (x(k), u(k)) ∈ Y for all k =
0, . . . , N−1 and x(N) ∈ Xf . We call a control u(·) admissi-
ble (for x0) when these constraints are satisfied. Moreover,
we set X := {x ∈ X | there is u ∈ U with (x, u) ∈ Y}.

The pair (Xf , F ) is referred to as terminal condition and
in the trivial case Xf = X and F ≡ 0 we refer to (2) as a
problem without terminal conditions.

Associated to the optimal control problems (3) we define
the optimal value function

VN (x0) := inf
u(·) admissible

JN (x0, u(·))

and we call an admissible control u∗(·) optimal (for x0), if
JN (x0, u

∗(·)) = VN (x0).

The corresponding MPC scheme then reads as follows (for
much more detailed expositions we refer to Rawlings et al.
(2017); Grüne and Pannek (2017)):

Given an initial condition xMPC(0) := x̂0 ∈ X and an
optimisation horizon N ∈ N, for n = 0, 1, 2, . . . we perform
the following steps:

(1) Let x0 := xMPC(n) denote the current state of the
system.

(2) Solve the finite horizon optimal control problem (3)
in order to obtain the optimal control sequence u∗(·).

(3) Apply the first element of the optimal control se-
quence u∗(·) as a feedback control value until the
next time instant, i.e., set uMPC(n) := u∗(0) and
xMPC(n+ 1) := f(xMPC(n), u∗(0)).

(4) Set n := n+ 1 and go to Step 1.

Here, we consider general cost functions ` that do not need
to have any a priori structure. This setting is typically
termed economic MPC in the literature, although general
MPC might be a more appropriate name.

When dealing with MPC, some of the central questions
are:

• Stability: Does the MPC closed-loop solution exhibit
stable behaviour?
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• Optimality: Does the MPC closed-loop solution en-
joy (approximate) optimality properties?

• Feasibility: Does the MPC closed-loop solution
maintain the constraints and are the optimal control
problems in Step (2) of the algorithm always feasible?

As we will explain in the next section, a suitable dissipativ-
ity concept helps to give positive answers to all questions.

3. STRICT DISSIPATIVITY

The appropriate dissipativity concept is the following
strict dissipativity notion. In this extended abstract we
limit ourselves to strict dissipativity at an equilibrium
(xe, ue) ∈ Y (i.e., f(xe, ue) = xe). Extensions to periodic
and general time-varying trajectories are possible and will
be briefly explained in the talk.

Definition 3.1. The optimal control problem is called
strictly dissipative at an equilibrium (xe, ue), if there exists
a storage function λ : X→ R, bounded from below, and a
function 1 α ∈ K∞ such that the inequality

λ(f(x, u)) ≤ λ(x) + `(x, u)− `(xe, ue)− α(‖x− xe‖)
holds for all (x, u) ∈ Y with f(x, u) ∈ X. Here, the function
s(x, u) = `(x, u)− `(xe, ue) is called the supply rate.

The optimal control problem is called dissipative if the
above inequality holds with α ≡ 0.

It follows immediately that if (not necessarily strict)
dissipativity holds, then (xe, ue) is an optimal equilibrium,
in the sense that `(xe, ue) ≤ `(x̃, ũ) for all equilibria
(x̃, ũ) ∈ Y with x̃ 6= xe.

The dissipativity notion for control systems was intro-
duced by Willems (1972) in continuous time, the discrete
time version used here is due to Byrnes and Lin (1994).
It is interesting that strict dissipativity has not played
a significant role in the literature until quite recently.
The reason is that in the past the specific form of the
suppy function often did not play a role. In this case, any
dissipative system is also strictly dissipative; it suffices to
replace s(x, u) by s(x, u) + α(‖x − xe‖). However, if the
supply function s is linked to the cost function of the
optimal control problem as in Definition 1, then it is not
possible to modify it. In this sense, the application to MPC
and optimal control are probably the main motivation for
studying strict dissipativity.

4. STABILITY AND AVERAGED OPTIMALITY

The observation that dissipativity is beneficial for MPC
was first made in Diehl et al. (2011), where it was observed
that strict duality — which is nothing but strict dissipa-
tivity with a linear storage function — implies asymptotic
stability of the optimal equilibrium for the MPC closed-
loop under appropriate terminal conditions. This paper
already contains the key idea of all dissipativity-based
MPC stability results, namely the fact that the optimal
value function of the optimal control problem with rotated
cost

1 As usual, we define K∞ to be the space of continuous functions
α : [0,∞) → [0,∞) with α(0) = 0 and α is strictly increasing to ∞.

˜̀(x, u) = `(x, u)− `(xe, ue) + λ(x)− λ(f(x, u))

can be used as a Lyapunov function for the closed loop.
The observation that this construction can be extended
without additional effort from strict duality to strict dis-
sipativity was then made in Angeli and Rawlings (2010).

The decisive contribution of the terminal condition in
these papers lies in the fact that under this condition the
optimal trajectories of the optimal control problems with
cost ` and ˜̀, respectively, coincide. The properties of the
terminal conditions needed for this were given in Amrit
et al. (2011) and a special case was already used earlier in
Angeli et al. (2009) in order to prove average optimality
of the MPC closed-loop, i.e., that

J∞(x̂0, uMPC(·)) = inf
u admissible

J∞(x̂0, u).

for J∞(x0, u) := limK→∞
1
K

∑K−1
k=0 `(x(k), u(k)). We re-

mark that, in contrast to most other results discussed here,
for this proof strict dissipativity is not needed. However, it
needs optimal operation of the system at the equilibrium
(xe, ue), which under a controllability condition implies
(non-strict) dissipativity, see Müller (2014).

The fact that the optimal trajectories with cost ` and ˜̀co-
incide is no longer the case for MPC without terminal con-
ditions. However, as first observed in Grüne (2013), then
refined in Grüne and Stieler (2014) and later streamlined
in Chapter 8 of Grüne and Pannek (2017), the solutions
are still very similar up to a certain time P . The reason for
this is the so-called turnpike property in optimal control,
which demands that the optimal trajectory most of the
time stays near the optimal equilibrium. As noted in Grüne
(2013), this property is implied by strict dissipativity un-
der a reachability condition (conceptually similar results
are much older and can be found, e.g., in Carlson et al.
(1991)). Besides the possibility of building a Lyapunov
function, its implication of the turnpike property is the
second important feature of strict dissipativity. For more
information on the turnpike property we refer to the recent
survey Faulwasser and Grüne (2022).

As a consequence of this similarity, without terminal
conditions we can still conclude near average optimality,
i.e.,

J∞(x̂0, uMPC(·)) = inf
u admissible

J∞(x̂0, u) + ε(N)

with ε(N) → 0 as N → ∞, and practical asymptotic
stability of the closed loop, i.e., asymptotically stable
behaviour outside a small neighbourhood of xe, whose
size also tends to 0 as N tends to infinity. This is due to
the fact that the optimal value function for cost ˜̀ is still
an approximate Lyapunov function for the MPC closed
loop. These two properties hold provided the optimal value
functions for different time horizons satisfy a uniform
continuity condition at the optimal equilibrium xe, which
is needed in order to avoid that the small differences in the
optimal trajectories cause large differences in the closed-
loop behaviour.
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5. TRANSIENT OPTIMALITY

While average optimality is a good measure to assess the
performance of trajectories on very long time horizons, it
does not tell much on short horizons. The reason is that a
large cost on a short horizon contributes only very little to
the average over a long horizon. Hence, a low average cost
on a very long horizon does not allow for any conclusions
about the cost on short horizons of the same trajectory. To
this end, the concept of transient optimality is useful. Re-
call that under the strict dissipativity condition the closed-
loop solutions converge to xe (with appropriate terminal
conditions) or to a small neighbourhood thereof (without
terminal conditions). Hence, if we fix a sufficiently large
time K ∈ N (that may be much larger than N), then we
can find a small ε > 0 such that ‖xMPC(n)− xe‖ ≤ ε for
all n ≥ K. We can now compare the cost of this trajectory
up to time K, i.e.,

JK(x̂0, uMPC(·))

with the cost of all other trajectories that also end up in
an ε-neighbourhood of xe, i.e., with V tr

K (x0) :=

inf{JK(x0, u(·)) |u(·) admissible, ‖x(K)− xe‖ ≤ ε}.

It turns out that there exist two functions ε1(N), ε2(K)→
0 as N,K →∞, such that

JK(x̂0, uMPC(·)) ≤ V tr
K (x̂0) + ε1(N) + ε2(K)

in the case with terminal conditions and

JK(x̂0, uMPC(·)) ≤ V tr
K (x̂0) +Kε1(N) + ε2(K)

in the case without terminal conditions. The former was
proved in Grüne and Panin (2015) and the latter in Grüne
and Stieler (2014); a unified treatment of both cases was
later given in (Grüne and Pannek, 2017, Chapter 8).

6. FEASIBILITY

In all statements so far we have tacitly assumed that the
solution xMPC(n) exists for all n ≥ 0. However, this
requires that in each sampling instance in Step (2) of
the MPC scheme there exists an admissible control u(·)
for the initial condition x0 = xMPC(n). In this case,
we call x0 = xMPC(n) feasible and the question is thus
whether xMPC(n) is feasible for all n ≥ 0 In case of
MPC with terminal conditions, feasibility for xMPC(n)
follows if xMPC(n − 1) is feasible — a property called
recursive feasibility — provided the terminal constrained
Xf is viable, i.e., for each x ∈ Xf there is u ∈ U with
(x, u) ∈ Y and f(x, u) ∈ Xf , see, e.g., Mayne et al. (2000).
This procedure and the related proofs are completely
unrelated to dissipativity.

However, in the absence of terminal conditions, strict
dissipativity or, more precisely, the turnpike property
again play an important role. If we assume that the
optimal equilibrium xe lies in the interior of the state
constraint set X, then for all sufficiently large horizons N

the turnpike property implies feasibility for all points that
lies on the part of the optimal trajectory that approaches
the turnpike. From this observation, it is then possible to
conclude recursive feasibility, see Faulwasser and Bonvin
(2015); Faulwasser et al. (2018).

7. CONCLUSION AND RECENT DEVELOPMENTS

Strict dissipativity allows to conclude a variety of desirable
properties for the closed-loop system generated by MPC
schemes with general cost functions. The two decisive
features of strict dissipativity in the context of MPC are (i)
that it allows to build a Lyapunov function for the closed-
loop based on an optimal control problem with cost ˜̀ and
(ii) that it implies the turnpike property.

This has motivated extensive studies about the nature
of strict dissipativity. A very interesting connection for
linear quadratic problems is that strict dissipativity is
closely related to detectability properties, see Grüne and
Guglielmi (2018, 2021), which in turn are again closely
linked to the turnpike property in a very general infinite-
dimensional evolution equation setting, see Grüne et al.
(2019, 2020, 2021). This relation will also be explained
in the talk. Dissipativity also turned out to be very
useful for understanding the long-term behavior of infinite-
horizon optimal control problems, see Faulwasser and
Kellett (2021).
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Faulwasser, T., Grüne, L., and Müller, M.A. (2018). Eco-
nomic nonlinear model predictive control. Foundations
and Trends R© in Systems and Control, 5(1), 1–98.

Faulwasser, T. and Kellett, C.M. (2021). On continuous-
time infinite horizon optimal control—dissipativity, sta-
bility, and transversality. Automatica, 134. doi:
10.1016/j.automatica.2021.109907. Paper No. 109907.
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on the parameters of a cyclic subspace code.
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1. INTRODUCTION

Let k be a non-negative integer with k ≤ n, the set of all
k-dimensional Fq-subspaces of Fqn , viewed as Fq-vector
space, forms a Grassmanian space over Fq, which is
denoted by Gq(n, k). A constant dimension subspace
code is a subset C of Gq(n, k) endowed with the metric
defined as follows

d(U, V ) = dimFq
(U) + dimFq

(V )− 2 dimFq
(U ∩ V ),

where U, V ∈ C. This metric is also known as subspace
metric. Subspace codes have been recently used for the
error correction in random network coding, see Koetter
and Kschischang (2008). The first class of subspace codes
studied was the one introduced in Etzion and Vardy
(2011), which is known as cyclic subspace codes. A
subspace code C ⊆ Gq(n, k) is said to be cyclic if for
every α ∈ F∗qn and every V ∈ C then αV ∈ C.

Let V ∈ Gq(n, k), the orbit of V is the set CV = {αV :
α ∈ F∗qn}, and its size is (qn−1)/(qt−1), for some t which

divides n, see (Otal and Özbudak, 2017, Theorem 1).

In particular, every orbit of a subspace V ∈ Gq(n, k)
defines a cyclic subspace code of size (qn− 1)/(qt− 1), for
some t | n. From now on, assume k > 1. Clearly, a cyclic
subspace code generated by an orbit of a subspace V with
size (qn− 1)/(q− 1) has minimum distance at most 2k− 2
and in Trautmann et al. (2013) the authors conjectured

the existence of a cyclic code of size qn−1
q−1 in Gq(n, k) and

minimum distance 2k − 2 for every positive integers n, k
such that 1 < k ≤ n/2.

? The research of Ferdinando Zullo was supported by the project
“VALERE: VAnviteLli pEr la RicErca” of the University of Cam-
pania “Luigi Vanvitelli” and was partially supported by the Italian
National Group for Algebraic and Geometric Structures and their
Applications (GNSAGA - INdAM).

In Ben-Sasson et al. (2016) the authors used subspace
polynomials to generate cyclic subspace codes with size
qn−1
q−1 and minimum distance 2k − 2, proving that the

conjecture is true for any given k and infinitely many
values of n. Such result was then improved in Otal and
Özbudak (2017). Finally, the conjecture was solved in Roth
et al. (2017) for most of the cases, by making use of Sidon
spaces originally introduced in Bachoc et al. (2017).

The connection between cyclic subspace codes and Sidon
spaces relies on the following result.

Theorem 1. (Roth et al., 2017, Lemma 34) Let U be an
Fq-subspace of Fqn of dimension t. Then CU is a cyclic

subspace code of size qn−1
q−1 and minimum distance 2t − 2

if and only if U is a Sidon space.

In this abstract we provide a generalization of the notion
of Sidon space via Theorem 1, introducing the multi-Sidon
space notion, which is a collection of Fq-subspaces in Fqn
with a special patterns of intersection with the elements
of their orbits. We then show a link between multi-Sidon
spaces of maximum dimension and cyclic subspace codes
with certain parameters, which yields to a canonical form
for such codes. Then we propose a geometric interpretation
of the Sidon (and the multi-Sidon) property by means
of linear sets, which will give us an upper bound on
the number of subspaces that a cyclic subspace codes
associated with a multi-Sidon space can have. The results
rely on the paper Zullo (2021).

2. PRELIMINARIES

2.1 Linear sets

A point set L of Λ = PG(V,Fqn) = PG(r−1, qn) is said to
be an Fq-linear set of Λ of rank k if it is defined by the
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non-zero vectors of a k-dimensional Fq-vector subspace U
of V , i.e.

L = LU := {〈u〉Fqn
: u ∈ U \ {0}}.

We denote the rank of an Fq-linear set LU by Rank(LU ).
For any subspace S = PG(Z,Fqn) of Λ, the weight of S
in LU is defined as wLU

(S) = dimFq (U ∩Z). If Ni denotes
the number of points of Λ having weight i ∈ {0, . . . , k} in
LU , the following relations hold:

|LU | ≤
qk − 1

q − 1
, (1)

|LU | = N1 + . . .+Nk, (2)

N1 +N2
q2 − 1

q − 1
+ . . .+Nk

qk − 1

q − 1
=
qk − 1

q − 1
. (3)

For further details on linear sets see Lavrauw and Van de
Voorde (2015); Polverino (2010).

2.2 Sidon spaces

Sidon spaces were introduced recently in Bachoc et al.
(2017) as an important tool to prove the linear analogue
of Vosper’s Theorem, which analyze the equality in the
linear analouge of Kneser’s theorem proved in Bachoc et al.
(2018); Hou et al. (2002). An Fq-subspace U of Fqn is called
a Sidon space if the product of any two elements of U
has a unique factorization over U , up to multiplying by
some elements in Fq. Formally, U is a Sidon space if for all
nonzero a, b, c, d ∈ U , if ab = cd, then

{aFq, bFq} = {cFq, dFq},

where if e ∈ Fqn then eFq = {eλ:λ ∈ Fq}. Sidon spaces
may be seen as the q-analogue of Sidon sets, see O’Bryant
(2004).

3. MULTI-SIDON SPACES AND CYCLIC SUBSPACE
CODES

Although Sidon spaces are defined purely algebraically,
they can be defined (via Theorem 1) as those subspaces
of Fqn meeting each elements of its orbit in dimension at
most one. Taking this into account, the following definition
arises naturally.

Let {U1, . . . , Ur} be a set of Fq-subspaces of Fqn such that
Orb(Ui) ∩ Orb(Uj) = ∅, for every i, j ∈ {1, . . . , r} with
i 6= j. Let ki = dimFq (Ui) ≥ 2 for any i ∈ {1, . . . , r} and

suppose that |Orb(Ui)| = qn−1
q−1 for every i ∈ {1, . . . , r}. If

dimFq
(Ui∩αUj) ≤ 1, for every α ∈ Fqn and i, j ∈ {1, . . . , r}

such that Ui 6= αUj then we call {U1, . . . , Ur} a multi-
Sidon space.

Clearly, when r = 1 a multi-Sidon space is a Sidon space.
Moreover, if {U1, . . . , Ur} is a multi-Sidon space then Ui
is a Sidon space for every i ∈ {1, . . . , r}.
Let U and V be two Fq-subspaces of Fqn . Denote by 〈U2〉
the Fq-span of {st: s, t ∈ U}, U−1 = {u−1:u ∈ U \ {0}}
and U · V = {uv:u ∈ U, v ∈ V }.
Bachoc, Serra and Zémor proved a lower bound on the
dimension of 〈U2〉 when U is a Sidon space in (Bachoc
et al., 2017, Theorem 18) and hence, putting together

with the trivial upper bound on the dimension of 〈U2〉,
the following result holds.

Theorem 2. If U is a Sidon space in Fqn of dimension
k ≥ 3, then

2k ≤ dimFq (〈U2〉) ≤
(
k + 1

2

)
.

We can hence apply the above result to all the subspaces
of a multi-Sidon space, obtaining the following bounds.

Corollary 3. Let {U1, . . . , Ur} is a multi-Sidon space of
Fqn . Let ki = dimFq (Ui) for any i ∈ {1, . . . , r}. Then

2
r∑
i=1

ki ≤ dimFq (〈U2
1 〉 × . . .× 〈U2

r 〉) ≤
r∑
i=1

(
ki + 1

2

)
.

In particular, ki ≤ n/2 for each i ∈ {1, . . . , r}.

Let {U1, . . . , Ur} be a multi-Sidon space of Fqn and let
ki = dimFq

(Ui) for any i ∈ {1, . . . , r}. Similarly to (Roth
et al., 2017, Definition 4), we say that {U1, . . . , Ur} is
minimum-span if dimFq

(〈U2
1 〉 × . . .× 〈U2

r 〉) = 2
∑r
i=1 ki

and we say that it is maximum-span if dimFq
(〈U2

1 〉 ×
. . .× 〈U2

r 〉) =
∑r
i=1

(
ki+1
2

)
.

A multi-Sidon space {U1, . . . , Ur} of Fqn , with ki =
dimFq (Ui) for any i ∈ {1, . . . , r}, is said to be maximum
if n is even and ki = n/2 for every i ∈ {1, . . . , r}.
Denote by Lt the following set of polynomials

Lt =

{
t−1∑
i=0

aix
qi : ai ∈ Fqt

}
⊂ Fqt [x].

This polynomials are known as linearized polynomials,
see Wu and Liu (2013) for more details.

We can give a canonical form for a maximum multi-Sidon
space, see (Zullo, 2021, Theorem 4.5) and also (Napolitano
et al., 2021, Theorem 4.6).

Theorem 4. Let n = 2t and suppose that U = {U1, . . . , Ur}
is a set of Fq-subspaces in Fqn with dimension t. Then,
up to replacing the subspaces of U by an element of the
relative orbit, U coincides with

{Wf1,η1 , . . . ,Wfr,ηr},

where f1(x), . . . , fr(x) ∈ Lt, η1, . . . , ηr ∈ Fqn \ Fqt and

Wfi,ηi = {x+ ηifi(x):x ∈ Fqt},

for every i ∈ {1, . . . , r}. Let ηi = Ai,jηj + Bi,j and η2i =
aiηi+bi with Ai,j , Bi,j , ai, bi ∈ Fqt for any i, j ∈ {1, . . . , r}.
Moreover, U is a multi-Sidon space if and only if for every
i, j ∈ {1, . . . , r} and α0, α1 ∈ Fqt the following linearized
polynomials in Lt
Fi,j(x) = fi(α0x) + fi(α1Aj,ibfj(x)) + fi(α0Bj,ifj(x))

−α1x− α0Aj,ifj(x)− α1Aj,iaifj(x)− α1Bj,ifj(x)

have at most q roots over Fqt .

For multiple orbits codes we have the following connection
with multi-Sidon spaces, which immediately follows by the
definition of the subspace metric.
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Proposition 5. Let n = 2t and let U1, . . . , Ur be Fq-
subspaces of dimension t in Fqn and let

C =
⋃

i∈{1,...,r}

CUi ⊆ Gq(n, t)

be a subspace code. Then C is a cyclic subspace code of

size r q
n−1
q−1 and minimum distance 2t − 2 if and only if

{U1, . . . , Ur} is a multi-Sidon space.

Proof. First suppose that C is a cyclic subspace code of

size r q
n−1
q−1 and minimum distance 2t − 2. Observe that

the size of the orbits of the Ui’s is qn−1
q−1 for every i, since

the code C has size r q
n−1
q−1 . The minimum distance of C is

2t− 2 which implies that

dimFq (Ui ∩ αUj) ≤ 1

for every α ∈ Fqn and i, j ∈ {1, . . . , r} with i 6= j and
for every α ∈ Fqn \ Fq if i = j, that is {U1, . . . , Ur} is a
multi-Sidon space. Conversely, assume that {U1, . . . , Ur} is
a multi-Sidon space. By construction, the code C has size

r q
n−1
q−1 and its minimum distance is less than or equal to

2t− 2. The proof concludes once we note that there exists
an element α ∈ Fqn \ Fq such that dimFq (Ui ∩ αUj) = 1
because of its orbit size.

Combining Theorem 4 and Proposition 5 we obtain the
following canonical form for cyclic subspace code whose
subspaces have dimension n/2, with the description of a
condition equivalent to the request of having minimum
distance 2k − 2.

Corollary 6. Let n = 2t and let U1, . . . , Ur be Fq-
subspaces of dimension t in Fqn and let

C =
⋃

i∈{1,...,r}

CUi
⊆ Gq(n, t)

be a subspace code. Then

C =
⋃

i∈{1,...,r}

Wfi,ηi ,

where f1(x), . . . , fr(x) ∈ Lt, η1, . . . , ηr ∈ Fqn \ Fqt and

Wfi,ηi = {x+ ηifi(x):x ∈ Fqt},

for every i ∈ {1, . . . , r}. Let ηi = Ai,jηj + Bi,j and η2i =
aiηi+bi with Ai,j , Bi,j , ai, bi ∈ Fqt for any i, j ∈ {1, . . . , r}.
Moreover, C has minimum distance 2t − 2 if and only if
for every i, j ∈ {1, . . . , r} and α0, α1 ∈ Fqt the following
linearized polynomials in Lt
Fi,j(x) = fi(α0x) + fi(α1Aj,ibfj(x)) + fi(α0Bj,ifj(x))

−α1x− α0Aj,ifj(x)− α1Aj,iaifj(x)− α1Bj,ifj(x)

have at most q roots over Fqt .

4. LINEAR SETS AND CYCLIC SUBSPACE CODES

In this section we first give a geometric description of the
Sidon property in terms of linear sets. With the aid of
Proposition 5 we then translate this description in terms
of cyclic subspace codes.

Theorem 7. Let U be a k-dimensional Fq-subspace of Fqn .
Then U is a Sidon space if and only if the only points
of LU×U ⊆ PG(1, qn) = PG(Fqn × Fqn ,Fqn) of weight
greater than one are those in LU×U ∩ PG(Fq × Fq,Fq).
Furthermore, the weight of such points is k.

In particular, if U is a Sidon space then the size of LU×U
is

qk − 1

q − 1
(qk − q) + q + 1.

Proof. Let α ∈ F∗qn . Let 〈(1, α)〉Fqn
∈ LU×U . Then there

exists ρ ∈ F∗qn such that

ρ(1, α) ∈ U × U,

that is ρ ∈ U ∩ α−1U . Therefore, if U is a Sidon
space by Theorem 1 it follows that dimFq

(U ∩ α−1U) ≤
1 if α /∈ Fq and dimFq

(U ∩ α−1U) = k if α ∈
Fq. So wLU×U

(〈(1, α)〉Fqn
) = 1 if and only if α /∈

Fq and if wLU×U
(〈(1, α)〉Fqn

) ≥ 2 then α ∈ Fq and
wLU×U

(〈(1, α)〉Fqn
) = k. Suppose now that the only points

of LU×U ⊆ PG(1, qn) of weight greater than one are those
in LU×U ∩ PG(Fq × Fq,Fq). Then if α /∈ Fq we have
dimFq

(U ∩ α−1U) ≤ 1 and so by Theorem 1 the subspace
U turns out to be a Sidon space. The last part follows by
2 and 3.

The above result can be extended to the case of multi-
Sidon spaces.

Theorem 8. Let {U1, . . . , Ur} be a set of Fq-subspaces in
Fqn and let ki = dimFq (Ui) for every i ∈ {1, . . . , r}. Then
{U1, . . . , Ur} is a multi-Sidon space if and only if

• the only points of LUi×Ui
⊆ PG(1, qn) = PG(Fqn ×

Fqn ,Fqn) of weight greater than one are those in
LUi×Ui

∩ PG(Fq × Fq,Fq), for every i ∈ {1, . . . , r};
• LUi×Ui

∩ LUj×Uj
= PG(Fq × Fq,Fq), for every i, j ∈

{1, . . . , r} with i 6= j.

Proof. Let α ∈ F∗qn . Let 〈(1, α)〉Fqn
∈ LUi×Ui

∩ LUj×Uj
,

with i 6= j. In particular, there exists ρ ∈ F∗qn such that

ρ(1, α) = (u, u),

for some u, u ∈ Ui. Hence, α = ρ−1u = u/u. Similarly,
α = v/v, for some v, v ∈ Uj . So that α ∈ Ui ·U−1i ∩Uj ·U

−1
j .

The assertion now follows by (Zullo, 2021, Theorem 3.6)
and by Theorem 7.

We can hence derive some bounds that involve the number
and the dimensions of the subspaces of a multi-Sidon
space, the degree of the field extension and q.

Theorem 9. Let {U1, . . . , Ur} be a multi-Sidon space and
let ki = dimFq

(Ui) for every i ∈ {1, . . . , r}. Then
r∑
i=1

qki − 1

q − 1
(qki − q) ≤ qn − q.

In particular, if {U1, . . . , Ur} is a maximum multi-Sidon
space then

r ≤ (qn − q)(q − 1)

(qn/2 − q)(qn/2 − 1)
.

If n > 4 then r ≤ q − 1 and if n = 4 then r ≤ q.
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Proof. By Theorem 8, the LUi×Ui
’s pairwise intersect

each other only in PG(Fq × Fq,Fq), so that∣∣∣∣∣
(

r⋃
i=1

LUi×Ui

)
\ PG(Fq × Fq,Fq)

∣∣∣∣∣ =
r∑
i=1

qki − 1

q − 1
(qki − q).

Since (
⋃r
i=1 LUi×Ui

) \ PG(Fq × Fq,Fq) ⊆ PG(1, qn) \
PG(Fq × Fq,Fq), the assertion follows.

Combining Proposition 5 and Theorem 9 we obtain the
following bound on the number of orbits that a cyclic
subspace codes (whose subspaces have dimension n/2) can
have.

Corollary 10. Let n = 2t and let U1, . . . , Ur be Fq-
subspaces of dimension t in Fqn and let

C =
⋃

i∈{1,...,r}

CUi
⊆ Gq(n, t)

be a subspace code. If the minimum distance of C is 2t−2,
then r ≤ q − 1 if n ≥ 4 and r ≤ q if n = 4.

We do not know if the above bound is tight but in (Roth
et al., 2017, Construction 37) a construction of cyclic
subspace codes as in Corollary 10 with r equals to roughly
q/2 has been shown.

5. CONCLUSION

In this abstract we first give a generalization of the
notion of Sidon space with the notion of multi-Sidon
space. Then we show a link between multi-Sidon spaces
of maximum dimension and cyclic subspace codes with
certain parameters, which yields to a canonical form for
such codes. Then we propose a geometric interpretation
of the Sidon (and the multi-Sidon) property by means of
linear sets, which give us an upper bound on the number
of subspaces that a cyclic subspace codes associated with
a multi-Sidon space can have. However, further combining
the algebraic and geometric approaches, more results on
cyclic subspace codes can be obtained. For instance, using
the canonical form in Theorem 4, more examples of cyclic
subspace codes could be shown.
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Abstract: This abstract summarizes our recent results on reachability analysis using dissipation
inequalities. We first outline a method to outer-approximate forward reachable sets (FRS) on
finite horizons for uncertain polynomial systems. This method makes use of time-dependent
polynomial storage functions that satisfy appropriate dissipation inequalities that account
for L2 disturbances, uncertain parameters, and perturbations characterized by time-domain,
integral quadratic constraints (IQC). By introducing IQCs to reachability analysis, we now
allow for various types of uncertainty, including unmodeled dynamics. We next discuss backward
reachable sets (BRS), and decompose control synthesis process into two steps: first we construct
storage functions whose sublevel sets are used for BRS estimation, and then we compute control
laws using these storage functions through quadratic programs (QP). In a separate result we
simultaneously compute an under-approximation to the BRS, as well as an explicit control law
in order to incorporate input saturation limits. These methods make use of the generalized
S-procedure and Sum-of-Squares techniques to derive algorithms with the goal of finding the
tightest approximation to the reachable sets.

Keywords: Nonlinear Systems and Control.

1. INTRODUCTION

Reachability analysis is of vital importance for safety-
critical systems: it can verify whether a system is able to
reach a target and avoid an obstacle. There are two fun-
damental types of reachable sets (Mitchell, 2007): forward
and backward. The forward reachable set (FRS) is the set
of all the successors of a given set of initial conditions
under the system dynamics. The backward reachable set
(BRS) is the set of initial conditions whose successors can
be maintained safely inside a given state constraint set
using an admissible control. In our works (Yin et al., 2018,
2019a,b), the forward and backward reachability problems
are considered with finite horizons, since in many practical
settings, systems only undergo finite-time trajectories. We
make use of time-dependent storage functions that satisfy
certain dissipation inequalities to characterize the FRS
and BRS. The use of dissipation inequalities allows us
to accommodate various sources of uncertainty, including
L2 disturbances, uncertain parameters and perturbations
∆ (e.g. unmodeled dynamics, uncertain time delay, and
control saturation), whose input output properties are de-
scribed by integral quadratic constraints (IQCs) (Megret-
ski and Rantzer, 1997; Veenman et al., 2016). The general-
ized S-procedure and sum-of-squares (SOS) relaxation for
polynomial non-negativity are used to derive computation
algorithms for obtaining storage functions.

The work in (Yin et al., 2018) addresses the computation
of an outer-approximation to the FRS by merging the

dissipation inequality and IQCs. Therefore, although our
nominal systems are assumed to be polynomials, including
IQCs allows us to extend our analysis framework to non-
polynomial systems. We formulate the FRS computation
as generalized SOS optimization problems that are quasi-
convex, which can be solved effectively by bisection, and
for which global optimal solutions can be achieved. The
work in (Yin et al., 2019a) studies backward reachabil-
ity: we compute a storage function that characterizes an
inner-approximation to the BRS first, and then we obtain
the min-norm control law as the closed-form solution to
the quadratic programming (QP) based on the computed
storage function. The control law is not restricted to poly-
nomial functions. In (Yin et al., 2019b), the BRS inner-
approximation and control law are computed at the same
time in order to account for control saturation. In these
two works, the derived optimizations are nonconvex due
to bilinearity in decision variables. Therefore, algorithms
are designed to alternate the search over bilinear variables.

In the existing literature, there are various approaches to
reachability analysis, including polytopic methods (Bor-
relli et al., 2011), Hamilton-Jacobi methods (Mitchell
and Tomlin, 2000), ellipsoid methods (Kurzhanskiy and
Varaiya, 2007) and interval analysis (Jaulin et al., 2001).
Finite horizon forward reachability analysis is also consid-
ered in (Majumdar and Tedrake, 2017), but it only allows
parametric uncertainty. The BRS is outer-approximated in
(Henrion and Korda, 2014) by taking the complement of
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the initial set from which no trajectory is able to reach the
target set for any admissible inputs. The result in (Henrion
and Korda, 2014) is complementary to our works (Yin
et al., 2019a,b), since we provide inner-approximations to
the BRS, as well as an explict control law.

The abstract is organized as follows. In Section 2, the
method for forward reachability analysis from (Yin et al.,
2018) is described. In Section 3.1, the QP based control
synthesis method from (Yin et al., 2019a) is discussed.
In Section 3.2, the method from (Yin et al., 2019b) that
synthesizes the storage function and control law at the
same time is summarized. Section 4 provides the way
of formulating SOS problems. Section 5 summarizes the
results and gives possible directions for the future work.

2. FORWARD REACHABILITY ANALYSIS

The proposed forward reachability analysis framework
considers the following uncertain nonlinear system:

ẋ = f(t, x, w, l), (1a)

v = h(t, x, w, l), (1b)

l = ∆(v), (1c)

with x ∈ X ⊂ Rn, l ∈ Rnl , w ∈ Rnw , v ∈ Rnv , where f, h
define the nominal system G and the perturbation ∆ is an
operator ∆ : Lnv2 [0, T ] → Lnl2 [0, T ]. The uncertain system
(1), denoted as Fu(G,∆), is an interconnection of ∆ and
G, as shown in Fig. 1.

�
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<latexit sha1_base64="RXFmeCFAFLWm6A2HPHJ7FvtnIgg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/UCYzw</latexit><latexit sha1_base64="RXFmeCFAFLWm6A2HPHJ7FvtnIgg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/UCYzw</latexit><latexit sha1_base64="RXFmeCFAFLWm6A2HPHJ7FvtnIgg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/UCYzw</latexit><latexit sha1_base64="RXFmeCFAFLWm6A2HPHJ7FvtnIgg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/UCYzw</latexit>v

<latexit sha1_base64="Y1VFGg6QQHrr//k/0PvW2lPMVyo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N4US+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx/dxvT1BpHstHM03Qj+hQ8pAzaqzUmPTLFbfqLkDWiZeTCuSo98tfvUHM0gilYYJq3fXcxPgZVYYzgbNSL9WYUDamQ+xaKmmE2s8Wh87IhVUGJIyVLWnIQv09kdFI62kU2M6ImpFe9ebif143NeGtn3GZpAYlWy4KU0FMTOZfkwFXyIyYWkKZ4vZWwkZUUWZsNiUbgrf68jppXVU9t+o1riu1uzyOIpzBOVyCBzdQgweoQxMYIDzDK7w5T86L8+58LFsLTj5zCn/gfP4A4zGM+g==</latexit><latexit sha1_base64="Y1VFGg6QQHrr//k/0PvW2lPMVyo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N4US+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx/dxvT1BpHstHM03Qj+hQ8pAzaqzUmPTLFbfqLkDWiZeTCuSo98tfvUHM0gilYYJq3fXcxPgZVYYzgbNSL9WYUDamQ+xaKmmE2s8Wh87IhVUGJIyVLWnIQv09kdFI62kU2M6ImpFe9ebif143NeGtn3GZpAYlWy4KU0FMTOZfkwFXyIyYWkKZ4vZWwkZUUWZsNiUbgrf68jppXVU9t+o1riu1uzyOIpzBOVyCBzdQgweoQxMYIDzDK7w5T86L8+58LFsLTj5zCn/gfP4A4zGM+g==</latexit><latexit sha1_base64="Y1VFGg6QQHrr//k/0PvW2lPMVyo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N4US+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx/dxvT1BpHstHM03Qj+hQ8pAzaqzUmPTLFbfqLkDWiZeTCuSo98tfvUHM0gilYYJq3fXcxPgZVYYzgbNSL9WYUDamQ+xaKmmE2s8Wh87IhVUGJIyVLWnIQv09kdFI62kU2M6ImpFe9ebif143NeGtn3GZpAYlWy4KU0FMTOZfkwFXyIyYWkKZ4vZWwkZUUWZsNiUbgrf68jppXVU9t+o1riu1uzyOIpzBOVyCBzdQgweoQxMYIDzDK7w5T86L8+58LFsLTj5zCn/gfP4A4zGM+g==</latexit><latexit sha1_base64="Y1VFGg6QQHrr//k/0PvW2lPMVyo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N4US+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx/dxvT1BpHstHM03Qj+hQ8pAzaqzUmPTLFbfqLkDWiZeTCuSo98tfvUHM0gilYYJq3fXcxPgZVYYzgbNSL9WYUDamQ+xaKmmE2s8Wh87IhVUGJIyVLWnIQv09kdFI62kU2M6ImpFe9ebif143NeGtn3GZpAYlWy4KU0FMTOZfkwFXyIyYWkKZ4vZWwkZUUWZsNiUbgrf68jppXVU9t+o1riu1uzyOIpzBOVyCBzdQgweoQxMYIDzDK7w5T86L8+58LFsLTj5zCn/gfP4A4zGM+g==</latexit>

G
<latexit sha1_base64="tUjvE4wkWRlcVIxRgxZQP+zWaG8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRgx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzCRBP6JDyUPOqLFS465frrhVdw6ySrycVCBHvV/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ66LquVWvcVmp3eRxFOEETuEcPLiCGtxDHZrAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHm/WMyw==</latexit><latexit sha1_base64="tUjvE4wkWRlcVIxRgxZQP+zWaG8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRgx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzCRBP6JDyUPOqLFS465frrhVdw6ySrycVCBHvV/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ66LquVWvcVmp3eRxFOEETuEcPLiCGtxDHZrAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHm/WMyw==</latexit><latexit sha1_base64="tUjvE4wkWRlcVIxRgxZQP+zWaG8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRgx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzCRBP6JDyUPOqLFS465frrhVdw6ySrycVCBHvV/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ66LquVWvcVmp3eRxFOEETuEcPLiCGtxDHZrAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHm/WMyw==</latexit><latexit sha1_base64="tUjvE4wkWRlcVIxRgxZQP+zWaG8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRgx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzCRBP6JDyUPOqLFS465frrhVdw6ySrycVCBHvV/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ66LquVWvcVmp3eRxFOEETuEcPLiCGtxDHZrAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHm/WMyw==</latexit> w

<latexit sha1_base64="S8o8k6X9NK9GxCPFwpLshvp7c5Y=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N0oJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5LWM+w==</latexit><latexit sha1_base64="S8o8k6X9NK9GxCPFwpLshvp7c5Y=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N0oJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5LWM+w==</latexit><latexit sha1_base64="S8o8k6X9NK9GxCPFwpLshvp7c5Y=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N0oJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5LWM+w==</latexit><latexit sha1_base64="S8o8k6X9NK9GxCPFwpLshvp7c5Y=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N0oJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5LWM+w==</latexit>

 <latexit sha1_base64="95pgIJ6g9hUCMFVTpxtkl5tvDUE=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJlmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1jLdYLGPTiajlUmjeQoGSdxLDqYokf4wmt7n/+MSNFbF+wGnCQ0VHWgwFo5hLvaYV/WrNr/tzkFUSFKQGBZr96ldvELNUcY1MUmu7gZ9gmFGDgkk+q/RSyxPKJnTEu45qqrgNs/mtM3LmlAEZxsaVRjJXf09kVFk7VZHrVBTHdtnLxf+8borD6zATOkmRa7ZYNEwlwZjkj5OBMJyhnDpCmRHuVsLG1FCGLp6KCyFYfnmVtC/qgV8P7i9rjZsijjKcwCmcQwBX0IA7aEILGIzhGV7hzVPei/fufSxaS14xcwx/4H3+APNwjio=</latexit><latexit sha1_base64="95pgIJ6g9hUCMFVTpxtkl5tvDUE=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJlmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1jLdYLGPTiajlUmjeQoGSdxLDqYokf4wmt7n/+MSNFbF+wGnCQ0VHWgwFo5hLvaYV/WrNr/tzkFUSFKQGBZr96ldvELNUcY1MUmu7gZ9gmFGDgkk+q/RSyxPKJnTEu45qqrgNs/mtM3LmlAEZxsaVRjJXf09kVFk7VZHrVBTHdtnLxf+8borD6zATOkmRa7ZYNEwlwZjkj5OBMJyhnDpCmRHuVsLG1FCGLp6KCyFYfnmVtC/qgV8P7i9rjZsijjKcwCmcQwBX0IA7aEILGIzhGV7hzVPei/fufSxaS14xcwx/4H3+APNwjio=</latexit><latexit sha1_base64="95pgIJ6g9hUCMFVTpxtkl5tvDUE=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJlmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1jLdYLGPTiajlUmjeQoGSdxLDqYokf4wmt7n/+MSNFbF+wGnCQ0VHWgwFo5hLvaYV/WrNr/tzkFUSFKQGBZr96ldvELNUcY1MUmu7gZ9gmFGDgkk+q/RSyxPKJnTEu45qqrgNs/mtM3LmlAEZxsaVRjJXf09kVFk7VZHrVBTHdtnLxf+8borD6zATOkmRa7ZYNEwlwZjkj5OBMJyhnDpCmRHuVsLG1FCGLp6KCyFYfnmVtC/qgV8P7i9rjZsijjKcwCmcQwBX0IA7aEILGIzhGV7hzVPei/fufSxaS14xcwx/4H3+APNwjio=</latexit><latexit sha1_base64="95pgIJ6g9hUCMFVTpxtkl5tvDUE=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJlmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1jLdYLGPTiajlUmjeQoGSdxLDqYokf4wmt7n/+MSNFbF+wGnCQ0VHWgwFo5hLvaYV/WrNr/tzkFUSFKQGBZr96ldvELNUcY1MUmu7gZ9gmFGDgkk+q/RSyxPKJnTEu45qqrgNs/mtM3LmlAEZxsaVRjJXf09kVFk7VZHrVBTHdtnLxf+8borD6zATOkmRa7ZYNEwlwZjkj5OBMJyhnDpCmRHuVsLG1FCGLp6KCyFYfnmVtC/qgV8P7i9rjZsijjKcwCmcQwBX0IA7aEILGIzhGV7hzVPei/fufSxaS14xcwx/4H3+APNwjio=</latexit>

z
<latexit sha1_base64="HDzXchlsPlmuEyZZ/9zFJ+iVC6I=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N0IN/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB6UGM/g==</latexit><latexit sha1_base64="HDzXchlsPlmuEyZZ/9zFJ+iVC6I=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N0IN/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB6UGM/g==</latexit><latexit sha1_base64="HDzXchlsPlmuEyZZ/9zFJ+iVC6I=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N0IN/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB6UGM/g==</latexit><latexit sha1_base64="HDzXchlsPlmuEyZZ/9zFJ+iVC6I=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N0IN/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB6UGM/g==</latexit>

Fig. 1. Interconnection Fu(G,∆) of a nominal system G
and a perturbation ∆

Assumption 1. (i) the disturbance w has bounded L2

energy:
∫ T
0
w>(t)w(t)dt ≤ R2, with R given, and (ii) all

the trajectories x(t) of Fu(G,∆) start in the set X0 ⊂ X.

Under this assumption, let FRS(T ;X0) := {x(T ) | x(t) ∈
X0} denote the FRS of Fu(G,∆). Our goal is to outer-
approximate this FRS(T ;X0).

The perturbation ∆ is characterized by IQCs. To define
an IQC we introduce a virtual Ψ (shown in Fig. 1) that is
an LTI system, driven by the input and output of ∆, and
with zero initial condition xψ(0) = 0. The dynamics of Ψ
are given by

ẋψ = Aψxψ +Bψ1v +Bψ2l, (2a)

z = Cψxψ +Dψ1v +Dψ2l, (2b)

where xψ ∈ Rnψ , and z ∈ Rnz . A hard IQC is a quadratic
constraint enforced on the output z of Ψ associated with
a matrix M ∈ Snz over all finite horizons. ∆ is said
to satisfy the hard IQC defined by (Ψ,M), if for all
v ∈ Lnv2 [0, T ], l = ∆(v), we have∫ t

0

z(τ)>Mz(τ)dτ ≥ 0, ∀t ∈ [0, T ]. (3)

The notation ∆ ∈ HardIQC(Ψ,M) is used to indicate
that ∆ satisfies the corresponding hard IQC. Therefore,
a perturbation can be replaced by a filter Ψ and an IQC
(3). The outer-approximation to the FRS of Fu(G,∆) is
then computed using an extended system, which is an
interconnection of G and Ψ with its corresponding IQC
(3). Assume M is constrained to a convex setM, which is
described by linear matrix inequalities (LMIs). For more
details on M, the reader is referred to (Veenman et al.,
2016). The following constraints, including dissipation in-
equality (4a), provide the analysis conditions for Fu(G,∆)
with ∆ ∈ IQC(Ψ,M):

∂tV + ∂xV · f(t, x, w, l) + ∂xψV · (Aψxψ +Bψ1v +Bψ2l)

+ z>Mz ≤ w>w,
∀(t, x, xψ, l, w) ∈ [0, T ]×X × Rnψ × Rnl × Rnw , (4a)

X0 ⊆ {x : V (0, x, 0) ≤ 0}, (4b)

{x : V (t, x, xψ) ≤ R2} ⊆ X,∀(t, xψ) ∈ [0, T ]× Rnψ , (4c)

M ∈M, (4d)

where V (t, x, xψ) and M are decision variables, while
(G,Ψ) and (T,R,X,X0) are fixed. The set X is the re-
gion, over which the dissipation inequality holds. If con-
straints (4) hold, then {(x, xψ) : V (T, x, xψ) ≤ R2} outer-
approximates the FRS of the extended system (G,Ψ) at
the terminal time T from the initial set X0×0. Finally the
projection of {(x, xψ) : V (T, x, xψ) ≤ R2} on the x space
outer-approximates the FRS of Fu(G,∆).

3. BACKWARD REACHABILITY ANALYSIS AND
SYNTHESIS

The backward reachability analysis and synthesis frame-
work focuses on nonlinear systems of the form

ẋ = f(t, x) + g(t, x)u+ gw(t, x)w, (5)

where the control input u ∈ Rnu and the external dis-
turbance w ∈ Rnw enter the system affinely. Assume that
we are given a target set XT ⊂ Rn for the system (5) to
reach at the terminal time T . Assume (i) w has bounded L2

energy:
∫ T
0
w>(t)w(t)dt ≤ R2, with R given, (ii) w satisfies

an L∞ constraint: w(t) ∈ W := {η ∈ Rnw : η>η ≤ α},
for all t ∈ [0, T ]. Let x(t;x0, u) define the solution to the
system (5) at time t, from the initial condition x(0) = x0
under the control u. The BRS is defined as BRS(T,XT ) :=
{ξ ∈ Rn : ∃u(·), s.t. x(T ; ξ, u) ∈ XT }. The goal is to inner-
approximate the BRS, and to find a control law that is
able to steer all the trajectories initialized from the inner-
approximation to XT .

3.1 QP based Synthesis

In this section, we describe the method presented in (Yin
et al., 2019a), where the computation of BRS estimation
and control law is decomposed into two steps. The first
step is to compute the storage function that character-
izes the BRS inner-approximation, and the second is to
solve for the minimum-norm control law using a QP that
involves the obtained storage function. The following con-
straints characterize the storage function to be found in
the first step:



∂tV + ∂xV · (f(t, x) + gw(t, x)w) ≤ w>w,∀(t, x, w) s.t.

∂xV · g(t, x) = 0, V (t, x) ≤ R2, t ∈ [0, T ], w ∈W, (6a)

{x : V (T, x) ≤ R2} ⊆ XT , (6b)

where (f ,g,gw,R, T,W,XT ) are fixed, while V (t, x) is the
decision variable. (6a) implies that we can always find a u
of proper sign and sufficiently large magnitude such that
the following dissipation inequality holds

∂tV + ∂xV · (f(t, x) + g(t, x)u(t) + gw(t, x)w) ≤ w>w,
∀(t, x, w) s.t. V (t, x) ≤ R2, t ∈ [0, T ], w ∈W.

Therefore, if (6) holds, then there exists a control u(·), such
that x(T ) ∈ XT for all x(0) ∈ {x : V (0, x) ≤ 0}, in other
words, the set {x : V (0, x) ≤ 0} is an inner-approximation
to the BRS.

After V is obtained, we look for the input u(t) that
ensures the satisfaction of the dissipation inequality, with
the magnitude of the input been minimized. To achieve
it, the min-nrom input u?(t) is given as the closed-form
solution to the following QP:

min
u∈Rnu

u>u (7a)

s.t. max
w∈W
{∂tV + ∂xV · (f + gu+ gww) ≤ w>w}. (7b)

Since (7b) is quadratic in w, we can solve for the worst-
case disturbance w? using KKT conditions, and obtain
w?(t, x) =

√
α√

c(t, x)>c(t, x)
c(t, x), if c(t, x)>c(t, x) ≥ 4α,

1

2
c(t, x), else,

(8)

where c := (∂xV · gw)>. Substituting (8) back into (7b)
yields two QPs corresponding to two cases listed in (8).
Solving both QPs using KKT conditions gives the explicit
expressions for the min-norm control input

u?(t, x) =

0, if b(t, x) ≤ 0,
−b(t, x)

a(t, x)a(t, x)>
a(t, x)> else,

where a := ∂xV · g and

b :=

{
∂tV + ∂xV · f +

√
αc>c− α, if c>c ≥ 4α

∂tV + ∂xV · f + c>c/4− α, else.

An advantage of this method is that given a storage func-
tion, explicit control laws with smallest feasible magnitude
can be derived, and they are not restricted to polynomi-
als. However, control saturation is not considered in this
framework.

3.2 V − k iterative Synthesis

In this section, we summarize the method in (Yin et al.,
2019b), where we search for a storage function V and
a control law k at the same time so as to take control
saturation into account. Let k : R × Rn → Rnu define a
memoryless time-varying state feedback control by u(t) =
k(t, x(t)). Assume the set of control constraints is given
as a polytope U = {u ∈ Rnu : Au ≤ h}, where A ∈
Rnc×m and h ∈ Rnc . Now the goal for the controller is
to steer system (5) from the BRS inner-approximation
to XT at time T , while satisfying u(t) ∈ U for all t ∈
[0, T ]. Here we provide the sufficient conditions for V to

characterize inner-approximations and k to achieve the
control objective:

∂tV + ∂xV · (f(t, x) + g(t, x)k(t, x) + gw(t, x)w) ≤ w>w,
∀(t, x, w) s.t. V (t, x) ≤ R2, t ∈ [0, T ], w ∈W, (9a)

{x : V (T, x) ≤ R2} ⊆ XT , (9b)

Ak(t, x) ≤ h, ∀(t, x) s.t. V (t, x) ≤ R2, t ∈ [0, T ], (9c)

where V (t, x) and k(t, x) are decision variables. If con-
straints (9) hold, then for all x(0) ∈ {x : V (0, x) ≤ 0}, we
guarantee x(T ) ∈ XT , under control law k. The main idea
behind the constraint (9c) is that while a state x(t) stays
in the set {x : V (t, x) ≤ R2}, the control input derived
from u(t) = k(t, x(t)) satisfies the control saturation.

4. SUM-OF-SQUARES FORMULATIONS

In general, looking for a generic function V that satisfies
(4) or (6), and (V, k) that satisfy (9) could be difficult.
Therefore, we use sum-of-squares programming in finding
those decision variables. Notice that (4), (6) and (9) are
all set-containment constraints, which can be certified by
the generalized S-procedure, along with a method to check
non-negativity. SOS relaxations can be used in checking
non-negativity if all functions are restricted to polynomi-
als. Therefore, we restrict the system model, control law
and storage function to be polynomials, and we assume all
the sets X0, XT , X are sublevel sets of polynomials. Now
we are ready to derive SOS optimization problems. Take
(9a) for example, if the following conditions hold, then (9a)
is satisfied: sa, sb, sc are SOS polynomials, and

− (V̇ − w>w) + (V −R2)sa − t(T − t)sb − (α− w>w)sc
is an SOS polynomial, where decision variables sa, sb,
and sc are called S-procedure certificate. Checking if a
polynomial is an SOS polynomial can be done by solving
a corresponding semidefinite programming (Parrilo, 2000).
Convex SOS problem can be derived for (4). However, (6)
and (9) result in nonconvex SOS problems, due to the
bilinearity in V , and (k, si). But we can still tackle these
nonconvex problems by alternating the search over V and
(k, si).

5. CONCLUSIONS AND FUTURE WORK

This extended abstract summarizes the works from (Yin
et al., 2018, 2019a,b), where dissipation inequality based
methods are proposed to approximate the reachable sets
and synthesize control laws. In (Yin et al., 2018), the
computation of an outer-approximation to the FRS is
proposed, where IQCs are incorporated to model a large
variety of uncertainties. In (Yin et al., 2019a), a storage
function that characterizes an inner-approximation to the
BRS is computed first, and a min-norm control law is
obtained by solving a QP that involves the computed
storage function. Finally, in (Yin et al., 2019b), a BRS
inner-approximation and control law are computed simul-
taneously to consider input saturation limits. In both (Yin
et al., 2019a,b), L2 disturbances and uncertain parameters
are considered.

As for future work, we will continue to improve the compu-
tational efficiency and scalability of the reachability algo-
rithms that are currently being developed. In addition we
will combine these algorithms with data-driven methods
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for estimating reachable sets with probabilistic guarantees.
We will develop a formal definition of a data-driven reach-
able set approximation that is correct in a probabilistic
sense, and devise appropriate sampling schemes to gener-
ate such approximations.
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Abstract: We consider adaptive ouput feedback tracking control of linear time-invariant
systems which are not necessarily minimum phase. The zero dynamics is split into a stable
and an unstable part, we show that a flat output of the unstable part can contribute to the
design of a funnel controller of the system. More precisely, we consider an auxiliary output based
of the ”true output” of the system and the flat output of the unstable part of the zero dynamics.
The funnel controller is designed for this auxiliary output, and the consequences for the true
output are discussed.

Keywords: linear systems; robust control; non-minimum phase; funnel control; relative degree

1. SYSTEM CLASS

We consider stabilizable linear systems given by

ẋ(t) = Ax(t) +Bu(t), x(0) = x0
∈ R

n,

y(t) = Cx(t),
(1)

where A ∈ R
n×n and B,C⊤ ∈ R

n×m, with the same
number of inputs u : R≥0 → R

m and outputs y : R≥0 →

R
m. We assume that (1) has strict relative degree r ∈ N,

that is

CAkB = 0, k = 0, . . . , r − 2, CAr−1B ∈ Gln(R), (2)

cf. Isidori (1995). While adaptive control of minimum
phase linear systems is well-studied, see e.g. the classi-
cal works Byrnes and Willems (1984); Khalil and Saberi
(1987); Morse (1983), we stress that we do not assume
that (1) is minimum phase or, equivalently, its zero dy-
namics are asymptotically stable. The latter would mean
that rk

[

A−λIn B
C 0

]

= n + m for all λ ∈ C−, see e.g. Ilch-
mann et al. (2007); Isidori (1995). By the Byrnes-Isidori
form (Ilchmann et al., 2007, Lem. 3.5) (see also Isidori
(1995)) we have that, if (2) is satisfied, there exists a
state-space transformation U ∈ Gln(R) such that Ux(t) =
(

y(t)⊤, ẏ(t)⊤, . . . , y(r−1)(t)⊤, η(t)⊤
)⊤

, where η : R≥0 →

R
n−rm, transforms (1) into

y(r)(t) =

r
∑

i=1

Riy
(i−1)(t) + Sη(t) + Γu(t),

η̇(t) = Py(t) +Qη(t) + dη(t),

(3)

where Ri ∈ R
m×m for i = 1, . . . , r, S, P⊤ ∈ R

m×(n−rm),
Q ∈ R

(n−rm)×(n−rm), and Γ := CAr−1B. Further-
more, (1) is minimum phase if, and only if, σ(Q) ⊆ C−.
The second equation in (3) represents the internal dynam-

ics of the linear system (1); if y = 0, then these dynamics
are called zero dynamics.

Our assumption is that the system does not have any
zeros on the imaginary axis. Consequently, there exists
T ∈ Gln−rm(R) and ℓ ∈ N such that

TQT−1 =

[

Q̂1 Q̂2

0 Q̃

]

, TP =

[

P̂

P̃

]

, (4)

where Q̂1 ∈ R
(n−rm−ℓ)×(n−rm−ℓ), Q̂2 ∈ R

(n−rm−ℓ)×ℓ, Q̃ ∈

R
ℓ×ℓ, P̂ ∈ R

(n−rm−ℓ)×m. P̃ ∈ R
ℓ×m with σ(Q̂1) ⊆ C−,

and (Q̃, P̃ ) is controllable.

2. CONTROL OBJECTIVE

To treat the non-minimum phase property of system (1)
the system parameters A,B,C need to be known, at least
partially, and additional components of the state x need to
be available to the controller. For the time being, assume
that the measurement of a partial state x̂(t) = Hx(t)
is available, where H will be specified by the presented
controller design. We stress that the measurement of the
full state x(·) or knowledge of the full initial value x0 is, in
general, not required. Therefore, the objective is to design
a dynamic partial state feedback of the form

ż(t) = F
(

t, z(t), x̂(t), yref(t)
)

, z(0) = z0,

u(t) = G
(

t, z(t), x̂(t), yref(t)
)

,
(5)

where yref : R≥0 → R
m is a sufficiently smooth reference

signal, such that in the closed-loop system the tracking
error e(t) = y(t) − yref(t) evolves within a prescribed
performance funnel

Fϕ := { (t, e) ∈ R≥0 × R
m

| ϕ(t)‖e‖ < 1 } , (6)
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ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

ynew(t) = Kη2(t)

Funnel Controller

from Berger et al. (2020)
+

η̇2,ref(t) = Q̃η2,ref(t) + P̃ yref(t)

ŷref(t) = Kη2,ref(t)

η2,ref(0) = η02,ref

+

ynew(t)

+

yref(t)

ŷref(t)

−e0(t)

u(t)

y(t)

+ −

e(t)

Fig. 1. The funnel controller, indicated by the grey box, applied to system (1) with new output as in (8). The controller
consists of the generator of the new reference signal (9) and the funnel controller developed in Berger et al. (2020).

which is determined by a positive function ϕ ∈ Cr(R≥0 →

R) with bounded ϕ, ϕ̇, . . . , ϕ(r), and lim infτ→∞ ϕ(τ) > 0.

Furthermore, all signals x, u, z should remain bounded,
even though (1) is non-minimum phase.

The funnel boundary is given by the reciprocal of ϕ as
depicted in Fig. 2. Each performance funnel with ϕ as

t

•

λ

(0, e(0)) ϕ(t)−1

Fig. 2. Error evolution in a funnel with boundary ϕ(t)−1.

above is bounded away from zero.

3. THE CONTROLLER

With the decomposition of Q as in (4) we may further
transform the system from (3) using Tη = (η⊤1 , η

⊤
2 )

⊤ with
η1 : R≥0 → R

n−rm−ℓ, η2 : R≥0 → R
ℓ into

y(r)(t) =

r
∑

i=1

Riy
(i−1)(t)+S1η1(t)+S2η2(t)+Γu(t),

η̇1(t) = Q̂1η1(t) + Q̂2η2(t) + P̂ y(t),

η̇2(t) = Q̃η2(t) + P̃ y(t),

(7)

where [S1, S2] = ST−1. Since (Q̃, P̃ ) is controllable, it is
possible to construct an artificial output

ynew(t) := Kη2(t), (8)

which is flat in the sense of Fliess et al. (1995). It can be
shown that such an output can be chosen in a way that
the system with input u and output ynew has a well-defined
vector relative degree in the sense of Berger et al. (2020);
Mueller (2009). This enables to apply the funnel controller
from Berger et al. (2020) for systems with vector relative
degree. By the construction of the new output in (8), the
new reference signal is generated by the corresponding
subsystem of (7) when the original reference signal is
inserted for the original output, i.e.,

η̇2,ref(t) = Q̃η2,ref(t) + P̃ yref(t), η2,ref(0) = η02,ref ,

ŷref(t) = Kη2,ref(t).
(9)

The overall controller structure is depicted in Fig. 1.

We show that this controller results in a global and
bounded solution, and we will discuss the performance of
the output y(·) and its distance to the reference trajectory
yref .
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de Systèmes et le Traitment du Signal, volume 3, 733–
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1. INTRODUCTION

Energy networks or supply networks in a more general
setting can be analyzed from different perspectives. Math-
ematically, there is a strong interest to describe the dynam-
ics inside the network to better understand the underlying
physical or economic processes. Typical applications range
from electric transmission lines Göttlich et al. (2015) and
gas networks Banda et al. (2006) to production systems
D’Apice et al. (2010), wherein the dynamics is governed
by nonlinear hyperbolic transport equations Bressan et al.
(2014). Generally, nonlinearities might appear due to com-
plex flow patterns or additional interaction terms such as
resistance or friction. For many applications the question
arises how such a network can be controlled to satisfy
consumer demands. Since demands usually include a kind
of uncertainty, this leads to a challenging stochastic op-
timal control problem. To reduce the complexity of the
problem, we therefore start with the consideration of lin-
earized dynamics and nonlinear damping combined with
stochasticity of demands in an abstract setting.

This work is based on ideas originally presented in Göttlich
and Schillinger (2021); Göttlich et al. (2019). Basically,
we consider a network framework consisting of three in-
gredients. At the network source an optimal inflow shall
be injected into the system such that a given demand is
met. On every arc of the network transport equations of
hyperbolic type describe the dynamics. In our case we
focus on linear flux functions and add unlike Göttlich and
Schillinger (2021) a nonlinear damping term. However,
we are still able to compute an explicit representation
of the optimal input. As a last component, we consider
uncertain demands at the sinks of the network. These
are described by a stochastic process, given by a stochas-
tic differential equation. In this work, we assume that
demands are described by Jacobi processes, as recently
proposed by Coskun and Korn (2021). These are mean-
reverting processes which stay in a bounded interval and
are therefore very suitable for various applications we have

in mind. The goal of this contribution is to show under
which assumptions we will be able to explicitly derive the
optimal inflow subject to the network dynamics and the
stochastic demand.

The organization of the article is the following. In Section
2 we present the full optimal control framework. The
discussion of the objective function and the availability
of information is executed in Section 3. The key result
is presented in Section 4, where we extensively describe
how an explicit formula for the optimal inflow can be
calculated in the setting of nonlinear damping terms.
Section 5 concludes with a numerical study of different
nonlinear damping functions.

2. THE OPTIMAL CONTROL PROBLEM

We consider the control problem in (1), where we aim to
determine the optimal input u(t) given some stochastic
demand Dt and the network dynamics in terms of scalar
transport equations. More precisely, we make use of the
following notation: For a directed serial network, the set
C denotes the demand node and J the set of the inner
nodes. We control the network inflow u(t) defined in
(1d) and solve an optimization problem for the demand
node. At the demand node we consider a demand process
(Dt)t∈[t0,T ] for which we assume a Jacobi process. A main
advantage of the Jacobi process apart from the mean-
reverting behaviour is its boundedness such that negative
or arbitrarily large demands cannot be attained. It can
be described by a stochastic differential equation given
in (1f)-(1g), where θ is a time-dependent mean reversion
level, κ the mean reversion speed and σ the scaling
of the stochastic disturbances coming from a Brownian
motion (Wt)t∈[t0,T ]. In this work, we only consider Jacobi
processes on [0, 1], which can be easily translated on any
bounded interval.

min
u∈L2

i:vi∈C

∫ T

t0

E
[(

Ds − f (i)(z(i)(1, s), s)
)2 ∣∣∣ Ft̂

]
ds (1a)
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s.t. z
(i)
t (x, t) + f (i)(z(i)(x, t), t)x + g(i)(z(i)(x, t), t) = 0

(1b)

z(i)(x, t0) = z
(i)
0 (x), ∀i s.t. vi ∈ J ∪ C (1c)

f (1)(z(1)(0, t), t) = u(t) (1d)

f (i+1)(z(i+1)(0, t), t) = f (i)(z(i)(1, t), t) ∀i ∈ J
(1e)

dDt = κ (θ(t)−Dt) + σ
√
Dt (1−Dt)dWt (1f)

D0 = d0. (1g)

We aim to minimize the expected quadratic deviation be-
tween the demand process and the outflow of the network
with respect to a filtration (Ft, t ≥ 0), see (1a). In the
objective function, we condition on a time t̂ ≤ t0 up to
which demand information is available. Section 3 presents
further strategies about demand updates. On the network
arcs i we consider hyperbolic partial differential equations
for the quantities z(i) in (1b), where the flux functions f (i)

are linear with respect to z(i) and possibly nonlinear in
time, accompanied with some initial data (1c). In compar-
ison to the work in Göttlich and Schillinger (2021), the
damping functions g(i) are allowed the be nonlinear in the
quantities z(i). The choices of the damping functions will
be discussed in Section 4. At each inner node due to the
serial network structure, there is exactly one ingoing and
one outgoing arc at which we ensure flux conservation (1e).

3. SOLUTION TO THE OBJECTIVE FUNCTION
AND DEMAND UPDATES

The optimal control problem in (1) has a stochastic
component given by the stochastic differential equation
(SDE) for the demand process (1f). But when minimizing
the expected quadratic deviation of demand and network
supply the optimal solution for a square integrable demand
process is given by E[Dt|Ft̂] (see Corollary 8.17 in Klenke
(2020)). Therefore, the particular structure of the demand
process, apart from the first two conditional moments,
does not matter to solve the optimal control problem.
Their explicit forms in case of the Jacobi process can e.g.
be found in Delbaen and Shirakawa (2002). As a next step,
we want to generalize the control problem a little further.
So far, we have assumed that there is one time t̂ ≤ t0 at
which the demand levels are updated. However, we now
consider a sequence of update times (t̂j)j∈N which allow
for additional information about the demands. Then, we
end up with a sequence of optimal control problems on
time intervals [t̂j , t̂j+1). To account for the correct time
intervals, the objective function from (1a) then reads

min
u∈L2

i:vi∈C

∫ t̃(vi,t̂j+1)

t̃(vi,t̂j)

E

[(
Ds

− f (i)(z(i)(1, s), s)

)2 ∣∣∣ Ft̂j

]
ds,

where t̃(vi, t) denotes the time at which the inflow inserted
at the source node at time t reaches the demand node vi.
Additionally, for all updates except the first one, the initial
data has to correspond to the state of the system of the
time interval before. Therefore, the equations (1c) and (1g)
read

z(i)(x, t̂j) = z
(i)
old(x, t̂j), ∀i s.t. vi ∈ J ∪ C

Dt̂j
= Dold

t̂j
,

where z
(i)
old(x, t̂j) and Dold

t̂j
denote the final quantity of arc

i at position x and the final demand at node vi in the
previous time interval, respectively.

4. NETWORK DYNAMICS WITH NONLINEAR
DAMPING

In this section, we focus on the dynamics in the network
on all arcs i given by constraint (1b) of the optimal
control problem, i.e. the shape of the functions f (i) and
g(i) governed by

z
(i)
t (x, t) + f (i)(z(i)(x, t), t)x + g(i)(z(i)(x, t), t) = 0, (2)

where f (i) denotes the flux function and g(i) is the damping
function. Here, we restrict to functions f (i) that are linear
in z(i) but nonlinear in the time and potentially nonlinear
functions g(i) in z(i) and t. The damping reflects a loss
in the transported quantity over time, which may be
due to some physical property as for instance friction or
electrical resistance. The linearity of the flux-functions
will play a very important role because characteristic
curves do not cross and hence no discontinuities may
appear, see LeVeque (2002) for an overview. For simplicity,
all investigations are executed in the 1-1-network case
and can be generalized to arbitrary serial networks in a
straightforward way.

We restrict to nonlinear damping functions in which the
nonlinearities of time and quantity are separated, i.e.

g(i)(z, t) = µi(t)ĝi(z), (3)

where µi ∈ L1([t0, T ]) is chosen to be a non-negative
function and ĝi is a Lipschitz-continuous function whose
antiderivative is explicitly known. Additionally, we assume
ĝi ≥ 0 and ĝi = 0 only on a Lebesgue null-set. This allows
for the natural choice of ĝi(0) = 0, but still preserves some
important properties we will exploit. The flux function on
arc i is chosen as f (i)(z, t) = λi(t)z with strictly positive
velocity λi(·).
Next, we calculate the optimal inflow for a 1-1 network.
Denote by µi(t) a time-dependent damping factor for arc
i and ĝi(z) = 1

g̃i(z)
the nonlinear damping function for

arc i such that the overall damping term is given by

gi(z, t) =
µi(t)
g̃i(z)

. We make use of the network from Figure

1, where we have one source node v0, an inner intersection
v1 and a demand node v2.

v0 v1 v2
arc 1 arc 2

Fig. 1. The supply system as a 1-1-network with one source
v0 and one demand node v2.

To relate the injection time at the source node v0 and
the output time at the demand node v2 we consider a
characteristic curve (x(t), t) of a unit for which t2 is the
time in which the unit injected at tin reaches the demand
node v2 and t1 the time when it reaches node v1. If the
velocity functions λi have an antiderivative Λi, i = 1, 2
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which is invertible, for some injection time tin the values
of t1 and t2 are explicitly given by

t1 = Λ−1
1 (1 + Λ1(tin))

t2 = Λ−1
2 (1 + Λ2(Λ

−1
1 (1 + Λ1(tin)))),

(4)

where we for simplicity assume that every arc has length
1 (see Göttlich and Schillinger (2021)).

Staying on such a characteristic curve, in a setting with-
out damping, the transported quantity z(x(t), t) remains
constant. If we introduce the damping term, the quantity
z is reduced by the damping. This can be formulated by
the following ordinary differential equation (ODE)

d

dt
z(i)(x(t), t) = −gi(z

(i)(x(t), t), t) = − µi(t)

g̃i(z(i)(x(t), t))
.

(5)

This ODE can be uniquely solved due the Lipschitz-
continuity of g̃. The technique of separation of variables
even allows for the calculation of an explicit solution. To do
so, we assume that an antiderivative of g̃i is explicitly given
by G̃i and we consider time points tk−1 < tk. Integrating
(5) both sides of the equation over tk−1 to tk and applying
the fundamental theorem of calculus leads to∫ tk

tk−1

d

ds

(
z(i)(x(s), s)

)
· g̃i(z(i)(x(s), s))ds

= −
∫ tk

tk−1

µi(s)ds ⇔ z(i)(x(tk−1), tk−1)

= G̃−1
i

(
G̃i

(
z(i)(x(tk), tk)

)
+

∫ tk

tk−1

µi(s)ds

)
.

The antiderivative of g̃i is continuous and strictly increas-
ing because g̃i is strictly positive, apart from a Lebesgue
null-set. Then, there exists the inverse function (G̃i)

−1 of

G̃i and the solution is well-defined. The integral of the
damping function stays bounded since µi ∈ L1([t0, T ]).
Note that we are going to perform a backward calculation
for the optimal inflow under the assumption that we know
the corresponding optimal outflow of the network. There-
fore, we consider an end value problem here, this means
we have upstream information at time tk and calculate
the corresponding initial values at time tk−1. We start this
procedure at demand node v2.

z(2)(1, t2) =
f (2)(z(2)(1, t2), t2)

λ2(t2)
(6)

Following the characteristic curve and using the result of
the ODE solution we can calculate the resulting quantity
at the beginning of arc 2 at time t1 by

z(2)(0, t1) = G̃−1
2

(
G̃2

(
z(2)(1, t2)

)
+

∫ t2

t1

µ2(s)ds

)
.

Using this and (6), we can calculate the ingoing flux into
arc 2 at time t1 by

f (2)(z(2)(0, t1), t1) = λ2(t1)z
(2)(0, t1)

= λ2(t1)G̃
−1
2

(
G̃2

(
f (2)(z(2)(1, t2), t2)

λ2(t2)

)
+

∫ t2

t1

µ2(s)ds

)
.

Accounting for flux conservation at the intersection it must
hold that

f (2)(z(2)(0, t1), t1) = f (1)(z(1)(1, t1), t1).

Then, we can deduce the corresponding quantity at the
end of arc 1 by

z(1)(1, t1) =
λ2(t1)

λ1(t1)
· G̃−1

2

(
G̃2

(
f (2)(z(2)(1, t2), t2)

λ2(t2)

)
+

∫ t2

t1

µ2(s)ds

)
.

Now again applying the ODE solution on arc 1 we get for
the initial quantity

z(1)(0, tin)

= G̃−1
1

(
G̃1

[
λ2(t1)

λ1(t1)
· G̃−1

2

(
G̃2

(
f (2)(z(2)(1, t2), t2)

λ2(t2)

)
+

∫ t2

t1

µ2(s)ds

)]
+

∫ t1

tin

µ1(s)ds

)
.

The ingoing flux into the 1-1 network is now a direct
consequence of the quantity at the beginning of arc 1 and
given by

f (1)(z(1)(0, tin), tin)

= λ1(tin)G̃
−1
1

(
G̃1

[
λ2(t1)

λ1(t1)
G̃−1

2

(
G̃2

(
f (2)(z(2)(1, t2), t2)

λ2(t2)

)
+

∫ t2

t1

µ2(s)ds
)]

+

∫ t1

tin

µ1(s)ds

)
.

Since the optimal outflow of the network should match the
corresponding conditional expected demand we obtain for
the optimal inflow

u(tin)

= λ1(tin) · G̃−1
1

(
G̃1

[
λ2(t1)

λ1(t1)
· G̃−1

2

(
G̃2

(
E [Dt2 |Ft̂]

λ2(t2)

)

+

∫ t2

t1

µ2(s)ds

)]
+

∫ t1

tin

µ1(s)ds

)
,

where t̂ < tin is the time of the latest demand update.
Iteratively, this procedure can be extended to larger 1-1
networks.

5. NUMERICAL EXPERIMENTS

Finally, we numerically compare the solutions to (1)
for different nonlinear damping functions ĝi(z). Classical
choices for such nonlinear damping functions are monomi-
als (Ikeda et al. (2017)), i.e. functions of the type

ĝ(n)(z) = Cnz
n,

where Cn is a constant depending on the degree which has
to be determined. By construction it holds that ĝ(n)(0) =
0. For better illustration purposes, we choose the same
damping functions on both arcs. To be able to compare
the damping functions we request that∫ 1

10

0

ĝ(n)(z)dz =
1

20
, n ∈ N

and choose the constant Cn accordingly. For our analysis
we compare monomials up to order 4, which are given by

ĝ(1)(z) = z, ĝ(2)(z) = 15z2,

ĝ(3)(z) = 200z3, ĝ(4)(z) = 2500z4.
(7)

Additionally we consider scenarios without any damping,
i.e µi(t) = 0. Note that also different approaches for ĝ can
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be used, but since monomials give a good impression on
the different scaling we do not extend the study at that
point.

For the demand process we choose a Jacobi process with
θ(t) = 0.45 + 0.2 sin(πt + 1), κ = 2, σ = 0.9 and initial
demand of D0 = 0.4.

A truncated Euler-Maruyama scheme is used for the
simulation of the Jacobi process. We consider a time grid
(tj)j∈N with temporal stepsize ∆t = 1

1000 , i.e.

D∗
j+1 = Dj +∆tκ(θ(tj)−Dj) + σ

√
∆tDj(1−Dj)Xj ,

where Xj is a realization of a standard normal distributed
random variable. To numerically avoid values outside the
interval [0, 1] for Dj+1 due to the unboundedness of Xj ,
we add a truncation into the Euler-Maruyama scheme such
that the process D∗

j+1 is reflected into [0, 1]:

Dj+1 =


1, D∗

j+1 ≥ 1

D∗
j+1, D∗

j+1 ∈ (0, 1)

0, D∗
j+1 ≤ 0.

The time horizon is chosen to T = 2.5 and we consider
an update strategy at the source node with 7 equidistant
updates. The flux functions on the arcs are all linear with
respect to the quantity z(i) and have the time-dependent
factor λi(t) = 14 + sin(2πt). The temporal factor of the
damping in (3) is chosen to be µi(t) = 5 + sin(πt), where
ĝ are the monomials from (7).

For the discretization of (2) we use an adaptive upwind-
scheme with spatial stepsize ∆x = 1

200 on a grid (xl)l∈N.
The damping is incorporated by a splitting algorithm
which first performs the step from the upwind-scheme
and then applies the damping in a second step. The
temporal step sizes are chosen such that the CFL-condition
(LeVeque (2002)) is satisfied with equality in every time

step, i.e.
∆t

(i)
j

∆x λi(t
(i)
j ) = 1. Therefore, the temporal grids

depend on the velocity functions of the particular arc:

z̃
(i),j+1
l = z

(i),j
l +

∆t
(i)
j

∆x
λl(t

(i)
j )
(
z
(i),j
l − z

(i),j
l−1

)
.

In a second step we take into account the damping and

calculate z
(i),j+1
l by

z
(i),j+1
l = z̃

(i),j+1
l −∆t

(i)
j gi

(
z̃
(i),j+1
l , t

(i)
j+1

)
.

In Figure 2 we present results for a 1-1 network and show
the inflows for five different types of damping (from no
damping to a quartic damping monomial in (7)) in the
upper part as well as the outflow and demand at the
demand node in the lower part. Note that the supplies
and demands do not differ significantly among the different
damping settings. The shape of the curves is mainly influ-
enced by the temporal nonlinearities in the flux functions
and the sinusoidal rhythm of the demand mean reversion
levels. First, we observe that in a setting without damping
the inflow is always below the inflows of the damped
setting. As a second observation, we see that the inflows
for the monomials are ordered differently depending on the
amount of the inflow and the corresponding quantities. For
larger quantities the inflows for the second and third order
monomial damping function are higher, whereas for lower
inflows the inflows resulting from linear damping have the

highest values. In the outflow plot we observe that the
supply adjust overall to the shape of demand, where the
jumps in supply result from demand updates.

Fig. 2. Comparison of different inflows for different choices
of the damping function and the corresponding supply
and demand for one realization.
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Bressan, A., Čanić, S., Garavello, M., Herty, M., and
Piccoli, B. (2014). Flows on networks: recent results
and perspectives. EMS Surv. Math. Sci., 1(1), 47–111.

Coskun, S. and Korn, R. (2021). Modeling the Intraday
Electricity Demand in Germany, 3–23. Springer Inter-
national Publishing, Cham.
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∗ Chair of Applied Mathematics, Mathematical Institute,
Universität Bayreuth, Germany,

(e-mail: lars.gruene, lisa.kruegel@uni-bayreuth.de)

Keywords: Discounted Optimal Control, Dissipativity, Turnpike

1. INTRODUCTION

Recent results in the literature have provided connections
between the turnpike property, near optimality of closed-
loop solutions, and strict dissipativity. In this talk, based
on the recent paper Grüne and Krügel (2021) (to which we
refer for all proofs), we consider optimal control problems
with discounted stage cost. In contrast to non-discounted
optimal control problems, it is more likely that several
asymptotically stable optimal equilibria coexist. Due to
the discounting and transition cost from a local to the
global equilibrium, it may be more favourable staying in
a local equilibrium than moving to the global “cheaper”
equilibrium. In this talk, we propose a local notion of dis-
counted strict dissipativity and a local turnpike property,
both depending on the discount factor. Using these con-
cepts, we investigate the local behaviour of (near-)optimal
trajectories and develop conditions on the discount factor
to ensure convergence to a local asymptotically stable
optimal equilibrium.

2. SETTING

We consider discrete time nonlinear systems of the form

x(k + 1) = f(x(k), u(k)), x(0) = x0 (1)

for a map f : X × U → X, where X and U are normed
spaces. We impose the constraints (x, u) ∈ Y ⊂ X × U on
the state x and the input u and define X := {x ∈ X | ∃u ∈
U : (x, u) ∈ Y} and U := {u ∈ U | ∃x ∈ X : (x, u) ∈ Y}. A
control sequence u ∈ UN is called admissible for x0 ∈ X if
(x(k, x0), u(k)) ∈ Y for k = 0, . . . , N −1 and x(N) ∈ X. In
this case, the corresponding trajectory x(k) is also called
admissible. The set of admissible control sequences is
denoted by UN (x0). Likewise, we define U∞(x0) as the set
of all control sequences u ∈ U∞ with (x(k, x0), u(k)) ∈ Y
for all k ∈ N0. Furthermore, we assume that X is controlled
invariant, i.e. that U∞(x0) 6= ∅ for all x0 ∈ X. The
trajectories of (1) are denoted by xu(k, x0) or simply by
x(k) if there is no ambiguity about x0 and u.

We will make use of comparison-functions defined by

K := {α : R+
0 → R+

0 |α is continuous and

strictly increasing with α(0) = 0}
K∞ := {α : R+

0 → R+
0 |α ∈ K, α is unbounded}

? The authors are supported by DFG Grant Gr 1569/13-2.

Moreover, with Bε(x0) we denote the open ball with radius
ε > 0 around x0.

In this talk we consider infinite horizon discounted optimal
control problems, i.e. problems of the type

min
u∈U∞(x0)

J∞(x0, u)

with J∞(x0, u) =
∞∑
k=0

βk`(x(k, x0), u(k)).
(2)

Herein, the number β ∈ (0, 1) is called the discount factor.
The optimal value function of the problem is defined by

V∞(x0) := min
u∈U∞(x0)

J∞(x0, u).

3. GLOBAL TURNPIKE

The central structural assumption on this optimal control
problem is a strict dissipativity condition. Here we first
introduce a global version, which will later be relaxed to a
local assumption:

We say that the system (1) is discounted strictly dissi-
pative at an equilibrium (xβ , uβ) if there exists a storage
function λ : X → R bounded from below with λ(xβ) = 0
and a class K∞-function α such that the inequality

`(x, u)−`(xβ , uβ)+λ(x)−βλ(f(x, u)) ≥ α(‖x−xβ‖) (3)

holds for all (x, u) ∈ Y with f(x, u) ∈ X. We remark that
this discounted version of discrete-time strict dissipativity
was studied in Grüne et al. (2021), based on the original
undiscounted definitions from Byrnes and Lin (1994) and
Willems (1972).

For a strictly dissipative problem we can define the modi-
fied or rotated stage cost˜̀(x, u) = `(x, u)− `(xβ , uβ) + λ(x)− βλ(f(x, u)). (4)

It was shown in Grüne et al. (2021) that the optimal
trajectories of the optimal control problems with stage cost

` and ˜̀ coincide if the storage function λ is bounded.

With a combination of arguments from Gaitsgory et al.
(2018), one can prove that if the optimal value function

Ṽ∞ of the modified problem satisfies

Ṽ∞(x) ≤ αV (‖x− xβ‖) and Ṽ∞(x) ≤ C inf
u∈U

˜̀(x, u) (5)

for all x ∈ X, a function αV ∈ K∞, and a constant C ≥ 1
exist satisfying
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C < 1/(1− β). (6)

Then the optimal control problem has the following turn-
pike property, cf. (Grüne et al., 2017, Definition 4.2):

For each ε > 0 and each bounded set Xb ⊂ X there exists
a constant P > 0 such that for each M ∈ N there is a
δ > 0, such that for all x0 ∈ Xb and u ∈ U∞(x0) with
J∞(x0, u) ≤ V∞(x0) + δ, the set Q(x0, u, ε,M, β) := {k ∈
{0, . . . ,M} | ‖xu(k, x0)−xβ‖ ≥ ε} has at most P elements.

Figure 1 gives an illustration of the set Q(x0, u, ε,M, β)
from this definition.

M

xβ1

xβ2

Elements of Q(x0, u, ε,M, β)

ε

ε

k

xu(k, x0)

Fig. 1. Illustration of the set Q(x0, u, ε,M, β)

4. LOCAL TURNPIKE

In discounted optimal control, several optimal equilibria

(xβl , u
β
l ) with different optimal values `(xβl , u

β
l ) can coex-

ist, even if the system is completely controllable. This is
because the transition cost for passing from an equilibrium
to a region in the state space with lower cost may dominate
the benefit from reaching this “cheaper” region, because
the discounting reduces the relative weight of this benefit.
This means that local turnpike properties may emerge, in

which the solutions only approach a certain equilibrium xβl
if the initial value is close to this equilibrium, and show
a different long time behavior otherwise. The closer the
discount rate is to 1, the less weight is put on the transition
cost, hence the less likely a local turnpike behavior be-
comes if the equilibrium is not globally strictly dissipative.
Hence, a local turnpike property is more likely to occur for
discount rates β � 1 than for discount rates β ≈ 1. On
the other hand, the conditions (5) and (6) will also be
needed for a local turnpike property and thus provide a
lower bound on the possible discount rates. Hence, we can
expect that there is an interval of discount rates for which
a local turnpike property occurs.

In order to formalize this intuitive description, we first
introduce a local strict dissipativity property:

Given a discount factor β ∈ (0, 1), we say that the
system (1) is locally discounted strictly dissipative at

an equilibrium (xβl , u
β
l ) if there exists a storage function

λ : X→ R bounded from below with λ(xβl ) = 0 and a class
K∞-function αβ such that the inequality

`(x, u)−`(xβl , u
β
l )+λ(x)−βλ(f(x, u)) ≥ αβ(‖x−xβl ‖) (7)

holds for all (x, u) ∈ XN × U with f(x, u) ∈ X.

Further, we say that system (1) is locally discounted

strictly (x, u)-dissipative at the equilibrium (xβl , u
β
l ) with

supply rate s : X × U → R if the same holds with the
inequality

`(x, u)− `(xβl , u
β
l )

+λ(x)− βλ(f(x, u)) ≥ αβ(‖(x− xβl ‖+ ‖u− uβl )‖).
(8)

The main theorem we are going to present in this talk
is now the following. For a proof see (Grüne and Krügel,
2021, Theorem 6.1).

Theorem 1. Consider a discounted optimal control prob-
lem (2) subject to system (1) with f continuous and stage
cost ` bounded from below. Assume local strict (x, u)-

dissipativity at an equilibrium (xβl , u
β
l ) according to (8)

with bounded storage function λ. Assume furthermore
that there is an interval (β1, β

?) of discount rates, such
that for each β ∈ (β1, β

?) the inequalities (5) and (6) hold

for all x ∈ XN with xβl in place of xβ .

Then there is β2 ∈ (0, 1), depending on the problem data,
such that for all β ∈ (β1, β2) there exists a neighbourhood

N of xβl on which the system exhibits a local turnpike
property in the following sense:

For each ε > 0 there exist a constant P > 0 such that for
each M ∈ N there is a δ > 0, such that for all x0 ∈ N
and all u ∈ U∞(x0) with J∞(x0, u) ≤ V∞(x0) + δ, the
set Q(x, u, ε,M, β) := {k ∈ {0, . . . ,M} | ‖xu(k, x0) −
xβl ‖ ≥ ε} has at most P elements.

Particularly, if J∞(x0, u) = V∞(x0), i.e., if the trajectory
is optimal, then for each ε > 0 the set Q(x, u, ε,∞, β) :=⋃
M∈NQ(x, u, ε,M, β) has at most P elements, implying

the convergence xu(k, x0)→ xβl as k →∞.

We note that the fact that β2 depends on the problem
data is important for this theorem to yield a meaningful
statement, because otherwise the assertion is always triv-
ially true for any β2 < β1 since then the interval (β1, β2) is
empty. We will explain in the talk that β2 depends on the
the cost to leave the neighborhood XN and the minimum

of ˜̀over Y. The larger these two values become, the larger
β2 becomes.

5. ILLUSTRATIVE EXAMPLE

For illustrating our results, consider the one-dimensional
dynamics f(x, u) = x+u and the stage cost `(x, u) = x4−
1
4x

3 − 7
4x

2. It turns out that the resulting optimal control

problem has two optimal equilibria in xβl = 3−
√
905

32 ≈
−0.846 and xβg = 3+

√
905

32 ≈ 1.034, where `(xβg ) < `(xβl ).
Note that the equilibria do not depend on β in this
example, while in general they may do so. Both optimal

equilibria are strictly dissipative, xβl only locally and

xβg also globally. Using the construction in the proof of
(Grüne and Krügel, 2021, Theorem 6.1), one computes
that β2 ≈ 0.67. Hence one would expect that a local
turnpike property is visible for β below this value and

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



ceases to exist for β above this value. The numerical
simulations of optimal trajectories in Figure 5 show that
this is precisely what happens. The figure shows optimal
trajectories and control functions with initial values x0
between −1 and −0.3 and β = 0.7 and β = 0.6. While
for β = 0.7 all solutions converge to the globally optimal
equilibrium xβg , for β = 0.6 solutions with x0 sufficiently

close to xβl converge to xβl . Hence, this illustrates the
existence of the local turnpike property.

β = 0.7:

0 2 4 6 8 10
     −1

   −0.5

      0

    0.5

      1

0 2 4 6 8 10
       0

     0.2

     0.4

     0.6

β = 0.6:

0 2 4 6 8 10
     −1

   −0.5

      0

    0.5

      1

0 2 4 6 8 10

       0

     0.2

     0.4

     0.6

Fig. 2. Optimal trajectories and control functions for β =
0.7 (above) and β = 0.6 (below) for different initial
values x0
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Abstract: Solving high-dimensional optimal control problems and their corresponding
Hamilton-Jacobi partial differential equations is an important but challenging problem. In
particular, handling optimal control problems with state-dependent running costs or constraints
on the control presents an additional challenge. We present two representation formulas: one is
a Hopf-type representation formula for solving a class of optimal control problems with certain
non-smooth state-dependent running costs, and the other is a Lax-Oleinik-type representation
formula for solving a class of optimal control problems with certain control constraints. Based
on these formulas, we propose efficient algorithms that overcome the curse of dimensionality.
As such, our proposed methods have the potential to serve as a building block for solving more
complicated high-dimensional optimal control problems in real-time.

Keywords: Optimal Control, Hamilton-Jacobi Partial Differential Equations, Grid-Free
Numerical Methods, High Dimensions

1. INTRODUCTION

It is well-studied that solving optimal control problems
is related to solving Hamilton-Jacobi partial differential
equations (HJ PDEs). However, the computational com-
plexity of standard grid-based numerical algorithms for
solving HJ PDEs scales exponentially with respect to the
dimension. This exponential scaling in dimension is often
referred to as the “curse of dimensionality” (CoD) [Bell-
man (1961)]. Due to the CoD, these grid-based methods
are infeasible for solving high-dimensional problems (e.g.,
dimensions greater than five) and thus are infeasible for
many practical optimal control applications, which often
have dimension much greater than five.

To overcome the CoD, many grid-free methods approxi-
mate the original optimal control problem by some sim-
pler, more easily computable optimal control problems.
Thus, an important research direction is to enlarge the
class of optimal control problems with easily computable
solutions; these problems and their corresponding exact
solvers can then serve as building blocks for solving more
complicated optimal control problems. Some well-known
techniques for solving optimal control problems that often

⋆ This research is supported by NSF 1820821 and AFOSR MURI
FA9550-20-1-0358. P.C. is supported by the SMART Scholarship,
which is funded by USD/R&E (The Under Secretary of Defense-
Research and Engineering), National Defense Education Program
(NDEP) / BA-1, Basic Research.

serve as these building blocks include: the linear-quadratic
regulator [Li and Todorov (2004); Sideris and Bobrow
(2005); McEneaney (2006); Coupechoux et al. (2019)],
the Hopf and Lax-Oleinik representation formulas [Dar-
bon (2015); Darbon and Meng (2020); Darbon and Osher
(2016); Yegorov and Dower (2017)], and the max-plus (or
min-plus) technique [Akian et al. (2006, 2008); Dower et al.
(2015); Fleming and McEneaney (2000); Gaubert et al.
(2011); McEneaney (2006, 2007); McEneaney et al. (2008);
McEneaney and Kluberg (2009)]. However, there are still
many more classes of optimal control problems that cannot
be solved (exactly) using these techniques. For example,
optimal control problems with state-dependent running
costs or constraints on the control are, in general, difficult
to solve without approximations.

In this extended abstract, we summarize our recent
works [Chen et al. (2021a,b)], which provide analytical so-
lutions to two classes of high-dimensional optimal control
problems. The first class involves certain state-dependent
non-smooth running costs and is summarized in Section 2.
The second class involves certain state-dependent run-
ning costs and control constraints and is summarized in
Section 3. For both classes of problems, we also provide
efficient numerical solvers that do not rely on approx-
imations of the corresponding optimal control problem
and HJ PDE and are numerically shown to overcome the
CoD.
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2. THE FIRST CLASS OF OPTIMAL CONTROL
PROBLEMS

We consider the following high-dimensional optimal con-
trol problem with state-dependent non-smooth running
cost:

V (x, t) = inf

{∫ t

0

(
1

2
∥ẋ(s)∥2 − U(x(s))

)
ds+Φ(x(0)) : x(t) = x

}
,

(1)

where ∥ · ∥ denotes the ℓ2-norm, x ∈ Rn and t > 0 are
the terminal position and time horizon, respectively, the
initial cost Φ: Rn → R is a convex function, and the
function U : Rn → (−∞, 0] satisfies U(x) =

∑n
i=1 Ui(xi)

for any x = (x1, . . . , xn) ∈ Rn, where each function
Ui : R → (−∞, 0] is the 1-homogeneous concave function
defined by

Ui(x) =

{
−aix x ≥ 0,

bix x < 0,

with positive constants ai and bi. In the remainder of
this abstract, we use bold characters to denote high-
dimensional vectors in Rn, and we use xi to denote the
i-th component of a high-dimensional vector x ∈ Rn. The
corresponding HJ PDE reads:{

∂V

∂t
(x, t) +

1

2
∥∇xV (x, t)∥2 + U(x) = 0 x ∈ Rn, t ∈ (0,+∞),

V (x, 0) = Φ(x) x ∈ Rn,
(2)

where the initial condition Φ and the potential energy U
are the corresponding functions in (1).

In Chen et al. (2021a), we show that under some assump-
tions, the viscosity solution V : Rn × R → R is defined by
the following Hopf-type formula:

V (x, t) := sup
p∈Rn

{
n∑

i=1

V (xi, t; pi, ai, bi)− Φ∗(p)

}
, (3)

for any x ∈ Rn, t ≥ 0, where the function (xi, t) 7→
V (xi, t; pi, ai, bi) on the right-hand side is a continuously
differentiable function defined explicitly in Chen et al.
(2021a). Moreover, for a positive time horizon t > 0,
the function value V (x, t) defined in (3) is finite, and
the maximizer in (3) exists and is unique. We denote the
unique maximizer by p∗ = (p∗1, . . . , p

∗
n) ∈ Rn. The optimal

trajectory [0, t] ∋ s 7→ γ(s;x, t) ∈ Rn of the optimal
control problem (1) is then given by

γ(s;x, t) := (γ(s;x1, t, p
∗
1, a1, b1), . . . , γ(s;xn, t, p

∗
n, an, bn)) , (4)

for any s ∈ [0, t], where the i-th element γ(s;xi, t, p
∗
i , ai, bi)

on the right-hand side is a one-dimensional function whose
explicit formula is given in Chen et al. (2021a). Note that
the components of γ(s;x, t) are independent from each
other, and hence, they can be computed in parallel as long
as p∗ is known.

Now, we will present efficient algorithms for solving the
optimal control problem (1) and the corresponding HJ
PDEs (2). All of the numerical examples for this class
of problems were run on an 8th Gen Intel Laptop Core
i5-8250U with a 1.60GHz processor. First, consider the
quadratic initial condition, i.e., set

Φ(x) =
1

2λ
∥x− y∥2 + α ∀x ∈ Rn,

where y ∈ Rn, λ > 0, and α ∈ R are some known
parameters. The i-th component of the maximizer p∗ in (3)

is the proximal point of p 7→ − 1
λV (xi, t; p, ai, bi) at −yi

λ ,
which can be efficiently computed using the algorithm
proposed in Chen et al. (2021a). Then, the solution to
the optimal control problem (1) and the corresponding HJ
PDE (2) can be computed using (4) and (3), respectively.
In Chen et al. (2021a), we see that it takes less than
2×10−6 seconds on average to compute the solution at one
point in a 16-dimensional problem with quadratic initial
condition Φ(x) = 1

2∥x − 1∥2, which demonstrates the
efficiency of our proposed solver in high dimensions.

Next, consider more general convex initial conditions. Note
that (3) can be written as a convex optimization problem
and thus can be solved using many proximal point based
optimization algorithms. For illustration, we present an
ADMM scheme (see Glowinski (2014); Boyd et al. (2011)),

whose k-th step contains the updates of vk+1, dk+1, and
wk+1. First, we update vk+1 ∈ Rn by

vk+1 = argmin
v∈Rn

{
Φ∗(v) +

λ

2

∥∥∥v − dk +wk
∥∥∥2} ,

which can be efficiently computed if there exists an efficient
numerical algorithm for computing the proximal point of
Φ or Φ∗. Then, we update dk+1 ∈ Rn, where the i-th
element dk+1

i is computed by

dk+1
i = argmin

di∈R

{
−V (xi, t; di, ai, bi) +

λ

2
(vk+1

i − di + wk
i )

2
}

. (5)

Note that (5) is a one-dimensional convex optimization
problem whose objective function has an explicit formula.
Therefore, the minimizer dk+1

i can be efficiently computed
using the algorithm proposed in Chen et al. (2021a). The
last step is to update wk+1 ∈ Rn by

wk+1 = wk + vk+1 − dk+1. (6)

We set the stopping criteria to be

max{∥vN−1−vN∥2, ∥dN−1−dN∥2, ∥vN−dN∥2} ≤ ϵ. (7)

After N steps when the stopping criteria (7) is met, we set
the maximizer of (3) to be pN = vN , and then output the
optimal trajectory by

γ̂(s;x, t) = (γ(s;x1, t, p
N
1 , a1, b1), . . . , γ(s;xn, t, p

N
n , an, bn)), (8)

where the i-th component γ(s;xi, t, p
N
i , ai, bi) is defined

in Chen et al. (2021a). The numerical solution to the HJ
PDE at (x, t) is given by

V̂ (x, t) =
n∑

i=1

V
(
xi, t; p

N
i , ai, bi

)
− Φ∗ (pN

)
, (9)

where the i-th component V
(
xi, t; p

N
i , ai, bi

)
in the sum-

mation is defined in Chen et al. (2021a). In Chen et al.
(2021a), we present several numerical examples that
demonstrate the efficiency of our proposed algorithm.

For instance, consider the initial condition given by

Φ(x) =
1

2
∥x− 1∥21, (10)

where ∥ · ∥1 denotes the ℓ1-norm and 1 denotes the vector
in Rn whose elements are all one. Then, the average time
per call of our algorithm to evaluate the solution of the HJ
PDE (2) is summarized below for various dimensions n.

n 4 8 12 16

running time (s) 2.1192e-05 9.4819e-05 2.0531e-04 3.2751e-04
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Specifically, we see that our algorithm takes less than
4×10−4 seconds on average to compute the solution at one
point in 16 dimensions, which demonstrates its efficiency
even in high dimensions.

3. THE SECOND CLASS OF OPTIMAL CONTROL
PROBLEMS

We consider the following high-dimensional optimal con-
trol problem with state-dependent running cost and con-
trol constraints:

V (x, t) = min

{∫ t

0

∥x(s)∥2

2
ds+Φ(x(0)) : x(t) = x,

ẋ(s) ∈
n∏

i=1

[−bi, ai] ∀s ∈ (0, t)

}
,

(11)

where x and t are the terminal position and time horizon,
respectively, {ai} and {bi} are positive scalars which
provide restrictions on the control (velocity) ẋ, and the
initial cost Φ: Rn → R is a lower semi-continuous function.
The corresponding HJ PDE reads:

∂V

∂t
(x, t) +

n∑
i=1

Ki

(
∂V (x, t)

∂xi

)
−

1

2
∥x∥2 = 0 x ∈ Rn, t ∈ (0,+∞),

V (x, 0) = Φ(x) x ∈ Rn,

(12)

where each function Ki : R → R is the 1-homogeneous
convex function defined by

Ki(x) =

{
aix x ≥ 0,

−bix x < 0,

and the initial condition is given by the initial cost Φ
in (11).

In Chen et al. (2021b), we show that under some assump-
tions, the viscosity solution V : Rn × R → R is defined by
the following Lax-Oleinik-type representation formula:

V (x, t) := inf
u∈

∏n

i=1
[xi−ait,xi+bit]

{
n∑

i=1

V (xi, t;ui, ai, bi) + Φ(u)

}
,

(13)

for all x ∈ Rn, t ≥ 0, where each function (xi, t) 7→
V (xi, t;ui, ai, bi) on the right-hand side is a continuous
function defined explicitly in Chen et al. (2021b).

Let u∗ = (u∗
1, . . . , u

∗
n) ∈ Rn be a minimizer in (13).

Note that the minimizer u∗ exists since the objective
function in the minimization problem in (13) is a lower
semi-continuous function with compact domain

∏n
i=1[xi−

ait, xi + bit] (see (Rockafellar and Wets, 1998, Theo-
rem 1.9)). However, the minimizer may be not unique.
When there are multiple minimizers, let u∗ be one such
minimizer. Define the trajectory [0, t] ∋ s 7→ γ(s;x, t)
using u∗ as

γ(s;x, t) := (γ(s;x1, t, u
∗
1, a1, b1), . . . , γ(s;xn, t, u

∗
n, an, bn)) , (14)

where the i-th component γ(s;xi, t, u
∗
i , ai, bi) on the right-

hand side is defined explicitly in Chen et al. (2021b). Note
that the components of γ(s;x, t) are independent from
each other, and hence, they can be computed in parallel
as long as u∗ is known.

It is shown in (Chen et al., 2021b, Lemma 3) that the
function ui 7→ V (xi, t;ui, ai, bi) is strictly convex and twice
continuously differentiable in its domain. Hence, if the

initial cost Φ is convex, then (13) is a convex optimization
problem that can be numerically solved using convex
optimization algorithms. Furthermore, if Φ is quadratic,
i.e., Φ is of the form

Φ(x) =
λ

2
∥x− y∥2 + α ∀x ∈ Rn, (15)

for some parameters y ∈ Rn, λ > 0, and α ∈ R, then
solving the corresponding optimization problem (13) is
equivalent to computing the proximal point of the function
u 7→ 1

λ

∑n
i=1 V (xi, t;ui, ai, bi); this problem can be split

into n one-dimensional subproblems, which, in turn, can
be solved in parallel and for which explicit formulas were
provided in Chen et al. (2021b). In Chen et al. (2021b),
we see that when λ = 1,y = 1, and α = 0, this proximal
point can be computed on an 11th Gen Intel Laptop Core
i7-1165G7 with a 2.80GHz processor in less than 8× 10−7

seconds on average at one point in 16 dimensions.

Next, we present an efficient algorithm for solving (13)
with general convex initial costs Φ. As noted above, in this
case, (13) is a convex optimization problem that can be
solved using convex optimization algorithms, and the prox-
imal point of the function u 7→ 1

λ

∑n
i=1 V (xi, t;ui, ai, bi)

can be computed explicitly and in complexity Θ(n). Thus,
proximal point based methods provide a reasonable ap-
proach for solving (13). As a demonstration, we show how
ADMM (see Glowinski (2014); Boyd et al. (2011)) can be
applied to solve (13) in this case. Here, ADMM consists of
iterating the following steps:

vk+1 = argmin
v∈Rn

{
Φ(v) +

λ

2

∥∥∥v − dk +wk
∥∥∥2} ,

which is the proximal point of the initial condition,

dk+1
i = argmin

di∈R

{
V (xi, t; di, ai, bi) +

λ

2
(vk+1

i − di + wk
i )

2

}
,

which is the proximal point of the function ui 7→
1
λV (xi, t;ui, ai, bi), and (6), which is a linear update of
coefficients. Once the stopping criteria (7) is met, we set

the numerical minimizer to be uN = dN . We then output
the optimal trajectory by:

γ̂(s;x, t) = (γ(s;x1, t, u
N
1 , a1, b1), . . . , γ(s;xn, t, u

N
n , an, bn)),

where the i-th component γ(s;xi, t, u
N
i , ai, bi) is defined

explicitly in Chen et al. (2021b), and the solution to the
HJ PDE by:

V̂ (x, t) =

n∑
i=1

V
(
xi, t;u

N
i , ai, bi

)
+Φ

(
uN

)
,

where the i-th component V
(
xi, t;u

N
i , ai, bi

)
in the sum-

mation is defined explicitly in Chen et al. (2021b). We note
that if vk+1 can be computed in complexity Θ(n), then the
overall complexity for each ADMM iteration is also Θ(n).
In other words, using a fixed number of iterations, the
curse of dimensionality is avoided in this case. In Chen
et al. (2021b), we present several numerical examples that
demonstrate the efficiency of our proposed algorithm. As
before, all numerical examples were run on an 11th Gen
Intel Laptop Core i7-1165G7 with a 2.80GHz processor.
For instance, when the initial condition is given by (10),
the average time per call of our algorithm to evaluate
the solution of the HJ PDE (12) is summarized below for
various dimensions n.
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n 4 8 12 16

running time (s) 4.6206e-06 3.2871e-05 1.8791e-04 1.9571e-04

Specifically, we see that it takes less than 2 × 10−4

seconds on average to compute the solution at one point
in 16 dimensions, which demonstrates that our proposed
algorithm can overcome the CoD in this example.
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Abstract: The aim of this note is to present two specific constructions of flag codes having
maximum distance through the action of Singer groups. To this end, we will make use of their
transitive action on lines and hyperplanes.
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1. INTRODUCTION

Random Network Coding is a method for maximize the in-
formation rate of an incoherent network which is a directed
graph with possibly several senders and receivers. In Koet-
ter and Kschischang (2008) an algebraic framework for
such networks is developed by encoding the information in
subspaces of a given ambient space Fnq over a finite field Fq.
In this setting, the set of all subspaces of Fnq is turned into a
metric space in which two subspaces are closer the greater
their intersection. A constant dimension code is a set of
subspaces of Fnq having the same dimension. Since their
definition, research works on these codes have proliferated
considerably (see for instance Horlemann-Trautmann and
Rosenthal (2018) and the references therein). Flag codes
can be seen as a generalization of constant dimension
codes. In this case, the codewords are flags on Fnq , that is,
tuples of nested vector subspaces of prescribed dimensions
(Liebhold et al. (2018)). The aim of this note is to explain
how we can construct flag codes having maximum distance
through the action of Singer groups. Its content is part of
the article Navarro-Pérez and Soler-Escrivà (2022), where
the reader can find the required proofs. The structure
of the note is the following: In the second section we
give some preliminaries. In Section 3 we explain how to
construct flag codes with maximum distance through the
action of a Singer group.

2. PRELIMINARIES

The set of all subspaces of Fnq of dimension k is called
the Grassmann variety, denoted by Gq(k, n). Given U ,V ∈
Gq(k, n), their subspace distance is defined as dS(U ,V) =
dim(U + V) − dim(U ∩ V) = 2(k − dim(U ∩ V)). Then,
a constant dimension code C is a nonempty subset of
Gq(k, n) and its minimum distance, dS(C), is the minimum
of the distances between distinct pairs of elements of C.
The code C is said to be a spread code if it is a spread
in the geometrical sense, that is, its elements pairwise
intersect trivially and cover the whole space Fnq . Spreads

? The authors received financial support of Ministerio de Ciencia e
Innovación (PID2019-108668GB-I00). The first author is supported
by Generalitat Valenciana and Fondo Social Europeo (Grant number:
ACIF/2018/196).

of dimension k exist if, and only if, k divides n and, in this
case, they have cardinality (qn − 1)/(qk − 1).

We put Fk×nq for the set of all k × n matrices with entries
in Fq and GLn(Fq) for the general linear group of degree
n over Fq, composed by all invertible matrices in Fn×nq .

Given U ∈ Gq(k, n) and a full-rank matrix U ∈ Fk×nq such
that U = rowsp(U), the operation U · A = rowsp(UA)
defines a group action of GLn(Fq) on the Grassmann
variety, since it is independent from the choice of U
(Trautmann et al. (2010)). This way, for a subgroup H
of GLn(Fq), the orbit code OH(U) is just the constant
dimension code arising as the orbit of U under the action
of H. That is, OH(U) = {U ·A | A ∈ H} ⊆ Gq(k, n).

Given integers 0 < t1 < · · · < tr < n, a flag F =
(F1, . . . ,Fr) of type (t1, . . . , tr) on Fnq is a sequence of
nested subspaces of Fnq , F1 ⊆ · · · ⊆ Fr, with Fi ∈
Gq(ti, n), for all i = 1, . . . , r. We say that Fi is the i-
th subspace of the flag F and when the type vector is
(1, 2, . . . , n − 1) we speak about full flags. The subspace
distance defined for the Grassmann variety can be natu-
rally extended to flags as follows. Given F = (F1, . . . ,Fr)
and F ′ = (F ′1, . . . ,F ′r) two flags of type (t1, . . . , tr), their
flag distance is df (F ,F ′) =

∑r
i=1 dS(Fi,F ′i). A flag code

of type (t1, . . . , tr) is just a nonempty set C consisting
of flags of this type vector and its minimum distance is
df (C) = min{df (F ,F ′) | F ,F ′ ∈ C, F 6= F ′}. For any
i ∈ {1, . . . , r}, the i-projected code Ci of C is defined in
Alonso-González et al. (2020) as the constant dimension
code Ci = {Fi | (F1, . . . ,Fr) ∈ C} ⊆ Gq(ti, n). Notice that

df (C) ≤ 2
(∑

2ti≤n ti +
∑

2ti>n
(n− ti)

)
. We say that C

is an optimum distance flag code (ODFC) whenever df (C)
attains this upper bound. It follows that the projected
codes of an ODFC are constant dimension codes of max-
imum distance. However, this is not a sufficient condition
in order to obtain ODFC (Alonso-González et al. (2020)).

Clearly, the action of the general linear group on the
Grassmann variety can be extended to flags. Given a flag
F = (F1, . . . ,Fr) and a subgroup H of GL(n, q), the orbit
flag code generated by F under the action of H is

OH(F) = {F ·A | A ∈ H} = {(F1 ·A, . . . ,Fr ·A) | A ∈ H}.
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Putting StabH(F) = {A ∈ H | F ·A = F} for the stabilizer

subgroup of this action, it holds |OH(F)| = |H|
|StabH(F)| .

Moreover, the minimum distance of the orbit flag code is

df (OH(F)) = min{df (F ,F ·A) | A ∈ H \ StabH(F)}
and it holds df (OH(F)) = 0 if, and only if, StabH(F) =
H. The projected codes of an orbit flag code are orbit
(subspace) codes. More precisely, for every 1 ≤ i ≤ r,
we have OH(F)i = OH(Fi) ⊆ Gq(ti, n). Besides, the
stabilizer subgroup of F is closely related to the ones
of its subspaces: StabH(F) =

⋂r
i=1 StabH(Fi) (Alonso-

González et al. (2021b)).

Remark that, fixed an acting subgroup H of GLn(Fq), the
cardinality of the flag code OH(F) and their projected
codes are determined by the orders of the corresponding
stabilizer subgroups. Since StabH(F) = StabGLn(Fq)(F) ∩
H, one way to construct orbit flag codes is to start from
a subspace whose stabilizer in GLn(Fq) is known and
consider subgroups H that trivially intersect it. This is
the approach of the constructions given in Liebhold et al.
(2018). More generally, we can look for subgroups of
GLn(Fq) whose action on certain subspaces of Fnq is known
and try to extend this action to flags in an appropriate
manner. This is our strategy, using classical results about
the action of Singer groups on lines and hyperplanes
(Theorem 1).

3. ORBIT FLAG CODES FROM SINGER GROUPS

The aim of this section is to present two constructions
of ODFC. In Subsection 3.1 we construct ODFCs on Fnq
having a k-spread as a projected code, for k a divisor of n.
To do so, we consider flags of type (1, . . . , k, n−k, . . . , n−
1). Such a construction leads to full flag codes whenever
n = 2k or k = 1 and n = 3. In Subsection 3.2, we build
ODFCs of full type vector for the remaining cases. Both
constructions are closely related to Singer groups. A Singer
subgroup of GLn(Fq) is a cyclic subgroup of the largest
possible order, which is qn − 1. Singer subgroups form a
conjugacy class of GLn(Fq) and act on the Grassmann
varieties of lines and hyperplanes as follow:

Theorem 1. (Beth et al., 1999, Th. 6.2) Any Singer cyclic
subgroup S of GLn(Fq) acts transitively on both Gq(1, n)
and Gq(n − 1, n). Moreover, for any l ∈ Gq(1, n) and any
h ∈ Gq(n − 1, n), it holds that StabS(l) = StabS(h) =
{aIn | a ∈ F∗q}, which is the unique cyclic subgroup of S
of order q − 1.

3.1 Orbit ODFC from spreads

Assume that n = ks, for s ≥ 2, and that C is an ODFC
such that dimension k appears in its type vector. Then

|C| ≤ qn−1
qk−1 and the equality holds if, and only if, the

projected code Ci is a k-spread of Fnq (Alonso-González
et al. (2020)). Moreover, (1, . . . , k, n − k, . . . , n − 1) is
the largest type vector for an ODFC on Fnq having a k-
spread as one of its projected codes (Alonso-González et al.
(2021a)).

Motivated by these results, we consider for our construc-
tion an arbitrary flag of the full admissible type vector
(1, . . . , k, n − k, . . . , n − 1). For sake of simplicity, we will

denote it by F = (F1, . . . ,Fk,Fn−k, . . . ,Fn−1). Then the
following result holds:

Theorem 2. (Navarro-Pérez and Soler-Escrivà, 2022, Th.
4.11) Given a subgroup H of GLn(Fq) and a flag F of
the full admissible type vector, the following sentences are
equivalent:

(i) OH(F) is an ODFC.
(ii) StabH(Fk) = StabH(Fn−k) ⊆ StabH(Fi), for every

i and the subspace codes OH(Fk) and OH(Fn−k) are
of maximum distance.

Now, the idea is to use Theorem 1 in order to achieve the
condition (ii) of Theorem 2. To do so, let ω be a primitive
element of the field Fqk and Mk ∈ GLk(Fq) the companion
matrix associated to the primitive polynomial of ω over
Fq. It turns out that Fqk ∼= Fq[ω] ∼= Fq[Mk], where the last

field isomorphism is given by φ(
∑k−1
i=0 aiω

i) =
∑k−1
i=0 aiM

i
k.

In particular φ(ω) = Mk and the multiplicative order of
Mk is qk−1. Thus, 〈Mk〉 is a Singer subgroup of GLk(Fq).
Equivalently, Mk is a primitive element of the finite field
Fq[Mk] ⊆ Fk×kq .

The field isomorphism φ is useful to map vector subspaces
of Fsqk into vector subspaces of Fnq . For m ∈ {1, . . . , s}, one

has the embedding ϕ : Gqk(m, s) −→ Gq(km, n) given by

rowsp

a11 · · · a1s
...

. . .
...

am1 · · · ams

 7−→ rowsp

 φ(a11) · · · φ(a1s)
...

. . .
...

φ(am1) · · · φ(ams)

 ,

which is called a field reduction map. In particular, ϕ
preserves intersections of subspaces, since it is injective.
Therefore, an m-spread of Fsqk will be mapped into a km-

spread of Fnq . We will use two constant dimension codes of
Fnq constructed in this way. First, from the spread of lines
of Fsqk , we consider

S = ϕ(Gqk(1, s)) ⊆ Gq(k, n),

which is a k-spread of Fnq . Originally, due to Segre, in the
network coding setting, this construction appears for the
first time in Manganiello et al. (2008). Secondly, from the
Grassmannian of hyperplanes of Fsqk , we obtain

H = ϕ(Gqk(s− 1, s)) ⊆ Gq(n− k, n),

which is a constant dimension code of Fnq with maximum
distance.

On the other hand, we can also use φ to obtain the
following group monomorphism:

ψ : GLs(Fqk) −→ GLks(Fq)a11 · · · a1s...
. . .

...
as1 · · · ass

 7−→
 φ(a11) · · · φ(a1s)

...
. . .

...
φ(as1) · · · φ(ass)

 .

In this way, we can establish the following relation between
the group action of GLs(Fqk) on Gqk(m, s) and the group
action of GLn(Fq) on Gq(km, n):

ϕ(V ·A) = ϕ(V) · ψ(A), (1)

for all V ∈ Gqk(m, s) and A ∈ GLs(Fqk). In particular, we
will use this equality to relate the respective actions of two
Singer subgroups in which we are very interested.

Let α be a primitive element of Fqn and Ms ∈ GLs(Fqk)
the companion matrix of the minimal polynomial of α
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over Fqk , then Fqn ∼= Fqk [α] ∼= Fqk [Ms]. Therefore,
the multiplicative order of Ms is qn − 1 and 〈Ms〉 is a
Singer subgroup of GLs(Fqk). Besides, it turns out that
ψ(〈Ms〉) = 〈ψ(Ms)〉 is a Singer subgroup of GLn(Fq).
Given a line l0 ∈ Gqk(1, s), put ϕ(l0) = S0 ∈ S. In
accordance with Theorem 1 and (1) we can write

S = ϕ(Gqk(1, s)) = ϕ(O〈Ms〉(l0)) = {ϕ(l0 ·A) | A ∈ 〈Ms〉}
= {S0 · ψ(A) | ψ(A) ∈ 〈ψ(Ms)〉} = O〈ψ(Ms)〉(S0).

In an analogous way, given a hyperplane h0 ∈ Gqk(s−1, s),
denote ϕ(h0) = Ho ∈ H. Then, we obtain that

H = ϕ(Gqk(s− 1, s)) = ϕ(O〈Ms〉(h0)) = O〈ψ(Ms)〉(H0).

That is, the transitive action of 〈Ms〉 on the lines and
hyperplanes of Fsqk is translated into the transitive action

of 〈ψ(Ms)〉 on the constant dimension codes of maximum
distance S and H. Moreover, for any S0 ∈ S and H0 ∈ H,
Theorem 1 also leads to

Stab〈ψ(Ms)〉(S0) = Stab〈ψ(Ms)〉(H0) = {ψ(aIs) | a ∈ F∗qk},
which has order qk − 1.

With all these ingredients, we can now apply Theorem 2
in order to characterize those subgroups of 〈ψ(Ms)〉 that
are appropriate to construct ODFCs.

Theorem 3. Let F = (F1, . . . ,Fk,Fn−k, . . . ,Fn−1) be a
flag of full admissible type vector such that Fk ∈ S and
Fn−k ∈ H. For any positive integer t dividing qn − 1,
consider the unique subgroup T of 〈ψ(Ms)〉 of order t.
Then:

(i) |OT(F)| = t
gcd(t,q−1) .

(ii) OT(F) is an ODFC if, and only if, gcd(t, qk − 1) =
gcd(t, q − 1) 6= t.

Theorem 3 states which subgroups of 〈ψ(Ms)〉 allow the
construction of ODFCs as a single orbit of them. Notice
that bigger subgroups not always will provide bigger orbit
flag codes. In addition, it may eventually happen that
some subgroup provides an orbit ODFC of the maximum

possible size, that is, qn−1
qk−1 . Otherwise, we will consider

unions of orbits under the action of that subgroup in
order to obtain an optimal construction (Navarro-Pérez
and Soler-Escrivà, 2022, Th. 4.13). Clearly, the larger the
size of each orbit, the fewer orbits we need to reach the
maximum size and vice versa. In particular, the degenerate

case where an ODFC is constructed as a union of qn−1
qk−1

orbits with just one element is also contemplated. All these
considerations are reflected in the following examples, in
which we apply Theorem 3 for different values of the
parameters.

Examples. With the notation of Theorem 3, we consider
all the divisors t of qn − 1 such that gcd(t, qk − 1) =
gcd(t, q−1) and the corresponding subgroup T of 〈ψ(Ms)〉
of order t. Consider a flag F of the full admissible type
(1, . . . , k, n−k, . . . , n−1) such that Fk ∈ S and Fn−k ∈ H.
Finally, denote by m the number of required orbits of T to

attain the maximum size, qn−1
qk−1 , for an ODFC with these

parameters.

(1) Put q = 3, k = 3 and n = 6. Thus, k = n − k,

qn − 1 = 728, qk − 1 = 26 and qn−1
qk−1 = 28. Then

t 1 2 4 7 8 14 28 56

|OT(F)| 1 1 2 7 4 7 14 28

m 28 28 14 4 7 4 2 1

Notice that, in this case, the subgroup of order
t = 56 allows us to obtain ODFCs of full type vector
and having the best possible size, i.e., 28, by using a
single orbit. Moreover, remark that the subgroup of
order t = 8 gives an orbit ODFC of smaller size than
the obtained with the subgroup of order t = 7.

(2) Put q = 4, k = 3 and n = 9. Thus, n − k = 6,

qn− 1 = 262143, qk − 1 = 63 and qn−1
qk−1 = 4161. Then

t 1 3 19 57 73 219 1387 4161

|OT(F)| 1 1 19 19 73 73 1387 1387

m 4161 4161 219 219 57 57 3 3

The largest orbit size is 1387 and it is obtained
when the acting group has order either 1387 or 4161.
On the other hand, the maximum possible size of
an ODFC with these parameters is 4161. Hence, in
order to achieve that cardinality, we must consider
the union of, at least, 3 different orbits.

The orbital constructions of ODFC provided in this section
present a restriction on the type vector, coming from the
condition of having a spread as a projected code. However,
there are two possible situations in which flag codes of
full type can be given by using Theorem 3. First, for
even values of n, taking the divisor k = n

2 leads to a
construction of full type in which k = n−k. This particular
case was first studied in Alonso-González et al. (2021b),
where a construction using the action of a Singer subgroup
of SL2k(Fq) is presented. On the other hand, for n = 3
and k = 1, the action of a Singer subgroup of GL3(Fq)
on the Grassmannian of lines and hyperplanes gives us a
construction of type (1, 2). This construction is also known
and appears in (Kurz, 2021, Prop. 2.5), where the author
shows that it is the one with the biggest cardinality among
ODFC of full type when n = 3. In the following section,
we consider the remaining situations, that is, we address
the construction of orbit ODFCs of full type vector on Fnq
for odd values of n > 3.

3.2 Orbit ODFC of full type vector

In this section, we assume that n = 2k+1, for some k > 1.
In this case, instead of Theorem 2, the following result is
achieved.

Theorem 4. (Navarro-Pérez and Soler-Escrivà, 2022, Th.
4.11) Given a subgroup H of GLn(Fq) and a full flag
F = (F1, . . . ,F2k) on Fnq , the following sentences are
equivalent:

(i) OH(F) is an ODFC.
(ii) StabH(Fk) = StabH(Fk+1) ⊆ StabH(Fi), for every i

and the subspace codes OH(Fk) and OH(Fk+1) are
of maximum distance.

Our aim is to use the previous theorem in order to obtain
a specific construction of orbit ODFC of full type vector.
For this, let us consider Mk+1 ∈ GLk+1(Fq) the companion
matrix of a primitive polynomial of degree k + 1 in Fq[x].
Then 〈Mk+1〉 is a Singer subgroup of GLk+1(Fq) and
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Fq[Mk+1] is a matrix representation of the finite field of
qk+1 elements. Let us write

g =

(
Ik 0k×(k+1)

0(k+1)×k Mk+1

)
∈ GLn(Fq)

and consider the cyclic group

G = 〈g〉 =
{
gi | 0 ≤ i ≤ qk+1 − 2

}
.

Clearly, G is a subgroup of order qk+1 − 1 of GLn(Fq),
isomorphic to the Singer subgroup 〈Mk+1〉 of GLk+1(Fq).
In the rest of this section, the orbit codes considered will
be always generated by the action of this specific group G.

We start by characterizing the subspaces of dimensions
k and k + 1 of Fnq whose orbits under the action of
G are constant dimension codes of maximum distance.
Given arbitrary subspaces U = rowsp(U) ∈ Gq(k, n) and
V = rowsp(V ) ∈ Gq(k + 1, n), their respective full-rank
generator matrices can split into two blocks as

U = (U1 | U2) and V = (V1 | V2), (2)

where U1 (resp. V1) denotes the first k columns of U (resp.

V ). Therefore, U1 ∈ Fk×kq , U2 ∈ Fk×(k+1)
q , V1 ∈ F(k+1)×k

q

and V2 ∈ F(k+1)×(k+1)
q . Now, consider the orbit codes

OG(U) = {U · gi | 0 ≤ i ≤ qk+1 − 2} (3)

and

OG(V) = {V · gi | 0 ≤ i ≤ qk+1 − 2}. (4)

With the notation of (2) the following results hold.

Proposition 5. The orbit code OG(U) defined in (3) has
maximum distance if, and only if, rk(U1) = rk(U2) = k.
Its cardinality is |OG(U)| = |G| = qk+1 − 1.

Proposition 6. The orbit code OG(V) defined in (4) has
maximum distance if, and only if, rk(V1) = k and rk(V2) =
k + 1. Its size is |OG(V)| = |G| = qk+1 − 1.

In the following, we use the previous characterizations for
constant dimension codes of maximum distance in order
to provide orbit ODFCs of full type on Fnq . To do so, we
need to consider nested subspaces U ( V of dimensions
k and k + 1, respectively. Using the notation of (2), we
can formulate the problem in a matrix approach: given
a full-rank generator matrix U = (U1 | U2) ∈ Fk×nq of
U , we consider a subspace V spanned by the rows of a

matrix V ∈ F(k+1)×n
q , obtained by adding an appropriate

row to U . In other words, we choose vectors v1 ∈ Fkq and

v2 ∈ Fk+1
q such that the matrix

V = (V1 | V2) =

(
U1 U2

v1 v2

)
(5)

has rank equal to k + 1. Using this notation, we present
the next construction of ODFCs arising from the action of
the group G defined in this section.

Theorem 7. Let F = (F1, . . . ,F2k) be a full flag on Fnq
such that Fk = U = rowsp(U1 | U2) and Fk+1 = V =
rowsp(V1 | V2), with generator matrix as in (5). The
following statements are equivalent:

(i) The flag code OG(F) is an ODFC.

(ii) The matrices U1 ∈ Fk×kq and V2 ∈ F(k+1)×(k+1)
q are

invertible.

In this situation, |OG(F)| = |G| = qk+1 − 1.

The ODFC constructed in Theorem 7 contains qk+1 − 1
flags. It is the largest size for orbits under the action of
the group G. On the other hand, as proved in (Kurz,
2021, Prop. 2.4), the maximum possible cardinality for
ODFCs of full type on Fnq is exactly qk+1+1. Consequently,
our orbital construction is only two flags away from
reaching the mentioned bound. In order to complete this
construction into an ODFC with size qk+1 + 1, we form
the following subspaces

U ′ = rowsp(U1 | 0k×(k+1)), V ′ = rowsp

(
U1 0k×(k+1)

v1 v2

)
,

U ′′ = rowsp(0k×k | U2), V ′′ = rowsp

(
0k×k U2

v1 v2

)
.

(6)
With this notation, as long as rk(U1) = rk(U2) = k and
v2 6∈ rowsp(U2), the next result holds.

Theorem 8. Let F ,F ′,F ′′ be full flags on Fnq such that
Fk = U and Fk+1 = V defined as in Theorem 7 and

F ′k = U ′, F ′k+1 = V ′, F ′′k = U ′′, F ′′k+1 = V ′′.
Then the flag code C = OG(F) ∪ {F ′,F ′′} is an ODFC
with the maximum possible cardinality, i.e., qk+1 + 1, if,
and only if, v1 = 0k.
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1. INTRODUCTION

Code-based cryptography is among the main solutions for
post-quantum cryptography together with lattice-based
and isogeny-based cryptography. A McEliece type OW-
PKE based on Gabidulin codes was proposed in Loidreau
(2017). It mimics the McEliece type OW-PKE proposed
in Hamming metric, but compared to modern PKE and
especially those proposed at the NIST post-quantum stan-
dardization process this one has three main advantages.

• Decryption is deterministic. This makes much easier
to handle as an IND-CCA version than Lattice based
schemes and MDPC codes based schemes.
• Key size is between one and two orders of magnitude

smaller than other Hamming metric based cryptosys-
tem. It favourably compares to unstructured lattice-
based PKEs such as the one used in FrodoKEM.
• The cipher text is small compared to unstructured

lattice and compares favourably with structured lat-
tices.

On the other hand, and this forms the main drawback,
the security analysis is not yet sufficiently stabilized. The
security of the scheme relies on two paradigms:

• The complexity of distinguishing the public code from
random
• The complexity of decoding a random code in rank

metric.

The latter problem was proven to be a hard problem in the
complexity class ZPP Gaborit and Zémor (2015). However,
in practice significant recent progresses were made in
the computational complexity which makes necessary to
reconsider the parameters, Bardet et al. (2020). This
implies in particuler increasing the public-key size which
is the main drawback in using code-based cryptography in
limited resources devices.

In our work we propose a new direction towards the
reduction of the public-key.

2. BACKGROUND ON GABIDULIN CODES AND ON
RANK METRIC

First we define the rank norm of a vector inducing a metric
on a finite field. Let q be the power of some prime number.

Definition 1. (Rank of a vector). Let Fqm be the finite
field with qm elements. Let a = (a1, . . . , an) ∈ Fnqm . Then
the rank of a denoted by Rk(a) is the dimension of the
Fq-dimensional vector subspace of Fqm generated by the
components of a, i.e.

Rk(a)
def
= dim 〈a1, . . . , an〉Fq

As extremal object in Bose-Mesner algebra Gabidulin
codes were first discovered by Delsarte Delsarte (1978).
Some years later Gabidulin presented an algebraic theory
as well as a polynomial-time decoding algorithm Gabidulin
(1985).

Definition 2. Let 0 < k < n ≤ m, and g = (g1, . . . , gn) ∈
Fnqm of rank n. Then, the k-dimensional Gabidulin code
with support vector g denoted by Gk(g) is

Gk(g) =

{
x
(
g
[i]
j

)k−1,n
i=0,j=1

| x ∈ Fkqm
}
,

where [i]
def
= qi

We consider now more specific Gabidulin codes. Let
u, λ, k ∈ N \ {0}. Let us define m = µu and k = κu,
with κ < µ. Let g` ∈ Fqm , for ` = 1, . . . , u such that

Rk(g = (g
[uj]
` , j = 0, . . . , µ− 1, ` = 1, . . . , u)) = m (1)

A generator G matrix of Gk(g) has the form

G =

G11 · · · G1u

...
. . .

...
Gu1 · · · Guu

 (2)

where

∀`, s = 1, . . . , u, Gs` =
(
g
[(s−1)+u(i+j)]
`

)κ−1,µ−1
i=0,j=0

In other terms the matrices Gs` are submatrices formed
by the κ first rows of the circulant µ× µ matrices(

g
[(s−1)+u(i+j)]
`

)µ−1,µ−1
i=0,j=0
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Definition 3. A generator matrix of a Gabidulin code
Gk(g) under the form (2) is said to be under quasi-cyclic
form.

3. CONSTRUCTION OF GABIDULIN CODES
UNDER QUASI-CYCLIC FORM

We show how to find a vector g or rank m as described in
equation (1). Let g ∈ F2m and let us define

Vg
def
= 〈g, g[u], . . . , g[u(µ−1)]〉F2

Note that we can show that if h ∈ F2m and h /∈ Vg then
Vg ∩ Vh = {0}
(1) Choose g1 ∈ F2m such that dim(Vg1) = µ.

(2) For ` = 2, . . . , u choose g` ∈ F2m \ ∪`−1i=1Vgi such that
dim(∪`i=1Vgi) = µ.

Note that we did not check the effective number of such
vectors. At least any normal element of the finite field
can give rise to such vectors. Our simulations in MAGMA
confirm for q = 2 that a very small number of tries is
necessary to find a target vector (typically less than 10).

The key proposition is:

Proposition 1. Let G = (Gs`) be the generator matrix
of the Gabidulin code Gk(g) under quasi-circulant form

where Gs` ∈ Fκ×µqm are κ×µ submatrices of circulant µ×µ
matrices. Let T = (Ts`) where Ts` ∈ Fµ×µqm are circulant
µ × µ-matrices, then GT is a generator matrix in quasi-
circulant form of the code Gk(g)T

The proposition implies that

GT =

G′11 · · · G′1u
...

. . .
...

G′u1 · · · G′uu


where G′s` are submatrices of circulant matrices. This in
turn implies that the matrix can be regenerated by storing
the u2 rows of size µ log2(qm) bits which are the first rows
of the matrices G′s`.

Corollary 2. To generate the matrix GT one requires
um2 log2(q) bits

Without this particular structure, considering the matrix
under systematic form would require mk(m − k) bits. In
this sense the gain is significant.

4. STRUCTURE OF THE ENCRYPTION SCHEME

Now we design an encryption scheme similar to that in
Loidreau (2017), except for the generation of the public-
key. The only difference lies in the public-key generation
which is a generator matrix under circulant form of the
distorted Gabidulin code. First a designer has to select
parameters q, µ, κ,m = µu, k = κu and the parameter λ
in accordance to the security target.

KeyGen()

(1) Pick up randomly a vector g ∈ Fmqm as in equation
(1).

(2) Construct the generator matrix G for the Gabidulin
code Gk(g) under the form (2).

(3) Pick V ⊂ Fqm a randomly chosen λ-dimensional Fq-
vector subspace of Fqm .

(4) Construct a matrix P = (Ps`) ∈ GLm(Fq) where
Ps` ∈ Vµ×µ, are circulant µ × µ matrices with
components in V.

(5) return Gpub = GP−1, and sk = (G,P)

sk stands for the secret key and Gpub is a matrix which
generates the public-code Gk(g). Now Suppose that p ∈
Fkqm is the plaintext, the encryption procedure is

Encrypt(p,Gpub)

(1) Pick e ∈ Fn2m such that Rk(e) ≤ b(n− k)/2λc
(2) return c = p ·Gpub + e

And the decryption procedure for the ciphertext c.

Decrypt(c,sk)

• return Decode(c ·P,G)

where Decode(∗,G) stands for a decoding algorithm for a
Gabidulin code with generator matrix G.

Note that from our construction Gpub = (G′s`), where
G′s` are submatrices of size κ × µ of µ × µ circulant
matrices. Therefore, to store the public-key, it suffices to
store the first rows of each matrix G′s`.

5. SECURITY OF THE ENCRYPTION SCHEME

The security of the scheme is related to the difficulty of
solving the two following problems

(1) Distinguish the public-code Cpub = 〈Gpub〉 from a
random code

(2) Solve the Rank Bounded Distance Decoding problem
of a randomly generated code for the parameters
given in the design of the encryption scheme. That
is decode errors of rank b(n − k)/(2λ)c in a k-
dimensional code of length n with components in F2m

Compared to the original scheme, our design has an impact
on the first item only. Namely, our construction does not
select a particular structured code, but only a particular
generator matrix. It can be shown that the security rely
completely on the fact that V remains secret.

However, our proposal introduces a new way to attack the
first problem which needs careful investigation. Without
going into too many details idea of the attack relies on the
following considerations

(1) By construction we know that g ∈ Vg1 × · · · × Vgu .
(2) From the knowledge of Gpub and of any vector in

g′ = (g′1, . . . , g
′
u) ∈ Fµuqm such that

Vg′1 × · · · × Vg′u = Vg1 × · · · × Vgu ,
an attacker can construct a decoder for the public-
code thus recovering the plaintext.

A trivial way to achieve this goal is to enumerate vectors
g′ = (g′1, . . . , g

′
u) ∈ Fµuqm , until

∀s = 1, . . . , u, Vg′s = Vgs .
To obtain a simpler analysis, we relax the condition and
say that the attack succeds if
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∀s = 1, . . . , u,

{
Vg′s ⊂ Vgs
Vg′s 6= {0}

Since for any s = 1, . . . , `, the vector space Vgs is closed
under the action of [u]. This is equivalent to finding
g′s ∈ Fqm \ {0} such that

∀s = 1, . . . , u, g′s ∈ Vgs

Now we can establish the following proposition

Proposition 3. Let g′ = (g′1, . . . , g
′
u) ∈ Fmqm be randomly

and uniformly chosen, then

Pr(∀s = 1, . . . , u, g′s ∈ Vgs) ≈ q−
(u−1)m

2

6. CONCLUSION

In this abstract, we presented a procedure to reduce
significantly the public-key size of a distorted Gabidulin
code based encryption scheme. It is of importance that
different types of attacks be thouroughly considered before
claiming security. However, were this approach sound, then
this would enable to provide algebraic code-based public-
key cryptosystems with public-key size of a few kilo-bytes.
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1. INTRODUCTION

In model predictive control, it is a natural idea that not
only one but multiple objectives have to be optimized.
This leads to the formulation of a multiobjective optimal
control problem (MO OCP). In this talk we introduce a
multiobjective MPC algorithm, which yields on the one
hand performance estimates for all considered objective
functions and on the other hand stability results of the
closed-loop solution. To this end, we build on the results
in Zavala and Flores-Tlacuahuac (2012); Grüne and Stieler
(2019) and introduce a simplified version of the algorithm
presented in Grüne and Stieler (2019). Compared to Grüne
and Stieler (2019), we allow for more general MO OCPs
than in Grüne and Stieler (2019) and get rid of restrictive
assumption on the existence of stabilizing stage and termi-
nal costs in all cost components. Compared to Zavala and
Flores-Tlacuahuac (2012), we obtain rigorous performance
estimate for the MPC closed loop.

2. SETTING AND PRELIMINARIES

For a discrete time nonlinear sytem x(k+1) = f(x(k), u(k)),
x(0) = x0 with continuous f : Rn × Rm → Rn, we
impose nonempty state and input constraint sets X ⊆ Rn

and U ⊂ Rm, respectively, as well as a nonempty termi-
nal constraint set X0 ⊆ Rn, and the set of admissible
control sequences for x0 ∈ X up to time N ∈ N by
UN (x0) := {u ∈ UN |xu(k, x0) ∈ X ∀ k = 1, . . . , N −
1 and xu(N, x0) ∈ X0}.
For given stage costs `i : X × U → R, i ∈ {1, . . . , s} =:
I, s ∈ N≥2, and terminal cost F1 : X0 → R≥0 we
define the first cost functional JN

1 : X × UN → R by

JN
1 (x0,u) :=

∑N−1
k=0 `1(xu(k, x0), u(k)) + F1(x(N, x0)),

and for i ∈ {2, . . . , s}, we define cost functionals JN
i : X×

UN → R by JN
i (x0,u) :=

∑N−1
k=0 `i(x(k, x0), u(k)) for

horizon N ∈ N≥2. Here, F1 is defined on the terminal
constraint set X0 ⊆ X and we need to ensure that
x(N, x0) ∈ X0 by imposing suitable terminal constraints.

? The authors are supported by DFG Grant Gr 1569/13-2.

We consider multiobjective optimal control problems with
terminal conditions of the form

min
u∈UN (x0)

JN (x0,u) :=
(
JN
1 (x0,u), . . . , JN

s (x0,u)
)

x(k + 1) = f(x(k), u(k)), k = 0, . . . , N − 1

x(0) = x0, x(k) ∈ X
x(N, x0) ∈ X0.

(MO OCP)

Since we only consider multiobjective optimal control
problems with terminal constraint and the terminal con-
straint x(N, x0) ∈ X0 can generally not be satisfied by all
initial values x0 ∈ X, we define the feasible set XN :=
{x0 ∈ X | ∃ u ∈ UN : xu(k, x0) ∈ X, k = 1, . . . , N −
1, x(N, x0) ∈ X0} 6= ∅. Further, a pair (xe, ue) ∈ X× U is
called equilibrium if xe = f(xe, ue) holds.

In the context of multiobjective optimization we need an
appropriate notion of optimality namely the formalization
of efficient points and nondominated sets, see, for instance,
Ehrgott (2005). Here we denote the set of all efficient
solutions of length N for initial value x0 ∈ X by UN

P (x0).
Further, we use the notion of strict dissipativity and some
stability results from Grüne and Pannek (2017).

3. A NEW MULTIOBJECTIVE MPC ALGORITHM

In this talk, we combine multiobjective optimization and
model predictive control. Thus, we use the MPC theory
to solve a multiobjective optimal control problem. Since
in the multiobjective case there are several ”optimal”
(efficient) solutions we have to adapt the ”standard” MPC.
To this end, we analyze the case of (MO OCP), building
on the results in Stieler (2018); Grüne and Stieler (2019),
particularly on Algorithm 2 from this last reference. For
some theoretical results such as trajectory convergence,
performance estimates and stability results, we can use a
simplified version of this algorithm, in which we allow for
more general MO OCPs. More precisely, we only require
that the first stage cost `1 is strictly dissipative and has a
Lyapunov function terminal cost and a corresponding local
feedback κ : X0 → U, since the first stage cost determine
the closed-loop behavior. In contrast we do not require
the disappearance or optimality of the other stage costs at
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the equilibrium and, thus, the other cost criteria and the
selection of the efficient solution determine the transient
behavior.

This simplified version is Variant A of the following algo-
rithm, whereas Variant B is Algorithm 2 from Grüne and
Stieler (2019).

Algorithm 1 MO MPC with terminal conditions

for k = 0, . . . ,K:
0. If k = 0, set x(0) = x0 and choose an efficient

solution u?
x(0) ∈ UN

P (x(0)) of (MO OCP). Go to 2.

1. Variant A:
If k ≥ 1, choose a efficient solution u?

x(k) of

(MO OCP) with x0 = x(k) so that the inequality

JN
1 (x(k),u?

x(k)) ≤ JN
1 (x(k),ux(k)) (1)

holds.
Variant B:
If k ≥ 0, choose a efficient solution u?

x(k) of

(MO OCP) with x0 = x(k) so that the inequalities

JN
i (x(k),u?

x(k)) ≤ JN
i (x(k),ux(k)) ∀i ∈ I (2)

hold.
2. For x := xu∗

x(k)
(N, x(k)) set

ux(k+1) :=
(
u∗x(k)(1), . . . , u∗x(k)(N − 1), κ(x)

)
.

3. Apply the feedback µN (k, x(k)) := u∗x(k)(0), i.e.,

evaluate x(k+1) = f(x(k), µN (k, x(k))), set k = k+
1 and go to 1.

4. RESULTS

For Variant A of Algorithm 1, under the assumption
of strict dissipativity of the first stage cost `1 at an
equilibrium (xe, ue) for all (x, u) ∈ X × U, we can prove
feasibility, trajectory convergence to the equilibrium and
a performance estimate for the first cost criterion JN

1
analogously to Stieler (2018); Grüne and Stieler (2019).
More precisely, we obtain a bound on the infinite-horizon
closed-loop performance of the first cost function of the
form

J∞1 (x0, µ
N ) ≤ JN

1 (x0,u
?
x0

). (3)

Inequality (3) gives an a-priori bound on the performance
only in dependence of the MPC-horizon N , the initial
value x0 and the efficient solution u?

x0
chosen in step (0) of

Algorithm 1. Further, by using the continuity of the stage
costs `i, i ∈ I, and the trajectory convergence, we can
bound the averaged performance

J̄∞i (x0, µ
N ) := lim sup

K→∞

1

K

K−1∑
k=0

`i(x(k), µN (x(k)))

≤ `i(xe, ue)
(4)

for all i ∈ I by the corresponding stage cost at the
considered equilibrium `i(x

e, ue).

Moreover, we are interested in stability results. Assuming
strict dissipativity of the first stage cost `1 and some
technical inequalities to hold we can prove local asymptotic
stability for the MPC closed-loop defined in Algorithm
1, Variant A. To this end, we only use the properties of
the first cost function JN

1 and the trajectory convergence.

Thus, we can adapt the proof of the single-objective case,
see e.g. Grüne and Pannek (2017), and show that the

rotated cost function J̃N
1 is a time varying Lyapunov

function. In our talk we will give insights into the technical
assumptions and a sketch of this proof.

Besides the performance of J1 we are also interested in a
non-averaged performance result for JN

i , i ∈ {2, . . . , s}.
For this purpose we will use the previous results and
combine them with the idea of the performance of single-
objective economic MPC without terminal conditions, see
Grüne and Pannek (2017). To this end, we consider the
trajectories x, which are driven by the efficient solution
u?
x0

. First, we show that the end points of the efficient
trajectories are close to the equilibrium because of the
stability and the strict dissipative stage cost `1. Next,
in order to establish a performance estimate on Ji, i ∈
{2, . . . , s}, we extend the constraint (1) to all i ∈ I.
This way we end up with Algorithm 1 Variant B — an
algorithm originally proposed in Grüne and Stieler (2019).
However, we still do not require additional properties, such
as dissipativity, of the stage cost `i for i ≥ 2. Thus, under
some technical assumptions we can show that for any
C > 0 there is a function δ ∈ L such that the performance
estimates

JK
i (x0, µ

N ) ≤ JN
i (x0,u

?
x0

) + (K −N)`i(x
e, ue) +Kδ(N),

(5)
hold for all i ∈ {2, . . . , s}, N,K ∈ N with K ≥ N and
all x0 ∈ XN with ‖x0 − xe‖ ≤ C. We remark that for
all sufficiently large K the relative error in the estimation
above is proportional to δ(N) and thus decreases to 0 as
N tends to infinity. Hence, in terms of the relative error
the estimate gives a perfectly useful estimate.

The proofs for all these results will appear in Eichfelder
et al. (2022).

5. NUMERICAL SIMULATIONS

Next, we illustrate the theoretical results of the previous
section by numerical simulations. For verifying the theoret-
ical results we use the example of an isothermal chemical
reactor, see Diehl et al. (2011); Zavala (2015).

Example 1. We consider a single first-order, irreversible
chemical reaction in an isothermal continuous stirred-tank
reactor (CSTR). The material balances and the system
data are provided in Diehl et al. (2011) and given by

cA(k + 1) = cA(k) +
1

2

(
u(k)

V
(cAf

− cA(k))− krcA(k)

)
,

cB(k + 1) = cB(k) +
1

2

(
u(k)

V
(cBf

− cB(k)) + krcB(k)

)
,

c(0) = c0 = (0.4, 0.2)

whereas the stage costs—a tracking type cost forcing the
solutions to a desired equilibrium and an economic stage
cost maximizing the yield (by minimizing the negative
yield) of the reaction—are introduced in Zavala (2015) and
given by

`1(c, u) =
1

2
(cA −

1

2
)2 +

1

2
(cB −

1

2
)2 +

1

2
(u− 12)2,

`2(c, u) = −2ucB +
1

2
u.
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By setting X = [0, 20], U = [0, 20] and X0 = {(ce, ue)} =
{( 1

2 ,
1
2 , 12)} we can formulate a multiobjective optimal

control problem with terminal constraints of the type
(MO OCP). This way, all theoretical assumptions are
fulfilled since stabilizing stage cost are a special case of
strictly dissipative costs and by setting κ = ue there exists
a local feedback with the desired properties. In Figure 1,
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−30

−20

Variant A

0 50 100 150 200 250
−60
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−40

−30

−20
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Figure 1. Visualization of step (1) of Algorithm 1

step (1) is visualized for both versions of Algorithm 1 for
MPC-horizon N = 5. Hence, in Variant A on the left-hand
side, only the first cost function JN

1 is restricted whereas
on the right-hand side both cost functions are restricted
by the additional inequalities (2). Thus, after the first
iteration there is still a degree of freedom in choosing the
efficient solution. Further, using Variant A of Algorithm 1,
we observe trajectory convergence, see Figure 2, and the
performance estimate on JN

1 in Figure 3 for MPC-horizon
N = 5 where the theoretical bound – in dependence of the
first chosen efficient solution – is complied.

6. CONCLUSION

We have introduced a new multiobjective MPC algorithm
by adapting the algorithm from Grüne and Stieler (2019)
and require strong assumptions, namely strict dissipativity
and a Lyapunov function terminal cost, only of the first
stage cost. For this setting we show that this MOMPC
algorithm has the certain desirable properties: feasibil-
ity, convergence and stability, and performance results.
Finally, we illustrate our theoretical results by means of
numerical examples.
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1. INTRODUCTION

Modified nodal analysis (MNA) is a widely used technique
for modelling RLC circuits. It has been first introduced in
Ho et al. (1975). It is based on regarding a circuit as a
graph, and results in a differential-algebraic model. This
model provides a structure which allows a mathematically
elegant analysis of essential properties and their physical
interpretation. Among these properties is the index, i.e.,
the order of smoothness of perturbations entering the
solution of the differential-algebraic equation, see Lamour
et al. (2013); Kunkel and Mehrmann (2006); it is shown
in Estévez Schwarz and Tischendorf (2000); Günther and
Feldmann (1999a,b) that the index is not dependent on
system parameters (such as values of resistances, capac-
itances and inductances), but rather on the interconnec-
tion structure, i.e., the topology, of the circuit. Further
important possible properties of the circuit system are
stability and asymptotic stability. Whereas MNA models
of RLC circuits are always stable as long as the parameter
values of resistances, capacitances and inductances are
positive, asymptotic stability requires some further condi-
tions. It is shown in Riaza and Tischendorf (2010, 2007);
Riaza (2006) that asymptotical stability is guaranteed,
if certain parameter-independent criteria on the circuit
interconnection structure are fulfilled. The general idea of
these articles is used in Berger and Reis (2014), where
topological criteria for asymptotic stability and autonomy
of the zero dynamics are presented for the purpose of
adaptive tracking control of circuits.
In this article, we analyse further systems theoretic prop-
erties of the MNA equations. Besides presenting sufficient
topological criteria for behavioral stabilizability, we de-
rive the space of consistent initial values, and conclude
topological conditions for controllability at infinity and
impulse controllability. The key ingredient are the results
(Estévez Schwarz and Tischendorf, 2000, Lem. 2.1&2.3)

& (Riaza and Tischendorf, 2007, Prop. 4.4&4.5), which
give direct links between graph theoretical properties of
the circuit to linear algebraic conditions on the involved
incidence matrices.

2. CIRCUIT EQUATIONS

The MNA of a linear RLC circuit is given by
d
dtEx(t) =Ax(t) +Bu(t) (1)

with state being composed of vertex potentials, inductive
currents, and currents through voltage sources, i.e., x =
(η⊤i⊤L i

⊤
V )⊤ and input consisting of voltages at voltage

sources and currents at current sources, i.e., u = (v⊤V i
⊤
I )⊤.

The matrices E, A, B in (1) are given by

sE −A =

sAC CA⊤
C +AR GA⊤

R AL AV

−A⊤
L sL 0

−A⊤
V 0 0

, B =

−AI 0

0 0

0 −InV

,
(2)

where s has to be regarded as a formal variable. The
expression sE − A is called a matrix pencil. Here, G ∈
RnG×nG , L ∈ RnL×nL , C ∈ RnC×nC are the conductance,
inductance and capacitance matrix, and

AR ∈Rne×nR , AL ∈Rne×nL , AC ∈Rne×nC ,

AV ∈Rne×nV , AI ∈Rne×nI

are the element-specific incidence matrices with sizes n =
ne + nL + nV , m = nI + nV . The matrices G , L, C
contain the parameters of capacitances, resistances, and
inductances. Further, AR is an incidence matrix of the
spanning subgraph consisting of all edges that contain re-
sistances. Similarly, the incidence matrices AL , AC , AV , AI

then resp. correspond to the spanning subgraphs with the
edges to inductances, capacitances, voltage and current
source. An incidence matrix of the finite and loop-free
directed graph modeling the circuit is consequently given
by A = [AR AL AC AV AI ]. It is also reasonable to assume
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that the circuit graph is connected, as any connected com-
ponent corresponds to a subcircuit which does not physi-
cally interact with the remaining components, so one may
simply consider the connected components separately. It
can be inferred from (Estévez Schwarz and Tischendorf,
2000, Lem. 2.1&2.3) that connectedness of a circuit is
equivalent to

rk[AR AL AC AV AI ] = ne. (3a)
We consider circuits with passive devices. This leads to
the assumption that the conductance matrix is dissipa-
tive, whereas the inductance and capacitance matrices are
positive definite, i.e.,

G + G⊤ > 0, L = L⊤ > 0, C = C⊤ > 0. (3b)

3. REGULARITY AND STABILITY

We take a closer look at the properties of the properties of
the pencil sE − A with matrices as in (2). First we recall
some results from Berger and Reis (2014).
Proposition 1. Let E,A ∈ Rn×n as in (2) and assume that
(3) holds. Then there exist invertible W,T ∈ Rn×n with

W (sE −A)T = diag(sI − Ã, sN − I, 0n0,n0), (4)
where n0 ∈ N0, N is nilpotent with N2 = 0, and Ã is
a square matrix with the property that all its eigenvalues
have nonpositive real part. Further, all eigenvalues of Ã
on the imaginary axis are semi-simple (i.e., their respective
geometric and algebraic multiplicities coincide). The pencil
sE −A further fulfills

kerR(s)(sE −A)

= kerR(s)[AR AL AC AV ]
⊤ × {0} × kerR(s)AV ,

imR(s)(sE −A)

= imR(s)[AR AL AC AV ]× R(s)nL × imR(s)A
⊤
V .

(5)

A direct consequence of Prop. 1 is that
∀λ ∈ C+ : kerC(λE −A)

= kerC[AR AL AC AV ]
⊤ × {0} × kerCAV ,

∀λ ∈ C+ : imC(λE −A)

= imC[AR AL AC AV ]× RnL × kerCA
⊤
V .

(6)

We further characterize regularity, i.e., the invertibility of
sE −A in R(s)n×n. Note that regularity translates to the
property of a differential-algebraic equation having a so-
lution for all smooth right hand sides, which is moreover
unique by specification of the initial condition, see Kunkel
and Mehrmann (2006). (Estévez Schwarz and Tischendorf,
2000, Lem. 2.1&2.3) and Prop. 1 allow to characterize
regularity in terms of the circuit topology.
Corollary 2. Let E,A ∈ Rn×n as in (2) and assume that
(3) holds. Then the pencil sE−A is regular, if and only if,
the underlying circuit neither contains V -cycles nor I -cuts;
equivalently,

ker [AR AL AC AV ]
⊤
= {0} ∧ kerAV = {0}.

Next we consider generalized eigenvalues of sE − A. This
is a complex number λ with rkC λE − A < rkR(s) sE − A.
We see from Prop. 1 that all generalized eigenvalues of
sE − A have nonpositive real part. In the following we
discuss the possible absence of purely imaginary gener-
alized eigenvalues. The absence of generalized eigenvalues

on C+ corresponds to stabilizability of the circuit equation
d
dtEx(t) = Ax(t). The latter refers to the properties that
for all x0 ∈ Rn such that there exists a solution x of
d
dtEx(t) = Ax(t) with Ex(0) = Ex0, there also exists
a solution x of d

dtEx(t) = Ax(t) with Ex(0) = Ex0 which
vanishes at infinity, see (Berger and Reis, 2013, Sec. 5).
Proposition 3. [(Berger and Reis, 2014, Thm. 4.6)] Let
E,A ∈ Rn×n as in (2) and assume that (3) holds. Then all
generalized eigenvalues of sE −A have negative real part,
if at least one of the following two assertions holds:
(i) The circuit neither contains LV -cycles except for V -

cycles, nor LCI -cuts except for LI -cuts; equivalently,
ker [AL AV ] = {0} × kerAV ,

∧ ker [AR AV ]
⊤
= ker [AR AC AV ]

⊤
.

(ii) The circuit neither contains CI -cuts except for I -cuts,
nor LCV -cycles except for CV -cycles; equivalently,

ker [AR AL AC AV ]
⊤
= ker [AR AL AV ]

⊤
,

∧ ker [AL AC AV ] = {0} × ker [AC AV ] .

Prop. 3 slightly generalizes (Riaza and Tischendorf, 2007,
Thm. 5.2), where regularity (i.e., the absence of V -cycles
and I -cuts) is presumed. Now we combine Prop. 1 with
Prop. 3 to show a condition for kerC λE −A = {0} for all
λ ∈ C+. The latter refers to asymptotic stability, i.e., all
solutions of d

dtEx(t) = Ax(t) vanish at infinity.
Proposition 4. Let E,A ∈ Rn×n as in (2) and assume that
(3) holds. Then kerC λE − A = {0} for all λ ∈ C+, if at
least one of the following two assertions holds:
(i) The circuit neither contains LV -cycles, nor LCI -cuts

except for LI -cuts which are no I -cuts; equivalently
ker [AL AV ] = {0},

∧ ker [AR AC AV ]
⊤
= ker [AR AV ]

⊤
,

∧ ker [AR AL AC AV ]
⊤
= {0}.

(ii) The circuit neither contains CI -cuts, nor LCV -cycles
except for CV -cycles which are no V -cycles; equiva-
lently,

ker [AR AL AV ]
⊤
= {0},

∧ ker [AL AC AV ] = {0} × ker [AC AV ] ,
∧ kerAV = {0}.

4. BEHAVIORAL STABILIZABILITY

Loosely speaking, behavioral stabilizability of a differen-
tial-algebraic control system (1) means that x can always
be asymptotically steered to zero by a suitable choice of the
input u. More precisely, for any x0 ∈ Rn for which there
exists a control u such that a solution x of (1) with initial
condition Ex(0) = Ex0 exists, there especially exists some
control u such that a solution x of (1) with Ex(0) = Ex0
exists which vanishes at infinity. It is proven in (Berger
and Reis, 2013, Sec. 5) that this is equivalent to

∀ λ ∈ C+ : rkC [λE −A B] = rkC [λE −A B] . (7)
Now consider the circuit model E,A ∈ Rn×n, B ∈ Rn×m
as in (2) and assume that (3) holds. Then
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imR(s)[sE −A B] = imR(s)(sE −A) + imR(s)B
Prop.1
= imR(s)[AR AL AC AV ]× RnL × imR(s)

+ imR(s)AI × {0} × RnL

= imR(s)[AR AL AC AV AI ]× RnL × RnV
(3a)
= R(s)n.

Likewise, by using (6), the circuit model (2) with assump-
tion (3) fulfills

∀λ ∈ C+ : imC[λE −A B] = Cn. (8)
As a consequence, the circuit model is behaviorally stabi-
lizable if, and only if, rkC[ıωE − A B] = n for all ω ∈ R.
This is used in the following result, where we present
sufficient conditions for behavioral stabilizability in terms
of the circuit topology.
Proposition 5. Let E,A ∈ Rn×n, B ∈ Rn×m as in (2)
and assume that (3) holds. Then (1) is behaviorally
stabilizable, if at least one of the below two statements
holds:
(i) The circuit neither contains L-cycles, nor LC -cuts

except for L-cuts; equivalently,
kerAL = {0},

∧ ker [AR AC AV AI ]
⊤
= ker [AR AV AI ]

⊤
.

(ii) The circuit neither contains C -cuts, nor LC -cycles
except for C -cycles; equivalently,

ker [AR AL AV AI ]
⊤
= {0},

∧ ker [AL AC ] = {0} × kerAC .

Remark 1. Behavioral stabilizability is implied by behav-
ioral controllability, which is defined by concatenation of
trajectories (Polderman and Willems, 1998, Def. 5.2.2),
and it is algebraically characterized by

∀λ ∈ C : rkC [λE −A B] = rkR(s) [sE −A B] ,

see (Berger and Reis, 2013, Cor. 4.3). Note that this
property is parameter dependent, as it can be seen from
(Polderman and Willems, 1998, Ex. 5.2.13).

5. SYSTEM SPACE

A useful space to understand differential-algebraic systems
is the system space, which is the minimal subspace V ⊂
Rn+m in which all solutions (x(t)⊤ u(t)⊤)⊤ of (1) evolve
pointwisely. This space plays a crucial role, for instance in
optimal control and dissipativity analysis of differential-
algebraic systems, see Reis and Voigt (2015, 2019).
The main result in this section is an expression for the
system space of the MNA equations (2).
Theorem 6. Let E,A ∈ Rn×n, B ∈ Rn×m as in (2)
and assume that (3) holds. Let ZC and ZRCVI be basis
matrices of kerA⊤

C and, resp., ker[AC AR AL AV AI ]
⊤. Then

the system space of (1) is given by

ker

 Z⊤
C AR GA⊤

R ZCAL Z⊤
C AV Z⊤

C AI 0
A⊤

V 0 0 0 −InV

Z⊤
RCVIAL L−1A⊤

L 0 0 0 0

 .
Thm. 6 means that a vector (x⊤1 x

⊤
2 x

⊤
3 u

⊤
1 u

⊤
2 )

⊤ parti-
tioned according to the blocks in [A B] as in (2) is in
the system space of (1) if, and only if, it satisfies

Z⊤
C (AR GA⊤

R x1 +ALx2 +AVx3 +AIu1) = 0,
A⊤
V x1 − u2 = 0,

Z⊤
RCVIAL L−1A⊤

C x1 = 0.

6. CONSISTENT INITIAL VALUES AND
CONTROLLABILITY AT INFINITY

Here we analyze the space of consistent initial values,
which is the space of all x0 ∈ Rn for which there exists
some control u for which there is a weakly differentiable
solution x of (1) with initial condition x(0) = x0. If
this space is the entire Rn, then the system (1) is called
controllable at infinity. It is proven in (Berger and Reis,
2013, Sec. 5) that controllability at infinity is equivalent
to rk[E B] = rk[E A B]. For E,A ∈ Rn×n, B ∈ Rn×m
as in the circuit model (2) with assumption (3), we can
conclude from (8) that rk[E A B] = n, whence the analysis
of controllability at infinity for MNA equations reduces to
check whether rk[E B] = n. By using C > 0, L > 0, we
obtain that imE = imAC × RnL × {0}, whence

im[E B] = imAC × RnL × {0}+ imAI × {0} × RnV .

Controllability at infinity is therefore guaranteed if, and
only if, im[AC AI ] = Rne or, equivalently, ker[AC AI ]

⊤ =
{0}. We summarize these findings in the following result.
Proposition 7. Let E,A ∈ Rn×n, B ∈ Rn×m as in (2) and
assume that (3) holds. Then the system (1) is controllable
at infinity if, and only if, the underlying circuit does not
contain any RLV -cuts; equivalently,

ker [AC AI ]
⊤
= {0}.

It can be concluded from (Reis and Voigt, 2019, Lem. 3.7)
that the system space Vsys and the space Vinit of consistent
initial values of the system (1) fulfill the identity

Vinit = {x ∈ Rn : ∃u ∈ Rm s.t. ( xu ) ∈ Vsys}. (9)
This identity is the essential ingredient in the proof of the
following result which contains an expression of the space
of consistent initial values for the MNA system.
Theorem 8. Let E,A ∈ Rn×n, B ∈ Rn×m as in (2) and
assume that (3) holds. Let ZRCVI and ZCI be basis matrices
of ker[AC AR AL AV AI ]

⊤ and, resp., ker[AC AI ]
⊤. Then the

space of consistent initial values of (1) is given by

ker

[
Z⊤

RCVIAL L−1A⊤
L 0 0

Z⊤
CIAR GA⊤

R Z⊤
CIAL Z⊤

CIAV

]
.

In the case where there are no RLV -cuts, we can con-
clude from (Estévez Schwarz and Tischendorf, 2000,
Lem. 2.1&2.3) that both ZIC and ZRCVI are trivial, i.e.,
these matrices have zero columns. Consequently, we also
obtain from Thm. 8 that the absence of RLV -cuts causes
that any vector in Rn is a consistent initial value for the
MNA system (cf. Prop. 7).

7. CONSISTENT INITIAL DIFFERENTIAL VALUES
AND IMPULSE CONTROLLABILITY

We now consider another type of initialization, namely
(1) with initial condition Ex(0) = Ex0. x0 ∈ Rn is
called a consistent initial differential value, if there exists
a control u for which a solution x of (1) with initial
condition Ex(0) = Ex0 exists. If this space equals to Rn,
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then the system (1) is called impulse controllable. It is
proven in (Berger and Reis, 2013, Sec. 5) that impulse
controllability is equivalent to rk[E AZ B] = rk[E A B]
for some (and hence any) basis matrix Z of kerE. By again
using that the circuit model (2) with assumption (3) has
the property rk[E A B] = n, it is impulse controllable if,
and only if, rk[E AZ B] = n. By using that C > 0 and
L > 0 by (3b), we obtain that a basis matrix of kerE is
given by Z = diag(ZC , 0, I), where ZC is a basis matrix of
kerA⊤

C . Then

rk[E AZ B] = rk

AC CA⊤
C 0 AR GA⊤

C ZC AV AI 0
0 L −A⊤

L ZC 0 0 0
0 0 −A⊤

V ZC 0 0 InV


= rk[AC AR GA⊤

R ZC AV AI ] + nL + nV .
(10)

If ker[AC AR AV AI ]
⊤̸= {0}, (10) implies rk[E AZ B] < n.

Conversely, if ker[AC AR AV AI ]
⊤ = {0} and x1 ∈

ker[AC AR GA⊤
R ZC AV AI ]

⊤, then x1 ∈ kerAC , i.e.,
x1 = ZCz1 for a vector z1, and thus Z⊤

C AR GA⊤
R ZCz1 = 0.

Then G + G > 0 leads to A⊤
R x1 = A⊤

R ZCz1 = 0, whence
x1 ∈ ker[AC AR AV AI ]

⊤ = {0}. We summarize these
findings in the following result.
Proposition 9. Let E,A ∈ Rn×n, B ∈ Rn×m as in (2) and
assume that (3) holds. Then the system (1) is impulse
controllable if, and only if, the underlying circuit does not
contain any L-cuts; equivalently,

ker [AR AC AV AI ]
⊤
= {0}.

Theorem 10. Let E,A ∈ Rn×n, B ∈ Rn×m as in (2) and
assume that (3) holds. Let ZRCVI be a basis matrix of
ker[AC AR AL AV AI ]

⊤. Then the space of consistent initial
differential values of (1) is given by

ker
[
0 Z⊤

RCVIAL 0
]
.

In the case where the circuit does not contain any L-cuts,
we can conclude from (Estévez Schwarz and Tischendorf,
2000, Lem. 2.1&2.3) that ZRCVI are trivial, i.e., it has zero
columns. As a consequence, we also obtain from Thm. 10
that in the case of absence of L-cuts, any vector in Rn is
a consistent initial differential value for the MNA system
(cf. Prop. 9).

CONCLUSION

We have analyzed the MNA equations of linear time-
invariant RLC circuits by using linear algebraic and graph
theoretical techniques. Circuit topological criteria for reg-
ularity, stability, and behavioral stabilizability, control-
lability at infinity and impulse controllability have been
derived. Moreover, our approach leads to explicit expres-
sions for the system space and for the space of consistent
initial (differential) values.
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Abstract: The paper reports results on the modeling of related stochastic variables, based on
a finite fully ordered sequence of higher order moments (or correlations), and using mutually
independent parameters that characterize all solutions that interpolate the given (or measured)
data. The results are obtained by determining properties of the hierarchical generalized Hankel
matrix of the moments. A system theoretic approach is used to derive the results. It appears
that an extension of the related Hamburger-Jacobi orthogonal polynomials to the multivariate
case does not suffice to yield a parametrization, but a further reduction of the recursive Cholesky
factorization of the moment matrix does.
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1. INTRODUCTION

Modeling stochastic variables has been a central piece of
endeavor in signal processing, leading in particular to the
famous Levinson model filters [Kailath (1976)], and their
Schur parameter implementation [Dewilde et al. (1978)],
in which a (zero means) stochastic process for which n spe-
cific covariance data items have been measured is modeled
by an artificial linear filter of order n driven by (artificial)
white noise. This order n stochastic modeling is known to
provide a ‘best’ possible model when the original process
is known to be zero mean Gaussian, where ‘best’ can be
understood as reproducing (interpolating) the measured
covariance data and being as unspecified as possible con-
cerning unspecified covariances (i.e., maximum entropy for
the unknown parameters, while satisfying the positivity
of the covariance matrix). From the model a predictor or
estimator can be derived, which, in the specific Gaussian
case, is both the conditional expectation as well as the
maximum likelihood estimate. It may be remarked that
the coefficients of the Levinson polynomials do not form
an independent parametrization, but the Schur coefficients
do. (The Levinson coefficients have potentially very sensi-
tive internal relations!)

However, many processes are highly non-Gaussian so that
non-linear moment information is needed if any modeling
accuracy is to be obtained for them [Zarzycki (2004)].
The modeling filter (also to be driven by an artificially
constructed process) will have to be non-linear if any
accuracy (preferably interpolation of the known data) is
to be obtained. Needless to say, the problem just stated
is not solvable in all generality, but with the condition
of a fully ordered sequence of moments starting at zero
it is. This parametrization problem for one variable is
fully solved by using the classical Hamburger theory and
the parametrization implicit in the related orthogonal
polynomial Jacobi recursion [Hamburger (1920-21)]. In

this paper, we show how Hamburger’s results extend to
multiple variables (as they occur in a stochastic process),
for as far as independent parametrization is concerned.
The general aim is to generate an interpolating pdf of
the variables present, i.e., a pdf that is as simple as
possible while matching the known data. The present
paper expands on the recent publication of the basic theory
in [Dewilde (2020)]. In particular, extensions to the nD
case as summarized is new.
Notation: I use MATLAB indexing notation, with some
abbreviations: Ak:l

i:j form a (sub)matrix of the (block)
matrix A with (block) rows i to j and columns k to l; A ′ is
the transpose of A. A fat index i

¯
indicates a generic order.

Expectation is abbreviated by an overline: X = EX.
Modeling principle: Given a multidimensional pdf for a
joint process involving n+1 stochastic variables Y0, · · · , Yn,
then the best possible model in the pdf sense, is a set of
artificial stochastic variables X0:n with the same overall
distribution, and the best model for X0, assuming the

[Xi]i=1:n] known, is the conditional probability X̂0 =
X0|[Xi]i=1:n]. When not the original multidimensional pdf
is known, but only some data related to it, then the
modeling problem is to find a parametrization of all
possible pdf’s that match the given data, so that the most
adequate solution (for example: the least complex one,
or a solution that matches other criteria) can be found.
Under parametrization we understand a characterization
that uses a set of independent parameters, i.e., parameters
that can be chosen independently from each other and still
produce a solution that matches the original data. In our
case, the data that we shall match will be a fully ordered
set of moments.

The conditional probability is a stochastic variable in one
dimension, with a specific pdf for each value of the n-tuple
X1:n. In the Gaussian case, this pdf is Gaussian as well
and its argument is x−µ with µ = −

∑
i=1:n aixi, which is

linearly dependent on the x1:n with Levinson coefficients ai
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and a related variance. In the general case the statistics of
the estimate is non-Gaussian. The method proposed here
determines a discretized version of the pdf, which matches
the desired moments exactly. In case not a model is needed,
but an estimation or prediction, some strategy is needed
to select one representative value. This can be a mean, a
median, maximum likelihood or any desirable average.

It has been thought that the moment modeling problem
can be solved using an extended version of the classical
Schur-Levinson recursion. That is pertinently (but per-
haps unfortunately) not true. The modeling problem based
on second order covariances in the scalar time invariant
case consists in parametrizing positive definite Toeplitz
matrices and is essentially different from the moment prob-
lem, which consists in characterizing positive definite Han-
kel matrices. The characteristics, symmetries and number
of parameters involved are different, and the resulting
models are correspondingly different.

Nonetheless, the solution of both problems uses recur-
sive orthogonalizations of a growing sequence of positive-
definite matrices, different in each case. This can already
be illustrated on a 2 by 2 positive definite matrix. In the
Schur case, three independent numbers a > 0, b > 0 and
ρ : |ρ < 1| parametrize a (non-singular) positive definite

matrix as

[
a ρ

√
ab

ρ
√
ab b

]
while in the moment case (which

will be discussed further), the parametrization consists of
two positive numbers a, c and an arbitrary number b:[
a b

b
b2

a
+ c

]
(in both instances, the singular case is a bit

more complex.)

The problem to be considered in this paper is the extension
of moment parametrization to higher dimensions. Orthog-
onal polynomials can be extended to the block matrix or
multivariable case, as is done for the Levinson case in
[Vieira (1977)] and for the moment case in [Arizn-Abarreta
and Mañas (2014)]. However, the generalized Jacobi pa-
rameters in the multivariate moment case do not amount
to a parametrization (nor do Levinson parameters do in
the Gaussian estimation case, only Schur parameters are
independent [Dewilde and Deprettere (1987)].) A further
refinement is needed, and that is the main result of this
paper.

The presentation starts out with a brief review of the clas-
sical (scalar) Hamburger-Jacobi moment matching case
first, but then concentrates on the multivariable stochastic
modeling problem given a coherent set of higher order
correlation data. Since the matrices to be handled are
‘Hankel-like’, and Hankel matrices play a key role in sys-
tem theory, a system-theoretic approach is called for and
will be used throughout. Such an approach matches well
with the central role played by Cholesky factorization and
Schur complementation in the theory.

2. THE 1-D MOMENT MATCHING PROBLEM

Given a required set of moments µ0:2n, can we find a
stochastic variable X of minimal complexity that matches

them (i.e., µk = Xk) and find parametrizations for the
solutions (notice that, in contrast with the Schur case, one

needs 2n values for an order n problem)? This question
has been very beautifully resolved by Hamburger and
Akhiezer, see [Hamburger (1920-21); Akhiezer (1965)],
in which the connection between Hankel matrices and
Jacobi matrices is exploited to build polynomials that
are orthogonal with respect to a positive measure on the
real line. Such measures correspond to pdf’s (probability
density functions) of a stochastic variable. A pdf can only
consist of a measurable positive function and positive
Dirac impulses. We do not repeat the Akhiezer theory here,
but build on it by making the connection with dynamical
system theory, in which Hankel matrices play a central
role.

A Jacobi matrix is by definition a symmetric, tridiagonal
matrix, in which the main diagonal is a sequence {ak}k=0:

of arbitrary coefficients, and the first off diagonal is a
sequence of positive coefficients {bk}k=0:, with the ter-
mination rule: either all bn > 0 or the series terminate
at the first n for which bn = 0. The relation between a
positive definite Hankel matrix Hn of dimension (n + 1)2

and a related Jacobi matrix can be understood in various
ways. Akhiezer uses orthogonal polynomials, with Hn as
the Gramian defining the inner product. Here we follow a
somewhat different (but of course equivalent) path, based
on Cholesky factorization. Let Hn = LnL

′
n be a Cholesky

factorization (i.e., Ln is lower triangular).

Case 1: Hn is non-singular. Then L−1
n exists as a lower

triangular matrix, and let the rows of L−1
n be defined

as pk,: := [L−1
n ]k,:]. Next we define the kth polynomial

Pk(z) := pk,0 + pk,1z + · · · + pk,kz
k. It follows immedi-

ately that pk,:Hnp
′
ℓ,: = δ(k − ℓ), which is also the usual

definition of orthonormality for the Pk(z) with respect to
the Gramian Hn (the inner product (Pk(z), Pℓ(z)) being
defined as pk,:Hnp

′
ℓ,:). Next, pk,:Hneℓ = 0 (with [eℓ]j :=

δ(ℓ− j) the ℓth natural base vector) for ℓ < k, hence
Pk(z) ⊥ zℓ for ℓ < k, and this just because L−1

n Hn = L− ′
n

is upper triangular. It follows that the Pk(z) satisfy a three
term recursion

zPk(z) = bkPk−1(z) + akPk(z) + bk+1Pk+1(z) (1)

because 1., both {[zℓ]ℓ=0:k} and {[Pℓ]ℓ=0:k} form bases for
the same space and 2., the inner products (zPk(z), Pℓ(z)) =
(Pk(z), zPℓ(z)) are equal, due to the Hankel symmetry.

Infinite non-singular positive definite Hankel matrices can
be Cholesky factorized for as much as one wants to go,
just by extending the Cholesky factorization of finite
restrictions. So, when Hm = LmL ′

m and similarly Hn

with m > n are Cholesky factorizations, then Lm is a
submatrix of Ln, which can be obtained recursively by
just extending Hm and Lm recursively (as is usually done
in Cholesky factorization). In this way we may consider
the infinite Hankel H and its Cholesky factoriztion H =
LL ′, although these infinite matrices are only defined
numerically and will typically be very much unbounded.
Calculus on such matrices is allowed so long as it remains
unilateral, meaning: recursively increasing. This works for
the determination of orthonormal polynomials, and the
inner products on which they depend, for as long as one
works on finitely supported vectors. Let then [σ]k,ℓ =
δ(k+1− ℓ) be the infinitely supported upper shift matrix
then the Hankel symmetry on the global Hankel series is
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equivalent to σH = Hσ ′. Suppose now that H = LL ′ and
L, being lower triangular, is recursively invertible.

Proposition 1. A recursively invertible L is the lower
Cholesky factor of a strictly positive definite Hankel ma-
trix iff J = L−1σL is a Jacobi matrix. J characterizes L
(and H) uniquely.

Proof One checks that the equations JL−1 = L−1σ
are exactly those that define the three terms recursion.
Uniqueness of the solution does the rest.2
The merit of the proposition (and equivalently, the three
term recursion) is that it characterizes ‘Hankelness’ in
terms of the Cholesky factor L. The case for a non-singular
but finite Hankel matrix is similar, but a bit involved due
to the singularity of the finite shift matrix. We shall soon
see that it can be derived from a step one extension, which
we discuss now.

Case 2: let us assume the positive definiteHn non-singular,
and search for a one-step augmentation of Hn to a singular

Hn+1 =

[
Hn µn+1:2n+1

µ ′
n+1:2n+1 µ2n+2

]
. µ2n+1 can be chosen

arbitrarily, and next µ2n+2 = µ ′
n+1:2n+1H

−1
n µn+1:2n+1

must be the Schur complement of µ2n+2 if Hn+1 is to
be singular. From system theory (realizations), we now
know that there exist an (n + 1) × (n + 1) matrix A and
(n+1)-vectors B and C ′ so that µk = CAkB. Additionally,
because Hn+1 is symmetric, one can choose A symmetric
and C ′ = B. It follows that the eigenvalues of A are all
real and there shall exist a unitary state transformation
matrix U so that UAU ′ = diag[αi] is diagonal. Redefining
the realization A ← UAU ′, B ← β = Ub,C ′ ← Uc ′ = β ′

then produces µk =
∑

i=0:n β
2
i α

k
i . It follows that the

moments µ0:2n+2 can be generated by an atomic pdf
p(x) =

∑
i=0:n β

2
i δ(x − αi). To this there corresponds a

rational generating function GX(z) = 1 + µ1z + µ2z
2 +

· · · =
∑

i=1:n
b2i

1−zai
and we have that GX(z) matches the

2n+ 2 first moments of GY (z).
Remark 1: once Hn+1 is singular of rank n, then all
subsequent Hk (k > n) are singular of rank n as well,
and all moments are given by µk = β ′Akβ. Every given
partial series µ0:2n with Hn non-singular has a rational
generating function of degree n, and can be continued with
all subsequent Hk, k > n, singular.
Remark 2: the generating function G(z) is generally highly
unstable, and should be handled using polynomial calculus
on unilateral series.
Remark 3: the generating function corresponding to a zero
means Gaussian variable of variance σ has µk = (k−1)!!σk,
where (k − 1)!! equals 0 when k is odd and otherwise
1 ·3 · · · (k−1). Hence, it converges nowhere in the complex
plane (except at zero).

A further observation leads to another interesting result
connecting realization theory with Jacobi matrices:

Proposition 2. The realization forG(z) =
∑

k=0: B
′AkBzk

based on a Cholesky factorization of the non-singular
Hn = LnL

′
n is given by {A,B,B ′} ← {Jn, e0, e ′

0}, in
which [e0]k = δ(k) and Jn is the nth order Jacobi ma-
trix related to the singular Hn+1. Conversely, any such
realization produces a moment series µk with non-singular
positive Hn and singular Hn+1.

Proof (sketch) The Cholesky factorization produces the
relation, for 1 < k ≤ n,

p→k = bk−1pk−1 + akpk + bkpk+1, (2)

with p→k a right shift version of pk. This relation is
equivalent to (1).

3. GENERALIZED HANKELS IN TWO AND N
VARIABLES

Two stochastic variables (2D). A full moment matrix in
two dimensions is XX ′ for
X ′ :=

[
1 X Y X2 XY Y 2 · · ·

]
. Such matrices (also

for more variables) have a hierarchical Hankel struc-
ture, in the sense that blocks on anti-diagonals contain
the same elements and are internally Hankel as well,
with compatible ordering structures. Connected to the

H3 =

Fig. 1. The 2D Hankel structure in H3

2D case we can define a 2D generating function, very
much in the same way as in the 1D case, but now in-
troducing two variables z1 and z2, summed by order and

then as µ(I − i, i)i=0:I = (XI−iY i)i=0:I within order I:

G(z1, z2) =
∑

I=0:,(i=I:0,j=I−i) µi,jz
i
1z

j
2, which can also be

seen as the unilateral expansion in 2D of E 1
(1−z1X)(1−z2Y ) .

We now have almost immediately:

Theorem 1. A rational generating function G(z1, z2) cor-
responds to a 2D atomic distribution.

The proof is based on considering marginals and applying
the 1D theory on them.

Orthogonalization of the non-singular X series in order
produces a 2D orthogonal sequence and corresponding
block tri-diagonal Jacobi matrix of the form

P00X
P00Y
P10X
P01X
P01Y
P20X
P11X
P02X
P02Y


=



∗ a
∗ ∗ c
a ∗ h d
0 h ∗ e f
c ∗ ∗ ∗ ∗ g
0 d e ∗ i j ∗
0 0 f i ∗ k ∗ ∗
0 0 0 j k ∗ ∗ ∗ ∗
0 0 g ∗ ∗ ∗ ∗ ∗ ∗ ∗





P00

P10

P01

P20

P11

P02

P30

P21

P12

P03


(3)

in which the upper block diagonal is non-singular and
redundancies are indicated with like literals. Unlike in
the 1D case, the orthogonalization does not deliver a
full parametrization. The coefficients on the rightmost
diagonal can be chosen independently, but not the others,
and there are more hidden dependencies than indicated by

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



the literals. Let us therefore consider a full order update
of the 2D hierarchical Hankel matrix, namely Hi ⇒ Hi+1.
Hi+1 inherits Hi and Hi+1

0:i from the previous step, only

Hi+1
i and Hi+1

i+1 are new. Hi+1
i is Hankel and of odd

order: its entries may be chosen arbitrarily. Hi+1
i+1 has to be

Hankel and such that the whole Hi+1 is positive definite,
which will be the case iff Hi+1

i+1 ≥ Si+1, for the Schur

residue Si+1 := L0:i
i+1(L

0:i
i+1)

′ (notice: L0:i
i+1 is known at

this point.) The Schur residue itself is not Hankel, but
the following holds:

Proposition 3. A non-singular Li+1
i+1 can be fully parametrized

by arbitrary strictly positive numbers on the main diago-
nal, and arbitrary numbers on the first lower diagonal.

This solves the 2D parametrization problem for the non-
singular case.
The singular case. Any discretized pdf as final result of
a parametrization, must involve steps that finally make
the full moment matrix singular. This is done by deciding
on the maximal degree of one of the variables, making
the column corresponding to that variable singular, and
deleting all columns corresponding to monomials having
that power as a factor. The non-singular proceeding can
then be continued on the pruned system. For 1D systems,
one can just puts the last Jacobi coefficient bn = 0, and the
Hankel remains singular and fully determined from that
point on. This produces a (non-uniform) discretization of
the pdf. For 2D systems, the progressive order can be
reduced in two steps: a first reduction produces a poly-
nomial algebraic relation between X and Y , and a second
reduction makes the complete system redundant from that
order on, resulting in a 2D discretization of the pdf. These
two steps can be combined in one. It turns out that this
generalizes to nD systems, which can be reduced in n
steps, using linear dependencies and generalized Hankel
symmetries. Each time a singularity is introduced in a
column corresponding to a monomial, sayM , then all rows
and columns corresponding to monomials that have M as
a factor are determined, and the characterization can be
continued on a reduced set of moments.
The nD case: The procedure described for the 2D case
generalizes to n variables, with mostly technical complica-
tions, due to the increased hierarchy. Keeping the reverse
lexicographic order at each degree we now have as global
stochastic vector

X ′ := [1|X,Y, Z, · · · |X2, XY,XZ, · · ·]. (4)

The basic principles remain: (1) odd orders can be chosen
arbitrarily (in the non-singular case, in the singular cases
many are determined by singularity reductions), and (2)
only the central order update block has to be parametrized
further recursively so that it becomes larger than the
Schur residue, and this is achieved again by specifying
its diagonal and subdiagonal entries, in a recursive way
corresponding to a one-order lower update. Fig. 2 shows
the order of parameter determination for order 4 in the 3D
case, starting form the left upper corner: regular Jacobi for
the first block, the next two blocks are odd and free, the
next diagonal block requires an application of proposition
3 etc. It follows that recursive applications of filling in odd
blocks followed by applications of proposition 3 lead to the
solution for the 3D case. Likewise, the nD case reduces to
recursive applications of the (n-1)D case etc. Only blocks

<latexit sha1_base64="sWqDU7QHJTFfJfwojLR0Hdh17D0="></latexit>

X2 XY Y 2 XZ Y Z Z2

X2 a b c f g h
XY b c d g i k
Y 2 c d e i j l
XZ f g i h k m
Y Z g i j k l n
Z2 h k l m n o

Fig. 2. The order update illustrated on order 4 in the 3D
case.

on main diagonals specify free positive entries on top of
Schur residues, while odd blocks can be chosen at will at
all levels.

The considerations given so far lead to general extensions
as well: assuming non-singularity up to some level n,
obtained by adding central [Hk]k,k’s which are strictly
larger that the kth order Schur complement Sk for k <
n, when a sufficient level of n of sampling accuracy
is obtained, a new [Hn]n,n has to be added for which
[Hn]n,n−Sn is rank deficient of order 2. When that is the
case, then all subsequent Hankels will be rank deficient,
which, after at most n such steps, leads to an atomic
distribution that meets the moment data up to order n.

So far for the basic parametrization. The method can
be refined considerably by using the connection between
Cholesky factors and Jacobi parameters in scalar cases
or Jacobi blocks in higher order cases. How this works
is beyond the present paper.
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Abstract: Hamilton’s principle is one of the most fundamental principle in physics. Incorpo-
rating the principle into data-driven models of dynamical systems guarantees that motions
share important qualitative properties with the real system, such as energy or momentum
conservation. To learn Lagrangian dynamics, we propose to learn inverse modified Lagrangians
related to variational integrators instead of attempting to learn an exact Lagrangian, as is
typically done in the literature. The key advantage is that inverse modified Lagrangians can be
learned from snapshots of position data of observed trajectories directly without approximating
velocities or acceleration data. This is beneficial when snapshot times are large. Moreover, when
inverse modified Lagrangians are integrated using a variational method, discretisation errors are
compensated for. Therefore, large step-sizes can be used while maintaining high accuracy and
tiny energy errors.
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1. INTRODUCTION

Physics informed learning describes the incorporation of
prior physical knowledge into machine learning based mod-
els for unknown dynamical systems to improve accuracy
and reliability of predicted motions. One of the most
fundamental physical principles is Hamilton’s principle. It
states that a motion q : [t0, t1]→ Q of a dynamical system
connecting two points q0 and q1 in a manifold Q extremises
an action

S(q) =

∫ t1

t0

L(t, q(t), q̇(t)) (1)

for some L : R × TQ → R called Lagrangian. From the
stationarity condition on S, Euler–Lagrange equations 0 =
d
dt

∂L
∂q̇ (t, q, q̇)− ∂L

∂q (t, q, q̇) can be derived.

A typical strategy to incorporate variational structure
into learned models of dynamical systems is to learn the
Lagrangian L using neural networks (LNN – see Cranmer
et al. (2020)) or Gaussian Processes (LGP – see Ober-
Blöbaum and Offen (2022)). In a second step, motions
are predicted by integrating the learned dynamical system
using a numerical method.

Existing approaches such as LNN assume the availability
of trajectory data consisting of position data, velocity
data, and acceleration data to learn the Lagrangian L.
Refinements such as in Takehiro Aoshima (2021) have been
introduced to eliminate some of the data requirements but
these assume further prior knowledge about the form of
L. In the general case and if only snapshots of positions
of trajectories are available, velocity and acceleration data
need to be approximated to learn L. We will show that if
snapshot times are large, this can cause unacceptably large
and biased errors in predicted motions. Further discreti-
sation errors occur when the learned dynamical system

is integrated. If step-size adaptive methods are employed,
this will come at the cost of not preserving variational
structure during integration. Numerical motions then show
unphysical behaviour, such as dissipating energy even
though the exact system might be energy conserving,
which is problematic in long-term simulations or when
periodic orbits should be detected. If, on the other hand,
variational integrators are used, such that the numerical
motions inherit the variational structure and thus much
of the qualitative properties of the system (1) (such as
energy conservation for autonomous L), error tolerances
might require tiny step-sizes.

As a remedy, we introduce Lagrangian Shadow Integrators
(LSI) which learn an inverse modified Lagrangian Limd

instead of L. Inverse modified Lagrangians can be learned
directly from position data of trajectories such that there
is no need to approximate velocity data or acceleration
data for the training process. Moreover, inverse modified
Lagrangians compensate for discretisation errors in the
integration step. In this way, no artificial errors are intro-
duced into the predictions while incorproating variational
structure at the same time. We can, therefore, handle snap-
shot data of trajectories which relate to moderate to large
snapshot times. The step-size selection for the integration
becomes independent of accuracy requirements, which is
beneficial in long-term simulations. Additionally, the La-
grangian L can be computed from Limd using variational
backward error analysis.

Extending our framework developed in Ober-Blöbaum and
Offen (2022), we will incorporate noise in the derivation
of Gaussian Processes based LSI, explain how to handle
data with inconsistent snapshot times, provide an analysis
employing the generalised midpoint rule, and point out
new directions of our research.

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



Simd =
∫
Limd (q, q̇)dt S =

∫
L(q, q̇)dt Smd =

∫
Lmd (q, q̇)dt

Simd ∆ =
∑

Limd ∆(qj , qj+1) S∆ =
∑

L∆(qj , qj+1)

var. integrator

var. integrator∆exact ∆exactBEA BEA

Fig. 1. Illustration of modified Lagrangians and inverse modified Lagrangians as explained in section 2.2. BEA stands
for (variational) backward error analysis (Vermeeren (2017)), ∆exact associates exact discrete variational principles.

2. THE LSI FRAMEWORK

2.1 Overview of the LSI procedure

Let us give an overview of the steps involved in Lagrangian
Shadow Integration (LSI). We will restrict ourself to
autonomous Lagrangians.

• Preparation and learning:
(1) A variational integrator and a step-size h are

selected.
(2) An inverse modified Lagrangian Limd is learned

directly from position data of trajectories.
(3) A formula for the Lagrangian L is computed from

Limd using variational backward error analysis.
• Computation of a motion to initial data (q0, q̇0):

(1) Compute the conjugate momentum at time t = 0
as p0 = ∂L

∂q̇ (q0, q̇0).

(2) Solve ∇1Limd ∆(q0, q1) + p0 = 0 for q1.
(3) Solve for qj+1 iteratively

∇2Limd ∆(qj−1, qj) +∇1Limd ∆(qj , qj+1) = 0.

• Post-processing (optional):
(1) If velocity data is required at step qj , solve for q̇j

∇2Limd ∆(qj−1, qj) =
∂L

∂q̇
(qj , q̇j). (2)

Above, Limd ∆ denotes the discrete Lagrangian obtained
from Limd using the selected variational integrator. The
expressions ∇1Limd ∆ and ∇2Limd ∆ denote partial deriva-
tives with respect to the first or second argument of Limd ∆,
respectively. In conclusion, the computation of motions
of the learned system proceeds like applying the varia-
tional integrator to the inverse modified Lagrangian Limd .
Whenever velocity data needs to be related to conjugate
momenta, the computed formula for L is used. This com-
puted formula can be derived once and for all for each
variational integrator.

In the following, we will introduce the notion of inverse
modified Lagrangians and provide details on the prepara-
tion and learning steps of LSI.

2.2 Modified and inverse modified Lagrangians

If L : TQ → R is a regular Lagrangian, the exact discrete
Lagrangian to a step-size h is given as Lexact

∆ (q0, q1) =∫ t0+h

t0
L(q(t), q̇(t)) dt, where q : [t0, t0 + h] → Q fulfils the

Euler–Lagrange equations and the boundary conditions
q(t0) = q0, q(t1) = q1. Lexact

∆ (q0, q1) exists, provided that
q0, q1 ∈ Q are sufficiently close to one another.

The notion of inverse modified Lagrangians is illustrated
in Fig. 1: let L be a regular Lagrangian. A variational
integrator translates a continuous action functional S(q) =∫ t1
t0
L(q(t), q̇(t)) to a discrete action functional S∆(q) =

∑N−1
j=0 L∆(qj , qj+1). A modified Lagrangian Lmd is a La-

grangian such that its exact discrete Lagrangian Lexact
md ∆

coincides with L∆.

Remark 1. Modified Lagrangians Lmd exist as formal
power series in the step-size h and can be computed by
variational backward error analysis (BEA), see Vermeeren
(2017).

We introduce an inverse version of modified Lagrangians.

Theorem 2. (Ober-Blöbaum and Offen (2022)). For a reg-
ular Lagrangian L and a consistent variational integrator
there exists a formal power series Limd in h such that
the discrete Lagrangian Limd ∆ coincides with the exact
discrete Lagrangian Lexact

∆ up to any order in h.

Example 3. The generalised variational midpoint rule as-
signs to a Lagrangian L the discrete Lagrangian

L∆(q0, q1) = L ((1− a)q1 + aq0, (q1 − q0)/h) (3)

with a parameter a ∈ R. The standard midpoint rule uses
a = 1/2 and is second order accurate. Using variational
backward error analysis, we compute the differential oper-
ator

Λ = Id +
h

2
(1− 2a)q̇

∂

∂q
+
h2

24

(( ∂
∂q
− q̇ ∂2

∂q∂q̇

)2/ ∂2

∂q̇2

+ 2(1 + 6a(a− 1))q̇2 ∂
2

∂q2

)
+O(h3).

The modified Lagrangian is given as Lmd = Λ(L). If Limd

is the inverse modified Lagrangian, then Λ(Limd ) = L to
all orders in h. A derivation of Λ and Λ−1 including higher
order terms can be found in the Mathematica script of the
accompanying source code. 1

2.3 Learning of Limd

We now show how to learn Limd from position data of
trajectories. In contrast to the theoretical considerations
in the previous section, here Limd is not a formal power
series but a function Limd : TQ→ R represented by either
an artificial neural network (ANN) or a Gaussian Process
and corresponds to a fixed step-size h.

Preparation of training data Before we start learning, we
need to make sure that all observed discrete trajectories
have consistent snapshot times hsnap compatible with h.

Method 1. If the snapshot times of l observed discrete

trajectories (q
(1)
j )j ,. . .,(q

(l)
j )j are in a rational relation such

that hsnap = r1/m, r2/m, . . . , rl/m with (lowest) common
denominator m, then the trajectories can be split up such
that they all refer to the same snapshot time: if r is the
least common multiple of r1, . . . , rl, we split the ith tra-

jectory into (q
(i)
(r/ri)j

)j , (q
(i)
(r/ri)j+1)j ,. . .,(q

(i)
(r/ri)j+(r/ri)−1)j

1 https://github.com/Christian-Offen/LagrangianShadowIntegration
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for i = 1, . . . , l. The snapshot times of the new trajectories
are hsnap = r/m.

Method 2. An alternative to method 1 is to introduce
dummy variables for missing observations into the tra-
jectories such that all trajectories have snapshot time
hsnap = 1/m. The values of the dummy variables will
be interpreted as additional parameters in the learning
process and will be subject to the optimisation procedure.

Method 3. If all trajectories have snapshot time hsnap and
h = khsnap for k ∈ N, then each trajectory (qj)j is split up
into k discrete trajectories (qkj)j , (qkj+1)j , . . ., (qkj+k−1)j
which correspond to a snapshot time of h.

Method 4. As in method 2, if h = hsnap/k for k ∈ N
we can fill up missing observations with dummy variables
which are interpreted as parameters subject to the learning
process.

Any rational snapshot time can be obtained with a com-
bination of the above methods. However, methods 1 and
3 cause a loss of training data, since some interrelations of
points are forgotten. Methods 2 and 4, however, introduce
more parameters that need to be fitted. In the following,
we assume that h = hsnap.

Training an ANN Let Limd ∆ denote the discrete La-
grangian assigned to Limd by the integrator. For a weight-
ing factor θ > 0, we employ the loss function ` = `data +
θ`normal with

`data =
∑

(qj)j∈trj

∑m−1

j=2
‖DELimd (qj−1, qj , qj+1)‖2.

The sum is taken over all discrete observations of tra-
jectories (qj)j = (q1, . . . , qm). DE denotes the discrete
Euler–Lagrange operator, i.e. DELimd (qj−1, qj , qj+1) de-
notes ∇2Limd ∆(qj−1, qj) + ∇1Limd ∆(qj , qj+1). Minimisa-
tion of `data seeks to fulfil the discrete Euler–Lagrange
equations (DELs) on all triples (qj−1, qj , qj+1) in the tra-
jectory data. To avoid learning a constant Limd (whose
DELs are trivial), we consider the normalisation

`normal =
∣∣∣c− 1

22n

∑
corners of E2n

∂Limd

∂q̇1
· . . . · ∂Limd

∂q̇n

∣∣∣
2

for c ∈ R \ {0}. The parameter c controls the scaling of
the identified symplectic structure and Hamiltonian that
can be obtained via Legendre transform of Limd . The
condition `normal = 0 corresponds to fixing the oriented
volume of a 2n-dimensional hypercube E2n ⊂ TQ to be c.
It enforces regularity of the learned Lagrangian. As `normal

mostly acts as a non-triviality condition, the weighting θ
will typically be small.

Gaussian Processes As an alternative to ANNs, we
can fit a Gaussian Process (GP) modelling Limd such
that DELimd (qj−1, qj , qj+1) = 0 holds on all triples
(qj−1, qj , qj+1) in the training data.

If values Limd (Z) = (Limd (z1), . . . , Limd (zM )) of a quan-
tity Limd are known at points Z = (z1, . . . , zM ) ∈ TQM

with i.i.d. Gaussian noise at each observation with mean
0 and standard deviation σ ≥ 0, then Limd (y) can be
predicted as

Limd (y) = k(y, Z)>B, (4)

where B = (k(Z,Z)+σIM )−1Limd (Z). Here the prior is a
GP with mean 0 and kernel function k : TM × TM → R,

k(y, Z) = (k(y, zj))
M
j=1, k(Z,Z) = (k(zi, zj))

M
i,j=1 (see

Rasmussen and Williams (2005)).

In case of the midpoint rule, for each pair of consecutive
observations of position data (qa, qb) in the training data,
we form z = mp(qa, qb) := ((qb + qa)/2, (qb − qa)/h) and
collect all such points in the variable Z ∈ TQM , where
M is the number of pairs. We determine Limd (Z) by
imposing that DELimd (qj−1, qj , qj+1) = 0 holds on all
triples (qj−1, qj , qj+1) in the training data. For each triple
we get the equation
[(
∇ẋk (mp(qj−1, qj), Z)

> −∇ẋk (mp(qj , qj+1), Z)
> )
/h

+
(
∇xk (mp(qj−1, qj), Z)

> −∇xk (mp(qj , qj+1), Z)
> )
/2
]

·B = 0.

The normalising condition discussed for ANN is
( 1

22n

∑
v∈corners(E2n)

1>n∇q̇k(v, Z)>
)
B = c,

where 1n is a vector of ones. The equations for the triples
and the normalising condition yield a linear system of
equations for B = (k(Z,Z) + σIM )−1Limd (Z) whose
minimal norm solution is computed. OnceB is determined,
Limd can be evaluated using (4) and derivatives via
automatic differentiation.

Remark 4. Notice that it is not necessary to explicitly
perform the inversion (k(Z,Z) + σIM )−1 or to estimate
the noise level σ to learn B or to predict Limd . Moreover,
assuming correlated noise instead of i.i.d. noise, i.e. replac-
ing the noise matrix σIM in B with a more complicated
matrix, leaves predicted values for Limd invariant.

3. NUMERICAL EXPERIMENTS

In the following experiments, GPs are employed with
squared exponential kernel k(x, y) = exp(−‖x − y‖2/ε).
The parameter ε is related to the typical length scale of
the problem. As a variational integrator we use the second
order accurate midpoint rule.

3.1 Mathematical pendulum

The mathematical pendulum is described by the La-
grangian Lref = 1

2 q̇
2 − cos(q). The energy Href = 1

2 q̇
2 +

cos(q) is conserved along motions. As described in section
2.3, we train the model on position data of 400 trajectories
of length 6 and consider the (relatively large) step-size and
snapshot time h = 0.5.

For comparison, we learn the Lagrangian L directly (rather
than Limd ): for this, velocity data is approximated using
second-order accurate central finite differences. Then a
GP is trained using the same technique as in section
2.3, where Limd is replaced by L in the formulas and
instances of mp(qj , qj+1) are replaced by (qj , vj), where
vj is the approximated velocity at position qj . This is
referred to as LGP (Lagrangian Gaussian Process) as it
constitutes a GP version of Cranmer et al. (2020)’s LNN.
For further comparison and an analysis of the different
discretisation errors, we also train with exact velocity data
for vj (LGPExact).

Figure 2 shows the first 13 points of a discrete trajectory
and its long-term energy behaviour computed with LSI,
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Fig. 2. Left: Pendulum trajectory for LSI (blue, ×), LGP
(orange, +), LGPExact (green, ?), reference (black,
solid). Only the new scheme LSI is accurate since
discretisation errors are compensated. Right: Energy
along trajectory (colouring as on left hand side).
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Fig. 3. Left to right: Energy detected by LSI, LGP, and
LGPExact. Matching contours of Href are dotted.
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Fig. 4. Left: Position data of an LSI trajectory in a Henon–
Heiles system correctly shows a dense orbit. Centre:
Energy plots for LSI (blue), LGP (orange), GPFlow
(red), Right: Contour plot of the numerical potential
and Vref (dashed).

LGP, and LGPExact. As the step-size is quite large, the
compensation of discretisation error of the LSI scheme
greatly improves accuracy and energy behaviour over
methods which try to learn L directly. Even providing
exact velocity data does not help as sizeable discretisa-
tion errors are introduced when the system is integrated.
Interestingly, the energy plot suggests that providing av-
eraged velocity data used to train LGP is better than
using exact velocity data in LGPExact: the averaging
appears to compensate some of the discretisation errors
in the integration step, however not as successfully as our
systematic approach LSI.

From the identified L (either computed as Λ(Limd ) or
learned directly) we can calculate the conserved quantity
H via Legendre transform of L as H = q ∂L

∂q̇ − L. Figure

3 compares the contours of H to the contours of Href .
Clearly, the LSI prediction matches the reference con-
tours best. The computed energy H corresponds to the
Hamiltonian of the system which governs the numerical
motion. Phase plots of this kind can, therefore, conve-
niently be used to verify the validity of computations with
LSI. Moreover, it shows that LSI can be used for system
identification.

3.2 Hénon–Heiles system

The Hénon–Heiles system is governed by Lref = 1
2‖q̇‖

2 −
Vref(q) with potential Vref(q) = 1

2‖q‖
2 + µ(q2

1q2 − q3
2/3).

We set µ = 0.8, use a step-size and snap-shot time
h = hsnap = 0.1, and train on 200 trajectories of length 5.

We compare again to LGP with approximated velocities
by central finite differences and additionally to a GP rep-
resenting the flow map on TQ (GPFlow). GPFlow is fitted
directly to the position data and the approximated velocity
data. GPFlow avoids discretisation errors in the integra-
tion step but does not incorporate variational structure. A
trajectory and an energy plot of LSI, LGP, and GPFlow is
provided in Figure 4. While all trajectories erroneously di-
verge eventually, LSI’s excellent energy preservation prop-
erties make the trajectory escape much later. Interestingly,
the energy drift of GPFLow causes an early blow-up al-
though at first its absolute energy errors are much smaller
than those of LGP which diverges later. This confirms that
preservation of variational structure is important. When
the potential is computed from L = Λ(Limd ) its contours
match the reference Vref nicely. This verifies the behaviour
of numerical solutions of LSI and shows that LSI succeeds
in system identification tasks.

4. FUTURE WORK

LSI successfully incorporates variational structure into
learning processes of dynamical systems without intro-
ducing (biased) discretisation errors. We would like to
incorporate symmetries into the learned dynamical system
as well, for instance by using symmetric neural network
architectures or symmetric kernel functions with Gaussian
Processes. In combination with a symmetric variational in-
tegrator, the symmetry and variational structure is passed
on to the discrete system such that numerical motions
conserve the quantities given by Noether’s theorem. In
this way, completely integrable structure can be preserved
under discretisation such that this important structural
property is shared by the numerical system.

High order integrators simplify the computation of L =
Λ(Limd ) as correction terms only occur to higher order.
However, complicated integrators yield more complicated
loss functions `data (ANN) or more involved linear systems
(GP based method). We would like to investigate these
trade-offs and the potential of using different variational
integrators within LSI. Another direction of research is to
incorporate external forces into the considered systems.

Moreover, we would like to employ the statistical frame-
work of Gaussian Processes to investigate how uncertainty
in the training data relates to model uncertainty in the
learned Lagrangian and in the computed trajectories.
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Abstract: Entropy regularization, or a maximum entropy method for optimal control has
attracted much attention especially in reinforcement learning due to its many advantages such
as a natural exploration strategy and robustness against disturbances. Nevertheless, for safety-
critical applications, it is crucial to suppress state uncertainty due to the stochasticity of high-
entropy control policies and dynamics to an acceptable level. To achieve this, we consider the
problem of steering a state distribution of a deterministic discrete-time linear system to a
specified one at final time with entropy-regularized minimum energy control. We show that
this problem boils down to solving coupled Lyapunov equations. Based on this, we derive the
existence, uniqueness, and explicit form of the optimal policy.

Keywords: Optimal control, stochastic control, maximum entropy, discrete-time linear system

1. INTRODUCTION

Optimal control theory is a powerful mathematical tool
for achieving control objectives while considering, for ex-
ample, energy efficiency (Lewis et al., 2012). Recently,
there has been considerable interest in maximum entropy
optimal control (MaxEnt OC) especially in reinforcement
learning (RL) (Haarnoja et al., 2017, 2018; Levine, 2018;
Ho and Ermon, 2016). MaxEnt OC seeks to optimize an
objective function which includes an additional entropy
regularization term for control policies. This framework of-
fers many advantages such as performing good exploration
for RL (Haarnoja et al., 2017), robustness against dis-
turbances (Eysenbach and Levine, 2021), and equivalence
between MaxEnt OC and an inference problem (Levine,
2018), to name a few.

On the other hand, in many safety-critical applications, it
is important to limit state uncertainty due to the stochas-
ticity of high-entropy policies and dynamics to an accept-
able level. A straightforward approach to achieve this is
to impose a hard constraint in the state distribution at a
specified time. Steering the state of a dynamical system
to a desired distribution without entropy regularization
has been addressed in the literature. In (Chen et al.,
2016), the problem of steering a Gaussian initial density
of a continuous-time linear system to a final one with
minimum energy is considered, and the optimal policy
is derived in explicit form. In (Goldshtein and Tsiotras,
2017), the above problem for a discrete-time linear system
is investigated, and the optimality condition for a linear
controller gain is derived. See also (Chen et al., 2021) for
an extensive review of this area.

In this paper, we tackle the entropy-regularized minimum
energy density control problem for deterministic discrete-
time linear systems. We reveal that this problem boils
down to solving two Lyapunov difference equations cou-
pled through their boundary values. Our main contribu-

tion is to show the existence and uniqueness of the optimal
policy and then derive its explicit form.

Organization: This paper is organized as follows: In Sec-
tion 2, we provide the problem formulation and derive the
coupled Lyapunov equations. The existence, uniqueness,
and explicit form of the optimal policy are given in Sec-
tion 3. Some concluding remarks are given in Section 4.

Notation: Let R denote the set of real numbers and Z>0

denote the set of positive integers. The set of integers
{k, k+1, . . . , l} (k < l) is denoted by [[k, l]]. Denote by Sn
the set of all real symmetric n× n matrices. For a matrix
A ∈ Sn, we write A ≻ 0 (resp. A ≺ 0) if A is positive
(resp. negative) definite. For A ≻ 0, A1/2 denotes the
unique positive definite square root. The identity matrix
is denoted by I, and its dimension depends on the context.
The Euclidean norm is denoted by ∥ · ∥. Let (Ω,F ,P) be
a complete probability space and E be the expectation
with respect to P. For an Rn-valued random vector w,
w ∼ N (µ,Σ) means that w has a multivariate Gaussian
distribution with mean µ ∈ Rn and covariance matrix Σ.
When Σ ≻ 0, the density function of w ∼ N (µ,Σ) is
denoted by N (·|µ,Σ).

2. PROBLEM FORMULATION AND PRELIMINARY
ANALYSIS

In this paper, we consider the following optimal control
problem.

Problem 1. Given a finite horizon N ∈ Z>0, find a policy
π = {πk}N−1

k=0 that solves

minimize
π

E

[
N−1∑
k=0

(
1

2
∥uk∥2 − εH(πk(·|xk))

)]
(1)

subject to xk+1 = Akxk +Bkuk, (2)

uk ∼ πk(·|xk), (3)

x0 ∼ N (0, Σ̄0), xN ∼ N (0, Σ̄N ), (4)
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where ε > 0, Σ̄0, Σ̄N ≻ 0, xk ∈ Rn, uk ∈ Rm. A stochastic
policy πk(·|x) denotes the conditional density of uk given
xk = x, and H(πk(·|x)) := −

∫
Rm πk(u|x) log πk(u|x)du

denotes the entropy of πk(·|x). ♢

To tackle the above problem, let us start by introducing
the auxiliary problem.

Problem 2. Given a finite horizon N ∈ Z>0, find a policy
π = {πk}N−1

k=0 that solves

minimize
π

E

[
1

2
x⊤NΠNxN

+
N−1∑
k=0

(
1

2
∥uk∥2 − εH(πk(·|xk))

)]
subject to xk+1 = Akxk +Bkuk, uk ∼ πk(·|xk),

x0 ∼ N (0, Σ̄0),

(5)

where ΠN ∈ Sn. ♢

Problem 2 has a terminal cost instead of a constraint on
the density of the final state. Similarly to the conventional
LQR problem (Lewis et al., 2012), we can obtain the
optimal policy for Problem 2 explicitly. Due to the limited
space, we omit the proof.

Proposition 1. Assume that Πk ∈ Sn satisfies I +
B⊤
k Πk+1Bk ≻ 0 for any k ∈ [[0, N − 1]] and is a solution of

the following Riccati difference equation:

Πk = A⊤
k Πk+1Ak −A⊤

k Πk+1Bk(I +B⊤
k Πk+1Bk)

−1

×B⊤
k Πk+1Ak, k ∈ [[0, N − 1]]. (6)

Then, the unique optimal policy for Problem 2 is given by

π∗
k(u|x) = N

(
u
∣∣−(I +B⊤

k Πk+1Bk)
−1B⊤

k Πk+1Akx,

ε(I +B⊤
k Πk+1Bk)

−1
)
,

x ∈ Rn, u ∈ Rm, k ∈ [[0, N − 1]]. (7)

♢

The system (2) driven by the policy (7) is given by

x∗k+1 = Ākx
∗
k +Bkw

∗
k, w

∗
k ∼ N (0, ε(I +B⊤

k Πk+1Bk)
−1),
(8)

Āk := Ak −Bk(I +B⊤
k Πk+1Bk)

−1B⊤
k Πk+1Ak (9)

where {w∗
k} is an independent sequence. Suppose that

Σk := E
[
x∗k(x

∗
k)

⊤] satisfies Σ0 = Σ̄0,ΣN = Σ̄N . Then,
from Proposition 1, the policy (7) is the unique optimal
solution of Problem 1. This is because for any policy
satisfying (4), the terminal cost E[x⊤NΠNxN/2] takes the
same value. From (8), Σk evolves as

Σk+1 = ĀkΣkĀ
⊤
k + εBk(I +B⊤

k Πk+1Bk)
−1B⊤

k . (10)

Note that

ĀkΣkĀ
⊤
k = (I +BkB

⊤
k Πk+1)

−1AkΣkA
⊤
k

× (I +BkB
⊤
k Πk+1)

−⊤. (11)

Therefore, if Σ0 ≻ 0 and Ak is invertible for any k ∈
[[0, N − 1]], it holds Σk ≻ 0 for any k ∈ [[1, N ]]. Henceforth,
we assume the invertibility of Ak.

Now, inspired by (Chen et al. (2016)), we introduce Hk :=
εΣ−1

k −Πk. Assume that Πk and Hk are invertible on the
time interval [[0, N ]]. Noting that

(Πk +Hk)
−1 = Π−1

k −Π−1
k (H−1

k +Π−1
k )−1Π−1

k ,

we obtain

Π−1
k +H−1

k =

(
Πk −

1

ε
ΠkΣkΠk

)−1

. (12)

In addition, a straightforward calculation with (6) and (10)
shows that

A−1
k (Π−1

k+1 +H−1
k+1)A

−⊤
k

=

(
A⊤
k

(
Πk+1 −

1

ε
Πk+1Σk+1Πk+1

)
Ak

)−1

=

(
Πk −

1

ε
ΠkΣkΠk

)−1

= Π−1
k +H−1

k . (13)

Hence, we have

Π−1
k+1 +H−1

k+1 = Ak(Π
−1
k +H−1

k )A⊤
k . (14)

Moreover, the Riccati equation (6) can be rewritten as

Π−1
k+1 = AkΠ

−1
k A⊤

k −BkB
⊤
k . (15)

From (14) and (15), it holds

H−1
k+1 = AkH

−1
k A⊤

k +BkB
⊤
k . (16)

Therefore, Pk := H−1
k and Qk := Π−1

k satisfy the Lya-
punov difference equations

Pk+1 = AkPkA
⊤
k +BkB

⊤
k , (17)

Qk+1 = AkQkA
⊤
k −BkB

⊤
k (18)

for k ∈ [[0, N − 1]], and the boundary conditions Σ0 =
Σ̄0,ΣN = Σ̄N are written as

εΣ̄−1
0 = P−1

0 +Q−1
0 , (19)

εΣ̄−1
N = P−1

N +Q−1
N . (20)

In summary, we obtain the following proposition.

Proposition 2. Assume that for any k ∈ [[0, N − 1]], Ak
is invertible. Assume further that Pk and Qk satisfy
the equations (17), (18) with the boundary conditions
(19),(20) and are invertible on [[0, N ]], and that it holds
I + B⊤

k Q
−1
k+1Bk ≻ 0 for any k ∈ [[0, N − 1]]. Then, the

policy (7) with Πk = Q−1
k is the unique optimal policy for

Problem 1. ♢

3. SOLUTION OF MAXIMUM ENTROPY OPTIMAL
DENSITY CONTROL PROBLEM

In this section, we analyze the Lyapunov equations
(17),(18) with the boundary conditions (19),(20). Under
the invertibility of Ak, define the state-transition matrix

Φ(k, l) :=


Ak−1Ak−2 · · ·Al, k > l ≥ 0

I, k = l ≥ 0

A−1
k A−1

k+1 · · ·A
−1
l−1, 0 ≤ k < l

, (21)

and introduce the reachability Gramian

Gr(k1, k0) :=

k1−1∑
k=k0

Φ(k1, k+1)BkB
⊤
k Φ(k1, k+1)⊤, k0 < k1,

(22)
and the controllability Gramian

Gc(k1, k0) :=

k1−1∑
k=k0

Φ(k0, k+1)BkB
⊤
k Φ(k0, k+1)⊤, k0 < k1.

(23)
Note that sinceGc(k1, k0) = Φ(k0, k1)Gr(k1, k0)Φ(k0, k1)

⊤,
if Gr(k1, k0) is invertible, Gc(k1, k0) is also invertible. Now,
we provide the solutions of (17),(18) with (19),(20).
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Proposition 3. Assume that for any k ∈ [[0, N − 1]], Ak
is invertible, and there exists kr ∈ [[1, N − 1]] such that
Gr(k, 0) is invertible for any k ∈ [[kr, N ]] and Gr(N, k) is
invertible for any k ∈ [[0, kr − 1]]. Assume further that for

S0 :=
1

ε
Gc(N, 0)

− 1
2 Σ̄0Gc(N, 0)

− 1
2 , (24)

SN :=
1

ε
Gc(N, 0)

− 1
2Φ(0, N)Σ̄NΦ(0, N)⊤Gc(N, 0)

− 1
2 , (25)

the following two matrices are invertible.

F(S0, SN ) := S0 +
1

2
I −

(
S

1
2
0 SNS

1
2
0 +

1

4
I

) 1
2

, (26)

B(S0, SN ) := −S0 +
1

2
I +

(
S

1
2
0 SNS

1
2
0 +

1

4
I

) 1
2

. (27)

Then, the equations (17),(18) with the boundary condi-
tions (19),(20) have two sets of solutions (P±,k, Q±,k), k ∈
[[0, N ]] specified by

Q±,0 = Gc(N, 0)
1
2S

1
2
0

(
S0 +

1

2
I ±

(
S

1
2
0 SNS

1
2
0 +

1

4
I

) 1
2

)−1

× S
1
2
0 Gc(N, 0)

1
2 , (28)

P±,0 = (εΣ̄−1
0 −Q−1

±,0)
−1. (29)

In addition, the two sets of solutions (P±,k, Q±,k) have the
following properties.

(i) P−,k and Q−,k are both invertible on [[0, N ]], and for

any k ∈ [[0, N − 1]], it holds I +B⊤
k Q

−1
−,k+1Bk ≻ 0;

(ii) If Q+,k is invertible on [[0, N ]], there exists s ∈ [[0, N−
1]] such that I+B⊤

s Q
−1
+,s+1Bs is not positive definite.

Proof. First, introduce the change of variables ξk :=
Gc(N, 0)

−1/2Φ(0, k)xk. Then the system (2) is trans-
formed into

ξk+1 = ξk +Gc(N, 0)
−1/2Φ(0, k + 1)Bk︸ ︷︷ ︸
=:Bnew,k

uk. (30)

We will prove the statement in this new set of coordinates
and then turn back to the original set of coordinates at
the end. The Lyapunov equations associated with the
transformed system (30) are given by

Pnew,k+1 = Pnew,k +Bnew,kB
⊤
new,k, (31)

Qnew,k+1 = Qnew,k −Bnew,kB
⊤
new,k. (32)

The relationship between Qnew,k and Qk is as follows.

Qnew,k = Gc(N, 0)
− 1

2Φ(0, k)QkΦ(0, k)
⊤Gc(N, 0)

− 1
2 .
(33)

Indeed, substituting (33) into Qnew,k+1 −Qnew,k yields

Qnew,k+1 −Qnew,k = Gc(N, 0)
− 1

2Φ(0, k)

× (A−1
k Qk+1A

−⊤
k −Qk)Φ(0, k)

⊤Gc(N, 0)
− 1

2

= −Gc(N, 0)
− 1

2Φ(0, k + 1)BkB
⊤
k Φ(0, k + 1)⊤Gc(N, 0)

− 1
2

= −Bnew,kB
⊤
new,k, (34)

which coincides with (32). The controllability Gramian
and the reachability Gramian corresponding to ξk are
given by

Gc,new(k1, k0) = Gr,new(k1, k0) :=

k1−1∑
k=k0

Bnew,kB
⊤
new,k

(35)

satisfying Gc,new(N, 0) = Gr,new(N, 0) = I. The initial and
final covariance matrices for ξ0 and ξN are given by

Σ̄new,0 := Gc(N, 0)
−1/2Σ̄0Gc(N, 0)

−1/2 = εS0, (36)

Σ̄new,N := Gc(N, 0)
−1/2Φ(0, N)Σ̄NΦ(0, N)⊤Gc(N, 0)

−1/2

= εSN . (37)

In what follows, to simplify notation, we omit the subscript
“new.” First, by substituting

PN = P0 + I, QN = Q0 − I

into the boundary conditions (19),(20), similarly to the
proof of (Chen et al., 2016, Proposition 4), we obtain the
two sets of initial values

Q±,0 = S
1
2
0

(
S0 +

1

2
I ±

(
S

1
2
0 SNS

1
2
0 +

1

4
I

) 1
2

)−1

S
1
2
0 ,

P±,0 = (S−1
0 −Q−1

±,0)
−1

under the invertibility of F(S0, SN ) and B(S0, SN ). Next,
we show thatQ−,k = Q−,0−Gr(k, 0) is invertible on [[0, N ]].
Note that formally

(Q−,0 −Gr(k, 0))
−1 = −Gr(k, 0)

−1

−Gr(k, 0)
−1(Q−1

−,0 −Gr(k, 0)
−1)−1Gr(k, 0)

−1

= −Gr(k, 0)
−1 −Gr(k, 0)

−1S
1
2
0

[
S0 +

1

2
I

−
(
S

1
2
0 SNS

1
2
0 +

1

4
I

) 1
2

− S
1
2
0 Gr(k, 0)

−1S
1
2
0

]−1

S
1
2
0 Gr(k, 0)

−1.

(38)

By assumption, for any k ∈ [[kr, N ]], Gr(k, 0) is invertible.
The term in the square brackets obviously attains its
maximum at k = N

1

2
I −

(
S
1/2
0 SNS

1/2
0 +

1

4
I

)1/2

≺ 0.

Therefore the term in the brackets is invertible for any
k ∈ [[kr, N ]]. This implies that Q−,k has the inverse matrix
(38). On the other hand, Q−,k also admits the expression
Q−,k = Q−,N + Gr(N, k). Hence, the inverse matrix is
formally

(Q−,N +Gr(N, k))
−1 = Gr(N, k)

−1

−Gr(N, k)
−1(Q−1

−,N +Gr(N, k)
−1)−1Gr(N, k)

−1

= Gr(N, k)
−1 −Gr(N, k)

−1((Q−,0 − I)−1 +Gr(N, k)
−1)−1

×Gr(N, k)
−1

= Gr(N, k)
−1 −Gr(N, k)

−1S
1
2
0

[
−S0 +

(
−1

2
I +

(
S

1
2
0 SNS

1
2
0

+
1

4
I

) 1
2

)−1

+ S
1
2
0 Gr(N, k)

−1S
1
2
0

]−1

S
1
2
0 Gr(N, k)

−1. (39)

Then by the same argument as for the time interval
[[kr, N ]], Q−,k is also invertible on [[0, kr − 1]]. Similarly,
it can be shown that P−,k is invertible on [[0, N ]].

Next, we prove that I + B⊤
k Q

−1
−,k+1Bk ≻ 0 for any k ∈

[[0, N − 1]]. Note that

(I +B⊤
k Q

−1
−,k+1Bk)

−1 = I −B⊤
k (Q−,k+1 +BkB

⊤
k )

−1Bk

= I −B⊤
k Q

−1
−,kBk.
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Hence, we show I − B⊤
k Q

−1
−,kBk ≻ 0. From (38), for

k ∈ [[kr, N − 1]], we have

I −B⊤
k Q

−1
−,kBk = I +B⊤

k Gr(k, 0)
−1Bk

+B⊤
k Gr(k, 0)

−1S
1
2
0

[
S0 +

1

2
I −

(
S

1
2
0 SNS

1
2
0 +

1

4
I

) 1
2

− S
1
2
0 Gr(k, 0)

−1S
1
2
0

]−1

S
1
2
0 Gr(k, 0)

−1Bk. (40)

Since the expression in the square brackets is negative
definite on [[kr, N − 1]], it holds for sufficiently small δ ∈
(0, 1),

I −B⊤
k Q

−1
−,kBk ≻ I +B⊤

k Gr(k, 0)
−1Bk +B⊤

k Gr(k, 0)
−1S

1
2
0

×
[
S0 − δS0 − S

1
2
0 Gr(k, 0)

−1S
1
2
0

]−1

S
1
2
0 Gr(k, 0)

−1Bk.

Hence, we get

I −B⊤
k Q

−1
−,kBk ≻ I +B⊤

k (Gr(k, 0)− (1− δ)−1I)−1Bk

= I −B⊤
k

(
N−1∑
s=k

BsB
⊤
s +

(
(1− δ)−1 − 1

)
I

)−1

Bk. (41)

In addition, it holds thatI −B⊤
k

(
N−1∑
s=k

BsB
⊤
s +

(
(1− δ)−1 − 1

)
I

)−1

Bk

−1

= I +B⊤
k

(
N−1∑
s=k+1

BsB
⊤
s +

(
(1− δ)−1 − 1

)
I

)−1

Bk ≻ 0.

Consequently, we obtain I + B⊤
k Q

−1
−,k+1Bk ≻ 0 for k ∈

[[kr, N − 1]]. Noting also that Q−1
−,k is given by (39) for

k ∈ [[0, kr − 1]], by the same argument above, it can be
shown that I +B⊤

k Q
−1
−,k+1Bk ≻ 0 for k ∈ [[0, kr − 1]].

Next, we show the property (ii). Note that since 0 ≺
Q+,0 ≺ I, it holds Q+,N ≺ 0, and thus there exists
s ∈ [[0, N − 1]] such that Q+,s ≻ 0 and Q+,s+1 is not
positive definite. By assumption, Q+,s+1 is invertible and

Q−1
+,s+1 = (Q+,s −BsB

⊤
s )

−1

= Q−1
+,s +Q−1

+,sBs(I −B⊤
s Q

−1
+,sBs)

−1B⊤
s Q

−1
+,s. (42)

Now assume I − B⊤
s Q

−1
+,sBs ≻ 0. Then by Q−1

+,s ≻ 0

and (42), we have Q−1
+,s+1 ≻ 0, which contradicts the fact

that Q+,s+1 is not positive definite. Combining this with

I +B⊤
s Q

−1
+,s+1Bs = (I −B⊤

s Q
−1
+,sBs)

−1, we obtain (ii).

Finally, by employing the relationship (33), we obtain the
desired result. 2

Note that the corresponding result (Chen et al., 2016,
Proposition 4) for the continuous-time system also requires
the invertibility of F(S0, SN ) and B(S0, SN ), which is not
mentioned in the statement.

By Propositions 2 and 3, we come to the main result of
this paper.

Theorem 1. Suppose that the assumptions of Proposi-
tion 3 are satisfied. Then, the unique optimal policy for
Problem 1 is given by

πk(u|x) = N
(
u| − (I +B⊤

k Q
−1
−,k+1Bk)

−1B⊤
k Q

−1
−,k+1Akx,

ε(I +B⊤
k Q

−1
−,k+1Bk)

−1
)
,

x ∈ Rn, u ∈ Rm, k ∈ [[0, N − 1]], (43)

where Q−,k is a solution of (18) with the initial value Q−,0
in (28). ♢

4. CONCLUSION

In this paper, we analyzed maximum entropy optimal
density control of deterministic discrete-time linear sys-
tems. In particular, we revealed the existence and unique-
ness of the optimal solution, and provided the explicit
construction of the optimal policy. Future work includes
removing or relaxing the invertibility assumption on
Ak,F(S0, SN ),B(S0, SN ) and exploring the connection be-
tween our result and Schrödinger bridges (Beghi, 1996).
Another direction of future work is to extend the result to
the case where a quadratic state cost is also present.
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INTERPOLATING MATRICES

ALBERTO DAYAN - EXTENDED ABSTRACT

This talk is based on the works in [5], [6] and [7], and it aims to extend some
well known results on interpolating sequences to sequences of matrices of arbitrary
dimensions. First, we will consider the case of a sequence of square matrices with
spectra in the unit disc, and we will obtain an analogue of Carleson’s interpolation
Theorems, [3] and [4], to this setting. The second part of the talk will consider
the case of interpolating d-tuples of matrices: the main difference with the scalar
setting is that the components of a d-tuple of matrices need not, in general, to
commute. We will see how an analogue of the Pick property enjoyed by the NC
(non commutative) Drury-Arveson space allows one to characterize interpolating
sequences on the NC unit ball in terms of some Riesz system-type conditions on
NC kernels. We will discuss examples, and some possible directions for some future
research in the topic.

The one variable case

The first step is to define what an interpolating sequence of matrices is. Since
we evaluate an H∞ function at a matrix via the Riesz-Dunford functional calculus,
the first requirement for a sequences A = (An)n∈N of matrices to be interpolating
is that their spectra lie in the unit disc. As for a concrete definition for A to be
interpolating, a rather versatile choice is the following:

Definition 1 (Interpolating Matrices). A sequence of matrices (An)n∈N with spec-
tra in the unit disc is interpolating if, for any bounded sequence (ϕn)n∈N in H∞,
there exists a function ϕ in H∞ so that ϕ(An) = ϕn(An), for any n in N.

If we chose (ϕn)n∈N to be made of constant functions it is immediate to see that
this extends the classic definition of interpolating sequences of scalars.
In order to characterize interpolating sequences of matrices, one has to be able to
separate them. This can be done by using the Hardy space H2, the reproducing
kernel Hilbert space of holomorphic functions on the unit disc with square summable
Taylor coefficients. Given a sequence of matrices A, one can define, for any n in N,

Hn := {f ∈ H2 | f(An) = 0}⊥.

Each Hn is, in fact, a model space in H2. In particular, it is the orthogonal
complement in H2 of the set of all multiples of a finite Blaschke product Bn. If A
was a sequence of scalars (λn)n∈N, each Hn would be a one dimensional subspace
of H2 spanned by sλ, the normalized Szegö kernel at λn. Looking for a way to
separate the sequence H = (Hn)n∈N, we say that H is

• strongly separated if the sine of the angle between an element of H and
the closure of the span of all the others subspaces inH is uniformly bounded
below;

• weakly separated if the sine of the angle between any two distinct ele-
ments of H is uniformly bounded below;

Date: July 14, 2022.
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• a Riesz system if there exists a C ≥ 1 so that, however we choose a
sequence of unit vectors (xn)n∈N so that xn belongs to Hn for any n in N,
then for any a = (an)n∈N in l2

1

C
||a||l2 ≤

∣∣∣∣∣
∣∣∣∣∣∑
n∈N

anxn

∣∣∣∣∣
∣∣∣∣∣
H2

≤ C||a||l2 .

The least constant C for which this holds is called the Riez bound. If the
right inequality holds, then H is a Bessel system.

In [1, Ch. 9] one can find a re-statement of the celebrated characterization of
interpolating sequences due to Carleson in a operator theoretical language: in [3]
he proved that a sequence of scalars Λ = (λn)n∈N is interpolating if and only if
(sλn

)n∈N is strongly separated. Later on, [4], he proved that Λ is interpolating if
and only if (sλn

)n∈N is a weakly separated Bessel system in H2. Moreover, Shapiro
and Shields showed in [9] that Λ is interpolating if and only if (sλn

)n∈N is a Riesz
system. The first main result of this talk reads as follow:

Theorem 1. Let A be a sequence of matrices with spectra in the unit disc, and
let H be the associated sequence of model spaces in H2. Then the following are
equivalent:

(i): A is interpolating;
(ii): H is strongly separated;
(iii): H is a Riesz system in H2.
(iv): H is a weakly separated Bessel system.

Interpolating d-tuples

Interpolating sequences are significantly less understood in the multi-variable
setting. Looking for extending some of the few known results on the topic to se-
quences of d-tuples of matrices, a first crucial observation is that the components of
such d-tuples might not commute, unless they are one-dimensional. Therefore, one
has to work with the well developed theory of noncommutative analytic functions,
and in particular with the nc (non commutative) reproducing kernel Hilbert spaces
defined in [2]. We can think of an nc analytic function as a noncommuative power
series

f(z) =
∑
k∈Wd

akz
k,

where z = (z1, . . . , zd) is a d-tuple of non commuting variables, and Wd is the set
of all free words with d generators. In [8] Salomon, Shalit and Shamovich consid-
ered the noncommutative unit ball Bd, that is, the set of all d-tuples of matrices

(X1, . . . , Xd) of arbitrary dimensions so that ||
∑d

i=1 XiX
∗
i || < 1, and they showed

that the algebra

H∞(Bd) :=

{
f nc function

∣∣∣∣ sup
X∈Bd

||f(X)|| < ∞
}

is the multiplier algebra of a suitable nc reproducing kernel Hilbert space, defined
as the nc Drury-Arveson space H2(Bd). The nc kernel that defines H

2(Bd) is called
the nc Szegö kernel, and it has a noncommutative version of the complete Pick
property, [8]. Definition 1 extends naturally to the nc setting as well: we say that a
sequence A = (An)n∈N in Bd is interpolating if given any bounded sequence (ϕn)n∈N
in H∞(Bd) there exists a function ϕ in H∞(Bd) so that ϕ(An) = ϕn(An), for any
n in N. The second main result of this talk is a characterization of interpolating
sequences in this nc setting, stated in terms of separation conditions in the nc Drury
Arveson space H2(Bd):
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Theorem 2. A is interpolating if and only if the sequence of subspaces

(1) Hn := {f ∈ H2(Bd)|f(An) = 0}⊥

is a Riesz system.

In order to extend all points of Theorem 1 to this NC setting, it would be
interesting to determine whether Carleson’s interpolation theorems, [3] and [4],
extend to the nc unit ball:

Question 3. Let A be a sequence of d-tuples of matrices in Bd. Is A interpolating,
provided that the associated sequence (Hn)n∈N defined in (1) is strongly separated?

Question 4. Let A be a sequence of d-tuples of matrices in Bd. Is A interpolating,
provided that the associated sequence (Hn)n∈N defined in (1) is a weakly separated
Bessel system?
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Abstract: Ando’s classical characterization of the unit ball in the numerical radius norm was
generalized by Farenick, Kavruk, and Paulsen using the free joint numerical radius of a tuple
of Hilbert space operators (X1, . . . , Xm). In particular, the characterization leads to a positive
definite completion problem. In this paper, we study various aspects of Ando’s result in this
generalized setting. Among other things, this leads to the study of finding a positive definite
solution L to the equation

L = I +
m∑
j=1

[(
L

1
2X∗j LXjL

1
2 +

1

4
I

) 1
2

+

(
L

1
2XjLX

∗
j L

1
2 +

1

4
I

) 1
2

]
,

which may be viewed as a fixed point equation. Once such a fixed point is identified, the desired
positive definite completion is easily obtained. Along the way we derive other related results
including basic properties of the free joint numerical radius and an easy way to determine the
free joint numerical radius of a tuple of generalized permutations. Finally, we present some open
problems.

Keywords: Free joint numerical radius, Matrix completion, Fixed point, Generalized
permutation

1. EXTENDED ABSTRACT

For a bounded Hilbert space operator X ∈ B(H), the
numerical radius is defined by

w(X) = sup{|〈Xh, h〉| : h ∈ H, ‖h‖ = 1}.
The numerical radius corresponds to the radius of the
smallest circle centered at 0 that contains the numerical
range

W (X) = {〈Xh, h〉 : h ∈ H, ‖h‖ = 1}.

The well known characterization by Ando (1973) of op-
erators whose numerical radius is at most 1 states that
w(X) ≤ 1 if and only if there exists Z = Z∗ ∈ B(H) so
that [

I − Z X
X∗ I + Z

]
≥ 0,

where T ≥ 0 is shorthand for T being a positive semidefi-
nite operator. Equivalently, w(X) ≤ 1 if and only if there
exist A1, A2 ∈ B(H) with A1 +A2 = I so that[

A1 X/2
X∗/2 A2

]
≥ 0. (1)

One way to prove Ando’s result is to observe that w(X) ≤
1 if and only if

Q(eiθ) = I − Re(eiθX) ≥ 0, for all θ ∈ [0, 2π],

? The research of the first author was supported by UP Diliman’s
Ph.D. Incentive Award. The research of the second author was
supported by Simons Foundation grant 355645 and National Science
Foundation grant DMS 2000037.

and subsequently use Fejér-Riesz factorization

I − zX/2− zX∗/2 = Q(z)
= (P0 + P1z)

∗(P0 + P1z), |z| = 1.

Now P ∗0 P0 + P ∗1 P1 = I and P ∗0 P1 = −X/2 and thus

0 ≤
[
P ∗0
−P ∗1

]
[P0 −P1] =:

[
A1 X/2
X∗/2 A2

]
where A1 = P ∗0 P0 and A2 = P ∗1 P1 satisfy A1 +A2 = I.

There are different ways to find A1 and A2 so that
(1) holds. In finite dimensions, one can find A1 and A2

numerically by using semidefinite programming, as a block
matrix (1) is in the intersection of the cone of positive
semidefinite matrices and the affine space{[

I X/2
X∗/2 0

]
+

[
−Z 0
0 Z

]
: Z = Z∗

}
.

Semidefinite programming is exactly designed to handle
such a situation.

An alternative process to arrive at (1), which was used by
Ando in his original paper, is to consider Zk = Z∗k defined
via 〈Zkh, h〉

inf
h1,...,hk

〈
I X/2 · · · 0

X∗/2 I
. . .

...
...

. . .
. . . X/2

0 · · · X∗/2 I



h
h1
...
hk

 ,

h
h1
...
hk


〉
.

Then Zk converges decreasingly to Z, say; and we obtain
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[
I − Z X/2
X∗/2 Z

]
≥ 0 (2)

yielding representation (1). In fact, this process yields the
maximal Z in (2) (and gives a co-outer factorization of
Q(z)). In the case when w(X) < 1, this leads to the
iterative scheme

Z1 = I and Zk+1 = I − (X/2)Z−1k (X∗/2) for k ∈ N,
which monotonically decreases; see Algorithm 4.1 in Eng-
werda et al. (1993).

Farenick et al. (2013) generalized Ando’s result to the
multivariable setting as follows.

Theorem 1. (Farenick et al., 2013, Theorem 3.4) Let
X1, . . . , Xm ∈ B(H). The following are equivalent:

(i) w(X1, . . . , Xm) < 1/2.
(ii) There exist A1, . . . , Am+1 ∈ B(H) so that

A1 + · · ·+Am+1 = I and

A1 X1 0 · · · 0

X∗1 A2 X2

...

0 X∗2
. . .

. . . 0
...

. . . Am Xm

0 · · · 0 X∗m Am+1


> 0. (3)

In (3), T > 0 is shorthand for T being a positive definite
operator. Condition (i) in Theorem 1 concerns the free
joint numerical radius of a tuple of m Hilbert space
operators X1, . . . , Xm ∈ B(H), defined as

w(X1, . . . , Xm) = sup {w (X1 ⊗ U1 + · · ·+Xm ⊗ Um)} ,
where the supremum is taken over every Hilbert space
K, every choice of m unitaries U1, . . . , Um ∈ B(K), and
the tensor product is spatial, which can be defined as
follows. Consider an inner product on the algebraic tensor
of H and K by letting 〈h1 ⊗ k1, h2 ⊗ k2〉 := 〈h1, h2〉H ·
〈k1, k2〉K for all h1, h2 ∈ H, k1, k2 ∈ K, and then extending
linearly. Denote by H ⊗ K the resulting Hilbert space
after completion. For R ∈ B(H) and S ∈ B(K), consider
defining a map (R⊗S)(h⊗k) := (Rh)⊗(Sk) for all h ∈ H
and k ∈ K, and then extending linearly. The resulting
operator R⊗S has the property that ‖R⊗S‖ = ‖R‖·‖S‖.
Hence, the algebraic tensor of B(H) and B(K) naturally
inherits a norm (called the spatial tensor norm) as a subset
of B(H⊗K). Taking the closure with respect to the spatial
tensor norm yields a C∗-subalgebra of B(H⊗K).

The free joint numerical radius coincides with the classical
numerical radius when there is only one operator (m = 1),
and Theorem 1 reduces to Ando’s classical result. The
objective of this paper is to pursue the different aspects of
Ando’s result in this more general setting. This includes
(i) finding a solution using semidefinite programming; (ii)
finding a solution via an iterative scheme (which may have
the potential to generalize to the infinite dimensional case);
and (iii) exploring the connection with factorization. As
we will see, along the way we derive other related results
including basic properties of the free joint numerical radius
and an easy way to determine the free joint numerical
radius of a tuple of generalized permutations.

Our approach to solve for A1, . . . , Am+1 in (3) will be
different than Ando’s. We will show, in finite dimensions,
that a solution A1, . . . , Am+1 in (3) exists exactly when

the function fX1,...,Xm
defined below has a positive definite

fixed point. For a given tuple X1, . . . , Xm ∈ B(H) and for
any Z ≥ 0, define fX1,...,Xm(Z) as

I+

m∑
j=1

[(
Z

1
2X

∗
j ZXjZ

1
2 +

1

4
I

) 1
2
+

(
Z

1
2XjZX

∗
j Z

1
2 +

1

4
I

) 1
2

]
. (4)

Operator monotonicity of t
1
2 implies

fX1,...,Xm
(Z) ≥ (m+ 1)I > 0 for any Z ≥ 0.

Theorem 2. Let X1, . . . , Xm ∈ B(H). Consider the follow-
ing statements:

(i) There exists positive definite L ∈ B(H) for which

fX1,...,Xm
(L) = L. (5)

(ii) w(X1, . . . , Xm) < 1
2 .

Then (i)→(ii). If dim(H) <∞, then (ii)→(i).

Corollary 3. Let X1, . . . , Xm ∈ B(H) with dim(H) < ∞.
Then (i) and (ii) in Theorem 2 are equivalent.

We prove Theorem 2 using matrix completion techniques.
We will discuss the difficulties encountered in generalizing
(ii)→ (i) to the infinite dimensional case. Once a positive
definite fixed point for fX1,...,Xm

is identified, we show
that there is an easy construction for the unknowns
A1, . . . , Am+1 in (3) (which works in all dimensions).

In order to find a solution L to (5), one can use well
known iterative schemes to find such a fixed point, with
the iterative scheme Lk+1 = fX1,...,Xm

(Lk) being the
standard choice. The choice of a starting point is of
course important, and we have found that the choice
L1 = (m+ 1)I (which is the fixed point when X1 = · · · =
Xm = 0) works perfectly numerically, and in fact we find
that the corresponding sequence {Lk}k∈N is monotonically
nondecreasing in the Loewner partial ordering. Recall that
the Loewner partial ordering on Hermitian operators is
given by R ≤ S if and only if S−R ≥ 0. This leads to the
following conjecture.

Conjecture 4. Let X1, . . . , Xm ∈ B(H). Consider the re-
currence

L1 = (m+ 1)I and Lk+1 = fX1,...,Xm(Lk) for k ∈ N, (6)

where fX1,...,Xm
is defined in (4). Then

(i) Lk ≤ Lk+1 for all k ∈ N.
(ii) If w(X1, . . . , Xm) < 1/2, then {Lk}k∈N converges in

the weak operator topology to a fixed point L ∈ B(H)
of fX1,...,Xm .

In general, L1 = (m + 1)I ≤ f(L1) = L2. We will prove
Conjecture 4 in the case when X1, . . . , Xm are generalized
permutations, i.e., each Xj is the product of a permutation
matrix and a diagonal matrix. It is worthwhile to observe
that our iterative scheme has a different origin than the
iterative scheme from Ando’s work. Indeed, in Ando’s
approach one maximizes A2 in (1) (in the Loewner partial
order) while our approach is based on maximizing the
determinant of (1). Even though our approach is based
on finite dimensional considerations, the iteration scheme
can also be defined in infinite dimensional settings. It is
our hope that a convergence proof for that case can be
obtained in the future.

Aside from the results mentioned above, we will also
cover the following. We will show some basic properties
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of the free joint numerical radius. We will prove a closed
formula for the free joint numerical radius of a tuple of
n-by-n generalized permutations. We will describe how
to use semidefinite programming to numerically compute
w(X1, . . . , Xm) for a tuple of n-by-n matrices. We will
prove a limit formula for the free joint numerical radius of a
tuple of generalized permutations on infinite dimensional
separable Hilbert spaces. We will discuss the connection
with factorization of Hermitian pencils.
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Abstract: We study the optimal design of numerical integrators for dissipative systems, for
which there exists an underlying thermodynamic structure known as GENERIC (General
Equation for the NonEquilibrium Reversible-Irreversible Coupling). We present a frame-work to
construct structure-preserving integrators by splitting the system into reversible and irreversible
dynamics. The reversible part, which is often degenerate and reduces to a Hamiltonian form
on its symplectic leaves, is solved by using a symplectic method (e.g., Verlet) with degenerate
variables being left unchanged, for which an associated modified Hamiltonian (and subsequently
a modified energy) in the form of a series expansion can be obtained by using backward error
analysis. The modified energy is then used to construct a modified friction matrix associated
with the irreversible part in such a way that a modified degeneracy condition is satisfied. The
modified irreversible dynamics can be further solved by an explicit midpoint method if not
exactly solvable. Our findings are verified by various numerical experiments, demonstrating the
superiority of structure-preserving integrators over alternative schemes in terms of not only the
accuracy control of both energy conservation and entropy production but also the preservation
of the conformal symplectic structure in the case of linearly damped systems.

Keywords: structure-preserving integrators, dissipative systems, GENERIC, conformal
symplectic, discrete gradient methods.

1. INTRODUCTION

In the last few decades, considerable effort has been de-
voted to developing structure-preserving integrators for
Hamiltonian systems. It has been demonstrated that the
so-called symplectic integrators, which preserve the sym-
plectic structure, have superior long time behavior com-
pared to their nonsymplectic counterparts, and should
be preferred in practice Hairer et al. (2006); Leimkuh-
ler and Matthews (2015); Leimkuhler and Reich (2005).
On the other hand, there has been growing interest in
designing appropriate numerical methods for gradient
flows Ambrosio et al. (2008); Hairer and Lubich (2014);
Jordan et al. (1998); Otto (2001); Stuart and Humphries
(1996) that respect their underlying properties. In con-
trast to the symplectic structure, the conformal sym-
plectic structure Bhatt et al. (2016); Bhatt and Moore
(2017); Dressler (1988); Hong et al. (2017); McLachlan
and Perlmutter (2001); Moser (1994) for Hamiltonian
systems that are perturbed by a linear damping (which
can be thought of as a special case of the Rayleigh dis-
sipation) has been less studied. It is also worth men-
tioning that variational integrators Kane et al. (2000)

? This is a resubmission of an extended abstract that was accepted
for presentation at the MTNS 2020 in Cambridge.

and specialized Runge–Kutta methods Jay (2003) have
also been used to solve dissipative systems. It turns out
that thermodynamically admissible evolution equations
for nonequilibrium systems have a more general (including
an additional variable known as entropy) and well-defined
structure known as GENERIC (General Equation for the
NonEquilibrium Reversible-Irreversible Coupling) Grmela

and Öttinger (1997); Öttinger (2005, 2018); Öttinger and
Grmela (1997), which possesses the following distinct fea-
tures:

(i) conservation of the total energy;
(ii) separation of the reversible and irreversible dynamics;

(iii) the reversible dynamics preserves a Poisson structure;
(iv) entropy production is unaffected by the reversible

dynamics;
(v) nonnegative entropy production rate.

More specifically, the GENERIC formulation of the time
evolution for nonequilibrium systems is given by

dx

dt
= L

∂E

∂x
+ M

∂S

∂x
, (1)

where x is the set of independent variables required to
describe a given nonequilibrium system, E and S represent
respectively the total energy and entropy as functions of
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the independent variables x, and L and M denote the an-
tisymmetric Poisson matrix and the positive semidefinite
(symmetric) friction matrix, respectively. Note that both L
and M can also depend on the independent variables x so
that the fundamental time evolution equation (1) could be
highly nonlinear. We also point out that ∂/∂x in (1) simply
implies the partial derivative although it typically denotes
the functional derivative when x is a function/field. More-
over, (1) is supplemented by two degeneracy conditions:

L
∂S

∂x
= 0 , (2)

and

M
∂E

∂x
= 0 . (3)

Eqs. (2)–(3) indicate the conservation of the entropy by
the reversible dynamics (i.e., the L contribution) and the
conservation of the total energy in a closed system by the
irreversible dynamics (i.e., the M contribution), respec-
tively. Note that “reversible” and “irreversible” dynamics
(in thermodynamics) are simply the names of the two fun-
damental contributions to the time evolution equation (1),
and should not be confused with similar terms in other
subjects. The rank of M has the interpretation of the
number of dissipative processes taking place in the system.
(See more discussions on the formulation of the GENERIC

framework in Grmela and Öttinger (1997); Öttinger (2005,

2018); Öttinger and Grmela (1997).)

The usefulness and maturity of the GENERIC frame-
work have been illustrated in a very large number of
successful applications in a wide range of areas in Ap-
pendix E of Öttinger (2005) (see also a most recent review

of Öttinger (2017) and references therein). In particular,
despite its simple form, we believe that the irreversible
dynamics in (1) is the most general form of meaningful ir-
reversible equations in nonequilibrium thermodynamics—
it is a belief based on both a very large variety of successful
examples and statistical mechanics, so that it can be called
knowledge (in particular, as this belief is widely accepted
in the nonequilibrium thermodynamics community).

In order to further demonstrate the general properties of
L and M , the Poisson bracket is given by

{A,B} =
∂A
∂x
· L∂B

∂x
, (4)

where A and B are sufficiently regular (and real-valued)
functions of the independent variables x, and the dissipa-
tive bracket is given by

[A,B] =
∂A
∂x
·M ∂B

∂x
. (5)

With the help of the two brackets and the chain rule, the
time evolution equation of an arbitrary function A can
then be written as

dA
dt

= {A, E}+ [A, S] . (6)

More specifically, the Poisson bracket (4) inherits the
antisymmetry of L,

{A,B} = −{B,A} , (7)

and satisfies the Leibniz rule,

{AB, C} = A{B, C}+ B{A, C} , (8)

where C is another arbitrary sufficiently regular (and
real-valued) function of the independent variables x. In
addition, the Poisson bracket is required to satisfy the
Jacobi identity,

{A, {B, C}}+ {B, {C,A}}+ {C, {A,B}} = 0 . (9)

The dissipative bracket (5) inherits the symmetry of M ,

[A,B] = [B,A] , (10)

and also satisfies the Leibniz rule,

[AB, C] = A[B, C] + B[A, C] . (11)

The positive semidefinite nature of M leads to the non-
negativeness condition

[A,A] ≥ 0 , (12)

which implies the second law of nonequilibrium thermo-
dynamics (i.e., the entropy production rate is always non-
negative),

dS

dt
=

∂S

∂x
·M ∂S

∂x
= [S, S] ≥ 0 . (13)

This article addresses the long-standing challenge of how
to preserve the underlying structures when numerically
discretizing GENERIC systems in practice. Although in
recent years this topic has attracted increasing atten-
tion Kraus and Hirvijoki (2017); Krüger et al. (2016, 2011);
Morrison (2017); Portillo et al. (2017), to the best of our
knowledge, there are no such numerical integrators in the
literature. Unlike common approaches that are based on
exact energy conservation, we propose in this article a
framework to construct structure-preserving integrators
for dissipative systems, i.e., GENERIC integrators (also
known as metriplectic integrators Grmela (1984); Kauf-
man (1984); Morrison (1984, 1986) in the mathematical lit-
erature), based on splitting the reversible and irreversible
dynamics. The topic of structure-preserving integrators
for GENERIC/metriplectic systems is the counterpart and
generalization of the theory of symplectic integrators for
Hamiltonian systems.

1.1 Full GENERIC integrators

We recall the definition of (full) GENERIC integrators

given in Öttinger (2018). Analogous to the definition of
symplectic integrators for Hamiltonian dynamics Moser
(1968), a mapping, x0 7→ xh, is said to be a full GENERIC
integrator if it corresponds to a continuous time evolution
of a modified GENERIC system

dx

dt
= L

∂Ẽh

∂x
+ M̃h

∂S

∂x
, (14)

where Ẽh and M̃h represent the modified energy and
friction matrix associated with the integrator, respectively,
satisfying a modified degeneracy condition:

M̃h
∂Ẽh

∂x
= 0 . (15)

That is, given initial conditions x(0) = x0, the analytical
solution of (14), x(t), should agree with what we obtain
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from the integrator at time h, i.e., x(h) = xh. A full
GENERIC integrator x 7→ xh, which can be thought
of as the formal solution of (14), possesses the following
structure:

xh = exp

{
h

(
L
∂Ẽh

∂x
+ M̃h

∂S

∂x

)
· ∂

∂x

}
x . (16)

Similar to symplectic integrators for Hamiltonian dynam-
ics, the modified energy, Ẽh, is strictly conserved by a
GENERIC integrator. The physical energy E is expected
to remain close to the modified energy, Ẽh, even for long
integration periods. Additionally, the modified friction
matrix, M̃h, should not introduce any additional dissipa-
tive processes not present in the original matrix M . We
point out that full GENERIC integrators may only be
available in special cases, for instance, a full GENERIC
integrator in the case of a damped harmonic oscillator,
where analytical solutions of the GENERIC system can be
obtained, was proposed and discussed in Öttinger (2018).
However, it should be noted that it is highly unlikely
that analytical solutions would be available for general
GENERIC systems. (Nevertheless, it might be eventually
possible to recognise a full GENERIC integrator without
exact solutions.) Therefore, in what follows we introduce
a framework to construct “split” GENERIC integrators.

1.2 Split GENERIC integrators

Inspired by recent developments on splitting methods Ab-
dulle et al. (2015); Leimkuhler et al. (2016); Leimkuhler
and Matthews (2015, 2013a,b); Leimkuhler and Shang
(2015, 2016a,b); Shang et al. (2017), we consider to split
the reversible and irreversible parts of the GENERIC sys-
tem in such a way that the reversible dynamics, which is
often degenerate but possesses a Hamiltonian form on its
symplectic leaves, can be integrated by using a symplectic
method (e.g., Verlet) with degenerate variables being left
unchanged, while the irreversible part (gradient flow) can
be solved in such a way that as many structure elements
as possible can be preserved (see more references on the
challenging task of structure preservation on manifolds
in Ambrosio et al. (2008); Hairer and Lubich (2014); Jor-
dan et al. (1998); Matthes and Plazotta (2019); Matthes
and Osberger (2014); Otto (2001); Stuart and Humphries
(1996)).

An interesting question for the split GENERIC integrators
is: under what conditions do a modified energy and an
associated friction matrix, satisfying the modified degen-
eracy condition (15), exist? If they exist, how much do we
know about their respective forms? GENERIC integrators
share some common features of GENERIC systems dis-
cussed at the beginning of this article, which can also be
thought of as the requirements for GENERIC integrators.
Denoting the Jacobian matrix of the independent variables
x as Ω, we have

(i) preservation of the Poisson structure for the reversible
dynamics: Ω(x0)L(x0)ΩT(x0) = L(xh);

(ii) nonnegative entropy production rate: S(xh) ≥ S(x0);
(iii) the modified degeneracy condition (15) is satisfied

with the other (2) being unchanged;

(iv) preservation of the rank of the friction matrix:

rank(M̃h) = rank(M).

As pointed out in Quispel and McLaren (2008), it has been
proved in Zhong and Marsden (1988) that there cannot ex-
ist an integrator for “non-integrable” Hamiltonian dynam-
ics that preserves both the symplectic (Poisson) structure
and the energy (Hamiltonian). In fact, it has been dis-
cussed in Simo et al. (1992) that the preservation of either
property has its advantages and disadvantages. While pre-
vious attempts to construct structure-preserving integra-
tors for dissipative systems have been relying on the exact
conservation of energy (i.e., the energy-conserving discrete
gradient methods Cohen and Hairer (2011); McLachlan
et al. (1999); Quispel and Turner (1996)), there is no
obvious reason why integrators that preserve the Poisson
structure for the reversible dynamics should be ignored.
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Controller synthesis for an arbitrary length
of mass chain
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Abstract: The disturbance suppression problem for a chain of masses is discussed. The
particular focus is placed on synthesising mechanical networks between masses that effectively
suppress the disturbance propagation along the chain of any length. This study is motivated by
the problem of controlling multi-agent systems where agents may leave or join the network. That
is, the size of the network may change over time. In this work, we give the explicit expressions
of scalar transfer functions from disturbance to an intermass displacement as a function of the
number of masses, N , and discuss the methodology of synthesising a controller such that the
H∞ norm is upper bounded by a prescribed value for any N .

Keywords: Mechanical networks, linear systems, decentralized systems, large-scale systems

1. INTRODUCTION

Decentralised control of multi-agent systems has been an
active area of research with various applications such
as consensus problems and flocking/formation/coverage
control of mobile robots.

In such applications, one interesting problem is ensuring
the ability to control a system behaviour even if the size
of the system changes over time. This allows agents to
join or leave the network in a flexible manner. In practice,
however, such criteria are rarely satisfied since several
key performance measures relating to global behaviours of
multi-agent systems simply do not scale. Notable examples
include the string instability (e.g., Seiler et al. (2004); Feng
et al. (2019)) or network incoherence phenomena (e.g.,
Bamieh et al. (2012)). Nevertheless, it appears that av-
erage or local performance measures, for example those in
Carli et al. (2009); Pates (2015); Bamieh et al. (2012); Ya-
mamoto and Smith (2016); Pates and Yamamoto (2018),
can be guaranteed independent of the size of the network.

Our focus here is to analyse how the agents react locally
against disturbances in a multi-agent system modelled by
a mass chain depicted in Fig. 1. Bidirectional control of
a platoon of vehicles is one such example. In particular,
we explicitly express the transfer function from the dis-
turbance to a given intermass displacement as a function
of the number of masses and propose a method to design
a suitable controller that works well for any length of the
chain.

This note is a resubmission of the work (Yamamoto (2021))
that has been accepted for presentation at the MTNS 2020
in Cambridge, but which was cancelled due to COVID-19.

General notation

The set of natural, real and complex numbers is denoted
by N, R, C, respectively. Rm×n is the set of m-by-n real
matrices. C+ is the closed right-half plane. H∞ is the

Y m Y m Y m

x0

. . .

x1 x2 xN

w1 w2 wN

Fig. 1. Chain of N masses m connected by a mechanical
admittance Y and connected to a movable point x0.
The disturbance on the ith mass is denoted as wi.

standard Hardy space on the right-half plane and ‖·‖∞
represents the H∞-norm. The (i, j) entry of a matrix A

is denoted by [A]i,j . f̂ denotes the Laplace transform of a
signal f.

2. CHAIN MODEL

We consider a chain of N identical point masses m con-
nected by identical mechanical networks (Fig. 1). Each
mechanical network provides an equal and opposite force
on each mass and is assumed here to have negligible mass.
It is also assumed that each mechanical network consists
of a spring component in parallel with other components,
i.e., the admittance takes the following form: Y (s) = k/s+
Yc(s) where k is the spring coefficient. Here we assume
that k is a given parameter and our task is to find a con-
troller represented by an admittance Yc(s) that effectively
supresses the disturbance in the chain.

The system is excited by a movable point x0(t) and exter-
nal force acting on the ith mass, wi(t), i ∈ {1, 2, . . . , N}.
The displacement of the ith mass is then denoted by xi(t).
Assuming that the system is initially at rest, the equations
of motion in the Laplace transformed domain are given as

ms2x̂ = sY (s)LN x̂+ sY (s)φ1x̂0 + ŵ,

and hence,

x̂ = (h(s)I − LN )−1φ1x̂0 +
1

sY (s)
(h(s)I − LN )−1ŵ (1)
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where I is the identity matrix,

h(s) := ms/Y (s), x̂ := [x̂1, . . . , x̂N ]>,

ŵ := [ŵ1, . . . , ŵN ]>, φ1 := [1, 0, . . . , 0]> ∈ RN ,

LN :=



−2 1 0 · · · 0

1 −2
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . 1

0 · · · 0 1 −1


∈ RN×N .

The intermass displacement ei := xi−1 − xi is given by

ê = Gex0
(s)x̂0 +Gew(s)ŵ (2)

where ê = [ê1, . . . , êN ]> and

Gex0
(s) =

(
I +M(h(s)I − LN )−1

)
φ1

=: [Ge1x0
(s), . . . , GeNx0

(s)]>,

Gew(s) =
1

sY (s)
M(h(s)I − LN )−1,

M =



−1 0 · · · · · · 0

1 −1
. . .

...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 1 −1


∈ RN×N .

To obtain an explicit inverse of the tridiagonal matrix
hI − LN , let us introduce the characteristic polynomials
of Li ∈ Ri×i in the variable h:

di := det(hI − Li),

and also the characteristic polynomials of Li ∈ Ri×i in h:

di := det(hI − Li)

where

Li :=



−2 1 0 · · · 0

1 −2
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . 1

0 · · · 0 1 −2


.

Then d1 = h + 1 and d1 = h + 2. Using the Laplace
expansion, we find that

di(h) = (h+ 2)di−1(h)− di−2(h),

di(h) = (h+ 2)di−1(h)− di−2(h), for i = 1, . . . , N
(3)

with initial conditions

d−1 = 1, d0 = 1, d−1 = 0, d0 = 1.

The inverse of hI − LN is then given as[
(hI − LN )−1

]
i,j

= dj−1(h)dN−i(h) for i ≥ j, (4)

which can be easily derived using the theorem provided by
Usmani (1994). Note that hI−LN is symmetric and hence[
(hI − LN )−1

]
i,j

=
[
(hI − LN )−1

]
j,i
.

The transfer functions Geix0(s) and Gew(s) in (2) are then
written as (suppressing the dependence on h(s) in di and
di)

Geix0(s) =
dN−i+1 − dN−i

dN
, (5)

Geiwj (s) =


1

sY (s)

1

dN
dj−1(dN−i+1 − dN−i) for i > j,

1

sY (s)

1

dN
dN−j(di−2 − di−1) for i ≤ j,

(6)

where Geiwj
(s) is the (i, j)-entry of Gew(s).

We say that the mass chain of Fig. 1 is stable if all poles in
the transfer functions Gex0(s) and Geiwj (s) have negative
real parts. The following proposition gives a sufficient
condition for the stability:

Proposition 1. The mass chain of Fig. 1 is stable if
h(s) ∈ C \ (−4, 0) and sY (s) 6= 0 for all s ∈ C+.

Proof. See (Yamamoto, 2021, Theorem 4). �

3. INTERMASS DISPLACEMENTS

We now define the following functions:

F
(i,j)
N (h) :=


1

dN
dj−1(dN−i+1 − dN−i) for i > j,

1

dN
dN−j(di−2 − di−1) for i ≤ j.

(7)

Then, for h(s) = ms/Y (s),

Ge1x0
(s) = 1 + F

(1,1)
N (h(s)) , (8)

Geix0(s) = F
(i,1)
N (h(s)) for i > 1, (9)

Geiwj (s) =
1

sY (s)
F

(i,j)
N (h(s)) . (10)

Treating h as an independent variable, the following the-

orem gives these closed-form expressions of F
(i,j)
N (h) :

Theorem 2. Let ζ ∈ C be the root of

z2 − (h+ 2)z + 1 = 0

satisfying |ζ| ≤ 1. For any i, j ∈ N,

F
(i,j)
N (h) =



ζi−j(1− ζ2j)
(
1− ζ2(N−i+1)

)
(1 + ζ) (1 + ζ2N+1)

for i > j,

−
ζj−i+1(1 + ζ2i−1)

(
1 + ζ2(N−j)+1

)
(1 + ζ) (1 + ζ2N+1)

for i ≤ j.
(11)

suppressing the dependence on h in ζ.

Proof. See (Yamamoto, 2021, Theorem 4). �

3.1 Limits of the Sequences

It may be observed that the sequence
(
F

(i,j)
N

)
in (11) is

convergent for a fixed ζ ∈ C with |ζ| < 1 or ζ = ±1, and
divergent otherwise. The following theorem provides the
condition for the convergence and its limit.

Theorem 3. The sequence
(
F

(i,j)
N

)
converges pointwise to

a limit µ(i,j) for each h ∈ C \ (−4, 0) but fails to converge
otherwise. In particular,
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Fig. 2. Contour plot of max
i,j
|µ(i,j)(h)| with 1 ≤ i, j ≤ 100.

The thick curve represents a contour of level 0 dB.

(1) For h ∈ C \ [−4, 0),

µ(i,j)(h) =


ζi−j(1− ζ2j)

(1 + ζ)
for i > j,

−ζ
j−i+1(1 + ζ2i−1)

(1 + ζ)
for i ≤ j.

(12)

(2) For h = −4,

µ(i,j)(h) =

{
(−1)j−12j for i > j,

(−1)i−j−2(2i− 1) for i ≤ j. (13)

Proof. See (Yamamoto, 2021, Theorem 5). �

Hence, if h(s) ∈ C \ (−4, 0) for all s ∈ C+,

sup
ω

lim
N→∞

|F (i,j)
N (h(jω))| = sup

ω
|µ(i,j)(h(jω))|. (14)

Furthermore,

sup
N
‖F (i,j)

N (h(s))‖∞ ≥ sup
ω
|µ(i,j)(h(jω))|. (15)

That is, supω |µ(i,j)(h(jω))| gives a lower bound of the

supremum of H∞-norm of F
(i,j)
N (h(s)) over N. A contour

plot of the maximum magnitude of µ(i,j)(h) over (i, j) with
0 ≤ i, j ≤ 100 in the h-plane is shown in Fig. 2. The thick
black curve represents maxi,j |µ(i,j)(h)| = 0 (dB). The

figure shows that the asymptotic value of F
(i,j)
N (h(jω)) as

N →∞ is directly related to the proximity of h(jω) to the
point −4. From Theorem 3 we see that the magnitude of
|µ(i,j)(−4)| grows as we increase the indices and we must
avoid this region.

3.2 Disturbance Amplification

In this subsection, we provide a graphical mean to design
the interconnection admittance Y (s).

Figure 3 shows a contour plot of max1≤N≤200 |1 + F
(1,1)
N (h)|

with the thick black curve representing a contour of level
0 dB. If the Nyquist diagram of h(s) lies inside a contour
of level γ, ‖Ge1x0(s)‖∞ ≤ γ for any N ∈ N. (Note that

Ge1x0
(s) = 1 + F

(1,1)
N (h(s)) from (8).) To demonstrate

this, the Nyquist diagram of h(s) = s2/(2s + 1) is also
plotted in Fig. 3. Since it lies inside the curve of level 0
dB, ‖Ge1x0(s)‖∞ ≤ 1 for any N ∈ N, as we can see in

Fig. 3. Nyquist diagram of h(s) = s2/(2s+1) (red, dashed)

and contour plot of max1≤N≤200 |1+F
(1,1)
N |. The thick

black curve represents a contour of level 0 dB.
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Fig. 4. The magnitude plot of Ge1x0
(jω) with h(s) =

s2/(2s+ 1) for N = 1, 20, 50, 100.

Fig. 5. Nyquist diagram of h(s) = s2/(2s+1) (red, dashed)

and contour plot of max1≤N≤200 |hF (1,N)
N |. The thick

black curve represents a contour of level 0 dB.

Fig. 4 for N = 1, 20, 50, 100. Geix0(s) can be evaluated
similarly.

To evaluate Geiwj
(s) in a similar way, we first rewrite (10)

as

Geiwj (s) =
1

sY (s)
F

(i,j)
N (h(s)) =

1

ms2
h(s)F

(i,j)
N (h(s))

(16)

and draw a contour plot of maxN |hF (i,j)
N (h)|. Figure. 5

shows this contour map for (i, j) = (1, N) again with the
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Fig. 6. The magnitude plot of Ge1wN
(jω) with h(s) =

s2/(2s+ 1) for N = 1, 20, 50, 100.

Nyquist diagram of h(s) = s2/(2s + 1). Although Fig. 5
looks similar to Fig. 3, since 1/ms2 is multiplied as in
(16), the same interconnection h(s) = s2/(2s + 1) will
result in large frequency response of Ge1wN

(s) in the low
frequency range. Indeed, this is observed in Fig. 6. To
remedy this, we need to shape the locus of h(jω) at ω ≈ 0
suitably. However, because of the existence of the parallel
spring, the limiting behaviour of h(jω) as ω → 0 cannot
be drastically changed using passive interconnection, i.e.,
positive-real Y (s). Whether the use of an active controller
may lead to an improvement is yet to be explored.

4. CONCLUSION

Convenient representations of transfer functions from dis-
turbance to a given intermass displacement in a homo-
geneous mass chain have been derived to evaluate how
the system dynamics change as the number of masses N
changes. The limiting behaviour of these transfer functions
as N tends to infinity has been studied. Moreover, the
possibility of designing a controller that achieves a pre-
specified disturbance attenuation level independent of N
has been explored. Such a size-independent performance
can be achieved using passive interconnection when only
the movable point displacement is present as the distur-
bance. However, it is not the case when the disturbance
on each mass is present. The use of active controllers is
considered as a future work.
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Abstract: Motivated by reachability questions in coherently controlled open quantum systems
coupled to a thermal bath, as well as recent progress in the field of thermo-/vector-majorization
we generalize classical majorization from unital quantum channels to channels with an arbitrary
fixed point D of full rank. Such channels preserve some Gibbs-state and thus play an important
role in the resource theory of quantum thermodynamics, in particular in thermo-majorization.

Based on this we investigate D-majorization on matrices in terms of its topological and
order properties, such as existence of unique maximal and minimal elements, etc. Moreover we
characterize D-majorization in the qubit case via the trace norm and elaborate on why this is
a challenging task when going beyond two dimensions.

Keywords: Open quantum systems, quantum control theory, reachable sets, quantum
thermodynamics, majorization

1. INTRODUCTION

Studying reachable sets of control systems is necessary to
ensure well-posedness of a large class of (optimal) control
tasks. In Dirr et al. (2019) toy models on the standard
simplex of probability vectors were studied in order to
answer reachability questions of controlled n-level systems
coupled to a bath of finite temperature such that the
coupling can be switched on and off. If the closed (unitary)
part of the system can be fully controlled and the bath
has temperature T = 0 then every quantum state 1 can
be reached approximately from every initial state (that is,
perhaps not exactly but at least with arbitrary precision).
For T = ∞ an upper bound can be obtained by classical
majorization techniques. For more details on this we refer
to the first part of this talk: Exploring the Limits of Open
Quantum Dynamics I: Motivation, First Results from Toy
Models to Applications, as well as Section 3.3.

An obvious follow-up question is what can be said—if one
can say anything at all—about the reachable set of such
a system for 0 < T < ∞? Even within the simplified
diagonal toy model (cf. Part I) this is a rather difficult
task and it seems that the notion necessary to handle such
problems requires a more general form of majorization:

? The project was supported i.a. by Excellence Network of Bavaria
under ExQM and is part of Munich Quantum Valley of the Bavarian
State Government with funds from Hightech Agenda Bayern Plus.
1 A quantum state is a positive semi-definite matrix of unit trace.

2. ON THE ROAD TO D-MAJORIZATION

2.1 d-Majorization on Vectors

Majorization relative to a strictly positive vector d ∈ Rn++,
as introduced by Veinott (1971) and in the quantum
regime by Ruch et al. (1978) is defined as follows: a vector
y is said to d-majorize x, denoted by x ≺d y, if there exists
a d-stochastic matrix A ∈ Rn×n with x = Ay. Recall that
A ∈ Rn×n is d-stochastic if all its entries are non-negative
and Ad = d, e>A = e> with e := (1, . . . , 1)>. A variety
of characterizations of ≺d and d-stochastic matrices can
be found in the work of Joe (1990) or vom Ende and
Dirr (2022). The most useful for numerical purposes is
the following: x ≺d y if and only if

∑n
j=1 xj =

∑n
j=1 yj

and ‖dix− yid‖1 ≤ ‖diy− yid‖1 for all i = 1, . . . , n, where
‖z‖1 =

∑n
j=1 |zj | is the usual vector-1-norm.

Classical majorization ≺, that is, x ≺ y for x, y ∈ Rn,
is originally defined via ordering x, y decreasingly and

then comparing partial sums:
∑k
j=1 x

·
j ≤

∑k
j=1 y

·
j for all

k = 1, . . . , n−1 as well as
∑n
j=1 xj =

∑n
j=1 yj . For more on

vector majorization we refer to Ch. 1 & 2 of Marshall et al.
(2011). In particular it is well-known that setting d = e in
the definition of d-majorization recovers ≺ —which also
shows that the definition via partial sums cannot extend
beyond e>: as soon as two entries in d ∈ Rn++ differ one
loses permutation invariance and reordering the vectors
x, y makes a conceptual difference.

The above 1-norm characterization allows to rewrite the d-
majorization polytope Md(y) := {x ∈ Rn |x ≺d y} for any
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y ∈ Rn as the set of solutions to a nicely structured vector
inequality Mx ≤ b. Here M ∈ R2n×n is independent
of y, d while the entries of b = b(y, d) ∈ R2n depend
explicitly (and continuously) on y and d – for details
cf. Thm. 10 in vom Ende and Dirr (2022). This description
of d-majorization enables a proof of the existence of an
extremal point z ∈ Md(y) such that Md(y) ⊆ Me(z),
i.e. there exists some z ≺d y which classically majorizes
all x ∈ Md(y). Due to this result d-majorization is suited
to analyse reachable sets in the toy model (cf. Part I of
this talk)—yet as soon as one considers n-level quantum
systems one needs a similar concept on (density) matrices.

2.2 Generalizing d-Majorization to Matrices

Classical majorization on the level of hermitian matrices
uses their “eigenvalue vector” λ(·) arranged in any order
with multiplicities counted. For A,B ∈ Cn×n hermitian,
A is said to be majorized by B if λ(A) ≺ λ(B), cf. Ando
(1989). The most näıve approach to define D-majorization
on matrices (with 2 D = diag(d) for some d ∈ Rn++) would
be to replace ≺ by ≺d and leave the rest as it is. However
such a definition is unfeasible because it depends on the
arrangement of the eigenvalues in λ, due to the lack of
permutation invariance of d (unless d = e).

The most natural way out of this dilemma is to remember
that classical majorization on matrices can be equivalently
characterised via linear maps which are completely posi-
tive and trace-preserving (cptp) and which have the iden-
tity matrix id = diag(1, . . . , 1) as a fixed point. Therefore
it seems utmost reasonable to generalize d-majorization on
square matrices as follows:

Definition 1. Given n ∈ N and A,B ∈ Cn×n as well as
a positive definite matrix D ∈ Cn×n we say that A is
D-majorized by B (denoted by A ≺D B) if there exists a
cptp map Φ such that Φ(B) = A and Φ(D) = D.

Such a definition is also justified by the following: given
real vectors x, y and a positive vector d ∈ Rn++ one can
show that diag(x) ≺diag(d) diag(y) if and only if x ≺d y. In
other words the diagonal case reduces to d-majorization
on vectors as expected.

Be aware that one could define matrix D-majorization via
positive (instead of completely positive) trace-preserving
maps, and that this would make a conceptual difference –
unless D 6= id (Ando, 1989, Thm. 7.1), more on this at the
end of Section 3.1. However, we definedD-majorization via
cptp maps because this class has a richer theory behind
it and because it is the more natural choice if one comes
from quantum information and control.

3. PROPERTIES OF D-MAJORIZATION

Using cptp maps in Definition 1 also allows for a phys-
ical interpretation of D-majorization: Given some n-level
system (with Hamiltonian H0 ∈ Cn×n) coupled to a bath
of some temperature T > 0, the Gibbs state (that is, the
thermodynamic equilibrium state) of the system is given
by

2 Here and henceforth diag(x) ∈ Cn×n is the matrix which has
x ∈ Cn on its diagonal and the remaining entries are 0.

ρH0,T
Gibbs :=

exp(−H0/T )

tr(exp(−H0/T ))
> 0 .

Because every positive definite n × n matrix of unit
trace is the Gibbs state of some n-level system this links
D-majorization to Gibbs-preserving cptp maps. Moreover
in the high-temperature limit the above definition reduces

to limT→∞ ρH0,T
Gibbs = 1

n diag(1, . . . , 1) , which connects clas-
sical majorization to baths of infinite temperature.

3.1 Characterizations of D-Majorization

An important observation is that for any A,B ∈ Cn×n
and D > 0 one has A ≺D B if and only if UAU∗ ≺UDU∗

UBU∗ for all unitary matrices U ∈ Cn×n. Thus we can
w.l.o.g. assume that D is diagonal in the standard basis.

Now if one deals with qubits, i.e. two-dimensional systems,
then D-majorization can be characterized as follows.

Proposition 2. Let d ∈ R2
++, D = diag(d) and A,B ∈ C2×2

hermitian be given. The following are equivalent.

(i) A ≺D B

(ii) There exists a positive trace-preserving map Φ with
Φ(D) = D and Φ(B) = A.

(iii) ‖A − tD‖1 ≤ ‖B − tD‖1 for all t ∈ R with

‖ · ‖1 = tr
√

(·)∗(·) being the trace norm.

(iv) tr(A) = tr(B) and ‖A − biD‖1 ≤ ‖B − biD‖1 for
i = 1, 2 as well as for the generalized fidelity∥∥√A− b1D√b2D −A∥∥1 ≥ ∥∥√B − b1D√b2D −B∥∥1
Here σ(D−1/2BD−1/2) = {b1, b2} (b1 ≤ b2) with σ(·)
being the spectrum.

Of course property (iv) is the closest to the 1-norm char-
acterization of ≺d from Sec. 2.1 and, moreover, the key
to easily check (e.g., on a computer) if some hermitian
matrix D-majorizes another. Unfortunately none of these
characterizations generalize to dimensions larger than 2
because the counterexample to the Alberti-Uhlmann theo-
rem in higher dimensions, given by Heinosaari et al. (2012),
pertains to our problem: Consider the hermitian matrices

A =

(
2 1 0
1 2 −i
0 i 2

)
B =

(
2 1 0
1 2 i
0 −i 2

)
D =

(
2 1 0
1 2 1
0 1 2

)
. (1)

Then σ(D) = {2, 2 +
√

2, 2 −
√

2} so D > 0. Obviously,
B> = A and D> = D so because the transposition map
is well-known to be linear, positivity- and trace-preserving
one has ‖A − tD‖1 = ‖(B − tD)>‖1 = ‖B − tD‖1 for all
t ∈ R. But there exists no cptp map, i.e. no Φ ∈ Q(n) such
that Φ(B) = A and Φ(D) = D as shown in (Heinosaari
et al., 2012, Proposition 6). For now finding simple-to-
verify conditions for ≺D beyond two dimensions remains
an open problem.

3.2 Order Properties of D-Majorization

As is readily verified ≺d is a preorder but it is not a partial
order—the same holds for ≺D and the counterexample
which shows that ≺d is not a partial order transfers to the
matrix case. Moreover, now, one can characterize minimal
and maximal elements in this preorder.
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Theorem 3. Let d ∈ Rn++ be given and let

hd := {X ∈ Cn×n |X hermitian and tr(X) = e>d}
h+d := {X ∈ Cn×n |X ≥ 0 and tr(X) = e>d}

be the trace hyperplane induced by d within the hermitian
and the positive semi-definite matrices, respectively. The
following statements hold.

(i) D = diag(d) is the unique minimal element in hd with
respect to ≺D.

(ii) (e>d)eke
>
k is maximal in h+d with respect to ≺D where

k is chosen such that dk is minimal in d. It is the
unique maximal element in h+d with respect to ≺D if
and only if dk is the unique minimal element of d.

From a physical point of view this is precisely what one
expects: from the state with the largest energy one can
generate every other state (in an equilibrium-preserving
manner) and there is no other state with this property.

3.3 Reachable Sets & D-Majorization

Let us finally connect our notion of D-majorization to the
reachability questions we touched upon in the introduc-
tion. Markovian quantum control systems are generally
modelled via a controlled gksl-equation [Gorini et al.
(1976); Lindblad (1976)]:

ρ̇(t) = −i
[
H0 +

∑m

j=1
uj(t)Hj , ρ(t)

]
− γ(t)Γ(ρ(t)) (2)

with initial state ρ(0) = ρ0 ∈ Cn×n, control Hamiltonians
H1, . . . ,Hm, and control amplitudes u1, . . . , um, γ. Here
Γ(ρ) :=

∑
j∈I(

1
2 (V ∗j Vjρ + ρV ∗j Vj) − VjρV ∗j ) describes the

dissipative effect on the system by means of the matrices
(Vj)j∈I ⊂ Cn×n which in principle can be arbitrary.

Now given any n-level system described by a hermi-
tian matrix HS ∈ Cn×n with spectral decomposition∑n
j=1Ej |gj〉〈gj |, E1 ≤ . . . ≤ En and a bath of some

temperature T > 0 the coupling of the system to said bath
can be modelled by (2) if the generators of the dissipation
(Vj)j∈I are chosen to be the modified ladder operators

σd+ =:
∑n−1

j=1

√
j(n− j)e−Ej/T

e−Ej/T + e−Ej+1/T
|gj〉〈gj+1|

σd− =:
∑n−1

j=1

√
j(n− j)e−Ej+1/T

e−Ej/T + e−Ej+1/T
|gj+1〉〈gj | .

(3)

In order to analyze the reachable set of (2) with H0 = HS

and dissipation generators σd+, σ
d
− we (as in Section 2.1)

define the set of all matrices which are D-majorized by
some state ρ or a collection of states S ⊆ Cn×n:

MD : P(Cn×n)→ P(Cn×n)

S 7→
⋃

ρ∈S
{X ∈ Cn×n |X ≺D ρ}

with P being the power set and MD(X) := MD({X}) for
all X ∈ Cn×n. This operator is used to upper bound the
reachable set of the “toy model” Λd (cf. Part I) 3 and is
expected to do so in the matrix case, as well. Important
properties of MD are:

3 More precisely we proved that reachΛd
(x0) ⊆ (Me ◦Md)(x0) for

any initial state x0 and d ∈ Rn
++ corresponding to a spin system,

i.e. d = (αj−1)nj=1 for some α ∈ (0, 1).

(i) MD(X) is convex for all X ∈ Cn×n.

(ii) If P ⊂ Cn×n is compact, then MD(P ) is compact.

(iii) If P is a collection of quantum states then MD(P ) is
star-shaped with respect to the Gibbs state D

tr(D) .

(iv) When restricting MD to the compact subsets of
Cn×n then MD is non-expansive (so in particular
continuous) with respect to the Hausdorff metric.

The last property formulates that for a system in the state
ρ which is coupled to a bath of temperature T ≥ 0, “small”
changes in ρ cannot change the set of D-majorized states
“too much”.

Coming back to footnote 3, the crucial step in the proof is
to identify an extreme point of Md(x0) which is maximal
w.r.t. classical majorization. While an extreme point anal-
ysis of the set of matrices MD(ρ0) is way more difficult—as
the convex polytope techniques from the vector case break
down—the idea of a maximal extreme point might be
equally useful in analyzing general open quantum control
problems in the future.

4. CONNECTION TO THERMO-MAJORIZATION

Over the last few years, sparked by Brandão et al.
(2015); Horodecki and Oppenheim (2013) and others
[Gour et al. (2015); Lostaglio et al. (2018); Sagawa et al.
(2021)] thermo-majorization has been a widely discussed
and studied topic in quantum physics and in particular
quantum thermodynamics. In the abelian case thermo-
majorization, on a mathematical level, is described by
vector d-majorization which begs the question of how to
define thermo-majorization for general quantum states.

Indeed Faist et al. (2015) have shown that it makes
a conceptual difference whether one defines thermo-
majorization on non-diagonal states via Gibbs-preserving
maps (i.e. cptp maps having the Gibbs state D > 0 as
a fixed point, cf. Definition 1) or if one restricts to the
smaller class of thermal operations. The latter, given some
Hamiltonian of the system HS and a fixed bath tempera-
ture T ≥ 0, are defined as follows, cf. also Lostaglio (2019):

Definition 4. A linear map Φ : Cn×n → Cn×n is a thermal
operation w.r.t. HS if there exist m ∈ N, HR ∈ Cm×m
hermitian, and U ∈ Cmn×mn unitary such that

[U,HS ⊗ idR + idS ⊗HR] = 0 (4)

and
Φ(ρ) = trR(U(ρ⊗ ρHR,T

Gibbs)U
∗)

for all ρ ∈ Cn×n (or equivalently for all quantum states
ρ). We denote the collection of all thermal operations by
TO(HS , T ).

Thermal operations are the free operations of the resource
theory of quantum thermodynamics as those encompass
the dynamics which preserve the Gibbs-state and which
satisfy (4) (conserve the global energy, that is, the energy
of the larger system HSR = HS ⊗ idR + idS ⊗HR). One
readily verifies that TO(HS , T ) forms a path-connected
semigroup with identity and – although TO(HS , T ) in
general is not closed – its closure even is convex and
compact.

In the vector case the state transitions possible with
thermal operations are the same as with general Gibbs-
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preserving maps described by d-stochastic matrices. How-
ever in the operator case there is a discrepancy between the
two coming from the fact that there exist Gibbs-preserving
maps which generate coherent superpositions of energy
levels, whereas no thermal operation is capable of doing
such a thing. In fact for all HS ∈ Cn×n, T ≥ 0 one finds
the inclusions

TO(HS , T ) ⊆ EnTO(HS , T ) ( Qe−HS/T (n) (5)

where Qe−HS/T (n) is the collection of all cptp maps which

have e−HS/T – and thus ρHS ,T
Gibbs – as a fixed point, and

EnTO(HS , T ) := {Φ ∈ Qe−HS/T (n) : [Φ, adHS
] = 0}

are the enhanced thermal operations (also called “covari-
ant Gibbs-preserving maps”). This is an important obser-
vation as the covariance property [Φ, adHS

] = 0 forces that
the diagonal and the off-diagonal action of any channel
are strictly separated, assuming HS has non-degenerate
spectrum. Note that this insight is of importance to us
because the solution to the uncontrolled master equation
(2) (i.e. H1 = . . . = Hm = 0, γ ≡ 1) with dissipation
generators σd+, σ

d
− from (3) lives in EnTO at all times.

Be aware that in (5), if the thermal operations are replaced
by their closure then the first set inclusion is an equality if
n = 2 and becomes a strict inclusion for n ≥ 3 as shown by
Ding et al. (2021). Even worse this discrepancy between
TO and EnTO remains when looking at the action of the
respective sets on certain states; more precisely, there exist
quantum states ρ, ω ∈ C3×3 and an enhanced thermal
operation Φ such that Φ(ρ) = ω but no element in TO
or its closure can map ρ to ω.

This observation is particularly important for the field
of quantum control as there one usually wonders which
state transitions can be realized under a given control
scenario. Thus beyond qubits it makes a conceptional
difference which of the sets in (5) one uses to model a
given thermodynamic control problem. Moreover, quan-
tum control problems usually come in the framework of
quantum-dynamical semigroups so one in addition needs
to identify those quantum maps from a certain set (usu-
ally carrying the structure of a semigroup) which can be
written as the solution to a controlled master equation
of Gorini-Kossakowski-Sudarshan-Lindblad type [Gorini
et al. (1976); Lindblad (1976)], that is, to identify those
channels which are time-dependent Markovian. In other
words from a Lie-theoretical perspective one wants to de-
termine the Lie wedge of the respective semigroup in order
to characterize the desired quantum channels as solutions
of suitable (bi)linear master equations.

The question of Markovian state transitions in thermody-
namics has only been tackled recently by Lostaglio and
Korzekwa (2021) for the set of enhanced thermal opera-
tions and the simpler case of diagonal states – recall that in
this realm the problem reduces to vector-d majorization.
They were able to fully characterize which state transitions
are possible under Markovian thermal processes (i.e. maps
from EnTO which are solutions of a time-dependent gksl-
equation) in the classical realm, and they even gave algo-
rithms to check for a Markovian path from a given initial
to a given final state. While incredibly important, their
work of course is but a first step in this direction and the
ultimate goal will be to extend their results and concepts
to general thermodynamic quantum control systems.
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Abstract: Which quantum states can be reached by controlling open Markovian n-level
quantum systems? Here, we address reachable sets of coherently controllable quantum systems
with switchable coupling to a thermal bath of temperature T . — The core problem reduces to
a toy model of studying points in the standard simplex allowing for two types of controls: (i)
permutations within the simplex, (ii) contractions by a dissipative semigroup [Dirr et al. (2019)].
By illustration, we put the problem into context and show how toy-model solutions pertain to
the reachable set of the original controlled Markovian quantum system. Beyond the case T = 0
(amplitude damping) we present new results for 0 < T <∞ using methods of d-majorisation.

Keywords: Quantum Control Theory; Markovian Quantum Dynamics; Reachable Sets;
Quantum Thermodynamics; Majorisation, d-Majorisation.

1. INTRODUCTION

Here we show how reachability problems of (finite dimen-
sional) Markovian open quantum systems may reduce to
hybrid control systems on the standard simplex of Rn.
Consider a bilinear control system [Jurdjevic (1997); El-
liott (2009)]

ẋ(t) = −(A+
∑

j
uj(t)Bj)x(t) , x(0) = x0 , (1)

where as usual A denotes an uncontrolled drift, while
the control terms consist of (piecewise constant) control
amplitudes uj(t) ∈ R and control operators Bj . The state
x(t) may be thought of as (vectorized) density operator.
The corresponding system Lie algebra, which provides the
crucial tool for analysing controllability and accessibility
questions, reads k := ⟨A,Bj | j = 0, 1, . . . ,m⟩Lie.
For ‘closed’ quantum systems, i.e. systems which do not
interact with their environment, the matrices A and Bj in-
volved are skew-hermitian and thus it is known [Jurdjevic
and Sussmann (1972); Brockett (1972); Jurdjevic (1997)]
that the reachable set of (1) is given by the orbit of the
initial state under the action of the dynamical systems
group K := ⟨exp k⟩, provided K is a closed and thus
compact subgroup of the unitary group.
More generally, for ‘open’ systems undergoing Markovian
dissipation, the reachable set takes the form of a (Lie)
semigroup orbit, see, e.g., [Dirr et al. (2009)]. – Here we
⋆ The project was supported i.a. by Excellence Network of Bavaria
under ExQM and is part of Munich Quantum Valley of the Bavarian
State Government with funds from Hightech Agenda Bayern Plus.

address a scenario with coherent controls {Bj}mj=1 and a
bang-bang switchable dissipator B0 as motivated by recent
experimental progress [Chen et al. (2014); Wong et al.
(2019)] and described in Bergholm et al. (2016).

Specification of the Toy Model — These assumptions and
the ‘thermal’ condition (vide infra) that B0 leaves the set
of diagonal matrices invariant simplify the reachability
analysis of (1) to the core problem of diagonal states
represented by probability vectors of the standard simplex

∆n−1 :=
{
x ∈ Rn+ |

∑n
i=1xi = 1

}
, (2)

i.e. x(t) = diag(x(t)). In order to make the main features
match the quantum dynamical context, let us fix the
following stipulations for the toy model: Its controls shall
amount to permutation matrices acting instantaneously on
the entries of x(t) and a continuous-time one-parameter
semigroup (e−tB0)t∈R+ of stochastic maps with a unique
fixed point d in ∆n−1. As (e−tB0)t∈R+ results from the
restriction of the bang-bang switchable dissipator B0, with
abuse of notation we will denote its infinitesimal generator
again by B0. The ‘equilibrium state’ d is defined in (8) by
system parameters and the absolute temperature T ≥ 0 of
an external bath.
These stipulations suggest the following hybrid/impulsive
scenario to define the ‘toy model’ Λ on ∆n−1 ⊂ Rn by
ẋ(t) = −B0x(t) , x(tk) = πkxk , t ∈ [tk, tk+1) ,

x0 ∈ ∆n−1 , xk+1 = e−(tk+1−tk)B0x(tk) , k ≥ 0 .
(3)

Furthermore, 0 =: t0 ≤ t1 ≤ t2 ≤ . . . is an arbitrary
switching sequence and πk are arbitrary permutation ma-
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trices. Both the switching points and the permutation
matrices are regarded as controls for (3). For simplicity,
we assume that the switching points do not accumulate
on finite intervals. For more details on hybrid/impulsive
control systems see, e.g., [Lakshmikantham et al. (1989);
Alur et al. (1996)]. The reachable sets of (3)

reachΛ(x0) := {x(t) |x(·) is a solution of (3), t ≥ 0}
allow for the characterisation reachΛ(x0) = SΛx0 , where
SΛ ⊂ GL(n,R) is the contraction semigroup generated by
(e−tB0)t∈R+

and the set of all permutation matrices π.

2. STATE-OF-THE-ART

Henceforth, let Γ stand for a gksl-operator acting on
complex n × n matrices, see (5). Then A in (1) can
be regarded as its matrix representation (e.g., in the
Kronecker formalism (Horn and Johnson, 1991, Chap. 4)).
If Γ leaves the set of diagonal matrices invariant—as in
enhanced thermal operations [Lostaglio (2019)] we use
as controllable resource—its reduction to the action on
diagonal states represented as vectors is denoted B0 since
it originates from switchable noise. — In this picture, our
recent results [Dirr et al. (2019)] can be sketched as follows.

Take the n-level toy model Λ := Λ0 with controls by
permutations and an infinitesimal generator B0 which
results from coupling to a bath of temperature T = 0
(i.e. Γ := Γ0 given by single V := σ− see (10) with θ= π

2 ).
Theorem 1. The closure of the reachable set of any initial
vector x0 ∈ ∆n−1 under the dynamics of Λ0 exhausts the
full standard simplex, i.e. reachΛ0

(x0) = ∆n−1 .

Moving from a single n-level system (qudit) with x0 ∈
∆n−1 to a tensor product of m such n-level systems gives
x0 ∈ ∆nm−1 ⊂ (Rn)⊗m. If the bath of temperature T = 0
is coupled to just one (say the last) of the m qudits, Γ0

is generated by V := Inm−1 ⊗ σ− and one obtains the
following generalization.
Theorem 2. The statement of Theorem 1 holds analo-
gously for all m-qudit states x0 ∈ ∆nm−1.

In a first round to generalise the findings from the extreme
cases T = 0 or T = ∞ to finite temperatures 0 < T < ∞
we found the following: Let Γ := Γd be the dissipator
for temperature T > 0 with Γd comprising the generators
σd− and σd+ of (9) and (10) as detailed in Sec. 4 and let
d ∈ ∆n−1 be its unique attractive fixed point given by (8).
For equidistant eigenvalues in H0 (see Sec. 5) one gets:
Theorem 3. Again allowing for permutations as controls
interleaved with dissipation resulting from B0(Γd) one
obtains for the reachable set of the thermal state d under
the dynamics of the respective toy model Λ := Λd the
inclusion reachΛd

(d) ⊆ {x ∈ ∆n−1 |x ≺ d} , where ‘≺’
refers to the standard concept and notation of majorisation
[Marshall et al. (2011); Ando (1989)].

Our recent toy-model results in Dirr et al. (2019) thus
extend (the diagonal part of) the qubit picture previously
analysed by Bergholm et al. (2016) to n-level systems,
and even more generally to systems of m qudits. Here
we explore further generalisations to finite temperatures
0 < T < ∞, e.g., by allowing for general initial states x0
instead of the thermal state d in Theorem 3.

3. RELATION TO CONTROLLED QUANTUM
MARKOVIAN DYNAMICS

Let D(n) denote all n×n density matrices (positive semi-
definite with trace 1) and L(Cn×n) be the space of all
linear operators acting on complex n× n-matrices. Then

ρ̇(t) = −Γ(ρ(t)) , ρ(0) = ρ0 ∈ D(n) (4)
with Γ ∈ L(Cn×n) of the gksl-form [Gorini et al. (1976);
Lindblad (1976)] with Vk ∈ Cn×n chosen arbitrary in

Γ(ρ) :=
∑

k

(
1
2

(
V †
k Vkρ+ ρV †

k Vk
)
− VkρV

†
k

)
(5)

ensures the time evolution ρ(t) = e−tΓρ0 solving (4) re-
mains in D(n) for all t ∈ R+. So (e−tΓ)t∈R+

is a completely
positive trace-preserving (i.e. cptp) linear contraction
semigroup leaving D(n) invariant.
The overarching goal is to characterise control systems Σ
extending (4) by coherent controls (generated by hermitian
Hj and (piece-wise constant) uj(t) ∈ R) and by making
dissipation bang-bang switchable in the sense

ρ̇(t) = −i
[
H0 +

m∑
j=1

uj(t)Hj , ρ(t)
]
− γ(t)Γ(ρ(t)) (6)

with γ(t) ∈ {0, 1}. A general analytic description of
reachable sets of (6) is challenging in particular in higher
dimensional cases except for a few scenarios which allow
explicit characterizations: (a) In the unital case Γ(In) = 0,
one has [Ando (1989); Yuan (2010)]

reachΣ(ρ0) ⊆ {ρ ∈ D(n) | ρ ≺ ρ0} . (7)
(b) If in addition Γ is generated by a single normal V , one
gets (up to closure) equality in (7) provided the unitary
part of (6) is controllable and the switching function γ(t)
gives extra control (cf. [Bergholm et al. (2016)] for finite
and [vom Ende et al. (2019)] for infinite dimensions).
Under the controllability scenario given in (b) plus the
invariance of diagonal states imposed by enhanced ther-
mal operations [Lostaglio (2019)], the closure of the uni-
tary orbit of diag

(
reachΛ(x0)

)
sits in the closure of

reachΣ(U diag(x0)U
†). Settings beyond thermal relaxation

are pursued with similar techniques, e.g., by Rooney et al.
(2018) at the expense of arriving at conditions that are
hard to verify for higher-dimensional systems.

4. THERMAL STATES AND d-MAJORISATION

By unitary controllability choose H0 diagonal (with in-
creasing eigenvalues ϵk), so the equilibrium state resulting
from coupling to a bath of temperature T is the Gibbs
vector

d =
(e−ϵk/T )nk=1∑n
k=1 e

−ϵk/T
∈ ∆n−1 (8)

with ρGibbs = diag(d) ∈ D(n). As shown in Dirr et al.
(2019), diag(d) can then be obtained as the unique fixed
point of (4) when choosing the two Lindblad terms as

V1 = σd+ :=
∑n−1

k=1

√
k(n− k) cos(θk) Ek,k+1 (9)

V2 = σd− :=
∑n−1

k=1

√
k(n− k) sin(θk) Ek+1,k , (10)

where the Ei,j denote standard Weyl matrices and
θk := arccos

√
1 + dk+1/dk ∈ (0, π2 ). (11)
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Since diagonal states remain diagonal under enhanced
thermal operations as with Γ := Γd and V1, V2 above,
the connection to the toy model Λd is obvious. — What
one can do with thermal resources is determined via
d-majorisation (a.k.a. thermomajorisation in Horodecki
and Oppenheim (2013) or Brandão et al. (2015)) as
generalisation of common majorisation [Marshall et al.
(2011)] to majorisation with respect to a strictly positve
vector d [Veinott (1971)] representing the ‘Gibbs state’:
Definition 1. For x, y ∈ Rn and d ∈ ∆n−1, the vector x
is d-majorised by y, written x ≺d y, if there is a column
stochastic matrix A ∈ Rn×n (all elements non-negative,
columns summing up to one) with Ad = d and Ay = x.

Note that d-majorisation reproduces conventional majori-
sation with A being doubly stochastic if d is the maximally
mixed state d = 1

ne and e is the vector with all entries 1.
For numerics a convenient equivalent characterisation
[vom Ende and Dirr (2022)] is : x ≺d y if and only if
(a) Σixi = Σiyi and (12)
(b) ∥di x− yi d∥1 ≤ ∥di y − yi d∥1 ∀ i ∈ {1, . . . , n}, (13)

where ∥z∥1 :=
∑n
i=1 |zi| is the vector 1-norm.

5. OVERVIEW OF NEW RESULTS

To motivate the study of the d-majorisation polytope
(and its operator lift) in Part II, we illustrate new results
for n-level systems by dynamics of three-level systems
(qutrits) in the toy-model scenario with its population
flips and its dynamics by coupling the system to a bath
of various temperatures 0 ≤ T ≤ ∞ entailing unique
equilibrium states d given by (8). Henceforth we invoke
Assumption A: H0 has equidistant energy eigenvalues.
Moreover define the set of vectors in the simplex ∆n−1

that are d-majorised by the initial state x0 as
∆n−1
d (x0) := {z ∈ ∆n−1 | z ≺d x0} , (14)

while those conventionally majorised by x0 shall be de-
noted as ∆n−1

e (x0). For the toy-model dynamics one gets:

(1) e−tB0x0 ∈ ∆n−1
d (x0) for all t ≥ 0;

(2) ∆n−1
d (x0) is a convex subset within the simplex∆n−1,

which means the dissipative time evolution of any x0
remains within the convex set of states d-majorised by x0.
Beyond pure dissipative evolution the toy model also
allows for permutations π, so one naturally obtains

reachΛd
(x0) = reachΛd

(π(x0)) ∀π ∈ Sn . (15)
Clearly, the simplex region ∆n−1

d (x0) intertwines overall
permutations π (in the symmetric group Sn) in the sense

π∆n−1
d (x0) = ∆n−1

π(d)(π(x0)) . (16)
For the maximally mixed state (d ≃ e) this boils down to
permutation invariance under conventional majorisation

π∆n−1
e (x0) = ∆n−1

e (π(x0)) = ∆n−1
e (x0) . (17)

Eq. (16) entails as a first new result:
Theorem 4. (generalising Thm. 3). Assuming A those ini-
tial states x̃0 conventionally majorised by d (i.e. x̃0 ∈
∆n−1
e (d)) remain within ∆n−1

e (d) under the dynamics of
the toy model Λd. In other words reachΛd

(x̃0) ⊆ ∆n−1
e (d).

(a)

(b)

(c)

Fig. 1. (a) Evolutions of initial state x0 = (0.9, 0.07, 0.03)⊤

and its permutations π(x0) under Γd with V1, V2 of (9)
and θ = π

6 of (11) drive into fixed point d;
(b) includes all permutations of trajectories starting
with permutations of d, i.e. x0 = π(d); red region
shows the states d-majorised by x0, blue regions are
their permutations; the convex hull over red and blue
regions embraces entire reachable set reachΛd

(x0); in-
set gives the vector field to the dynamics Λd.
(c) For θ = π

5 in (11) as in the generic case, the ex-
treme point z = (0.65, 0.30, 0.05)

⊤ in red differs from
x0 = (0.55, 0.40, 0.05)

⊤ and d = (0.55, 0.29, 0.16)
⊤.

In the next step, writing x↓0 for ordering the entries of x0
in descending magnitude (so that x↓0 and d—with d being
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the thermal state hence sorted by descending entries—are
in the same Weyl chamber), one arrives at:
Theorem 5. Under assumption A the reachable set of
the dynamics Λd is included in the set of all states
conventionally majorised by ∆n−1

d (x↓0) in the formal sense
reachΛd

(x0) ⊆ ∆n−1
e

(
∆n−1
d (x↓0)

)
. (18)

The proof uses two facts: (i) There exists a (unique)
extreme point z of the d-majorisation polytope ∆n−1

d (x↓0)

which conventionally majorises all points in ∆n−1
d (x↓0),

i.e. ∆n−1
d (x↓0) ⊂ ∆n−1

e (z). (ii) The vector field driving the
dynamics of Λd points inside the conventional majorisation
polytope ∆n−1

e (z) at each of its n! extreme points π(z)
with π ∈ Sn (cf. Fig. 1(c)). Once knowing how to construct
z (see Part-II and [vom Ende and Dirr (2022)] for more
detail), the results may be summarised and significantly
simplified from d-majorisation to conventional majorisa-
tion via the extremal state z:
Theorem 6. Invoke assumption A. Then for the toy model
Λd with Gibbs state d the reachable set is included in the
following convex hull

reachΛd
(x0) ⊆ conv

{
π(z) |π ∈ Sn

}
= ∆n−1

e (z) . (19)

Fig. 1 illustrates these findings in three-level systems again
assuming equidistant separation of energy eigenvalues for
the underlying drift term H0.
Conclusion and Outlook — For any initial state x0, the
time evolutions of probability vectors x(t) following the
underlying toy model Λd (thermal relaxation interdis-
persed with level-permutation) remain within the convex
hull of extreme points resulting from the set of all states
d-majorised by the initial state x0. Yet, upon moving
from the toy model to the full quantum dynamics of
thermal relaxation interdispersed with unitary coherent
evolution, the scenario gets more involved. In accompa-
nying studies presented at this conference we pursue dif-
ferent approaches to handle the general case: (i) lifting
d-majorisation to the operator level which leads to the
concept of D-majorisation and (ii) projecting the full dy-
namics along the unitary orbits to the standard simplex
by symmetric Lie algebra techniques giving an enhanced
toy model for the reduced control system on ∆n−1.
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1. INTRODUCTION

Model reduction is the method of designing a lower-
dimensional copy of the original high-dimensional model
of the dynamical system which mimics the dominant be-
haviour of the actual system with considerable accuracy.
Balanced truncation is one of the well known and effective
model reduction techniques which was first proposed in
Moore (1981). A thorough exposition of different model
reduction techniques for linear systems can be found in
Antoulas (2005). Recently an extension of generlized bal-
anced truncation has been put forward in Borja et al.
(2022) for continuous-time LTI systems which can provide
tighter priori error bounds and brings on the flexibility
of preserving structures such as a port-Hamiltonian struc-
ture, an electrical network structure, etc. For nonlinear
systems balancing has been introduced for the first time
in Scherpen (1993). Afterwards there have been several
developments in different types of balancing, minimality
considerations, association with nonliear Hankel operator
in e.g. Verriest and Gray (2000), Fujimoto and Scher-
pen (2010), Gray and Verriest (2006), Lall et al. (2002).
Recently a new approach of nonlinear model reduction
has been introduced in Kawano and Scherpen (2017a)
which is called differential balanced truncation. Differen-
tial balancing is basically performing balancing in the
contraction framework where a nonlinear system and its
variational dynamics have been considered together, which
is being called a prolonged system. Generalized differential
balancing is computationally tractable way of nonlinear
balancing for systems with constant input vector-fields and
linear output vectors. Generalized differential balanced
truncation has been proposed in Kawano and Scherpen
(2015) to find a reduced order model for this kind of
nonlinear systems with a prior error bound and stability
guarantees. In this work we have extended this idea to
extended differential balancing which can provide a less
conservative prior error bound in comparison with gener-
alized differential balanced truncation. Apart from that it
brings on possibility of preserving certain structures and
properties of the nonlinear dynamical system.

On the other hand, structure-preserving model reduction
methods for port-Hamiltonian systems have been studied

via various approaches, e.g. via balanced truncation Lope-
zlena et al. (2003),Fujimoto (2008),Kawano and Scherpen
(2018), moment matching Polyuga and van der Schaft
(2010), Ionescu and Astolfi (2013b), Ionescu and Astolfi
(2013a), Kalman decomposition Scherpen and van der
Schaft (2008), and Projection-based approach such as
Proper Orthogonal Decomposition Chaturantabut et al.
(2016). In Lopezlena et al. (2003), balanced truncation is
performed via supply and storage functions and the port-
Hamiltonian structure is preserved under specific condi-
tions. In Fujimoto (2008), it has been shown that the pH
structure is preserved if the Hamiltonian is either identical
to so-called weighted controllability function or weighted
observability function. In this work, we extend the notion
of traditional nonlinear balancing to generalized nonlinear
balancing. We define generalized controllability and ob-
servability functions which are solutions of two nonlinear
partial-differential inequalities and can provide bounds to
the traditional controllability and observability functions
respectively. Moreover, these generalized functions bring
forth the flexibility to propose a balanced truncation ap-
proach while preserving the port-Hamiltonian structure in
the reduced-order model as well.

2. GENERALIZED DIFFERENTIAL GRAMIANS

Consider the nonlinear system

Σ :

{
ẋ = f(x) +Bu,

y = Cx,
(1)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp. The function
f : Rn → Rn is of class C1, B ∈ Rn×m and C ∈ Rp×n.
Let ϕ(t, x0, u) denote the solution x(t) of the system (1) at
time t ∈ R+ starting from x0 ∈ Rn with input u(t) ∈ Rm.

Now, we consider the variational system associated with
the nonlinear system as

dΣ :

δẋ =
∂f(x)

∂x
δx+Bδu,

δy = Cδx,
(2)

where δx(t) ∈ Rn, δu(t) ∈ Rm and δy(t) ∈ Rp denote
the state, input and output of the variational system
respectively. The system (1) together with (2) is called
the prolonged system.
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The generalized differential controllability and generalized
differential observability Gramian are defined as the solu-
tions P ≻ 0, Q ≻ 0 of the following differential Lyapunov
inequalities

∂f(x)

∂x
P + P

∂⊤f(x)

∂x
+BB⊤ ⪯ −ϵP, (3)

Q
∂f(x)

∂x
+

∂⊤f(x)

∂x
Q+ C⊤C ⪯ −ϵQ, (4)

for all x ∈ Rn, ϵ > 0. This is slightly different from
the original definition of generalized differential Grami-
ans Kawano and Scherpen (2017b),Kawano and Scherpen
(2015) where ϵ = 0 is assumed. However, ϵ > 0 guarantees
stability properties of the system (1) based on the general-
ized differential Gramians Kawano (2022). If the solutions
exist then the function L̄P(δx0) := 1

2δx
⊤
0 P

−1δx0 is said
to be the generalized differential controllabilty function
and the function L̄O(δx0) :=

1
2δx

⊤
0 Qδx0 is said to be the

generalized differential observability function. The solu-
tions of (3) and (4) are not unique and consequently the
generalized differential functions are not unique. However,
they provide bounds to differential energy functions as
follows L̄C(δx0) ≤ LC(δx0, x0), L̄O(δx0) ≥ LO(δx0, x0),
where x0 ∈ Rn, δx0 ∈ Rn, LC(δx0, x0) and LO(δx0, x0) are
the differential controllability function and the differential
observability function respectively as defined in Kawano
and Scherpen (2015).

3. EXTENDED DIFFERENTIAL GRAMIANS

Extended Gramians have been defined for discrete-time
LTI systems in Sandberg (2010) and for continuous-time
systems in Scherpen and Fujimoto (2018),Borja et al.
(2022). In this section, we use a similar notion to define
extended differential Gramians for nonlinear systems. Be-
fore proceeding any further, we have the following standing
assumption.

Assumption 1. The Jacobian ∂f(x)/∂x is globally bounded

with respect to its argument i.e. | ∂fi∂xj
| < ∞, 1 ≤ i ≤ n,

1 ≤ j ≤ n for all x ∈ Rn.

Consider solutions of (3) and (4) are positive definite. Now,
we can define P̌ := P−1, where P̌ is positive definite. For
the ease of readability we define

Xo(x) := −Q
∂f(x)

∂x
− ∂⊤f(x)

∂x
Q− C⊤C − ϵQ,

Xc(x) := −P̌
∂f(x)

∂x
− ∂⊤f(x)

∂x
P̌ − P̌BB⊤P̌ − ϵP̌ .

(5)

Now, let us consider the following two time-varying LMIs, Xo(x) Q− (αIn +
∂⊤f

∂x
)S

Q− S⊤(αIn +
∂f

∂x
) (S + S⊤)

 ⪰ 0 (6)

and
−P̌

∂f

∂x
− ∂⊤f

∂x
P̌ − ϵP̌ −P̌ + (βIn +

∂⊤f

∂x
)T −2P̌B

P̌ − T⊤(βIn +
∂f

∂x
) T + T⊤ 2T⊤B

−2B⊤P̌ 2B⊤T 4Im

 ⪰ 0 (7)

where Xo(x) is as defined in (5) and α, β > 0. We then
call the solutions (Q,S, α) of (6) and (P̌ , T, β) of (7) as
extended differential observability Gramian and inverse of

the extended differential controllability Gramian for the
variational system (2) respectively.

Theorem 1. Assume Xo(x) ≻ 0 for all x ∈ Rn, then the
inequality (4) has a solution Q for all x ∈ Rn if and only if
(6) has a solution (Q,S, α) with Q ≻ 0, S = S⊤ ≻ 0 and
α large enough for all x ∈ Rn.

Theorem 2. Assume Xc(x) ≻ 0 for all x ∈ Rn, then the
inequality (3) has a solution P for all x ∈ Rn if and only if
(7) has a solution (P̌ , T, β) with P̌ ≻ 0, T = T⊤ ≻ 0 and
β large enough for all x ∈ Rn.

Now, the nonlinear system (1) is said to be extended
differentially balanced if there exists an invertible matrix
We ∈ Rn×n which transforms the system (1) and (2) into
a realization where

W⊤
e T−1We = W−1

e SW−⊤
e = ΛST , (8)

such that
ΛST = diag{σ1, σ2, · · · , σn},

where σ1 ≥ σ2 ≥ · · · ≥ σn > 0.

Remark 1. It can be shown in a similar fashion as for
linear systems that there always exists an invertible matrix
We ∈ Rn×n which satisfies (8). Moreover, it can be
observed that T−1S = W−1

e Λ2
STWe which implies that

σi(i = 1, 2, · · · , n) are the singular values of T−1S. We
call them the extended differential singular values of
the prolonged nonlinear system.

4. MODEL REDUCTION AND THE ERROR BOUND

One of the essential features of balanced truncation for
linear systems is that it can provide an apriori error bound
for the reduction. For linear systems this error bound can
be computed through frequency domain analysis of the
actual and reduced order models. On the other hand a
prior bound could not be provided for balanced truncation
of nonlinear systems. However, as generalized differential
balancing and extended differential balancing exploit the
variational dynamics of the nonlinear system (which is
essentially the linearization along the trajectories of the
nonlinear system), an apriori error bound can be rendered
for the reduced order nonlinear model.

To proceed further let us consider the nonlinear system
and the associated variational dynamics in balanced coor-
dinates as

Σ̄ :

{
˙̄x = f̄(x̄) + B̄u

y = C̄x̄
(9)

dΣ̄ :

δ ˙̄x =
∂f̄(x̄)

∂x̄
δx̄+ B̄δu

δy = C̄δx̄
(10)

where,

f̄(x̄) := W−1
e f(Wex̄),

∂f̄(x̄)

∂x̄
:= W−1

e

∂f(x)

∂x
We,

B̄ := W−1
e B, C̄ := CWe, x = Wex̄.

(11)

We can split x̄ as

x̄ =

[
x̄1

x̄2

]
,

where x̄1 ∈ Rr is the part of the state to be kept and
x̄2 ∈ Rn−r, is the part of the state to be truncated while
performing the model reduction. Similarly, we can split
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f̄(x̄) =

[
f̄1(x̄1, x̄2)
f̄2(x̄1, x̄2)

]
, B̄ =

[
B̄1

B̄2

]
, C̄ =

[
C̄1 C̄2

]
(12)

with f̄1 : Rn → Rr, f̄2 : Rn → Rn−r, B̄1 ∈ Rr×m,
B̄2 ∈ R(n−r)×m, C̄1 ∈ Rp×r and C̄2 ∈ Rp×(n−r).

Hence, the truncation of the state component x̄2 leads to
the the reduced-order model as follows

Σ̂ :

{
˙̂x = f̂(x̂) + B̂u

ŷ = Ĉx̂,
(13)

where,

x̂ := x̄1, f̂ := f̄1, B̂ := B̄1, Ĉ := C̄1.

Assumption 2. The drift vector field of the nonlinear sys-
tem is an odd function of the state vector, i.e. f(x) =
−f(−x).

This assumption is used to provide an apriori error bound
for the reduced order model. Though the assumption
seems to be quite conservative in nature, odd nonlinear
functions for the drift occur in several physical systems
e.g. mass-spring-damper systems with nonlinear springs, a
nonlinear pendulum, mechanical systems with frictional,
backlash nonlinearities, electronic circuits with nonlinear
resistors, etc. In addition to that standard static nonlin-
earities such saturations can be modeled by a hyperbolic
tangent function which is odd in nature as well.

Theorem 3. Suppose the system (1) is balanced with the
extended differential observability Gramian (Q,S, α) and
inverse of extended differential controllability Gramian
(P̌ , T, β) as defined in (6) and (7) respectively. If the
system is in the balanced coordinates, i.e.

S = T−1 = ΛST = diag{σ1, σ2, · · · , σn},
and the drift vector field is odd in nature, then the output
of the actual model and output of reduced order model
satisfy

||y − ŷ||2 ≤ 2
n∑

j=r+1

σj ||u||2

where σr ≫ σr+1 and α = β.

5. GENERALIZED ENERGY FUNCTIONS FOR
NONLINEAR SYSTEMS

In this section we introduce the generalized observability
and generalized controllability functions. These general-
ized energy functions provide bounds to the original energy
functions as is evident from the following proposition.

Theorem 4. If L̃o(x) > 0 is a smooth solution of

∂L̃o(x)

∂x
(x)f(x) +

1

2
h⊤(x)h(x) ≤ 0, L̃o(0) = 0, (14)

and if the system is locally stable in a neighbourhood of the
origin, then L̃o(x0) is called the generalized observability
function which satisfies

Lo(x0) ≤ L̃o(x0). (15)

Moreover, if L̃c(x) > 0 is a smooth solution of

∂L̃c(x)

∂x
f(x)+

1

2

∂L̃c(x)

∂x
g(x)g⊤(x)

∂⊤L̃c(x)

∂x
≤ 0, L̃c(0) = 0,

(16)

and if there exists an anti-stabilizing input u(x) such that

x(−∞) = 0 and x(0) = x0, then then L̃c(x0) is called the
generalized controllability function which satisfies

Lc(x0) ≥ L̃c(x0). (17)

6. GENERALIZED BALANCING FOR NONLINEAR
PORT-HAMILTONIAN SYSTEMS

Consider an input-state-output nonlinear port-Hamiltonian
system

ΣPH :


ẋ = (J(x)−R(x))

∂H(x)

∂x
+ g(x)u,

y = g⊤(x)
∂H(x)

∂x
,

(18)

where t ∈ R, the state x(t) ∈ Rn, the input u(t) ∈
Rm, and the output y(t) ∈ Rm. J(x) = −J⊤(x) and
R(x) = R⊤(x) ⪰ 0 represent the interconnection and
dissipation matrix respectively. H : Rn → R, H(x) ≻ 0
is the Hamiltonian function which represents the total
energy of the system. To simplify the notation, we define
F (x) := (J(x) − R(x)). Without loss of generality let

us consider that ∂H
∂x (0) = 0 and ∂2H

∂x2 (0) ≻ 0. We also
consider that the system is asymptotically stable on a
neighbourhood of the origin.

Assumption 3. For a nonlinear port-Hamiltonian system
(18), assume the following holds

• 0 is an asymptotically stable equilibrium of F (x)∂H(x)
∂x

on some neighbourhood W of 0.
• The linearized system at the origin is asymptotically

stable.
• (14) and (16) have smooth solutions on W.

• ∂2L̃c

∂x2 (0) ≻ 0, ∂2L̃o

∂x2 (0) ≻ 0 and ∂2H
∂x2 (0) ≻ 0.

Assumption 4. There exists L̃c(x), L̃o(x) > 0 such that

the eigenvalues of ∂2L̃c

∂x2 (0)−1 ∂2L̃o

∂x2 (0) as well as the eigen-

values of ∂2H
∂x2 (0)

−1 ∂2L̃c

∂x2 (0)−1 ∂2L̃o

∂x2 (0) are distinct.

Theorem 5. Suppose that Assumption 3 and 4 hold. Then
there exists a transformation Φ̄ : Rn → Rn on a neigh-
bourhood U of the origin such that x = Φ̄(z̄), Φ̄(0) = 0
which converts the system into a new realization where
the following holds

L̃c(Φ̄(z̄)) =
1

2

n∑
i=1

z̄2i
σ̄i(z̄i)

,

L̃o(Φ̄(z̄)) =
1

2

n∑
i=1

z̄2i σ̄i(z̄i),

H(Φ̄(z̄)) =
1

2

n∑
i=1

z2i
η̄i(z̄i)

σ̄i(z̄i)
,

(19)

where σ̄1(z̄1) ≥ σ̄2(z̄2) ≥ · · · ≥ σ̄n(z̄n) and η̄1(z̄1) ≥
η̄2(z̄2) ≥ · · · ≥ η̄n(z̄n) are smooth functions.

Now, we can split z̄ into two parts as z̄ = [z̄⊤r , z̄⊤t ]⊤, where
z̄r = [z̄1, z̄2, · · · , z̄k]⊤ ∈ Rn and z̄t = [z̄k+1, z̄k+2, · · · , z̄n]⊤ ∈
Rn−k. Similarly, we can split
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Jz̄ =

[
Jz̄,rr(z̄r, z̄t) Jz̄,rt(z̄r, z̄t)
−J⊤

z̄,rt(z̄r, z̄t) Jz̄,tt(z̄r, z̄t)

]
,

Rz̄ =

[
Rz̄,rr(z̄r, z̄t) Rz̄,rt(z̄r, z̄t)
Rz̄,rt(z̄r, z̄t) Rz̄,tt(z̄r, z̄t)

]
,

gz̄ =

[
gz̄,r(z̄r, z̄t)
gz̄,t(z̄r, z̄t)

]
,

where Jz̄,rr(z̄r, z̄t) and Jz̄,tt(z̄r, z̄t) are skew-symmetric,
Rz̄,rr(z̄r, z̄t) and Rz̄,tt(z̄r, z̄t) are symmetric and positive
semidefinite. In addition to that we can split the Hamilto-
nian of the system in two parts as follows

Hz̄(z̄) = Hz̄(z̄r, 0) +Hz̄(0, z̄t). (20)

Theorem 6. Consider a continuous-time nonlinear input-
state-output port-Hamiltonian system ΣPH as in (18).
Suppose that Assumption 3 and Assumption 4 are satisfied
and we obtain a balanced realization of the system as
in (19). Then a reduced-order model of (18) can be
represented as follows

˙̄zr = (Jz̄,rr(z̄r, 0)−Rz̄,rr(z̄r, 0))
∂Hz̄(z̄r, 0)

∂z̄r
+ gz̄,r(z̄r, 0)u,

yr = g⊤z̄,r(z̄r, 0)
∂Hz̄(z̄r, 0)

∂z̄r
,

(21)

which is also a port-Hamiltonian system with the Hamilto-
nian Hz̄(z̄r, 0) representing the total energy of the reduced

model. Moreover, L̃o(Φ̄(z̄r, 0)) and L̃c(Φ̄(z̄r, 0)) satisfy
(14) and (16) respectively for the reduced order system.

We will include the corresponding proofs, further details
and the application of the theoretical results via an illus-
trative example in the presentation.
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Abstract
Convex Algebraic Geometry lives at the intersection of Convex Geometry, Optimization,
Algebraic Geometry and Real Algebra. Classically, convex geometry has been studied from
an analytical point of view. Here, we approach it using tools from real and complex algebraic
geometry, with a focus on semialgebraic convex bodies, beyond polytopes.
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What is convex algebraic geometry? By this name we refer
to the study of convex geometry from the point of view of
algebraic geometry and real algebra. This approach has
its origin in the theory of polytopes, connected to linear
algebra and combinatorics. From there, it is natural to
go beyond linear algebra and enter the world of nonlinear
algebra (Michałek and Sturmfels (2021)).
In this setting we study the family of semialgebraic convex
bodies. They are convex, compact, non-empty, semialge-
braic (see Bochnak et al. (2013)) subsets of some Euclidean
space. These objects were first studied in the context of
semidefinite and polynomial optimization; in particular,
we refer to Lasserre (2009) and Blekherman et al. (2013).
Convex geometry is classically interested in analytical and
functional aspects of convex bodies, and these behave well
with respect to semialgebraicity. Indeed, given a convex
body K ⊂ Rn, the following are equivalent:
• K is semialgebraic;
• the support function of K is a semialgebraic function;
• the radial function of K is a semialgebraic funciton;
• the dual/polar body of K is semialgebraic.

Moving towards algebraic geometry and convex geometry,
the object that better encodes this interaction is the al-
gebraic boundary. Let K ⊂ Rn be a convex body. Its
algebraic boundary is the smallest variety that contains
the topological boundary of K. In other words, it is the
closure of the topological boundary with respect to the
Zariski topology. In this way, we associate a variety to a
convex body. We can study such a variety using tools from
algebraic geometry in order to get information about K.
For instance, the algebraic boundary detects the semialge-
braicity of a convex body: K is semialgebraic if and only if
its algebraic boundary is an algebraic hypersurface. Poly-
topes are an example of semialgebraic convex bodies, and
their algebraic boundary is the hyperplane arrangement
defined by the facets. One hopes to extend notions and
techniques from the theory of polytopes to semialgebraic
convex bodies. Some examples are Plaumann et al. (2021),
where the authors develop a broad definition of an f-

vector, and Saunderson and Chandrasekaran (2020), that
discusses a generalization of the neighborliness for non-
polyhedral convex cones.
One can generalize polytopes in many ways, in order to
obtain classes of semialgebraic convex bodies. The fam-
ily of spectrahedra is one option (Ramana and Goldman
(1995)). They arise as the intersection of the cone of
positive semidefinite matrices with a linear subspace. Spec-
trahedra are relevant in optimization because they are
the feasible regions of semidefinite programming. Their
study is intimately related to the study of matrices and
determinantal varieties. Another direction is that of the
convex hull of a variety (Ranestad and Sturmfels (2011,
2012)). Understanding the boundary of a convex hull is
a difficult task in general. However, algebraic geometry
gives the answer in the case of convex hulls of varieties, as
stated in (Ranestad and Sturmfels, 2011, Theorem 1.1).
Such a formula describes the components of the algebraic
boundary of K, where K is the convex hull of a smooth
compact real algebraic variety in Rn.

Figure 1. The Minkowski sum of three 2-dimensional discs.

Not all convex bodies are semialgebraic. For instance,
zonoids have a non-empty intersection with the set of
semialgebraic convex bodies, but are not contained in it.
Hence, the immediate question is: which zonoids are semi-
algebraic? This lies in the context of the Zonoid Problem
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Figure 2. The intersection body of the icosahedron.
(Blaschke (1923); Bolker (1971)). This problem is very
hard to tackle (see Weil (1977, 1982)): restricting to the
subclass of semialgebraic convex bodies would potentially
make it easier. In Gesmundo and Meroni (2022), we in-
vestigate a class of semialgebraic zonoids called discotopes.
They are Minkowski sums of finitely many discs, see Figure
1. We study their algebraic boundary, in order to be able
to characterize them. The beauty and the strength of this
problem is that it can be approached from many points of
view: algebraic geometry, as in our work, measure theory,
random geometry.
Many areas of convex geometry investigate objects that are
defined starting from a convex body. A goal is to under-
stand how semialgebraic geometry behaves with respect to
these constructions.
The notion of fiber polytope was introduced by Billera and
Sturmfels (1992). It encodes a number of combinatorial
features about the polytopes involved. Notably, the same
definition works for more general convex bodies. In Mathis
and Meroni (2021), we focused on this generalization in
the following setting. Let K be a convex body in Rn+m

and π : Rn+m → V be the orthogonal projection onto a
subspace V ⊂ Rn+m of dimension n. The fiber body of K
with respect to π is the average of the fibers of K under
this projection:

ΣπK =
∫
π(K)

(
K ∩ π−1(x)

)
dx ⊂ Rm,

where this is a Minkowski integral. Among other proper-
ties, we prove that the fiber body of a zonoid, with respect
to any projection, is again a zonoid. On the other hand,
this construction does not behave well with semialgebraic-
ity: we provide an example of a semialgebraic convex body,
the dice in Figure 1, having a non-semialgebraic fiber body.
Another interesting construction that plays a central role
in geometric tomography (see Gardner (2006)) is that of
the intersection body. Let K ⊂ Rn be a full dimensional
convex body. Its intersection body is the set IK = {x ∈
Rn | ρK(x) ≥ 1}, for the radial function

ρK(x) = 1
‖x‖

vol
(
K ∩ x⊥

)
,

where x⊥ is the hyperplane orthogonal to x. In Berlow
et al. (2022) we examined the case when K is a polytope;
Figure 2 shows the intersection body of a icosahedron.
Our main contribution states that the intersection body
of a polytope is a semialgebraic set. It can be associ-
ated to a zonotope whose face structure reflects that

of the intersection body. We provide an algorithm for
computing intersection bodies of polytopes. Its implemen-
tation is available at https://mathrepo.mis.mpg.de/
intersection-bodies, together with interactive three-
dimensional models that highlight interesting features.
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Abstract: The operation of gas pipeline networks leads to problems of optimal boundary
control for systems governed by the isothermal Euler equations. In this contribution we consider
a problem of optimal Dirichlet control with an objective function of integral type that is given as
the sum of a tracking term for a desired stationary state and the corresponding control cost. We
study the well-posedness and exact controllability properties of the system. We study regular
solutions that generate a field of non-intersecting characteristic curves without rarefaction fan
that transport the information about the state. We also consider the exact controllability
properties of the system. We define a problem of optimal boundary control and show the
existence of a solution. We present an integral turnpike result and a result about the turnpike
phenomenon with interior decay for such an optimal control problem.

Keywords: gas pipeline flow, boundary control, optimal control, hyperbolic partial differential
equation, turnpike phenomenon, isothermal Euler equations

1. INTRODUCTION

We consider an optimal control problem for the operation
of gas pipelines. As a model for gas pipeline flow we
consider the isothermal Euler equations (see e.g. Banda
et al. (2006), Gugat and Herty (2022))

ρt + qx = 0,

qt +

(
p+

q2

ρ

)
x

= −1

2
θ
q |q|
ρ

.
(1)

Here ρ denotes the gas density, p the pressure q the mass
flow rate and θ is a friction parameter. At the end x = 0,
the desired pressure pd > 0 is prescribed, p(t, 0) = pd.
At the other end x = L of the pipe, the flow rate is
controlled, q(t, L) = u(t). In the optimal control problem,
state and control constraints in C1 enforce the regularity
of the generated states. In Gugat and Sokolowski (2022),
a similar optimal control problem for gas networks is
considered and the existence of an optimal control is
shown. Equation (1) is a model for the flow through a
horizontal pipeline. For a sloped pipeline, an additional
source term that is proportional to the sine of the angle of
inclination φ appears in the second equation on the right-
hand side, namely −g ρ sin(φ), where g is the gravitational
constant.

⋆ This work was funded by the DFG, TRR 154, Mathematical
Modelling, Simulation and Optimization Using the Example of Gas
Networks, projects C03 and C05, Projektnummer 239904186

2. THE SYSTEM

Let a space interval [0, L] be given; here L > 0 corresponds
to the length of the pipe. Let a classical subsonic steady
state pr(x), qr(x) (x ∈ [0, L]) with the constant control ur

and pr(0) = pd be given. Assume that for all x ∈ [0, L] we
have pr(x) > 0 and (pr, qr) ∈ (H2(0, L))2. For the case of
ideal gas where p = a2ρ with the sound speed a > 0, the
initial boundary value problem for our system is

(S)



ρ(0, x) = ρ0(x), q(0, x) = q0(x), x ∈ (0, L),

p(t, 0) = pr(0), q(t, L) = u(t), t ∈ (0, T ),

(
ρ
q

)
t

+

 0 1

a2 − q2

ρ2
2
q

ρ

(
ρ
q

)
x

=

 0

−1

2
θ
q |q|
ρ

.
Here (ρ0, q0) denotes a given initial state.

The theory of semi-global classical solutions (see Li (2010))
asserts that for any given time horizon T0 > 0 there exists
a number ε(T0) > 0 such that for all initial states (ρ0, q0)
that satisfy

max{∥ρ0 − ρr∥C1([0, L]), ∥q0 − qr∥C1([0, L])} ≤ ε(T0) (2)

and are C1-compatible with pd as a boundary value at
x = 0 and all controls with

∥u− ur∥C1([0, T0]) ≤ ε(T0) (3)
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that are C1-compatible with the initial state there exists a
classical solution of (S) on [0, T0] that satisfies the a priori
estimate

max
t∈[0,T0]

∥(p(t, ·)− pr, q(t, ·)− qr)∥(C1([0,L]))2

≤ C1(T0) max{∥δρ∥C1([0, L]), ∥δq∥C1([0, L]), ∥δu∥C1([0, T0])}

where we use the notation δρ = ρ0 − ρr, δq = q0 − qr,
δu = u− ur.

Remark 1. Note that a similar result holds with C1 re-
placed by H2, see Bastin and Coron (2016).

To guarantee that a regular solution exists, in our optimal
control problem we prescribe the control constraint

∥u− ur∥C1([0, T ]) ≤ ε0 (4)

with ε0 > 0 and the C1-compatibility conditions with the
initial state. Moreover, for T ≥ T0 we impose the state
constraint

max
t∈[0,T ]

∥(p(t, ·)− pr, q(t, ·)− qr)∥(C1([0,L]))2 ≤ C0 ε0 (5)

with C0 > 0.

The constraints (4) and (5) allow to make the time
horizon T arbitrarily large without losing the regularity
of the solutions. This is possible since for given C1-
initial data (for example at the time T0) that satisfies
∥(p(T0, ·)− pr, q(T0, ·)− qr)∥(C1([0,L]))2 ≤ C0 ε0 a classical
solution of (S) exists for a certain (possibly short) time
interval starting at T0, where a certain minimal length is
guaranteed a priori as a function of the C1-norm of the
initial data and the boundary data.

Note that due to the definition of the C1-norm, the
constraints (4), (5) can be written as pointwise constraints
for all t ∈ [0, T ], which is a form that is well-suited for
turnpike analysis. In fact, (4), (5) are equivalent to

|u(t)− ur| ≤ ε0, t ∈ [0, T ],
|ut(t)| ≤ ε0, t ∈ [0, T ],
|p(t, x)− pr(x)| ≤ C0 ε0, t ∈ [0, T ], x ∈ [0, L],
|px(t, x)− p′r(x)| ≤ C0 ε0, t ∈ [0, T ], x ∈ [0, L],
|q(t, x)− qr(x)| ≤ C0 ε0, t ∈ [0, T ], x ∈ [0, L],
|qx(t, x)− q′r(x)| ≤ C0 ε0, t ∈ [0, T ], x ∈ [0, L].

2.1 Exact controllability

System (S) is exactly controllable in a sufficiently large
time interval:

Theorem 2. Assume that T0 is sufficiently large and that

max{∥q0 − qr∥H2([0, L]), ∥ρ0 − ρr∥H2([0, L])} ≤ ε1 (6)

with ε1 chosen sufficiently small.

Then there exists a control û ∈ H2(0, T0) that generates a
solution of (S) that satisfies the end condition q(T0, x) =
qr(x), ρ(T0, x) = ρr(x), x ∈ (0, L). Moreover, there exists

a constant Ĉ > 0 such that ∥û− ur∥H2(0, T0)

≤ Ĉmax{∥ρ0 − ρr∥H2(0, L), ∥q0 − qr∥H2(0, L)} (7)

and

max
t∈[0,T0]

∥(p(t, ·)− pr, q(t, ·)− qr)∥(H2([0,L]))2

≤ C̃max{∥ρ0 − ρr∥H2(0, L), ∥q0 − qr∥H2(0, L)}.

Proof. The initial data (q0, p0) and the terminal data
(qr, pr) determine the state on two domains bounded by
characteristic curves from different families. Together with
boundary data for x = L on [0, T0], these data determine
the boundary of a set that consists of a characteristic
that starts a (t, x) = (0, 0) until it reaches x = L, a
piece of [0, T0] × {L} and a characteristic that starts at
x = L for some t < T and leads to (t, x) = (T0, 0).
The corresponding boundary data can be obtained by a
sufficiently smooth interpolation that does not increase
the H2-norm on the piece of [0, T0] × {L}. With these
boundary data, the system state is completely determined
on [0, T0]× [0, L]. The boundary trace at x = 0 yields the
desired control. The corresponding a priori inequalities for
the system where the stationary state is subtracted yield
the inequality (7). The last inequality in the theorem also
follows with the H2 a priori estimate for the state.

Remark 3. In Gugat et al. (2017), a strict H2-Lyapunov
function is introduced for Neumann boundary feedback
stabilization of the isothermal Euler equations. In Gugat
et al. (2022), the constrained exact boundary controllabil-
ity of a semilinear model for pipeline gas flow is studied
with continuous states.

3. THE OPTIMAL CONTROL PROBLEM

The optimal control problem Pdyn(T ) is to find a control
function u that is C1-compatible with (q0, ρ0) such that
the objective function

JT (u) = ∥u− ur∥2H2(0, T ) (8)

+∥p− pr∥2L2([0,T ]×[0,L]) + ∥q − qr∥2L2([0,T ]×[0,L])

is minimized and (4) and (5) hold, where (p, q) denotes
the solution of (S).

Note that this choice of the objective function mitigates
pressure fluctuations and hence is useful to reduce hydro-
gen embrittlement of steel pipelines during transients. For
a description of this effect see Hafsi et al. (2018).

A numerical method that is based upon a DAE approach
for optimal control problems in the operation of gas
netwrorks including storage reservoirs is presented in Hari
et al. (2022).

3.1 Existence of solutions

In Theorem 4 we state that for all T ≥ T0 (with T0 as in
Theorem 2), the optimal control problem Pdyn(T ) has a
solution for suitably chosen problem parameters.

Theorem 4. Assume that ε0 > 0 is chosen sufficiently
small and C0 > 0 is chosen sufficiently large, (ρ0, q0) ∈
(H2([0, L]))

2 are C1-compatible with pd as a boundary
value at x = 0 and

max{∥q0 − qr∥H2([0, L]), ∥ρ0 − ρr∥H2([0, L])} ≤ ε2 (9)

with ε2 chosen sufficiently small. Let T ≥ T0 be given.

Then a solution of the dynamic optimal control problem
Pdyn(T ) does exist.
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Proof. Since (9) holds and T ≥ T0, Theorem 2 implies
that there exists an exact control uexact ∈ H2(0, T ) that
steers the system state from the initial state (p0, q0) in
finite time T0 to (pr, qr). After this finite time, we extend
the control with the constant control value ur. For uexact,
(4) is implied by (7) if ε2 is chosen sufficiently small. By
choosing ε2 chosen sufficiently small, the a priori inequality
implies (5). In this way we obtain a feasible control uexact.
Hence the set of admissible controls is non-empty.

We consider a minimizing sequence of feasible controls.
Due to the H2-term in the objective function JT defined in
(8), this sequence is bounded with respect to the H2-norm
hence it contains a subsequence that converges strongly in
C1([0, T ]) to a limit point u∗. Due to the theory of semi-
global solutions, the strong convergence implies that also
the corresponding subsequence of generated states given
by the classical solutions of (S) converges strongly to the
solution that is generated by the limit point u∗. Moreover,
(4) and (5) hold for this limit. Hence u∗ is feasible and
due to the sequential weak lower semicontinuity of JT has
a minimal value of the objective function. Thus u∗ solves
Pdyn(T ).

3.2 An integral turnpike result

In this section we present our first turnpike result, which
is an integral turnpike result. It states that for the optimal
control and the generated state the integral in the objec-
tive function remains uniformly bounded with respect to
T for arbitrarily large T . For a survey on the turnpike
property, see the monograph Zaslavski (2019). The expo-
nential turnpike property for optimal control problems in
Hilbert spaces is studied in Trélat et al. (2018), see also
Grüne et al. (2020), Faulwasser and Kellett (2021) and the
references therein.

Theorem 5. Assume that the assumptions of Theorem 4
hold.

Then the solutions of the dynamic optimal control problem
Pdyn(T ) satisfy a turnpike inequality in the sense that
there exists a constant Cint > 0 such that for all T > 0 we
have

∥u− ur∥2H2(0, T ) (10)

+∥p− pr∥2L2([0,T ]×[0,L]) + ∥q − qr∥2L2([0,T ]×[0,L]) ≤ Cint.

Proof. The feasible control uexact ∈ H2(0, T ) from the
proof of Theorem 4 is feasible for all T ≥ T0 and JT (uexact)
is independent of T . Hence with the definition Cint =
JT0(uexact) = JT (uexact), the assertion follows.

3.3 The turnpike property with interior decay

In this section we show that the optimal state and the
optimal control satisfy a turnpike property with interior
decay as it is introduced in Gugat (2021),

Assume that the assumptions of Theorem 4 hold and that
T ≥ 2T0.

Due to (10), we have

∥u− ur∥2H2(0, T ) ≤ Cint. (11)

Moreover, due to the state constraints the state is a clas-
sical solution of (S). In particular, the Riemann invariants

satisfy integral equations along the characteristic curves,
which are well-defined for a classical solution.

Our aim is to show that also the full state is uniformly
bounded in H2 with respect to T .

For this purpose, we introduce the additional condition
that qr(x) > 0 for all x ∈ [0, L]. Moreover, now we assume
that C0ε0 is sufficiently small so that the state constraint
(5) implies that for the feasible states we have

q(t, x) > 0 (12)

for all t ∈ [0, T ], x ∈ [0, L]. This is important, since the
source term on the righ-hand side of (1) is in general only
continuously differentiable as a function of q, since at q = 0
the second derivative with respect to q does not exist. Due
to (12), we can also work with the second derivatives of
the source term with respect to the state variables.

By our assumptions, the initial state is small in H2 in the
sense of (9).

By going to Riemann invariants R = (R+, R−), system (1)
can be written in the diagonal form

Rt + Λ(R)Rx = F (R)

with the diagonal matrix Λ(R) that contains the eigen-
values of the system as functions of R and the function F
that contains the source terms. Due to (12) we can assume
that the second derivatives of F with respect to R exist
for the feasible states. For a given state R, for Rx, with
the notation Ŝ = Rx we obtain the semi-linear system

Ŝt + Λ(R) Ŝx = (∂RF (R))Ŝ − diag[(∂Rλ±(R))Ŝ]Ŝ

where ∂RF (R) denotes the functional matrix of F , λ±(R)
denotes the eigenvalues of Λ(R), ∂Rλ±(R) denotes the
corresponding gradient and diag[(∂Rλ±(R))Rx] denotes
the diagonal matrix with the corresponding entries.

For given R and Rx, for the second partial derivative Rxx

with the notation S̄ = Rxx we obtain the semi-linear
system

S̄t + Λ(R) S̄x = (∂RF (R))S̄ + [(∂2
RRF (R))Rx]Rx

−2 diag[(∂Rλ±(R)) ·Rx]S̄ − diag[(∂Rλ±(R))S̄]Rx

−diag
[
[(∂2

RRλ±(R))Rx] ·Rx

]
Rx

where [(∂2
RRF (R))Rx] = ∂x ∂R F (R) is the second deriva-

tive obtained from the chain rule and ∂2
RRλ±(R) denotes

the Hessian matrix of λ±(R).

Using appropriate Lyapunov functions, the semilinear sys-
tems allow to derive a priori bounds for the H2 norm of
the state in terms of the H2 norms of the boundary data
and the initial data.

Note that we know that the field of characteristics curves
exists and is the same for all three systems, since we
have a classical solution, For a certain fixed time T̃ the
boundedness in H2 of the state follows with the a priori
bound described above. In order to show the uniform
boundedness of the state with respect to T in H2 we
consider the problem where the roles of time and space
are exchanged and u serves as ’initial’ data. The a priori
bound for the state that is determined by the values of
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the boundary control yields the uniform boundedness of
the state with respect to T .

Let us assume this in the sequel, then without loss of
generality we have

∥p− pr∥2H2([0,T ]×[0,L]) + ∥q − qr∥2H2([0,T ]×[0,L]) ≤ Cint.(13)

Then there exists t0 ∈ [0, T/2] such that

∥p(t0, ·)− pr∥2H2(0,L) + ∥q(t0, ·)− qr∥2H2(0,L) ≤
2Cint

T
.(14)

Theorem 2 implies that starting from (ρ(t0, ·), q(t0, ·)) the
state can be controlled exactly to (pr, qr) in the time T0

with a control u ∈ H2([t0, T ]) that satisfies

max{∥û− ur∥H2(t0, T ), ∥(p− pr, q − qr)∥(H2([t0, T ]×[0,L]))2}

≤ C̃max{∥ρ0(t0, ·)− ρr∥H2(0, L), ∥q0(t0, ·)− qr∥H2(0, L)}.

Now inequality (14) implies

max{∥û− ur∥H2(t0, T ), ∥(p− pr, q − qr)∥(H2([t0, T ]×[0,L]))2}

≤
√
2Cint C̃√

T
.

Similar to the turnpike property with interior decay that
is introduced in Gugat (2021), for T ≥ 2T0, this yields

max{∥û− ur∥H2(T
2 , T ), ∥(p− pr, q − qr)∥(H2([T2 , T ]×[0,L]))2}

≤
√
2Cint C̃√

T
.

This shows that on the second half of the time-interval,
not only is the contribution of this part of the time interval
uniformly bounded with respect to T but it even decays

with the order O
(

1√
T

)
.

Remark. We want to mention that (12) excludes the
possibility of flow reversal. Flow reversal can be very
important in the operation of pipeline networks in the case
of large changes in the demand scenarios. This happens
in some cases regularly within the seasons of a year,
but sometimes also political reasons can cause dramatic
changes in the demand scenarios.

4. CONCLUSION

In this paper, we present turnpike results for a system
that is governed by the isothermal Euler equations. In
general this system has discontinuous solutions. However,
in the operation of gas pipelines, continuously differen-
tiable solutions are desirable and shocks are harmful in
the operation of the system. We have presented an optimal
control problem, where regular states are enforced by state
and control constraints. We have shown that this optimal
control problem has desirable turnpike properties.
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The Laplace transform and inconsistent
initial values

Stephan Trenn

SCO @ BI(FSE), University of Groningen, Nijenborgh 9, 9747 AG
Groningen, email: s.trenn@rug.nl

Abstract: Switches in electrical circuits may lead to Dirac impulses in the solution; a real world
example utilizing this effect is the spark plug. Treating these Dirac impulses in a mathematically
rigorous way is surprisingly challenging. This is in particular true for arguments made in the
frequency domain in connection with the Laplace transform. A survey will be given on how
inconsistent initials values have been treated in the past and how these approaches can be
justified in view of the now available solution theory based on piecewise-smooth distributions.

Keywords: differential-algebraic equations, descriptor systems, Dirac delta, distributional
solutions

1. INTRODUCTION

Modeling electrical circuits containing (ideal) switches
naturally leads to a description via switched differential-
algebraic equations (DAEs) of the form

Eσ(t)ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t)

where x is the state (including algebraic variables), u is
the input and σ is the switching signal (Trenn, 2012).
The reason why it is in general not possible to find
a more classical model in terms of ordinary differential
equations (ODEs) is the fact, that the changing position
of the switches changes the algebraic constraints; without
including algebraic constraints in the model it would not
be possible to incorporate changing algebraic constraints.
Furthermore, the effect of inconsistent initial values can
not be studied in a model already in the form of an ODE
(because ODEs do not have inconsistent initial values).
For a given switching signal σ the switched DAE can be
viewed as a repeated initial value problem for the DAE

Eẋ = Ax+Bu (1)

with initial condition x(0) = x0 ∈ Rn. As mentioned
above, at a switching time the algebraic constraints may
change, hence the initial value from the past may not be
consistent anymore and the meaning of “x(0) = x0” has
to be made precise. In the context of electrical circuit
this is a long standing question and can be traced back
at least to Verghese et al. (1981). There have been dif-
ferent approaches to deal with inconsistent initial values,
e.g. Sincovec et al. (1981); Cobb (1982); Opal and Vlach
(1990); Rabier and Rheinboldt (1996); Reißig et al. (2002);
Frasca et al. (2010), some of which will be discussed later.
All have in common that jumps as well as Dirac impulses
may occur in the solutions. The Dirac impulse is a distri-
bution (a generalized function) hence one must enlarge the
considered solution space to also include distributions.

This extended abstract is a revisitation of Trenn (2013)
and will discuss the mathematical and conceptional diffi-
culties arising from the notion of inconsistent initial values,
? This work was partially supported by Vidi-grant 639.032.733

in particular, when the Laplace transform is applied to
the DAE (1) and arguments from the frequency domain
are used. First some required notation from distribution
theory is recalled, then a Laplace transform approach is
presented on how to deal with inconsistent initial values
and finally an alternative approach in the time domain is
presented.

2. PRELIMINARIES ON DISTRIBUTION THEORY

The classical distribution theory by Schwartz (1957, 1959)
is revised in the following. The space of test functions
is C∞0 := { ϕ : R→ R | ϕ ∈ C∞ has compact support },
which is equipped with a certain topology 1 . The space of
distributions, denoted by D, is then the dual of the space
of test functions, i.e.

D := { D : C∞0 → R | D is linear and continuous } .
A large class of ordinary functions, namely locally inte-
grable functions, can be embedded into D via the following
injective 2 homomorphism f 7→ fD with fD(ϕ) :=

∫
R fϕ.

The main feature of distributions is the ability to take
derivatives for any distribution D ∈ D via D′(ϕ) :=
−D(ϕ′), which is consistent with the classical derivative,
i.e. if f is differentiable, then (fD)′ = (f ′)D. In particular,
the Heaviside unit step 1[0,∞) has a distributional deriva-
tive which can easily be calculated to be

(1[0,∞)D)′(ϕ) = ϕ(0) =: δ(ϕ),

hence it results in the well known Dirac impulse δ (at
t = 0). In general, the Dirac impulse δt at time t ∈ R is
given by δt(ϕ) := ϕ(t). Furthermore, if g is a piecewise
differentiable function with one jump at t = tJ , then

(gD)′ = (g′)D + (g(t+J )− g(t−J ))δtJ , (2)

where g′ is the derivative of g on R \ {0}.
1 The topology is such that a sequence (ϕk)k∈N of test functions
converges to zero if, and only if, 1) the supports of all ϕk are
contained within one common compact set K ⊆ R and 2) for all

i ∈ N, ϕ
(i)
k

converges uniformly to zero as k →∞
2 Two locally integrable functions which only differ on a set of
measure zero are identified with each other.
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Now it is no problem to consider the DAE (1) (without
the initial condition) in a distributional solution space;
instead of x and u being vectors of functions they are now
vectors of distributions, i.e. x ∈ Dn and f ∈ Dm where
n × n and n × m are the size of the matrices E, A and
B. The definition of the matrix vector product remains
unchanged 3 so that (1) reads as m equations in D.

Considering distributional solutions, however, does not
help to treat inconsistent initial value; au contraire, dis-
tributions cannot be evaluated at a certain time because
they are not functions of time, so writing x(0) = x0 makes
no sense. Even when assuming that a pointwise evaluation
is well defined for certain distributions, the DAE (1) will
still not exhibit (distributional) solution with arbitrary
initial values. This is easily seen when considering, e.g.,
the DAE (1) with (E,A,B) = (0, I, 0), which simply reads
as 0 = x.

So what does it then mean to speak of a solution of (1) with
inconsistent initial value? The motivation for inconsistent
initial values is the situation that the system descriptions
gets active at the initial time t = 0 and before that the
system was governed by different (maybe unknown) rules.
This viewpoint was already expressed by Doetsch (1974)
in the context of distributional solutions for ODEs:

The concept of “initial value” in the physical science
can be understood only when the past, that is the
interval t < 0, has been included in our considerations.
This occurs naturally for distributions which, without
exception, are defined on the entire t-axis.

So mathematically, there is some given past trajectory x0

for x up to the initial time and the DAE (1) only holds
on the interval [0,∞). This means that a solution of the
following initial trajectory problem (ITP) is sought:

x(−∞,0) = x0(−∞,0)
(Eẋ)[0,∞) = (Ax+Bu)[0,∞),

(3)

where x0 ∈ Dn is an arbitrary past trajectory and DI for
some interval I ⊆ R and D ∈ D denotes a distributional
restriction generalizing the restrictions of functions given
byfI(t) = f(t) for t ∈ I and f(t) = 0 otherwise.

A fundamental problem is the fact (Trenn, 2021) that such
a distributional restriction does not exist!

This problem was resolved especially in older publication
(Campbell, 1980, 1982; Verghese et al., 1981) by ignoring
it and/or by arguing with the Laplace transform (see the
next section). Cobb (1984) seems to be the first to be
aware of this problem and he resolved it by introducing
the space of piecewise-continuous distributions; Geerts
(1993b,a) was the first to use the space of impulsive-
smooth distributions (introduced by Hautus and Silver-
man (1983)) as a solution space for DAEs. Seemingly
unaware of these two approaches, Tolsa and Salichs (1993)
developed a distributional solution framework which can
be seen as a mixture between the approaches of Cobb
3 Some authors (Rabier and Rheinboldt, 2002; Kunkel and
Mehrmann, 2006) use a different definition for the matrix vector
product which is due to the different viewpoint of a distributional
vector x as a map from (C∞0 )n to R instead of a map from C∞0 to
Rn. The latter seems the more natural approach in view of applying
it to (1), but it seems that both approaches are equivalent at least
with respect to the solution theory of DAEs.

and Geerts. The more comprehensive space of piecewise-
smooth distributions was later introduced (Trenn, 2009) to
combine the advantages of the piecewise-continuous and
impulsive-smooth distributional solution spaces. Further
details are discussed in Section 4.

Cobb (1982) also presented another approach by justifying
the impulsive response due to inconsistent initial values
via his notion of limiting solutions. The idea is to replace
the singular matrix E in (1) by a “disturbed” version
Eε which is invertible for all ε > 0 and Eε → E as
ε → 0. If the solutions of the corresponding initial value
ODE problem ẋ = E−1ε Ax, x(0) = x0 converges to a
distribution, then Cobb calls this the limiting solution. He
is then able to show that the limiting solution is unique
and equal to the one obtained via the Laplace-transform
approach. Campbell (1982) extends this result also to the
inhomogeneous case.

3. LAPLACE TRANSFORM APPROACHES

Especially in the signal theory community it is common to
study systems like (1) in the so called frequency domain
(in contrast to the time domain). The transformation
between time and frequency domain is given by the Laplace
transform defined via the Laplace integral:

ĝ(s) :=

∫ ∞
0

e−stg(t) dt (4)

for some function g and s ∈ C. Note that in general the
Laplace integral is not well defined for all s ∈ C and a
suitable domain for ĝ must be chosen (Doetsch, 1974). If a
suitable domain exists, then ĝ = L{g} is called the Laplace
transform of g and, in general, L{·} denotes the Laplace
transform operator. Again note that it is not specified at
this point which class of functions have a Laplace trans-
form and which class of functions are obtained as the image
of L{·}. The main feature of the Laplace transform is the
following property, where g is a differentiable function for
which g and g′ have Laplace transforms,

L{g′}(s) = sL{g}(s)− g(0), (5)

which is a direct consequence of the definition of the
Laplace integral invoking partial differentiation. If g is not
continuous at t = 0 but g(0+) exists and g′ denotes the
derivative of g on R \ {0}, then (5) still holds in a slightly
altered form:

L{g′}(s) = sL{g}(s)− g(0+). (6)

In particular, the Laplace transform does not take into
account at all how g behaved for t < 0 which is a trivial
consequence of the definition of the Laplace integral. This
observation will play an important role when studying
inconsistent initial values.

Taking into account the linearity of the Laplace transform
the DAE (1) is transformed into

sEx̂(s) = Ax̂(s) +Bû(s) + Ex(0+) (7)

If the matrix pair (E,A) is regular 4 and x(0+) = 0, the
latter can be solved easily algebraically:

x̂(s) = (sE −A)−1Bû(s) =: G(s)û(s), (8)

where G(s) is a matrix over the field of rational functions
and is usually called transfer function.

4 (E,A) is called regular, if det(sE −A) is not identically zero.

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



A first systematic treatment of descriptor systems in the
frequency domain was carried out by Rosenbrock (1970).
He, however, only considered zero initial values and the
input-output behavior. In particular, he was not concerned
with a solution theory for general DAEs (1) with possible
inconsistent values. Furthermore, he restricted attention
to inputs which are exponentially bounded (guarantee-
ing existence of the Laplace transform), hence formally
his framework could not deal with arbitrary (sufficiently
smooth) inputs.

The definition of the Laplace transform can be extended to
be well defined for certain distributions as well (Doetsch,
1974), therefore consider the following class of distribu-
tions:

D≥0,k :=

{
D=(gD)(k)

∣∣∣ where g : R→ R is continuous
and g(t) = 0 on (−∞, 0)

}
.

For D ∈ D≥0,k with D = (gD)(k) the (distributional)
Laplace transform is now given by

LD{D}(s) := skL{g}(s)
on a suitable domain in C. Note that δ ∈ D≥0,2 and it is
easily seen that LD{δ} = 1. (9)

Furthermore, for every locally integrable function g for
which L{g} is defined on a suitable domain it holds

LD{gD} = sL
{∫ ·

0

g

}
= s

1

s
L{g} = L{g}, (10)

i.e. the distributional Laplace transform coincides with the
classical Laplace transform defined by (4).

A direct consequence of the definition of LD is the following
derivative rule for all D ∈

⋃
k D≥0,k:

LD{D′}(s) = sLD{D} (11)

which seems to be in contrast to the derivative rule (6), be-
cause no initial value occurs. The latter can actually not be
expected because general distributions do not have a well
defined function evaluation at a certain time t. However,
the derivative rule (11) is consistent with (6); to see this
let g be a function being zero on (−∞, 0), differentiable
on (0,∞) with well defined value g(0+). Denote with g′

the (classical) derivative of g on R \ {0}, then (invoking
linearity of LD)

LD{(gD)′} (2)
= LD{(g′)D + g(0+)δ}

= LD{(g′)D}+ g(0+)LD{δ}
(9),(10)

= L{g′}+ g(0+),

which shows equivalence of (11) and (6). The key observa-
tion is that the distributional derivative takes into account
the jump at t = 0 whereas the classical derivates ignores
it, i.e. in the above context

(gD)′ 6= (g′)D.

As it is common to identify g with gD (even in Doetsch
(1974)), the above distinction is difficult to grasp, in
particular for inexperienced readers. As this problem plays
an important role when dealing with inconsistent initial
values, it is not surprising that researchers from the DAE
community who are simply using the Laplace transform as
a tool, struggle with the treatment of inconsistent initial
values, c.f. Lundberg et al. (2007).

Revisiting the treatment of the DAE (1) in the frequency
domain one has now to decide wether to use the usual

Laplace transform resulting in (7) or the distributional
Laplace transform resulting in

sEx̂(s) = Ax̂(s) +Bû(s), (12)

where the initial value x(0+) does not occur anymore. In
particular, if u = 0 the only solution of (12) is x̂(s) = 0,
which implies x = 0. Altogether, the following dilemma
occurs:

Dilemma. Consider the regular DAE (1) with zero input
but non-zero initial value, then the following conflicting
observations can be made:
• An adhoc analysis calls for distributional solutions in
response to inconsistent initial values. For consistent initial
value there exist classical (nonzero) solutions.
• Using the distributional Laplace transform to analyze
the (distributional) solutions of (1) reveals that the only
solution is the trivial one. In particular, no initial values
(neither inconsistent nor consistent ones) are taken into
account at all.

This problem was already observed by Doetsch (1974) and
is based on the definition of the distributional Laplace
transform which is only defined for distributions vanishing
on (−∞, 0). The following “solution” to this Dilemma was
suggested (Doetsch, 1974, p. 129): Define forD ∈

⋃
k D≥0,k

the “past-aware” derivative operator d−
dt :

d−
dt D := D′ − d−0 δ (13)

where d−0 ∈ R is interpreted as a “virtual” initial value
for D(0−). Note however, that by definition D(0−) = 0
for every D ∈

⋃
k D≥0,k, hence at this stage it is not clear

why this definition makes sense. This problem was also
pointed out by Cobb (1982).

Using now the past-aware derivative in the distributional
formulation of (1) one obtains:

Ex′ = Ax+Bu+ Ex−0 δ (14)

where x−0 ∈ Rn is the virtual (possible inconsistent) initial
value for x(0−) and solutions are sought in the space
(
⋃
k D≥0,k)

n
, i.e. x is assumed to be zero on (−∞, 0). Ap-

plying the distributional Laplace transform to (14) yields

sEx̂(s) = Ax̂(s) +Bû(s) + Ex−0 (15)

In contrast to (7), x−0 is not the initial value for x(0+)
but is the virtual initial value for x(0−). If the matrix pair
(E,A) is regular, the solution of (15) can now be obtained
via x̂(s) = (sE−A)−1(Bû(s)+Ex−0 ) and using the inverse
Laplace transform; there are however the following major
drawbacks:
(i) Within the frequency domain it is not possible to
motivate the incorporation of the (inconsistent) initial
values as in (14); in fact, Doetsch (1974) who seems to
have introduced this notion needs to argue with the help
of the distributional derivative and (13) within the time
domain!
(ii) The Laplace transform ignores everything what was in
the past, i.e. on the interval (−∞, 0); this is true for the
classical Laplace transform (by definition of the Laplace
integral) as well as for the distributional Laplace trans-
form (by only considering distributions which vanish for
t < 0). Hence the natural viewpoint of an initial trajectory
problem (3) as also informally advocated by Doetsch is not
possible to treat with the Laplace transform approach.
(iii) Making statements about existence and uniqueness
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of solution with the help of the frequency domain heavily
depends on an isomorphism between the time-domain and
the frequency domain; there are, however, only a few
special isomorphisms between certain special subspaces of
the frequency and time domain, no general isomorphismus
is available.

4. PIECEWISE-SMOOTH DISTRIBUTIONS

In order to rigorously analyse switched DAEs it was
suggested in Trenn (2009) to use as an underlying solution
space the space of piecewise-smooth distributions

DpwC∞ :=

D=fD +
∑
t∈T

Dt

∣∣∣∣∣∣
f ∈ C∞pw, T ⊆ R locally

finite, ∀t ∈ T :

Dt ∈ span{δt, δ′t, δ′′t , . . .}

,
where C∞pw is the space of piecewise-smooth functions (with
locally finitely many discontinuities). This space is closed
under differentiation and therefore removes one short-
coming of Cobb’s space of piecewise-continuous distribu-
tions and generalized the space of impulsive-smooth dis-
tributions, which only considers Dirac impulses at t = 0 5 .

A key result for the ITP (3) is then the following equiva-
lence:

Theorem 1. (cf. Thm. 5.3 in Trenn (2013)). Consider the
ITP (3) within the piecewise-smooth distributional solu-
tion framework with fixed initial trajectory x0 ∈ DnpwC∞
and inhomogeneity u ∈ DmpwC∞ . Then x ∈ DnpwC∞ solves

the ITP (3) if, and only if, z := x−x0(−∞,0) = x[0,∞) solves

z(−∞,0) = 0

(Eż)[0,∞) = (Az +Bu)[0,∞) + Ex0(0−)δ.
(16)

Corollary 2. Consider a (possible inconsistent) initial value
x0 ∈ Rn for the regular DAE (1). Then for any trajectory
x0 ∈ DnpwC∞ with x0(0−) = x0 and any input u, the

solution x of the ITP (3) restricted to [0,∞) equals the
solution obtained via the Laplace transform approach (15)

(under the assumption (x, u)[0,∞) ∈ (
⋃
k D≥0,k)

n×m
).

5. CONCLUSION

Inconsistent initial values cannot be treated in a mean-
ingful way when studying DAEs in the frequency do-
main. However, arguments in the time-domain based on
piecewise-smooth distribution justify why adding the term
Ex0 to the right-hand side of the distributionally Laplace
transformed DAE indeed results in a meaningful solution
to the inconsistent initial value problem
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Abstract: Controllability maximization problem under sparsity constraints is a node selection problem
that selects inputs that are effective for control in order to minimize the energy to control for desired
state. In this paper we discuss the equivalence between the sparsity constrained controllability metrics
maximization problems and their convex relaxation. The proof is based on the matrix-valued Pontryagin
maximum principle applied to the controllability Lyapunov differential equation.
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1. INTRODUCTION

Sparse optimal problems have attracted a lot of attention in the
field of optimal control. Such an approach is useful to find a
small number of essential information that is closely related to
the control performance of interest, and it is applied widely,
for example, Ikeda et al. (2021). This paper investigates the
application of sparse optimization to controllability maximiza-
tion problem, one of the control node selection problems. The
problem is known as the optimization problem minimizing the
energy to control for the desired state; see also Olshevsky (2014)
and Pasqualetti et al. (2014) for other related metrics.

These problems are generally formulated as maximization of
some metric of the controllability Gramian with 𝐿0/𝑙0 con-
straints, but it is known that the problems include combinatorial
structures. To circumvent this, relaxed problems, where the
𝐿0/𝑙0 norms are replaced by the 𝐿1/𝑙1 norms, are considered for
its computational tractability. Then, the problem is how to prove
the equivalence between the main problem and its relaxation.
The paper Ikeda and Kashima (2018) proved the equivalence
when the trace of controllability Gramian is adopted as the
metric, but its usefulness as a metric is questionable since
the designed Gramian may include the zero eigenvalue, so the
trace metric does not automatically ensure the controllability.
The paper Ikeda and Kashima (2022) considered the minimum
eigenvalue and the determinant of the controllability Gramian
which is useful as metrics, but it avoided the proof of equivalence
because of the difficulty and treated approximation problems
that are easy to prove the equivalence. In view of this, this
paper newly proposes a method to prove the equivalence for
general metrics of controllability. Specifically, we adopted the
controllability Lyapunov differential equation. The controllabil-
ity Lyapunov differential equation is a matrix-valued differential
equation whose solution is the controllability Gramian. By
★ This work was supported in part by JSPS KAKENHI under Grant Number
JP18H01461 and JP21H04875.

considering the optimal control problem for this Lyapunov
differential equation, we can strictly treat useful metrics that
are related to the controllability Gramian.

The remainder of this paper is organized as follows. Section
2 provides mathematical preliminaries. Section 3 formulates
our node scheduling problem using controllability Lyapunov
differential equation, and gives a sufficient condition for the
main problem to boil down to the relaxation problem. Section 4
offers concluding remarks.

Notation

For any 𝐴, 𝐵 ∈ R𝑛×𝑚, we denote the Frobenius norm of 𝐴

by ‖𝐴‖ ≜
(∑𝑛

𝑖=1
∑𝑚

𝑗=1 𝐴
2
𝑖, 𝑗

)1/2
, and the inner product of 𝐴

and 𝐵 by (𝐴, 𝐵) ≜
(∑𝑛

𝑖=1
∑𝑚

𝑗=1 𝐴𝑖, 𝑗𝐵𝑖, 𝑗

)
. Let 𝐶 be a closed

subset of R𝑛×𝑚 and 𝐴 ∈ 𝐶. A matrix Δ ∈ R𝑛×𝑚 is a proximal
normal to the set 𝐶 at the point 𝐴 if and only if there exists
a constant 𝜎 ≥ 0 such that (Δ, 𝐵 − 𝐴) ≤ 𝜎‖𝐵 − 𝐴‖2 for
all 𝐵 ∈ 𝐶. The proximal normal cone to 𝐶 at 𝐴 is defined
as the set of all such Δ, which is denoted by 𝑁𝑃

𝐶 (𝐴). We
denote the limiting normal cone to 𝐶 at 𝐴 by 𝑁𝐿

𝐶 (𝐴), i.e.,
𝑁𝐿
𝐶 (𝐴) ≜ {Δ = lim𝑖→∞ Δ𝑖 : Δ𝑖 ∈ 𝑁𝑃

𝐶 (𝐴𝑖), 𝐴𝑖 → 𝐴, 𝐴𝑖 ∈ 𝐶}.
For other notations, see (Ikeda and Kashima, 2022, Section II).

2. PRELIMINARY

Let us consider the following continuous-time linear system
¤𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑉 (𝑡)𝑢(𝑡), 𝑡 ∈ [0, 𝑇],
𝑉 (𝑡) = diag(𝑣(𝑡)), 𝑣(𝑡) ∈ {0, 1}𝑝 , (1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector consisting of 𝑛 nodes, where
𝑥𝑖 (𝑡) is the state of the 𝑖-th node at time 𝑡; 𝑢(·) ∈ R𝑚 is the
exogenous control input that influences the network dynamics.
Then the controllability Gramian for the system is defined by
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𝐺𝑐 =
∫ 𝑇

0
𝑒𝐴(𝑇−𝜏)𝐵𝑉 (𝜏)𝑉 (𝜏)>𝐵>𝑒𝐴

> (𝑇−𝜏)𝑑𝜏. (2)

We next show why the controllability Gramian is used as the
metric of the ease of control. We here recall the minimum-energy
control problem:

min
𝑢

∫ 𝑇

0
‖𝑢(𝑡)‖2𝑑𝑡

s.t.　 ¤𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑉 (𝑡)𝑢(𝑡),
𝑥(0) = 0, 𝑥(𝑇) = 𝑥 𝑓 .

(3)

The minimum control energy is then given by 𝑥>𝑓 𝐺
−1
𝑐 𝑥 𝑓 (Verriest

and Kailath (1983)). Based on this, recent works have been
considered to make 𝐺𝑐 as large as possible. In this paper
we design 𝐵𝑉 (𝑡) in order to maximize some metric of the
controllability Gramian. As the constraints, we introduce 𝐿0 and
𝑙0 constraints on 𝑣(𝑡) to take account of the upper bound of the
total time length of node activation and the number of activated
nodes at each time. We consider the following optimal problem
that maximizes some metric of 𝐺𝑐 under sparsity constraints:

max
𝑣

𝐽 (𝑣) = 𝐾 (𝐺𝑐)

s.t.　𝑣(𝑡) ∈ {0, 1}𝑝 ∀𝑡 ∈ [0, 𝑇],
‖𝑣 𝑗 ‖𝐿0 ≤ 𝛼 𝑗

∀ 𝑗 ∈ {1, 2, . . . , 𝑝},
‖𝑣(𝑡)‖𝑙0 ≤ 𝛽 ∀𝑡 ∈ [0, 𝑇],

(4)

where 𝐾 (𝐺𝑐) is a metric of the controllability Gramian, and
𝛼 𝑗 > 0 and 𝛽 > 0 is constant.

Since the maximization problem in (4) is a combinatorial
optimization problem, we consider the following relaxation
problem:

max
𝑣

𝐽 (𝑣) = 𝐾 (𝐺𝑐)

s.t.　𝑣(𝑡) ∈ [0, 1] 𝑝 ∀𝑡 ∈ [0, 𝑇],
‖𝑣 𝑗 ‖𝐿1 ≤ 𝛼 𝑗

∀ 𝑗 ∈ {1, 2, . . . , 𝑝},
‖𝑣(𝑡)‖𝑙1 ≤ 𝛽 ∀𝑡 ∈ [0, 𝑇] .

(5)

This problem is easier to treat than the main problem (especially
if 𝐾 is concave, problem (5) is a convex optimization problem).
We, however, have to consider the equivalence between the main
problem and the corresponding relaxation problem. Ikeda and
Kashima (2022) formulated alternative approximation problem
instead of proving the equivalence. Then this paper proves the
equivalence between the main problem and the relaxed one by
using the controllability Lyapunov differential equation.

3. PROPOSED METHOD

In this section, we formulate a controllability Lyapunov dif-
ferential equation which holds the controllability Gramian as
a solution, and then formulate an optimization problem for
a system in which the state space representation is given by
the derived differential equation. We provide an equivalence
theorem between the main problem and the corresponding
relaxation problem.

3.1 Problem formulation and relaxation

Controllability Lyapunov differential equation is given as fol-
lows:

¤𝐺𝑐 (𝑡) = 𝐴𝐺𝑐 (𝑡) + 𝐺𝑐 (𝑡)𝐴> + 𝐵𝑉 (𝑡)𝑉 (𝑡)>𝐵>,
𝐺𝑐 (0) = 𝑂𝑛×𝑛.

(6)

Then the controllability Gramian𝐺𝑐 defined by (2) corresponds
to the solution 𝐺𝑐 (𝑇) of (6) at 𝑡 = 𝑇 . Here we consider the
following optimal control problem.
Problem 1 (Main problem).

max
𝑣

𝐽 (𝑣) = 𝐾 (𝐺𝑐 (𝑇))

s.t.　 ¤𝐺𝑐 (𝑡) = 𝐴𝐺𝑐 (𝑡) + 𝐺𝑐 (𝑡)𝐴> + 𝐵𝑉 (𝑡)𝐵>,
𝐺𝑐 (0) = 𝑂𝑛×𝑛,

𝑣(𝑡) ∈ {0, 1}𝑝 ∀𝑡 ∈ [0, 𝑇],
‖𝑣 𝑗 ‖𝐿0 ≤ 𝛼 𝑗

∀ 𝑗 ∈ {1, 2, . . . , 𝑝},
‖𝑣(𝑡)‖𝑙0 ≤ 𝛽 ∀𝑡 ∈ [0, 𝑇] .

(7)

Note that 𝑉 (·)𝑉 (·)> = 𝑉 (·) since 𝑣(·) ∈ {0, 1}𝑝 , so we rewrite
the controllability Lyapunov differential equation. Problem 1
is a combinatorial optimization problem, so we consider the
following relaxed problem, where the 𝐿0/𝑙0 norms are replaced
by the 𝐿1/𝑙1 norms, respectively.
Problem 2 (Relaxed problem).

max
𝑣

𝐽 (𝑣) = 𝐾 (𝐺𝑐 (𝑇))

s.t.　 ¤𝐺𝑐 (𝑡) = 𝐴𝐺𝑐 (𝑡) + 𝐺𝑐 (𝑡)𝐴> + 𝐵𝑉 (𝑡)𝐵>,
𝐺𝑐 (0) = 𝑂𝑛×𝑛,

𝑣(𝑡) ∈ [0, 1] 𝑝 ∀𝑡 ∈ [0, 𝑇],
‖𝑣 𝑗 ‖𝐿1 ≤ 𝛼 𝑗

∀ 𝑗 ∈ {1, 2, . . . , 𝑝},
‖𝑣(𝑡)‖𝑙1 ≤ 𝛽 ∀𝑡 ∈ [0, 𝑇] .

(8)

In what follows, we suppose that 𝐾 is continuously differen-
tiable.

3.2 discreteness and equivalence

We define the set of feasible solutions of Problem 1 and Problem
2 by V0 and V1, i.e.,

V0 ≜ {𝑣 :𝑣(𝑡) ∈ {0, 1}𝑝 ∀𝑡, ‖𝑣 𝑗 ‖𝐿0 ≤ 𝛼 𝑗
∀ 𝑗 ,

‖𝑣(𝑡)‖𝑙0 ≤ 𝛽 ∀𝑡},
V1 ≜ {𝑣 :𝑣(𝑡) ∈ [0, 1] 𝑝 ∀𝑡, ‖𝑣 𝑗 ‖𝐿1 ≤ 𝛼 𝑗

∀ 𝑗 ,

‖𝑣(𝑡)‖𝑙1 ≤ 𝛽 ∀𝑡}.
Note that V0 ⊂ V1, since ‖𝑣 𝑗 ‖𝐿1 = ‖𝑣 𝑗 ‖𝐿0 for all 𝑗 and
‖𝑣(𝑡)‖𝑙1 = ‖𝑣(𝑡)‖𝑙0 on [0, 𝑇] for any measurable function 𝑣 with
𝑣(𝑡) ∈ {0, 1}𝑝 on [0, 𝑇]. The inclusion is proper in general, since
the 𝐿1/𝑙1 constraints do not automatically guarantee the 𝐿0/𝑙0
constraints and some functions in V1 are not obviously binary.
Then, we first show the discreteness of solutions of Problem
2, which guarantees that the optimal solutions of Problem 2
belongs to the set V0. For this purpose, we prepare lemmas.
Lemma 1 (Matrix Pontryagin principle). Let us consider the
following optimization problem

min
𝑈

𝐽 = 𝐿 𝑓 (𝑋 (𝑇))

s.t.　 ¤𝑋 (𝑡) = 𝐹 (𝑋 (𝑡),𝑈 (𝑡)),
𝑋 (0) = 𝑋0, 𝑋 (𝑇) ∈ 𝐸, 𝑈 (𝑡) ∈ Ω,

(9)

where 𝐿 𝑓 is continuously differentiable, 𝐹 is continuous,
𝐷𝑋𝐹 (𝑋 (𝑡),𝑈 (𝑡)) is continuous with respect to 𝑡, 𝑋,𝑈, 𝑋 (𝑡) ∈
R𝑛×𝑚, 𝑈 (𝑡) ∈ R𝑝×𝑞 , 𝑋0 ∈ R𝑛×𝑚, 𝑇 > 0, 𝐸 ⊂ R𝑛×𝑚, and
Ω ⊂ R𝑝×𝑞 . Note that (𝐿 𝑓 , 𝐹, 𝑋0, 𝑇, 𝐸,Ω) is given. We define
Hamiltonian function𝐻 : R𝑛×𝑚×R𝑛×𝑚×R𝑝×𝑞 → R associated
to problem (9) by

𝐻 (𝑋 (𝑡), 𝑃(𝑡),𝑈 (𝑡)) = Tr
(
𝑃(𝑡)>𝐹 (𝑋 (𝑡),𝑈 (𝑡))

)
. (10)
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Let the process (𝑋∗ (𝑡), 𝑉∗ (𝑡)) be a local minimizer for the
problem (9). Then there exists a matrix 𝑃 : [0, 𝑇] → R𝑛×𝑚, and
a scalar 𝜂 equal to 0 or 1 satisfying the following conditions:

• the nontriviality condition:
(𝜂, 𝑃(𝑡)) ≠ 0 ∀𝑡 ∈ [0, 𝑇], (11)

• the transversality condition:
−𝑃(𝑇) ∈ 𝜂∇𝐿 𝑓 (𝑋∗ (𝑇)) + 𝑁𝐿

𝐸 (𝑋∗ (𝑇)), (12)
• the adjoint equation for almost every 𝑡 ∈ [0, 𝑇]:

− ¤𝑃(𝑡) = 𝐷𝑋𝐻 (𝑋∗ (𝑡), 𝑃(𝑡),𝑈∗ (𝑡)), (13)
• the maximum condition for almost every 𝑡 ∈ [0, 𝑇]:

𝐻 (𝑋∗ (𝑡), 𝑃(𝑡),𝑈∗ (𝑡)) = sup
𝑈∈Ω

𝐻 (𝑋∗ (𝑡), 𝑃(𝑡),𝑈). (14)

Proof. We define a mapping 𝜓𝑛𝑚 : R𝑛×𝑚 → R𝑛𝑚 by
𝜓𝑛𝑚 (𝑋) =

[
𝑋>

1 , . . . , 𝑋
>
𝑚

]>
, (15)

where 𝑋𝑖 ∈ R𝑛 denotes the 𝑖th column of a matrix 𝑋 ∈ R𝑛×𝑚.
From Athans (1967), 𝜓𝑛𝑚 is a regular linear mapping (hence
𝜓−1
𝑛𝑚 exists), and preserves the inner product. Then problem (9)

is equivalent to
min
𝑢

𝐽 = 𝑙 𝑓 (𝑥(𝑇))
s.t.　 ¤𝑥(𝑡) = 𝑓 (𝑥(𝑡), 𝑢(𝑡)),

𝑥(0) = 𝑥0 𝑥(𝑇) ∈ 𝑒, 𝑢(𝑡) ∈ 𝜔,
(16)

where 𝑥 = 𝜓𝑛𝑚 (𝑋), 𝑢 = 𝜓𝑝𝑞 (𝑈), and 𝑙 𝑓 , 𝑓 , 𝑥0, 𝑒, 𝜔 corresponds
to 𝐿 𝑓 , 𝐹, 𝑋0, 𝐸,Ω respectively. We define the Hamiltonian
function ℎ : R𝑛𝑚 × R𝑛𝑚 × R𝑝𝑞 → R associated to problem
(16) by ℎ(𝑥(𝑡), 𝑝(𝑡), 𝑢(𝑡)) = 𝑝(𝑡)> 𝑓 (𝑥(𝑡), 𝑢(𝑡)) and denote the
local minimizer for problem (16) by (𝑥∗ (𝑡), 𝑢∗ (𝑡)). Then there
exists an arc 𝑝 : [0, 𝑇] → R𝑛𝑚 and a scalar 𝜂 equal to 0 or
1 satisfying the following conditions (Pontryagin’s Maximum
Principle (Clarke (2013))):

• the nontriviality condition:
(𝜂, 𝑝(𝑡)) ≠ 0 ∀𝑡 ∈ [0, 𝑇], (17)

• the transversality condition:
−𝑝(𝑇) ∈ 𝜂∇𝑙 𝑓 (𝑥∗ (𝑇)) + 𝑁𝐿

𝑒 (𝑥∗ (𝑇)), (18)
• the adjoint equation for almost every 𝑡 ∈ [0, 𝑇]

− ¤𝑝(𝑡) = 𝐷𝑥ℎ(𝑥∗ (𝑡), 𝑝(𝑡), 𝑢∗ (𝑡)), (19)
• the maximum condition for almost every 𝑡 ∈ [0, 𝑇]

ℎ(𝑥∗ (𝑡), 𝑝(𝑡), 𝑢∗ (𝑡)) = sup
𝑢∈𝜔

ℎ(𝑥∗ (𝑡), 𝑝(𝑡), 𝑢). (20)

Since𝜓−1
𝑛𝑚 exists, we obtain the Hamiltonian function associated

to ℎ(𝑥∗ (𝑡), 𝑝(𝑡), 𝑢∗ (𝑡)) as follows:
𝐻 (𝑋∗ (𝑡), 𝑃(𝑡),𝑈∗ (𝑡)) = Tr

(
𝑃> (𝑡)𝐹 (𝑋∗ (𝑡),𝑈∗ (𝑡))

)
, (21)

which satisfies (11), (12), (13), and (14), where 𝑋∗ = 𝜓−1
𝑛𝑚 (𝑥∗),

𝑈∗ = 𝜓−1
𝑝𝑞 (𝑢∗), 𝑃 = 𝜓−1

𝑛𝑚 (𝑝). This completes the proof. □

Lemma 2. Define a set
𝐸 ≜ {𝐴 ∈ R𝑛×𝑛 : 𝐴𝑖, 𝑗 ≤ 𝛼𝑖, 𝑗 , (𝑖, 𝑗) ∈ I}, (22)

and fix any 𝛾 ∈ 𝐸 , where I ⊂ N𝑛×𝑛 is a set of positions of
elements of 𝐴 for which inequality constraints are given. Then
any 𝛿 ∈ 𝑁𝐿

𝐸 (𝛾) satisfies

𝛿𝑖, 𝑗 (𝛾𝑖, 𝑗 − 𝛼𝑖, 𝑗 ) = 0 ∀(𝑖, 𝑗) ∈ I, (23)
𝛿𝑖, 𝑗 ≥ 0 ∀(𝑖, 𝑗) ∈ I, (24)
𝛿𝑖, 𝑗 = 0 ∀(𝑖, 𝑗) ∉ I. (25)

Proof. Fix any �̂� ∈ 𝐸 and �̂� = 𝜓𝑛𝑛 ( �̂�), where 𝜓𝑛𝑛 is from (15).
Then we obtain a set 𝑒 satisfying �̂� ∈ 𝑒 as follows:

𝑒 ≜ {𝑎 ∈ R𝑛2
: 𝑎 𝑗 ≤ 𝛼′

𝑗 , 𝑗 ∈ I ′}, (26)

where 𝛼′ = 𝜓𝑛𝑛 (𝛼) and I ′ ⊂ N𝑛2 is a set corresponding to I.
Take any 𝛾′ ∈ 𝑒, then we have

𝛿′𝑖 (𝛾′𝑖 − 𝛼′
𝑖 ) = 0 ∀𝑖 ∈ I ′, (27)

𝛿′𝑖 ≥ 0 ∀𝑖 ∈ I ′, (28)
𝛿′𝑖 = 0 ∀𝑖 ∉ I ′ (29)

for all 𝛿′ ∈ 𝑁𝐿
𝐸 (𝛾′) (Ikeda and Kashima (2022)). Finally, we

obtain (23), (24), (25) where 𝛿 = 𝜓−1
𝑛𝑛 (𝛿′) and 𝛾 = 𝜓−1

𝑛𝑛 (𝛾′). □
Theorem 1. Let 𝐺∗

𝑐 (𝑡) and 𝑉∗ (𝑡) be a local optimal solution of
Problem 2. Assume that

𝑞 𝑗 (𝑡) ≜ 𝑏>𝑗 𝑒𝐴
> (𝑇−𝑡) 𝜕𝐾 (𝐺∗

𝑐 (𝑇))
𝜕𝐺∗

𝑐 (𝑇)
𝑒𝐴(𝑇−𝑡)𝑏 𝑗

and 𝑞𝑖 (𝑡) − 𝑞 𝑗 (𝑡) is not constant on [0, 𝑇] for all 𝑖, 𝑗 ∈
{1, 2, . . . , 𝑝}. Then any solution to Problem 2 takes only the
values in the binary set {0,1} almost everywhere.

Proof. We first reformulate Problem 2 into a form to which
Lemma 1 is applicable. The value ‖𝑣 𝑗 ‖𝐿1 is equal to the final
state 𝑦 𝑗 (𝑇) of the system ¤𝑦 𝑗 (𝑡) = 𝑣 𝑗 (𝑡) with 𝑦 𝑗 (0) = 0. Define
𝑌 (𝑡) ≜ diag(𝑦(𝑡)) and matrices 𝑋 (𝑡), �̄� (𝑡), �̄�, �̄� by

𝑋 (𝑡) ≜
[
𝐺𝑐 (𝑡) 𝑂𝑛×𝑝
𝑂 𝑝×𝑛 𝑌 (𝑡)

]
, �̄� (𝑡) ≜

[
𝑉 (𝑡) 𝑂 𝑝×𝑝
𝑂 𝑝×𝑝 𝑉 (𝑡)

]
,

�̄� ≜
[
𝐴 𝑂𝑛×𝑝

𝑂 𝑝×𝑛 𝑂 𝑝×𝑝

]
, �̄� ≜

[
𝐵 𝑂𝑛×𝑝

𝑂 𝑝×𝑝 𝐼𝑝

]
.

Then, Problem 2 is equivalently expressed as follows:
min
𝑣

𝐽 (𝑉) = −𝐿 𝑓 (𝑋 (𝑇))

s.t.　 ¤𝑋 (𝑡) = �̄�𝑋 (𝑡) + 𝑋 (𝑡) �̄�> + �̄��̄� (𝑡)�̄�>,
𝑋 (0) = 𝑂 (𝑛+𝑝)×(𝑛+𝑝) , 𝑋 (𝑇) ∈ 𝐸,
𝑣(𝑡) ∈ Ω ∀𝑡 ∈ [0, 𝑇],

(30)

where 𝐿 𝑓 (𝑋 (𝑇)) = 𝐾 (𝐺𝑐 (𝑇)), 𝐸 = {𝑋 (𝑇) : 𝑦 𝑗 (𝑇) ≤
𝛼 𝑗

∀ 𝑗 ∈ {1, 2, . . . , 𝑝}},Ω = {𝑣(𝑡) : 𝑣(𝑡) ∈ [0, 1] 𝑝 , ‖𝑣(𝑡)‖𝑙1 ≤
𝛽}. This is an optimal control problem to which Lemma 1 is
applicable. We define the Hamiltonian function 𝐻 associated to
problem (30) by

𝐻 (𝑋, 𝑃,𝑉) = Tr
(
𝑃> ( �̄�𝑋 (𝑡) + 𝑋 (𝑡) �̄�> + �̄��̄� (𝑡)�̄�>)

)
.

We define two matrices as follows:

𝑋∗ (𝑡) ≜
[
𝐺∗

𝑐 (𝑡) 𝑂𝑛×𝑝
𝑂 𝑝×𝑛 𝑌 ∗ (𝑡)

]
, �̄�∗ (𝑡) ≜

[
𝑉∗ (𝑡) 𝑂 𝑝×𝑝
𝑂 𝑝×𝑝 𝑉

∗ (𝑡)

]
. (31)

Then (𝑋∗ (𝑡), �̄�∗ (𝑡)) is the local minimizer of problem (30)
because of the equivalence between Problem 2 and problem
(30), and there exists a scalar 𝜂 equal to 0 or 1 and a matrix
𝑃 : [0, 𝑇] → R𝑛×𝑛 satisfying the conditions (11), (12), (13),
(14). It follows from (13) that

− ¤𝑃(𝑡) = �̄�>𝑃(𝑡) + 𝑃(𝑡) �̄�,
which leads to
𝑃(𝑡) = 𝑒 �̄�> (𝑇−𝑡)𝑃(𝑇)𝑒 �̄�(𝑇−𝑡)

=

[
𝑒𝐴

> (𝑇−𝑡)𝑃 (11) (𝑇)𝑒𝐴(𝑇−𝑡) 𝑒𝐴> (𝑇−𝑡)𝑃 (12) (𝑇)
𝑃 (21) (𝑇)𝑒𝐴(𝑇−𝑡) 𝑃 (22) (𝑇)

]
,

(32)

where

𝑃(𝑡) =
[
𝑃 (11) (𝑡) 𝑃 (12) (𝑡)
𝑃 (21) (𝑡) 𝑃 (22) (𝑡)

]
(33)
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with 𝑃 (11) (𝑡) ∈ R𝑛×𝑛 and 𝑃 (22) (𝑡) ∈ R𝑝×𝑝 . Note that−𝑃
(11) (𝑇) + 𝜂 𝜕𝐾 (𝐺∗

𝑐 (𝑇))
𝜕𝐺∗

𝑐 (𝑇)
−𝑃 (12) (𝑇)

−𝑃 (21) (𝑇) −𝑃 (22) (𝑇)

 ∈ 𝑁𝐿
𝐸 (𝑋∗ (𝑇))

by (12), then we have
𝑃 (22)

𝑗 , 𝑗 (𝑇) (𝑦 𝑗 (𝑇) − 𝛼 𝑗 ) = 0 𝑗 = {1, 2, . . . , 𝑝}, (34)

𝑃 (22)
𝑗 , 𝑗 (𝑇) ≤ 0 𝑗 = {1, 2, . . . , 𝑝}, (35)

𝑃 (22)
𝑖, 𝑗 (𝑇) = 0 ∀(𝑖, 𝑗) ∈ {(𝑖, 𝑗) : 𝑖 ≠ 𝑗}, (36)

− 𝑃 (11) (𝑇) + 𝜂 𝜕𝐾 (𝐺∗
𝑐 (𝑇))

𝜕𝐺∗
𝑐 (𝑇)

= 𝑂𝑛×𝑛, (37)

𝑃 (12) (𝑇) = 𝑂𝑛×𝑝 , 𝑃 (21) (𝑇) = 𝑂 𝑝×𝑛, (38)
from Lemma 2. Substituting these into (32), we get

𝑃(𝑡) =
𝑒

𝐴> (𝑇−𝑡)𝜂
𝜕𝐾 (𝐺∗

𝑐 (𝑇))
𝜕𝐺∗

𝑐 (𝑇)
𝑒𝐴(𝑇−𝑡) 𝑂𝑛×𝑝

𝑂 𝑝×𝑛 𝑃 (22) (𝑇)

 . (39)

Then, we have
Tr

(
𝑃> (𝑡)�̄��̄� (𝑡)�̄�>) = Tr

(
�̄�>𝑃> (𝑡)�̄��̄� (𝑡)

)
= Tr

( [
𝐵>𝑃 (11)> (𝑡)𝐵 𝑂 𝑝×𝑝

𝑂 𝑝×𝑝 𝑃 (22) (𝑡)

]
�̄� (𝑡)

)
=

𝑝∑
𝑗=1

(
𝜂𝑞 𝑗 (𝑡) + 𝑃 (22)

𝑗 , 𝑗 (𝑇)
)
𝑣 𝑗 (𝑡).

It follows from (14) that

𝑣∗ (𝑡) = arg max
𝑣∈Ω

𝑝∑
𝑗=1

(
𝜂𝑞 𝑗 (𝑡) + 𝑃 (22)

𝑗 , 𝑗 (𝑇)
)
𝑣 𝑗 . (40)

We here claim that 𝜂 = 1. Indeed, if 𝜂 = 0, 𝑃 (22) (𝑇) ≠ 𝑂 𝑝×𝑝
follows from (11), i.e., there exists some 𝑗 that satisfies

𝑃 (22)
𝑗 , 𝑗 (𝑇) < 0, 𝑦∗𝑗 (𝑇) = 𝛼 𝑗 . (41)

Hence, from (40) and (41), we have 𝑣∗𝑗 (𝑡) = 0 for all 𝑡 ∈ [0, 𝑇],
i.e., 𝑦∗𝑗 (𝑇) = ‖𝑣∗𝑗 ‖𝐿1 = 0. This contradicts to (41). Thus, 𝜂 = 1.
From the assumption, it is easy to verify that

1) we have 𝑞 𝑗 (𝑡) + 𝑃 (22)
𝑗 , 𝑗 (𝑇) ≠ 0 almost everywhere for all

𝑗 = {1, 2, . . . , 𝑝},
2) there exists 𝑗𝑘 : [0, 𝑇] → {1, 2, . . . , 𝑝}, 𝑘 = 1, 2, . . . , 𝑝, such

that
𝑞 𝑗1 (𝑡) (𝑡) + 𝑃

(22)
𝑗1 (𝑡) , 𝑗1 (𝑡) (𝑇) > · · · > 𝑞 𝑗𝑝 (𝑡) (𝑡) + 𝑃

(22)
𝑗𝑝 (𝑡) , 𝑗𝑝 (𝑡) (𝑇)

almost everywhere.

Hence, we find

𝑣∗𝑗 (𝑡) =
{
1 if 𝑗 ∈ Ξ1 (𝑡) ∩ Ξ2 (𝑡),
0 otherwise

(42)

for almost every 𝑡 ∈ [0, 𝑇], where
Ξ1 (𝑡) ≜ { 𝑗1 (𝑡), 𝑗2 (𝑡), . . . , 𝑗𝛽 (𝑡)},
Ξ2 (𝑡) ≜ {𝑘 ∈ {1, 2, . . . , 𝑝} : 𝑞 𝑗𝑘 (𝑡) (𝑡) + 𝑃

(22)
𝑗𝑘 (𝑡) , 𝑗𝑘 (𝑡) (𝑇) > 0}.

This completes the proof. □

The following theorem is the main result, which shows the
equivalence between Problem 1 and Problem 2.
Theorem 2 (equivalence). Assume that 𝑞 𝑗 (𝑡) and 𝑞𝑖 (𝑡) − 𝑞 𝑗 (𝑡)
is not constant on [0, 𝑇] for all 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑝}. Denote the

set of all solutions of Problem 1 and Problem 2 by V∗
0 and V∗

1 ,
respectively. If the set V∗

1 is not empty, then we have V∗
0 = V∗

1 .

Proof. Denote any solution of Problem 2 by �̂� ∈ V∗
1 . It follows

from Theorem 1 that �̂�(𝑡) ∈ {0, 1}𝑝 almost everywhere. Note
that the null set ∪𝑝

𝑗=1{𝑡 ∈ [0, 𝑇] : �̂� 𝑗 (𝑡) ∉ {0, 1}} does not
affect the cost, and hence we can adjust the variables so that
�̂�(𝑡) ∈ {0, 1}𝑝 on [0, 𝑇], without loss of the optimality. We
have

‖�̂�(𝑡)‖𝑙1 = ‖�̂�(𝑡)‖𝑙0 , ‖�̂� 𝑗 ‖𝐿1 = ‖�̂� 𝑗 ‖𝐿0

for all 𝑗 . Since �̂� ∈ V1, we have ‖�̂�(𝑡)‖𝑙0 ≤ 𝛽 and ‖�̂� 𝑗 ‖𝐿0 ≤ 𝛼 𝑗

for all 𝑡 and 𝑗 . Thus, �̂� ∈ V0. Then,
𝐽 (�̂�) ≤ max

𝑣∈V0
𝐽 (𝑣) ≤ max

𝑣∈V1
𝐽 (𝑣) = 𝐽 (�̂�), (43)

where the first relation follows from �̂� ∈ V0, the second relation
follows from V0 ⊂ V1, and the last relation follows from
�̂� ∈ V∗

1 . Hence, we have
𝐽 (�̂�) = max

𝑣∈V0
𝐽 (𝑣), (44)

which implies �̂� ∈ V∗
0 . Hence, V∗

1 ⊂ V∗
0 and V∗

0 is not empty.

Next, take any �̃� ∈ V∗
0 . Note that �̃� ∈ V1, since V∗

0 ⊂ V0 ⊂ V1.
In addition, it follows from (44) that 𝐽 (�̃�) = 𝐽 (�̂�). Therefore,
�̃� ∈ V∗

1 , which implies V∗
0 ⊂ V∗

1 . This gives V∗
0 = V∗

1 . □

4. CONCLUSION

In this paper, we discussed the equivalence between the sparsity
constrained controllability metrics maximization problems and
their convex relaxation. The proof is based on the matrix-valued
Pontryagin maximum principle applied to the controllability
Lyapunov differential equation. The existence of optimal solu-
tions and computational cost are currently under investigation.

REFERENCES

Athans, M. (1967). The matrix minimum principle. Information
and Control, 11, 592–606.

Clarke, F. (2013). Functional Analysis, Calculus of Variations
and Optimal Control, volume 264. Springer Science &
Business Media.

Ikeda, T. and Kashima, K. (2018). Sparsity-constrained con-
trollability maximization with application to time-varying
control node selection. IEEE Control Systems Letters, 2(3),
321–326.

Ikeda, T. and Kashima, K. (2022). Sparse control node
scheduling in networked systems based on approximate
controllability metrics. IEEE Transactions on Control of
Network Systems.

Ikeda, T., Sakurama, K., and Kashima, K. (2021). Multiple
sparsity constrained control node scheduling with application
to rebalancing of mobility networks. IEEE Transactions on
Automatic Control.

Olshevsky, A. (2014). Minimal controllability problems. IEEE
Transactions on Control of Network Systems, 1(3), 249–258.

Pasqualetti, F., Zampieri, S., and Bullo, F. (2014). Controllabil-
ity metrics, limitations and algorithms for complex networks.
IEEE Transactions on Control of Network Systems, 1(1), 40–
52.

Verriest, E. and Kailath, T. (1983). On generalized balanced
realizations. IEEE Transactions on Automatic Control, 28(8),
833–844.

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



Controllability and observability of
poset-causal systems

S. ter Horst ∗ J. Zeelie ∗∗

∗Department of Mathematics, North-West University, Potchefstroom,
2520 South Africa (Sanne.TerHorst@nwu.ac.za).

∗∗Department of Mathematics, North-West University, Potchefstroom,
2520 (e-mail: 24698245@nwu.ac.za).

Abstract: Concepts of controllability and observability have been defined for a class of
decentralized systems known as coordinated linear systems. The classical duality result does
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and observability to poset-causal systems. We introduce the dual system associated with a
poset-causal system and extend the classical duality result using this notion of a dual system.
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1. INTRODUCTION

In this paper we consider poset-causal systems introduced
by Shah and Parrilo in Shah et al. (2008) and further
developed in the papers Shah et al. (2009, 2011, 2013)
and the PhD thesis Shah (2011).

Poset causal systems are decentralized systems that con-
sist of interconnected subsystems, labeled 1, 2, . . . , p, which
are modeled by a partial order � on the set P =
{1, 2, . . . , p}. Hence, the pair P = (P,�) is a partially
ordered set (poset). In this setting subsystem j can ‘in-
fluence’ subsystem i in case i � j. We assume that each
subsystem is locally given by an input-state-output model
with an input space Ui = Rmi , a state space Xi = Rni

and an output space Yi = Rri , with mi, ni, ri ∈ Z+. The
output yi and state xi are determined by the states and
inputs of subsystems that can ‘influence’ subsystem i via
interconnected state space system equations

ẋi(t) =
∑
j∈↑i

Aijxj +
∑
k∈↑i

Bikuk, xi(0) = xi,0,

yi(t) =
∑
j∈↑i

Cijxj +
∑
k∈↑i

Dikuk, t ≥ 0,

where ↑i = {j | j � i}. Here xi,0 ∈ Rni is the initial
state of subsystem i and Aij ∈ Rni×nj , Bij ∈ Rni×mj ,
Cij ∈ Rri×nj and Dij ∈ Rri×mj are given matrices
whenever j � i. In case j 6� i, set Aij , Bij , Cij and Dij

equal to zero matrices of appropriate sizes and define

A = [Aij ], B = [Bij ], C = [Cij ], D = [Dij ], (1)

where i, j = 1, 2, . . . , p. Then the combined input, state
and output signals

u(t) = (u1(t), . . . , up(t))ᵀ ∈ U = ⊕p
i=1Ui,

x(t) = (x1(t), . . . , xp(t))ᵀ ∈ X = ⊕p
i=1Xi,

y(t) = (y1(t), . . . , yp(t))ᵀ ∈ Y = ⊕p
i=1Yi,

? This work is based on research supported in part by the National
Research Foundation of South Africa (Grant Numbers 118513 and
127364).

with ⊕ indicating orthogonal sums, satisfy

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ X ,
y(t) = Cx(t) +Du(t), t ≥ 0,

for x0 = (x1,0, . . . , xp,0)ᵀ ∈ X . In the block partitioning
(1), the entries Aij , Bij , Cij and Dij are zero matrices
whenever i 6� j. Since� is a partial order, this zero-pattern
is invariant under block matrix multiplication, provided
the block sizes are compatible for multiplication. Poset
causal systems have system matrices whose block zero
patterns are determined by a partial order. The proofs
of the results as well as a more detailed expositions will be
presented in ter Horst et al. (2021).

Concepts of controllability and observability have been
defined for a subclass of poset-causal systems known as
coordinated linear systems in Kemper et al. (2012). In the
present paper we extend these concepts of controllability
and observability to poset-causal systems. The partially
ordered structures that underly coordinated linear systems
have a stronger notion of transitivity, defined in Bart et al.
(2018) as in-ultra transitive, which do not allow for a
suitable notion of duality. In the last part of the current
paper we introduce a notion of duality for poset-causal
systems, and present duality results for the notions of
controllability and observability defined here.

2. POSET CAUSAL SYSTEMS

In this section we give a more formal definition of poset-
causal systems and introduce the dual of a poset-causal
system. For this we require some preliminary definitions
and results on order structures and matrices with associ-
ated block zero-patterns.

2.1 Order structures

A partially ordered set, or poset, is a pair P = (P,�)
with P a set and � a partial order on P . That is, � is a
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binary relation on P which is reflexive, transitive and anti-
symmetric. For i, j ∈ P we write i � j if i � j and i 6= j.
Also, i � j and i ≺ j mean j � i and j � i, respectively.
In the sequel we will only consider finite posets, usually
of the form P = {1, 2, . . . , p} for some positive integer p.
Given a subset R ⊆ P of a poset P = (P,�) we define its
downstream set ↓R and its upstream set ↑R as

↓R = {i ∈ P : ∃ j ∈ R such that j � i} and

↑R = {i ∈ P : ∃ j ∈ R such that i � j}. (2)

In the case that R is a singleton, say R = {i}, we simply
write ↓i and ↑i.
Definition 1. Given a poset P = (P,�), we define the dual
poset as Pd = (P,�d) where

j �d k ⇐⇒ k � j
for each j, k ∈ P .

Given the dual poset Pd = (P,�d) of some poset P =
(P,�), we also define the upstream- and downstream sets
in terms of the dual poset:

↑di = {j ∈ P : j �d i} and ↓di = {j ∈ P : j �d i}.
Clearly we have ↑di = ↓i and ↓di = ↑i.
Example 2. Consider posets P1 and P2 with Hasse dia-
grams given by:

1

2 3

G↓
P1

3 2

1

G↓
P2

Then G↓P1
is the underlying digraph of a coordinated

linear system with one coordinator and two followers. It

represents a in-ultra transitive order. G↓P2
is the dual of

G↓P1
and is not in-ultra transitive and hence is not the

underlying poset of a coordinated linear system.

2.2 Block matrices with prescribed zero-patterns

In this paper we are interested in classes of block matrices
with prescribed zero-patterns, which are not necessarily
square, but are closed under (block) matrix multiplication,
provided the sizes of the blocks are compatible. This
requires us to introduce some notation.

Given some n ∈ Z+, we will say n = (n1, n2, . . . , np) ∈ Zp
+

is a partition of n if |n| := n1 +n2 + . . .+np = n. Let n =
(n1, n2, . . . , np) ∈ Zp

+ and m = (m1,m2, . . . ,mq) ∈ Zq
+ be

two given partitions. We will write A = [Gij ] ∈ Rn×m, in
which case it is to be understood that Gij ∈ Rni×mj . In
case r ∈ Zp

+ is another partition, then matrices G ∈ Rr×n

and H ∈ Rn×m are said to be compatible for block matrix
multiplication GH. When only the lengths p of n and q
of m are specified, we will sometimes speak of p× q block
matrices.

By analogy of the incidence algebras studied in Davis
(1970), we define block matrices with zero-pattern pre-
scribed by a partial order in the following manner.

Definition 3. Given a poset P = (P,�), with P =
{1, . . . , p} and partitions n,m ∈ Zp

+, we define the block

incidence vector space In×mP ⊆ Rn×m as the subspace

In×mP = {G = [Gij ] ∈ Rn×m : Gij = 0 if j 6� i}.

By arguments similar to those in Davis (1970) it follows
that the block zero structure is preserved under block
matrix multiplication when the matrices are compatible
for block matrix multiplication.

Proposition 4. Let P = (P,�) be a poset with p elements

and let n,m, r ∈ Zp
+. If G ∈ Ir×nP and H ∈ In×mP , then the

product GH is well-defined and GH ∈ Ir×mP . If G ∈ In×nP
and det(G) 6= 0, then G−1 ∈ In×nP .

Throughout the paper we work with block compressions
associated with subsets of P . Note that we have defined
partitionings in such a way that zero entries are allowed.
It will be convenient in this paper to define compressions
by simply setting some of the entries in the partitionings
equal to zero.

Definition 5. Let P = {1, . . . , p} and let R,S ⊂ P . Let
G ∈ Rn×m for partitions n,m ∈ Zp

+. ThenG(R,S) denotes
the block matrix in Rn

R
×m

S where

nR = (n1,R, . . . , np,R) ∈ Zp
+, with nj,R =

{
0 if j 6∈ R
nj if j ∈ R

mS = (m1,S , . . . ,mq,S) ∈ Zq
+, with mj,S =

{
0 if j 6∈ S
mj if j ∈ S

and where G(R,S) = [G̃ij ]i,j=1,...,p is defined by

G̃ij = Gij if i ∈ R and j ∈ S
and G̃ij vacuous if i /∈ R or j /∈ S.

If R is a singleton, say R = {i}, we write A(i, S) and
likewise we write A(R, j) if S = {j}. For one-sided
compressions, we follow Matlab notation, and write A(:, S)
in case R = P , or A(R, :) in case S = P .

Theorem 6. Given a poset P = (P,�) with p elements,
partitionings n,m, r ∈ Zp

+ and subsets Q,S ⊂ P , for any

block matrices G ∈ Rr×n and H ∈ In×mP we have

(GH)(Q,S) = G(Q,R)H(R,S),

for any subset R ⊆ P with ↓S ⊆ R, in particular
(GH)(Q,S) = G(Q, ↓S)H(↓S, S).

Finally, we define the block identity matrix In ∈ Rn×n

with respect to a partitioning n ∈ Zp
+ as the block diagonal

matrix in Rn×n with identity matrices as diagonal blocks.
Then In(:, S) can be viewed as the embedding of Rn

S into
Rn and In(S, :) as the projection from Rn onto Rn

S .

2.3 Poset causal systems

Definition 7. Let P = (P,�) be a poset with P =
{1, . . . , p}. A poset-causal system ΣP ∼ (A,B,C,D) (with
underlying poset P) is a linear time invariant system with
structured system matrices

A ∈ In×nP , B ∈ In×mP , C ∈ Ir×nP , D ∈ Ir×mP , (3)

for n,m, r ∈ Zp
+ and some initial state x0 ∈ X = Rn.

For a poset-causal systems ΣP ∼ (A,B,C,D), with
A,B,C,D as in (3), since A(i, j) = 0 if j 6� i, for the
transpose Aᵀ we have Aᵀ(j, i) = 0 if j 6� i, that is, if
i 6�d j. Consequently, we have

Aᵀ ∈ In×nPd
, Bᵀ ∈ Im×nPd

, Cᵀ ∈ In×rPd
, Dᵀ ∈ Im×rPd

.

This observation justifies the following definition of the
dual system.
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Definition 8. For a poset-causal system ΣP ∼ (A,B,C,D),
we define its dual poset-causal system as

ΣPd
∼ (Aᵀ, Cᵀ, Bᵀ, Dᵀ).

Example 9. Consider the poset P1 in example 2. And
consider a poset-causal system ΣP1 ∼ (A,B,C, 0) with

A ∈ In×nP1
, B ∈ In×mP1

and C ∈ Ir×nP1
with n = (1, 1, 2),

m = (1, 1, 1) and r = (1, 1, 1), given by

A =

 1 0 0 0
1 1 0 0
0 0 1 0
0 0 0 0

 , B =

 1 0 0
0 1 0
1 0 0
0 0 1

 , C =

 1 0 0 0
1 1 0 0
1 0 0 1


Then X1 = span{e1}, X2 = span{e2} and X3 =
span{e3, e4}. So that X = span{e1, e2, e3, e4} = R4. The
dual poset of P1 is Pd = P2 given in example 2. And
ΣPd

∼ (Ad, Bd, Cd, 0) is given by:

Ad = Aᵀ =

 1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 , Bd = Cᵀ =

 1 1 1
0 1 0
0 0 1

 ,
Cd = Bᵀ =

 1 0 1 0
0 1 0 0
0 0 0 1


Now ΣP1 is a coordinated linear system and its dual
system ΣPd

is a poset-causal system which is not a
coordinated linear system.

3. UPSTREAM CONTROLLABILITY AND
DOWNSTREAM OBSERVABILITY

In this section we extend certain notions of controllabil-
ity and observability introduced in Kemper et al. (2012)
for coordinated linear systems to the setting of poset-
causal systems. Consider a poset-causal system ΣP ∼
(A,B,C,D) with n-dimensional state space X . The reach-
able subspace R and unobservable subspace N of X are
defined as

R = Im C(A,B) and N = KerO(C,A), (4)

where

C(A,B) =
[
B AB · · · An−1B

]
, O(C,A) = C(Aᵀ, Cᵀ)ᵀ.

For i ∈ P we define the i-downstream reachable set Ri as

Ri := Im C(A(↓i, ↓i), B(↓i, i)) ⊆ X (↓i), (5)

with X (↓i) defined as

X (↓i) :=
⊕
j∈↓i

Xj .

Hence a vector ξ ∈ X (↓i) is in Ri if it is reachable in the
system

ẋ↓i(t) = A(↓i, ↓i)x↓i +B(↓i, i)ui,
which includes states which can be reached by applying
only the ith input ui. In such a case we say that ξ is i-
downstream reachable.

The following theorem extends Lemma 3.2 in Kemper
et al. (2012) to poset-causal systems.

Theorem 10. Given a poset-causal system ΣP ∼ (A,B, 0, 0)

with A ∈ In×nP and B ∈ In×mP , the reachable spaceR ⊆ X
is given in terms of i−downstream reachable sets Ri as

R =

p∑
i=1

In(:, ↓i)Ri.

Note that Rj ⊆ X (↓j) and that Xi ⊂ X (↓j) for each
i ∈ ↓j. For each j ∈ P and i ∈ ↓j we define the following
subspaces of Xi:

Rj

i := Xi ∩Rj and R̃j
i := PXiRj .

Here PXi is the orthogonal projection onto Xi. One can

view Rj

i as the set of local states xi ∈ Xi that can be
reached from a local input uj in such a way that the other
states downstream from j remain unaffected. The subspace

R̃j
i , on the other hand, is the set of local states xi ∈ Xi

that can be reached from a local input uj while the other
states downstream from subsystem j may also be affected.
By definition of the subspaces, we directly get that:⊕

i∈↓j

Rj

i ⊆ Rj ⊆
⊕
i∈↓j

R̃j
i . (6)

Next we define subspaces R and R̃ which respect the
structure imposed by the poset P:

R :=
⊕
j∈P
Rj and R̃ :=

⊕
j∈P
R̃j , where

Rj :=
∑
i∈↑j

Ri

j and R̃j :=
∑
i∈↑j

R̃i
j .

(7)

Definition 11. We call a poset-causal system ΣP upstream
controllable if Rj = Xj for each j ∈ P and we say ΣP is

weakly upstream controllable if R̃j = Xj for each j ∈ P .

The following result explains the connection with classical
controllability.

Theorem 12. For a poset-causal system ΣP ∼ (A,B,C,D)
we have the following inclusions

R ⊆ R ⊆ R̃.
In particular, if ΣP is upstream controllable, then it
is controllable. If ΣP is controllable, then it is weakly
upstream controllable.

Example 13. Consider the poset-causal system ΣP1 ∼
(A,B,C, 0) given in example 9. We can calculate its
reachable set R using (4) and its downstream reachable
sets Ri for i = 1, 2, 3 using (5):

R = span{e1 + e3, e2, e4}, R1 = span{e1 + e3, e2}
R2 = span{e2} and R3 = span{e4}

We can now compute the spaces R and R̃ using (7):

R = span{e2, e4} and R̃ = span{e1, e2, e3, e4}.
From this we see that ΣP1

is not upstream controllable
nor is it controllable, but it is indeed weakly upstream
controllable.

Next we define several parallel notions of observability for
poset-causal systems.

For i, j ∈ P , define the subspaces

X (↑i) :=
⊕
j∈↑i

Xj and X (P\↑i) :=
⊕
j /∈↑i

Xj .

Then clearly X (↑i) u X (P\↑i) = X (P ) = X . For i ∈ P ,
we define the i-upstream unobservable set Ni as

Ni = kerO(C(i, ↑i), A(↑i, ↑i)) ⊆ X (↑i).
Hence, a vector ξ ∈ X (↑i) is in Ni if it is unobservable in
the system

ẋ↑i(t) = A(↑i, ↑i)x↑i(t), x↑i(0) = ξ

y↑i(t) = C(i, ↑i)x↑i(t).
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In such a case we say that ξ is i-upstream unobservable.

The following theorem generalizes Lemma 4.2 in Kemper
et al. (2012) to poset-causal systems.

Theorem 14. Given a poset-causal system ΣP ∼ (A, 0, C, 0)

with A ∈ In×nP and C ∈ Ir×nP , the unobservable space N
is given in terms of i-upstream unobservable spaces as:

N =

p⋂
i=1

(Ni ⊕X (P\↑i)) .

Recall that Ni ⊆ X↑i and that Xj ⊆ X↑i if j ∈ ↑i. For each
j ∈ ↑i, we define

N j

i := Ni ∩ Xj and Ñ j
i := PXjNi.

From these definitions, we immediately get the following
inclusions: ⊕

j∈↑i

N j

i ⊆ Ni ⊆
⊕
j∈↑i

Ñ j
i , (8)

In analogy with (7) we define the following structured
subspaces of X :

N :=
⊕
j∈P
N j

and Ñ :=
⊕
j∈P
Ñ j , where

N j
:=
⋂
i∈↓j

N j

i and Ñ j :=
⋂
i∈↓j

Ñ j
i .

(9)

Based on these spaces, we introduce the following notions
of observability.

Definition 15. We call a poset-causal system ΣP down-

stream observable if Ñ = {0} and weakly downstream
observable if N = {0}.

In analogy with Theorem 12, we obtain the next theorem.

Theorem 16. For a poset-causal system ΣP ∼ (A,B,C,D)
we have the following inclusions

N ⊆ N ⊆ Ñ .
In particular, if ΣP is downstream observable, then it is
observable. If ΣP is observable, then it is weakly down-
stream observable.

4. DUALITY

For classical centralized systems, duality between control-
lability and observability is given by the following well
known result (see for example proposition 2.21 in Dullerud
et al. (2013)).

Theorem 17. The pair (A,B) is controllable if and only if
the pair (Bᵀ, Aᵀ) is observable.

We now investigate a connection between controllability of
a poset-causal system ΣP ∼ (A,B,C,D) and observability
of its dual system ΣPd

∼ (Ad, Bd, Cd, Dd). We note that
since ↑di = ↓i for each i ∈ P , we have by definition that

Cd(i, ↑di) = Bᵀ(i, ↓i) = (B(↓i, i))ᵀ.
From this, we can show that

X↑i 	 (Ri)
d = Ni and X↓i 	 (Ni)

d = Ri

for each i ∈ P , where (Ri)
d = Im C(Ad, Bd) and (N i)d =

kerO(Cd, Ad). It is then possible to prove the next result.

Theorem 18. For a poset-causal system ΣP ∼ (A,B,C,D)
and its dual ΣPd

∼ (Ad, Bd, Cd, Dd), we have

(R)d = Ñ⊥, (R̃)d = N⊥, (N )d = R̃⊥, (Ñ )d = R⊥.
In particular, ΣP is upstream controllable (weakly up-
stream controllable) if and only if ΣPd

is downstream
observable (weakly downstream observable).

Example 19. For the dual system ΣPd
given in example 9,

we can now easily determine the subspaces (N )d, N d and

(Ñ)d using the duality result Theorem 18 and the subspace
determined in example 13:

(N )d = R̃⊥ = {0}, N d = R⊥ = span{e1 − e3} and

(Ñ )d = R⊥ = span{e1, e3}
Hence in accordance with Theorem 18, we see that ΣPd

is weakly downstream observable, but not observable or
downstream observable.
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Abstract: For linear time-invariant descriptor systems it is well known that port-Hamiltonian
systems are passive and that passive systems are positive real. In our contribution we study
under which assumptions also the converse implications hold. We also study the relationship
between passivity, KYP inequalities and a finite required supply.
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1. INTRODUCTION

Port-Hamiltonian (pH) systems have been increasingly
used in recent years as a unified structured framework for
energy based modeling of systems (van der Schaft and Jelt-
sema (2014); Jacob and Zwart (2012); Ortega et al. (2001);
van der Schaft (2004); Beattie et al. (2019); Mehrmann
and Unger (2022)). This type of formulation has gained
increased interest from engineers and mathematicians due
to its modeling flexibility and robustness properties.

Specifically, pH systems are of particular interest in cou-
pled networks of systems and multiphysics simulation and
control. This network coupling oftentimes imposes addi-
tional algebraic constraints on the system which naturally
lead to linear time-invariant descriptor systems in state-
space form presented as

d
dt
Ex(t) = Ax(t) +Bu(t), x(0) = x0,

y(t) = Cx(t) +Du(t),
(1)

where u : R → K
m, x : R → K

n, y : R → K
m are the input,

state, and output of the system and E,A ∈ K
n×n, B ∈

K
n×m, C ∈ K

m×n, D ∈ K
m×m, and K = R or K = C. The

system (1) will be briefly denoted by Σ = (E,A,B,C,D)
and throughout it is assumed that the pair (E,A) is regular
which means that λE −A is invertible for some λ ∈ C.

It is well-known that pH descriptor systems are passive
and that passive systems are positive real. Our aim is to
provide sufficient conditions for the converse implications
to hold.

2. NOTATIONS AND KNOWN RESULTS

For a pH descriptor systems the coefficients in (1) are
assumed to have a special structure, see e.g. Beattie et al.
(2018); van der Schaft (2013); van der Schaft and Maschke
(2018); Morandin and Mehrmann (2019)

(pH) The system Σ is port-Hamiltonian if there exists
J,R,Q ∈ K

n×n, G,P ∈ K
n×m, and S,N ∈ K

m×m

such that

[

A B
C D

]

=

[

(J −R)Q G− P

(G+ P )HQ S +N

]

, EHQ ≥ 0,

[

R P

PH S

]

≥ 0, J = −JH , N = −NH .

(2)

Here the quadratic function H(x) := 1

2
xHEHQx is called

the Hamiltonian and can be interpreted as the energy of
the system. Furthermore, for a matrix M ∈ K

n×m, MH

denotes its conjugate transpose.

In this contribution, we will compare for descriptor sys-
tems the existence of a pH formulation with two other
typically used system theoretic properties, namely, passiv-
ity (Pa) and positive realness (PR) which are introduced
below.

It is well known that even non-linear and time-varying
pH descriptor systems satisfy a certain power balance
equation, see Morandin and Mehrmann (2019). This in
particular implies the following passivity property of pH
descriptor systems.

(Pa) The system Σ is passive if there exists Q ∈ K
n×n

such that QHE = EHQ ≥ 0 and S(x) = 1

2
xHQHEx

satisfies for all T > 0 and all consistent initial values
x0 and smooth functions x, u, y

S(x(T ))− S(x(0)) ≤

∫ T

0

y(τ)Hu(τ)dτ. (3)

The functions S satisfying the above conditions will be
called storage functions.

The property (Pa) is hard to verify in practice since one
would have to consider all possible solution trajectories. A
better suited algebraic criterion for (Pa) is a linear matrix
inequality which can be obtained by differentiation of (3).
It was developed for ordinary systems, i.e. E = In and
independently by Kalman, Yakubovich and Popov and for
descriptor systems e.g. in Zhang et al. (2002); Freund and
Jarre (2004).

(KYP) The system Σ has a solution Q to the generalized
KYP inequality if
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[

−AHQ−QHA CH
−QHB

C −BHQ D +DH

]

≥ 0, EHQ ≥ 0. (4)

In many applications only input-output data is given and
hence an important question is whether we can decide if
a system is pH from this data and even more, we want to
obtain a pH representation (2) of the system. The typical
approach is to use apply a Laplace transform to (1) which
leads to the transfer function

T (s) := C(sE −A)−1B +D (5)

that describes the input-output behavior in the frequency
domain. It is well known for ordinary system that the
passivity implies that its transfer function is positive real,
see Anderson (1967); Anderson and Vongpanitlerd (1973).

(PR) The system Σ and the transfer function T are called
positive real if T has no poles in
C

+ := {s ∈ C|Re s > 0} and T (s) + T (s)H ≥ 0 for
all s ∈ C

+;

Hence, if we want to obtain a pH formulation of a system,
the system must be passive implying that its transfer
function is positive real. If the data does not allow us
to conclude (PR), e.g. due to measurement errors, one
determines the nearest positive real transfer function Gillis
and Sharma (2018). Therefore, the remaining task is to
find a pH state space representation (2) of this positive
real transfer function, i.e. one has to reconstruct the
coefficients.

In the case of ODE systems which are controllable and
observable, i.e. minimal, it is well known that (pH), (Pa),
(PR) are equivalent. Hence our focus lies on the non-
minimal case. For non-minimal ODE systems, a detailed
study has been conducted in (Brogliato et al., 2007, Chap-
ter 3) but without including pH systems. Another recent
survey was given in Hughes and Branford (2021) see p. 59
therein for a discussion on unobservable and uncontrollable
systems. The main goal is to study which implications
between the aforementioned properties hold for descrip-
tor systems, and to carve out for which implications the
controllability and observability assumptions are crucial.

3. MAIN CONTRIBUTION

For descriptor systems the relations between (pH),(Pa),
(KYP) and (PR) were already studied in numerous works
Zhang et al. (2002); Freund and Jarre (2004); Masub-
uchi (2006); Camlibel and Frasca (2009); Reis and Stykel
(2010); Reis et al. (2015); Reis and Voigt (2015). However
to the best of our knowledge not all four properties have
been investigated at the same time and oftentimes the
minimality of the descriptor system is assumed.

As a first step, those of the aforementioned results which
do not require minimality to obtain

(pH) =⇒ (KYP) =⇒ (Pa) =⇒ (PR).

The following examples show that without further assump-
tions the converse implications are not true.

(i) The system ẋ = −x+u, y = 0 has a solution to the
KYP inequalities (4), but it is not pH.

(ii) The descriptor system x = 0, y = x is passive but
there is no solution to the KYP.

(iii) The system
ẋ = x, y = x+ u

is positive real but it is not passive.

Hence the remaining questions which we will answer in the
talk are

(Q1) When do solutions to the KYP inequality lead to a
pH formulation?

(Q2) When does passivity leads to solutions of the KYP
inequality?

(Q3) Can every positive real transfer function be realized
as a pH system?

The counter example (i) indicates that answer to question
(Q1) is related to observability properties of the system.
It was shown already for ODE systems in (van der Schaft,
2009, p. 55) that only those solutions Q to the KYP which
satisfy

kerQ ⊆ kerA ∩ kerC (6)

lead to a pH formulation. Conversely, the Q used in (pH)
automatically satisfies (6).

We show that the same condition is true for descriptor
systems. If the system is behaviorally observable then
kerA ∩ kerC = {0} and hence the existence of a pH
formulation is equivalent to the existence of invertible
solutions to the KYP inequality.

The question (Q2) was already studied in Reis et al.
(2015); Camlibel and Frasca (2009) where it was shown
that passivity only guarantees the KYP inequality to hold
on certain subspaces and as a consequence, we can only
derive a pH formulation on a subspace. As a contribution,
we derive for descriptor systems with index one a modified
KYP inequality which can be solved for passive descriptor
systems. If the system is in addition behaviorally observ-
able then we derive a pH formulation of the system.

Regarding (Q3) we can explicitly construct a minimal
realization as a pH system based on the well-known
representation of positive real functions

T (s) = M1s+ Tp(s)

for some M1 ≥ 0 and a proper positive real rational
function Tp(s).
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Abstract: In this study, we develop a quantitative strategy for controlling cash-flow fluctuations of power 
utilities in electricity trading market using adequate financial instruments. In particular, we focus on 
hedging of thermal power generations and provide mixed positions of derivatives and forwards in a flexible 
manner, where we apply nonparametric regression techniques to find optimal payoff structure of derivatives 
and/or optimal units of forward contracts with fine granularity. An empirical backtest is conducted to 
illustrate our proposed hedging strategy. 
Keywords: Forward contracts, derivatives, thermal power generators, hedging, nonparametric regressions. 

1. INTRODUCTION 

In the liberalized electricity market as illustrated in Figure 1, 
electricity retailing companies purchase spot electricity 
through the central power exchange and deliver it to their 
consumers, in which their volume for procurement needs to 
match future demand with uncertainty. On the other side of the 
market, power generation companies place sales orders and 
produce electricity based on the executed volume. In addition, 
due to the rapid increase of renewable power generation, the 
generators’ supply volume depends on renewable energy 
sources (such as solar power) affected by weather 
conditions. In this situation, both electricity price and 
volume fluctuate in time, resulting in the risk of loss caused 
by high volatility of future cashflow. The objective of this 
study is to construct a quantitative strategy for reducing the 
cash-flow volatility in the electricity trading market based 
on financial instruments known as derivatives/forwards. 

Derivatives/forwards are financial contracts whose payoffs 
depend on the values of underlying indexes at a future period 
and can be used as insurance purpose in electricity markets. 
For example, a power utility company (a power generator or 
a retailer) may be suffered from the loss caused by extremely 
high (or low) electricity price in the electricity market, but 
such risk can be avoided by purchasing an electricity 
derivative that compensates unexpected price difference. Also, 
weather or electricity derivatives can be used for the loss of 
volume changes resulting from unexpected weather condition 
(Bhattacharya et al. (2020), Oum et al. (2006), Matsumoto and 
Yamada (2021a),  Coulon et al. (2013)).  

In this study, we assume that such derivatives are offered by 
an insurance company and are constructed in flexible manner. 
In other words, we apply nonparametric regression techniques 
to find optimal payoff structure of derivatives and/or optimal 
units of forward contracts with fine granularity. Note that this 
work follows the results provided in our recent work of 

Yamada and Matsumoto (2021), but differs in the following 
aspects: Mixed positions of derivatives and forwards are 
constructed based on the balance between standard and 
specific products and the trading strategy is provided; Most 
recent data periods are covered to reflect the effect of COVID-
19 pandemic and extreme price movement happened in 
January 2021 in Japan; Thermal power generations are 
particularly focused, where the thermal power generators’ 
volume may approximately be given by demand minus 
renewable energy power generations, being largely influenced 
by solar radiations and other weather conditions. 

2. PROBLEM SETTING 

We introduce the notation and data used in our analysis as 
follows, where the data was observed in the Tokyo area, Japan 
from April 1st, 2016, (when the Japanese electricity market was 
fully liberalized) to December 31st, 2021: 

𝑆𝑆𝑡𝑡,𝑚𝑚 [Yen/kWh]: JEPX spot price on day 𝑡𝑡 delivering 1 kWh 
of electricity between hours 𝑚𝑚  and 𝑚𝑚 + 1 
(http://www.jepx.org/market/index.html). 

Figure 1. Electricity trading market. 
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𝑉𝑉𝑡𝑡,𝑚𝑚 [kWh]: Power generation of thermal generators between 
hours 𝑚𝑚  and 𝑚𝑚 + 1  on day 𝑡𝑡.    
(https://www.tepco.co.jp/forecast/html/area_data-j.html)  

𝑇𝑇𝑡𝑡,𝑚𝑚  [° C] : Temperature index in constructed using the 
electricity consumption-based weighted average of nine 
observation points in Tokyo area at hour 𝑚𝑚  on day 𝑡𝑡 . 
(https://www.data.jma.go.jp/gmd/risk/obsdl/) 

𝑅𝑅𝑡𝑡,𝑚𝑚  [ MJ/m2] : Solar radiation index constructed using an 
installed capacity of local photovoltaics (PV) weighted 
average of seven observation points in Tokyo area between 
hours 𝑚𝑚  and 𝑚𝑚 + 1  on day 𝑡𝑡. 
(https://www.data.jma.go.jp/gmd/risk/obsdl/) 

Assume that there is a supply aggregator that compiles all the 
generation stacks from thermal generators and that the supply 
generator is willing to mitigate the fluctuations of total cash-
flows for power generation at each period defined by 𝑉𝑉𝑡𝑡,𝑚𝑚𝑆𝑆𝑡𝑡,𝑚𝑚. 
One measure of cash-flow variation is its variance, 
Var�𝑉𝑉𝑡𝑡,𝑚𝑚𝑆𝑆𝑡𝑡,𝑚𝑚�, and in this study, we consider the problem of 
minimizing the cash-flow variance using forwards and 
derivatives. Such a strategy may be referred to as minimum 
variance hedging and has been investigated in energy markets 
(see e.g., Halkos and Tsirivis (2019) and references therein).  

 At the heart of hedging is to replicate the target cash-flow 
using another cash-flow defined by payoff of a portfolio of 
forward/derivative contracts. In this work, we construct a 
mixed position of forward and derivative contracts on weather 
and electricity indexes for thermal generators (or the supply 
aggregator). To the end, we apply the following generalized 
additive model (GAM; Hastie and Tibshirani (1990), Wood 
(2017)) for each 𝑚𝑚 ∈ {0, … , 23}: 

𝑉𝑉𝑡𝑡,𝑚𝑚𝑆𝑆𝑡𝑡,𝑚𝑚 = 𝛿𝛿𝑚𝑚(𝑡𝑡)𝑆𝑆𝑡𝑡,𝑚𝑚 + 𝛾𝛾𝑚𝑚(𝑡𝑡)𝑇𝑇𝑡𝑡,𝑚𝑚 + ℎ𝑚𝑚�𝑅𝑅𝑡𝑡,𝑚𝑚�
+𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚(𝑡𝑡) + 𝜖𝜖𝑡𝑡,𝑚𝑚 (1) 

where 𝛿𝛿𝑚𝑚  and 𝛾𝛾𝑚𝑚  are yearly cyclical spline functions that 
modelled with by-variables, 𝑆𝑆𝑡𝑡,𝑚𝑚 and 𝑇𝑇𝑡𝑡,𝑚𝑚 (see Wood (2017)), 
ℎ𝑚𝑚  is a smoothing spline function and 𝜖𝜖𝑡𝑡,𝑚𝑚  is a residual 
satisfying zero mean condition, 𝜖𝜖𝑡𝑡,𝑚𝑚 = 0. Note that radiation 
derivatives (term ℎ𝑚𝑚�𝑅𝑅𝑡𝑡,𝑚𝑚�) are applied daytime only for 𝑚𝑚 ∈
{8, … , 15} and assume that ℎ𝑚𝑚 ≡ 0 for 𝑚𝑚 ∉ {8, … , 15}. 

In (1), 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚(𝑡𝑡) contains day of week, long-term, and 
seasonal trends as 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚(𝑡𝑡) = 𝛽𝛽1𝑀𝑀𝑀𝑀𝐶𝐶𝑡𝑡 + ⋯+ 𝛽𝛽6𝑆𝑆𝐶𝐶𝑡𝑡𝑡𝑡 + 𝛽𝛽7𝐻𝐻𝑀𝑀𝐶𝐶𝐻𝐻𝐶𝐶𝐶𝐶𝐻𝐻𝑠𝑠𝑡𝑡 
+𝑆𝑆𝐶𝐶𝐶𝐶𝑠𝑠𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡) + 𝐿𝐿𝑀𝑀𝐶𝐶𝐿𝐿𝑡𝑡𝐶𝐶𝐶𝐶𝑚𝑚(𝑡𝑡) + 𝑐𝑐 (2) 

where 𝑀𝑀𝑀𝑀𝐶𝐶𝑡𝑡 , … , 𝑆𝑆𝐶𝐶𝑡𝑡𝑡𝑡 ,  and 𝐻𝐻𝑀𝑀𝐶𝐶𝐻𝐻𝐶𝐶𝐶𝐶𝐻𝐻𝑠𝑠𝑡𝑡  denote day-of-week 
and holiday dummy variables that take 𝑀𝑀𝑀𝑀𝐶𝐶𝑡𝑡 = 1 if the day of 
𝑡𝑡 is Monday or 𝑀𝑀𝑀𝑀𝐶𝐶𝑡𝑡 = 0 otherwise, and so on. 𝑆𝑆𝐶𝐶𝐶𝐶𝑠𝑠𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡) 
denotes a yearly cyclical smoothing spline function and 
reflects the seasonal trend in 𝑉𝑉𝑡𝑡,𝑚𝑚𝑆𝑆𝑡𝑡,𝑚𝑚, whereas 𝐿𝐿𝑀𝑀𝐶𝐶𝐿𝐿𝑡𝑡𝐶𝐶𝐶𝐶𝑚𝑚(𝑡𝑡) 
is a smoothing spline function (e.g., a cubic spline function) of 
the day variable 𝑡𝑡. In GAM (1), all the spline functions and 
coefficients are estimated to minimize the so-called penalized 
residual sum of squares (PRSS) which corresponding to 
minimizing the sample variance of 𝜖𝜖𝑡𝑡,𝑚𝑚  with smoothing 
conditions (Matsumoto and Yamada (2021a), Yamada and 
Matsumoto (2021)), in which the estimated coefficients and 

spline functions differ by hour 𝑚𝑚, but we omit specifying this 
dependence for brevity. 

Note that 𝑉𝑉𝑡𝑡,𝑚𝑚𝑆𝑆𝑡𝑡,𝑚𝑚  defines the cash-inflow for power 
generators whereas 𝛿𝛿𝑚𝑚(𝑡𝑡)𝑆𝑆𝑡𝑡,𝑚𝑚 + 𝛾𝛾𝑚𝑚(𝑡𝑡)𝑇𝑇𝑡𝑡,𝑚𝑚 + ℎ𝑚𝑚�𝑅𝑅𝑡𝑡,𝑚𝑚� +
+𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚(𝑡𝑡) in (1) the cash-outflow when constructing the 
hedge position. In this case, the hedge portfolio may be 
constructed by taking short positions of electricity and 
temperature forwards for 𝛿𝛿𝑚𝑚(𝑡𝑡)  and  𝛾𝛾𝑚𝑚(𝑡𝑡)  units, radiation 
derivatives with payoff function ℎ𝑚𝑚�𝑅𝑅𝑡𝑡,𝑚𝑚�, zero coupon bonds 
with face value 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚(𝑡𝑡).  Then, solving GAM (1) yields 
minimum variance hedging with forwards and derivatives and 
𝜖𝜖𝑡𝑡,𝑚𝑚 gives a hedge error.  

3. EMPIRICAL BACKTESTS 

In this section, we apply our proposed minimum variance 
hedging for power generators (or equivalently, the supply 
aggregator), in which we estimate optimal spline functions and 
other required parameters in (1) based on the in-sample data to 
evaluate its out-of-sample performance using the out-of-
sample data. The data periods are given as follows: 

In-sample: April 1st, 2016, to December 31st, 2020. 
Out-of-sample: January 1st to December 31st, 2021. 

In this study, GAMs were estimated using R 4.0.5 
(https://www.R-project.org/) and the package mgcv (Wood 
(2021)) to obtain the series of smoothing spline functions, 
wherein the smoothing parameter is calculated by the 
generalized cross-validation criterion. All figures are plotted 
using MATLAB 2021a (MathWorks, Inc., Natick, MA, USA). 

We have estimated smooth functions and coefficients of GAM 
(1) using the data of in-sample-period, and executed out-of-
sample simulations by substituting the data observed in the 
out-of-sample period into the regression equation to compute 
predicted values of GAM (1). Such predicted values do not 
necessarily provide forecast values obtained in the past period 
because they contain explanatory variables to be measured at 
the same time as the target value is observed. However, 
plotting the predicted values of GAM together with the 
realized values of 𝑉𝑉𝑡𝑡,𝑚𝑚𝑆𝑆𝑡𝑡,𝑚𝑚 may help us intuitively grasp how 
the hedge is performed in the out-of-sample period. The blue 
and red lines in Figure 2 denote the realized and predicted 
values of 𝑉𝑉𝑡𝑡,𝑚𝑚𝑆𝑆𝑡𝑡,𝑚𝑚 for 𝑚𝑚 = 13 (1-2 pm) in the out-of-sample 
period, although they seem to be almost overlapped in these 
plots. Note that, around  1-2 pm, the electricity demand tended 
to take its maximum in a day, whereas the electricity price was 
not the highest due to the effect of solar power generation. In 
the current electricity market, the 30 minutes electricity price 
tends to take its highest value early evening. This is because 
the electricity demand still remains high, but the solar power 
generation almost disappears around that time. In fact, the spot 
electricity price recorded extremely high values around 4-9pm 
in the middle of January 2021 (which were about 25 times 
higher than monthly average price of January 2020). Such an 
extreme movement was observed in Figure 2 in that period. 

As mentioned earlier in this section, although the predicted 
values given by regression equation in the right-hand side of 
(1) are not forecast values determined in the in-sample period, 
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the gap of two lines in Figure 2 provides hedge errors between 
𝑉𝑉𝑡𝑡,𝑚𝑚𝑆𝑆𝑡𝑡,𝑚𝑚  and the value of hedge portfolio consisting of 
forwards, derivatives, and bonds. To understand the effects of 
forwards and derivatives against the cash-flow fluctuation 
without these products, we consider a reference model using 
calendar trend only using GAM as 

𝑉𝑉𝑡𝑡,𝑚𝑚𝑆𝑆𝑡𝑡,𝑚𝑚 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚(𝑡𝑡) + 𝜖𝜖𝑡𝑡,𝑚𝑚
𝑟𝑟𝑟𝑟𝑟𝑟 (3) 

where 𝜖𝜖𝑡𝑡,𝑚𝑚
𝑟𝑟𝑟𝑟𝑟𝑟  is a residual satisfying zero mean condition, 

𝜖𝜖𝑡𝑡,𝑚𝑚
𝑟𝑟𝑟𝑟𝑟𝑟 = 0. In (3), 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚(𝑡𝑡) may be thought of the face 

value of zero-coupon bond maturing on day 𝑡𝑡 corresponding 
to the payment of debt from the income  𝑉𝑉𝑡𝑡,𝑚𝑚𝑆𝑆𝑡𝑡,𝑚𝑚 for power 
generators. If the gap between 𝑉𝑉𝑡𝑡,𝑚𝑚𝑆𝑆𝑡𝑡,𝑚𝑚 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚(𝑡𝑡) is 
large, they may suffer from finding another source of financing. 
This is the idea to introduce financial instruments where the 
cash-flow fluctuations defined the residual terms are 
minimized using forwards and derivatives based on GAMs. 

The blue and the red lines in Figure 3  compare unhedged vs. 
hedged cash-flows in the out-of-sample period for 𝑚𝑚 = 13 (1-
2pm). These lines were obtained by substituting the observed 
variables in (1) and (3) and plotting the residuals 𝜖𝜖𝑡𝑡,𝑚𝑚 and 𝜖𝜖𝑡𝑡,𝑚𝑚

𝑟𝑟𝑟𝑟𝑟𝑟 
in the out-of-sample period for the hedged (red line) and the 
unhedged (blue line) cash-flows, respectively. Compared to 

the unhedged cash-flows, we see that the fluctuations of 
hedged cash-flows are significantly reduced by combining 
derivatives and forwards in these out-of-sample simulations.  

3.3 Performance evaluation 

We investigate the accuracy of the hedge in terms of the 
following Variance Reduction Rates (VRRs) and Normalized 
Mean Absolute Errors (NMAEs) for out-of-sample data: 

𝑉𝑉𝑅𝑅𝑅𝑅 ≔
Var�𝜖𝜖𝑡𝑡,𝑚𝑚

𝑜𝑜𝑜𝑜𝑡𝑡�
Var�𝜖𝜖𝑡𝑡,𝑚𝑚

𝑟𝑟𝑟𝑟𝑟𝑟�
, 𝑁𝑁𝑀𝑀𝑁𝑁𝑁𝑁 ≔

�𝜖𝜖𝑡𝑡,𝑚𝑚
𝑜𝑜𝑜𝑜𝑡𝑡��������

�𝜖𝜖𝑡𝑡,𝑚𝑚
𝑟𝑟𝑟𝑟𝑟𝑟�������� (4) 

where 𝜖𝜖𝑡𝑡,𝑚𝑚
𝑜𝑜𝑜𝑜𝑡𝑡 and 𝜖𝜖𝑡𝑡,𝑚𝑚

𝑟𝑟𝑟𝑟𝑟𝑟 denote hedge errors corresponding to the 
residual of GAMs (1) and (3) with out-of-sample data. In (4), 
VRR and NMAE are defined by the ratios for improvement by 
applying derivatives and forwards compared to unhedged 
errors in the out-of-sample case. The bottom blue lines in 
Figures 4 and 5 provide VRRs and NMAEs for different values 
of 𝑚𝑚 = 0,1, … ,23  using hedged cash-flows with electricity 
and temperature forwards and radiation derivatives, i.e., the 
out-of-sample hedge errors for GAM (1). The red lines are the 
ones with electricity and temperature forwards and the yellow 
with electricity forwards only. Note that the radiation 
derivatives were applied for  𝑚𝑚 = 8, … ,15  (8am-4pm), the 
blue and the red lines take the same values outside this range. 
From these figures, we see that the introduction of temperature 
forwards reduced the cash-flow fluctuation early morning and 
daytime significantly, whereas the improvement in the evening 
was not observed almost at all. On the other hand, the 
introduction of radiation derivatives always improves the 
hedge performance.   

4. CONCLUSION 

In this paper, we have considered hedging of thermal power 
generators and provided mixed positions of forwards and 
derivatives on electricity price and weather indexes. The key 
findings of our analysis are summarized below. 

1. Although unhedged cash-flows for power generators 
were unstable and had extreme price and volume 
fluctuations, they were shown to be stabilized by using 
financial instruments of our study. The fluctuations of 
hedged cash-flows were significantly improved by 
combining derivatives and forwards even in the out-of-
sample simulations. 

2. In contrast with power retailers’ volume, the thermal 
generators’ volume does not only depend on consumers’ 
demand but also on the renewable power generation and 
others. The larger the amount of solar radiation, the lower 
the electricity price and the volume for thermal power 
generators (when demand is fixed). Our analysis showed 
that the radiation derivative is effective to reduce the 
cash-flow fluctuation resulting from uncertainty in solar 
power generation. 

3. The cyclic trends in the units of electricity and the 
temperature forwards possessed in the hedge portfolio 
were modelled by combining cyclic splines with by-
variables in GAMs and were shown to provide significant 

Figure 2. Realized vs. Predicted values of 𝑉𝑉𝑡𝑡,𝑚𝑚𝑆𝑆𝑡𝑡,𝑚𝑚 in 
the out-of-sample period when 𝑚𝑚 = 14 (1-2pm). 

Figure 3. Unhedged vs. Hedged cash-flows in the out-
of-sample period when (1-2pm). 
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hedge effects in terms of out-of-sample VRRs and 
NMAEs. Since electricity and temperature forwards are 
considered standardized products, showing their 
effectiveness is particularly important. 

Compared to other electricity utility businesses, there is a 
variety of risks for thermal generators other than wholesale 
electricity price-volume fluctuations and the uncertainty of 
solar power generation. For example, volatility of fossil fuel 
energy prices is extremely high and the energy prices including 
oil and natural gas have increased currently (see e.g., 
https://www.eia.gov/, accessed on February 14th, 2022). Also, 
further investments in thermal power plants are becoming 
more difficult due to the regulations for controlling global 
warming gas emissions and many countries have been 
promoting a renewable energy policy. However, it is still fair 
to say that majority of electricity power generation depend on 
fossil fuel thermal power, and we need to consider risk 
management techniques for power generators from a cash-
flow management perspective as well. In this sense, it is 
important to develop financial instruments and related strategy 
for reducing financial risk for power generators, which may 
lead to a smoother transition to renewable power as a core 
supply technology.  

In practice, the interpretability of results is often important as 
well as accuracy, and we have taken a statistical approach 
based on GAM in this study, rather than other machine 

learning techniques. In this context, we have discussed the 
effectiveness of GAM for PV forecast in Matsumoto and 
Yamada (2021b), in comparison with four machine learning 
techniques and shown that the GAM-based PV forecast model 
flexibly express the tangled trend structure inherent in time 
series data and has an advantage not only in interpretability but 
also in improving forecast accuracy. A further investigation 
including a comparison of hedging models based on other 
machine learning techniques is interesting for future study. 
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Abstract: We present a novel targeted exploration strategy for the application of robust
dual control. Unlike common greedy random exploration strategies considered in the related
dual control literature, we introduce a targeted strategy in which the exploration inputs are
a linear combination of sinusoids whose amplitudes are optimized based on an exploration
criterion. Specifically, we leverage recent results on persistence of excitation using spectral lines
to show how a (high probability) lower bound on the resultant persistence of excitation of the
exploration data can be established. These results can be used to provide a priori lower bounds
on the remaining model uncertainty after exploration. Given this exploration strategy and the
corresponding uncertainty bounds, tools from robust control and gain-scheduling can be used
to design a robust dual controller.

Keywords: Identification for control, Learning for control, Dual control

1. INTRODUCTION

Control inputs to an uncertain system should have a ‘di-
recting effect’ to control the dynamical system and achieve
a certain goal. Furthermore, the inputs should also have a
‘probing’ effect to learn the uncertainty in the system. In
close association with these effects, simultaneous learning
and control of uncertain dynamic systems has garnered
research interest with the establishment of the dual control
paradigm (Feldbaum, 1960). A detailed survey of dual
control methods are provided by Filatov and Unbehauen
(2000), and Mesbah (2018).

An approach to the dual control problem is to sequen-
tially apply some probing input or exploration, and then
a stabilizing controller informed by the gathered data.
Recent methods by Umenberger et al. (2019), Barenthin
and Hjalmarsson (2008), Ferizbegovic et al. (2019), and
Iannelli et al. (2020) focus on targeted exploration and
perform better than methods that use common greedy
exploration. In particular, these methods consider that ex-
ploration should be targeted in the sense that the resulting
uncertainty reduction in the model facilitates achieving
a control goal and performance objective. The work of
Umenberger et al. (2019) introduces a targeted exploration
strategy that excites the system to reduce uncertainty

⋆ F. Allgöwer is thankful that his work was funded by Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) un-
der Germany’s Excellence Strategy - EXC 2075 - 390740016 and
under grant 468094890. F. Allgöwer acknowledges the support by the
Stuttgart Center for Simulation Science (SimTech). Janani Venkata-
subramanian thanks the International Max Planck Research School
for Intelligent Systems (IMPRS-IS) for supporting her.

specifically in a way that it minimizes the worst-case cost.
This approach relies on a high probability uncertainty
bound on system parameters which can be approximately
predicted and thus optimized depending on the explo-
ration input. Developing on the works of Barenthin and
Hjalmarsson (2008), and Umenberger et al. (2019), a dual
control strategy is proposed by Ferizbegovic et al. (2019)
that minimizes the worst-case cost achieved by a robust
controller that is synthesized with reduced model uncer-
tainty. The approach by Iannelli et al. (2020) extends the
exploration strategy by Umenberger et al. (2019) to a more
realistic finite horizon problem setting that captures the
trade-offs between exploration and exploitation better.

The exploration methods proposed by Venkatasubrama-
nian et al. (2020), Barenthin and Hjalmarsson (2008),
Umenberger et al. (2019), Ferizbegovic et al. (2019), and
Iannelli et al. (2020), rely on state-feedback and an ad-
ditional optimized Gaussian noise term for exploration.
To tractably compute the predicted uncertainty bound
associated with the parameter estimates after exploration,
the empirical covariance is approximated by the worst-case
state covariance. These approximations fail to provide a
priori guarantees of excitation on the exploration inputs.
Hence, we propose harmonic exploration inputs in the form
of a linear combination of sinusoids of specific frequencies
and reduce uncertainty in a targeted fashion with the
goal of guaranteed control performance. This choice is
also supported in literature, where it was established that
the robust optimal control input can be expressed with
appropriately chosen amplitudes and frequencies of the
sinusoids (Rojas et al., 2007). Additionally, by suitably
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influencing the spectral content of inputs, these inputs
provide the advantage of guaranteed persistence of exci-
tation (Sarker et al., 2020). The spectral information of
the exploration inputs can be used to determine a lower
uncertainty bound on the persistence of excitation of the
exploration data, which can in turn be used to design a
robust controller that provides some desired performance
guarantees. Regarding the application of targeted explo-
ration in dual control, our exploration strategy can be
employed in our recently proposed gain-scheduling based
dual control approach (Venkatasubramanian et al., 2020).
The gain scheduling based approach gives rise to a linear
matrix inequality (LMI) based design with closed-loop
performance guarantees.

2. PROBLEM FORMULATION

Notation The transpose of a matrix A ∈ Rn×m is denoted
by A⊤. The positive definiteness of a matrix A ∈ Rn×n

is denoted by A = A⊤ ≻ 0. The conjugate transpose
of a matrix A ∈ Cn×m with complex entries is denoted
by AH. The operator vec(A) stacks the columns of A
to form a vector. The operator diag(A1, ..., An) creates
a block diagonal matrix by aligning the input matrices
A1, ..., An along the diagonal starting with A1 in the
upper left corner. The critical value of the Chi-squared
distribution with n degrees of freedom and probability
p is denoted by χ2

n(p). The space of square-summable
sequences is denoted by ℓ2. A unit sphere of dimension
d is denoted by Sd−1. The expected value of a random
variable X is denoted by E[X]. Given a sequence {xk}T−1

k=0 ,
the discrete Fourier transform (DFT) of the sequence is

denoted by x(ejω) =
∑T−1

k=0 xke
−j2πkω where ω ∈ ΩT

and ΩT := {0, 1/T, ..., (T − 1)/T}. For a vector x ∈ Rn,

the Euclidean norm is denoted by ∥x∥ =
√
x⊤x. For a

matrix M ∈ Cm×n, the largest singular value is denoted
by ∥M∥. A random variable X ∈ Rd that is normally
distributed with mean µ and variance Σ is denoted by
X ∼ N (µ,Σ). A random variable X ∈ R is said to be
sub-Gaussian with variance proxy σ2, i.e., X ∼ subG(σ2),
if E[X] = 0 and its moment generating function satisfies

E[esX ] ≤ e

(
σ2s2

2

)
, ∀s ∈ R. A random vector X ∈ Rd

is said to be sub-Gaussian with variance proxy σ2, i.e.,
X ∼ subG(σ2), if E[X] = 0 and u⊤X is sub-Gaussian with
variance proxy σ2 for any unit vector u ∈ Sd−1.

Setting: Consider a discrete-time linear time-invariant
dynamical system of the form

xk+1 = Atrxk +Btruk + wk, wk
i.i.d.∼ N (0, σ2

wI) (1)

where xk ∈ Rnx is the state, uk ∈ Rnu is the control input,
and wk ∈ Rnx is the normally distributed process noise. It
is assumed that the realizations of wk are independent and
identially distributed (i.i.d.) and the state xk is directly
measurable. The true values of the system dynamics, Atr

and Btr, are unknown.

Control goal and outline: The overarching goal of the
proposed dual control strategy is to design a stabiliz-
ing state-feedback controller uk = Kxk which ensures
that the closed-loop system is stable while also satisfying
some desired quadratic performance specifications, e.g.,
ℓ2-gain with high probability (Scherer, 2001; Veenman

and Scherer, 2014). Additionally, an initial estimate of
the system parameters is available with potentially large
uncertainty. Correspondingly, we propose a sequential dual
control approach wherein a targeted exploration strategy
is implemented first and is followed by the implementation
of the parametrized state-feedback controller. The primary
challenge is to encapsulate the dual effect of performance
improvement through the process of exploration, and to
tailor the exploration in a manner that is pertinent to
performance improvement. Therefore, we simultaneously
design a targeted exploration strategy and a parametrized
state-feedback controller for the system in (1) in depen-
dence of the future parameters/model estimate. The new
parameter estimate, which influences the state-feedback
control law K, is interpreted as a scheduling variable using
tools from gain-scheduling (Venkatasubramanian et al.,
2020). The preliminaries regarding uncertainty bounds for
parameter estimation based on time-series data and spec-
tral information are provided in Section 3. The exploration
strategy and the corresponding uncertainty bound on the
data obtained during exploration are elaborated in Section
4. The dual control strategy is summarized in Section 5.

3. UNCERTAINTY BOUND

This section discusses preliminary results that provide
a data-dependent uncertainty bound on the parameter
estimates, and a lower uncertainty bound on the resultant
persistence of excitation based on spectral information,
by Umenberger et al. (2019) and Sarker et al. (2020),
respectively.

3.1 Data-dependent uncertainty bound

Given observed data D = {xk, uk}N−1
k=0 of length N , denote

ϕk =
[
x⊤
k u⊤

k

]⊤ ∈ Rnϕ where nϕ = nx + nu. The least
squares estimate of the unknown parameters Atr and Btr

is computed as:

(Â, B̂) = argmin
A,B

N−1∑
k=0

||xk+1 −Axk −Buk||22. (2)

The following lemma provides a high probability credibil-
ity region for the uncertain system matrices.

Lemma 1. (Umenberger et al., 2019, Lemma 3.1) Given

data set D and 0 < δ < 1, let D = 1
σ2
wcδ

∑N−1
k=1 ϕkϕ

⊤
k

with cδ = χ2
n2
x+nxnu

(δ). Suppose we have a uniform prior

over the parameters (A,B), i.e., given θ = vec([A,B]),
p(θ) ∝ 1. Then, [Atr, Btr] ∈ Θ with probability 1 − δ,
where

Θ :=

{
A,B :

[
(Â−A)⊤

(B̂ −B)⊤

]⊤
D

[
(Â−A)⊤

(B̂ −B)⊤

]
⪯ I

}
. (3)

The result of Lemma 1 is a data-dependent uncertainty
bound that can be utilized to synthesize robust controllers
similar to approaches by Umenberger et al. (2019), Fer-
izbegovic et al. (2019), Iannelli et al. (2020), and Venkata-
subramanian et al. (2020). In Section 4, we use this to
derive a suitable targeted exploration strategy. Since the
dynamics are unknown in this setup, we compute an initial
error bound of the form given in Lemma 1 from the
following assumption.
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Assumption 1. The parameters (A,B) have a uniform
prior. Furthermore, an initial data set D0 = {ϕk}−1

k=−T0
is

available such that

D0 :=
1

σ2
wcδ

−1∑
k=−T0

ϕkϕ
⊤
k ≻ 0. (4)

Initial estimates of the system parameters Â0 and B̂0 can
be derived from the data D0. The matrix D0 quantifies
the robust bound associated with these initial estimates
for a given probability 1 − δ (cf. Lemma 1), and can be
determined from D0 as given in (4). This initial data can
be acquired through some random persistently exciting
input. Through the targeted exploration process for T time
steps (cf. Section 4), data DT = {ϕk}T−1

k=0 will be observed.

The new estimates ÂT and B̂T will be computed from
data D0 ∪ DT and made available at time T . The matrix
DT := D0+

1
σ2
wcδ

∑T−1
k=0 ϕkϕ

⊤
k will quantify the uncertainty

associated with the estimates ÂT and B̂T (cf. Lemma 1).

3.2 Finite excitation based on the theory of spectral lines

This subsection discusses parameter estimation results
based on the theory of spectral lines (Bai and Sastry,
1985; Sarker et al., 2020), which deals with the analysis
of frequency domain information that can be derived from
time-series data. The finite-data uncertainty bounds in
Lemma 1 are based on the matrix D, which corresponds
to the following notion of finite excitation.

Definition 1. (Finite Excitation (Sarker et al., 2020)) A
sequence {ϕk}k≥0,...T−1 is said to be finitely exciting from
k = 0 to T − 1 if there exist constants 0 < ρ1 ≤ ρ2 such
that

ρ2I ⪰
T−1∑
k=0

ϕkϕ
⊤
k ⪰ ρ1I. (5)

With finite data in the stochastic setting, the notion of a
sub-Gaussian spectral line is introduced.

Definition 2. (Sub-Gaussian Spectral Line (Sarker et al.,
2020)) A stochastic sequence {ϕk}k≥0,...T−1 is said to have
a sub-Gaussian spectral line from k = 0 to T − 1 at a
frequency ω0 ∈ ΩT of amplitude ϕ̄(ω0) ∈ Cnϕ and a radius
R > 0 if

1

T

T−1∑
k=0

ϕke
−j2πω0k − ϕ̄(ω0) ∼ subG(R2/T ). (6)

In order to establish the relationship between the spectral
content of the input and finite excitation, the expected
information matrix is first defined.

Definition 3. (Expected Information Matrix (Sarker et al.,
2020)) Given a sequence {ϕk}k≥0 with L sub-Gaussian
spectral lines at frequencies {ω1, ..., ωL} from k = 0 to
T − 1 with amplitudes {ϕ̄(ω1), ..., ϕ̄(ωL)}, the information
matrix Φ̄ is defined as

Φ̄ =

 . . .
ϕ̄(ω1) . . . ϕ̄(ωL)

. . .

 . (7)

In deterministic system identification, fast estimation of
unknown parameters is made possible if Φ̄ is full rank and

numerically well conditioned. Note that we consider nϕ

spectral lines for simplicity, which is the smallest number
required for finite excitation and results in a square matrix
Φ̄. Subsequently, since ωi ∈ ΩT , i = 1, ..., nϕ, we set
T ≥ nϕ and select nϕ frequencies from ΩT . Furthermore,
whether an input signal is finitely exciting or not can
be ascertained from its spectral content. The following
lemma, inspired by (Sarker et al., 2020, Proposition 2),
presents a clear relationship between the spectral content
of the signal and finite excitation by utilizing the expected
information matrix.

Lemma 2. If a sequence {ϕk}k≥0,...T−1 has nϕ spectral
lines at frequencies ω1, ..., ωnϕ

from k = 0 to T − 1 with

amplitudes {ϕ̄(ω1), ..., ϕ̄(ωnϕ
)}, then, for any ϵ ∈ (0, 1), ϕk

satisfies

1

T

T−1∑
k=0

ϕkϕ
⊤
k ≥ 1

nϕ

(
(1− ϵ)Φ̄⊤Φ̄ +

(
1− 1

ϵ

)
W̃⊤W̃

)
.

(8)

Here, W̃ is a random matrix for which each column is
sub-Gaussian with properties as derived in Section 4.2.
W̃ captures the effect of the disturbances w in a suitably
defined manner. Inequality (8) can be used to determine
a lower bound DT on the informativity of the exploration
data before the process of exploration. Such bounds are
crucial for robust dual strategies (cf. Venkatasubramanian
et al. (2020)). Note that this lower bound depends on the
information matrix Φ̄, which contains the amplitudes of
the harmonic signals (cf. (7)), as well as on the size of the
noise.

4. TARGETED EXPLORATION

In this section, we propose a targeted exploration strategy
and the corresponding uncertainty bound on the data
obtained through the process of exploration. Unlike strate-
gies based on greedy random exploration, we introduce a
targeted exploration strategy in the form of a linear com-
bination of sinusoids in specific frequencies that explicitly
allow for the shaping of model uncertainty. Furthermore, a
lower bound on finite excitation of the exploration data can
be achieved using spectral information of the exploration
inputs (cf. Lemma 2). This lower bound is pivotal in the
design of a robust dual controller (cf. Section 5).

4.1 Exploration strategy

The exploration input takes the form

uk =

nϕ∑
i=1

ai cos(ωik), (ai ∈ Rnu), k = 0, ..., T − 1 (9)

where T is the exploration time and ai is the amplitude of
the sinusoidal input with frequency ωi. The amplitude of
the sub-Gaussian spectral line at frequency ωi is denoted
as u(ωi). Since the input is sinusoidal and deterministic,
the amplitude of the spectral line is |u(ωi)| = ai/2,
and the radius of the spectral line is 0. Denote Ue =
diag(U1, ..., Unϕ

) where Ui = u(ωi). The exploration input
is computed such that it excites the system sufficiently
with minimal control energy based on the initial parameter
estimates, i.e., U⊤

e Ue ⪯ γe where the bound γe is desired
to be small.

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



4.2 Parameter estimation bounds

For the system evolving under the exploration input as
given in (9), the uncertainty bound on the parameters
can be computed from the expected information matrix
Φ̄ of the input. As a requisite to compute the uncertainty
bound, it is necessary to establish the relationship between
the spectral content of the observed state and the input.
The transfer function from uk to ϕk can be written as,

ϕ(ejω) =

[
(ejωI −Atr)

−1Btr

Inu

]
u(ejω) +

[
(ejωI −Atr)

−1

0

]
w(ejω).

(10)

Given uk as in (9) and from (Sarker et al., 2020, Lemma
1), ϕk has a sub-Gaussian spectral line from 0 to T − 1 at
frequency ω0 ∈ ΩT with amplitude

ϕ̄(ω0) =

[
(ejω0I −Atr)

−1Btr

Inu

]
ū(ω0). (11)

Denote

Vi =

[
(ejωiI −Atr)

−1Btr

Inu

]
, Vtr = [V1, · · · , Vnϕ

],

Yi =

[
(ejωiI −Atr)

−1

0

]
, Ytr = [Y1, · · · , Ynϕ

],

W = diag(w̄(ω1), ..., w̄(ωnϕ
)).

Then,
Φ̄ = [V1U1, · · · , Vnϕ

Unϕ
] = VtrUe.

One can show that Lemma 2 holds with W̃ = YtrW and
ϵ > 0 from (10):

1

T

T−1∑
k=0

ϕkϕ
⊤
k ⪰

1

nϕ

(
(1− ϵ)U⊤

e V H
trVtrUe +

(
1−

1

ϵ

)
W̃⊤W̃

)
⪰ DT

(12)

from which we can derive a lower bound on the parameter
uncertainty. Recall that we want to derive a lower bound
on the information in the exploration data DT which

involves the term
∑T−1

k=0 ϕkϕ
⊤
k . Here, Vtr is unknown,

however, we can compute an estimate V̂ using an estimate
of the system parameters Â0, B̂0. By suitably bounding
|Vtr − V̂ |, a valid lower bound DT satisfying (12) can be
computed. Hence, we can compute a lower bound on finite
excitation as defined in (5) only from terms that are known
to us. By appropriately choosing the input Ue, we can
guarantee a certain finite excitation in the future.

5. ROBUST DUAL CONTROL

The proposed harmonic targeted exploration strategy with
the associated lower bound in (12) can be combined with
the dual control paradigm suggested by Venkatasubrama-
nian et al. (2020). The exploration strategy and a robust
state-feedback controller can be simultaneously designed
such that applying the feedback after exploration ensures
the satisfaction of some performance specifications with
high probability. Initial estimates of the system param-
eters, with potentially large uncertainty, are available.
During the process of exploration, the estimates Â and
B̂ change due to new data. We utilize this information
by modeling the true system in (1) as a linear parameter

varying (LPV) system, where the estimates Â, B̂ are
measured online. Given uncertainty bounds on the initial

estimates and the estimates obtained after exploration, the
dual control problem can now be interpreted as a gain-
scheduling problem as described by Venkatasubramanian
et al. (2020). The new parameter estimates obtained after
exploration are selected as a scheduling variable which
influences the control law K, thereby encapsulating the
dual effect of performance improvement through the pro-
cess of exploration. The resulting dual controller with
targeted harmonic exploration strategy can provide (high-
probability) a priori performance bounds by utilizing the
excitation guarantees derived in (12). Further details in-
cluding a theoretical analysis of the proposed dual control
strategy can be found in (Venkatasubramanian et al.,
2022).
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Allgöwer, F. (2020). Robust dual control based on gain
scheduling. In Proc. 59th IEEE Conference on Decision
and Control (CDC), 2270–2277. IEEE.
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Abstract: This article is a resubmission of the full paper that was accepted for the presentation
at the MTNS 2020. This article reports error analysis and asymptotic variance of a closed-loop
subspace model identification method for a system described with the output-error state-space
representation. For details, since the procedure of the identification method includes the QR
factorization of stacked data Hankel matrices, this study investigates asymptotic properties of
block entries of the triangular matrix obtained from the QR factorization. The set of the block
entries is separated into two components, namely, the signal-based component and the noise-
based component. The contributions are to derive asymptotic properties of both components and
to obtain the asymptotic covariance matrix of the vectorization of the noise-based component.

Keywords: System identification, subspace methods, closed-loop identification, asymptotic
properties, covariance matrices

1. INTRODUCTION

The authors have proposed a closed-loop subspace model
identification method for a system described with the
output-error state-space representation (Oku et al., 2006a,b).
Since it utilizes the QR-factorization and its procedure
resembles the procedure of the “MOESP” family very
much, for convenience it is called CL-MOESP for the rest
of this paper. A superiority of CL-MOESP is that it can
directly estimate a system to be identified in closed-loop
even when it is contaminated with the arbitrary colored
output-error noise. Practical usefulness has been demon-
strated by closed-loop system identification experiments
on a cart-inverted-pendulum system (Oku and Ushida,
2009), a coaxial miniature helicopter (Matsuba et al., 2012;
Kojio et al., 2014) and a quadrotor drone (Nakayama
and Oku, 2018). Asymptotic properties and optimality of
CL-MOESP have been discussed in part by Oku (2010).
However, the analysis of consistency of the estimate and
error, as well as the analysis of the asymptotic variance, is
an important open problem.

With respect to the error analysis of CL-MOESP, this
paper studies the estimation error of the triangular matrix
obtained by the QR factorization of a stack of data
Hankel matrices defined later. In details, focusing on
significant block entries of the triangular matrix that are
used to estimate the extended observability matrix and
the coefficient matrices, the set of the block matrices
is described using data Hankel matrices, and then it
is separated into two components, namely, the signal-
based component and the noise-based component. The

⋆ This article is a resubmission of the full paper that was accepted
at the MTNS 2020, with more concise notations adopted. This work
was supported by JSPS KAKENHI Grant Number 18K04217.

contributions are as follows: 1) to prove that the signal-
based component converges in probability to the matrix
composed of meaningful structured matrices, each of which
consists of the Markov parameters of the closed-loop
system to be handled, 2) to prove that the noise-based
component converges in probability to zero, and finally,
3) to derive the asymptotic covariance matrix of the
vectorization of the noise-based component.

2. BRIEF REVIEW OF CL-MOESP

In this section, CL-MOESP in a general framework is
briefly reviewed (Oku et al., 2006a,b).

Let us consider a closed-loop system depicted in Fig. 1.
Suppose the plant P, which is to be identified, be a
discrete-time linear time-invariant system described by the
following minimal realization:

xk+1 = Axk +Buk, yk = Cxk + vk, (1)

where xk ∈ Rn denotes the state vector. Note that
the order of the system, n, is unknown and it is to
be estimated. Note also that the coefficients (A,B,C)
are unknown and to be estimated up to a similarity
transform. The output signal yk ∈ Rl is measurable but it
is contaminated with the colored noise vk ∈ Rl. The input
to P, uk ∈ Rm, is generated by subtraction of the output
filtered by a stabilizing controller, K = K(q), from the
external excitation signal rk, that is,

uk = rk −K(q)yk, (2)

where q denotes the forward shift operator.

Let us assume the set point dk ≡ 0. Then, K(q) is not
necessarily known 1 .
1 Also for the case where d is a constant reference signal, K(q) is
not necessarily known when the output is redefined as y − d.
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Fig. 1. Closed-loop system

Assume that, for ∀k and ∀i ≥ 0, xk is independent of rk+i.
It means that the state at the current instant is influenced
by the external excitation at relatively past instants. {rk}
and {vk} are assumed to be uncorrelated each other in the

sense that for ∀i,∀j ∈ Z, limM→∞
1
M

∑M
k=1 vi+kr

T
j+k = 0.

Given a sequence {uk}, the block Hankel matrix, Ui,s,j ∈
Rms×j , is defined as

Ui,s,j :=


ui ui+1 · · · ui+j−1

ui+1 ui+2 · · · ui+j
...

...
...

ui+s−1 ui+s · · · ui+s+j−2

 , (3)

where the first subscript, i, is the same as the subscript on
the top-left block element, and the others, s and j, mean
that Ui,s,j ∈ Rms×j is of s block rows and j columns. Note
that s > 0 is a user-defined parameter which is chosen
to be sufficiently larger than n. For sequences {yk}, {rk}
and {vk}, the block Hankel matrices Yi,s,j ,Ri,s,j and Vi,s,j
are respectively defined in a manner similar to (3). These
matrices are called the data Hankel matrices for the rest
of this paper. For brevity’s sake, the following notations
with respect to the data Hankel matrices are introduced:
for an integer N that is sufficiently larger than s,

Rf := R0,s,N , Uf := U0,s,N , Yf := Y0,s,N ,

Rp := R−s,s,N , Up := U−s,s,N .

Note that the subscriptions “f” and “p” respectively
represents that the data Hankel matrices are made of
relatively “future” and “past” data, respectively. Define

R :=
[
RT
p RT

f

]
. For a sequence {xk}, define

Xi,j := [ xi xi+1 · · · xi+j−1 ] . (4)

Given a quadruple of matrices (E,F,G,H) of appropriate
sizes, define the notations as follows (Ikeda, 2014):

Oi(G,E) :=
[
GT (GE)T · · · (GEi−1)T

]T
, (5)

Li(E,F ) :=
[
Ei−1F · · · EF F

]
, (6)

Ti(E,F,G,H) :=


H 0
GF H
...

. . .
. . .

GEi−2F · · · GF H

 . (7)

Using these notations, the extended observability matrix,
O, and the block-Toeplitz matrix made of the Markov
parameters, T , can be denoted as, respectively,

O := Os(C,A), T := Ts(A,B,C,D).

Notice that from (1) D = 0 throughout this paper.

CL-MOESP is a solution to the following closed-loop
subspace model identification problem.

De�nition 1. Consider a closed-loop system depicted by
Fig. 1. The problem is to estimate the order n of P to be

identified and obtain the minimal realization (A,B,C) of
P up to a similarity transform from the measurements of
{rk}, {uk} and {yk}.

The procedure of CL-MOESP is as follows (Oku et al.,
2006a,b):

Algorithm 1. (CL-MOESP). Suppose that a set of sam-
pled data sequences {rk}，{uk} and {yk} be obtained
from a system identification experiment of the closed-loop
system as depicted in Fig. 1. Then, a state-space model
which represents the input/output relation of P can be
obtained according to the procedures as follows:

1. Execute the QR factorization of the following matrix: R
Up
Uf
Yf

 =

L11

L21 L22

L31 L32 L33

L41 L42 L43 L44



QT

1

QT
2

QT
3

QT
4

 (8)

2. Compute P and Υ
1
2 as follows:

P := L21 − L21L
T
31

(
L31L

T
31

)−1
L31 (9)

Υ
1
2 := L41P

T
(
PPT

)− 1
2 (10)

3. To estimate the extended observability matrix, O,
up to a similarity transform, execute singular value
decomposition (SVD) of Υ

1
2 and we have

Υ
1
2 =

[
Û Û⊥ ] [ Σ̂

Σ̂⊥

][ V̂ T(
V̂ ⊥
)T ] ,

where the diagonal matrix Σ̂ ∈ Rn×n has n dominant
singular values as its diagonal entries. Namely, the
number of the dominant singular values can estimate
the order of P. Note that the orthogonal matrix Û is
an estimate of O up to a similarity transform.

4. The set of estimates of the coefficients of a state-space
representation of P, i.e., (Â, B̂, Ĉ, D̂), can be obtained
according to the procedure similar in the paper of
Verhaegen and Dewilde (1992). See appendix A of the
literature (Oku and Ikeda, 2021) for the details.

3. PROBLEM SETTING AND NOTATIONS

The aim of this article is to study error analysis of the
triangular matrix obtained from the QR factorization (8).
Especially, since from (8), (9) and (10) the matrix with 3
significant block entries[

LT
21 L

T
31 L

T
41

]T
(11)

plays a key role in derivation of Υ
1
2 and the subsequent

procedures of CL-MOESP, we will investigate error anal-
ysis of (11) and derivation of its asymptotic covariance
matrix.

3.1 Problem setting and assumptions

Let us consider a closed-loop system depicted by Fig. 2.
To simplify the problem, a constant gain feedback case
will be considered. Let uk, rk ∈ Rm denote the input and
the external excitation signal, respectively. yk, ek ∈ Rl
denote the output and noise, respectively. The set point
is assumed to be dk ≡ 0 for ∀k. Suppose that P to be
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Fig. 2. A closed-loop system with constant gain feedback

identified is a n-th order LTI system of m inputs and l
outputs with a minimal realization described by

xk+1 = Axk +Buk, (12a)

yk = Cxk + ek. (12b)

where xk ∈ Rn denotes the state vector of P . The input uk
is generated by subtraction of the output yk multiplied by
a constant feedback gain K from the external excitation
signal rk, that is,

uk = rk −Kyk. (13)

Suppose the closed-loop system be internally stable.

For the rest of the paper, adopt the following assumptions:

A1. |λi(Ā)| < 1, where Ā := A−BKC.
A2. The noise {ek} is an unknown discrete-time Gaussian

process with the mean E[ek] = 0 and the covariance
E[eke

T
l ] = Ωeeδkl, which is not measurable.

A3. The external excitation signal {rk} is a known
discrete-time Gaussian process with the mean E[rk] =
0 and the covariance E[rkr

T
l ] = Ωrrδkl.

A4. {rk} and {ek} are uncorrelated with each other in the

sense that, for ∀i, ∀j ∈ Z, lim
M→∞

1

M

M∑
k=1

ei+kr
T
j+k = 0.

A5. For ∀i ≥ 0, ∀k, xk and rk+i are independent of each
other.

A6. The signals {xk}, {rk}, {uk}, {yk} and {ek} are
ergodic stationary processes.

3.2 Notations

The following notations are adopted: given i-successive
sampled data of u from k, i.e., {uk, · · · , uk+i−1}, define

ui(k) :=
[
uTk · · · uTk+i−1

]T
. (14)

Note that ri(k), yi(k) and ei(k) are also defined in a similar
manner to (14).

4. ERROR ANALYSIS OF CL-MOESP

4.1 Matrix input-output equations

Substitution of (13) into (12a) yields

xk+1 = Āxk +Brk +Beek, (15)

where Be := −BK. Recursive use of (15) gives, for i ≥ 1,

xk+i = Āixk + Li(Ā, B)ri(k) + Li(Ā, Be)ei(k). (16)

Let an integer s be sufficiently greater than n. Using the
output equation (12b) and (16),

yk+i = CĀixk + CLi(Ā, B)ri(k)

+ CLi(Ā, Be)ei(k) + ek+i (17)

is derived for i = 0, · · · , s − 1. Then, stack (17) for
i = 0, · · · , s− 1, and we have the following equation:

ys(k) = Oyxk + Tyrs(k) +Hyes(k), (18)

where Oy := Os(C, Ā), Ty := Ts(Ā, B,C, 0), Hy :=
Ts(Ā, Be, C, I). Moreover, place (18) for k = 0, · · · , N side
by side, and we obtain the following matrix IO equation:

Yf = OyXf + TyRf +HyEf (19)

where define Xf := X0,N and the error matrix Ef := E0,s,N .

Follow the same context discussed above, and we have the
following equation with respect to us(k):

us(k) = Ouxk + Turs(k) +Hues(k) (20)

where H := −KC, and Ou := Os(H, Ā), Tu :=
Ts(Ā, B,H, 0), Hu := Ts(Ā, Be,H,−K). Then, place (20)
for k = 0, · · · , N side by side, and we derive the following
matrix input-output equation:

Uf = OuXf + TuRf +HuEf . (21)

Now, recursive use of (16) toward the past gives the s-step
ahead state equation between xk and xk−s as follows:

xk = Āsxk−s + Lrrs(k − s) + Lees(k − s), (22)

where Lr := Ls(Ā, B) and Le := Ls(Ā, Be). Then, place
(22) for k = 0, · · · , N side by side, and we have the s-step
ahead matrix state equation as follows:

Xf = ĀsXp + LrRp + LeEp (23)

where Xp := X−s,N and Ep := E−s,s,N .

Finally, substitute (19) and (21) into (23) and notice an
analogy between Up and Uf with respect to (21), and we
have the following matrix input-output equations:[ Up
Uf
Yf

]
=

 Ou

OuĀ
s

OyĀ
s

Xp +

[ Tu 0
OuLr Tu
OyLr Ty

]
R+

[ Hu 0
OuLe Hu

OyLe Hy

]
E ,

(24)

where E :=
[
ET
p ET

f

]T
.

4.2 Description of the L-matrix with data Hankel matrices

With respect to the 3 block entries of the L-matrix, i.e.,
(11), the following lemma is derived from (8) directly:

Lemma 2. Assume that the matrix R is of full row rank.
Then, it holds that[

L21

L31

L41

]
=

[ Up
Uf
Yf

]
RTL−T

11 (25)

Proof. From (8), we obtain[ Up
Uf
Yf

]
RT =

[
L21

L31

L41

]
LT
11.

The invertibility of LT
11 is ensured by the assumption of

the full row rankness of R, and it completes the proof. □

Now, notice that RRT = L11L
T
11. Substitution of (24) into

(25) yields [
L21

L31

L41

]
= SN +NN ,

where SN andNN are called, respectively, the signal-based
component and the noise-based component of (11), defined
respectively as follows:
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SN :=

 Ou

OuĀ
s

OyĀ
s

XpRTL−T
11 +

[ Tu 0
OuLr Tu
OyLr Ty

]
L11, (26)

NN :=

[ Hu 0
OuLe Hu

OyLe Hy

]
ERTL−T

11 . (27)

4.3 Main results

The lower triangular matrix Lr is defined as the Cholesky
factor, up to a sign matrix, of the following asymptotic
covariance matrix:

LrL
T
r := lim

N→∞

1

N
RRT = block-diag(Ωrr, · · · ,Ωrr).

For the rest of the paper, let us assume that the sign matrix
is determined compatibly with the context.

The following theorem is for the probability convergence
property of the signal-based component SN :

Theorem 3. Under the assumptions from A1 to A6,

1√
N

SN −→ S∞ :=

[ Tu 0
OuLr Tu
OyLr Ty

]
Lr i.p. for N → ∞.

Proof. ∥ · ∥F denotes the Frobenius norm. For ∀ε > 0,

P

[∥∥∥∥ 1√
N

SN − S∞

∥∥∥∥
F

> ε

]

≤ P

∥∥∥∥∥∥
 Ou

OuĀ
s

OyĀ
s

 1

N
XpRT ·

(
1√
N
L11

)−T
∥∥∥∥∥∥
F

+

∥∥∥∥∥
[ Tu 0
OuLr Tu
OyLr Ty

](
1√
N
L11 −Lr

)∥∥∥∥∥
F

> ε


−→ 0, as N → ∞.

Note that limN→∞
1
NXpRT = 0 holds from A5. □

The following theorem is for the probability convergence
property of the noise-based component NN :

Theorem 4. Under the assumptions from A1 to A6,
1√
N

NN −→ 0 i.p. for N → ∞.

Proof. The assumption A4 gives limN→∞
1
N ERT = 0

Then, for ∀ε > 0, it holds that

lim
N→0

P

[∥∥∥∥∥
[

Hu 0
OuLe Hu

OyLe Hy

](
1

N
ERT

)
·
(

1
√
N
L11

)−T
∥∥∥∥
F

≥ ε

]
= 0

□

The vectorization of the noise-based component yields

vec (NN ) =

(
QT

1 ⊗

[ Hu 0
OuLe Hu

OyLe Hy

])
vec (E) .

We introduce the notations: Φ(i) := limN→∞QT
1J

i
NQ1,

Iν :=


1 0 · · · 0
0 1
...

. . .

0 0 1

 ∈ Rν×ν , Jν :=


0 0
1 0

. . .
. . .

0 1 0

 ∈ Rν×ν ,

The following theorem is for the asymptotic covariance
matrix of vec(NN ):

Theorem 5. Under the assumptions from A1 to A6,
vec (NN ) converges in distribution to the Gaussian dis-
tribution with zero mean and the covariance given by

lim
N→∞

E
[
vec (NN ) vec (NN )T

]
= I2ms ⊗

[ Hu 0
OuLe Hu

OyLe Hy

]
(I2s ⊗ Ωee)

[
Hu 0

OuLe Hu

OyLe Hy

]T


+

2s−1∑
i=1

Φ(i)⊗

[ Hu 0
OuLe Hu

OyLe Hy

]((
JT
2s

)i
⊗ Ωee

)[ Hu 0
OuLe Hu

OyLe Hy

]T


+

2s−1∑
i=1

Φ(i)T ⊗

[ Hu 0
OuLe Hu

OyLe Hy

](
Ji
2s ⊗ Ωee

)[ Hu 0
OuLe Hu

OyLe Hy

]T


Proof. The proof is omitted. See the literature (Oku and
Ikeda, 2021). □
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Abstract: We prove that a network of input-to-state stable infinite-dimensional systems is
input-to-state stable, provided that the gain operator of the network satisfies the monotone
limit property. This property is equivalent to the strong small-gain condition in the case of
finite networks. We prove our small-gain theorem for a very general class of networks, including
networks of nonlinear partial and delay differential equations. It also recovers the classical
nonlinear small-gain theorems for finitely many finite-dimensional systems as a special case.

Keywords: large-scale systems, nonlinear control systems, small-gain theorems, input-to-state
stability, distributed parameter systems.

1. INTRODUCTION

Stability of large-scale and infinite networks has attracted
a lot of attention during the last decades.

A prominent place is occupied by the theory of linear
spatially invariant systems Bamieh et al. (2002); Bamieh
and Voulgaris (2005); Besselink and Johansson (2017);
Curtain et al. (2009) whose applications range from mi-
croelectromechanical systems to control of car platoons.
In these works, it is assumed that an infinite number of
control systems are connected with each other by means of
the same pattern. This nice geometrical structure, together
with the linearity of subsystems, allowed the development
of powerful criteria for the stability of infinite interconnec-
tions.

For finite networks consisting of nonlinear systems, ground-
breaking results have been obtained within the frame-
work of input-to-state stability (ISS), initiated for finite-
dimensional systems in Sontag (1989), see also Sontag
(2008), and recently extended to the infinite-dimensional
setting, see Karafyllis and Krstic (2019); Mironchenko
and Prieur (2020) for an overview of this topic. In this
approach, the influence of any subsystem on other subsys-
tems of a network is characterized by so-called gain func-
tions. The gain operator constructed from these functions
characterizes the interconnection structure of the network.
The small-gain theorems for couplings of n ∈ N input-
to-state stable systems of ordinary differential equations
(ODEs) Jiang et al. (1994, 1996); Dashkovskiy et al. (2007,
2010) state that if the gains are small enough (i.e., the gain
operator satisfies the small-gain condition), the network is
stable. These results have been extended to finite networks
of time-delay, and PDE systems Polushin et al. (2006);
Tiwari et al. (2012); Dashkovskiy and Mironchenko (2013).

Very recently, a significant effort has been devoted to the
development of small-gain theorems for infinite networks
of ISS systems. In Dashkovskiy and Pavlichkov (2020)
nonlinear small-gain theorems have been obtained under
the assumption that all the gains are uniformly less than
identity, which is a very strong assumption. In Kawan
et al. (2021), tight small-gain theorems have been obtained
for the networks of exponentially ISS systems with linear
gains, while in Dashkovskiy et al. (2019), it is shown that
ISS of a network can be guaranteed provided that there is
a linear path of strict decay for the gain operator.

In this work, which is a conference version of the jour-
nal paper Mironchenko et al. (2021), we provide nonlin-
ear ISS small-gain theorems for infinite networks with
infinite-dimensional components. We do not impose any
linearity and/or contractivity assumption for the gains,
which makes the result truly nonlinear. Moreover, our
result applies to networks of ODE systems, delay systems,
PDE networks, and well-posed multi-physics systems. We
derive our small-gain theorems in the trajectory formula-
tion, in contrast to the papers Dashkovskiy et al. (2019);
Dashkovskiy and Pavlichkov (2020); Kawan et al. (2021),
where they have been shown in the Lyapunov formulation.

More precisely, we show that an infinite network con-
sisting of ISS systems is ISS provided that the discrete-
time system induced by the gain operator has the so-
called monotone limit property. This property concerns the
input-to-state behavior of the discrete-time control system
x(k+1) ≤ Γ(x(k))+u(k) defined via the gain operator Γ on
the positive cone of the gain space. For finite networks, this
property is equivalent to the strong small-gain condition
used in Dashkovskiy et al. (2007, 2010). Hence, our result
fully covers the classical nonlinear small-gain theorems
developed in Dashkovskiy et al. (2007, 2010).
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In this note, we omit all proofs and only present the
main result. For much more on this topic, we refer the
reader to the journal version of this paper Mironchenko
et al. (2021). In the same paper, the relationships of
the monotone limit property to various types of small-
gain conditions have been studied, and a UGS small-gain
theorem has been provided. For finitely many systems, our
small-gain result has been shown in Mironchenko (2021),
and we refer to this paper for the detailed discussion of the
relationships between our main result and the available
small-gain theorems for various classes of control systems,
as well as for the other versions of small-gain theorems
(e.g., small-gain theorems in maximum formulations).

Notation. We write R for the real numbers, Z for the
integers, and N for natural numbers 1, 2, . . .. R+ and
Z+ denote the sets of nonnegative reals and integers,
respectively.

For a set U , we let UR+ denote the space of all maps from
R+ to U . By ‖w‖[0,t] we denote the sup-norm of a bounded
function w : [0, t]→W , i.e., ‖w‖[0,t] = sups∈[0,t] ‖w(s)‖W .

Given a nonempty set I, we write `∞(I) for the Banach
space of all x ∈ RI with ‖x‖`∞(I) := supi∈I |x(i)| < ∞.

Moreover, `∞(I)+ := {x ∈ `∞(I) : x(i) ≥ 0 for all i ∈ I}.
If I = N, we simply write `∞ and `+∞, respectively.

Throughout the paper, all considered vector spaces are
vector spaces over R. We use the standard classes K, K∞,
L, KL of comparison functions, see Kellett (2014).

2. CONTROL SYSTEMS AND THEIR STABILITY

In this paper, we define systems as follows.

Definition 2.1. Consider a triple Σ = (X,U , φ) consisting
of the following:

(i) A normed vector space (X, ‖ · ‖X), called the state
space.

(ii) A vector space U of input values and a normed vector
space of inputs (U , ‖·‖U ), where U is a linear subspace
of UR+ . We assume that the following axioms hold:
• The axiom of shift invariance: for all u ∈ U

and all τ ≥ 0, the time-shifted function u(· + τ)
belongs to U with ‖u‖U ≥ ‖u(·+ τ)‖U .
• The axiom of concatenation: for all u1, u2 ∈ U

and for all t > 0 the concatenation of u1 and u2
at time t, defined by

u1 ♦
t
u2(τ) :=

{
u1(τ) if τ ∈ [0, t],

u2(τ − t) otherwise

belongs to U .
(iii) A map φ : Dφ → X, Dφ ⊆ R+ × X × U , called

transition map, so that for all (x, u) ∈ X × U
it holds that Dφ ∩ (R+ × {(x, u)}) = [0, tm) ×
{(x, u)}, for a certain tm = tm(x, u) ∈ (0,+∞]. The
corresponding interval [0, tm) is called the maximal
domain of definition of the mapping t 7→ φ(t, x, u),
which we call a trajectory of the system.

The triple Σ is called a (control) system if it satisfies the
following axioms:

(Σ1) The identity property: for all (x, u) ∈ X ×U , it holds
that φ(0, x, u) = x.

(Σ2) Causality: for all (t, x, u) ∈ Dφ and ũ ∈ U such that
u(s) = ũ(s) for all s ∈ [0, t], it holds that [0, t] ×
{(x, ũ)} ⊂ Dφ and φ(t, x, u) = φ(t, x, ũ).

(Σ3) Continuity: for each (x, u) ∈ X × U , the trajectory
t 7→ φ(t, x, u) is continuous on its maximal domain of
definition.

(Σ4) The cocycle property: for all x ∈ X, u ∈ U and
t, h ≥ 0 so that [0, t + h] × {(x, u)} ⊂ Dφ, we have
φ(h, φ(t, x, u), u(t+ ·)) = φ(t+ h, x, u).

We call the Σ forward complete if Dφ = R+ ×X ×U , i.e.,
φ(t, x, u) is defined for all (t, x, u) ∈ R+ ×X × U .

This class of systems encompasses control systems gener-
ated by ordinary differential equations, switched systems,
time-delay systems, many classes of PDEs, important
classes of boundary control systems, etc.

For the prolongation of trajectories of control systems, the
following notion is of importance (Karafyllis and Jiang,
2011, Def. 1.4).

Definition 2.2. We say that a system Σ satisfies the
boundedness-implies-continuation (BIC) property if for
each (x, u) ∈ X ×U such that the maximal existence time
tm = tm(x, u) is finite, for any given M > 0 there exists
t ∈ [0, tm) with ‖φ(t, x, u)‖X > M .

Next, we introduce the input-to-state stability property,
which unifies the classical asymptotic stability concept
with the input-output stability notion, and is one of
the cornerstones of nonlinear control theory as argued in
Kokotović and Arcak (2001); Sontag (2008).

Definition 2.3. A system Σ = (X,U , φ) is called (uni-
formly) input-to-state stable (ISS) if there exist β ∈ KL
and γ ∈ K∞ such that for all (t, x, u) ∈ Dφ

‖φ(t, x, u)‖X ≤ β(‖x‖X , t) + γ(‖u‖U ).

3. INFINITE INTERCONNECTIONS

This section introduces (feedback) interconnections of an
arbitrary number of control systems, indexed by some
nonempty set I. For each i ∈ I, let (Xi, ‖·‖Xi) be a normed
vector space which serves as the state space of a control
system Σi. Before we can specify the space of inputs for Σi,
we first have to construct the overall state space. Below,
we use the sequence notation (xi)i∈I for functions with
domain I. The overall state space is then defined as

X :=
{

(xi)i∈I : xi ∈ Xi, ∀i ∈ I and sup
i∈I
‖xi‖Xi

<∞
}

and becomes a normed vector space with the norm

‖x‖X := sup
i∈I
‖xi‖Xi

.

We also define for each i ∈ I the normed vector space X6=i
by the same construction as above, but for the restricted
index set I \ {i}.
Now consider for each i ∈ I a control system of the form

Σi = (Xi,PCb(R+, X6=i)× U , φ̄i),
where PCb(R+, X6=i) is the space of all globally bounded
piecewise continuous functions w : R+ → X6=i, with
the norm ‖w‖∞ = supt≥0 ‖w(t)‖X6=i

. The norm on
PCb(R+, X6=i)× U is defined by
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‖(w, u)‖PCb(R+,X6=i)×U := max {‖w‖∞, ‖u‖U} . (1)

Here we assume that U ⊂ UR+ for some vector space
U , and U satisfies the axioms of shift invariance and
concatenation. Then, by the definition of PCb(R+, X6=i)
and the norm (1), these axioms are also satisfied for the
product space PCb(R+, X6=i)× U .

Definition 3.1. Given the control systems Σi (i ∈ I) as
above, we call a control system of the form Σ = (X,U , φ)
a (feedback) interconnection of the systems Σi if the
following holds:

(i) The components φi of the transition map φ : Dφ → X
satisfy

φi(t, x, u) = φ̄i(t, xi, (φ 6=i, u)) for all (t, x, u) ∈ Dφ,

where φ 6=i(·) = (φj(·, x, u))j∈I\{i} for all i ∈ I. 1

(ii) Σ has the BIC property.

We then call X6=i the space of internal input values,
PCb(R+, X6=i) the space of internal inputs, and U the space
of external inputs of the system Σi. Moreover, we call Σi
the i-th subsystem of Σ.

Let us define the concept of input-to-state stability for
subsystems of a network.

Definition 3.2. Given the spaces (Xj , ‖ · ‖Xj ), j ∈ I, and
the system Σi for a fixed i ∈ I, we say that Σi is input-
to-state stable (ISS) (in semimaximum formulation) if Σi
is forward complete and there are γij , γj ∈ K ∪ {0} for all
j ∈ I, and βi ∈ KL such that for all initial states xi ∈ Xi,
all internal inputs w 6=i = (wj)j∈I\{i} ∈ PCb(R+, X6=i), all
external inputs u ∈ U and t ≥ 0 it holds that

‖φ̄i(t,xi, (w6=i, u))‖Xi

≤ βi(‖xi‖Xi
, t) + sup

j∈I
γij(‖wj‖[0,t]) + γi(‖u‖U ).

Here we assume that the functions γij satisfy supj∈I γij(r) <
∞ for every r ≥ 0 (implying that rhs is finite) and γii = 0.

The functions γij and γi in this definition are called
(nonlinear) gains. For notational simplicity, we allow the
case γij = 0 for j 6= i.

Assuming that all systems Σi, i ∈ I, are ISS in semimax-
imum formulation, define a nonlinear monotone operator
Γ⊗ : `∞(I)+ → `∞(I)+ from the gains γij as follows:

Γ⊗(s) :=
(
sup
j∈I

γij(sj)
)
i∈I , s = (si)i∈I ∈ `∞(I)+. (2)

Γ⊗ is well-defined iff the following assumption holds.

Assumption 3.1. For every r > 0, we have

sup
i,j∈I

γij(r) <∞.

Also, observe that Γ⊗ is a monotone operator:

s1 ≤ s2 ⇒ Γ⊗(s1) ≤ Γ⊗(s2) for all s1, s2 ∈ `∞(I)+.

4. SMALL-GAIN THEOREM

We consider the system

x(k + 1) ≤ Γ⊗(x(k)) + u(k), k ∈ Z+, (3)

1 By the causality axiom, we can assume that φ 6=i is globally
bounded, since φ̄i(t, xi, (φ6=i, u)) does not depend on the values
φ 6=i(s) with s > t, and on the compact interval [0, t], φ 6=i is bounded
because it is continuous.

where u ∈ `∞(Z+, `
+
∞(I)) := {u = (u(k))k∈Z+ : u(k) ∈

`+∞(I), ‖u‖∞ := supk∈Z+
‖u(k)‖X <∞}.

As we will see, the stability properties of the interconnec-
tion will depend on the stability properties of the discrete-
time system (3) induced by the gain operator.

Definition 4.1. System (3) has the monotone limit prop-
erty (MLIM) if there is ξ ∈ K∞ such that for every
ε > 0 and u ∈ `∞(Z+, `

+
∞(I)) and any solution x(·) =

(x(k))k∈Z+
of (3) with x(k + 1) ≤ x(k) for all k ∈ Z+,

there exists N = N(ε, u, x(·)) ∈ Z+ with

‖x(N)‖X ≤ ε+ ξ(‖u‖∞).

Now we can state our main result.

Theorem 4.1. (Nonlinear ISS small-gain theorem)
Let I be an arbitrary nonempty index set, (Xi, ‖ · ‖Xi),
i ∈ I be normed spaces and Σi = (Xi,PCb(R+, X6=i) ×
U , φ̄i) be forward complete control systems. Assume that
the interconnection Σ = (X,U , φ) of the systems Σi is
well-defined. Furthermore, let the following be satisfied:

(i) Each system Σi is ISS in the sense of Definition 3.2
with βi ∈ KL and nonlinear gains γij , γi ∈ K ∪ {0}.

(ii) There are βmax ∈ KL and γmax ∈ K so that βi ≤ βmax

and γi ≤ γmax pointwise for all i ∈ I.
(iii) Assumption 3.1 holds and the discrete-time system

w(k + 1) ≤ Γ⊗(w(k)) + v(k), (4)

with w(·), v(·) taking values in `∞(I)+ has the MLIM
property.

Then Σ is ISS.

If all interconnection gains γij are linear, the small-gain
condition in our theorem can be formulated more directly
in terms of the gains, as the following corollary shows.

Corollary 4.1. (Linear ISS small-gain theorem) Given
an interconnection (Σ,U , φ) of systems Σi as in Theorem
4.1, additionally to the assumptions (i) and (ii) of this
theorem, assume that all gains γij are linear functions (and
hence can be identified with nonnegative real numbers),
Γ⊗ is well-defined and the following condition holds:

lim
n→∞

(
sup

j1,...,jn+1∈I
γj1j2 · · · γjnjn+1

)1/n
< 1. (5)

Then Σ is ISS.

As an example, consider an infinite interconnection

ẋi = −x3i + max{ax3i−1, bx3i+1, u}, i ∈ Z, (6)

where a, b > 0. Each Σi is a scalar system with the state
xi ∈ R, internal inputs xi−1, xi+1 and an external input
u, belonging to the input space U := L∞(R+,R). Let the
state space for the interconnection Σ be X := `∞(Z).

It is not hard to show that this interconnection is well-
posed. The stability of this network follows from:

Proposition 4.1. The coupled system (6) is ISS if and only
if max{a, b} < 1.

Proof. “⇒”: For any a, b > 0 consider the scalar equation

ż = −(1−max{a, b})z3,
subject to an initial condition z(0) = x∗. The function
y : t 7→ (z(t))i∈Z is a solution of (6) subject to an initial
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condition (x∗)i∈Z and input u ≡ 0. This shows that if
max{a, b} ≥ 1, then the system (6) is not ISS.

“⇐”: Consider xi−1, xi+1 and u as inputs to the xi-
subsystem of (6) and define q := max{ax3i−1, bx3i+1, u}.
The derivative of |xi(·)| along the trajectory satisfies for
almost all t the following inequality:

d

dt
|xi(t)| ≤ −|xi(t)|3 + q(t) ≤ −|xi(t)|3 + ‖q‖∞.

For any ε > 0, if ‖q‖∞ ≤ 1
1+ε |xi(t)|

3, we obtain

d

dt
|xi(t)| ≤ −

ε

1 + ε
|xi(t)|3.

Arguing as in the proof of direct Lyapunov theorems (xi 7→
|xi| is an ISS Lyapunov function for the xi-subsystem), see,
e.g., (Sontag and Wang, 1995, Lem. 2.14), we obtain that
there is β ∈ KL such that for all t ≥ 0 it holds that

|xi(t)| ≤ β(|xi(0)|, t) +
(
(1 + ε)‖q‖∞

) 1
3

= β(|xi(0)|, t)+ max{a1‖xi−1‖∞, b1‖xi+1‖∞, (1+ε)
1
3 ‖u‖

1
3∞}

≤ β(|xi(0)|, t)+ max{a1‖xi−1‖∞, b1‖xi+1‖∞}+(1+ε)
1
3 ‖u‖

1
3∞,

where a1 = (1 + ε)
1
3 a

1
3 , b1 = (1 + ε)

1
3 b

1
3 .

This shows that the xi-subsystem is ISS in semimaximum
formulation with the corresponding homogeneous gain
operator Γ : `+∞(Z) → `+∞(Z) given for all s = (si)i∈Z
by Γ(s) = (max{a1si−1, b1si+1})i∈Z.

Previous computations are valid for all ε > 0. Now pick
ε > 0 such that a1 < 1 and b1 < 1, which is possible as
a ∈ (0, 1) and b ∈ (0, 1). The ISS of the network follows
by Corollary 4.1. �
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Distributed control barrier function-based
control scheme for multi-agent systems

under a collective constraint ⋆
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Abstract: In this work, we consider multi-agent systems (MAS) operating under a collective
constraint, i.e., a constraint that involves the collective states of MAS, using control barrier
function (CBF) technique. CBF-based control design usually consists of designing a task-
achieving controller, and modifying it minimally in a quadratic program (QP) to satisfy the state
constraint. Despite its success for single-agent systems, most existing CBF-based control designs
for MAS are either centralized or sub-optimal. Our proposed distributed CBF-based control
scheme guarantees that the optimal to the QP control signals are obtained in finite time, and
the collective constraint is satisfied for all time. The result is valid for a large class of MAS (linear
or nonlinear, homogeneous or heterogeneous), underlying tasks (consensus, formation, coverage,
etc), and collective constraints. We also analyze another scheme with some comparative remarks.
Several numerical examples are shown.

Keywords: Multi-agent systems, constrained control, control barrier functions, distributed
control, distributed optimization

1. INTRODUCTION

Control designs for dynamical systems under state/output
constraints have been under extensive investigations in
the literature. Many nonlinear control techniques are pro-
posed, including potential fields, barrier-Lyapunov func-
tions, and prescribed performance control. A recent tech-
nique called control barrier functions (CBF) (Xu et al.
(2015); Tan et al. (2021)) has gained new attention. CBF
provides a point-wise linear inequality condition on the
system input, and by enforcing this condition at every
state, the forward invariance of the safety set is guar-
anteed. This technique goes hand-in-hand with a com-
putationally efficient, modular implementation leveraging
quadratic programs that renders a pre-designed nominal
controller to be safe in a minimal invasive manner. This
methodology has been widely investigated and applied
with practical success for single-agent systems.

Constraints considered for MAS are mainly defined lo-
cally in the literature, i.e., the satisfaction/violation of
the constraints can be determined based on local informa-
tion. These constraints are agent-wise and edge-wise state
constraints; the later includes, e.g., collision avoidance,
connectivity maintenance (see, e.g., Panagou et al. (2015))
and transient bounds of relative distances. In compari-
son, collective constraints are defined over the collective
state of the MAS and cannot be evaluated to be violated
or not using only local information. Some examples of
collective constraints are the global connectivity mainte-

⋆ This work was supported by the Swedish Research Council (VR),
the Swedish Foundation for Strategic Research (SSF), the ERC CoG
LEAFHOUND, the EU CANOPIES project, and the Knut and Alice
Wallenberg Foundation (KAW).

nance (Capelli and Sabattini (2020)) and collective state
boundedness constraint. Enforcing collective constraints in
a distributed manner is in general more challenging since
every agent can only obtain local information and make
a decision based on it, while not knowing whether the
constraint is satisfied. One common practice to enforce a
collective constraint is to conservatively decompose it into
several local ones.

There are many attempts extending the CBF frame-
work to multi-agent systems. Rather straightforwardly, the
CBF technique gives out a quadratic program with cou-
pling constraints. In most works along this direction, the
quadratic program is either solved in a centralized manner
(Capelli and Sabattini (2020)), i.e, by a central module
that has access to the states of every agent, or using a pre-
allocation scheme (Wang et al. (2017)) that distributes
the linear constraint among the agents involved. With
the pre-allocation scheme, the optimality of the original
quadratic program is generally lost. One could tackle this
problem from a distributed optimization (Chen et al.
(2020); Santilli et al. (2020)) perspective, which however
no theoretical guarantees can be asserted regarding the
satisfaction of the safety-certifying conditions during the
solution iterations. This can potentially lead to unsafe be-
haviors. In general, a distributed implementation of CBF
conditions is lacking.

In this extended abstract, we consider multi-agent systems
under a collective constraint using control barrier function
techniques. We propose two distributed implementations:
one consists of local quadratic programs and an adaptive
auxiliary variable that connects the local QPs. We show
that, using this implementation scheme, the optimality
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condition of the original quadratic program will be fulfilled
in finite time and the CBF condition is satisfied for all
time. Main results have been reported in Tan and Di-
marogonas (2021), yet some interesting but unmentioned
aspects are identified here. Another implementation is
more straightforward and leverages on average tracking
algorithms, which, however, cannot guarantee the satis-
faction of CBF condition for all time. Applications to a
formation control problem with collective state bounded-
ness constraint are demonstrated for both schemes.

2. PROBLEM FORMULATION

Consider a multi-agent system with N agents indexed by
I = {1, 2, ..., N} whose communication graph G = (I, E)
is connected and undirected. (i, j) ∈ E represents that
the agents i, j can communicate with each other. The
associated Laplacian matrix is denoted as L and the
neighborhood set of agent i is defined as Ni := {j ∈
I : (i, j) ∈ E}. The dynamics of agent i ∈ I is given
by ẋi = fi(xi) + gi(xi)ui, where the state xi ∈ Rni ,
and the control input ui ∈ Rmi , fi(xi), gi(xi) are locally
Lipschitz functions in xi. We denote the stacked state x :=
(x⊤

1 ,x
⊤
2 , ...,x

⊤
N )⊤ ∈ Rn, n :=

∑
i∈I ni, the stacked control

input u := (u⊤
1 ,u

⊤
2 , ...,u

⊤
N )⊤ ∈ Rm,m =

∑
i∈I mi,

the stacked vector fields f = (f⊤1 , f
⊤
2 , ..., f

⊤
N )⊤ and g =

blk(g1,g2, ...,gN ). Thus, the stacked dynamics is

ẋ = f(x) + g(x)u. (1)

We denote the stacked locally available state to agent
i as xloc,i := (x⊤

i ,x
⊤
j1
, ...,x⊤

j|Ni|
)⊤, jk ∈ Ni, for k ∈

{1, 2, ..., |Ni|}.
In this work, we consider collective constraints for MAS,
i.e., the stacked state x is expected to evolve within a
safety set, denoted as a superlevel set of a differentiable
function h : Rn → R:

C = {x ∈ Rn : h(x) ≥ 0}. (2)

Definition 1. (CBF). h(x) in (2) is a control barrier func-
tion (CBF) for MAS (1) if there exists a locally Lipschitz
extended class K function α such that:

sup
u∈Rm

[Lfh(x) + Lgh(x)u+ α(h(x))] ≥ 0, ∀x ∈ Rn (3)

Xu et al. (2015); Tan et al. (2021) showed that any
locally Lipschitz control input u that satisfies the CBF
condition (3) renders the set C forward invariant and, if
C is compact, asymptotically stable.

Assumption 1. The parameters in the CBF condition (3)
are locally obtainable, i.e, the argument of (3) can be
written in the form of∑

i∈I
a⊤
i (xloc,i)ui +

∑
i∈I

bi(xloc,i) ≤ 0. (4)

This assumption admits a variety of collective constraints
including, but not limited to, the examples below:

(1) h(x) =
∑

i∈I hi(xi) with hi differentiable. One ex-
ample is the collective state boundedness constraint:
h(x) =

∑
i∈I(r

2 − ∥xi∥2) for some constant r > 0.
(2) h(x) =

∑
l∈L hl(xli ,xlj ), L ⊂ N with hl(·, ·)

differentiable, (li, lj) ∈ E. This could encode, for
example, a least collective interaction level among all

connected agents h(x) =
∑

(i,j)∈E(e
−r0∥xi−xj∥2 − r1)

for some constants 0 < r0, 0 < r1 < 1.

Remark 1. Assumption 1 indeed excludes some possible
CBFs. However, the assumption could serve as a design
principle for the communication topology of MAS if a par-
ticular collective constraint is given and, from Assumption
1, we know which communication links are relevant.

Assuming that nominal controllers are obtained by some
distributed coordination protocol, i.e, unom,i(xloc,i), we
straightforwardly obtain the CBF-induced QP given as

min
u∈Rm

∑
i∈I

1

2
∥ui − unom,i(xloc,i)∥2

s.t.
∑
i∈I

a⊤
i (xloc,i)ui +

∑
i∈I

bi(xloc,i) ≤ 0.
(5)

The intuition behind this QP is that the control signal
is obtained by modifying the nominal controller subject
to the safety condition in a minimum invasive manner.
In the following we denote for brevity ai, bi,unom,i when
no ambiguity occurs. Defining ā = (a⊤

1 ,a
⊤
2 , ...,a

⊤
N )⊤,

b̄ =
∑

i∈N bi and unom = (u⊤
nom,1,u

⊤
nom,2, ...,u

⊤
nom,N )⊤.

Remark 2. Here we assume agent dynamics to be control
affine which encapsulates linear dynamics and a large class
of nonlinear dynamics. Moreover, the agent dynamics and
even the dimensions of state variables can be different
among the agents. The distributed coordination protocol,
which relates to the underlying tasks of the MAS, is
designed independently.

Note that ai, bi,unom,i are defined along the system trajec-
tory, thus their values evolve with time. In the following we
analyze the frozen-time optimality condition and provide
two schemes that both guarantee the convergence to the
time-varying solution optimal to QP in (5) in finite time.

3. MAIN RESULT

In this section, we will analyze the explicit solution to
the QP in (5) and a distributed, yet equivalent QP, and
then propose a distributed implementation that solves the
original QP online while always enforcing the coupling
constraint. We will also analyze another distributed im-
plementation with some comparative remarks. Proofs of
all the claims in Sec. 3.1 and Sec. 3.2 can be found in Tan
and Dimarogonas (2021).

3.1 Explicit solution analysis and an equivalent QP

If the QP in (5) is feasible, then the optimal solution is
explicitly given as

u⋆
i = unom,i−max(0, (ā⊤unom+ b̄)/∥ā∥2)ai,∀i ∈ I. (6)

Although unom,i and ai in (6) only require local informa-
tion, the calculation of (ā⊤unom+ b̄)/∥ā∥2 requires global
information.

The QP problem in (5) can be equivalently given by

min
(u,y)∈Rm+N

∑
i∈I

1

2
∥ui − unom,i∥2

s.t. a⊤
i ui +

∑
j∈Ni

(yi − yj) + bi ≤ 0, ∀i ∈ I,
(7)
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where y = (y1, y2, ..., yN ) ∈ RN is an auxiliary decision
variable. One could relate yi with agent i and view
(xi, yi) as an extended state of agent i. By analyzing its
Lagrangian and KKT condition, we obtain, as expected,
the optimal u⋆

i , i ∈ I, to (7) is the same as (6).

For the optimality condition for y⋆, one observation is that
y⋆ is not unique: suppose (u⋆,y′) is an optimal solution to
(7), then (u⋆,y′+β1N ), β ∈ R is also an optimal solution.
One sufficient condition on the optimal y⋆ is

a⊤
i unom,i + liy

⋆ + bi = ca⊤
i ai, ∀i ∈ I (8)

with c = (ā⊤unom + b̄)/∥ā∥2.

3.2 Distributed Implementation

We propose a distributed implementation scheme that
combines an adaptive law that locally updates yi and a
local QP with only the decision variable ui. Specifically,
for each agent i, ∀i ∈ I, we solve

min
ui∈Rmi

1

2
∥ui − unom,i∥2

s.t. a⊤
i ui +

∑
j∈Ni

(yi − yj) + bi ≤ 0,
(9)

and yi is updated locally that will be derived later.

Proposition 1. If the local QPs given in (9) are feasible,
i.e,

∑
j∈Ni

(yi − yj) + bi ≤ 0 whenever ai = 0,∀i ∈ I,
then the solution ū⋆ = (u⋆

1,u
⋆
2, ...,u

⋆
N ) to the local QPs

satisfies ā⊤ū⋆ + b̄ ≤ 0 for any value of y.

This property is of interest because it states that whatever
y is chosen, the safety guarantee is enforced whenever the
local QPs are feasible.

Proposition 2. Assume that ai ̸= 0 for all i ∈ I. Define
ci =

1
a⊤

i
ai
(liy + a⊤

i unom,i + bi), i ∈ I If y is chosen such

that ci = cj for any i, j ∈ I, then the condition in (8) is
satisfied.

In the following, an adaptive law for y is derived such
that c = (c1, c2, ..., cN ) reaches a consensus in finite time
even in the presence of slowly time-varying ai,unom,i, bi.
We note that the consensus algorithm is inspired by
Franceschelli et al. (2014).

Proposition 3. Assume that ai,unom,i, bi are slowly time-

varying in the sense that
∑

i∈I |
d
dt (a

⊤
i ai)ci(t)+

d
dt (a

⊤
i unom,i

+ bi)|≤ D for some D > 0 and amin ≤ a⊤
i ai ≤ amax for

some positive constants amin, amax for all i ∈ I. If the
discontinuous adaptive law

ẏ = −k0sign(Lc), (10)

is applied, and the gain k0 satisfies

k0 ≥ amax(2δmaxD/amin + ϵ), (11)

where δmax := maxi∈I |Ni|, ϵ is a positive constant, then

ci = cj ,∀i, j ∈ I, within a finite time tr ≤ ∥Lc(0)∥1

ϵ .

Now we summarize the theoretical guarantees.

Theorem 1. Consider the CBF-induced quadratic pro-
gram in (5). Assume that the conditions in Proposition
3 hold. Then the solution to the local QPs in (9) with y
locally updated according to (10) solves the QP (5) in finite
time. Moreover, the coupling constraint in (5) is satisfied
for all time.

Remark 3. Instead of solving N local QPs as in (9) online,
we could apply analytical solutions to the local QPs that
are given by ui = unom,i −max(0, ci)ai, ∀i ∈ I.

3.3 Another distributed implementation

Taking a further look at the centralized optimal solution
(6), we observe that the only variable that needs global in-

formation is

∑
i∈I

a⊤
i unom,i+bi∑

i∈I
(a⊤

i
ai)

. In this subsection, we pro-

pose another distributed implementation. For notational
brevity, let di(t) := a⊤

i unom+ bi and ei(t) := a⊤
i ai. View-

ing di(t) and ei(t) as two reference signals, we utilize dis-
tributed average tracking algorithms such that each agent
tracks

∑
i∈I di/N and

∑
i∈I ei/N , respectively. Once each

agent has the accurate averages, a local division between
them gives

∑
i∈I di/

∑
i∈I ei. More technical details are

given below.

The scheme is implemented as follows. For agent i, define
two extra local variables pi(t), qi(t) ∈ R whose dynamics
are given by

ż1,i = β
∑
j∈Ni

sign(pj − pi), z1,i(0) = 0,

pi(t) = z1,i(t) + di(t)

(12)

and
ż2,i = β

∑
j∈Ni

sign(qj − qi), z2,i(0) = 0

qi(t) = z2,i(t) + ei(t),

(13)

where z1,i, z2,i are local internal states. The input of agent
i is chosen as

ui =

{
unom,i−max(0, pi/qi)ai, if qi ̸= 0;

unom,i, otherwise
∀i ∈ I. (14)

Theorem 2. Assume that supt∈[0,∞) max(|ḋi(t)|, |ėi(t)|) ≤
d̄ for all i ∈ I and some positive constants d̄, and∑

i∈I ei(t) > 0,∀t > 0. If we choose β > d̄, then the
agent input in (14) is optimal to the QP in (5) after time
T = max{

∑
i∈I

∑
j∈Ni

|pj(0)−pi(0)|,
∑

i∈I
∑

j∈Ni
|qj(0)−

qi(0)|}/2(β − d̄).

Proof. From Theorem 1 of Chen et al. (2012), since β >
d̄, pi(t), qi(t) accurately tracks

∑
i∈I di/N and

∑
i∈I ei/N ,

respectively in finite time T . In view of u⋆
i given in (6),

the input signal in (14) coincide with u⋆
i after T .

Remark 4. Both implementations assume slow dynamics
of ai,unom,i and bi, and use non-smooth analysis ar-
guments to obtain a finite-time convergence result. One
notable difference is that the implementation in Sec. 3.3
relaxes the requirement that ai(t) ̸= 0 for all i ∈ I, t > 0,
which could be advantageous in many applications. How-
ever, it also fails to guarantee the satisfaction of the CBF
condition during [0, T ], while the other one in Sec. 3.2
guarantees.

4. SIMULATIONS

In this section we demonstrate the efficacy of our proposed
distributed schemes for a formation control problem under
a collective state boundedness constraint. We consider 6
2-dimensional agents who has a simple single integrator
dynamics. The MAS is tasked to form a star formation,
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(a) Nominal case.
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(b) Centralized CBF case.
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(c) Distributed CBF case 1.
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(d) Distributed CBF case 2.

Fig. 1. MAS trajectories in four cases.

0 5 10 15 20 25 30

t (sec)

-6

-5

-4

-3

-2

-1

0

1

2

h(
t)

Centralized CBF case
Distributed CBF case 1
Distributed CBF case 2
Nominal case

(a) CBF values.
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Fig. 2. Time history of CBF values and CBF conditions.

i.e., the desired relative position xd = (x⊤
d,1, ...,x

⊤
d,6)

⊤

with xd,i = (cos(iπ/3), sin(iπ/3)), i = 1, 2, ..., 6. The
communication graph is connected and undirected as
shown in black dash lines in Fig. 1. All the agents start
from (0.7, 0.7) and the collective state is expected to evolve
within the safety set {x : h(x) = 6−x⊤x ≥ 0}. Choose the
extended class K function α(x) = 0.1x. Straightforwardly,
we obtain the CBF-induced QP in the form of (5) where
unom,i =

∑
i∈Ni

(xj − xd,j + xd,i − xi), ai = 2xi, bi =

0.1(x⊤
i xi − 1).

We show the simulation results for the nominal case, where
unom,i is used; the centralized CBF case, where ui is
obtained by solving the CBF-induced QP in a centralized
way; the distributed CBF case 1, where ui is obtained
via the scheme in Sec. 3.2; and the distributed CBF
case 2, where ui is calculated as in Sec. 3.3. For a fair
comparison, we choose both k0 in (10) and β in (12)
and (13) to be 1. The trajectories of the MAS are shown
in Fig. 1. We observe that both distributed CBF cases
have a very similar trajectory compared to that of the
centralized CBF case. From Fig. 2(a), we also see that the
collective boundedness constraint is fulfilled for all time
in the centralized and distributed CBF cases. From Fig.
2(b), we observe that the CBF condition (ā⊤u+ b̄ ≤ 0) is
always satisfied for the distributed scheme in Sec. 3.2, yet
is temporally violated for the proposed scheme in Sec. 3.3.

5. CONCLUSION

In this work, we consider a CBF framework to control
MAS under a collective constraint. In particular, two

distributed implementation schemes to implement the
CBF-induced quadratic programs are discussed. Under the
assumption that the parameters of the coupling constraint
are slowly time-varying, both proposed implementations
solve the CBF-induced QP in finite time. One of them
guarantees the satisfaction of the coupling constraint for
all time, while the other one is applicable even when some
coefficients of the agent inputs become zero.
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Abstract: This extended abstract summarizes a series of recent works (Li et al., 2021a,b, 2022;
Jiang et al., 2021) on the approximations theory of deep learning methods for time series mod-
elling and analysis. The primary aim is to develop the mathematical foundations for modelling
sequential relationships with neural networks, which guides the practical implementation and
design of such architectures. In particular, we place on concrete mathematical footing on when
and how certain architectures (recurrent neural networks, encoder-decoder structures, dilated
convolutions, etc) can adapt to corresponding data structures in the temporal relationships to be
learned (memory, rank, sparsity, etc). These form the first step towards principled neural network
architecture design and selection for practical machine learning of temporal relationships.

Keywords: Approximation theory, time series analysis, deep learning.

1. INTRODUCTION

Fig. 1. A recurrent encoder-decoder architecture which
maps a sequence into another sequence Cho et al.
(2014).

The primary interest of this series of works is to analyze
sequence to sequence (seq2seq) modelling, where the in-
put and output are both time-series or sequences. Fig.
1 illustrates an example of a deep learning architecture
for seq2seq modelling. There are various architectures that
can achieve state-of-the-art performance in different tasks,
e.g. the Transformers (Vaswani et al., 2017) in natural
language processing (NLP) and the WaveNet (Oord et al.,
2016) in audio signal processing, and Vision Transformers
(Vit, Dosovitskiy et al. (2020)) in image classification. Our
goal is to rigorously formulate the seq2seq problems and
theoretically understand how these architectures funda-
mentally differ from each other. We developed a math-
ematical framework for analysing seq2seq problems, and
this framework enables us to compare different architec-
tures under the same regime. Currently, our work covers
recurrent neural networks (RNNs), RNN encoder-decoders
and convolutional neural networks (CNNs). Active re-

search is also in process to include more architectures,
including attention mechanism and Transformers.

This extended abstract is organised as follows. In Section
2, we will introduce the analysis framework including
problem settings and notations. In the remaining sections,
we will present and discuss the main results for different
architectures.

2. GENERAL FORMULATION OF SEQ2SEQ
MODELLING PROBLEM

2.1 Definition of sequences

We view a sequence x : I → Rd as a function from a index
set to real vectors. Based on specific settings, the index
set I may be taken as (a subset of) R (continuous-time
setting) or (a subset of) Z (discrete-time setting).

2.2 Formulation of temporal relationships

For seq2seq problems, we need to model mappings between
two sequences. We denote the input and output space by
X and Y, respectively. The input space is usually taken
as a normed vector space with some norm ∥x∥X . The
mapping between x and y can be described by a sequence
of functionals:

{y(t) = Ht(x) : t ∈ I} . (1)

The output at each time depend on the entire input
sequence through a time-dependent functional. The goal
is to learn this sequence of functionals H := {Ht : t ∈ I},
which is called the target temporal relationship. The
induced functional norm is defined as
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∥Ht∥ := sup
x∈X ,∥x∥X≤1

|Ht(x)|, (2)

∥H∥ := sup
t∈I

∥Ht∥. (3)

We denote a temporal relationship built from a specific ar-
chitecture/model by Ĥ. The hypothesis space and concept
space is denoted by H and C, respectively.
Here, we introduce an example to elaborate this func-
tional formulation. The convolution can be considered as
a seq2seq relation in the following sense. Suppose we have
an input x and a convolution filter g, then the output at
time t is given by yt = Ht(x) =

∫∞
−∞ g(s)x(t− s)ds, hence

the sequence of functionals H = {Ht : t ∈ R} can be
viewed as the entire output sequence y.

We are interested in the approximation capabilities of
different models, with the approximation error defined as

∥H − Ĥ∥. (4)

As is shown later, different models are good at approxi-
mating specific classes of target temporal relationships.

2.3 Properties of temporal relationships

We assume that the target temporal relationship (in a
certain concept space C) satisfy some specific properties.
Below is a list of the related properties possibly used in
our works.

P1. Ht ∈ H is a linear and continuous functional, if for
any x1,x2 ∈ X and λ1, λ2 ∈ R,

Ht(λ1x1 + λ2x2) = λ1Ht(x1) + λ2Ht(x2),

∥Ht∥ = sup
x∈X ,∥x∥X≤1

|Ht(x)| < ∞, (5)

H is linear and continuous if each Ht is linear and
continuous.

P2. Ht ∈ H is regular, if for any sequence {xn : n ∈ N}
such that xn(s) → 0 for almost every s ∈ I, we
have limn→∞ Ht(xn) = 0. H is regular if each Ht

is regular.
P3. H is causal, if it does not depend on the future inputs.

That is, for any x1,x2 ∈ X and any t ∈ I such
that x1(s) = x2(s) for all s ≤ t, the output satisfies
Ht(x1) = Ht(x2).

P4. A sequence of functionals H is time-homogeneous, if
for any t, τ ∈ I, Ht(x) = Ht+τ (x

(τ)) with x(τ)(s) :=
x(s− τ) for all s ∈ I.

3. RECURRENT NEURAL NETWORKS

In the continuous-time setting, the simplest RNN (with
skip connections and one linear readout layer) is given by

d

dt
h(t) = σ(Wh(t) + Ux(t)),

ŷ(t) = c⊤h(t),

with c ∈ Rm,W ∈ Rm×m, U ∈ Rm×d.

(6)

Here, h ∈ Rm is the hidden state and m denotes the width
of RNNs, which determines the model complexity. If we
assume the linearity, (6) defines a family of functionals

H(m)
RNN :=

{
Ĥ : Ĥt = ŷ(t) =

∫ ∞

0

c⊤eWsUx(t− s)ds
}
.

(7)

The hypothesis space for RNNs with arbitrary widths is
defined as

HRNN :=
⋃

m∈N+

H(m)
RNN. (8)

The concept space we considered here is

C = {H : H satisfies P1, P2, P3, P4}. (9)

We next present the main result.

3.1 Approximation rate (Li et al., 2021a, Theorem 4.2)

Let yi(t) = Ht(ei), i = 1, . . . , d, where ei is a step constant
signal. Suppose

• yi ∈ C(α+1)(R);
• eβty

(k)
i (t) = o(1).

We have the estimate

∥H − Ĥ∥ ≤ C(α)γd

βmα
, (10)

where α measures the smoothness of the target, and β
measures the memory/decay of the target. C(α) and γ
are two positive universal constants depending on α, β.
The smoothness and memory are characterised by yi, i.e.
the response of target functionals under (step) constant
inputs.

This result implies that a target temporal relationship can
be efficiently approximated by RNNs if it is smooth (large
α) and decays fast (large β). Conversely, the target with
sudden changes are difficult to be learned by RNNs.

4. RNN ENCODER-DECODER

The architecture with RNNs as both encoder and decoder
can be formulated as

hs = σE(WEhs−1 + UExs + bE), v = hτ ,

gt = σD(WDgt−1 + bD), g0 = v,

ot = WOgt + bO,

(11)

where ht, gt are hidden states of the encoder and decoder,
respectively. We take a linear, residual and continuous-
time idealisation of (11):

d

ds
hs = Whs + Uxs, v = Qh0, s ≤ 0,

d

dt
gt = V gt, g0 = Pv,

yt = c⊤gt, t ≥ 0,

with W ∈ RmE×mE ,V ∈ RmD×mD , U ∈ RmE×d,

Q ∈ RN×mE ,P ∈ RmD×N .
(12)

Here, mE and mD denote the width of encoder and
decoder, respectively. N is the dimension of the coding
vector v, and it can be also understood as the model rank.
(12) defines a family of functionals

H(mE ,mD,N)
EncDec :=

{
Ĥ : Ĥt =

∫ ∞

0

c⊤eV tPQeWsUx−sds
}
.

(13)
The hypothesis space for RNN encoder-decoders with
arbitrary widths is defined by

HEncDec :=
⋃

mE ,mD,N∈N+

H(mE ,mD,N)
EncDec . (14)

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



The concept space we considered here is

C = {H : H satisfies P1, P2} (15)

We next present the main result.

4.1 Approximation rate (Li et al., 2021b, Theorem 4.3)

Let yi(t, s) = Ht(ei1(−∞,−s]), i = 1, . . . , d. Suppose

• yi ∈ C(α+1)([0,∞));

• eβ(t+s) ∂k+l

∂tk∂sl
yi(t, s) = o(1) as ∥(t, s)∥ → ∞;

• {σn} are singular values of ρ. Intuitively, we have
ρ(t, s) =

∑∞
n=1 σnφn(t)ϕn(s), where {φn} and {ϕn}

are orthonormal bases, and σ1 ≥ σ2 ≥ · · · ≥ 0 denote
the singular values.

We have

∥H − Ĥ∥ ≤ C(α)γd

β2

{(
1 +

√
m̄−N

)
·
(

1

mα
E

+
1

mα
D

)
+

(
m̄∑

n=N+1

σ2
n

) 1
2

+

(
m̄∑

n=N+1

σn

) 1
2
(

1

m
α/2
E

+
1

m
α/2
D

)}
,

(16)

where α measures the smoothness of the target, β mea-
sures the memory/decay of the target. C(α) and γ are two
positive universal constants depending on α, β. A target
can be efficiently approximated by RNN encoder-decoders
if it is smooth (large α) and decays fast (large β). These
are almost the same as RNNs.

New insights are presented as follows. Different from
the RNN case where we only consider time-homogeneous
target relationships, here we instead investigate time-
inhomogeneous relationships. We have HRNN ⊆ HEncDec,
which implies that the encoder-decoder is more general
with the capability to learn time-inhomogeneity. In addi-
tion, the time-inhomogeneous temporal relationship con-
sidered here possesses a two parameter representation
ρ(t, s), leading to an extra characterisation which we called
temporal product structure. Intuitively, we can decompose
ρ(t, s) along the input and output temporal direction, i.e.
s and t, such that ρ(t, s) =

∑∞
n=1 σnφn(t)ϕn(s), which is

analogous to the singular value decomposition of matrices.
We say ρ(t, s) has a low “effective rank” if the singular
values {σn} decays fast. Our approximation rate shows
that a target with low effective rank can be efficiently
approximated by the encoder-decoder architecture with
a small model rank N , which reduces the number of
parameters needed to achieve the accuracy.

5. CONVOLUTIONAL NEURAL NETWORKS

For CNNs, we use the discrete-time setting. Inspired
from the dilated convolution architecture in WaveNet
(Oord et al., 2016), a dilated convolution-based temporal
sequence model with K layers and Mk channels at layer k
is given by

h0,i = xi,

hk+1,i = σ

Mk∑
j=1

wkji∗ dk
hk,j

 ,

ŷ = hK .

(17)

Here, ∗ dk
denotes the dilated convolution operator with

the dilation rate equalling to dk, xi is the ith dimension
of x, and wkji is the filter from channel j at layer k to
channel i at layer k+1. All the filters have a size l ≥ 2. If
σ is linear, we have

H(l,K,{Mk})
CNN :=

{
Ĥ : Ĥt(x) =

∑
s∈N

ρ(Ĥ)(s)⊤x(t− s)
}
,

(18)

where ρ(Ĥ) is a finite-supported vector. The hypothesis
space for CNNs with arbitrary depths and number of
channels is defined as

H(l)
CNN =

⋃
K∈N+

⋃
{Mk}∈NK

+

H(l,K,{Mk})
CNN . (19)

The concept space we considered here is

C = {H : H satisfies P1, P2, P3, P4}. (20)

We next present the main result.

5.1 Approximation rate (Jiang et al., 2021, Theorem 4)

Define the complexity measure of H by

C(l,g)(H)

= inf

{
c :

(
lK∑

i=s+K

|σ(K)
i |2

) 1
2

≤ cg(s), s ≥ 0,K ∈ N+

}
,

(21)

where σ
(K)
1 ≥ σ

(K)
2 ≥ · · · ≥ σ

(K)
lK ≥ 0 denote the

singular values of the tensorisation of ρ(H), and g is a
non-increasing function with zero limit at positive infinity.

For any H ∈ C(l,g) and any set of parameters (K, {Mk}),
we have

∥H − Ĥ∥ ≤ d g(KM
1
K −K) C(l,g)(H) + ∥ρ(H)

[lK ,∞)
∥2,
(22)

where M := 1
d (
∑K

k=2 MkMk−1 − lK) denotes the “effec-
tive” number of filters.

In terms of approximation, CNNs are different from the
former recurrent architectures. Our approximation rate
shows that a target with low effective (tensor) rank can be
easily approximated by CNNs with fewer channels {Mk},
which controls the model (tensor) rank. The target with
sparsity is a special case, which is also low rank and easy to
be approximated (since CNNs can construct each non-zero
value individually).

Different from RNNs (possessing an infinite long filter), the
CNN has a finite-supported filter (despite with exponen-
tially large receptive fields). Hence, if the target has long
tails, more parameters are required for CNNs to learn it.

6. DISCUSSION

In this section, we discuss the relations between different
architectures. First, RNNs and RNN encoder-decoders
are similar with each other, since both of them possess
recurrent architectures. When an RNN encoder-decoder is
required to be time-homogeneous, it becomes an RNN. In
particular, we have HRNN ⊆ HEncDec. Similar with RNNs,
it is also difficult for RNN encoder-decoders to handle
targets with long-term memories or sudden changes.
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In addition, RNNs and CNNs are both causal and time-
homogeneous, but they have different underlying struc-
tures. The RNN uses a power sum filter, which is good
at approximating targets with fast decayed structures,
but not efficient to handle sudden changes or long-term
memories. While the CNN uses a finite-supported filter,
which works well for targets with low (effective) ranks
or fast decayed singular values. The approximation can
become inefficient if the tail error is significant, or the
finite-supported part does not possess this low (effective)
rank structure.

Finally, we want to clarify that the rank concept appeared
in CNNs and encoder-decoders are totally different. In
the CNN setting, the rank corresponds to tensors after
certain tensorisation. While for encoder-decoders, the rank
is related with the temporal product structure.
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Abstract: We propose an approach to construct a Lyapunov function for a linear coupled
impulsive system consisting of two time-invariant subsystems. In contrast to various variants
of small-gain stability conditions for coupled systems, the asymptotic stability property of
independent subsystems is not assumed. To analyze the asymptotic stability of a coupled system,
the direct Lyapunov method is used in combination with the discretization method. The periodic
case and the case when the Floquet theory is not applicable at all are considered separately.
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1. INTRODUCTION AND PROBLEM STATEMENT

Impulsive differential equations can model mechanical sys-
tems subjected to shocks. Instantaneous changes in holo-
nomic or nonholonomic constraints imposed on the system
and changes in the parameters of the system in time lead
to the need to study stability of impulsive systems with
variable coefficients. It is important to obtain stability
conditions that are robust with respect to small variations
in the sequence of moments of impulse action. A possible
approach is to construct a matrix-valued Lyapunov func-
tion Djordjevic (1983); Martynyuk (1985). In Martynyuk
and Slynko (2003) for linear time-variant coupled systems
with time-invariant subsystems a construction of a matrix-
valued Lyapunov function is proposed. For linear impulsive
systems with variable coefficients the problem of choosing
the elements of the matrix-valued Lyapunov function has
not been studied.

The use of the discretization method to construct ap-
proximate solutions of the Lyapunov matrix differential
equations has led to significant advances in the theory
of stability of linear hybrid systems with constant pa-
rameters, see Allerhand and Shaked (2010). Discretization
method for a construction of a Lyapunov function allows to
obtain estimates of dwell-times that guarantee the stability
of a linear hybrid system or conditions of robust stability.

We propose to apply the discretization method to con-
struct matrix-valued Lyapunov functions for linear impul-
sive systems with periodic coefficients. We assume that
independent subsystems are time-invariant and for the
dwell-times two possible cases are considered: they are
constant or subject to two-sided estimates. The elements
of the matrix-valued Lyapunov function are constructed
in the bilinear forms with time-variable matrices. The
proposed construction of Lyapunov functions admits a
numerical implementation.

Let Rn be the n-dimensional Euclidian space with stan-
dard dot product, Rn×m be linear space of n×m matrices.
For a matrix A ∈ Rn×n, σ(A) denotes its spectrum, rσ(A)

denotes spectral radius of A and norm ∥A∥ = λ
1/2
max(ATA).

If σ(A) ⊂ R, then λmin(A) and λmax(A) are its smallest
and largest eigenvalues respectively. For any symmetric
matrices P and Q the notation P ⪰ Q means that P −Q
is a positive semidefinite matrix and P ≻ Q means that

P−Q is a positive definite matrix. We will use the Cauchy–
Bunyakovskii inequality |xT y| ≤ ∥x∥∥y∥ for x, y ∈ Rn.

Consider a coupled linear system of impulsive differential
equations consisting of two subsystems

ẋ1(t) = A11x1(t) +A12(t)x2(t), t ̸= τk
ẋ2(t) = A21(t)x1(t) +A22x2(t), t ̸= τk,

x1(t
+) = B11x1(t) +B12x2(t), t = τk,

x2(t
+) = B21x1(t) +B22x2(t), t = τk

(1)

where xi ∈ Rni , i = 1, 2, Aij : R → Rni×nj are
piecewise continuous maps, i, j = 1, 2, Aii are constant
matrices and Aij(t), i ̸= j are θ-periodic functions, i.e.,
Aij(t + θ) = Aij(t) for all t ∈ R, {τk}∞k=0 is a sequence
of moments of impulse action, such that θ = τk − τk−1,
k ≥ 1. Bij ∈ Rni×nj are constant matrices. We denote
x = (xT

1 , xT
2 )T and n = n1 + n2. We will study the

asymptotic stability of (1) in the sense of the following
Definition 1. The linear impulsive system (1) is called

1) stable if ∀ ε > 0, t0 ∈ R there exists δ = δ(ε, t0) > 0
such that ∥x0∥ < δ ⇒ ∥x(t, t0, x0)∥ < ε for all t ≥ t0;

2) uniformly stable if ∀ε > 0 ∃δ = δ(ε) > 0 s.t. ∀ t0∈R we
have ∥x0∥ < δ ⇒ ∥x(t, t0, x0)∥ < ε for all t ≥ t0;

3) asymptotically stable (AS) if it is stable and for all
(t0, x0) it holds that lim

t→+∞
∥x(t, t0, x0)∥ = 0.

Here, x(t, t0, x0) is the solution to (1) with the initial
condition x(t0, t0, x0) = x0, x0 = (xT

10, x
T
20)

T ∈ Rn.

The aim of this work is to construct a Lyapunov function
for (1). For simplicity we assume that t0 = 0. Let

V(t, x) = (vij(t, ·, ·))i,j=1,2

be a matrix-valued Lyapunov function (MFL) Djordjevic
(1983); Martynyuk (1985). We choose the diagonal ele-
ments of this function in the quadratic form vii(t, xi) =
xT
i Pii(t)xi, where Pii : R → Rni×ni , Pii(t) ≻ 0, i =

1, 2 are continuous on the left θ-periodic maps, and off-
diagonal elements in the form vij(t, xi, xj) = xT

i Pij(t)xj ,
where Pij : R → Rni×nj are continuous on the left θ-
periodic maps, Pij(t) = PT

ji (t). It is enough to define these
functions Pij(t), i, j = 1, 2 on the period (0, θ].

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



2. MATRIX-VALUED LYAPUNOV FUNCTIONS

Discretization parameters are the number of nodes N ∈ N
and the discretization step length h = θ

N . Let P0 =

(P
(0)
ij )i,j=1,2 be a positive definite symmetric block matrix,

P
(0)
ij ∈ Rni×nj , P

(0)
ij = (P

(0)
ji )T . We define recursively

P
(m)
ij , P

(m)
ji = (P

(m)
ij )T , i, j = 1, 2

as follows

P
(m+1)
ii = e−AT

iih(P
(m)
ii

−
(m+1)h∫
mh

(P
(m)
ij Aji(s) +AT

ji(s)P
(m)
ji ) ds)e−Aiih, i ̸= j,

(2)

P
(m+1)
12 = e−AT

11h(P
(m)
12

−
(m+1)h∫
mh

(P
(m)
11 A12(s) +AT

21(s)P
(m)
22 ) ds)e−A22h.

(3)

Next, define matrices Pij(t), i, j = 1, 2, Pij(t) = PT
ji (t) on

the intervals (mh, (m+ 1)h] by setting

Pii(t) = e−AT
ii (t−mh)(P

(m)
ii

−
t∫

mh

(P
(m)
ij Aji(s) +AT

ji(s)P
(m)
ji ) ds)e−Aii(t−mh), i ̸= j,

(4)

P12(t) = e−AT
11(t−mh)(P

(m)
12

−
t∫

mh

(P
(m)
11 A12(s) +AT

21(s)P
(m)
22 ) ds)e−A22(t−mh).

(5)

We define an MLF V(t, x1, x2) = (vij(t, ., .))i,j=1,2,
by vii(t, xi) = xT

i Pii(t)xi, i = 1, 2, vij(t, xi, xj) =
xT
i Pij(t)xj , i ̸= j, Pij(t) = PT

ji (t), i, j = 1, 2. Using V we
construct the scalar Lyapunov function Djordjevic (1983)

v(t, x1, x2) = v11(t, x1) + 2v12(t, x1, x2) + v22(t, x2). (6)

Assumption 1. Let γ
(m)
12 , γ

(m)
21 , m = 0, 1, . . . , N − 1 be

positive constants such that the following inequalities hold

sup
s∈(mh,(m+1)h]

∥A12(s)∥ ≤ γ
(m)
12 ,

sup
s∈(mh,(m+1)h]

∥A21(s)∥ ≤ γ
(m)
21

There exists real constants µi, δi, Mi, Ni, such that for
matrices Aii the following estimates Gil (1993) holds

∥esAii∥ ≤ Mie
sµi , ∥e−sAii∥ ≤ Nie

sδi , s ≥ 0.

To verify the positive-definiteness of the proposed LF and
to construct the impulsive scalar equation we use
Lemma 1. Let z1m = e−A11(t−mh)x1,
z2m = e−A22(t−mh)x2, t ∈ (mh, (m+ 1)h]. Then,

λmin(Πm)∥zm∥2 ≤ v(t, x1, x2) ≤ λmax(Ξm)∥zm∥2,
for all t ∈ (mh, (m+ 1)h], m = 0, . . . , N − 1,

(7)

where zm = (zT1m, zT2m)T , ∥zm∥2 = ∥z1m∥2+∥z2m∥2, Ξm =

(ξ
(m)
ij )i,j=1,2 is some block matrix and Πm = (π

(m)
ij )i,j=1,2

is block matrix with the elements

π
(m)
11 = P

(m)
11 − h(2γ

(m)
21 ∥P (m)

12 ∥
+(γ

(m)
12 ∥P (m)

11 ∥+ γ
(m)
21 ∥P (m)

22 ∥))In1 ,

π
(m)
22 = P

(m)
22 − h(2γ

(m)
12 ∥P (m)

12 ∥
+(γ

(m)
12 ∥P (m)

11 ∥+ γ
(m)
21 ∥P (m)

22 ∥))In2
,

π
(m)
12 = P

(m)
12 , π

(m)
21 = P

(m)
21

For i = 1, 2, i ̸= j we denote

η
(m)
ii :=

√
∥P (m)

ii ∥2 + ∥P (m)
ij ∥2 + ∥P (m)

ij ∥,

η
(m)
ij :=

1

2
(∥P (m)

ii ∥γ(m)
ij + ∥P (m)

jj ∥γ(m)
ji

+

√
(∥P (m)

ii ∥γ(m)
ij + ∥P (m)

jj ∥γ(m)
ji )2 + 16(γ

(m)
ji )2∥P (m)

ij ∥2).

α
(m)
11 := γ

(m)
12 ∥A22∥N1M2η

(m)
11 , α

(m)
12 := γ

(m)
12 ∥A11∥N1η

(m)
11 ,

α
(m)
21 := γ

(m)
21 ∥A11∥N2M1η

(m)
22 , α

(m)
22 := γ

(m)
21 ∥A22∥N2η

(m)
22 ,

Θm(h) :=
α
(m)
11

µ2

(e(µ2+δ1)h − 1

µ2 + δ1
− eδ1h − 1

δ1

)
+
α
(m)
12

δ1

(ehδ1 − 1

δ1
− h

)
+

α
(m)
21

µ1

(e(µ1+δ2)h − 1

µ1 + δ2

−eδ2h − 1

δ2

)
+

α
(m)
22

δ2

(ehδ2 − 1

δ2
− h

)
+

+2
(
γ
(m)
12 η

(m)
12 N1M2

(he(µ2+δ1)h

µ2 + δ1
− e(µ2+δ1)h − 1

(µ2 + δ1)2

)
+γ

(m)
21 η

(m)
21 N2M1

(he(µ1+δ2)h

µ1 + δ2
− e(µ1+δ2)h − 1

(µ1 + δ2)2

))
.

(8)

Lemma 2. Suppose that for all m = 0, . . . , N − 1, the
matrices Πm are positive definite. Then

v((m+ 1)h, x1((m+ 1)h), x2((m+ 1)h))

≤ e
Θm(h)

λmin(Πm) v(mh+ 0, x1(mh+ 0), x2(mh+ 0)).
(9)

We establish sufficient conditions for (1) to be AS using
the above V(t, x1, x2) and Lemma 2.
Theorem 1. Let N be a positive natural number and
P0 > 0 be such that for m = 0, . . . , N − 1 the matrices
Πm are positive definite and it holds that

Q :=

N−1∑
m=0

Θm(h)

λmin(Πm)
+ lnλmax(P

−1
N BTP0B) < 0.

Then the system (1) is asymptotically stable.

3. APPLICATION AND COMPARISON OF RESULTS

Here we compare Theorem 1 with known stability con-
ditions for coupled time-varying systems. We restrict our-
selves to a special case of high-frequency periodic functions
that is θ is sufficiently small. The value of this parameter
we obtain from Theorem 1, applied to the case N = 1.
We will compare our results with small-gain conditions
obtained on the basis of the ISS theory and the Lyapunov
vector function. Moreover, we will also consider the case
when one of the independent subsystems is not stable,
and the known approaches from the theory of stability
of coupled systems are not applicable.

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



Consider (1) and denote Âij = 1
θ

∫ θ

0
Aij(t) dt for i ̸= j.

Let B = (Bij)i,j=1,2, Â =

(
0 Â12

Â21 0

)
be block matrices.

Consider the system of linear matrix inequalities

diag {eθA
T
11 , eθA

T
22}BTP0B diag {eθA11 , eθA22}

≺ P0 − θ(ÂTP0 + P0Â).
(10)

Suppose it has a solution P0 = (P
(0)
ij )i,j=1,2 in the form of

a symmetric positive-definite matrix, i.e. P
(0)
ij = (P

(0)
ji )T .

Let us define matrices

π
(0)
11 = P

(0)
11 − θ(2γ

(0)
21 ∥P (0)

12 ∥+ (γ
(0)
12 ∥P (0)

11 ∥+ γ
(0)
21 ∥P (0)

22 ∥))In1
,

π
(0)
22 = P

(0)
22 − θ(2γ

(0)
12 ∥P (0)

12 ∥+ (γ
(0)
12 ∥P (0)

11 ∥+ γ
(0)
21 ∥P (0)

22 ∥))In2
,

π
(0)
12 = P

(0)
12 , π

(0)
21 = P

(0)
21

and block matrix P1 = (P
(1)
ij )i,j=1,2, (P

(1)
ij )T = P

(1)
ji with

the blocks

P
(1)
11 = e−AT

11θ(P
(0)
11 − θ(P

(0)
12 Â21 + ÂT

21P
(0)
21 ))e−A11θ,

(11)

P
(1)
22 = e−AT

22θ(P
(0)
22 − θ(ÂT

12P
(0)
12 + P

(0)
21 Â12))e

−A22θ (12)

P
(1)
12 = e−AT

11θ(P
(0)
12 − θ(P

(0)
11 Â12 + ÂT

21P
(0)
22 )))e−A22θ.

(13)

Corollary 1. If Q:= Θ0(θ)
λmin(Π0)

+lnλmax(P
−1
1 BTP0B) < 0,

Π0 = (π
(0)
ij )i,j=1,2 > 0, then (1) is asymptotically stable.

Example 1.

ẋ1(t) = 0.01x1(t)− 0.2 sin2
2πt

θ
x2(t),

ẋ2(t) = −0.1x2(t) + 0.2 cos2
2πt

θ
x1(t)

(14)

Choose θ = 0.09, P
(0)
11 = 18, P

(0)
12 = P

(0)
21 = −7, P

(0)
22 = 12.

It is obvious that µ1 = 0.01, µ2 = −0.1, δ1 = −0.01,

δ2 = 0.1, γ
(0)
12 = γ

(0)
21 = 0.2. By direct calculations we get

Π0 =
(
17.208 −7
−7 11.208

)
,

P1 =
(
18.09340255 −7.002491081
−7.002491081 12.08966719

)
and η

(0)
11 = 26.31320792, η

(0)
22 = 20.89244399, η

(0)
12 =

7.103656905, η
(0)
21 = 7.103656905, α

(0)
11 = 0.5262641584,

α
(0)
12 = 0.052626641584, α

(0)
21 = 0.04178488798, α

(0)
22 =

0.4178488798, Q = −0.00004279 < 0. Therefore, the
system is asymptotically stable.

At the same time, the first independent system is unstable,
which makes it impossible to apply the small-gain theorem.

3.1 Comparison with the small-gain conditions

Consider (1), assuming
∫ θ

0
Aij(t) dt = 0 for i ̸= j. Since the

Lyapunov vector functions or small-gain results are only
applicable when the independent subsystems are AS, we
assume rσ(e

θAiiBii) < 1, i = 1, 2. Then (10) reduces to

eθA
T
iiBT

ii PiiBiie
θAii ≺ Pii, i = 1, 2. (15)

To apply Theorem 1, we assume that P
(0)
ii = Pii, i = 1, 2

P
(0)
12 = 0, then from (11)–(13) we obtain P

(1)
12 = 0 and

P
(1)
11 = e−θAT

11P11e
−θA11 , P

(1)
22 = e−θAT

22P22e
−θA22 .

Let us define the matrix

Φ =

(
eθA11P−1

11 eθA
T
11 0

0 eθA22P−1
22 eθA

T
22

)(
BT

11 BT
21

BT
12 BT

22

)
×
(
P11 0
0 P22

)(
B11 B12
B21 B22

)
A consequence of Theorem 1 is the following Proposition.
Proposition 1. Let us assume that for the system (1)∫ θ

0
Aij(t) dt = 0 for i ̸= j and rσ(Φ) < 1, the conditions of

Assumption 1 and the following inequalities hold

θ < min
{λmin(P11)

ϱ
,
λmin(P22)

ϱ

}
,

Θ0(θ)

min{λmin(P11)− θϱ, λmin(P22)− θϱ}
< − lnλmax(Φ),

(16)

where ϱ = γ12∥P11∥+ γ21∥P22∥, then (1) is AS.

To compare the obtained results with known ones obtained
on the basis of the ISS approach or Lyapunov vector
function (small-gain conditions), we consider (1) without
impulsive action, i.e. Bii = I, i = 1, 2, Bij = 0 for j = 1, 2,

i ̸= j under the same assumption
∫ θ

0
Aij(t) dt = 0 for i ̸= j.

Since the Lyapunov vector function or small-gain results
are only applicable when the independent subsystems
are asymptotically stable, we assume max{Re λ |λ ∈
σ(Aii)} < 0 for i = 1, 2. For given Qi ≻ 0, i = 1, 2 consider
the linear algebraic Lyapunov equations

AT
iiPii + PiiAii = −Qi. (17)

It is known that under our assumptions for the matrices
Aii, i = 1, 2 these equations have unique solutions in the
form of symmetric positive-definite matrices Pii.
Remark 1. Solutions of matrix algebraic equations (17)
satisfy linear matrix inequalities (15), up to O(θ2).

In this case matrix Φ is the following

Φ = diag {eθA11P−1
11 eθA

T
11P11, e

θA22P−1
22 eθA

T
22P22}. Since, θ

is a small parameter, we can write

Φ = I − θ diag {P−1
11 Q1, P

−1
22 Q2}+O(θ2) ⇒

− lnλmax(Φ)=θmin{λmin(P
−1
11 Q1), λmin(P

−1
22 Q2)}+O(θ2)

is positive-defined for a sufficiently small θ > 0. On
the other hand, it is easy to show that Θ0(θ) =

Θ0(θ)
min{λmin(P11)−θϱ,λmin(P22)−θϱ} , hence ∃ θ∗ > 0, such that for

all θ ∈ (0, θ∗) the conditions of Proposition 1 are satisfied.
Corollary 2. For the system (1) without impulsive action

with
∫ θ

0
Aij(t) dt = 0 exists θ∗ > 0, such that for all

θ ∈ (0, θ∗) the coupled system (1) is asymptotically stable.

Note that θ∗ is determined from the conditions (16).

We apply the same LF V1(x1) = xT
1 P11x1, V2(x2) =

xT
2 P22x2 to study stability of (1) without impulsive action,

using the small-gain theorem in Edwards et al. (2000). By
Assumption 1 and the Cauchy-Bunyakovsky inequality we
get the estimates of V̇i along solutions of (1)

V̇i(xi) = −xT
i Qixi + 2xT

i PiiAij(t)xj

≤ −λmin(P
−1
ii Qi)Vi(xi)

+2∥Pii∥1/2∥Pjj∥−1/2γijV
1/2
i (xi)V

1/2
j (xj).

(18)

Here i ̸= j, i, j = 1, 2. To check the small-gain conditions
from Edwards et al. (2000) (Theorem 4), we choose
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χi(r) =
(2γij∥Pii∥1/2∥Pjj∥−1/2

λmin(P
−1
ii Qi)

+ ε
)2

r.

This leads to the following sufficient condition for the
asymptotic stability of (1) (small-gain condition)

γ12γ21 <
1

4
λmin(P

−1
11 Q1)λmin(P

−1
22 Q2) (19)

Remark 2. The method of Lyapunov vector functions lead
us to the same stability conditions. Indeed, (18) in the new

variables yi(t) = V
1/2
i (xi(t)) leads to a linear system of

differential inequalities

ẏi(t) ≤ −1

2
λmin(P

−1
ii Qi)yi(t) + ∥Pii∥1/2∥Pjj∥−1/2γijyj(t).

Application of the comparison principle leads to (19).

From (19) it follows that the small-gain conditions do
not depend on θ. Therefore, it is possible to choose the
parameters of the system (1), such that the conditions
(19) are not satisfied, however, based on Corollary 1, this
system is asymptotically stable for sufficiently small θ.
We conclude that our approach leads to less conservative
stability conditions than the known small-gain conditions.
Example 2. Consider a second-order linear system

ẋ1(t) = −0.2x1(t) + 0.15a12(t)x2(t),

ẋ2(t) = −0.1x2(t) + 0.2a21(t)x1(t)

where aij ∈ C(R), ∥aij∥C[0,θ] = 1,
θ∫
0

aij(t) dt = 0. Here

the small-gain condition 0.03∥a12∥C[0,θ]∥a21∥C[0,θ] < 0.02
is not satisfied. We hvae µ1 = −0.2, µ2 = −0.1, δ1 = 0.2,
δ2 = 0.1.

Choose θ = 0.5, P
(0)
11 = 2.5, P

(0)
22 = 5, P

(0)
12 = 0, M1 =

M2 = N1 = N2 = 1. By direct calculation γ
(0)
12 = 0.15,

γ
(0)
21 = 0.2,

Π0 =
(
1.8125 0

0 4.3125

)
, P1 =

(
3.053506895 0

0 5.525854586

)
Since Q = −0.0050178428 < 0, the asymptotic stability of
the considered system follows.

4. EXAMPLES

Consider a linear fourth-order impulsive system (1) with

A11 =
(
0.1 0.05
0.05 0.1

)
, A22 =

( −1 0.01
0.01 −1

)
,

A12(t) = −2 sin2(ωt)I, A21(t) = 2 sin2(ωt)I,

B11 =
(
0.98 0
0 0.98

)
, B22 =

(
1.02 0
−0.01 1.01

)
B12 =

(−0.01 0
0.02 0

)
, B21 =

(
0 0.01

−0.05 0

)
Here, τk+1−τk = θ = 0.2, ω = 2π

θ . To check the asymptotic
stability conditions obtained in Theorem 1, we choose

N = 50, P
(0)
11 = 18I, P

(0)
12 = −7I, P

(0)
22 = 12I. Then,

minp=0,49 λmin(Πp) = 7.032226894, Q = −0.0464239887 <

0. Therefore, the linear impulsive system (1) is asymptot-
ically stable. Note that the independent subsystem

ẋ2(t) = A22x2(t), t ̸= τk,

x2(t
+) = B22x2(t), t = τk,

(20)

is not stable due to the fact that rσ(e
A22θB22) > 1.

Consider a linear impulsive system (1) with the matrices

A11 =
(−1 0
0 −1

)
, A22 =

(
0.1 0
0 0.1

)
A12(t) =

(
0.2 cos(ωt) −0.2 sin(ωt)
0.2 sin(ωt) 0.2 cos(ωt)

)
,

A21(t) =

(
0.1 cos(ωt) −0.1 sin(ωt)
0.1 sin(ωt) 0.1 cos(ωt)

)
B11 =

(
1.2 0.1
−0.1 1.5

)
, B22 =

(
0.5 0.05

−0.05 −0.5

)
B12 =

(
0.04 0.1
0.1 0.04

)
, B21 =

(
0.05 0.1
0.2 0.05

)
Here, τk+1−τk = θ = 0.5, ω = 2π

θ . To check the asymptotic
stability conditions obtained in Theorem 1, we choose

N = 3, P
(0)
11 = I, P

(0)
12 = 0, P

(0)
22 = I. Then,

P3 =

 2.7171 0 −0.00098 −0.0189
0 2.7171 0.0189 −0.00098

−0.00098 0.0189 0.9024 0
−0.0189 −0.00098 0 0.9024

 ,

minp=0,2 λmin(Πp) = 0.851, Q = −0.11333 < 0. Therefore

(1) is asymptotically stable. Consider separately the con-
tinuous dynamics of a linear impulsive system, which is
described by a linear time-variant system of ODEs

ẋ1(t) = A11x1(t) +A12(t)x2(t),

ẋ2(t) = A21(t)x1(t) +A22x2(t),
(21)

We denote

U(ωt) =

(
cos(ωt) − sin(ωt)
sin(ωt) cos(ωt)

)
and rewrite (21) as

ẋ1(t) = −x1(t) + 0.2U(ωt)x2(t),

ẋ2(t) = 0.1U(ωt)x1(t) + 0.1x2(t),
(22)

Consider the Lyapunov–Chetaev function v(x1, x2) =
2∥x2∥2 − ∥x1∥2, the total derivative of which is

v̇(x1, x2) = 2(0.2∥x2∥2 + ∥x1∥2 + 0.4 sin(ωt)xT
1 Jx2)

≥ 2(0.2∥x2∥2 + ∥x1∥2 − 0.4∥x1∥∥x2∥) > 0,

for all (x1, x2) ̸= (0, 0), where J =
(
0 1
−1 0

)
.

Therefore, (22) is unstable. Its discrete dynamics is also
unstable since rσ(B) = 1.472162.
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1. KRON REDUCTION METHOD FOR OPEN CRN
WITH MASS-ACTION KINETICS

In this extended abstract, we propose a Kron-based model
reduction method for open chemical reaction networks
(CRN) with constant inflow and proportional outflow,
which guarantees the preservation of network structures
and interlacing property of the reduced-order model. Kron
reduction was originally introduced for reduction of elec-
trical circuit, see Dofler and Bullo (2012). The concept of
Kron reduction is similar with singular perturbation model
reduction presented in Liu and Anderson (1989) in which
the Schur complement is used.

Consider an open CRN with the dynamic given by

ẋ = ZDv(x) + ZDinvin − ZDoutvout(x)
y = CExp(ZTLnx),

}
(1)

where Z ∈ Rn×c
+ is the complex stoichiometric matrix

of the network, D ∈ Rc×r is the incidence matrix and
v(x) ∈ Rr is the vector of reaction rates or fluxes, Din

and Dout are incidence matrices of the inflow and outflow
that connect internal complexes to an additional “zero”-
complex ∅, vin ∈ Rc is the vector of inflow from the
environment, vout(x) ∈ Rd is gives the outflow kinetics
and y is the measured output. We will assume throughout
that the inflow vin are constant inflow while the outflow
kinetics vout(x) and the vector of reaction rates v(x) ∈ Rr

are given by mass-action kinetics, as presented in van der
Schaft et al. (2016), the reaction rates are given by

v(x) = KExp(ZTLnx), (2)

vout(x) = KoutExp(Z
TLnx), (3)

where the outgoing co-incidence matrix K ∈ Rr×c is the
matrix whose (j, σ)th element equals the j-th reaction
rate constant kj > 0 if the σ-th complex is the substrate
complex for the j-th reaction and Kout is the outgoing co-
incidence matrix for the outflow. This allow us to rewrite
(1) into the form of

ẋ = −Z(L+R)Exp(ZTLnx) + ZDinvin
y = CExp(ZTLnx),

}
(4)

where L := −DK ∈ Rc×c defines a weighted Laplacian
matrix which has non-negative diagonal elements and non-
positive off-diagonal elements and R = DoutKout. Let us
use the partitions

Z = [Z1 Z2] , L =

[
L11 L12

L21 L22

]
,

R =

[
R11 0
0 R22

]
, and Din =

[
Din,1

Din,2

]
. (5)

For ease of expression, we consider the following auxiliary
dynamical system[

ξ̇1
ξ̇2

]
= −

[
L11 +R11 L12

L21 L22 +R22

] [
w1

w2

]
+

[
Din,1vin
Din,2vin

]
, (6)

which corresponds to the dynamics of complexes in (4)
with w1 = Exp(ZT

1 Lnx) and w2 = Exp(ZT
2 Lnx). By

imposing the constraint ξ̇2 = 0, we obtain that the reduced
network is given by

ẋ = −ẐL̂Exp(ẐTLnx) + ẐD̂invin
y = ĈExp(ẐTLnx),

}
(7)

where Ẑ = Z1, L̂ = (L11 + R11) − L12(L22 + R22)
−1L21,

D̂in = Din,1 − L12(L22 + R22)
−1Din,2, and Ĉ = C1 −

C2(L22 +R22)
−1L21.

2. ANALYSIS OF KRON-REDUCED OPEN CRN

To gain further insight to the dynamics of Kron-reduced
open CRN, we will investigate a number of dynamical
properties that can be preserved or obtained by the re-
sulting Kron-reduced open CRN. First, we will see the
interlacing property, where, in van der Schaft et al. (2013),
Rao et al. (2013) and Jayawardhana et al. (2015), it has
been shown that the Kron reduction approach preserve
the network structure of the original CRN. For instance, if
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the original CRN is detailed-balanced or complex-balanced
then the Kron-reduced CRN is again detailed-balanced or
complex-balanced, respectively. Another network property
that is inherited by the Kron-reduced CRN is the net-
work spectrum interlacing property where the spectrum
of weighted Laplacian matrix of the Kron-reduced CRN is
interlaced with that of the original CRN. It follows that
for a given detailed-balanced open CRN as in (4), consider
the corresponding Kron-reduced open CRN as in (7). Then

σ(L̂) interlace with σ(L+R), i.e. for every i = 1, . . . , ĉ

0 < λi(L+R) ≤ λi(L̂) ≤ λi+c−ĉ(L+R), (8)

holds. The proof of the proposition follows the standard
result for Kron reduction of a positive semi-definite Her-
mitian matrix as in Smith (1992) that is used for electrical
networks in Dofler and Bullo (2012) or closed CRN in
Jayawardhana et al. (2015).

The next thing that we will investigate is the steady-
state or zero-moment matching property. Suppose that
Ker(Z) = ∅ and the underlying CRN graph G is undirected
and connected. Then the zero-moment of reduced open
CRN in (7) matches with the zero-moment of original
open CRN in (4). Since Z has full column rank, the
left-inverse (or Moore-Penrose inverse) of Z is given by
Z† = (ZTZ)−1ZT . Pre-multiplying the first equation in
(4) by Z†, we have the zero-moment property that satisfies

0 = −AExp(ZTLnx) +Dinvin
y = CExp(ZTLnx),

}
(9)

where A = L + R. Similarly, for the reduced-order open
CRN in (7), its zero-moment satisfies

0 = −(A11 −A12A
−1
22 A21)Exp(Z

TLnx)

+
(
Din,1 − (A12)(A22)

−1Din,2

)
vin

y = (C1 − C2(A22)
−1(A21))Exp(Ẑ

TLnx).

 (10)

By hypotheses of the proposition, the matrix A is invert-
ible due to the connectedness of G and due to the fact that
R is a diagonal matrix with at least one positive entry (see,
for example, Lemma 3 in Ni and Cheng (2010)). It follows
that

y = CA−1Dinvin. (11)

For the Kron-reduced one in (10), we can have a similar
expression as above. In which we will have

y = Ĉ(A11 −A12A
−1
22 A21)

−1D̂invin, (12)

where Ĉ and D̂in are as in (7). By using matrix inversion
lemma or Woodbury formula (see Riedel (1992)), it follows
that (11) is equivalent to (12).

3. SELECTION OF REMOVED COMPLEXES OF
OPEN SS CRN VIA GENERALIZED GRAMIANS

As shown in Rao et al. (2014), the selection of removed
nodes using Kron reduction method in a closed CRN plays
an important role in the quality of the approximation
error. Correspondingly, Rao et al. (2014) has proposed the
combined use of error integral and simulation to remove
one node at a time in order to obtain the set of removed
nodes. Since the computing resource that is needed to
perform the said method is quite extensive, we will propose
another method with the use of generalized Gramian to
get the optimal set of removed nodes along with the model
reduction error bound for a class of open detailed-balanced

single-species single-substrate (which we will refer to as
SS) CRN. The open SS CRN can be given by

ẋ = −(

=:L︷︸︸︷
DK +

=:R︷ ︸︸ ︷
DoutKout)︸ ︷︷ ︸

=:A

x+ Din︸︷︷︸
=:B

u

y = Cx

 (13)

where the matrices A,B and C are the usual matrices of
linear systems.

Since Z = I in this case, the partitioning of Z, L, R and
Din as above corresponds to the partitioning of matrices
A,B and C in (13) as follows

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
, C = [C1 C2] . (14)

Hence the application of Kron reduction method to (13)
gives

˙̂x = Âx̂+ B̂u

ŷ = Ĉx̂,

}
(15)

where Â = A11 − A12A
−1
22 A21, B̂ = B1 − A12A

−1
22 B2, and

Ĉ = C1 − C2A
−1
22 A21.

For linear systems, controllability and observability Grami-
ans have been used to obtain reduced-order models, see,
e.g. Antoulas (2005). These Gramians reveal the states
of systems that are hard to control and observe. Instead
of using the ordinary Gramian to get the controllability
or observability Gramian, generalized Gramians can be
defined to characterize state variables that are difficult to
control or to observe. In particular, generalized controlla-
bility Gramians is defined as a solution of inequality

AP + PAT +BBT ≤ 0, (16)

and, similarly, generalized observability Gramians is a
solution of inequality

ATQ+QA+ CTC ≤ 0. (17)

Note that, the matrices P and Q in (16) and (17) are not
unique and satisfy P ≥ P0 and Q ≥ Q0 with P0 and Q0

be the ordinary controllability and observability Gramian,
respectively, which are the unique solutions of their corre-
sponding Lyapunov equations. This non-uniqueness gives
extra degree of freedom on their structure. Namely, we can
force P and Q to have a specific structure, such as forcing
P and Q to be diagonal.

In our method, we will have a slightly different definition
of generalized Gramians. Namely, matrices P ∈ Rn×n

+ and

Q ∈ Rn×n
+ are said to be generalized controllability and

observability Gramians of open SS CRN systems (13) if
they are diagonal and satisfy

AP + PAT +BBT ≤ 0 (18)

and
ATQ+QA+ATCTCA ≤ 0, (19)

respectively, where A, B and C are as in (13).

We remark that the matrix inequality defined above is
stronger than the one defined in (17). It can be verified that
if Q∗ is a solution of (17) then ATQ∗A is a solution of (19).
The generalized Gramians of open SS CRN defined above
will allow for the computation of error bounds below. In
this regards, the computation of tight model reduction
error bounds via (18) and (19) can be done by minimizing
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trace(P ) and trace(Q). Following this definition we can
express the generalized Gramians as

P =

π
c
1

. . .
πc
n

 and Q =

π
o
1

. . .
πo
n

 . (20)

Next, let us first consider a one step Kron reduction, where
we only remove one complex that is deemed the least
controllable and observable from generalized Gramian
standpoint, as follows. Consider an open SS CRN system
Σ as in (13) and its reduced-order model Σ̂n−1 via Kron
reduction as in (15) by removing the n-th node so that

the reduced system Σ̂n−1 are given by system matrices

Â = A11 −A12A
−1
22 A21, B̂ = B1 −A12A22B2 and Ĉ = C1.

In this case, we assume that C2 = 0. This corresponds to
the assumption that we will not remove the nodes that are
measured directly. Then

P̂1 =

π
c
1

. . .
πc
n−1

 and Q̂1 =

π
o
1

. . .
πo
n−1

 , (21)

are generalized controllability and observability Gramians
for system Σ̂n−1, respectively.

Moreover, we have also proven that the ignored entries of
the Gramians can be used to compute an a priori upper
bound of this one step model reduction error as follows. For
any input function u(·) ∈ L2[0,∞) and initial condition
x(0) = 0 and x̂(0) = 0, the outputs satisfy

∥y − ŷ∥2 ≤ 2M22

√
(πc

nπ
o
n)∥u∥2, (22)

where the scalar M22 > 0 is a diagonal element of the
partition matrix

M :=

[
M11 M12

M21 M22

]
= −A−1 = (L+R)−1, (23)

and πc
n, π

o
n are the corresponding removed elements of the

generalized Gramians P and Q as in (20). The proof of
proposition is based on that of (Besselink et al., 2015,
Theorem 11).

Based on the bound (22), we can order the complexes (or
vertices of CRN) such that

M2
11π

c
1π

o
1 ≥ · · · ≥ M2

nnπ
c
nπ

o
n ≥ 0. (24)

Based on this order, we can consider the removal of com-
plexes associated to smallest error bound. By removing the
vertex corresponding to the smallest error bound, we can
guarantee that the reduced-order model will have a small
approximation error, but not necessarily the smallest. Note
that such ordering procedure corresponds simply to apply-
ing a coordinate transformation Tx using a permutation
matrix T .

In practice, when we apply our Kron reduction method
to a CRN, we need to truncate not only one complex.
From the a priori upper bound (22), we can extend this
bound for the truncation of a set of complexes. By mainly
utilizing triangle inequality, we have that for any input
u ∈ L2[0,∞) and initial condition x(0) = 0 and x̂(0) = 0,
the outputs y and ŷr satisfy the bound

∥y − ŷr∥2 ≤ 2

(
n∑

i=r+1

Mii

√
πc
iπ

o
i

)
∥u∥2, (25)

where y and ŷr are the outputs of the original and
the reduced-order model, respectively, πc

i s and πc
i s are

the removed generalized controllability and observability
Gramians, respectively, as in (20), and the scalarMii is the
i-th diagonal element of the matrix M = −A−1 = (L +
R)−1.

4. CONCLUSIONS

We studied the usage of Kron Reduction in a balanced
biochemical reaction network. Our study shows that the
use of the Kron Reduction method is able to preserve the
network structure and equilibrium point in the reduced
network even with the presence of inflow and outflow in
the network. Moreover, we also provide an a priori upper
bound of the approximation error via generalized Gramian
approach. The latter property has allowed us to guide
systematically the selection of removed nodes/species via
Kron reduction.
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an example model called continuous-time noisy voter model, we use two data-driven approaches
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1. INTRODUCTION

In the past years agent-based modeling has undoubtedly
gained in importance. While its success in various ap-
plications is significant, agent-based models (ABMs) still
have many limitations. Even for rather simple interaction
rules between agents, the emerging macroscopic system
behavior may be very complex and hard to predict ana-
lytically. Thus, a formal analysis is typically out of reach
and computer simulations are used to examine the be-
havior of ABMs instead. As simulations of most ABMs
scale at least linearly with the number of agents, they are
often computationally infeasible for large populations of
agents. Thus, we are interested in finding low-dimensional
model reductions that scale sublinearly while preserving
the macroscopic behavior of the underlying ABMs.

It is known that this macroscopic behavior can sometimes
be expressed by a small number of collective variables
(or reaction coordinates, to borrow a term from statistical
physics and computational chemistry) that aggregate the
most important dynamical information, see for example
Helfmann et al. (2021). Furthermore, it is often observed
that for a large number of agents the effective dynamics of
the collective variables follows an almost deterministic and
smooth evolution. Hence, the macroscopic dynamics may
be approximated by a differential equation of the collective
variables. We we will refer to this phenomenon as a
concentration (of measure) effect. If we are only interested
in the aggregated information provided by the collective
variables, we can use the reduced system instead of the full
agent-based model, which greatly lowers computational
cost.

Finding suitable collective variables for a given system
is a challenging task, see for instance Bittracher et al.
(2017). However, we will assume from now on that a set
of collective variables has been chosen and focus on the

question of discovering their dynamics instead, i.e., finding
a description of their evolution in the form of a differential
equation.

In the next section we introduce an exemplary ABM called
the continuous-time noisy voter model (CNVM), which
models simple spreading processes on networks. The re-
maining sections of this extended abstract deal with ana-
lyzing this model for different examples of network topolo-
gies. In section 3 we present results about the CNVM
on fully connected networks, where the appearance of
concentration effects can be proven. In section 4 we discuss
a ring-shaped network topology and derive approximate
macroscopic dynamics analytically as well as via data-
driven methods.

Although the network topologies that we discuss in sec-
tions 3 and 4 are rather simple, the methods we present
lay the groundwork for analyzing more complex systems,
which are more similar to real-world social networks and
will be subject matter of future works.

2. THE CONTINUOUS-TIME NOISY VOTER MODEL

We define the continuous-time noisy voter model as a
dynamical system on an undirected simple graph G with
N nodes. Each node i ∈ {1, . . . , N} in the graph represents
an agent and has one of M opinions {1, . . . ,M}. The
state of the system at times t ∈ R≥0 is given by the
stochastic process x(t) ∈ XN := {1, . . . ,M}N , where
xi(t) is the opinion of node i at time t. We model the
switching of the agents between opinions as Markov jump
processes, i.e., xi(t) is a continuous-time Markov chain on
{1, . . . ,M} with transition rate matrix (generator matrix)
QG

i (x) ∈ RM,M . We define the rate at which agent i
transitions from opinion m to a different opinion n as
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(QG
i (x))mn = rmn

kGi,n(x)

kGi
+ r̃mn, (1)

where rmn, r̃mn ∈ R≥0 are constant parameters, kGi is the
degree of the i-th node, and kGi,n is the number of adjacent
nodes (neighbors) of agent i that have opinion n. The first
term of the rate (1) describes an influence on agent i by
neighboring nodes of opinion n, while the second term
controls transitions independently of the neighborhood of
agent i, i.e., noise.

The CNVM as described above is a simple but quite
general example of a spreading process on a network.
The behavior of this model is heavily dependent on the
underlying network G. Let us first examine the easiest
case: the fully connected network.

3. FULLY CONNECTED NETWORK

Let us discuss the continuous-time noisy voter model in
the case of a fully connected graph GN on N nodes. Note
that the cumulative rate of transitions from opinion m to
opinion n happening is given by

α(N)
mn (x) :=

∑
i:xi=m

(QGN
i (x))mn

= ym

(
rmn

yn

N − 1
+ r̃mn

)
, (2)

where the stochastic process y(t) ∈ NM
0 is the collection

of opinion counts, i.e.,

ym := #{i ∈ {1, . . . , N} | xi = m}. (3)

Due to their appearance in the propensity function α
(N)
mn

in (2), the opinion counts y present themselves as a
natural choice of collective variables. In fact, we are
able to completely describe the ABM dynamics using y,
see Winkelmann and Schütte (2020).

Moreover, it is known that the evolution of opinion shares
c := 1

N y shows a concentration effect, which is described
in the following theorem.

Theorem 1. (Kurtz (1978)) Let (Nℓ)ℓ∈N ⊂ N be strictly
increasing and let c(ℓ)(t) denote the stochastic process of
opinion shares on the fully connected graph on Nℓ nodes.
Assume it holds c(ℓ)(0) = c0 almost surely (a.s.) for all ℓ.
Then

c(ℓ)(t)
a.s.−→
ℓ→∞

c(t) for all t ∈ R≥0,

where c(t) is the solution of the reaction-rate equation
(RRE)

ċ(t) =

M∑
m,n=1

m̸=n

α̃mn(c(t))(en − em) , c(0) = c0,

en, em are standard unit vectors and

α̃mn(c) := cm

(
rmncn + r̃mn

)
.

An illustration on how the stochastic processes c(ℓ)(t)
become more concentrated around the solution of the RRE
as the number of agents increases can be found in Figure 1.
In the next section we will examine a more challenging
network topology.
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Fig. 1. Mean (dashed line) ± one standard deviation
(shaded area) of 500 realizations of the CNVM on
fully connected networks of sizes N = 250, 500, 2000.
Black: solution of the reaction-rate equation.

4. RING-SHAPED NETWORK

While the ring-shaped network (cycle graph) still has a
fairly simple structure, analytical results for concentration
effects with respect to suitable collective variables are not
available. We assume that there are only M = 2 opinions,
0 and 1, and set m ∈ {0, 1} and n = 1 −m. Let us again
inspect the propensity function for this network structure:

α(N)
mn (x) =

∑
i:xi=m

(QGN
i (x))mn

=
rmn

2
(y1

m + 2y2
m) + ymr̃mn, (4)

where y is defined as in (3), and

yℓ
m := #{i ∈ {1, . . . , N} | xi = m and kGi,n(x) = ℓ} (5)

is the count of agents of opinion m with ℓ neighbors of
opinion n = 1 − m. Thus, a natural choice of collective
variables is given by

z := (y0
0 ,y

1
0 ,y

2
0 ,y

0
1 ,y

1
1 ,y

2
1). (6)

Note that z includes y because ym = y0
m + y1

m + y2
m.

4.1 The analytical approach

In this section we will derive an ODE ż = f(z) that
approximates the evolution of the collective variables z.
For this purpose we need to characterize at which rate
certain opinion transitions happen and how they impact z.

Let us discuss the following example: (xi−1, xi, xi+1) =
(m,m,m) and agent i transitions from opinion m to opin-
ion n. This transition has a rate of r̃mn (cf. (1)), because
agent i has no neighbor of different opinion, who could in-
fluence them. Due to the transition of agent i, y0m decreases
and y2n increases by one. Additionally, for the agents (i−
1) and (i + 1) the number of neighbors with opinion n
changes as well, but this depends on the opinions of agents
(i − 2) and (i + 2). Assume we knew that (xi−2, xi+2) =
(m,m). Then the transition of agent i would further in-
crease y1m by two and decrease y0m by two, leading to
the total state-change vector v = (−3, 2, 0, 0, 0, 1). The
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three other cases (xi−2, xi+2) = (m,n), (n,m), (n, n) yield
three (potentially) different reactions with different state-
change vectors. Unfortunately, only the combined rate
r̃mn of all four reactions is known, not the single re-
action rates. We distribute the total rate onto the four
reactions by relative occurrence and assuming stochastic
independence of xi−2 and xi+2. For the above example
(xi−2, xi−1, xi, xi+1, xi+2) = (m,m,m,m,m) this yields a
share of ( y0m

y0m + 0.5y1m

)2

of the combined rate r̃mn. Hence, we set the rate of the
above reaction given by v = (−3, 2, 0, 0, 0, 1) happening
somewhere in the system (propensity) to

α(z) = y0mr̃mn

( y0m
y0m + 0.5y1m

)2

. (7)

Following this procedure for all possible scenarios, i.e.,
agent i being of opinion m = 0, 1 and having ℓ = 0, 1, 2
neighbors of opinion n, and agents (i − 2), (i + 2) having
opinions (m,m), (m,n), (n,m), (n, n), yields a total of 2·3·
4 = 24 reactions with associated reaction rates αj(z) and
state-change vectors vj , j = 1, . . . , 24. Thus, the evolution
of z is given by

ż =
∑

j=1,...,24

αj(z)vj . (8)

(The number of reactions can be reduced to 20 due to
symmetry.)

Note that, in contrast to the fully connected networks (cf.
theorem 1), we do not have any convergence guarantee for
(8). In fact, in its derivation we made the assumption that
certain agents are stochastically independent. While this is
a common strategy in the construction of the macroscopic
evolution, see for example mean-field theory (Porter and
Gleeson (2014)), here it introduces an error, cf. Fig. 3. In
the next sections, we will employ data-driven techniques
to learn the macroscopic evolution and reduce the above
mentioned error.

4.2 Learning collective variable dynamics using SINDy

A very popular technique to discover system dynamics
from data is called Sparse Identification of Nonlinear Dy-
namics (SINDy) and was proposed by Brunton et al.
(2016). It works as follows: Given a time-series of tra-
jectory data {z(k)} and a library of basis functions {fj},
we numerically approximate the derivatives at the trajec-
tory points ż(k) (e.g., via finite differences) and solve for
the optimal weights {λj} such that

∑
j λjfj(z

(k)) ≈ ż(k)

(linear regression). Additionally, we typically enforce a
certain sparsity on the set of weights {λj}. Hence, there
are many hyperparameters to be considered when applying
SINDy: the method to generate derivatives, the library of
basis functions, the optimizer and optimizer parameters
(especially regarding the desired sparsity of coefficients),
etc.

Our data set consist of 9 trajectories of z with different
initial conditions, cf. Fig. 2. In order to find optimal
hyperparameters, we employ grid search combined with
leave-one-out cross-validation, i.e., for every choice of
hyperparameters we train 9 models, so that model i

0.0

0.5

a) b) c)

0.0

0.5

d) e) f)

0 100 200
0.0

0.5

g)

0 100 200

h)

0 100 200

i)

Fig. 2. The available trajectory data consists of 9 trajec-
tories of 1

N z(t) (cf. (6)) for t ∈ [0, 200] and N = 2000,
starting from different initial conditions and averaged
over an ensemble of 500 simulations each. We will
refer to the different trajectories by their label, e.g.
“trajectory a)”.

trains on all except the i-th trajectory, and define the
error as the deviation from the data in infinity norm on
the validation trajectory i, averaged over the 9 models.
This procedure showed that SINDy is rather sensitive
to the choice of hyperparameters. For many choices the
dynamics produced by SINDy is unstable, so that we
had to artificially bound z(t) to not produce an infinitely
large error. The best choice of hyperparameters that we
found was using central finite differences for calculating
the derivatives, polynomials of degree less than 2 as
basis functions, and the SSR optimizer (Boninsegna et al.
(2018)). The dynamics produced by SINDy is visualized
in Fig. 3 and its error is depicted in Fig. 4. Note that the
average error is significantly lower than the error of the
analytical model from section 4.1. However, there also exist
trajectories where the dynamics learned by SINDy has a
bigger error than the analytical model. As discovering the
macroscopic dynamics using SINDy is not robust, we will
explore an informed learning approach in the next section.

4.3 Learning the closure

In the analytical derivation of the collective variable equa-
tions in section 4.1 we introduced an error by distributing
a cumulative rate onto four associated reactions (cf. (7))
under assumptions that may not be correct. Hence, we
will employ a data-driven method in order to learn better
ways of distributing the shares of the cumulative rate. In
contrast to the SINDy technique from the previous section,
we do not need to learn the complete dynamics without
prior knowledge, but we apply the data-driven method
precisely to the unknown part in the analytical equations,
thus learning the closure of the equations.

To obtain the training data, we iterate through every
snapshot of our training trajectories (cf. Fig. 2) and count
the occurrences of all possible 5-tuples (xi−2, . . . , xi+2) ∈
{0, 1}5, which enables us to calculate the above mentioned
shares of the cumulative rates. Then we employ linear
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Fig. 3. Trajectory h) data and approximate solutions:
“analytical” (cf. section 4.1), “SINDy” (cf. section
4.2), “closure” (cf. section 4.3). cℓm := yℓm/N .

regression with an ℓ1 regularization, see LASSO by Tib-
shirani (1996), to find an optimal approximation of the
empirical share functions within the space of polynomi-
als. We again employ grid search combined with leave-
one-out cross-validation (cf. section 4.2) to find the best
optimizer parameters and optimal degree of polynomials.
As discussed in section 4.1, there are 20 share functions
that need to be learned.

We found that this approach of learning the closure is
significantly more robust than SINDy (cf. section 4.2) for
our example as it rarely produces unstable dynamics, see
table 1. However, the error of this method seems to be
slightly larger than the error of SINDy, but still lower than
the error of the analytical model, cf. Fig. 3 and Fig 4. Note
also, that this approach is not inferior to SINDy on all 9
trajectories, e.g., it is superior to SINDy on trajectory b).

Further tests also showed that this approach of learning
the closure requires significantly less data than SINDy to
produce good results, i.e., we could beat the analytical
model using only 5 of the 9 training trajectories while
SINDy needed at least 7.

optimizer
library of polynomials of degree
1 2 3

STLSQ 33% | 0% 44% | 0% 67% | 0%
SSR 0% | 0% 67% | 0% 100% | 0%

Table 1. Instability of SINDy | closure. The
entries show for how many of the 9 training
trajectories (cf. Fig. 2) the learned dynamics is
unstable. The depicted hyperparameters (op-
timizer and library) are only a selection of all

tested hyperparameters.

5. OUTLOOK

In this extended abstract we showed how one can employ
data-driven methods in order to improve the accuracy
of conventional macroscopic dynamics approximations.
These methods, which we demonstrated for simple network
topologies, will be extended to more complex systems

mean a) b) c) d) e) f) g) h) i)
0.000
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Fig. 4. Error of approximate dynamics for z (cf. (6)) for
the 9 test trajectories (cf. Fig. 2): “analytical” (cf.
section 4.1), “SINDy” (cf. section 4.2), “closure” (cf.
section 4.3). The error is measured as deviation from
mean of data w.r.t. infinity norm.

in future works. Further tasks are to find the collective
variables in a case where we can simulate the system (or
some trajectories of it are given), and to derive stochastic
models for mesoscopic populations where the deterministic
limit of Theorem 1 is not a good approximation.
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Abstract: In this abstract the finite horizon linear quadratic optimal control problem with
constraints on the terminal state for switched differential algebraic equations is considered.
Furthermore, we seek for an optimal solution that is impulse-free. In order to solve the problem,
a non standard finite horizon problem for non-switched DAEs is considered. Necessary and
sufficient conditions on the initial value x0 for solvability of this non standard problem are
stated. Based on these results a sequence of subspaces can be defined which lead to necessary
and sufficient conditions for solvability of the finite horizon optimal control problem for switched
DAEs.

Keywords: Switched systems, Differential Algebraic Equations, Optimal control, Linear
systems.

1. INTRODUCTION

In this abstract we consider the following switched differ-
ential algebraic system

Eσẋ = Aσx+Bσu

y = Cσx+Dσu.
(1)

where σ : R → N is the switching signal and Ep, Ap ∈
Rn×n and (Ep, Ap) is regular, Bp ∈ Rn×m, Cp ∈ Rq×n and
Dp ∈ Rp×m for p, q, n,m ∈ N. We aim to find an impulse-
free solution (x, u) on [t0, tf ) satisfying x(t−0 ) = x0 and
x(t−f ) ∈ Vend that minimizes

J(x0, u, tf ) =

∫ tf

t0

y(t)⊤y(t) dt+ x(t−f )
⊤Px(t−f ) (2)

for some positive semi definite P = P⊤ ∈ Rn×n and y is
the output resulting from the solution (x, u) of (1) satisfy-
ing x(t−0 ) = x0. In general, trajectories of switched DAEs
exhibit jumps (or even impulses), which may exclude clas-
sical solutions from existence. Therefore, we adopt the
piecewise-smooth distributional solution framework intro-
duced in Trenn (2009).

Differential algebraic equations (DAEs) arise naturally
when modeling physical systems with certain algebraic
constraints on the state variables. Examples of applica-
tions of DAEs in electrical circuits can be found e.g. in
Tolsa and Salichs (1993); Riaza (2008); Reis (2010) and
gas networks, where the algebraic constraints are induced
by the network topology. e.g. in Grundel et al. (2014).
The algebraic constraints are often eliminated such that
the system is described by ordinary differential equations
(ODEs). However, in the case of switched systems, the
elimination process of the constraints is in general differ-
ent for each individual mode. Therefore, in general, there
does not exist a description as a switched ODE with a

⋆ This work was supported by the NWO Vidi-grant 639.032.733.

common state variable for every mode. This problem can
be overcome by studying switched DAEs directly.

The literature on optimal control of non-switched DAEs
is quite mature, (besides the already mentioned literature)
see for the finite horizon e.g. Kunkel and Mehrmann (2008,
1997); Ilchmann et al. (2019, 2021); Wijnbergen and Trenn
(2021b) on a finite horizon and for the infinite time horizon
see e.g. Cobb (1983); Mehrmann (1989); Reis et al. (2015);
Reis and Voigt (2019); Bankmann and Voigt (2019). Fur-
thermore, several structural properties of switched DAEs
have been investigated recently (Wijnbergen and Trenn,
2021a, 2020). However, to the best of the authors knowl-
edge, optimal control of switched DAEs has not been
studied yet.

The finite horizon problem is motivated by the study of
optimal control on an infinite horizon, i.e., the minimiza-
tion of

J(x0, u) =

∫ ∞

t0

y(t)⊤y(t) dt. (3)

on the interval [t0,∞) while using a dynamic programming
approach. It can be shown that if there exists an input that
minimizes (3), the optimal cost resulting from the interval
[tf ,∞) is quadratic in x(t−f ), i.e., x(t

−
f )

⊤Px(t−f ) for some

matrix P ∈ Rn×n. This result allows for a dynamic
programming approach. Assuming that the matrix P and
the optimal input u restricted to [tf ,∞) are known, it
follows that the minimization of (3) is equivalent to finding
the input u restricted to [t0, tf ) such that

J(x0, u) =

∫ tf

t0

y(t)⊤y(t) dt+

∫ ∞

tf

y(t)⊤y(t) dt

=

∫ tf

t0

y(t)⊤y(t) dt+ x(t−f )
⊤Px(t−f ).

is minimal.
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For many real word applications Dirac impulses in the
state are to be avoided as they can cause damage to
components of the system or create hazardous situations.
Therefore, we aim to find an optimal impulse-free solution
(x, u). However, there generally only exists an optimal
(impulse-free) solution on [tf ,∞) if the state at tf is
contained in some subspace, i.e., x(t−f ) ∈ Vend for some

subspace Vend ⊆ Rn.

In order to solve the problem for switched systems with a
switching signal that induces an arbitrary yet finitely many
modes on the interval [t0, tf ) we will first consider the case
that only two modes are induced on [t0,∞) and the switch
occurs at tf . Within this context we aim to minimize (2)
with respect to a non-switched DAE. Once conditions for
the single switched case are obtained, conditions for the
general case will follow straightforwardly. Hence first we
will focus on finding an optimal solution to

Eẋ = Ax+Bu, (4)

y = Cx+Du (5)

that minimizes (2) under the constraint x0 ∈ Rn and
x(t−f ) ∈ Vend.

As the terminal cost matrix P represents the cost resulting
from the interval [tf ,∞) and the mode active on this inter-
val is not necessarily structurally related to the dynamics
(4), we can only assume that P ∈ Rn×n is some positive
semi-definite matrix. This is in contrast to the assumption
commonly made in the literature for optimal control of
non switched DAEs that the terminal cost matrix is of the
form P = E⊤P̃E for some positive semi-definite P̃ ∈ Rn×n

(Lewis, 1985; Bender and Laub, 1985; Katayama and Mi-
namino, 1992). Also note that whereas commonly a closed
interval is of interest, in this paper a half open interval is
considered. Consequently, the terminal cost can penalizes
algebraic states and as a result x(t−f ) is not necessarily

equal to x(tf ) or even well defined such that an optimal
solution might fail to exist.

The remainder of this paper is structured as follows.
The mathematical preliminaries and the main results are
given in Section 2 and 3, respectively. Conclusions and a
discussion on future work are given in Section 4.

2. MATHEMATICAL PRELIMINARIES

In the following, we consider regular matrix pairs (E,A),
i.e. for which the polynomial det(sE − A) is not the
zero polynomial. Recall the following result on the quasi-
Weierstrass form (QWF) (Berger et al., 2012).

Proposition 1. A matrix pair (E,A) ∈ Rn×n × Rn×n is
regular if, and only if, there exists invertible matrices
S, T ∈ Rn×n such that

(SET, SAT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
, (6)

where J ∈ Rn1×n1 , 0 ⩽ n1 ⩽ n, is some matrix and
N ∈ Rn2×n2 , n2 := n− n1, is a nilpotent matrix.

The matrices S and T can be calculated by using the so-
called Wong sequences (Berger et al., 2012; Wong, 1974):
Based on the Wong sequences we define the following
projectors and selectors.

Definition 2. Consider the regular matrix pair (E,A) with
corresponding quasi-Weierstrass form (6). The consistency
projector of (E,A) is given by

Π := T

[
I 0
0 0

]
T−1,

the differential selector and the impulse selector are given
by

Πdiff := T

[
I 0
0 0

]
S, Πimp := T

[
0 0
0 I

]
S.

respectively

In all three cases the block structure corresponds to the
block structure of the QWF. Furthermore we define

Adiff := ΠdiffA, Eimp := ΠimpE,

Bdiff := ΠdiffB, Bimp := ΠimpB.

Note that all the above defined matrices do not depend
on the specifically chosen transformation matrices S and
T ; they are uniquely determined by the original regular
matrix pair (E,A). An important feature for DAEs is the
so called consistency space, defined as follows for the DAE
given in (4).

Definition 3. Consider the DAE (4), then the consistency
space is defined as

V(E,A) :=
{
x0 ∈ Rn

∣∣∣ ∃ smooth solution x of (4)
with u = 0 and x(0) = x0

}
,

and the augmented consistency space is defined as

V(E,A,B) :=
{
x0 ∈ Rn

∣∣∣ ∃ smooth solutions (x, u) of (4)
with x(0) = x0

}
.

For studying impulsive solutions of (4), we consider the
space of piecewise-smooth distributions DpwC∞ from Trenn
(2009) as the solution space. That is, we seek a solution
(x, u) ∈ (DpwC∞)n+m to the following initial-trajectory
problem (ITP) associated with (4):

x(−∞,0) = x0
(−∞,0), (7a)

(Eẋ)[0,∞) = (Ax)[0,∞) + (Bu)[0,∞), (7b)

where x0 ∈ (DpwC∞)n is some initial trajectory, and fI
denotes the restriction of a piecewise-smooth distribution
f to an interval I. In Trenn (2009) it is shown that the
ITP (7) has a unique solution for any initial trajectory
if, and only if, the matrix pair (E,A) is regular. As
a direct consequence, the switched DAE considered in
(1) with regular matrix pairs is also uniquely solvable
(with piecewise-smooth distributional solutions) for any
switching signal with locally finitely many switches.

The space of initial values for which there exists an
impulse-free solution (x, u) of (4) is defined as follows.

Definition 4. Consider the DAE (4), then the impulse
controllable space is defined as

Cimp :=
{
x0 ∈ Rn

∣∣∣ ∃ solution of (7) satisfying
x(0−) = x0 and (x, u)[0] = 0

}
,

The DAE is called impulse controllable if Cimp = Rn.

Lemma 5. (Cobb (1981)). The DAE (4) is impulse con-
trollable if and only if there exist a feedback input u =
Lx + v such that in terms of the selectors Πdiff and Πimp

resulting from the Wong sequences based on (E,A+BL),
the solution x is given by x = xdiff − Bimpv where xdiff

solves
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ẋdiff = (A+BL)diffxdiff +Bdiffv (8)

Given a matrix pair (E,A) and a matrix B we can
always generate an impulse-controllable DAE with the
same solution behavior for initial values x0 ∈ Cimp.

Lemma 6. Consider the DAE (4). A solution (x, u) satis-
fying x(0−) = x0 ∈ Cimp solves (4) if and only if (x, u)
solves

EWẋ = Ax+Bu (9)

whereW is an orthogonal projector onto Cimp. In addition,
(9) is impulse controllable.

3. MAIN RESULTS

The concepts introduced in the previous section are now
utilized to study the minimization of (2) subject to the
non-switched DAE (4). We aim to minimize (2) over all
(x, u) that are impulse-free and satisfy x(t−0 ) = x0 and
x(t−f ) ∈ Vend.

As we aim to find an impulse-free solution (x, u) that
minimizes (2), it is necessary that x(t0) = x0 ∈ Cimp.
Consequently, it follows from Lemma 6 that we can assume
without loss of generality that (4) is impulse controllable.
Moreover, we can assume that an index-reducing feedback
in the sense of Lemma 5 has been applied and that the
system is of index-1.

In the case (4) is of index-1, we observe, by making use of
the decomposition x = xdiff − Bimpu, that (x, u, y) solves
(4) if, and only if, (xdiff , u, y) with xdiff(t−0 ) = Πx0 solves

ẋdiff = Adiffxdiff +Bdiffu

ȳ = Cxdiff + (D − CBimp)u
(10)

which shows that the minmization of (2) subject to (4) is
equivalent to the minimization of

J̄(xdiff , u) =

∫ tf

t0

ȳ(t)⊤ȳ(t) dt+ x̄(t−f )
⊤Px̄(tf ). (11)

where x̄ := xdiff −Bimpu, subject to (10). This shows that
the optimal control problem for non switched DAEs can be
reduced to an equivalent problem for ordinary differential
equations (ODEs). However, note that the latter problem
is still not a standard finite horizon linear quadratic
optimal control problem for ODEs as the terminal state
of the input is penalized by the terminal cost and because
of the subspace endpoint constraint x̄(t−f ) = x(t−f ) ∈ Vend.

In order to ensure that the optimal input does not contain
impulses, we assume that D̄ := D − CBimp has full
column rank, such that D̄⊤D̄ is positive definite. For ODE
optimal control problems with a cost resulting from an
output (10) this is standard. However, in the literature on
optimal control on DAE it is often assumed that D⊤D is
positive definite, which we do not require here. Note that
a sufficient condition for D̄ to have full column rank is

rank [CW D] = m

were W is some projector onto kerE. This assumption
is very similar to the assumption that the system (4) is
impulse-observable.

3.1 Regarding the terminal cost

As the terminal cost in (11) penalizes the input, it follows
that if there exists a solution that minimizes (11), the
value of u(t−f ) must be well defined and satisfies given the

optimal state xdiff(t−f )

((xdiff(t−f )−Bimpu(t−f ))
⊤P ((xdiff(t−f )−Bimpu(t−f ))

⩽ ((xdiff(t−f )−Bimpv)⊤P ((xdiff(t−f )−Bimpv))

for all v satisfying xdiff(t−f ) − Bimpv ∈ Vend. Using La-
grange multipliers and noting that the terminal cost is a
convex function of u(t−f ) leads to the following result.

Lemma 7. Let (xdiff , u) be a solution satisfying x̄(t−0 ) = x0

and x̄(t−f ) ∈ Vend that minimizes (11). Then the terminal
cost satisfies

x̄(t−f )
⊤Px̄(t−f ) = xdiff(t−f )

⊤Ψ⊤PΨxdiff(t−f ). (12)

where Ψ = (I −BimpN) for some N satisfying

[ I 0 N ] ker

[
Bimp⊤PBimp Bimp⊤Π⊤

V⊥ −2Bimp⊤PΠ
ΠV⊥Bimp 0 −ΠV⊥Π

]
= 0.

where ΠV⊥ is an orthogonal projector onto the orthogonal
complement of Vend.

It follows from Lemma 7 that instead of minimizing (11)
directly, we can focus on finding an input that minimizes

J̄Ψ(x
diff , u) =

∫ tf

t0

ȳ(t)ȳ(t) dt

+ xdiff(t−f )
⊤Ψ⊤PΨxdiff(t−f ) (13)

and verify whether the optimal input satisfies (12). How-
ever, the computation of the input that minimizes (13) is
rather straightforward. After denoting

ȳ(t)⊤ȳ(t) =
[
xdiff

u

]⊤ [
Q S⊤

S R

] [
xdiff

u

]
we can state the following result.

Lemma 8. The cost functional J̄Ψ(x
diff , u) satisfies

J̄Ψ(x
diff , u)− xdiff(t−0 )

⊤X(t0)x
diff(t−0 )

=

∫ tf

t0

(∥∥u+R−1(B̄diff⊤X + S⊤)x̄diff
∥∥2
2

)
where X solves

Ẋ = Adiff⊤X +X⊤Adiff +Q

− (S +X⊤Bdiff)R−1(Bdiff⊤X + S⊤). (14)

with terminal condition X(tf ) = Ψ⊤PΨ.

Corollary 9. If an input u minimizes (13), then

u = −R−1(Bdiff⊤X + S⊤)xdiff (15)

where X is a solution to (14) with X(tf ) = Ψ⊤PΨ.

The result of Corollary 9 shows that if there exists an
optimal control, it needs to be of a particular form.
However, a feedback of the form (15) does not necessarily
controls an initial value Πx0 to the desired subspace, e.g.,
in the case Vend is the zero subspace, and hence an optimal
control might fail to exist. In order to determine which
intial values are controlled to Vend at t−f we define the
following flow operator.
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Definition 10. The backwards state transition matrix for
the closed loop ODE

ẋdiff =
(
Adiff −BdiffR−1

(
Bdiff⊤X + S⊤))xdiff

is given by Ω(t, tf ). Hence xdiff(t) = Ω(t, tf )x
diff(t−f ).

Recall that the state x = xdiff − Bimpu and thus for the
input (15) we have x(t−f ) = Mxdiff(t−f ) where

M := I −BimpR−1
(
Bdiff⊤Ψ⊤PΨ+ S⊤) .

As xdiff(t−f ) = Πξ for some ξ ∈ Rn it follows that

x(t−f ) ∈ Vend if and only if

xdiff(t−f ) = Πξ ∈ kerΠV⊥M

Next, observe that the input (15) satisfies (12) if and only
if

x(t−f )
⊤Px(t−f ) = xdiff(t−f )

⊤M⊤PMΠx(t−f )

= xdiff(t−f )
⊤Ψ⊤PΨxdiff(t−f ).

This is the case if M⊤PMxdiff(t−f ) = Ψ⊤PΨxdiff(t−f ).
Given these observations, we can state the following result
regarding the minimization of (11).

Theorem 11. There exists an impulse-free solution (x, u)
satisfying x(t−0 ) = x0 and x(t−f ) ∈ Vend that minimizes

(11) if and only if

x0 ∈ V init := Ω(t0, tf ) ker

[
ΠV⊥M

M⊤PM −Ψ⊤PΨ

]
Π.

3.2 Multiple switched case

Given the result of Theorem 11 we are now able to state
conditions for the existence of a solution that minimizes (2)
subject to (1). To do so, we define the following sequence

Vend
n = Vend,

Vend
i−1 = V init

i ,
i = n, n− 1, ..., 0

where V init
i is defined according to Theorem 11 on the

interval [ti, ti+1) w.r.t. Vend
i .

Theorem 12. There exists an impulse-free solution (x, u)
that minizes (2) and satisfies x(t−0 ) = x0 and x(t−f ) ∈ Vend

if and only if x0 ∈ V init
0 .

4. CONCLUSION

In this abstract we considered the finite horizon optimal
control problem for switched DAEs. Based on sovability
of n nonstandard optimal control problems for ODEs
solvability of the optimal control problem for switched
DAEs can be concluded. In this abstract impulse-freeness
of the solution (x, u) was required. A natural direction of
research is to investigate the existence of optimal impulsive
solutions.
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Abstract: We propose new mathematical connections between Hamilton-Jacobi (HJ) partial
differential equations (PDEs) with initial data and neural network architectures. Specifically,
we prove that some classes of neural networks correspond to representation formulas of HJ
PDE solutions whose Hamiltonians and initial data are obtained from the parameters or the
activation functions of the neural networks. These results do not require any learning stage.
In addition these results do not rely on universal approximation properties of neural networks;
rather, our results show that some classes of neural network architectures naturally encode the
physics contained in some HJ PDEs. Our results naturally yield efficient neural network-based
methods for evaluating solutions of some HJ PDEs in high dimension without using grids or
numerical approximations.

Keywords: Optimal Control, Hamilton-Jacobi Partial Differential Equations, Neural Networks,
Grid-Free Numerical Methods, High Dimensions

1. INTRODUCTION

Hamilton-Jacobi (HJ) partial differential equations (PDEs)
are widely used in physics, optimal control, game theory,
and imaging sciences. An HJ PDE is given as follows

∂S

∂t
(x, t) +H(t,x,∇xS(x, t)) = 0 in Rn × (0,+∞),

S(x, 0) = J(x) in Rn,

(1)
where S : Rn × [0,+∞) → R∪ {+∞} denotes the solution
to the PDE, H : [0,+∞) × Rn × Rn → R ∪ {+∞} is
the Hamiltonian, and J : Rn → R ∪ {+∞} is the initial
condition. The computational complexity of standard grid-
based numerical algorithms for solving HJ PDEs scales
exponentially with respect to the dimension n. This ex-
ponential scaling is often referred to as the “curse of
dimensionality” (CoD) [Bellman (1961)]. Due to the CoD,
these grid-based methods are infeasible for solving high-
dimensional problems (e.g., dimensions greater than five)
and thus are infeasible for many practical applications.

In the literature, several methods are proposed to over-
come the curse of dimensionality when solving high di-
mensional HJ PDEs and optimal control problems. These
methods include, but are not limited to, max-plus methods
[Akian et al. (2008); Fleming and McEneaney (2000);
McEneaney (2006)], optimization methods [Darbon and
Osher (2016); Yegorov and Dower (2017)], tensor decom-

⋆ This research is supported by NSF 1820821 and AFOSR MURI
FA9550-20-1-0358.

position techniques [Dolgov et al. (2019); Horowitz et al.
(2014); Todorov (2009)], sparse grids [Bokanowski et al.
(2013); Kang and Wilcox (2017)], polynomial approxima-
tion [Kalise et al. (2019)], model order reduction [Alla
et al. (2017); Kunisch et al. (2004)], dynamic programming
and reinforcement learning [Alla et al. (2019); Bertsekas
(2019)] and neural networks [Bachouch et al. (2018); Jiang
et al. (2016); Nakamura-Zimmerer et al. (2019); Jin et al.
(2020)].

Recently, we proposed several neural network architec-
tures for solving different classes of high-dimensional HJ
PDEs [Darbon et al. (2020); Darbon and Meng (2021);
Darbon et al. (2021)]. These neural network architectures
have solid theoretical guarantees from the theory of HJ
PDEs, and they can leverage efficient hardware dedicated
to neural networks and designed for future real-time appli-
cations. By using the theory of HJ PDEs, the parameters
in these neural networks are assigned directly from the
PDEs. Therefore, we do not need any training process.
This is the main difference of our proposed neural network
methods with traditional neural network methods.

In the following sections, we summarize our proposed
three architectures. The first architecture is a shallow
neural network proposed in Darbon et al. (2020) and is
summarized in Section 2. The second is a neural network
with two hidden layers proposed in Darbon and Meng
(2021) and is summarized in Section 3. The last one is
a deep neural network proposed in Darbon et al. (2021)
and is summarized in Section 4.
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Throughout, we use Rn×l to denote the set of matrices
with n rows and l columns with entries in R, and use
Sn to denote the set of real-valued symmetric matrices in
Rn×n. We use C(0, T ;X) to denote the set of continuous
functions from [0, T ] to a space X.

2. A SHALLOW NEURAL NETWORK
ARCHITECTURE

A shallow neural network architecture for solving a class
of high-dimensional HJ PDEs is proposed in Darbon et al.
(2020). The target PDE is a subclass of HJ PDEs (1) whose
Hamiltonian H does not depend on (x, t), and whose
initial condition J is convex. We define the neural network
function f : Rn × [0,+∞) → R by

f(x, t)
.
= max

i∈{1,...,m}
{⟨pi,x⟩ − tθi − γi}, (2)

with parameters pi ∈ Rn, θi ∈ R, and γi ∈ R for
i = 1, . . . ,m (where i is the index for the neuron, and m
is the total number of neurons involved). The illustration
for this neural network architecture is shown in Fig. 1.

Fig. 1. Architecture of the neural network (2) that rep-
resents the viscosity solution to certain class of HJ
PDEs, whose Hamiltonian does not depend on (x, t),
and whose initial condition is convex.

In Darbon et al. (2020), both theoretical guarantees and
numerical experiments are provided for this architecture.
Under certain assumptions, the neural network function
f computes the viscosity solution to the HJ PDE (1)
whose initial condition J : Rn → R and Hamiltonian
H : Rn → R ∪ {+∞} are defined using the parameters
{(pi, θi, γi)}mi=1 as follows

J(x)
.
= max

i∈{1,...,m}
{⟨pi,x⟩ − γi}, (3)

and

H(p)
.
=

 inf
α∈A(p)

{
m∑
i=1

αiθi

}
, if p ∈ dom J∗,

+∞, otherwise,

(4)

where J∗ denotes the Fenchel-Legendre transform of the
function J (see Hiriart-Urruty and Lemaréchal (1993b)),
and the set A(p) ⊆ Rm is defined by

A(p)
.
= argmin

(α1,...αm)∈Λm∑m

i=1
αipi=p

{
m∑
i=1

αiγi

}
.

Here, we use Λm to denote the unit simplex in Rm, i.e.,

Λm
.
=

{
(α1, . . . , αm) ∈ [0, 1]m :

m∑
i=1

αi = 1

}
.

We also proved that the function f with the same param-
eters {(pi, θi, γi)}mi=1 may solve different HJ PDEs. The
function H defined in (4) is a lower bound for all possible
Hamiltonians in these HJ PDEs. In this way, we identified
the smallest Hamiltonian H in (4) for the set of HJ PDEs
whose viscosity solution is the function f with certain
parameters {(pi, θi, γi)}mi=1. We refer readers to Darbon
et al. (2020) for detailed assumptions and characterization
for this set of HJ PDEs. In Darbon et al. (2020), we
also provided several numerical experiments showing the
ability of our proposed architectures for overcoming the
CoD.

3. A NEURAL NETWORK ARCHITECTURE WITH
TWO HIDDEN LAYERS

A neural network architecture, with two hidden layers,
for solving another class of high-dimensional HJ PDEs is
proposed in Darbon and Meng (2021). This class assumes
a convex Hamiltonian that is independent of (x, t). The
neural network function f : Rn × [0,+∞) → R involved is
defined by

f(x, t)
.
= min

i∈{1,...,m}

{
tL

(
x− ui

t

)
+ ai

}
, (5)

with parameters ui ∈ Rn and ai ∈ R for i = 1, . . . ,m.
The activation function L : Rn → R corresponds to the
Lagrangian function in the theory of HJ PDEs and optimal
control problems. An illustration is shown in Fig. 2.

Fig. 2. Architecture of the neural network (5) that rep-
resents the viscosity solution to certain class of HJ
PDEs whose Hamiltonian is convex and does not
depend on (x, t).

The initial data J : Rn → R is defined by

J(x)
.
= min

i∈{1,...,m}
{L′

∞(x− ui) + ai} , (6)

where L′
∞ is the asymptotic function of L (see (Hiriart-

Urruty and Lemaréchal, 1993a, Chap. IV.3.2)). Under
certain assumptions, the function f defined in (5) is shown
to compute the viscosity solution to the HJ PDE (1)
with Hamiltonian H = L∗ (i.e., H equals the Fenchel-
Legendre transform of the activation function L in the
neural network, and H does not depend on (x, t)) and
initial condition J defined in (6). Although the initial
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condition J has a specific form in (6), this form can be
used to approximate other meaningful initial conditions
when m approaches infinity. In Darbon and Meng (2021),
we also provided several numerical experiments in high
dimensions. From the experimental results, we observe
that our proposed architecture can overcome the CoD for
certain HJ PDEs. Another neural network architecture
with two hidden layers is proposed in the same paper. We
refer readers to Darbon and Meng (2021) for more details
about the theoretical guarantees and numerical results for
these two architectures.

4. A DEEP NEURAL NETWORK ARCHITECTURE

A deep neural network architecture is proposed in our
recent paper Darbon et al. (2021) for representing the
viscosity solution to the backward HJ PDE{

−
∂V (x, t)

∂t
+H(t,x,∇xV (x, t)) = 0 x ∈ Rn, t ∈ (0, T ),

V (x, T ) = J(x) x ∈ Rn,

(7)

with Hamiltonian H : [0, T ]× Rn × Rn → R of the form

H(t,x,p)
.
=

1

2
pTCpp(t)p− 1

2
xTCxx(t)x− pTCxp(t)x,

and terminal condition J : Rn → R of the form

J(x)
.
= min

i∈{1,...,m}

{
1

2
xTGix+ aT

i x+ bi

}
.

The coefficients in H, i.e., Cpp(t), Cxx(t), and Cxp(t),
are functions depending on t and taking values in Rn×n.
The parameters in J contain matrices Gi ∈ Sn, vectors
ai ∈ Rn, and scalars bi ∈ R, for i = 1, . . . ,m.

Under certain assumptions (see Darbon et al. (2021)), the
viscosity solution to (7) can be represented by a function
VNN defined by

VNN (x, t)
.
= min

i∈{1,...,m}
Vi(x, t),

Vi(x, t)
.
=

1

2
xTPi(t)x+ qi(t)

Tx+ ri(t),
(8)

where the function Pi ∈ C(0, T ;Sn) solves the following
Riccati final value problem (FVP)

Ṗi(t) = Pi(t)
TCpp(t)Pi(t)− Pi(t)

TCxp(t)

−Cxp(t)
TPi(t)− Cxx(t) t ∈ (0, T ),

Pi(T ) = Gi,
(9)

the functions qi ∈ C(0, T ;Rn) solves the following linear
FVP{

q̇i(t) = Pi(t)
TCpp(t)qi(t)− Cxp(t)

Tqi(t) t ∈ (0, T ),

qi(T ) = ai,
(10)

and the function ri ∈ C(0, T ;R) solves the following FVPṙi(t) =
1

2
qi(t)

TCpp(t)qi(t) t ∈ (0, T ),

ri(T ) = bi.
(11)

In our implementations, we apply the Runge-Kutta
method to solve (9), (10), and (11). The Runge-Kutta
method can itself be expressed using a Resnet architecture,
so that the implementation for the function VNN defined
in (8) can be expressed using the deep neural network
illustrated in Fig. 3.

Fig. 3. A deep neural network architecture defined by (8)
(where each function Vi is computed using the Runge-
Kutta method) that represents the viscosity solution
to the HJ PDE (7).

The bottom part of Fig. 3 is a one-layer abstract archi-
tecture with a min-pooling activation function. The i-th
abstract neuron is given by the function Vi(x, t) in (8). The
value on the i-th abstract neuron is computed using the top
part of Fig. 3, which represents the Runge-Kutta method
for solving (9), (10), and (11). Note that the top part of
Fig. 3 can be replaced by another numerical method for
solving (9), (10), and (11), if the method can be expressed
using a neural network architecture.

In Darbon et al. (2021), we provide both theoretical guar-
antees and numerical results for our proposed deep archi-
tecture. For the purpose of illustration here, we extract an
example of solving a high-dimensional HJ PDE below. We
refer readers to Darbon et al. (2021) for more results on
solving HJ PDEs and the corresponding optimal control
problems in high dimensions.

We consider the HJ PDE (7) with

H(t,x,p)
.
=

et

4
∥p∥2 − e−t

4
∥x∥2 − 1

2
⟨p,x⟩, (12)

and the terminal condition J is defined by

J(x)
.
= min {Ψ1(x),Ψ2(x),Ψ3(x),Ψ4(x)} , (13)

where Ψ1,Ψ2,Ψ3,Ψ4 : Rn → R are defined by

Ψ1(x)
.
= 0.5∥x∥2 + 0.9x1 + 0.405,

Ψ2(x)
.
= 0.5∥x∥2 − 0.9x1 + 0.405,

Ψ3(x)
.
= 0.25∥x∥2 + 0.9x2 + 0.405,

Ψ4(x)
.
= 0.25∥x∥2 − 0.9x2 + 0.405,

for each x = (x1, . . . , xn) ∈ Rn. We solve a 16-dimensional
problem, i.e., we set n = 16, and the numerical results at
earlier times t are shown in Fig. 4. In each figure, we plot
two-dimensional slices of the function x 7→ VNN (x, t) for
illustration. We consider the points x = (x1, x2,0) ∈ R16

where (x1, x2) ∈ R2 is any grid point in a two-dimensional
rectangular domain and 0 denotes the zero vector in R14.
From the numerical results, our proposed deep neural
network overcomes the CoD in this example.
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(a) t = 1 (b) t = 0.75

(c) t = 0.5 (d) t = 0.25
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ing the proposed deep neural network architecture in
Fig. 3. The two dimensional slices of VNN at time
t = 1 (i.e., the terminal cost), t = 0.75, t = 0.5, and
t = 0.25 are shown in the subfigures (a), (b), (c), and
(d), respectively. The color in each subfigure shows the
solution value VNN (x, t), where the spatial variable x
is in the form of (x1, x2,0) ∈ R16 (where 0 is the zero
vector in R14) for some points x1 ∈ R and x2 ∈ R
which are represented by x and y axes.

Alla, A., Falcone, M., and Saluzzi, L. (2019). An efficient
DP algorithm on a tree-structure for finite horizon
optimal control problems. SIAM Journal on Scientific
Computing, 41(4), A2384–A2406.

Alla, A., Falcone, M., and Volkwein, S. (2017). Error anal-
ysis for POD approximations of infinite horizon prob-
lems via the dynamic programming approach. SIAM
Journal on Control and Optimization, 55(5), 3091–3115.
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Analysis and Minimization Algorithms I: Fundamentals,
volume 305. Springer-Verlag Berlin Heidelberg.

Hiriart-Urruty, J.B. and Lemaréchal, C. (1993b). Convex
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1. INTRODUCTION

Quantum optimal control has numerous applications,
within quantum computing, laser control of chemical reac-
tions, and nuclear magnetic resonance. In quantum com-
puting, better quantum optimal control provides faster
and more accurate two-qubit gates, and multi-level op-
erations in general, eventually allowing for fault-tolerant
quantum computation.

There are many excellent results, which establish con-
ditions for controllability, as surveyed in D’Alessandro
(2007) and Jurdjevic (2016), but constructive, algorithmic
approaches still leave space for improvement. For the con-
trol of systems involving more than three levels, including
the pulse-shaping for two-qubit gates, there are no deter-
ministic, globally convergent solvers. There are two key
challenges. First, most formulations seem to assume com-
mutativity of the Hamiltonian at different times. Second,
the corresponding quantum optimal control on an N -level
system is non-convex for N ≥ 4, but only heuristics based
on first-order optimality conditions are employed.

We have recently addressed the issues of non-commutativity
and non-convexity of the problem by employing Magnus
expansion (Magnus, 1954; Blanes et al., 2009) and tools
from non-commutative polynomial optimisation (Pironio
et al., 2010; Burgdorf et al., 2016). In addressing the non-
commutativity of the problem, this improves most directly
upon the work of Schutjens et al. (2013) and Theis et al.
(2016), who consider the lowest-order term of the Magnus
expansion, also known as the average Hamiltonian, and
derive conditions for all other terms being zero. In contrast
to their approach, we consider an arbitrary number of
terms in the Magnus expansion. Our work complements
research on Magnus expansion in numerical integration
of the Schrödinger equation (Blanes et al., 2009; Singh,
2018; Kopylov, 2019, e.g.), which however have not been
developed in the context of quantum control so far. In
addressing the non-convexity of the problem, we utilise a
hierarchy of progressively stronger convexifications. This
improves upon essentially all related work on quantum
optimal control, which guarantees only monotonic conver-
gence to first-order critical points or local minima of a
non-convex optimisation problem based on Pontryagin’s
maximum principle.

2. THE PROBLEM

Let us consider a finite N -dimensional quantum system
whose time-evolution is governed by a Schrödinger equa-
tion. Given an initial condition Û(0) = Î, where Î is a
unit matrix in CN×N , a terminal time T > 0, and a target
unitary Û∗ ∈ U(N) ⊂ CN×N , where U(N) is the Lie group
of N ×N unitary operators or matrices, we aim to control
a time-dependent Hamiltonian Ĥ(t) over time t ∈ [0, T ].
That is, we seek a particular solution of the initial value
problem for the Schrödinger equation:

∂

∂t
Û(t) = Â(t)Û(t) (1)

where Â(t) = Ĥ(t)/i~ can explicitly be written in terms
of controls uj(t) : [0, T ]→ R as

Â(t) =
∑
j

uj(t) Ĥj/i~. (2)

In particular, we seek a solution that is optimal with
respect to a given functional J , while using controls {uj(t)}
constrained to some set Υ. Formally, the quantum optimal
control problem reads:

min
Û(t),{uj(t)}∈Υ

J
(
Û(t), {uj(t)}

)
(3)

s.t.
∂

∂t
Û(t) =

∑
j

uj(t) Ĥj/i~

 Û(t),

Û(0) = Î .

where J is the (objective) functional for the control prob-
lem, which is polynomially or semidefinite representable
(Helton and Vinnikov, 2007), and Υ is a polynomially
representable set.

3. OUR APPROACH

It is well known that initial value problem (1) has a
solution in the form of the Magnus expansion (Magnus,
1954; Blanes et al., 2009):

Ω(T ) =
∞∑

m=1

Ωm(T ), (4)
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where the individual terms in the series require evaluations
of increasingly more complex integrals involving nested
commutators. When the series Ωm(T ) is absolutely con-

vergent, then Û(t) can be written in the form

Û(t) = exp Ω(t). (5)

In a key insight of this paper, we show that the nested
commutators between the Hamiltonian at different times
are instrumental in extending the reachable set. This
expansion is accomplished via two distinct mechanisms.
First, the nested commutators generate new linearly in-
dependent elements of the Lie algebra su(N) and hence
increase the dimension of the reachable set. The oper-
ator controllability is accomplished when this dimension
reaches N2 − 1.

The second mechanism is related to the controls {uj(t)},
which figure in coefficients of the Lie algebra elements that
are generated by the k terms of the Magnus expansion.
The controls are, in general, arbitrary functions of time
which allows for an arbitrary linear combination of the
Lie algebra elements. Hence the two mechanisms result
in both expanding the dimension of the reachable set as a
Lie algebra and also in its dense cover by control functions
and their integrals. We denote the expanded reachable set
obtained with the lowest m terms in the Magnus series by
ME(R(Û(0)),m).

Specifically, in the case of a time-dependent Hamiltonian,
one need not consider only generators of the Lie group
as they appear in Ĥ(t), but one can also consider the
commuting relations obtained by Magnus expansion: (i) A

necessary condition for reachability of any Û(T ) ∈ SU(N)

from Û(0) = Î to Û(T ), considering Magnus expansion is
that the dimension of the Lie algebra generated by Magnus
expansion has dimension N2 − 1. (ii) A necessary and
sufficient condition for the existence of time T ∗ such that
for all T > T ∗ one has exact-time operator controllability
is that the dimension of the Lie algebra generated by
Magnus expansion has dimension N2 − 1.

It is to be pointed out that the validity of our approach is
limited by the convergence of the Magnus expansion. This
has been studied extensively, with the most recent result
provided by Moan and Niesen (2008).

4. THE MAIN RESULT

Our second insight is that this approach can be made
constructive, considering that for any number m of terms
in the Magnus expansion, one obtains a non-commutative
polynomial optimisation problem (NCPOP), which can be
solved by solving a sequence (Pironio et al., 2010, cf.)
of natural linear matrix inequalities (Boyd et al., 1994)
in the original variables and additional variables for non-
linear monomials, based on the Sums of Squares theorem
of Helton (2002) and McCullough (2001).

Hence, under mild assumptions, for any initial state Û(0),
for any lower bound m on the number of terms in the
Magnus expansion, for any target state in the expanded
reachable set ME(R(Û(0)),m), and any error ε > 0, there
is a number of terms m(ε) ≥ m such that ε-optimal control
with respect to any polynomially-representable functional

can be extracted from the solution of a certain convex
optimisation problem in the model of Blum et al. (1989).

Notice that we use Magnus expansion in two ways here:
First, m steps in the Magnus expansion guarantee we can
reach any target in ME(R(Û(0)). Second, we need m(ε) ≥
m number of steps to achieve the convergence within ε
error introduced by the Magnus expansion. We also utilise
recent results on the robustness of the GNS construction
to small errors. Indeed, we can apply (Klep et al., 2018,
Theorem 3.2) directly, if there are no constraints Υ.

Now notice that one could also consider an uncon-
strained problem, where

∑m
m=1 Ωm(T ) is compared to

logU∗ directly, measuring a distance between the tar-
get element of the Lie algebra given by logU∗ and
the element of the Lie algebra emerging from the Mag-

nus expansion Ω̃ =
∑m

m=1 Ωm(T ) of the control prob-
lem. There, we can rewrite the expression for Ωm(T )

as
∑

i ÔiF̃i({ũj}(t1, . . . , tm+1)). The operators Ôi result
from the commutators of the Magnus expansion which
involve the Hamiltonians Ĥj at different times. The func-

tion F̃i(ũj}(t1, . . . , tm+1)) is a polynomial of the time-
dependent controls uj(t) at different times t1, . . . , tm+1,
originating from the same commutator, and after an ap-
propriate discretization (sub-sampling) of time {uj} →
{ũj}. The functions {F̃i} represent coefficients in the Lie
algebra associated with the operator {Oi} which, if the
system is controllable, constitute the complete set of gen-
erators of the Lie algebra. In this formulation, the control
problem reduces to optimization of these coefficients, and
in particular minimization of the difference between these
coefficients and those of logU∗. Since logU∗ is not unique,
one needs to consider this comparison modulo 2π which in
turn may weaken the guarantees of finding the global min-
imum. At the same time, however, the problem becomes a
commutative polynomial optimization problem (POP).

5. CONCLUSIONS

We have presented an approach to quantum optimal
control that exhibits global convergence, in theory, and
relies on non-trivial but well-developed tools from non-
commutative geometry and mathematical optimisation, in
practice. In contrast to other quantum control approaches,
the use of Magnus expansion provides the proper solution
of the initial value problem of the Schrödinger equation
involving time-dependent Hamiltonian. This has a signifi-
cant impact on the controllability of quantum systems in
that it expands the reachable set both in its dimension
and volume. This opens new avenues for research and
engineering in quantum control and its applications such
as quantum computing.

Quantum optimal control can significantly enhance quan-
tum computing in the context of Noisy Intermediate Scale
Quantum (NISQ) computing devices. Immediately, one
can improve fidelity of two-qubit gates. In principle, one
can also replace the application of an entire quantum
circuit with a control signal. This would make it possi-
ble to move beyond the quantum circuit model and the
associated intricacy of approximate compiling and swap
mapping to accommodate connectivity constraints present
in many qubit technologies.
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Abstract: In this article, we propose a novel system identification method for stable and
sparse linear time-invariant systems. We adopt kernel-based regularization to take a priori
information, such as the decay rate, of the target system into account. For promoting sparsity,
we introduce the minimax concave penalty function, which is known to promote sparser results
than the standard ℓ1 penalty. The estimation problem is shown to be reduced to a convex
optimization problem, which can be efficiently solved by the forward-backward algorithm. We
show a numerical example of delayed FIR (finite impulse response) system identification to
illustrate the effectiveness of the proposed method.

Keywords: System identification, kernel method, sparse optimization, convex optimization,
minimax concave penalty.

1. INTRODUCTION

The accuracy of system identification depends highly on
how a priori information is utilized. The kernel regular-
ization is one of the most effective methods to take such
information into account, as discussed in Pillonetto et al.
(2014). For example, in Pillonetto and De Nicolao (2010);
Chen et al. (2012), it was shown that the kernel method
can significantly improve the accuracy of system identifi-
cation of a stable linear system by adopting the exponen-
tial convergence of impulse response. More recently, the
method has been extended to a priori information on the
DC gain (Fujimoto and Sugie, 2018), the frequency domain
decay characteristics (Fujimoto, 2021b,a), and the relative
degree (Fujimoto et al., 2017).

On the other hand, the notion of sparsity of vectors and
functions also plays an important role in control systems
design, e.g, maximum hands-off control (Nagahara et al.,
2016; Nagahara, 2020, 2021), and sparse system identi-
fication (Chen et al., 2009; Fattahi and Sojoudi, 2018).
In this article, we study identification of sparse impulse
response that has only a few nonzero coefficients. For
this, we introduce sparsity-promoting penalty function to
the kernel regularization to take account of sparsity and
other system properties at the same time. In particular, we
propose to use the minimax concave penalty function dis-
cussed in Selesnick (2017) as a sparsity prior, instead of the
standard ℓ1 penalty used in Chen et al. (2009); Fattahi and
Sojoudi (2018). Although the minimax concave penalty
function is not convex, it promotes sparsity more than

⋆ This work was partly supported by JSPS KAKENHI Grant
Numbers JP20H02172 and JP20K21008.

the ℓ1 penalty. Moreover, by choosing appropriate hyper
parameters, the cost function to be minimized becomes
convex, and the minimization problem can be solved by
an efficient algorithm. By a numerical example, we show
the effectiveness of the proposed method in particular for
an FIR (finite-impulse-response) system with a large delay.

Note that the approach is different from the work of Chen
et al. (2014) that proposes to sparsify the hyper-parameter
vector in multiple kernels by maximizing the marginal
likelihood, which is not a convex optimization, and just
a local optimal solution is obtained.

Notation

For vector v = [v1, . . . , vm]⊤, ∥v∥1 is the ℓ1 norm defined

by ∥v∥1 ≜ |v1|+ · · ·+ |vm|, and ∥v∥2 is the ℓ2 norm defined

by ≜
√
v⊤v, where ⊤ denotes the transpose. A matrix A

whose (i, j)-th element is Aij is described as A = [Aij ].
For a square matrix A, ∥A∥ denotes the maximum singular
value of A. For symmetric matrix A, we write A ≥ 0 when
A is positive semi-definite.

2. PROBLEM FORMULATION

In this paper, we consider the FIR (finite impulse response)
model described by

yk =
m−1∑
i=0

giuk−i + ϵk, k = 0, 1, 2, . . . , (1)

where {uk} and {yk} are respectively the input and output
sequences, {ϵk} is noise, and {gi} is the impulse response.
The problem is to identify the impulse response {gi : i =
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Fig. 1. Minimax concave penalty function ψB with B = 1.

0, 1, . . . ,m−1} from the input/output data {(uk, yk) : k =
0, 1, . . . , N}. For this, we define the following vectors and
matrix:

y ≜

 y0...
yN

 , ϵ ≜
 ϵ0...
ϵN

 , g ≜

 g0
...

gm−1

 ,

U ≜


u0 0 . . . 0

u1 u0
. . .

...
...

...
. . . 0

uN−1 uN−2 . . . uN−m

 .
Then, we consider the squared ℓ2 error E(g) as

E(g) ≜ 1

2
∥y − Ug∥22. (2)

The minimizer of E(g) is the least-square solution, which
is used when we have no prior information on g. However,
it may cause overfitting (Bishop, 2006) in particular when
the parameter size m is large. To avoid this, we adopt
regularization with the following regularization term:

Ω(g) ≜ µ

2
g⊤K−1g + (1− µ)ψB(g), (3)

where K = [Kij ] is a positive definite kernel matrix, and
ψB is the (generalized) minimax concave penalty function
(Selesnick, 2017) defined by

ψB(g) ≜ ∥g∥1 −min
h

{
∥h∥1 +

1

2
∥B(g − h)∥22

}
, (4)

where B is a matrix, which is a hyper-parameter, such
that B⊤B is non-singular. Figure 2 shows the curve of the
1-dimensional minimax concave penalty function ψB with
B = 1.

The kernel matrix is introduced to take a priori knowledge
on the target system into account. For the simplicity of
discussion, m is assumed to be even in the rest of this
section. This paper uses the High-Frequency Decay (HFD)
kernel (Fujimoto, 2021b) which is given by

K = F⊤
[
Kre 0
0 K im

]
F ∈ Rm×m, (5)

where Kre = [Kre
ij ] ∈ R(

m
2 +1)×(m

2 +1) and K im = [K im
ij ] ∈

R(
m
2 −1)×(m

2 −1) are respectively given by

Kre
ij = kHFD(ωi−1, ωj−1), K

im
ij = kHFD(ωi, ωj), (6)

kHFD(ωi, ωj) = η1 min

{
1

(ω2
i + η2)

d
,

1(
ω2
j + η2

)d
}
, (7)

ωi =
2π

N
i. (8)

Also F ∈ Rm×m is defined as

F =

[
F re

F im

]
, (9)

where F re = [F re
ij ] ∈ R(m

2 +1)×m and F im = [F im
ij ] ∈

R(m
2 −1)×m are given by

F re
ij = cos

(
2π(i−1)(j−1)

m

)
, F im

ij = − sin
(

2πi(j−1)
m

)
. (10)

It is known that the estimated impulse response with
the HFD kernel shows high-frequency decay property
(Fujimoto, 2021b).

The minimax concave penalty function (4) promotes spar-
sity of the estimated impulse response. Although this is
non-convex (see Figure 2), the cost function

J(g) ≜ E(g) + λΩ(g), (11)

with λ > 0 becomes convex if we appropriately choose B.
In fact, we have the following proposition.

Proposition 1. Assume

U⊤U + λ
(
µK−1 − (1− µ)B⊤B

)
≥ 0. (12)

Then J(g) is convex over Rm.

Proof: Define

Ũ ≜
[
U
V

]
, ỹ ≜

[
y
0

]
, λ̃ ≜ λ(1− µ), (13)

where V is a matrix satisfying V ⊤V = λµK−1. Then it is
easily shown that

J(g) =
1

2
∥ỹ − Ũg∥22 + λ̃ψB(g). (14)

Then from Theorem 1 of Selesnick (2017), J(g) is convex

if λ̃B⊤B ≤ Ũ⊤Ũ , which is equivalent to (12). 2

By combining minmax concave penalty function and the
HFD kernel, the estimated impulse response is expected
to have sparsity in time domain, and high-frequency decay
property in frequency domain.

3. OPTIMIZATION ALGORITHM

To satisfy (12), we choose B such that λ̃B⊤B = γŨ⊤Ũ
with γ ∈ (0, 1). Then, minimizing J(g) is equivalent to the
following saddle point problem:

min
g

max
h

1

2
∥ỹ−Ũg∥22+λ̃∥g∥1−λ̃∥h∥1−

γ

2
∥Ũ(g−h)∥22. (15)

This is efficiently solved by the forward-backward algo-
rithm (see Selesnick (2017) and Bauschke and Combettes
(2011) for details):

w[k] = g[k]− cŨ⊤{Ũ(g[k] + γ(h[k]− g[k])
)
− ỹ
}
,

u[k] = h[k]− cγŨ⊤Ũ(h[k]− g[k]),

g[k + 1] = Scλ̃(w[k]),

h[k + 1] = Scλ̃(u[k]), k = 0, 1, 2, . . . ,
(16)

where c is a step size of this iteration that satisfies
0 < c < max{1, γ/(1 − γ)}∥Ũ⊤Ũ∥, and Sa is the soft-
thresholding function with parameter a > 0 defined by
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Fig. 2. Impulse response: true (broken line), estimated by
the HFD kernel (thin-solid line), sparse regularization
(dotted line), and by the proposed method (thick-solid
line)

[Sa(v)]i ≜ sign(v)max{|vi| − a, 0}, where [Sa(v)]i and vi
are respectively the i-th elements of Sa(v) and v. We note
that this function is the proximal operator of the ℓ1 norm;
see Nagahara (2020) for details.

4. NUMERICAL EXAMPLE

Let us consider the following continuous-time transfer
function:

P (s) =
100

(s+ 3)(s+ 2)
e−s. (17)

Then, we discretize this by the zero-order hold discretiza-
tion to obtain a discrete-time system Pd(z). The goal is
to estimate the impulse response of Pd(z). We should note
that the impulse response is exactly zero in [0, 1] due to
the delay e−s. In this example, we assume we know the
impulse response is delayed by some delay time, which is
not known, and hence it can be assumed to be sparse in
the time domain.

For this, we set the length of estimated impulse response
to be m = 350. We set the input signal uk in (1) taking
±1 independently drawn from the Bernoulli distribution
with equal probability 0.5. We also add noise ϵk in (1)
independently drawn from the normal distribution with
mean 0 and variance 0.1. The hyperparameters are tuned
to η1 = 10, η2 = 2, λ = 50 and µ = 0.8.

Figure 4 shows the results with the proposed, HFD kernel
(µ = 1, λ = 50), and sparse regularization(µ = 0, λ = 10).
The proposed method estimate the delay well by using
the sparsity of impulse response, and at the same time
make the impulse response smooth by using the high-
frequency decay property. On the other hand, the sparse
regularization (dotted line) does not gives smooth impulse
response, and the HFD kernel regularization (thin-solid
line) can not estimate the delay of the system. This result
indicates that using both the sparsity in time-domain and
high-frequency decay in frequency domain can improve the
identification accuracy for delayed systems in particular.

5. CONCLUSION

In this paper, we have proposed a novel method of sparse
system identification with kernel regularization. We have
adopted the minimax concave penalty function for spar-
sity promoting regularization. By numerical example, the
proposed method has an advantage of estimating delayed
systems.
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Noncommutative Real Algebraic Geometry
and Quantum Games

J. William Helton ∗

∗ UC San Diego, La Jolla Ca 92093 USA , (e-mail:
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Abstract: The last two decades produced a substantial noncommutative (in the free algebra)
real and complex algebraic geometry. The aim of the subject is to develop a systematic theory of
equations and inequalities for noncommutative polynomials in operator variables. A problem
leading very directly to such equations and inequalities is finding good quantum strategies for
games. The talk will focus on quantum games and present recent results done jointly with Adam
Bene Watts, Igor Klep, Vern Paulsen Mousavi, Nezhadi, Russel, and Zehong Zhao.

Keywords: Quantum Games, Noncommutative Real Algebraic Geometry, Noncommutative
optimization, SAT, Operator Theory Techniques

1. EXTENDED ABSTRACT

The talk will select topics from quantum games papers
posted on arXiv in the last 2 years by the speaker as well
as papers in progress.

A k-player game called kXOR can be played with a
classical strategy or with a quantum strategy (if you
have tons of equipment). 2XOR arose as a generalization
of the famous Bell inequalities which proved quantum
entanglement existed. The game is cooperative in that the
k players are trying to improve their joint score and 1 is
the max score any game can ever achieve; hence a game
for which a score of 1 is possible is called a Cperfect or
Qperfect game depending on whether the perfect strategy
is Quantum or Classical. 2XOR was well understood by
Tsielrson in the 1980’s. Work with Watts focuses on
3XOR: we give a polynomial time algorithm for either
producing a Qperfect strategy or alerting that none exists.
Such existence was previously not known to be decidable.

Another line of work with Klep and Bene Watts shows how
to associate (about) any quantum game with a left *-ideal
in the algebra P of all noncommutative polynomials in the
appropriate number of variables. Earlier Vern Paulsen with
a variety of collaborators showed that any synchronous
game G can be associated to a C∗ algebra A, which
amounts to associating G to a 2 sided ideal I with A being
the quotient of P by I. This is extended to general games
by our association of a left ideal to any game.

Given a game, each strategy employed has a score and
the main problem is to maximize this score. A quantum
strategy consists of operators (matrices) on a Hilbert space
( typically n dimensional). So typically we fix n and

compute a local optium X̂, of course we wish we knew
if this was a global optimium, but an even more primative
question is: does a higher max exist at some dimension
ñ > n? Helton, Paulsen Mousavi, Nezhadi, Russel, give a
necessary condition for the answer to be no.
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Energy Conversion and Dissipativity
Extended Abstract

Arjan van der Schaft ∗ Dimitri Jeltsema ∗∗
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Abstract: The Second Law of thermodynamics implies that no thermodynamic system with a
single heat source at constant temperature can convert heat into mechanical work in a repeatable
manner. First, we note that this is equivalent to cyclo-passivity at the mechanical port of the
thermodynamic system which is constrained by constant temperature at the thermal port.
Second, we address the general system-theoretic question which physical systems with two
power ports share this property, called one-port cyclo-passivity. Recently, sufficient conditions
for one-port cyclo-passivity have been obtained, based on the structure of the interconnection
matrix in the port-Hamiltonian formulation. We elaborate on these conditions and provide
some extensions. Next we focus on control strategies which go beyond the classical Carnot cycle
in order to convert energy in case of one-port cyclo-passivity, and apply this to a number of
multiphysics systems.

Keywords: Energy control, passivity, thermodynamics, multiphysics systems
AMS Subject Classification: 93A10, 80A10

1. INTRODUCTION

Energy conversion is a common phenomenon in many mul-
tiphysics systems: electro-mechanical, electro-chemical,
electro-kinetic, thermal-mechanical, thermal-chemical, ther-
mal diffusion, etc. (see e.g. Kondepudi, Prigogine (2015)).
On the other hand, the Second Law of thermodynamics
states that heat cannot be freely converted into mechanical
work. Thus energy at the thermal port cannot be freely
converted into energy at the mechanical port. Recently
it has been shown in Van der Schaft, Jeltsema (2022,
2021) that this same phenomenon also occurs in quite a
few other multiphysics systems. Furthermore, it has been
shown that the presence of this phenomenon is closely
related to the structure of the interconnection matrix in
the port-Hamiltonian formulation of the system.

In fact, consider a (multi-)physical system with two power
ports (u1, y1) and (u2, y2), as schematically depicted in
Figure 1.

cyclo-passive
system

u1

y1

u2

y2

Fig. 1. Two-port physical system.

We assume throughout that the system is cyclo-passive;
i.e., there is no internal energy creation and thus∮ (

y>1 (t)u1(t) + y>2 (t)u2(t)
)
dt ≥ 0 (1)

for all trajectories bringing the state back to its original
value; see e.g. Willems (1972); Van der Schaft (2017,
2020). Now suppose that the state vector x in the port-
Hamiltonian formulation of the system, see e.g. Van der
Schaft, Jeltsema (2014); Van der Schaft (2017), can be
split as

x =

[
x1

x2

]
in such a way that the port-Hamiltonian equations take
the form
ẋ1 = J1(x1, x2)e1 −R1(x1, x2, e1) + u1,

ẋ2 = J2(x1, x2)e2 −R2(x1, x2, e1) + G2(x1, x2)u2,
(2)

together with the corresponding output equations

y1 = e1, e1 =
∂H

∂x1
(x1, x2),

y2 = G>2 (x1, x2)e2, e2 =
∂H

∂x2
(x1, x2).

(3)

Here H is the Hamiltonian (total stored energy) of the sys-
tem, J1(x1, x2) and J2(x1, x2) are skew-symmetric matri-
ces, and the mappings R1(x1, x2, e1),R2(x1, x2, e1), mod-
eling energy dissipation, are such that

e>1 R1(x1, x2, e1) ≥ 0, e>2 R2(x1, x2, e1) ≥ 0 (4)

Cyclo-passivity is confirmed by the computation of the
following differential dissipation inequality

d

dt
H = y>1 u1 + y>2 u2

−e>1 R1(x1, x2, e1)− e>2 R2(x1, x2, e1)

≤ y>1 u1 + y>2 u2

(5)

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



Indeed, time-integration of the differential inequality and
substitution of equality of initial and final state implies
(1). Furthermore we note that if H is bounded from below
then in fact the system is passive.

The assumptions reflected in the special structure of the
port-Hamiltonian system (2) mean that the interaction
between the x1 part and the x2 part of the system takes
place only through the Hamiltonian H(x1, x2), and not via
a network coupling (the off-diagonal blocks of the J-matrix
are zero).

Clearly, the assumed form of the equations implies that for
any initial condition and any input function u2 there exists
an input function u1 that keeps x1 equal to a constant
value x̄1. It follows, cf. Van der Schaft, Jeltsema (2021),
that for any such input functions the system is cyclo-
passive at port 2 with storage function H(x̄1, x2), and
cyclo-passive at port 1 as well, with zero storage function.

Furthermore, instead of keeping x1 constant, u1 may be
also chosen such as to keep y1 = e1 equal to some constant
value ȳ1. In this case it follows, cf. Van der Schaft, Jeltsema
(2022, 2021), that the system for any such input function
is again cyclo-passive at port 1 and port 2. In fact, the
storage function for cyclo-passivity at port 1 is given
as ȳ>1 x1, and at port 2 by minus the partial Legendre
transform of H with respect to y1, that is

H∗1 (ȳ1, x2) = H(x1, x2)− ȳ>1 x1, y1 =
∂H

∂x1
(x1, x2), (6)

where it is assumed that x1 can be solved from the second
equation as a function of y1, x2. (The ∗ notation refers
to the Legendre transform, while the subscript 1 is used
because the partial Legendre transform with respect to
x1 is taken.) Indeed, in view of the assumptions on the
structure of the system, we obtain

d

dt
H∗1 (ȳ1, x2) ≤ y>2 u2 (7)

This latter property was called one-port cyclo-passivity
in Van der Schaft, Jeltsema (2022). Clearly, both cyclo-
passivity properties imply restrictions on the possibilities
for converting energy at port 1 to port 2: this is not
possible in a recurrent manner while keeping either x1 or
y1 constant. In general, such restrictions are not present in
multiphysics systems whose port-Hamiltonian formulation
exhibit non-zero off-diagonal terms in the J-matrix; see the
analysis in Van der Schaft, Jeltsema (2022, 2021).

Note that the property of one-port cyclo-passivity in the
thermodynamic case is exactly the same as the classical
observation by Carnot that no thermal energy can be con-
verted into mechanical energy (’work’) while keeping the
temperature of the heat source constant. Said otherwise,
thermodynamic systems are one-port cyclo-passive (with
first port being the thermal port and second port the
mechanical port), but there are many other systems that
share this property; see Van der Schaft, Jeltsema (2022,
2021) for a number of applications in various physical
domains.

In this talk we will further elaborate on both notions of
cyclo-passivity at one of the ports separately. First, we
show that in some cases one-port cyclo-passivity can be
enforced by adding extra state variables. In particular this
shows that one-port cyclo-passivity is strictly speaking not

an input-output property. This will be illustrated by the
example of a linear DC-motor. In this case, the off-diagonal
elements of the interconnection structure J between the
mechanical and electrical port are non-zero (and in fact
given by the gyration constant of the DC-motor). How-
ever, by adding the angle of the rotor as an extra state
variable, a state space transformation can be defined that
eliminates the coupling given by the gyration constant in
the extended (non-minimal) state space formulation. The
ramifications of this surprising observation will be investi-
gated, as well connections with related phenomena such
as the Blondel-Park transformation of the synchronous
generator model. Second, we focus on extensions to the
Carnot cycle for one-port cyclo-passive port-Hamiltonian
systems. In particular, while the classical Carnot cycle
switches between isothermals (y1 constant), and adiabatics
(x1 constant), one may also consider other cyclic trajecto-
ries (involving multiple values of y1) as well. Furthermore,
the Carnot efficiency is defined as the delivered mechanical
work divided by the supplied thermal energy during the
isothermal at high temperature. This means that the ther-
mal energy (Heat) released during the isothermal at low
temperature is sought to be minimized. We will investigate
how to define alternative notions of efficiency.

Third, we return to the original statement of the Second
Law of thermodynamics. The formulation given by Lord
Kelvin states that (see Fermi (1936)):

A transformation of a thermodynamic system whose only
final result is to transform into work heat extracted from
a source which is at the same temperature throughout is
impossible.

Note that this allows for interactions with heat sources
at more than one temperature; however such that the net
heat that is taken from the sources at different tempera-
tures during the cyclic process is zero; see Fermi (1936);
Van der Schaft (2021). In fact, such interactions with
multiple heat sources are indispensable in the derivation
of Clausius’ inequality leading to the definition of entropy.
We will take a closer look at the consequences of this
for general cyclo-passive port-Hamiltonian systems of the
form described in (2).
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Online parameter tracking in human
reaching adaptation and control ⋆

Frédéric Crevecoeur ∗
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Abstract: Recent experiments have suggested that the nervous system adapted feedback control
strategies during an ongoing, perturbed movement. These findings raised the possibility that a
function of motor adaptation could be to complement feedback control online, but this idea had
not been tested with biologically realistic properties of the human motor system, considering in
particular the non-linear limb dynamics and the presence of transmission delays in the neural
feedback loop. This study addresses this question by showing that online adaptive control is
indeed feasible in a simplified nonlinear model of the human arm, featuring a delay of 60ms as
observed in experiments. It is shown that online adaptation can reduce the impact of non-linear
effects arising due to limb dynamics within a single movement. Strikingly, the directions that
most benefited from online adaptation correlated with known directional biases characterising
the distribution of reaching representations in the primate’s brain. Further, it is demonstrated
that, for some movement directions, it is possible to learn to produce relatively straight hand
paths with end-point errors comparable with human performance within tens of trials. These
simulation results provide support to the hypothesis that a function of adaptation in the human
sensorimotor system is to compensate online for unmodelled disturbances arising in novel or
non-linear environments.

Keywords: Model-based control; Adaptive neural control; Human reaching; Control in
neuroscience.

1. INTRODUCTION

A paradigmatic example of adaptation in biological control
is the ability of primates to learn to compensate for force
fields applied during reaching movements. Although it
is often assumed that adaptation improves or preserves
motor performances across movements (Shadmehr et al.
(2010)), it has been recently suggested that adaptation of
human reaching control was fast enough to influence an
ongoing movement (Mathew and Crevecoeur (2021)).

These previous findings were modelled in the framework
of adaptative optimal control (Bitmead et al. (1990)): a
real-time identification procedure adapting the model pa-
rameters of a Linear Quadratic Gaussian regulator (LQG)
online. This approach was applied to a simplified, linear,
and fully observable model of limb control. It remained un-
known whether this interpretation was amenable to more
realistic models of reaching movements, including non-
linear mechanical effects, noise, and sensorimotor delays.

The present study addresses this question by showing that
it is possible based on linear approximations to control a
human-inspired, non-linear two jointed arm with noise and
temporal delays consistent with the sensorimotor system of
humans (∼60ms, Scott (2016)). Moreover, it is shown that
the benefits of the adaptive control mostly impacted reach-
ing trajectories in directions that broadly corresponded to

⋆ FC is supported by a grant from F.R.S.-FNRS (Belgium,
1.C.033.18).

known directional biases in the distribution of movement
representations in monkey’s primary motor cortex. In all,
the simulation results supported the hypothesis that the
human nervous system adapts closed-loop control of reach-
ing movements online.

2. ADAPTIVE CONTROL MODEL

2.1 Mechanical Model

The biomechanical system is described by the following
differential equation: let θ = [θs, θe]

T denote the vector
of shoulder and elbow angles (θs and θe, respectively),
τ = [τs, τe] the vector of shoulder and elbow torques
(Fig. 1), the second order differential equation governing
the movement in the horizontal plane is (Li and Todorov
(2007)):

θ̈ = M−1(θ)
(
τ − C(θ, θ̇)−Dθ̇

)
, (1)

where M(θ) ∈ R2×2 is the matrix of moments of inertia

that depends on the cosine of θe, C(θ, θ̇) ∈ R2 is a vector

of nonlinear effects dependent on the factors sin(θ2), θ̇sθ̇e,

θ̇2s , and θ̇2e , and D ∈ R2×2 captures linear viscous forces
opposing to velocity (see Appendix).

The mechanical system is coupled with a linear model
of muscles dynamics corresponding to a first-order, low-
pass filter with time constant δ = 60ms. A stochastic
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disturbance is added to this model to include additive noise
impacting motor commands (Jones et al. (2002)):

dτ =
1

δ
(u− τ) dt+ αdW, (2)

with u ∈ R2 representing the command vector, α is a
scaling parameter and dW captures instantaneous changes
of a standard Brownian motion.

2.2 Controller Definition

The design of an LQG controller for human reaching con-
trol follows previous work (Todorov and Jordan (2002)).
The linearised model of (1) used in the controller is derived
around an equilibrium point corresponding to the starting
location of a movement θ0, and by setting angular veloci-
ties to zero:

θ̈ ≃ M−1(θ0)
(
τ −Dθ̇

)
. (3)

The system is discretised and coupled with (2) with
explicit Euler integration (time step of ∆t = 10ms). A

static goal target (θ∗, with θ̇∗ = 0) is added to the state
vector, and the difference equation becomes:

xk+1 = Axk +Buk + ξk, (4)

with x = [θs, θe, θ̇s, θ̇e, τs, τe, θ
∗
s , θ

∗
e ]

T , and ξk being zero-
mean, multivariate Gaussian disturbance with known co-
variance matrix Ωξ, coming from i.i.d. increments of αdW
over one time step. The discrete time difference equation is
coupled with an output measurement signal that included
the delay in the feedback loop:

yk = Hxk−h + ωk, (5)

with ωk being zero-mean, Gaussian noise with known co-
variance matrix Ωω, and h representing the delay in num-
ber of sample times. This measurement signal represents
the sensory data that is available to the brain, it is assumed
that joint angles, velocities and actuator forces are encoded
in limb afferent feedback. The delay is handled with system
augmentation. We defined zTk := [xT

k , x
T
k−1, . . . , x

T
k−h] and

we used h = 6, compatible with the physiological long-
latency delay of 60ms (Scott (2016)). The augmented
state-space model matrices denoted by Ā, B̄ and H̄ are
defined in the Appendix. The state estimator is based on
a predictive Kalman filter following standard definition:

ẑk+1 = Āẑk + B̄uk +Kk

(
yk − H̄ẑk

)
. (6)

Regarding movement simulations, we used finite horizon
formulation with N = 60 time steps (600ms). The cost-
function is a standard quadratic form defined as follows:

J(z, u) = zTNQNzN +

N−1∑
k=1

zTk Qkzk + uT
kRuk. (7)

We used a kinematic constraint defined on the change
in joint angles during the first 10 time steps to penalise
deviations from a straight line. Such kinematic constraint
has been suggested in previous models of human reaching
movements and simply captures the fact that humans
spontaneously tend to reach straight (Mistry et al. (2013)).

The other matrices for the running costs (Qk, 10 < k < N)
were set to zero. The terminal constraint was defined such
that:

zTNQNzN = w1∥θN − θ∗∥2 + w2∥θ̇N∥2, (8)

with θ∗ the target joint coordinate and w1 and w2 are
parameters. Their values were set manually to w1 = 500,
and w2 = 10, and R = 10−5I2×2. Based on these
definitions, a standard LQG including an optimal linear
state-feedback controller and optimal Kalman gains could
be derived (Astrom (1970)). The next section presents how
this controller was updated through time based on system
identification.

2.3 Adaptive State-Feedback Control

The previous section set up a linear state-feedback con-
troller for a non-linear system, resulting in model errors
induced by non-linear effects. The adaptive optimal control
model was based on the idea that the parameters of the
linear model could be updated over time to compensate
locally for non-linear effects. Schematically, the LQG con-
troller featured a Kalman filter (Fig. 1, K) and a linear
state-feedback controller that mapped the estimated state
into motor commands (Fig. 1, C). In parallel, the error
between the expected and measured feedback could be
used to update the system model (Fig. 1, ID). This paper
used recursive least square identification (Bitmead et al.
(1990)). Calling Θk−1 the estimated set of parameters at
time k − 1, the prediction error obtained at time k is:

ϵk(Θk−1) = yk − H̄ẑk (9)

= yk −Hx̂k−h. (10)

Observe that the second term of the right-hand side of
(9) is the expected system output. Since it depends on
the parameters through the use of the system matrices A
and B in the predictive Kalman filter, we introduce the
notation: ŷk(Θk−1) := H̄ẑk. The parameter update is:

Θk = Θk−1 + γ
∂ŷk(Θk−1)

∂Θ
ϵk, (11)

where γ is the online learning rate. In all the controller
could be summarised as follows:

• A linear state-feedback controller dependent on esti-
mated parameters uk := L(Θk)x̂k,

• An update of the estimated parameters Θk, followed
by a re-computation of optimal control and Kalman
gains with the novel parameter estimate.

In practice the set of parameters that updated was con-
strained by observing that the non-linearities impacted
the relationship between torques and joint accelerations,
in other words only the entries of the matrix A that
approximated M−1(θ) and C(θ, θ̇) were allowed to change
over time.

2.4 Heuristic Rules

Our first results below show the effect of the combined
control and identification to compensate for non-linear
effects online. Then, we explored in simulations whether

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



Estimate
K

ID

Command

Model

C

Fig. 1. Schematic depiction of the adaptive optimal feed-
back controller: (C) controller, (K) Kalman filter, (ID)
system identification procedure, which updates the
model parameters used in the state estimator and in
the controller (dashed arrows). Solid arrows are the
state feedback controller corresponding to the long-
latency feedback loop.

it was possible to learn a representation of limb dynamics
following repeated practice of the same movement. We
used the following update rules defined heuristically but
compatible with human behaviour:

(1) Gradual adaptation requires that the model updates
carried over to the next trial. To limit the impact of
noise, we computed for each trial an initial set of pa-
rameters corresponding to the average of the previous
movement. We denote the time-varying parameters of
trial i by Θk,i and the time average over a trial by Θ̄.,i.

(2) We defined a composite cost in Cartesian coordinates
to capture humans’ spontaneous tendency to reach
straight and to reduce end-point errors. This cost was
the sum of the square end-point error (d2e(i)) and the
square maximum perpendicular displacement relative
to a straight line (d2o(i)), for the ith movement. Let
c(i) := d2e(i) + d2o(i), we set Θ1,i+1 to Θ̄.,i if the
condition c(i) ≤ εc(i − 1) was true with ε = 1.05.
In other words, if the identification disrupted the
trajectory such that the composite cost increased by
more than 5%, due to noise or to an inadequate
value of γ, the corresponding changes in estimated
parameters were not retained.

(3) The online learning rate was adjusted from trial-to-
trial: it was either divided in half if c(i) > εc(i − 1),
or multiplied by two (with the initial rate as upper
limit).

3. RESULTS

Two standard tasks were simulated. The first task was
a centre-out reaching task towards targets placed along a
circle of radius 10cm around the start position correspond-
ing to 45deg and 90deg of shoulder and elbow angles (Fig.
2a). Because the linearisation was computed around the
starting point with zero velocity, it is expected that the
trajectories are perturbed by non-linear effects away from
this equilibrium, that is for movements of large amplitude
or with high velocity. In particular, movements including
the shoulder angle produce non-linear effects due to the
function C(θ, θ̇). It can be observed that these movements,
mostly located in the second and fourth quadrant of the

20
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2  2.5

End-point Error Max. Perpendicular
    Displacement

4radius [cm]

45 deg

5

10
cm

a b

c d

Online Adaptation:      On      
                                    Off

Fig. 2. Centre-out reaching task: (a) joint configuration
with the start target at θs = 45deg and θe = 90deg
plus all peripheral targets distants by 10cm; (b) end-
point trajectories with (blue) or without (red) online
learning; (c) polar representation of the norm of
the end-point error aligned with the corresponding
target angle; (d) same as (c) with the maximum
perpendicular displacement.

workspace (Fig. 2b), were those that mostly benefited
from the adaptive estimation of Θk. Indeed, with online
identification (Fig. 2, blue), it was possible within a single
trial to reduce the end-point error as well as the max-
imum perpendicular displacement (Fig. 2c and d). The
simulations of Fig. 2 were obtained without process noise
(Ωξ = Ωω = 0), and an online learning rate of γ = 0.005.

The simulations in Fig. 2 show that it was possible to
improve a linear control applied to a nonlinear system
within a single reaching movement simply based o the
observation that the movements with online adaptation
tended to be straighter. Next, it was hypothesised that
the controller could further improve if changes in Θ were
kept in memory for the next movement using the heuristic
learning rules defined above. It was found for the selected
movement direction and amplitude (which includes a large
change in shoulder angle, Fig. 3a) that iteratively updating
the linear model across trials yielded movement paths that
were relatively straight and accurate, with end-point error
and maximum perpendicular displacements in the range
of those observed in experiments (≤ 2cm, Fig. 3b and c).
These simulations included noise and an initial learning
rate set manually to γ = 7 × 10−5. The performance of
the control and estimation algorithm plateaued after ∼ 30
trials, when the online learning rate γ was very close to
0, suggesting it was close to a local minimum for this
particular movement, linearization, and parameter set.

4. DISCUSSION

The simulations showed that online identification of the
parameters of a linear model of reaching control could
at least partially compensate for non-linear effects in the
presence of noise and delays compatible with the senso-
rimotor system of humans. The improvements could be
observed within a single movement, as well as across few
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tens of trials when consecutive estimates were averaged
and reused iteratively. The foregoing results thus provided
support to the hypothesis that a function of sensorimotor
adaptation is not only to adapt movement control over
medium or long timescales, but also to complement feed-
back control online.

Strikingly, because the largest impact of the model non-
linearities arose in directions that included larger amount
of shoulder motion, the benefits of the adaptive controller
were mostly visible in the second and fourth quadrant of
the workspace, which reproduced known biases in reach
representation observed in the primate’s brain (Lillicrap
and Scott (2013)). This previous paper showed that the
directional biases emerged from limb biomechanics, since
they were reproduced in an artificial system featuring the
details of limb and muscles dynamical properties. The
present results propose an complementary view on the
reason why whole limb flexion and extension movements
may be over-represented in primary motor cortex: it is con-
ceivable that an adaptive neural feedback controller needs
more resources in the directions where non-linearities of
the limb have a larger impact.

As concluding remarks, two important aspects must be
emphasised. First, the combination of adaptation and
control, and the iterative improvement across consecutive
movements, were obtained without using any feedforward
pathway. Thus, the results warrant further investigation to
study if or when an often assumed feedforward controller
in the brain is actually required. Second, the model can
only improve: the online learning rate was not optimised,
the identification procedure was not tuned to filter out the
noise, the linear representation was low-dimensional (and
derived from first principles), and the heuristic adaptation
rules were simplistic. Optimising each component is ex-
pected to make the adaptive state-feedback controller a
powerful candidate model of human reaching control.
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Appendix A. DEFINITION OF MODEL
PARAMETERS

The definitions and numerical values followed Li and
Todorov (2007) and Crevecoeur and Scott (2014):

M(θ) =

(
a1 + 2a2 cos(θe) a3 + a2 cos(θe)
a3 + a2 cos(θe) a3

)
, (A.1)

C(θ, θ̇) =

(
−θ̇e(2θ̇s + θ̇e)

θ̇2s

)
a2 sin(θe), (A.2)

D =

(
0.14 0.014
0.014 0.14

)
, (A.3)

and the ai were parameters linked to the segment masses
and inertias. The numerical values were: a1 = 0.28, a2 =
0.048, and a3 = 0.1kgm2. The matrix H was the identity.
The augmented matrices to include de delay were defined
as follows:

Ā=


A 0 . . . 0
I 0 . . . 0
...
. . .

. . .
...

0 . . . I 0

 , B̄ =


B
0
...
0

 , (A.4)

H̄ = ( 0 . . . 0 H ) . (A.5)

The noise covariance matrices were Ωξ = 0.01B̄B̄T such
that the noise only affected the control signal, and Ωω =
0.01I8×8. The latter definition considered the possibility
that all sensory signals were corrupted by additive noise.
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Abstract: The concept of dissipativity is a cornerstone of systems and control theory. Typically,
dissipativity properties are verified by resorting to a mathematical model of the system under
consideration. In this extended abstract, we aim at assessing dissipativity by computing storage
functions for linear systems directly from measured data. As our main contributions, we provide
conditions under which dissipativity can be ascertained from a finite collection of noisy data
samples. Different noise models will be considered that can capture a variety of situations,
including the cases that the data samples are noise-free, the energy of the noise is bounded, or
the individual noise samples are bounded. All of our conditions are phrased in terms of data-
based linear matrix inequalities, which can be readily solved using existing software packages.

Keywords: System identification, dissipativity, linear systems.

1. INTRODUCTION

As is generally acknowledged, the concept of dissipativ-
ity (Willems, 1972a), (Willems, 1972b) has formed the
foundation for large parts of systems and control theory
as developed in the past fifty years. Indeed, the above
papers together with Willems’ work on linear quadratic
problems and the associated algebraic Riccati equation
(Willems, 1971) are generally considered to provide the
main concepts and analysis tools in many areas of linear
and nonlinear systems and control, ranging from stability
theory, linear quadratic optimal control and stochastic
realization theory, to network synthesis, differential games
and robust control.

In the present work, we study dissipativity of linear
finite-dimensional input-state-output systems from a data-
driven perspective. It is well-known that for a given input-
state-output system with given supply rate, one can test
dissipativity by checking the feasibility of a linear matrix
inequality involving the system matrices. In this extended
abstract, we assume that the system dynamics are not
known a priori. In this situation, the question arises
whether we can verify dissipativity using measured system
trajectories, instead of a system model.

Recently, the problem of inferring dissipativity proper-
ties from data has received considerable attention. The
most relevant references for this extended abstract are
(Maupong et al., 2017; Romer et al., 2019; Koch et al.,
2020a; Steentjes et al., 2021). In (Maupong et al., 2017),
the notion of (finite-horizon) L-dissipativity was intro-
duced and also studied in (Romer et al., 2019). A discrete-
time system is L-dissipative if the average of the supply
rate over the interval [0, L] is nonnegative for all system

trajectories. In both these contributions, a crucial assump-
tion is that the input trajectory is persistently exciting of
a sufficiently high order (see (Willems et al., 2005) and
(van Waarde et al., 2020a)). This property of the input
sequence can be shown to imply that the data-generating
system is uniquely identifiable from the data.

In this extended abstract we adopt the more classical
notion of dissipativity for linear systems, rather than L-
dissipativity, similar to the setup of (Koch et al., 2020a),
see also (Steentjes et al., 2021) for dissipativity analysis
and controller synthesis of interconnected networks. Our
aim is to provide necessary and sufficient conditions for
dissipativity based on data, for noiseless and noisy mea-
surements.

Our approach involves bounding the noise by a quadratic
matrix inequality, which implies that also the unknown
system parameters satisfy a quadratic matrix inequality.
Our goal is to ascertain dissipativity of all systems satisfy-
ing this inequality. The method thus fits in the robust con-
trol literature, where quadratic uncertainty descriptions
have been studied in detail. We mention contributions
to integral quadratic constraints (Megretski and Rantzer,
1997), the quadratic separator (Iwasaki and Hara, 1998),
and the full block S-procedure (Scherer, 1997, 2001). We
will apply a matrix S-lemma (van Waarde et al., 2022) that
is a recent extension to matrix variables of the famous S-
lemma (Yakubovich, 1977).

The outline of the extended abstract is as follows. In Sec-
tion 2 we give a short recap of the concept of dissipativity
of linear input-state-output systems. Then, in Section 3 we
state the problem of data-driven dissipativity. Section 4
contains our results. First, we show that dissipativity of
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an unknown linear system can only be ascertained on
the basis of the given data if a matrix constructed from
measured states and inputs has full rank. In the noiseless
data case, this implies that one can only verify dissipativity
from data if the data-generating system is the only one
that explains the data, in other words, if the true system
is identifiable from the data. In this case, dissipativity of
the unknown system can be ascertained by checking the
feasibility of a given data-based linear matrix inequality.
In the noisy data case, it turns out that one does not need
identifiability. In order to check dissipativity in this case,
we combine the matrix S-lemma with a basic dualization
lemma to provide a data-driven test for dissipativity. Fi-
nally, Section 5 contains our conclusions.

Notation

The inertia of a symmetric matrix S is denoted by In(S) =
(ρ−, ρ0, ρ+) where ρ−, ρ0, and ρ+ respectively denote the
number of negative, zero, and positive eigenvalues of S.

2. DISSIPATIVITY OF LINEAR SYSTEMS

Consider a linear discrete-time input-state-output system

x(t+ 1) = Ax(t) +Bu(t) (1a)

y(t) = Cx(t) +Du(t) (1b)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m.

Let S = S> ∈ R(m+p)×(m+p). The system (1) is said to be
dissipative with respect to the supply rate

s(u, y) =

[
u
y

]>
S

[
u
y

]
(2)

if there exists P ∈ Rn×n with P = P> > 0 such that the
dissipation inequality

x(t)>Px(t) + s
(
u(t),y(t)

)
> x(t+ 1)>Px(t+ 1) (3)

holds for all t > 0 and for all trajectories (u,x,y) : N →
Rm+n+p of (1).

It follows from (3) that dissipativity with respect to the
supply rate (2) is equivalent to the feasibility of the linear
matrix inequalities P = P> > 0 and[

I 0
A B

]> [
P 0
0 −P

] [
I 0
A B

]
+

[
0 I
C D

]>
S

[
0 I
C D

]
> 0. (4)

3. PROBLEM FORMULATION

Consider the linear discrete-time input-state-output sys-
tem

x(t+ 1) = Asx(t) +Bsu(t) + w(t) (5a)

y(t) = Csx(t) +Dsu(t) + z(t) (5b)

where (u,x,y) ∈ Rm+n+p are the input, state and out-
put, and (w, z) ∈ Rn+p are noise terms. Throughout
the extended abstract, we assume that the “true” sys-
tem matrices (As, Bs, Cs, Ds) and the noise (w, z) are
unknown. What is known instead are a finite number of
input-state-output measurements of (5), which we collect
in the matrices

U− := [u(0) u(1) · · · u(T − 1)]

X := [x(0) x(1) · · · x(T )]

Y− := [y(0) y(1) · · · y(T − 1)] .

We will also make use of the auxiliary matrices

X− := [x(0) x(1) · · · x(T − 1)]

X+ := [x(1) x(2) · · · x(T )] .

The goal of this extended abstract is to infer dissipativity
properties of the true system from the data (U−, X, Y−).

We define

ΣN =

{
(A,B,C,D) |

[
X+

Y−

]
−
[
A B
C D

] [
X−
U−

]
∈ N

}
,

where N ⊆ R(n+p)×T is a set defining a noise model to be
specified below. We assume that

(As, Bs, Cs, Ds) ∈ ΣN . (7)

In the sequel, we will consider two types of noise models.
The first one will capture noise-free situations in which the
measurements (U−, X, Y−) are exact:

N0 := {0}. (8)

The second noise model is defined by

N1 :=

{
V ∈ R(n+p)×T |

[
I
V >

]>[
Φ11 Φ12

Φ>12 Φ22

][
I
V >

]
> 0

}
,

(9)
where Φ11 = Φ>11 ∈ R(n+p)×(n+p), Φ12 ∈ R(n+p)×T , and
Φ22 = Φ>22 ∈ RT×T are known matrices. This noise model
was studied before (van Waarde et al., 2022) in the context
of data-driven quadratic stabilization and H2 and H∞
control. In order to be able to discuss some special cases
of the noise model (9), we label the columns of V as
[v(0) v(1) · · · v(T − 1)]. In the special case Φ12 = 0 and
Φ22 = −I, the bound in (9) reduces to

V V > =

T−1∑
t=0

v(t)v(t)> 6 Φ11. (10)

This inequality can be interpreted as an energy bound
on the noise. In addition, norm bounds on the individual
noise samples v(t) also give rise to bounds of the form
(10), although this generally leads to some conservatism.
Indeed, note that ‖v(t)‖2 6 ε implies that v(t)v(t)> 6 εI
for all t. As such, the bound (10) is satisfied for Φ11 = TεI.
We also note that N1 can be interpreted as the dual model
to the one studied in (Berberich et al., 2020), and both
models are equivalent under mild conditions (van Waarde
et al., 2021).

We now define the property of informativity for dissipa-
tivity, which is the main concept studied in this extended
abstract. This definition is inspired by (van Waarde et al.,
2020b), and we refer to that paper for a general treatment.

Definition 1. Let a noise model N be given. The data
(U−, X, Y−) are informative for dissipativity with respect
to the supply rate (2) if there exists a P = P> > 0 such
that (4) holds for every system (A,B,C,D) ∈ ΣN .

The rationale behind Definition 1 is as follows: on the basis
of the given data we are unable to distinguish between
the systems in ΣN in the sense that any of these systems
could have generated the data. Nonetheless, if all of these
systems are dissipative, then we can also conclude that the
true data-generating system is dissipative. Note that we
restrict our attention to the situation in which the systems
in ΣN are dissipative with a common storage function.

The following assumptions will be valid throughout:
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(A1) The matrix S has inertia In(S) = (p, 0,m).
(A2) The set N1 is bounded and has nonempty interior.

It is a well-known fact that a necessary condition for
dissipativity of any system of the form (1) is that m 6 ρ+,
i.e., the input dimension does not exceed the positive
signature of S. Assumption (A1) requires that the input
dimension is equal to this positive signature, and in
addition that the matrix S is nonsingular. This assumption
is satisfied, for example, for the positive-real and bounded-
real case (Scherer and Weiland, 1999). Indeed, in the
positive-real case we have that m = p and

S =

[
0 Im
Im 0

]
,

so that In(S) = (m, 0,m). In the bounded-real case we
have

S =

[
γ2Im 0

0 −Ip

]
for γ > 0, which implies that In(S) = (p, 0,m). As-
sumption (A2) can be verified straightforwardly by assess-
ing certain definiteness properties of the matrix Φ (van
Waarde et al., 2021).

The main contribution of this extended abstract is to
provide necessary and sufficient conditions for data infor-
mativity for the noise models N0 and N1.

4. MAIN RESULTS

In this section we state our main results. We will not
provide proofs here, but instead refer the interested reader
to the extended manuscript (van Waarde et al., 2021).

4.1 A necessary condition for informativity

We begin with a necessary condition for informativity, that
applies to both noise models N0 and N1.

Theorem 1. Let a noise model N be given. If the data
(U−, X, Y−) are informative for dissipativity with respect
to the supply rate (2), then

rank

[
X−
U−

]
= n+m. (11)

Essentially, Theorem 1 and the rank condition (11) for-
malize the intuition that dissipativity can only be assessed
from data that are sufficiently rich. In the noise-free setting
(involving model N0), the rank condition (11) implies that
the system matrices As, Bs, Cs and Ds can be uniquely
identified from the (U−, X, Y−)-data. In this setting, the
interpretation of Theorem 1 is that dissipativity can only
be verified from data that are rich enough to uniquely
identify the underlying data-generating system.

4.2 Informativity and noiseless data

We now give a characterization of informativity for dissi-
pativity for the noiseless case.

Theorem 2. Consider the noise model N0. The data
(U−, X, Y−) are informative for dissipativity with respect
to the supply rate (2) if and only if

rank

[
X−
U−

]
= n+m (12)

and there exists P = P> > 0 such that[
X−
X+

]> [
P 0
0 −P

] [
X−
X+

]
+

[
U−
Y−

]>
S

[
U−
Y−

]
> 0. (13)

Theorem 2 provides a data-based condition for dissipativ-
ity in terms of a linear matrix inequality. Linear matrix
inequalities can be solved using standard software pack-
ages. We note, however, that such solvers are known to
be unreliable for LMI’s which define feasible sets without
interior points. As such, from a numerical point of view
it is desirable that there exists a positive definite P such
that left-hand side of (13) is positive definite.

We note that the condition of Theorem 2 has appeared
in a similar setting in (Koch et al., 2020b, Thm. 4) and
(Koch et al., 2020a, Thm. 3), where an “if”-statement was
proven. Our contribution is to prove that these conditions
are necessary and sufficient by leveraging Theorem 1.

4.3 Informativity and noisy data

We now consider the noise model N1 defined in (9). Define

N1 :=

 I X+

Y−

0
−X−
−U−

[Φ11 Φ12

Φ>12 Φ22

] I X+

Y−

0
−X−
−U−


>

. (14)

We now arrive at the following characterization of infor-
mativity for dissipativity, given the noise model N1.

Theorem 3. Suppose that there exists V ∈ R(n+m)×(n+p)

such that [
I
V

]>
N1

[
I
V

]
> 0. (15)

Partition [
F̂ Ĝ

Ĝ> Ĥ

]
:= −S−1,

where F̂ = F̂> ∈ Rm×m, Ĝ ∈ Rm×p, and Ĥ = Ĥ> ∈
Rp×p. Given the noise model N1, the data (U−, X, Y−) are
informative for dissipativity with respect to the supply rate
(2) if and only if there exist a real n×nmatrixQ = Q> > 0
and a scalar α > 0 such that

Q 0 0 0

0 Ĥ 0 −Ĝ>
0 0 −Q 0

0 −Ĝ 0 F̂

− αN1 > 0. (LMI)

Theorem 3 provides a tractable method for verifying
informativity for dissipativity, given the noise model N1.
The procedure involves solving the linear matrix inequality
(LMI) for Q and α. Given Q, a common storage function P
for all systems in ΣN1 is readily computable as P = Q−1.

The condition (15) implies that the interior of the set
of explaining systems ΣN1 is nonempty. The proof of
Theorem 3 uses two building blocks. The first one is the
so-called matrix S-lemma (van Waarde et al., 2022). This
is a generalization to matrix variables of the classical S-
lemma, developed in the seventies of the previous century
by (Yakubovich, 1977). The second building block is a
dualization result that essentially states that the quadru-
ple (A,B,C,D) is dissipative with respect to the supply
rate S, with storage function P if and only if the dual

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



system (A>, C>, B>, D>) is dissipative with respect to a

related supply rate Ŝ, with storage function P−1, see (van
Waarde et al., 2021). A behavioral analogue of this result
was obtained in (Willems and Trentelman, 2002, Prop. 12).

We note that a sufficient condition for data-driven dissipa-
tivity with a common storage function was given in (Koch
et al., 2020a, Thm. 4). The attractive feature of Theorem 3
is that it provides a necessary and sufficient condition, by
making use of the matrix S-lemma.

Assuming that the assumptions of Theorem 3 are satisfied,
an interesting byproduct on the result is the following: if
all systems in ΣN1 are dissipative with common storage
function P = P> > 0, then P is necessarily positive
definite. We note that conditions under which all storage
functions are positive definite have been studied before
in (Hill and Moylan, 1976, Lem. 1), even for nonlinear
systems. In that paper, certain minimality conditions were
imposed as well as a signature condition on the supply
rate. Here, we do not assume minimality but we conclude
that all storage functions are positive definite by using
Assumption (A1) and an argument related to the noise
model.

5. CONCLUSIONS

In this extended abstract we have provided methods to
verify dissipativity properties of linear systems directly
from measured data. We have considered both the case
of exact data and the case that the data are corrupted
by noise. In the case of exact data, we have shown that
one can only ascertain dissipativity of a system from given
data if the system can be uniquely identified from the
data. If this is the case, dissipativity can be verified by
means of a data-based linear matrix inequality. In the
case of noisy data, we have combined the matrix S-lemma
(van Waarde et al., 2022) with a dualization property
relating dissipativity properties of the original system with
those of its dual to characterize data informativity for
dissipativity. As in the noiseless case, also in this setting,
dissipativity properties of the data-generating system can
be ascertained if a data-based LMI is solvable.
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Abstract: The existing proofs of the fundamental lemma use arguments by contradiction and do not
give insight into the assumptions of controllability and persistency of excitation of the input. We present
an alternative constructive proof that reduces the required persistency of excitation and characterizes the
nongeneric cases in which the extra persistency of excitation beyond the time horizon is needed.

Keywords: behavioral approach; exact identification; persistency of excitation; data-driven control.

1. INTRODUCTION

The fundamental lemma of Willems et al. (2005) addresses the
following question: Given a finite trajectory wd ∈ (Rq)T of a
linear time-invariant (LTI) system B and a natural number L,
1≤ L≤ T , under what conditions the windows of length Lwd(1)

...
wd(L)

 ,
 wd(2)

...
wd(L+1)

 , . . . ,
wd(T −L+1)

...
wd(T )

 ,
constructed from the length-T trajectory wd span the space B|L
of all length-L trajectories of the system?

Using the Hankel matrix

HL(wd) :=

wd(1) wd(2) · · · wd(T −L+1)
...

...
...

wd(L) wd(L+1) · · · wd(T )

 ,
the question is rephrased as: Given wd ∈B|T , where B is LTI,
under what conditions

B|L = image HL(wd)? (1)
We call (1) a data-driven representation of the restricted be-
havior B|L. It is used in data-driven analysis, signal processing,
and control, see the overview (Markovsky and Dörfler, 2021).

Let m, `, and n be the number of inputs, lag (observability
index), and order of B. A necessary and sufficient condition
for (1) with L≥ ` is

rank HL(wd) = mL+n. (2)
? A full version of the paper is submitted to Automatica. Ivan Markovsky
received funding from the Catalan Institution for Research and Advanced
Studies (ICREA) and the FWO project G033822N.

This condition is refered to as generalized persistency of exci-
tation (Markovsky and Dörfler, 2020). It is verifiable from the
data wd and the prior knowledge of m, `, and n.

Contrary to (2), the solution given in (Willems et al., 2005)
assumes a given input/output partitioning w = [u

y ] of the vari-
ables. Moreover, the fundamental lemma provides sufficient
conditions only: (1) holds under the following conditions

A1: B is controllable and
A2: ud is persistently exciting of order L+n.

The order of persistency of excitation of ud, denoted PE(ud),
is the maximal L for which HL(ud) is full row rank. The
controllability assumption is not verifiable from the data and
is restrictive. In particular, it excludes autonomous systems.

The crux of the fundamental lemma is the need of an extra
persistency of excitation of order n in Assumption A2. (Willems
et al., 2005) as well as subsequent publications (van Waarde
et al., 2020; De Persis and Tesi, 2020; van Waarde et al., 2020;
van Waarde, 2021) do not explain why the extra persistency of
excitation is needed nor when it is needed. Presently it is not
known how conservative assumptions A1 and A2 are.

Initial conditions can be specified by a sufficiently long "past"
trajectory wd,ini ∈B|Tini . As shown in (Markovsky and Rapis-
arda, 2008, Lemma 1), "sufficiently long" is Tini ≥ `. Then,
the concatenation wd,ini ∧wd of wd,ini and wd sets the initial
conditions for wd. Our goal (refered to as “(GOAL)”) is to
find for given L ≥ ` conditions on ud and B, under which for
any initial condition wd,ini, a trajectory wd,ini ∧wd ∈ B|Tini+T
satisfies (2). Section 2 certify (GOAL) by showing that there is
no initial condition for which (2) fails. Assumptions A1 and
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A2’: PE(ud) = L

generically guarantee (GOAL). The question occurs: What are
the nongeneric cases of A1 and A2’ in which (GOAL) fails?
The answered is given in Section 3.

2. RELAXATION OF THE FUNDAMENTAL LEMMA

Consider a controllable LTI systems B with an input/output
partitioning of the variables w = [u

y ]. In view of A2’, PE(ud) =
L+ k. Next, we show that the minimal k, for which (GOAL)
holds, is the controllability index `ctr of B. Let h(0),h(1), . . .
be the Markov parameters of B and σ , (σw)(t) := w(t +1) be
the unit shift operator.
Lemma 1. For wd ∈ B|T and natural numbers L,k such that
L+ k ≤ T and k ≥ `ctr,[

HL(σ
kud)

HL(σ
kyd)

]
=

[
0mL×mk ImL

Tini T

]
︸ ︷︷ ︸

M

[
Hk(ud)

HL(σ
kud)

]
︸ ︷︷ ︸

Hk+L(ud)

, (3)

where

Tini :=


h(k) h(k−1) · · · h(1)

h(k+1) h(k) · · · h(2)
...

...
...

h(k+L−1) h(k+L−2) · · · h(L)

 ∈ RpL×mk

and

T :=


h(0)
h(1) h(0)
...

. . .
. . .

h(L−1) · · · h(1) h(0)

 ∈ RpL×mL.

In (3), the first k ≥ `ctrb input samples
(
u(1), . . . ,u(k)

)
play the

role of the initial condition x(k) for σ kwd. Due to controllability
any x(k) ∈ Rn can be reached by the an input

(
u(1), . . . ,u(k)

)
.

Theorem 1. With L≥ `, assumptions A1 and

A2”: PE(ud) = L+ `ctrb

are necessary and sufficient for (GOAL).

3. CHARACTERIZATION OF THE NONGENERIC CASES

Lemma 2. The following are equivalent:

(1) ud ∈ (Rm)T is persistently exciting of order PE(ud) = `u,
(2) ud is a response of an autonomous system LTI system Bu

with T ≥ (m+1)`u−1 samples, i.e., ud ∈Bu|T , and for a
minimal state-space representation

Bss(Au,Cu) := {u | there is xu ∈ (Rn)N,

such that σxu = Auxu, u =Cuxu }.
of Bu with initial condition xu,ini = xu(1) that gener-
ates ud, the pair

(
Au,xu,ini

)
is controllable.

By Lemma 2 a system B with m inputs, lag `, and order n,
which input u is persistently exciting of order `u, can be aug-
mented with a model Bu of the input, resulting in an ex-
tended autonomous system Bext for w = [u

y ]. Let Bss(Au,Cu)
be a minimal state-space representation of the input model Bu
and Bss(A,B,C,D) be a minimal input/state/output represen-
tation of B. The extended system Bext is given by Bext =
Bss(Aext,Cext), where

Aext =

[
Au 0

BCu A

]
and Cext =

[
Cu 0

DCu C

]
.

The extended state is xext = [ xu
x ], where xu is the state of

Bss(Au,Cu) and x is the state of Bss(A,B,C,D). By using the
input model Bu, we transform the original problem about B
into an equivalent problem about Bext.

The following proposition derives a state transformation that
block-diagonalizes Aext. The block-diagonalization leads to a
representation of Bext with decoupled states of Bu and B. The
decoupling simplifies the subsequent analysis.
Proposition 1. Assume that A and Au have no common eigen-
values and let V ∈ Rn×nu be the solution to the equation

AV −VAu = BCu.

Then, Bext = Bss (A′ext,C
′
ext), where

A′ext =

[
Au 0
0 A

]
and C′ext =

[
Cu 0
C′ C

]
, with C′ := DCu−CV.

The state of Bss (A′ext,C
′
ext) is x′ext =

[ xu
V xu+x

]
, where xu is the

state of Bss(Au,Cu) and x is the state of Bss(A,B,C,D).

Proposition 1 shows that the nongeneric cases of A1 and A2’, in
which (GOAL) fails correspond to a special choice of the initial
condition of B:

xini =−V xu,ini. (4)
By choosing the initial condition (4), we have that

wd =
[

Cu
C′

]
expAu

xu,ini,

where expλ is the exponential function expλ (t) := eλ t . Then,
rank HL(wd) ≤ nu. In a trajectory wd corresponding to (4) the
transient is removed, i.e., yd, has no terms expλ where λ is an
eigenvalue of A.

The characterization of the persistently exciting inputs as an
output of an autonomous LTI system together with Theorem 1
allow us to do experiment design under additional constraints,
such as smoothness and bounds of the input. This direction
for future work is particularly useful for data-driven control of
power electronics systems and will be presented elsewhere.
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Abstract: In this paper, we discuss hands-off feedback control of discrete-time linear time-
invariant systems based on receding horizon control. Hands-off control, also known as sparse
control, is a control that has a long time duration over which the control action is exactly
zero whilst satisfying control objectives. To obtain the maximum hands-off control, the ℓ1-norm
optimization is adopted. For a model predictive control formulation, we need to numerically solve
the ℓ1 optimization with equality/inequality constraints. Although fast iterative algorithms are
known to solve the optimization problem, they will often not be fast enough for control systems
that need real-time computation. To obtain the control values in real time, we propose to stop
the iteration for the ℓ1 optimization after just one step. We prove that this strategy leads to
practical stability of the closed-loop, provided the systems are open-loop stable. Simulation
results show the effectiveness of the proposed method.

Keywords: Optimal control, sparse control, model predictive control, real-time computation,
convex optimization, stability.

1. INTRODUCTION

Due to the public interest in climate change, it is crucial to
consider the impact of industrial products on the environ-
ment, rather than pursuing maximum efficiency.Maximum
hands-off control is a recently developed mathematical
framework for achieving such a requirement in product
design of control systems. More precisely, the control prob-
lem is to find a feasible control that has the minimum
time duration in which the actuators are active. In other
words, maximum hands-off control is the sparsest (or L0-
optimal) control, with which the actuators can be stopped
over the inactive time duration; this results in decreased
energy consumption, elimination of CO2 emissions, and
reduction of noise and vibration. Accordingly, hands-off
control is often called green control.

Maximum hands-off control has been proposed in (Na-
gahara et al., 2016a) for continuous-time systems, and
(Nagahara et al., 2016b) for discrete-time systems. In both
cases, maximum hands-off control is first designed over
a finite horizon, and then implemented as self-triggered
control in (Nagahara et al., 2016a), and model predic-
tive control (MPC) in (Nagahara et al., 2016b) to realize
feedback control. Stability theorems are obtained for these

⋆ This work was partly supported by JSPS KAKENHI Grant
Numbers JP20H02172 and JP20K21008. The paper is a resubmission
of our extended abstract accepted for presentation at the MTNS 2020
in Cambridge, which was later extended to the journal paper (Schulze
Darup et al., 2021).

feedback control methods, assuming that the L1 norm (as
a surrogate of L0 norm) or the ℓ1 norm (as a surrogate
of ℓ0 norm) optimization can be computed immediately
and exactly. For a simple plant as a double integrator, the
L1 optimal control, or minimum fuel control (Athans and
Falb, 2007), is obtained in a closed form, and hence the
control is almost ideally implemented.

However, if the plant is not that simple, then we need to
numerically compute the optimal control by optimization
algorithms, such as proximal gradient algorithm (Beck
and Teboulle, 2010), or alternating direction method of
multipliers (ADMM) (Boyd et al., 2011). These methods
require infinitely many iterations to obtain the exact
solution, and in practical applications, we need to stop the
iteration in a small number to obtain a control in real time.
Then, the stability should be taken into account under
non-exact optimal control.

In (Parys and Pipeleers, 2018; Parys et al., 2019; Schulze
Darup et al., 2019), a real-time implementation of the
proximal gradient method and the ADMM in MPC has
been proposed. They consider just one-step iteration
for the optimization, and derive stability results under
such non-exact control. This method however assumes
a quadratic cost function, which is not suitable for our
maximum hands-off control using the non-smooth ℓ1 norm
in the cost function. In this paper, we give stability results
under one-step iteration in the algorithm for maximum
hands-off feedback control using MPC, assuming that the
plant is controlled stable. This assumption is not so re-
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strictive since stabilization is often achieved by a local
controller.

Notation

We will use the following notation throughout this paper:
R denotes the set of real numbers. For positive integers n
and m, Rn and Rm×n denote the sets of n-dimensional
real vectors and m × n real matrices, respectively. We
use boldface lowercase letters, e.g. v, to represent vectors,
and upper case letters, e.g. A for matrices. For a positive
integer n, 0n denotes the n-dimensional zero vector, that
is, 0n = [0, . . . , 0]⊤ ∈ Rn. If the dimension is clear, the
zero vector is simply denoted by 0. The superscript (·)⊤
means the transpose of a vector or a matrix. For a matrix
Φ, ker(Φ) denotes the kernel (or the null space) of Φ. For
a vector v = [v1, v2, . . . , vn]

⊤ ∈ Rn, we define the ℓ1 and
ℓ2 norms respectively by

∥v∥1 ≜
n∑

k=1

|vk| and ∥v∥2 ≜

√√√√ n∑
k=1

|vk|2.

2. FINITE-HORIZON MAXIMUM HANDS-OFF
CONTROL

Here we consider a discrete-time linear time-invariant
system modeled by

x[k + 1] = Ax[k] + bu[k], k = 0, 1, 2, . . . , (1)

where x[k] ∈ Rn is the state, u[k] ∈ R is the scalar control
input, and A ∈ Rn×n, b ∈ Rn.

For this system, we consider the reachability problem.
That is, we find a control sequence (or vector)

u ≜ [u[0] u[1] . . . u[N − 1]]
⊤

(2)

that drives the state x[k] from a given initial state x[0] =
x0 to the origin x[N ] = 0 in N steps.

Assumption 1. We assume the following:

(1) The pair (A, b) is reachable.
(2) The horizon length N is greater than or equal to n.

Under Assumption 1, there is at least one solution to the
reachability problem. Actually there are infinitely many
solutions if N > n. We call the solutions feasible controls.
The set of feasible controls is described by

Ux0 =
{
u ∈ RN : ANx0 +Φu = 0

}
. (3)

where

Φ ≜
[
AN−1b AN−2b . . . Ab b

]
. (4)

Among the feasible controls in Ux0
, we seek the minimum

ℓ1-norm control:

minimize
u∈RN

∥u∥1 subject to u ∈ Ux0
. (5)

The solution of this ℓ1 optimization is called the maximum
hands-off control.

The optimization problem in (5) is effectively solved
by using the alternating direction method of multipliers
(ADMM) (Boyd et al., 2011). The algorithm is described
as follows (Nagahara et al., 2016b):

0 γ

−γ v

Sγ(v)

Fig. 1. Soft-thresholding operator Sγ(v)

v[j + 1] := Πx0
(u[j]−w[j]),

u[j + 1] := Sγ(v[j + 1] +w[j]),

w[j + 1] := w[j] + v[j + 1]− u[j + 1],

j = 0, 1, 2, . . . ,

(6)

where γ > 0 is a step-size parameter, Πx0 is the projection
operator onto Ux0 , that is,

Πx0(v) = Gv + Lx0, (7)

with

G ≜ I − Φ⊤(ΦΦ⊤)−1Φ, L ≜ −Φ⊤(ΦΦ⊤)−1AN , (8)

and Sγ is the element-wise soft thresholding operator
defined by

Sγ(v) ≜


v − γ, if v > γ,

0, if |v| ≤ γ,

v + γ, if v < −γ,

(9)

for scalar v. Figure 1 shows the soft-thresholding operator.

Intuitively speaking, the algorithm in (6) is a combination
of the projection Πx0 onto the feasible control set Ux0 and
the sparsity-promoting soft-thresholding function Sγ .

3. REAL-TIME FEEDBACK CONTROL BY MPC

Now we implement the finite-horizon control scheme in
MPC to realize feedback control. We assume at the mo-
ment that the exact maximum hands-off control, the ex-
act solution to (5) is obtained for a given state x0. By
Cexact(x0) we denote the map from the state x0 ∈ Rn to
the exact maximum hands-off control, that is,

Cexact(x0) ≜ arg min
u∈Ux0

∥u∥1. (10)

Then, the feedback control u[k] for (1) by MPC is de-
scribed by

u[k] = ΓCexact(x[k]), k = 0, 1, 2, . . . , (11)

where Γ ≜ [1 0 . . . 0] ∈ R1×N is a matrix to extract the
first element in Cexact(x[k]), see (Nagahara et al., 2016b)
for details.

It is however difficult to obtain the exact Cexact(x[k])
in real time. The idea to obtain a real-time solution to
the optimization is to stop the iteration in the ADMM
algorithm (6) before convergence. In particular, we can
simply use a one-step iteration for the control. We denote
this process by C1(x0;u,v) with initial guesses u and w,
namely,
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v+ = Πx0
(u−w)

u+ = Sγ(v
+ +w)

w+ = w + v+ − u+

C1(x0;u,w) =

v+

u+

w+


(12)

Then the feedback control is obtained by

u[k] = Γ̃C1(x[k];u[k],w[k]), k = 0, 1, 2, . . . (13)

where Γ̃ ≜ [01×N Γ 01×N ] , and u[k] and w[k] are initial
guesses for the one-step iteration at time k. For the initial
guesses u[k] and w[k], we adopt the warm-start strategy
that uses the previous ones, that is, they are updated by

u[k + 1] =
[
u+
1 [k] u

+
2 [k] . . . u

+
N−1[k] 0

]⊤
,

w[k + 1] =
[
w+

1 [k] w
+
2 [k] . . . w

+
N−1[k] 0

]⊤
,

(14)

where u+
i [k] and w+

i [k] are respectively the (i + 1)-th
element (i = 0, 1, . . . , N − 1) of u+[k] and w+[k] obtained
from C1(x[k];u[k],w[k]).

In summary, the feedback control system is described as
follows:

• one-step optimization

v+[k] = Πx[k](u[k]−w[k])

u+[k] = Sγ(v
+[k] +w[k])

w+[k] = w[k] + v+[k]− u+[k]

(15)

• control signal selection

u[k] = Γu+[k] (16)

• state update

x[k + 1] = Ax[k] + bu[k]

u[k + 1] = Du+[k],

w[k + 1] = Dw+[k],

(17)

where D is the “one-step” shift matrix defined by

D ≜


0 1 0
. . .

. . .

. . . 1
0 0

 . (18)

4. STABILITY ANALYSIS

From (15)–(17), the state-space equation of the feedback
system is given by

ξ[k + 1] = Aξ[k] + BSγ(Kξ[k]), ξ[0] = ξ0, (19)

with the augmented state ξ ≜ [x⊤,u⊤,ν⊤]⊤ where ν[k] ≜
γw[k], and the augmented system matrices

A ≜

[
A 0 0
0 0 0

DL DG D(I −G)

]
, B ≜

[
bΓ
D
−D

]
(20)

and the augmented “controller matrix”

K ≜ [L, G, I −G] , (21)

where L and G are defined in (8).

Let us consider the set

Nγ ≜ {ξ ∈ Rn+2N : ∥Kξ∥∞ ≤ γ}. (22)

Note that it contains a neighborhood of the augmented
origin 0 ∈ Rn+2N . We further note that Sγ(Kξ) = 0 for

every ξ ∈ Nγ . Hence, on Nγ , the dynamics (19) simplifies

to the linear dynamics ξ+ = Aξ. Clearly, the stability
of the linear dynamics depends on the eigenvalues of the
matrix A.

Theorem 1. The matrix A is Schur stable, if and only if A
is Schur stable.

Proof. Since A is a block-triangular matrix, its eigen-
values correspond to the union of the eigenvalues of the
diagonal blocks A, 0 ∈ RN×N , and

D(I −G) = DX, X ≜ Φ⊤(ΦΦ⊤)−1Φ. (23)

Since A inherits all eigenvalues of A, we immediately see
that A is not Schur stable whenever A is not Schur stable.

It remains to show that A is Schur stable whenever A is
Schur stable. Clearly, this relation holds if the matrix (23)
is Schur. To prove that all eigenvalues λ ∈ C of (23)
satisfy |λ| < 1, we use a result from Wielandt (1972)
on eigenvalue locations for products of two matrices. As
a preparation, we rewrite the matrix X using a singular
value decomposition of the form Φ = UΣV ⊤, where
U ∈ Rn×n and V ∈ RN×N are unitary matrices and where

Σ ≜

σ1 0 0 . . . 0
. . .

...
. . .

...
0 σn 0 . . . 0

 ∈ Rn×N (24)

contains the singular values σ1 ≥ · · · ≥ σn. Note that we
have σn > 0 due to rank(Φ) = n. Using this decomposi-
tion, we easily find

X = V Σ⊤U⊤(UΣV ⊤V Σ⊤U⊤)−1UΣV ⊤

= V Σ⊤U⊤U−⊤(ΣΣ⊤)−1U−1UΣV ⊤

= V Σ⊤

σ
−2
1 0

. . .

0 σ−2
n

ΣV ⊤ = V

[
I 0
0 0

]
V ⊤. (25)

Hence, X has n eigenvalues 1 and N − n eigenvalues 0.
The statements in Wielandt (1972) build on the field of
values (or the numerical range)

F(Ψ) ≜ {c†Ψc, c ∈ Cℓ : c†c = 1} (26)

of matrices Ψ ∈ Cℓ×ℓ. In this context, the identified
structure (25) has two important implications. First, we
have

F(X) = conv{0, 1} = [0, 1] (27)

according to (Wielandt, 1972, p. 61) sinceX is normal with
eigenvalues 0 and 1. Second, we can apply (Wielandt, 1972,
Thm. 3) since X is symmetric and positive definite. As a
consequence, we have λ ∈ F(D)F(X) for all eigenvalues
λ of (23). Hence, taking (27) into account, |λ| < 1 is
guaranteed if F(D) is contained in the interior of the unit
disk. Since we indeed have 1

F(D) =

{
λ ∈ C

∣∣∣∣ |λ| < cos

(
π

N + 1

)}
(28)

according to (Marcus and Shure, 1979, Thm. 1), the proof
is complete.

1 Using the notation in Marcus and Shure (1979), D as in (18) can
be constructed based on an “injection” with no cycles and m open
circuits of length N . Hence, we find κ = 0 and ν = N according
to (Marcus and Shure, 1979, p. 112). Consequently, equation (8) in
Marcus and Shure (1979) applies, which leads to (28).
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Fig. 2. Maximum hands-off control: exact control (dashed
line) and control with one-step iteration (solid line).

Remark 1. The stability result is for local dynamics
around the origin. For the global dynamics, the stability
is also analyzed in Schulze Darup et al. (2021).

5. NUMERICAL EXAMPLE

Let us consider a continuous-time plant

ẋc(t) = Acxc(t) + bcuc(t),

with

Ac =

−12 −6.75 −3.375 −1.2656
8 0 0 0
0 4 0 0
0 0 2 0

 , bc =

0.1250
0
0

 .

Note that the above state-space realization is from the
transfer function 1/(s+3)4. Then, we discretize this plant
model with sampling period h = 0.1 to obtain a discrete-
time model as in (1) by zero-order hold discretization (or
step invariant transformation (Chen and Francis, 1995)).
We set the initial state x[0] = [1, 1, 1, 1]⊤ and the horizon
length N = 10.

For the one-step ADMM algorithm in (15), we set the
parameter γ = 1. We also compute the exact solution
Cexact(x[k]) for comparison. This is computed by CVX
(Grant and Boyd, 2008, 2014) on MATLAB. Figure 2
shows the obtained control signals.

Since A is stable, the zero control u ≡ 0 is also a stabilizing
control. That is, with this zero control, the state converges
to the origin from any initial state. Although the zero
control is obviously the sparsest control, the convergence
rate achieved depends only on the time constant, or the
largest absolute value of the eigenvalues of A. Figure 3
shows the 2-norm of the state x[k], k = 0, 1, 2, . . . , N
by the proposed one-step control, the exact control, and
the zero control. We can see that they all converge to
zero. We can also see that the state by the zero-control
converges much slower than the hands-off control. The
latter converges to zero in finite time.

6. CONCLUSION

In this paper, we have considered discrete-time hands-
off control within an MPC formulation. Having real-
time applications in mind, we have proposed the one-step
optimization with a warm-start and derived a stability
result of the combined system when the controlled plant
is stable. Future work includes the stability analysis for
unstable plants.
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Fig. 3. 2-norm of the state ∥x[k]∥2 by exact control (dashed
line) and control with one-step iteration (solid line).

REFERENCES

Athans, M. and Falb, P.L. (2007). Optimal Control. Dover
Publications. An unabridged republication of the work
published by McGraw-Hill in 1966.

Beck, A. and Teboulle, M. (2010). Gradient-based algo-
rithms with applications to signal-recovery problems. In
Convex optimization. Cambridge University Press.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J.
(2011). Distributed optimization and statistical learning
via the alternating direction method of multipliers.
Foundations and Trends in Machine Learning, 3(1), 1–
122.

Chen, T. and Francis, B.A. (1995). Optimal Sampled-Data
Control Systems. Springer.

Grant, M. and Boyd, S. (2008). Graph implementations
for nonsmooth convex programs. In V. Blondel, S. Boyd,
and H. Kimura (eds.), Recent Advances in Learning and
Control, volume 371 of Lecture Notes in Control and
Information Sciences, 95–110. Splinger.

Grant, M. and Boyd, S. (2014). CVX: Matlab soft-
ware for disciplined convex programming, version 2.1.
http://cvxr.com/cvx.

Marcus, M. and Shure, B.N. (1979). The numerical range
of certain 0, 1-matrices. Linear and Multilinear Algebra,
7, 111–120.

Nagahara, M., Quevedo, D.E., and Nešić, D. (2016a).
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Modeling the economic effects of the Covid-19 pandemic in a data-driven 

agent-based framework 
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Abstract: We introduce a dynamic disequilibrium agent-based model (ABM) that was used to fore- 

cast the economics of the Covid-19 pandemic. This model was designed to understand the up- 

stream and downstream propagation of the industry-specific demand and supply shocks caused 

by Covid-19, which were exceptional in their severity, suddenness and heterogeneity across in- 

dustries. We used this model to forecast sectoral and aggregate economic activity for the United Kingdom  

during the early phase of the pandemic. This work demonstrates that an out of equilibrium model calibrated 

against national accounting data can serve as a useful real time policy evaluation and forecasting tool. 

We further extend this modeling framework to a large-scale, data-driven ABM of the New York 

metropolitan area that simulates both, epidemic and economic outcomes across industries, occupations, and 

income levels. This coupled epidemic-economic model is designed to address the potential tradeoff between 

economy and health which has been a key issue faced by policymakers. Our results show that lockdown 

policies affect different social groups very heterogeneously in terms of income and infections.  

Keywords: production function, shock propagation, production network, synthetic population, 

distributional effects

1. INTRODUCTION 

The social distancing measures imposed to combat the first 

wave of the Covid-19 pandemic created severe industry- 

specific disruptions to economic output. Some industries were 

shut down almost entirely by lack of demand, labor 

shortages restricted others, and many were initially largely 

unaffected. Feedback effects then amplified the initial 

shocks. The lack of demand for final goods such as restaurants 

or transportation propagated upstream, reducing de- 

mand for the intermediate goods that supply these industries. 

Supply constraints due to a lack of labor under social 

distancing propagated downstream, creating input scarcity that 

sometimes limited production even in cases where the 

availability of labor and demand would not have been an issue. 

The resulting supply and demand constraints interacted 

to create bottlenecks in production, which in turn led to 

unemployment, eventually decreasing consumption and caus- 

ing additional amplification of shocks that further decreased 

final demand. The unprecedented scale and heterogeneity 

of the shocks caused a major disruption of the economy that 

presented a challenge for economic modelers. 

Here, we summarize our recent (and still ongoing) work of 

modeling the economics of the Covid-19 pandemic which 

aims at addressing these challenges. This abstract is mainly 

based on a series of papers (del Rio-Chanona et al., 2020, 

Pichler et al., 2020, Pichler & Farmer, 2021, Pichler et al., 

2022 and Pangallo et al., 2022) with a focus on (1) a dynamic 

disequilibrium model of the UK production network and (2) a 

disaggregated, large-scale coupled epidemic-economic model 

of the New York metropolitan area. 

  

2. FORECASTING THE PROPAGATION OF PANDEMIC 

SHOCKS 

We introduce a dynamic input-output model that addresses the 

unique features of the pandemic. The model, which is directly 

initialized from national accounts and other data sources where 

this is possible, has several new elements that affect 

production, consumption and changes in the labor force. We 

developed this model during March-April 2020, and used it to 

forecast the economic consequences of the relaxation of the 

lockdown in the UK in real-time, in a working paper we 

released in May 2020 (Pichler et al., 2020). Here we show that 

the model predicted aggregate economic effects very well and 

analyze why it succeeded. We first analyze how the model 

anticipated the impact of the Covid-19 pandemic on the UK 

economy, particularly at the sectoral level. We then show that 

our model accurately captures supply chain effects that explain 

the dynamics of related industries. 

 

The Covid-19 episode was exceptional: (1) Pandemic shocks 

were highly heterogeneous across industries, making it 

necessary to model the economy at the sectoral level, taking 

sectoral inter-dependencies into account; (2) the shocks 

affected both supply and demand simultaneously, and led to 

both upstream and downstream propagation; (3) the shocks 

were so strong and were imposed and relaxed so quickly that 

the economy never had time to converge to a new steady state, 

making dynamic models better suited than static models. 
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A key innovation in our economic model is the sector-specific 

treatment of the production function. We introduce a new 

production function that distinguishes between critical and 

non-critical inputs at the level of the 55 industries in the World 

Input-Output tables. The partially binding Leontief production 

function that we introduce here allows firms to keep producing 

as long as they have the inputs that are absolutely necessary. 

We show that a realistic specification of the production 

function is a key ingredient with strong effects on model 

accuracy. 

 

Another key element of our modeling approach is a detailed 

representation of industry-specific input inventories. 

Inventories act as buffers in the presence of supply chain 

disruptions or demand shocks and thus can play an important 

role in shock propagation dynamics. We use a survey by the 

UK Office for National Statistics (ONS) on industry-level 

inventories to initialize our model. Our results are in line with 

previous work which has shown that inventory levels strongly 

affect the scale and dynamics of shock propagation. 

 

We introduce a Covid-19-specific treatment of consumption. 

Most models do not incorporate the demand shocks that are 

caused by changes in consumer preferences in order to 

minimize risk of infection. We consider demand shocks to 

consumption due to “fear of infection” and consider the effect 

of the drop in current income due to unemployment and 

reduced expectations of permanent income due to pessimism 

about the end of the pandemic. 

 

Finally, compared to other economic disaster models, our 

model explicitly considers labor. Industries adjust their labor 

force depending on supply constraints due to lockdown, lack 

of demand or lack of intermediate inputs. Adjustment is 

sluggish, so firms cannot instantly increase production if they 

lack workers, as hiring takes time. 

 

We released our results for the UK economy online on May 

21, 2020, not long after social distancing measures first began 

to take effect in March. Our central scenario considered a 

government policy for reopening that was very close to what 

the UK government decided. In that scenario, we predicted a 

21.5% contraction of GDP in the UK economy in the second 

quarter of 2020 with respect to the last quarter of 2019.  This 

forecast was remarkably close to the actual contraction of 

22.1%. 

 

In our recent work (Pichler et al. 2022) we show which of the 

modeling factors have been key for making good aggregate 

sectoral predictions, not just for GDP but also for other key 

economic variables.  

 

 

 
 

 

 

 

3. MODELING DISTRIBUTIONAL EFFECTS OF THE 

PANDEMIC 

 

Since the outbreak of the Covid-19 pandemic, governments 

worldwide have successfully slowed down the transmission of 

the virus by enacting non-pharmaceutical interventions. These 

interventions include the shutdown of some customer-facing 

economic activities, e.g. entertainment and restaurants, and the 

imposition of work-from-home mandates. Such protective 

measures have distributional effects, i.e. heterogeneous 

outcomes across socio-economic groups. For instance, 

workers who can work from home become less likely to be 

infected after the imposition of these measures, while essential 

workers remain at risk. At the same time, these measures have 

different distributional economic effects depending on the 

industry and occupation of the workers. For example, low-

income workers are more likely to work in customer-facing 

industries and perform in-person occupations, leading to 

higher risk of unemployment when these industries are closed. 

 

Addressing the effectiveness of non-pharmaceutical 

interventions over behavioral change, both at the aggregate 

and distributional level, requires building theoretical, 

mechanistic models that jointly simulate epidemic and 

economic dynamics at a fine-grained level.  

 

Here, we introduce an agent-based model (ABM) that 

simulates epidemic and economic outcomes of a large 

synthetic population in a metropolitan area. The socio-

economic characteristics and the consumption and contact 

patterns are initialized from detailed census, survey, and 

mobility data, while the structure of the economy is initialized 

from input-output tables and national and regional accounts. 

Fig. 1. The UK economy represented as a 55 sectors production 

network. 

Fig. 2. Economic production as predicted by the model. 
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Our joint epidemic-economic ABM merges and largely 

extends our former epidemic (Aleta et al. 2020) and economic 

(Pichler et al. 2020) models built to understand the effects of 

the Covid-19 pandemic and study the effectiveness of policy 

responses. We calibrate our model to the first wave of the 

pandemic in the New York metropolitan area and show that it 

quantitatively matches key epidemic and economic statistics, 

both in the aggregate and across income levels and industries. 

We then use our ABM to understand the interplay of behavior 

change and non-pharmaceutical interventions. Our key result 

is that strong behavior change, alike strict closure of economic 

activities, harms the economy but reduces infections and, thus, 

saves lives. This equivalence between behavior changes and 

closures also holds at the distributional level: We find that 

under strong behavior change and strict non-pharmaceutical 

interventions, low-income workers are more likely to become 

unemployed but less likely to become infected. The 

mechanisms behind these results suggest that a model like 

ours, initialized from various granular datasets, can be used to 

design policies that minimize health and economic damages to 

disadvantaged socio-economic groups, for instance by 

designing income support schemes that are specific to the 

industry and occupation of workers. 
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Fig. 3. Basic relationships between inputs and outputs in the 

epidemic-economic model. 

Fig. 4. Simulation results showing total deaths per 1000 

individuals (y-axis) and the mean unemployment rate (x-axis) for 

different parametrizations. 
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Abstract: In the transition to renewable energy sources, hydrogen will potentially play an
important role for energy storage. The efficient transport of this gas is possible via pipelines. An
understanding of the possibilities to control the gas flow in pipelines is one of the main building
blocks towards the optimal use of gas.
For the operation of gas transport networks it is important to take into account the randomness
of the consumers’ demand, where often information on the probability distribution is available.
Hence in an efficient optimal control model the corresponding probability should be included
and the optimal control should be such that the state that is generated by the optimal control
satisfies given state constraints with large probability. We comment on the modelling of gas
pipeline flow and the problems of optimal nodal control with random demand, where the aim of
the optimization is to determine controls that generate states that satisfy given pressure bounds
with large probability. We include the H2 norm of the control as control cost, since this avoids
large pressure fluctuations which are harmful in the transport of hydrogen since they can cause
embrittlement of the pipeline metal.

Keywords: gas pipeline flow, nodal control, boundary control, optimal control, hyperbolic
differential equation, random demand, state constraints, pressure bound, classical solutions

1. INTRODUCTION

The isothermal Euler equations (see e.g. Banda et al.
(2006), Gugat and Herty (2022))

ρt + qx = 0,

qt +

(
p+

q2

ρ

)
x

= −1

2
θ
q |q|
ρ

(1)

are a well-established model for gas pipeline flow, where
ρ denotes the gas density, p the pressure, q the mass
flow rate and θ ≥ 0 is a friction parameter. At the end
x = 0 the flow rate that is desired by the consumers is
given by a random variable, so we have q(t, 0) = qr(ω)
on a probability space (Ω, A, P). Here we assume that
qr(ω) ∈ C1([0, T ]) for all ω ∈ Ω. Due to the influence of
the random boundary term, also the pde solution becomes
a random variable. At the end x = L of the pipe, the
pressure is controlled, p(t, L) = u(t). We consider controls
u ∈ H2([0, T ]). For the deterministic case, in Gugat and
Sokolowski (2022), a similar optimal control problem for
gas networks is considered and the existence of an optimal
control is shown. See Göttlich and Schillinger (2021) for a
related study for linear systems.

⋆ This work was funded by the DFG, TRR 154, Mathematical
Modelling, Simulation and Optimization Using the Example of Gas
Networks, projects C03 and C05, Projektnummer 239904186

2. THE SYSTEM

Let a time horizon T > 0 be given. For the case of ideal
gas where p = a2ρ with the sound speed a > 0, our system
is governed by the initial boundary value problem

(Sω)


q(0, x) = q0(x), ρ(0, x) = ρ0(x), x ∈ (0, L),
q(t, 0) = qr(ω), p(t, L) = u(t), t ∈ (0, T ),(
ρ
q

)
t

+

 0 1

a2 − q2

ρ2
2
q

ρ

( ρ
q

)
x

=

 0

−θ

2

q |q|
ρ

 .

Let R0 > 0 denote a constant reference density. Due to
the theory of semi-global solutions (see Li (2010), Li et al.
(2016)) for any given time horizon T > 0 there exist
numbers ε(T ) > 0 and C1(T ) > 0 such that for all R ≥ R0

and all initial states that satisfy

max{∥q0∥C1([0, L]), ∥ρ0 −R∥C1([0, L])} ≤ ε(T ) (2)

and all qr(ω) with

∥qr(ω)∥C1([0, T ]) ≤ ε(T ) (3)

and all controls with

∥u− a2 R∥C1([0, T ]) ≤ ε(T ) (4)

that are C1-compatible with the initial state (q0, ρ0) there
exists a classical solution (qω, ρω) of (Sω) on [0, T ] that
satisfies the a priori estimate
max{∥qω∥C1([0, T ]×[0,L]), ∥ρω −R∥C1([0, T ]×[0,L])} ≤ C1(T )
max{∥q0∥C1([0, L]), ∥ρ0−R∥C1([0, L]), ∥qr(ω)∥C1([0, T ]), ∥u−
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a2R∥C1([0, T ])}. Moreover, the state depends continuously

in (C1([0, T ]× [0, L]))2 on the control u ∈ C1([0, T ]).

To guarantee that a regular solution exists, in the optimal
control problem the control constraint (4) and the C1-
compatibility conditions with the initial state are pre-
scribed.

3. THE OPTIMAL CONTROL PROBLEM

Let a lower pressure bound pmin > 0 be given. For a control
u ∈ H2(0, T ) define the objective function

J(u, R) = ∥u−R∥H2(0, T ) (5)

−ln
(
P
(
∥(pmin − pω)+∥C([0,T ]×[0,L]) = 0

))
.

The optimal control problem Pdyn(T ) is to minimize
J(u, R) subject to the constraints R ≥ R0, (4) and the
C1-compatibility conditions for u, where (pω, qω) solves
(Sω).

The H2-term in the objective function helps to avoid large
pressure fluctuations in the pipe that can be harmful if
the gas contains hydrogen due to the danger of embrit-
tlement, see Guy et al. (2021). The optimal control of
gas transportation systems is a classical topic in process
engineering, see for example Osiadacz and Swierczewski
(1994).

3.1 Existence of solutions

Theorem 1. Let (q0, ρ0) ∈
(
C1([0, T ])

)2
be given such that

a2 ρ0 > pmin and (2) holds. Assume that (3) and the
C1-compatibility conditions of qr(ω) and the initial data
hold almost surely. Then an optimal control that solves
Pdyn(T ) does exist in (0, ∞)×H2([0, T ]).

Proof. The set of admissible controls is non-empty, since
for all R > 0 there exists a control û ∈ H2(0, T )
that is compatible with (q0, ρ0) and satisfies (4). The a
priori estimate implies that if R is sufficiently large, we
have almost surely pω = a2R + a2(ρω − R) ≥ a2R −
a2C1(T ) ε(T ) ≥ pmin. Hence if R is sufficiently large, there
exists a control where the objective function attains a finite
value. (Note that this does not require that pω ≥ pmin

almost surely, but only that pω ≥ pmin has a nonzero
probability.)

TheH2-norm is a weakly sequentially lower semi-continuous
functional in H2(0, T ). Results from Farshbaf-Shaker et al.
(2018) imply that the probabilistic part of the objective
function is also weakly sequentially lower semi-continuous
in H2(0, T ). This can be seen as follows. A sequence
that converges weakly in H2(0, T ) converges strongly in
C1([0, T ]) to a limit point u∗ ∈ H2(0, T ). Due to the
theory of semi-global solutions, (2), (3) and (4) imply that
the controls generate classical solutions of (Sω) almost
surely and the strong convergence in C1([0, T ]) of the
controls implies that also the corresponding subsequence
of generated states given by the classical solutions of (Sω)

converges strongly in
(
C1([0, T ]× [0, L])

)2
to the solution

that is generated by the limit point u∗. Then Lemma 2 in
Farshbaf-Shaker et al. (2018) implies that the probability
is weakly sequentially upper semi-continuous in H2(0, T ).

This implies that the objective functional is a weakly
sequentially lower semi-continuous functional in (0,∞) ×
H2(0, T ).

We consider a minimizing sequence of feasible controls
(Rk, uk). Due to the H2-term and (4), this sequence is
bounded in R×H2(0, T ). Hence it contains a subsequence
that converges weakly in R×H2(0, T ) and thus converges
strongly in R×C1([0, T ]) to a limit point (R∗, u∗) ∈ R×
H2(0, T ). Moreover, this also implies that u∗ satisfies (4)
and that the values of the objective function J(u∗) is
minimal.

3.2 Numerical approaches

For the numerical solution, a kernel density estimator
should be used to obtain a differentiable approximation of
the objective function similar to the approach in Schuster
et al. (2021). The controls are represented as Fourier series,
u(t) = a0

2 +
∑∞

j=1 aj cos
(
j 2π

T t
)
+ bj sin

(
j 2π

T t
)
. Then we

have 2
T ∥u∥2H2(0, T )

=
a2
0

2 +
∑∞

j=1

(
1 +

(
j 2π

T

)2
+
(
j 2π

T

)4
)
(
|aj |2 + |bj |2

))
. Trun-

cation of the Fourier series after a finite number of modes
leads to a semi-infinite optimization problem, for a survey
see Stein (2012).

4. A NUMERICAL EXAMPLE

Gas network optimization has been of interest for decades,
see e.g., Herty and Sachers (2007); Zlotnik et al. (2015)
for a semilinear hyperbolic gas transport model and Mak
et al. (2019) for a parabolic gas transport model. But gas
network optimization with H2 control and probabilistic
terms in the objective function was not considered yet. We
present a numerical example on a single edge for both, a
probabilistic objective function with a L2 control term and
a probabilistic objective function with an H2 control term.

We consider the isothermal Euler equations for ideal gases,
i.e., for (t, x) ∈ [0, T ]× [0, L] we have

p(t, x) = a2ρ(t, x),

where a denotes the speed of sound in the gas. Due to the
proportionality of pressure and density we consider density
control at x = L instead of pressure control. All values and
constants are given in Table 1.

Letter Value Unit

T 12 h
L 30 km
a 343 m/s
θ 0.2
R 46.3 kg/m3

ρmin 40.4 kg/m3

Table 1. Values for the numerical example.

At the end x = 0 we assume random gas outflow. Therefor
we define a deterministic function

qD(t) = −16

π
sin
( π

12 · 602
t
)
· 16
π

cos
( π

8 · 602
t
)
+ 140.

Let
ξ ∼ N

(
1,
√
0.1

)
,
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be a Gaussian distributed random variable on an appropri-
ate probability space (Ω,A,P). Similar as in Schuster et al.
(2021) we write qD(t) as Fourier series and multiply every
Fourier term with a random number ξ(ω), ω ∈ Ω. For the
implementation we cut the Fourier series after 10 terms.
A sample of 20 random boundary functions qr(ω) and the
corresponding deterministic function qD(t) are shown in
Figure 1. For the implementation we use the negative flow
values since gas is transported from the end of the pipe
(x = L) to its beginning (x = 0).

Fig. 1. Sample of 20 random boundary functions qr(ω).

For the initial state we solve the stationary isothermal
Euler equations

qσx = 0,(
a2ρσ +

(qσ)2

ρσ

)
x

= −1

2
θ
qσ |qσ|
ρσ

,
(6)

with the boundary conditions qσ(0) = qD(0) and ρσ(L) =
46.3 kg/m3. The solution (ρσinit, q

σ
init) of (6) serves as initial

state for the dynamic problem.

The probabilistic term in the objective function is com-
puted with a kernel density estimator approach (see Schus-
ter et al. (2021)). Due to the friction along the pipe and due
to the choice of initial states, for every time the density
is minimal at x = 0. Thus we have ρω(t, x) ≥ ρmin iff
ρω(t, 0) ≥ ρmin. We discretize the time interval using nT+1
equidistant points 0 = t0 < · · · < tnT

= T and we
use a multivariate kernel density estimator approach with
Gaussian product kernels to approximate the probabilistic
term. For

Pmin := ⊗nT
i=1[ρmin,∞),

we have

P
(
ρω(t, 0) ≥ ρmin ∀t ∈ [0, T ]

)
≈∫

Pmin

1

N
√
detH

N∑
i=1

nT∏
j=1

1√
2π

exp

−

(
zj − ρi(tj)√

2 Hj,j

)2


=
1

N 2nT

N∑
i=1

nT∏
j=1

[
1− erf

(
ρmin − ρi(tj)√

2Hj,j

)]
.

Here N is the number of samples, ρi(tj) is the density
for the i-th sample at (t, x) = (tj , 0) and H is a diagonal

positive definite bandwidth matrix.

We define objective functions

JL2(u,R) = w1∥u−R∥L2(0,T )

− ln
(
P
(
ρω(t, 0) ≥ ρmin ∀t ∈ [0, T ]

))
,

and

JH2(u,R) =

w1∥u−R∥L2(0,T ) + w2∥u′∥L2(0,T ) + w3∥u′′∥L2(0,T )

− ln
(
P
(
ρω(t, 0) ≥ ρmin ∀t ∈ [0, T ]

))
,

with weights

w1 = 2 · 10−3, w2 = 1 · 105, w3 = 1 · 1012.

The optimal controls for both objective functions (N = 20
and nT = 25) are shown in Figure 2. The blue line shows
the optimal density control for JL2(u,R) and the red line
in shows the optimal density control for JH2(u,R). The
results can be interpreted as follows: For an objective
function without probabilistic term the optimal solution
would obviously be u ≡ R. The density at x = 0 is only
lower than ρmin for the peak around 7 hours (cf. Figure
1). Thus the control only needs to be active in this time
span. As it was expected the H2 control is smoother than
the L2 control.

Fig. 2. Optimal control for JL2(u,R) and JH2(u,R).

We have

PL2

(
ρω(t, 0) ≥ ρmin ∀t ∈ [0, T ]

)
≈ 74%,

and

PH2

(
ρω(t, 0) ≥ ρmin ∀t ∈ [0, T ]

)
≈ 66%.

Thus a slight decrease of the probability leads to a
smoother density control and less density fluctuations.
This can also be seen in Figure 3 and Figure 4. The peaks
around 7 hours are smoother in Figure 4 than in Figure
3. The blue line shows ρmin. The optimal density control
and the corresponding densities at x = 0 would be even
smoother if we would increase the weights w2, w3 for the
L2-Norm of the control derivatives.
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Fig. 3. Scenarios at x = 0 for the optimal density control
of JL2(u,R)

Fig. 4. Scenarios at x = 0 for the optimal density control
of JH2(u,R)

5. CONCLUSION

In optimal control problems, it is important to take into
account the uncertainty of the problem data in order to
obtain controls that work sufficiently well in the set of data
that is expected. Since in many applications information
on the probability distribution of the data is available,
this information should be used in an optimal control
model. In our contribution we choose the probability that
state constraints are satisfied as a part of the objective
function. In this way, it is ensured that the optimization
generates controls that are robust in the sense that the
pressure bounds are satisfied with a high probability. We
include an H2 control cost in the objective functional,
which is of particular interest in the context of hydrogen
transport. It also serves as a Tychonov regularization term
that is important for the proof of the existence of optimal
controls.

ACKNOWLEDGEMENTS

This work was supported by Deutsche Forschungsge-
meinschaft (DFG) in the Collaborative Research Centre
CRC/Transregio 154, Mathematical Modelling, Simula-
tion and Optimization Using the Example of Gas Net-
works, Projects C03 and C05, Projektnummer 239904186.

REFERENCES

Banda, M.K., Herty, M., and Klar, A. (2006). Coupling
conditions for gas networks governed by the isothermal
Euler equations. Netw. Heterog. Media, 1(2), 295–314.

Farshbaf-Shaker, H., M.H., Henrion, R., and Hömberg,
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Evasive subspaces and rank-metric codes
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Abstract: We investigate the connections between rank-metric codes and evasive Fq-subspaces of Fk
qm .

We show how the parameters of a rank-metric code are related to special geometric properties of the
associated evasive subspace and construct new MRD-codes.

Keywords: Evasive subspace, MRD code, linear cutting blocking set, scattered subspace, q-polynomial

1. INTRODUCTION

Rank-metric codes, in particular MRD codes, have been studied
since the 1970s and have seen much interest in recent years
due to a wide range of applications including storage systems
(Roth (1991)), cryptosystems (Gabidulin (1995)), spacetime
codes (Lusina et al (2003)) and random linear network coding
(Koetter et al (2008)).

In finite geometry, there are several interesting structures, in-
cluding quasifields, semifields, splitting dimensional dual hy-
perovals and maximum scattered subspaces, which can be
equivalently described as special types of rank-metric codes;
see Csajbók et al (2017), Dempwolff et al (2014), Dempwolff
et al (2015), Sheekey (2016), Taniguchi et al (2014) and the
references therein.

2. RANK-METRIC CODES

The rank weight rk(v) of a vector v = (v1, . . . , vn) ∈ Fn
qm is

the dimension of the Fq-linear space generated by its entries,
i.e.

wtrk(v) = dimFq (〈v1, . . . , vn〉Fq )
and the rank distance between two vectors is defined as
drk(u, v) := wtrk(u− v).
Definition 1. An [n, k, d]qm/q (rank-metric) code C is a k-
dimensional Fqm -subspace of Fn

qm equipped with the rank
distance. The parameter d is called the minimum rank distance
and it is given by

d := drk(C) = min{drk(u, v) : u, v ∈ C, u 6= v}
= min{wtrk(v) : v ∈ C, v 6= 0}.

A generator matrix for C is a matrix G ∈ Fk×n
qm such that

C =
{
vG : v ∈ Fk

qm
}
.

When the minimum distance is not known or is irrelevant, we
write [n, k]qm/q .

It is well-known that
#C ≤ qmax{m,n}(min{m,n}−d+1),

which is a Singleton like bound for the rank metric; see Delsarte
(1978).

When equality holds, we call C a maximum rank-distance
(MRD for short) code. More properties of MRD codes can be
found in Delsarte (1978), Gabidulin (1985), Gadouleau (2006),
Morrison (2014) and Ravagnani (2016).

There are several slightly different definitions of equivalence
of rank-distance codes. Here, we use the following notion of
equivalence: two [n, k]qm/q codes C1 and C2 are equivalent if
and only if there exist A ∈ GL(n, q) such that

C1 = C2 ·A = {vA : v ∈ C2}.
Definition 2. An [n, k]qm/q code is nondegenerate if the Fq-
span of the columns of its generator matrices has Fq-dimension
equal to n.

Generalized rank weights have been first introduced and studied
by Kurihara-Matsumoto-Uyematsu (Kurihara et al (2012),Kuri-
hara et al (2015)), Oggier-Sboui Oggier et al (2012) and Ducoat
Ducoat et al (2015).

Let Λq(n,m) be the set of Frobeniuos-closed subspaces of Fn
qm

i.e.
Λq(n,m) := {U ≤ Fn

qm : θ(U) = U}},
where θ : x ∈ Fqm 7→ xq ∈ Fqm .
Definition 3. Let C be an [n, k, d]qm/q code, and let 1 ≤ s ≤ k.
The s-th generalized rank weight of C is the integer
drk,s(C) :=min{dimFqm

(A) :A ∈Λq(n,m),dim(A∩C) ≥ s}.
Proposition 4. (Bounds Martı́nez-Peñas (2016)). Let C be an
[n, k, d]qm/q code and let 1 ≤ s ≤ k. Then

drk,s(C) ≤ min
{
n− k+ s, sm,

m

n
(n− k) +m(s− 1) + 1

}
.

Definition 5. Let s be a positive integer. An [n, k]qm/q code C
is s-MRD if drk,s(C) = n− k + s.

According to Proposition 4, an [n, k]qm/q s-MRD code may
exist only if

n− k + s ≤ min
{
sm,

m

n
(n− k) +m(s− 1) + 1

}
.

3. EVASIVE SUBSPACES

Let V = V (k, qm) be a k-dimensional vector space over the
finite field Fqm . Note that V is also a km-dimensional vector
space over Fq .
Definition 6. An Fq-subspace U of V will be called (h, r)q-
evasive if 〈U〉Fqm

has dimension at least h over Fqm and the
h-dimensional Fqm -subspaces of V meet U in Fq-subspaces of
dimension at most r. When h = r, an (h, h)q-evasive subspace
of V is said to be h-scattered.

Note that in the definition above the condition on the dimension
of 〈U〉Fm

q
is to exclude trivial examples for which some of
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our results would not apply. So, take an Fq-subspace U of V
such that the condition dimqm〈U〉qm ≥ h holds. Then it is
easy to find an h-dimensional Fqm -subspace meeting U in an
Fq-subspace of dimension at least h and hence for an (h, r)q-
evasive subspace h ≤ r must hold. Clearly, if dimq U ≤ r then
U is an (h, r)q-evasive subspace. The (k, r)q-evasive subspaces
are the Fq-subspaces of dimension at most r which span V over
Fqm .

4. SOME BOUNDS OF EVASIVE SYSTEMS

Recently, the concept of q-systems has been introduced in
Randrianarisoa (2020). A q-systemU over Fqm with parameters
[n, k, d] is an n-dimensional Fq-subspace generating over Fqm

a k-dimensional Fqm -vector space V , where
d = n−max{dim(U ∩H) : H is a hyperplane of V }.

With our notation, it is equivalent to say thatU is (k−1, n−d)q-
evasive in V (k, qm) and it is not (k − 1, n− d+ 1)q-evasive.

Two [n, k, d]qm/q systems U1 and U2 are said to be (linearly)
equivalent if there exists M ∈ GL(k, qm) such that U1 = M ·
U2.

Let U(n, k, d)qm/q denote the set of equivalence classes of
[n, k, d]qm/q systems, and let C(n, k, d)qm/q denote the set of
equivalence classes of nondegenerate [n, k, d]qm/q codes. Then,
define the maps

Φ : C(n, k, d)qm/q −→ U(n, k, d)qm/q

[rowsp(u>1 | . . . | u>n )] 7−→ [〈u1, . . . un〉Fq
]

Ψ : U(n, k, d)qm/q −→ C(n, k, d)qm/q

[〈u1, . . . un〉Fq
] 7−→ [rowsp(u>1 | . . . | u>n )]

The maps Φ and Ψ are well-defined and they are inverse to each
other (cf. Randrianarisoa (2020)).

The geometric point of view allows to give a geometric charac-
terization of the generalized rank weights of a rank-metric code
via its associated q-system.
Theorem 7. (Randrianarisoa (2020)). Let C be a nondegenerate
[n, k]qm/q code and let U ∈ Φ([C]) be any of the [n, k]qm/q

systems associated. Then
drk,r(C) = n−max{dimFq

(U ∩W ) : W ⊆ V,
dimFqm

(W ) = k − r}.

The following result gives a precise description of the connec-
tions between evasive subspaces and rank-metric codes.
Theorem 8. ((Marino et al, 2022, Thm. 3.3)). Let C be a non-
degenerate [n, k]qm/q code, and let U ∈ Φ([C]). Then, U is
(h, r)q-evasive if and only if drk,k−h(C) ≥ n− r. In particular,
drk,k−h(C) = n − r if and only if U is (h, r)q-evasive but not
(h, r − 1)q-evasive.
Corollary 9. Let C be a nondegenerate [n, k]qm/q code and let
U ∈ Φ([C]). Then U is an h-scattered [n, k]qm/q system if and
only if C is (k − h)-MRD.

In Csajbók et al (2021), the following upper bound on the
dimension of an h-scattered system has been proved.
Theorem 10. Let U be an h-scattered [n, k]qm/q system. Then

n ≤ km

h+ 1
.

An [n, k]qm/q system is said to be maximum h-scattered if it is
h-scattered and meets the bound of Theorem 10 with equality,
i.e.,

n =
km

h+ 1
.

Theorem 11. Let k,m be positive integers and let q be a prime
power. The following hold.

(1) There exist maximum (k − 1)-scattered [m, k,m − k +
1]qm/q systems (see Delsarte (1978)).

(2) If km is even, then there exist maximum 1-scattered
[km2 , k, ]qm/q systems (see Blokhius et al (2000); Bartoli
et al (2018); Csajbók et al (2017)).

In Zini et al (2021) a connection between maximum h-scattered
subspaces and MRD codes has been established.
Theorem 12. ((Zini et al, 2021, Theorem 3.2)). Suppose that
h + 1 divides km and let n := km

h+1 . Let U be an [n, k]qm/q

system and let C ∈ Ψ([U ]) be any of its associated [n, k]qm/q

codes. Then, U is maximum h-scattered if and only if C is an
MRD code.

About the existence of maximum h-scattered the following
result holds true.
Theorem 13. If h+1 divides k and m ≥ h+1, then there exist
maximum h-scattered [ km

h+1 , k]qm/q systems.

If h+ 1 does not divide k we have the following result.
Theorem 14. If m ≥ 4 is even and r ≥ 3 is odd, then there
exist maximum (m− 3)-scattered [ rm2 ,

r(m−2)
2 ]qm/q system.

The main open problem about h-scattered in V (k, qm) is their
existence for every admissible values of k, m and h. In par-
ticular the first open case is the existence of 2-scattered Fq-
subspaces of V (4, q6) of dimension 8.

From Bartoli et al (2021) and Marino et al (2022) we have the
following more general bounds on evasive subspaces.
Proposition 15. Let U be a (k − 1, r)q-evasive [n, k]qm/q sys-
tem. Then

km ≤ n(m− n+ r + 1).

Proposition 16. Let U be an (h, r)q-evasive [n, k]qm/q system.
The following hold.

(1) r ≥ max{h, h− 1 + h+1
m−1}.

(2) n ≤ km− hm+ r,

(3) If r ≤ m
m−1h, then

n ≤ km

r + 1−m(r − h)
.

5. SMALL LINEAR CUTTING BLOCKING SETS AND
NEW MRD

Another family of q-systems has been recently introduced in
Alfarano et al. (2021).
Definition 17. An [n, k]qm/q system U is said to be t-cutting if
for every Fqm -subspace H of V (k, qm) of codimension t we
have 〈H ∩ U〉Fqm

= H . When t = 1, we simply say that U is
cutting (or a linear cutting blocking set).
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The study of these objects was due to their connection to
minimal rank-metric codes. A codeword is said to be minimal
if its support does not contain the support of any other non-
proportional nonzero codeword. A code for which every code-
word is minimal is called minimal. The importance of minimal
codes relies on their connection with cryptography and coding
theory.
Theorem 18. (Alfarano et al. (2021)). Let C be an [n, k]qm/q

code, and let U ∈ Φ([C]) be any of the associated [n, k]qm/q

systems. Then, C is a minimal rank-metric code if and only if
U is a linear cutting blocking set.

The following bound on the parameters of linear cutting block-
ing set was determined in Alfarano et al. (2021).
Proposition 19. Let U be a cutting [n, k]qm/q system, with
k ≥ 2. Then n ≥ m+ k − 1.

Moreover, in Alfarano et al. (2021) it was observed that linear
cutting blocking sets are related with scattered subspaces when
k = 3. In this case, scattered susbapces were used to construct
linear cutting blocking sets, as the following result shows.
Proposition 20. (Alfarano et al. (2021)). If U is a scattered
[n, 3]qm/q system with n ≥ m+ 2, then U is cutting.

The previous result has been generalized in Bartoli et al (in
press).
Theorem 21. Let U be an [n, k]qm/q system. Then, U is (k −
2, n−m− 1)q-evasive if and only if it is cutting.

Note that, in general, the lower bound in Proposition 19 is not
tight.
Corollary 22. If m < (k − 1)2 then there are no linear cutting
blocking set of dimension m+ k − 1.

Furthermore, it is interesting to observe what happens in the
extremal case m = (k − 1)2.
Corollary 23. Let U be a [k(k − 1), k]q(k−1)2/q system and let
C be a code associated to U . The following are equivalent.

(1) U is (k − 2)-scattered.
(2) U is cutting.
(3) C is MRD.
(4) C is minimal.

In Bartoli et al (in press) the cases (k,m) = (4, 3) and (k,m) =
(4, 4) have been investigated.

Denote by cq(k,m) the smallest dimension of a linear cutting
blocking set in V (k, qm). Then Proposition 19 can be rewritten
as

cq(k,m) ≥ k +m− 1,
and we have seen that this is not always an equality; see
Corollary 22. In Bartoli et al (in press) has been shown that
cq(4, 3) = 8 for every prime power q. Also in Bartoli et al
(in press), it has been proved that cq(4, 4) ≥ 8. In particular
it has shown that cq(4, 4) = 8 when q = 22h+1, with
h ≥ 0, constructing a scattered [8, 4]q4/q system which is also
(2, 3)q-evasive. If C is an [8, 4]q4/q MRD associated with U , its
generalized rank weights are

drk,1(C) = 3, drk,2(C) = 5, drk,3(C) = 7, drk,4(C) = 8.

The importance of this result is multiple, and it is related to
the theory of rank-metric codes. On the one hand it provides
a construction of a minimal rank-metric code of dimension 4

with respect to the field extension Fq4/Fq of shortest length.
On the other hand it provides the first example of a [2n, 2(n −
d + 1), d]qn/q MRD code which is not the direct sum of two
[n, n− d+ 1, d]qn/q MRD codes.
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Abstract: The classical sampling formula associated with the names of Shannon, Whittaker,
Nyquist and Kotelnikov, will be exhibited as a special case of a general sampling formula in the
setting of reproducing kernel Hilbert spaces of entire functions due to Louis de Branges. Other
applications of these spaces and generalizations to spaces of vector valued entire functions will
also be discussed briefly.
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The classical sampling formula associated with the names
of Shannon, Whittaker, Nyquist and Kotelnikov, may be
formulated as follows:

If f(λ) =
∫ T

−T
eiµsϕ(s)ds for some function ϕ with the

property
∫ T

−T
|ϕ(s)|2ds < ∞, then

f(λ) =

∞
∑

n=−∞

f(µn)
sin(λ− µn)T

(λ− µn)T

with µn =
nπ

T
,

(1)

i.e., f(λ) can be recovered from its values at the points µn.

This formula is usually derived by exploiting the interplay
between the Fourier series expansion of ϕ and classical
formulas for Fourier integrals.

I shall, however, discuss another approach that invokes the
Paley-Wiener theorem to reinterpret this sampling formula
as a special case of a family of such formulas that arise
in a class of reproducing kernel Hilbert spaces of entire
functions that was introduced and deeply investigated by
Louis de Branges.

The de Branges theory begins with an entire function E(λ)
that is subject to the constraint

|E(λ)| > |E(λ)| for every point λ in

the open upper half-plane C+.
(2)

To each such function E(λ) there is an associated repro-
ducing kernel Hilbert space B(E) of entire functions f
(that may be characterized by some growth conditions on
f) with reproducing kernel

Kω(λ) =
E(λ)E(ω)∗ − E#(λ)E#(ω)∗

−2πi(λ− ω)
,

in which h#(λ) = h(λ)∗ for entire functions h,

and inner product

〈f, g〉B(E) =

∫ ∞

−∞

(E−1g)(µ)∗(E−1f)(µ)dµ.

This means that for each choice of ω ∈ C and f ∈ B(E):

(i) Kω ∈ B(E).

(ii) 〈f,Kω〉B(E) = f(ω).

To proceed further, it is convenient to express the repro-
ducing kernel in terms of the functions

A(λ) =
E#(λ) + E(λ)

2
= A#(λ)

and

B(λ) =
E#(λ)− E(λ)

2i
= B#(λ).

The constraint (2) forces the zeros of B(λ), if any, to be
real. Since

E(λ) = A(λ) − iB(λ) and E#(λ) = A(λ) + iB(λ),

it is readily checked that

Kω(λ) =
A(λ)B(ω)−B(λ)A(ω)

π(λ− ω)

Moreover, if ω1, ω2, . . . is a sequence of real zeros of B(λ),
then

〈Kωj
,Kωk

〉B(E) = Kωj
(ωk)

=
A(ωk)B(ωj)−B(ωk)A(ωj)

π(ωk − ωj)

= 0 if j 6= k.

Under reasonable conditions on E(λ), the set {Kωj
} is an

orthogonal basis for B(E) and hence every f ∈ B(E) can
be expressed as

f(λ) =
∑

〈f,Kωj
〉B(E)‖Kωj

‖
−2

B(E)
Kωj

(λ)

=
∑

f(ωj)‖Kωj
‖
−2

B(E)
Kωj

(λ).
(3)

This is de Branges’ sampling formula; see e.g., De Branges
(1959), De Branges (1968); and, for an introduction to
sampling theory Garcıa (2015).

Formula (1) is the special case of (3) that is obtained by
choosing E(λ) = e−iλT , T > 0. For this choice of E(λ),
A(λ) = cos λT , B(λ) = sin λT and

Kω(λ) = (π(λ − ω))−1 sin (λ− ω)T.

Formula (3) opens the door to many generalizations of (1).

The talk will be largely expository. However, if time
permits, some highlights of a relatively recent paper, Dym
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and Sarkar (2017) written jointly with S. Sarkar, that
discusses sampling in de Branges spaces of vector valued
entire functions, will be mentioned briefly; see also Arov
and Dym (2018).
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Abstract: In this work, the multi-cover metric is introduced. It is defined as a Cartesian
product of classical cover metrics. A Singleton bound is given and maximum multi-cover distance
(MMCD) codes are defined. Puncturing and shortening of linear MMCD codes are studied. It is
shown that the dual of a linear MMCD code is not necessarily MMCD, and those satisfying this
duality condition are defined as dually MMCD codes. Finally, constructions of dually MMCD
codes are given, which also include some new linear codes attaining the Singleton bound for the
classical cover metric and classical crisscross error correction.
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1. INTRODUCTION

The cover metric was introduced in (Roth, 1991) to
measure the number of crisscross errors in memory chip
arrays, which affect entire rows and columns. Two types
of codes attaining the Singleton bound for the cover metric
were introduced in (Roth, 1991), one of them based on the
rank metric and patented in (Ordentlich et al., 2015).

In this work, we extend the cover metric to a tuple of ℓ
matrices, where ℓ is a fixed positive integer. We call the
new metric the multi-cover metric. This metric is suitable
to correct simultaneously a number of crisscross errors and
erasures distributed over the ℓ matrices.

In Section 2, we provide a Singleton bound for the multi-
cover metric, and we call codes attaining it maximum
multi-cover distance (MMCD) codes. As it can easily be
seen, concatenated codes and Cartesian products of codes
for the classical cover metric yield codes that are not
MMCD. As in the sum-rank metric, MRD codes yield
MMCD codes but only work for very tall matrices and
are decodable over large finite fields. In Section 3, we
study the puncturing and shortening of MMCD codes,
and we show that the dual of a linear MMCD code is not
necessarily MMCD, in contrast with MDS or MRD codes.
Those satisfying this duality condition will be called dually
MMCD codes. Finally, in Section 4, we provide a general
family of dually MMCD codes for square matrices that can
be corrected efficiently for a variety of alphabet sizes.

2. DEFINITIONS AND BASIC PROPERTIES

We denote N = {0, 1, 2, . . .}. Fix q a prime power and
let Fq be the finite field of size q. For positive integers
m and n, we denote by Fm×n

q the set of m × n matrices
with entries in Fq. Throughout this manuscript, we will
fix positive integers ℓ, n1, n2, . . . , nℓ, m1,m2, . . . ,mℓ, and

we will consider codes as subsets of
∏ℓ

i=1 Fmi×ni
q . We also

set m = (m1,m2, . . . ,mℓ) and n = (n1, n2, . . . , nℓ). We
denote by MC(m,n) = {(Xi, Yi)

ℓ
i=1 | Xi ⊆ [mi], Yi ⊆ [ni]}

the set of multi-covers in
∏ℓ

i=1 Fmi×ni
q . Finally, given

X = (Xi, Yi)
ℓ
i=1 ∈ MC(m,n), we define its size as

|X| =
∑ℓ

i=1(|Xi| + |Yi|) and its projection map πX :∏ℓ
i=1 Fmi×ni

q −→
∏ℓ

i=1 F
(mi−|Xi|)×(ni−|Yi|)
q by removing

from Ci ∈ Fmi×ni
q the rows indexed by Xi and the columns

indexed by Yi in order to obtain πX(C1, C2, . . . , Cℓ). Given

C ∈ Fm×n
q and (C1, C2, . . . , Cℓ) ∈

∏ℓ
i=1 Fmi×ni

q , we denote
by Ca,b and Ci,a,b the entry in row a and column b
of the matrices C and Ci, respectively. Throughout the
manuscript, we will also assume, without loss of generality,
that ni ≤ mi, for i = 1, 2, . . . , ℓ, and m1 ≥ . . . ≥ mℓ.

We extend the definition of the cover metric from (Roth,
1991) to the multilayer case, as follows.

Definition 1. Let C = (C1, C2, . . . , Cℓ) ∈
∏ℓ

i=1 Fmi×ni
q ,

where Ci ∈ Fmi×ni
q , for i = 1, 2, . . . , ℓ. We say that

(Xi, Yi)
ℓ
i=1 ∈ MC(m,n) is a multi-cover of C if (Xi, Yi)

is a cover of Ci, which means that if Ci,a,b ̸= 0, then
a ∈ Xi or b ∈ Yi, for i = 1, 2, . . . , ℓ. We denote by
MC(C) the set of all multi-covers of C. The multi-cover
weight of C is then defined as wtMC(C) = min{|X| |
X ∈ MC(C)}. The multi-cover metric is defined as

dMC : (
∏ℓ

i=1 Fmi×ni
q )2 −→ N, where dMC(C,D) =

wtMC(C − D), for C,D ∈
∏ℓ

i=1 Fmi×ni
q . Given a code

C ⊆
∏ℓ

i=1 Fmi×ni
q , we define its minimum multi-cover dis-

tance as dMC(C) = min{dMC(C,D) | C,D ∈ C, C ̸= D}.
When considering the minimum distance of a code C, we
implicitly assume that |C| > 1.

The cover metric (Roth, 1991) is recovered from the multi-
cover metric when ℓ = 1 (in particular, the multi-cover
metric is indeed a metric as it is a sum of metrics).
Similarly, both the multi-cover metric and the Hamming

metric coincide in
∏ℓ

i=1 Fmi×ni
q if mi = ni = 1, for i =

1, 2, . . . , ℓ. In this way, the multi-cover metric interpolates
between the cover metric and the Hamming metric.
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We conclude the section with a Singleton bound for the
multi-cover metric. The proof is analogous to that of
(Byrne et al., 2021, Th. 3.2) and is omitted.

Theorem 1. Let C ⊆
∏ℓ

i=1 Fmi×ni
q be a code, set d =

dMC(C) and let δ and j be the unique integers such that

d− 1 =
∑j−1

i=1 ni + δ and 0 ≤ δ ≤ nj − 1. Then

|C| ≤ q

∑ℓ

i=j
mini−mjδ. (1)

In particular, if m = m1 = . . . = mℓ and if we set
N = n1 + n2 + · · ·+ nℓ, then (1) reads

|C| ≤ qm(N−d+1).

Wemay thus define maximummulti-cover distance (MMCD)
codes as follows.

Definition 2. We say that a code C ⊆
∏ℓ

i=1 Fmi×ni
q is

maximum multi-cover distance (MMCD) if equality holds
in (1).

3. DUALITY, PUNCTURING AND SHORTENING

In this section, we study duality, puncturing and short-
ening for the multi-cover metric. We will consider duality
with respect to the trace product, given by

⟨C,D⟩ =
ℓ∑

i=1

Tr(CiDi), (2)

where C = (C1, C2, . . . , Cℓ), D = (D1, D2, . . . , Dℓ) ∈∏ℓ
i=1 Fmi×ni

q , and where Tr(A) denotes the trace of the
matrix A. Observe that ⟨·, ·⟩ is nothing but the usual inner

product seeing
∏ℓ

i=1 Fmi×ni
q as F

∑ℓ

i=1
mini

q . We then define

the dual of a linear code C ⊆
∏ℓ

i=1 Fmi×ni
q in the usual way,

C⊥ =

{
D ∈

∏
i=1

Fmi×ni
q

∣∣∣∣∣ ⟨C,D⟩ = 0, for all C ∈ C

}
.

We now define puncturing and shortening, which extend
the classical concepts of puncturing and shortening for
the Hamming metric (Huffman and Pless, 2003, Sec. 1.5).
As in the classical Hamming-metric case, puncturing and
shortening enables us to explicitly construct shorter codes
from known codes. To the best of our knowledge, these
concepts have not been introduced in the classical cover
metric case (ℓ = 1).

Definition 3. Let X = (Xi, Yi)
ℓ
i=1 ∈ MC(m,n). Given

a code C ⊆
∏ℓ

i=1 Fmi×ni
q , we define its puncturing and

shortening on X, respectively, as

CX = πX(C),
CX = {πX(C) | C ∈ C, such that Ci,a,b = 0

if a ∈ Xi or b ∈ Yi, 1 ≤ i ≤ ℓ},

both of which are codes in
∏ℓ

i=1 F
(mi−|Xi|)×(ni−|Yi|)
q .

We now describe the basic properties of punctured and
shortened codes in general. The proof is left to the reader.

Proposition 4. Given a linear code C ⊆
∏ℓ

i=1 Fmi×ni
q of

dimension k and minimum multi-cover distance d, and a
multi-cover X = (Xi, Yi)

ℓ
i=1 ∈ MC(m,n), the following

hold:

(1) (CX)⊥ = (C⊥)X and (CX)⊥ = (C⊥)X .

(2) dim(CX) ≥ k −
∑ℓ

i=1 (ni|Xi|+mi|Yi| − |Xi| · |Yi|).
(3) dim(CX) ≥ k −

∑ℓ
i=1 (ni|Xi|+mi|Yi| − |Xi| · |Yi|).

(4) dMC(CX) ≥ d− |X|.
(5) dMC(CX) ≥ d.

More interestingly, we may obtain shorter linear MMCD
codes from known linear MMCD codes.

Theorem 2. Let C ⊆
∏ℓ

i=1 Fmi×ni
q be a linear MMCD

code. Set d = dMC(C) and let δ and j be the unique

integers such that d−1 =
∑j−1

i=1 ni+δ and 0 ≤ δ ≤ nj −1.
Let X = (Xi, Yi)

ℓ
i=1 ∈ MC(m,n). The following hold:

(1) Let 1 ≤ k ≤ j, assume that d > 1, Xi = ∅, for
all i = 1, 2, . . . , ℓ, Yi = ∅ if i ̸= k and |Yk| = 1.
Further assume δ > 0 if k = j. Then CX is a
linear MMCD code with dim(CX) = dim(C) and
dMC(CX) = dMC(C)− 1.

(2) Let j + 1 ≤ k ≤ ℓ, and assume that Yi = ∅, for all
i = 1, 2, . . . , ℓ,Xi = ∅ if i ̸= k and |Xk| = 1. Then CX

is a linear MMCD code with dim(CX) = dim(C)−nk

and dMC(CX) = dMC(C).
(3) Let j + 1 ≤ k ≤ ℓ, and assume that Xi = ∅, for all

i = 1, 2, . . . , ℓ, Yi = ∅ if i ̸= k and |Yk| = 1. Then CX

is a linear MMCD code with dim(CX) = dim(C)−mk

and dMC(CX) = dMC(C).

Proof. We start by proving Item 1. Let n′
i = ni if i ̸= k,

and let n′
k = nk − 1. Note that CX ⊆

∏ℓ
i=1 F

mi×n′
i

q . Set
also δ′ = δ − 1 if k = j, and δ′ = δ otherwise. Thus
0 ≤ δ′ ≤ n′

j − 1 by the assumptions. By Proposition 4, we
have that

dMC(CX)− 1 ≥ d− 2 =

j−1∑
i=1

ni + δ − 1 =

j−1∑
i=1

n′
i + δ′,

and since d > 1, we also have that

dim(CX) = dim(C) =
ℓ∑

i=j

mini −mjδ =
ℓ∑

i=j

min
′
i −mjδ

′.

Therefore, CX must be MMCD and the inequalities above
are equalities.

We next prove Item 2. Let m′
i = mi if i ̸= k, and

let m′
k = mk − 1. Note that CX ⊆

∏ℓ
i=1 F

m′
i×ni

q . By
Proposition 4, we have that

dMC(CX)− 1 ≥ d− 1 =

j−1∑
i=1

ni + δ, and

dim(CX) ≥ dim(C)− nk =
ℓ∑

i=j

m′
ini −m′

jδ.

Therefore, CX must be MMCD and the inequalities above
are equalities.

Finally we prove Item 3. Let n′
i = ni if i ̸= k, and let

n′
k = nk−1. Note that CX ⊆

∏ℓ
i=1 F

mi×n′
i

q . By Proposition
4, we have that

dMC(CX)− 1 ≥ d− 1 =

j−1∑
i=1

ni + δ =

j−1∑
i=1

n′
i + δ, and

dim(CX) ≥ dim(C)−mk =
ℓ∑

i=j

min
′
i −mjδ.
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Therefore, CX must be MMCD and the inequalities above
are equalities. 2

We now discuss duality and show that, in general, the dual
of a linear MMCD code is not necessarily MMCD, leading
to the concept of dually MMCD codes. We also relate the
duality of MMCD codes with codes which are MDS by
rows and columns.

Define the column-wise Hamming weight and metric in
Fm×n
q in the natural way and denote them, respectively,

by wtCH and dCH . In other words, wtCH(C) is the number
of non-zero columns in the matrix C ∈ Fm×n

q . We may

similarly define the Hamming metric by rows in Fm×n
q by

transposition, i.e., we may consider

C⊺ = {C⊺ | C ∈ C} ⊆ Fm×n
q ,

for C ⊆ Fn×m
q , where C⊺ denotes the transposed of a

matrix C. That is, wtRH(C) = wtCH(C⊺). We denote the
row-wise Hamming weight and metric in Fm×n

q by wtRH
and dRH , respectively. We denote the minimum Hamming
distance of C by rows and by columns, respectively, by
dRH(C) and dCH(C). Clearly, for C ∈ Fm×n

q and C ⊆ Fm×n
q ,

wtMC(C) ≤ wtCH(C) and dMC(C) ≤ dCH(C), (3)

and analogously for the row-wise Hamming weight and
metric.

Consider now the square casem = n. The Singleton bound
from Theorem 1 holds in the same way for both rows and
columns, i.e.,

|C| ≤ qn(n−d+1),
whether d = dRH(C) or d = dCH(C). A code attaining this
bound for dRH will be called MDS by rows, and analogously
for columns. Clearly, if C is MMCD, then it is both MDS
by rows and by columns. In particular, if it is linear, then
C⊥ is also MDS by rows and by columns, since the MDS
property is preserved by duality (Huffman and Pless, 2003,
Th. 2.4.3).

However, as we now show, the dual of a linear MMCD code
is not necessarily MMCD itself and a linear code that is
MDS by rows and by columns is not necessarily MMCD
either.

Example 5. Consider C ⊆ F3×3
2 generated by

A =

(
1 1 1
1 0 0
1 0 0

)
, B =

(
0 1 0
1 1 1
0 1 0

)
, and C =

(
0 0 1
0 0 1
1 1 1

)
.

Since C = {0, A,B,C,A + B,B + C,C + A,A + B + C}
and dim(C) = 3, it is easy to see that C is MDS by
columns and by rows since dRH(C) = dCH(C) = 3, but

it is not MMCD, since dMC(C) = 2. Now, C⊥ ⊆ F3×3
2

has dim(C⊥) = 6. Moreover, by inspection one can see
that there is no D ∈ C⊥ with wtMC(D) = 1. Therefore,
dMC(C⊥) = 2 and C⊥ is a linear MMCD code, even though
C is not.

The example above motivates the following definition.

Definition 6. We say that C ⊆
∏ℓ

i=1 Fmi×ni
q is a dually

MMCD code if it is linear and both C and C⊥ are MMCD
codes.

In Section 4, we will provide some explicit constructions
of dually MMCD codes for general parameters.

To conclude the subsection, we observe that the equiva-
lence of linear MMCD codes, dually MMCD codes and
MDS codes by rows and by columns holds for very
small parameters. For the case ℓ > 1, we may extend
column-wise and row-wise Hamming weights and metrics

to
∏ℓ

i=1 Fmi×ni
q in a straightforward way. However, we

also need to consider different combinations of transpo-
sitions in different positions. To this end, given C =

(C1, C2, . . . , Cℓ) ∈
∏ℓ

i=1 Fni×ni
q and t ∈ {0, 1}ℓ, we define

Ct = (D1, D2, . . . , Dℓ) ∈
∏ℓ

i=1 Fni×ni
q , where

Di =

{
Ci if ti = 0,
C⊺

i if ti = 1.

We then define Ct = {Ct | C ∈ C} ⊆
∏ℓ

i=1 Fni×ni
q , for

C ⊆
∏ℓ

i=1 Fni×ni
q . Notice that the bounds (3) still hold for

ℓ > 1 and any vector of transpositions t ∈ {0, 1}ℓ.
The proofs of the following two propositions are based on
the fact that, in the two cases, we only need to consider
covers in Fm×n

q of sizes 1 or 2, and these can always be
chosen as only columns or only rows in such cases.

Proposition 7. Let C ⊆ (Fn×n
q )ℓ be a linear code with

dim(C) = n(ℓn − 1). Then C is MMCD if, and only if,
Ct is MDS by columns for all t ∈ {0, 1}ℓ.
Proposition 8. Let C ⊆ (F2×2

q )ℓ be a linear code. The
following are equivalent:

(1) Ct is MDS by columns for all t ∈ {0, 1}ℓ.
(2) C is MMCD.
(3) C is dually MMCD.

Recall that the multi-cover metric in (F1×1
q )ℓ is simply

the classical Hamming metric in Fℓ
q, hence the previous

proposition also holds but is trivial in this case.

4. DUALLY MMCD CODE CONSTRUCTIONS

4.1 MSRD codes

Similarly to the case of the rank metric and the cover
metric (Roth, 1991), we show in this subsection that sum-
rank metric codes may be used as multi-cover metric codes.
The sum-rank metric was formally defined in (Nóbrega and
Uchôa-Filho, 2010, Sec. III-D), but it was implicitly used
earlier in (Lu and Kumar, 2005, Sec. III).

Definition 9. We define the sum-rank weight of C =

(C1, C2, . . . , Cℓ) ∈
∏ℓ

i=1 Fmi×ni
q as

wtSR(C) =
ℓ∑

i=1

Rk(Ci).

The sum-rank metric is then defined by dSR(C,D) =

wtSR(C −D), for C,D ∈
∏ℓ

i=1 Fmi×ni
q .

The bound in Theorem 1 is also valid for the sum-rank
metric (Byrne et al., 2021, Th. III.2), and a code attaining
it is called maximum sum-rank distance (MSRD).

We have the following connections between both metrics.
They constitute a trivial extension to ℓ ≥ 1 of the
corresponding results for the case ℓ = 1, observed in (Roth,
1991). We note that Item 4 follows from combining Item 3
with the fact that the dual of a linear MSRD code is again
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φ
(
C1, C2, . . . , Cr

)
=


C1

1 C2
1 . . . Cr

1 C1
r+1 C2

r+1 . . . Cr
r+1 . . . C1

(ℓ−1)r+1 C2
(ℓ−1)r+1 . . . Cr

(ℓ−1)r+1

Cr
2 C1

2 . . . Cr−1
2 Cr

r+2 C1
r+2 . . . Cr−1

r+2 . . . Cr
(ℓ−1)r+2 C1

(ℓ−1)r+2 . . . Cr−1
(ℓ−1)r+2

...
...

. . .
...

...
...

. . .
...

. . .
...

...
. . .

...
C2

r C3
r . . . C1

r C2
2r C3

2r . . . C1
2r . . . C2

t C3
t . . . C1

t

 .

MSRD code under the given conditions (Byrne et al., 2021,
Th. VI.1).

Proposition 10. Fix C ∈
∏ℓ

i=1 Fmi×ni
q and C ⊆

∏ℓ
i=1 Fmi×ni

q .
The following hold:

(1) wtSR(C) ≤ wtMC(C).
(2) dSR(C) ≤ dMC(C).
(3) If C is an MSRD code, then it is also MMCD.
(4) If C is a linear MSRD code and m1 = m2 = . . . = mℓ,

then C is a dually MMCD code.

4.2 A nested construction

In this subsection, we provide a general method to con-
struct codes for the multi-cover metric from other multi-
cover metric codes. For simplicity, we will only work with
square matrices and tuples of matrices with the same
number of rows and columns, i.e., m1 = . . . = mℓ =
n1 = . . . = nℓ. Throughout this subsection, we fix positive
integers n = rs and t = rℓ.

Construction 1. Let C ⊆ (Fs×s
q )t be a code. We de-

fine another code φ(C) ⊆ (Fn×n
q )ℓ as the image of

the linear map φ : ((Fs×s
q )t)r −→ (Fn×n

q )ℓ, where

φ
(
C1, C2, . . . , Cr

)
is described at the top of this page,

for Ci = (Ci
1, C

i
2, . . . , C

i
t) ∈ (Fs×s

q )t, for i = 1, 2, . . . , r.

We now relate the multi-cover metric parameters of C and
φ(C). The proof is left to the reader.

Theorem 3. Let C ⊆ (Fs×s
q )t. The following hold:

(1) dMC(φ(C)) = dMC(C) and |φ(C)| = |C|r.
(2) φ(C) is MMCD if, and only if, so is C.
(3) φ(C) is linear if, and only if, so is C, and in that case,

dim(φ(C)) = r dim(C) and φ(C)⊥ = φ(C⊥).
(4) (If C is linear) φ(C) is a dually MMCD code if, and

only if, so is C.

In this way, we may construct codes in (Fn×n
q )ℓ for the

multi-cover metric from codes in (Fs×s
q )t for the refined

multi-cover metric. Note that, if we set s = 1, then we
may construct multi-cover metric codes in (Fn×n

q )ℓ from

Hamming-metric codes in Ft
q.

4.3 Explicit linear MMCD codes

In this subsection, we put together the two methods for
constructing multi-cover metric codes from Subsections 4.1
and 4.2 in order to give an explicit family of MMCD codes.
We consider linearized Reed-Solomon codes (Mart́ınez-
Peñas, 2018) as component codes in Construction 1, for
several choices of the integer t.

Theorem 4. Let n = rs and t = rℓ be positive integers,
such that q > t. Let C ⊆ (Fs×s

q )t be a linearized Reed-
Solomon code (Mart́ınez-Peñas, 2018, Def. 31). Then the
code φ(C) ⊆ (Fn×n

q )ℓ obtained from C as in Construction 1,

is an MMCD code. Using an r-folded version of the decoder
from (Mart́ınez-Peñas and Kschischang, 2019), it may cor-
rect errors of multi-cover weight at most ⌊(dMC(C)− 1)/2⌋
with a complexity of O(tℓn2) sums and products over the
finite field of size qℓn/t = O(t)ℓn/t.

Assume that a multiplication in F2b costs O(b2) operations
in F2. Then if q is even, the MMCD code in Theorem 4
can be decoded with a complexity of

O
(
t−1 log2(t+ 1)2ℓ3n4

)
operations over F2. This complexity is smaller for larger
values of t. However, the alphabet size for the multi-
cover metric needs to satisfy q > t. Thus we arrive at an
alphabet-complexity trade-off: Codes for larger t are faster
to decode but require larger alphabets, whereas codes for
smaller t are less fast but can be used for a wider range of
alphabets.

Finally, observe that, if ℓ = 1 (thus 1 ≤ t = r ≤ n), then
the codes in Theorem 4 attain the Singleton bound for the
classical cover metric (Roth, 1991). The cases t = r = 1
and t = r = n were obtained already in (Roth, 1991),
but the cases 1 < t = r < n of such codes constitute
a new family of codes attaining the Singleton bound for
the classical cover metric. Their interest resides in the
alphabet-complexity trade-off mentioned above.
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1. INTRODUCTION

Since recently, the problem of data-driven model reduction
is attracting increasing attention, partly motivated by
the widespread availability of measurement data. Here,
low-order models are constructed directly on the basis of
measurement data, thus not requiring the availability of
a high-order model. Nevertheless, standard (model-based)
model reduction techniques have inspired various data-
driven techniques.

In the class of energy-based methods for linear systems,
to which this paper belongs, data-driven model reduction
contributions include Rapisarda and Trentelman (2011);
Markovsky et al. (2005); Gosea et al. (2022). Meanwhile,
in the class of interpolatory methods, the contributions
include Beattie and Gugercin (2012); Peherstorfer et al.
(2017); Scarciotti and Astolfi (2017); Burohman et al.
(2020).

Despite these developments, existing methods for data-
driven model reduction do often not allow for guaranteeing
system properties such as asymptotic stability and do
not provide an error bound, especially when the available
data is subject to noise. In this extended abstract, we
develop a data-driven reduction technique that provides
such guarantees on the low-order model, even for noisy
data.

This work has the following contributions. First, we intro-
duce the concept of data reduction via a Petrov-Galerkin
projection. Following the data informativity framework of
van Waarde et al. (2020), a class of systems explaining the
data can be characterized by a quadratic matrix matrix
inequality (QMI). Then, we show that projection of all
systems in this class results in a class of reduced-order
models that can also be characterized by a QMI, but one
of smaller dimension.

The second contribution of this paper is the development
of a data-driven generalized balanced truncation method.
⋆ This extended abstract is based on research developed in the
DSSC Doctoral Training Programme, co-funded through a Marie
Sklodowska-Curie COFUND (DSSC 754315).

Here, we first give necessary and sufficient conditions for
all systems explaining the data to have a common gen-
eralized controllability and common generalized observ-
ability Gramians. In this case, we say that the data are
informative for generalized Lyapunov balancing. Next, we
comprise the use of the common generalized Gramians
to obtain the Petrov-Galerkin projection that achieves
(generalized) balanced truncation (see Dullerud and Pa-
ganini (2000). This allows for the application of the data
reduction concept.

As inherent advantages of using a balancing-type reduc-
tion method, all reduced-order models are guaranteed to
be asymptotically stable and satisfy an a priori error
bound. However, the ordinary a priori upper bounds from
model-based reduction methods, e.g., Antoulas (2005);
Dullerud and Paganini (2000), do not determine the error
between a selected reduced-order model to the true sys-
tem generating the data as the true system is unknown.
Therefore, as the final contribution, we compute a uniform
a priori upper bound, i.e., an error bound that holds for
any chosen high-order system explaining the data and any
reduced-order model.

The proofs of the results presented in this abstract can be
found in Burohman et al. (2021).

2. PRELIMINARIES

2.1 Model reduction via a Petrov-Galerkin projection

Consider the discrete-time input/state/output system

Σ :
x(k + 1) = Ax(k) +Bu(k),

y(k) = Cx(k) +Du(k),
(1)

with input u ∈ Rm, state x ∈ Rn and output y ∈ Rp.
Let Ŵ , V̂ ∈ Rn×r be matrices such that Ŵ⊤V̂ = I and
r < n. A reduced-order model (ROM) obtained via a
Petrov-Galerkin projection is given by

Σ̂ :
x̂(k + 1) = Ŵ⊤AV̂ x̂(k) + Ŵ⊤Bu(k),

ŷ(k) = CV̂ x̂(k) +Du(k)
(2)

where x̂ ∈ Rr and ŷ ∈ Rp denote the state and output of
the ROM, respectively.
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2.2 Generalized Lyapunov balancing

Consider the discrete-time system (1). Then, matrices
P = P⊤ > 0 satisfying

APA⊤ − P +BB⊤ < 0

and Q = Q⊤ > 0 satisfying

A⊤QA−Q+ C⊤C < 0,

are called the generalized controllability Gramian and
generalized observability Gramian, respectively. This is a
strict version of the definition of generalized Gramians
given in Dullerud and Paganini (2000). The generalized
Gramians are lower bounded by the ordinary Gramians,
i.e., P > P0 and Q > Q0, where Q0 and P0 are the
solutions of the corresponding Lyapunov equations.

As ordinary Gramians, these generalized Gramians can be
used to obtain a so-called balanced realization. Specifically,
by e.g., (Antoulas, 2005, Lemma 7.3), there exists a
nonsingular matrix T such that TPT⊤ = T−⊤QT−1 =
ΣH where ΣH is a diagonal matrix of the generalized
Hankel singular values (GHSVs) of Σ in (1), i.e.,

ΣH := blkdiag(σ1Im1 , σ2Im2 , . . . , σκImκ), (3)

where σ1 > σ2 > · · · > σκ > 0, and mi denotes
the multiplicity of σi for i = 1, . . . , κ satisfying n =∑κ

i=1 mi. In particular, the balanced realization is given
byAbal := TAT−1, Bbal := TB, Cbal := CT−1, Dbal :=D.
Moreover, similar to the standard balanced truncation, the
corresponding model reduction error is twice the sum of
the neglected GHSVs.

3. DATA-DRIVEN PETROV-GALERKIN
PROJECTION

Consider the linear discrete-time input/state/output sys-
tem

Σtrue :
x(k + 1) = Atruex(k) +Btrueu(k) +w(k),

y(k) = Ctruex(k) +Dtrueu(k) + z(k),
(4)

where (u,x,y) ∈ Rm+n+p are the input/state/output and
(w, z) ∈ Rn+p are noise terms. Throughout the paper, we
assume that the system matrices (Atrue, Btrue, Ctrue, Dtrue)
and the noise (w, z) are unknown. What is known instead
are a finite number of input/state/output measurements
harvested from the true system (4) collected in the matri-
ces

X− := [x(0) x(1) · · · x(L− 1)] ,

X+ := [x(1) x(2) · · · x(L)] ,
U− := [u(0) u(1) · · · u(L− 1)] ,

Y− := [y(0) y(1) · · · y(L− 1)] .

Now, we can define the set of all systems that explain the
data as

Σ :=

{
(A,B,C,D) :

[
X+

Y−

]
−
[
A B
C D

] [
X−
U−

]
∈ N

}
,

where N ⊆ R(n+p)×L captures a noise model such that

(Atrue, Btrue, Ctrue, Dtrue) ∈ Σ. (5)

In this paper, we work with a noise model that is described
by a quadratic matrix inequality as

N :=

{
Z ∈ R(n+p)×L :

[
I
Z⊤

]⊤[
Φ11 Φ12

Φ⊤
12 Φ22

][
I
Z⊤

]
⩾ 0

}
, (6)

where Φ11 = Φ⊤
11 ∈ R(n+p)×(n+p), Φ12 ∈ R(n+p)×L, and

Φ22 = Φ⊤
22 ∈ RL×L.

We make the following blanket assumption on the set N .

Assumption 1. The set N is bounded and has nonempty
interior.

As shown in van Waarde et al. (2022b), Assumption 1
holds if and only if Φ11 − Φ12Φ

−1
22 Φ

⊤
12 > 0 and Φ22 < 0. It

is clear from the definition ofΣ and (6) that (A,B,C,D) ∈
Σ if and only if the following quadratic matrix inequality
(QMI) is satisfied I 0

0 I
A⊤ C⊤

B⊤ D⊤


⊤

N

 I 0
0 I
A⊤ C⊤

B⊤ D⊤

 ⩾ 0, (7)

where

N :=

I 0 X+

0 I Y−
0 0 −X−
0 0 −U−

[
Φ11 Φ12

Φ⊤
12 Φ22

]I 0 X+

0 I Y−
0 0 −X−
0 0 −U−


⊤

. (8)

As a first step, we consider a Petrov-Galerkin projection
and assuming that the projection matrices Ŵ and V̂
satisfying Ŵ⊤V̂ = I are given. Then, the set of reduced-
order models of systems explaining the data is defined as

ΣV̂ ,Ŵ :=
{
(Ŵ⊤AV̂ , Ŵ⊤B,CV̂ ,D) : (A,B,C,D)∈Σ

}
.

The first main result of this paper is that the set ΣV̂ ,Ŵ

can itself be represented as a QMI of a similar form as (7).

Theorem 1. Consider the set Σ of systems explaining the
data. Suppose that there exists S̄ such that[

I
S̄

]⊤
N

[
I
S̄

]
> 0 (9)

holds and the matrix

[
X−
U−

]
has full row rank. Let Ŵ , V̂ ∈

Rn×r be such that Ŵ⊤V̂ = I. Then, the set ΣV̂ ,Ŵ of

reduced-order models of Σ using projection matrices Ŵ , V̂
satisfies

ΣV̂ ,Ŵ =

(Â, B̂, Ĉ, D̂) :


I 0
0 I

Â⊤ Ĉ⊤

B̂⊤ D̂⊤


⊤

NV,W


I 0
0 I

Â⊤ Ĉ⊤

B̂⊤ D̂⊤

⩾ 0

,

where NV,W is given by (10) with W := blkdiag(Ŵ , Ip)

and V := blkdiag(V̂ , Im).

Theorem 1 has a nice interpretation in terms of data
reduction. Namely, the matrix NV,W characterizing all

NV,W :=

W⊤(N |N22 +N12N
−1
22 V (V ⊤N−1

22 V )−1V ⊤N−1
22 N⊤

12)W W⊤N12N
−1
22 V (V ⊤N−1

22 V )−1

(V ⊤N−1
22 V )−1V ⊤N−1

22 N⊤
12W (V ⊤N−1

22 V )−1

 (10)
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reduced-order models depends only on the projection
matrices V̂ , Ŵ and the original data matrix N . As such,
NV,W is constructed from the data and noise model only.
Importantly, NV,W has a lower dimension than N and can
thus be regarded as a reduced data matrix.

4. DATA-DRIVEN GENERALIZED BALANCED
TRUNCATION

4.1 Data informativity for generalized Lyapunov balancing

Based on Section 2.2, one can introduce the following
notion of informativity.

Definition 1. We say that the data (U−, X, Y−) are infor-
mative for generalized Lyapunov balancing (GLB) if there
exist P = P⊤ > 0 and Q = Q⊤ > 0 such that

APA⊤ − P +BB⊤ < 0 (11)

and
A⊤QA−Q+ C⊤C < 0 (12)

for all (A,B,C,D) ∈ Σ.

From Definition 1, P and Q can be regarded as common
generalized controllability and observability Gramian, re-
spectively, for all systems explaining the data. We thus
formalize the following problems.

Problem 1. Find necessary and sufficient conditions under
which the data (U−, X, Y−) are informative for GLB. If the
data are informative, then characterize the reduced-order
models via data-driven balanced truncation and provide
error bounds with respect to the true system.

Observe that the data are informative for GLB if and
only if QMI (7) implies the existence of positive definite
matrices P and Q such that (11) and (12) hold. Such
QMI implications can be viewed as a generalization of
the classical S-lemma (Yakubovich (1977)) and have been
investigated in van Waarde et al. (2022a). Based on the
results of van Waarde et al. (2022a) and van Waarde
et al. (2022b), data informativity for GLB can be fully
characterized in terms of feasibility of certain LMIs as
stated next.

Theorem 2. Suppose that there exists S̄ such that (9)
holds. Define

NC :=

[
In 0
0 0
0 In+m

]⊤

N

[
In 0
0 0
0 In+m

]
and

NO :=

[
In 0
0 0
0 In+p

]⊤

N ♯

[
In 0
0 0
0 In+p

]
,

where

N ♯ :=

[
0 −In+m

In+p 0

]
N−1

[
0 −In+p

In+m 0

]
.

Then, the data (U−, X, Y−) are informative for generalized
Lyapunov balancing if and only if

(i)

[
X−
U−

]
has full row rank,

(ii) there exists P = P⊤ > 0 and a scalar α > 0 such that P 0 0
0 −P 0
0 0 −Im

− αNC > 0, (13)

(iii) there exists Q = Q⊤ > 0 and a scalar β > 0 such thatQ 0 0

0 −Q 0

0 0 −Ip

− βNO > 0. (14)

As a consequence, all systems in Σ are balanced by a
common balancing transformation matrix T satisfying
TPT⊤ = T−⊤QT−1 = ΣH where ΣH is a matrix of the
form (3), containing the common GHSVs.

4.2 Reduced-order models

By applying the Petrov-Galerkin projection, the reduced-
order models of all systems in Σ via generalized balanced
truncation are contained in the set

Σ̂ :=
{
(Ŵ⊤AV̂ , Ŵ⊤B,CV̂ ,D) : (A,B,C,D)∈Σ

}
where V̂ = T−1Π and Ŵ = T⊤Π with Π given by

Π :=

[
Ir
0

]
and T is the common balancing transformation

matrix.

Based on Theorem 1, we can characterize the set Σ̂ in
terms of a quadratic matrix inequality.

Corollary 2. Suppose that there exists S̄ such that (9)
holds and the data (U−, X, Y−) are informative for gen-
eralized Lyapunov balancing with T the corresponding
balancing transformation. Then,

Σ̂ =

(Â, B̂, Ĉ, D̂) :


I 0
0 I

Â⊤ Ĉ⊤

B̂⊤ D̂⊤


⊤

NV,W


I 0
0 I

Â⊤ Ĉ⊤

B̂⊤ D̂⊤

⩾ 0

,

where NV,W is given by (10) with W = blkdiag(T⊤Π, Ip)
and V = blkdiag(T−1Π, Im).

Now, we can see that the set Σ̂ characterizes a data
reduction by generalized balanced truncation. Namely, the
reduced matrix NV,W depends only on the data matrix N

and projection matrices V̂ = T−1Π and Ŵ = T⊤Π, where
now these projection matrices are also derived from the
data only via Theorem 2.

From the definition of Σ̂ above, suppose that (Â, B̂, Ĉ, D̂) ∈
Σ̂, then it is always a truncation of a model inΣ. Therefore
they satisfy

∥Σ− Σ̂∥H∞ ⩽ 2
κ∑

i=ℓ+1

σi (15)

 blkdiag(K11, (
1
2 − µ)Ip,−K11,−γ−2Im) blkdiag(K12,−µIp,−K12,−γ−2Im)

blkdiag(K⊤
12,−µIp,−K⊤

12,−γ−2Im) blkdiag(K22, (
1
2 − µ)Ip,−K22,−γ−2Im)

− blkdiag(δN, ηNV,W ) > 0 (16)
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where Σ and Σ̂ are systems whose realizations are in Σ
and Σ̂, respectively, and σis are the neglected GHSVs.
However, the bound (15) has little practical relevance as it
characterizes the error between one reduced-order system
in Σ̂ and its corresponding high-order system in Σ.

Instead, recall that we are interested in a reduced-order
approximation of the true system (4). This system is
unknown, but is guaranteed to satisfy (5). As also the
corresponding reduced-order system is unknown (but in

Σ̂), a practical relevant error bound should hold for any
selection of a high-order system (fromΣ) and any reduced-

order system (from Σ̂).

4.3 Distance to the true system

Suppose that we consider a reduced-order system Σ̂0 of
order r < n with its realization (Â0, B̂0, Ĉ0, D̂0) ∈ Σ̂. We

will use Σ̂0 as an approximation of the true system Σtrue.
To evaluate the quality of this approximation, note that

∥Σ̂0−Σtrue∥H∞ ⩽ sup
{
∥Σ̂−Σ∥H∞ :Σ ∈ Σ, Σ̂ ∈ Σ̂

}
. (17)

Here, we have used the small abuse of notation Σ ∈ Σ to
mean (A,B,C,D) ∈ Σ, where (A,B,C,D) is a realization
of Σ.

The computation of the bound on the right-hand side of
(17) is stated in the following result.

Theorem 3. The bound ∥Σ̂ − Σ∥H∞ < γ holds for any

Σ ∈ Σ and any Σ̂ ∈ Σ̂ if and only if there exist a matrix
K = K⊤ > 0 in R(n+r)×(n+r) partitioned as

K =

[
K11 K12

K⊤
12 K22

]
, with K11 ∈ Rn×n,

and scalars δ > 0, η > 0 and µ such that (16) holds, where
N and NV,W are given by (8) and (10), respectively.

In order to obtain the smallest upper bound, i.e., the
smallest γ such that the conditions in Theorem 3 hold,
one may solve (16) by minimizing γ using semidefinite
programming (Nesterov and Nemirovskii, 1994, Sect. 6.4).

It gives ∥Σ̂0 − Σtrue∥ < γ. Note that this upper bound is

uniform for any Σ̂0 picked from Σ̂. Therefore, it can be
regarded as an a priori error bound.

5. CONCLUSION

In this abstract, a data-driven procedure to obtain
reduced-order models from noisy data is developed. The
procedure begins with introducing the concept of data
reduction. We then follow up the data reduction concept
by constructing specific projection matrices from data. In
particular, we provide necessary and sufficient conditions
such that all systems explaining the data have common
generalized Gramians. Subsequently, a common balancing
transformation and therefore common projection matrices
for generalized balanced truncation are available to apply
the data reduction. As such, a set of reduced-order models
via generalized balanced truncation can then be charac-
terized in terms of a lower-dimensional QMI. Moreover,
all reduced-order models in this set are guaranteed to
be asymptotically stable and computable a priori upper
bound on the reduction error with respect to the true
system are available.

Some extensions of this work include exploiting data re-
duction via other projection-based reduction methods and
using this approach by input-output data only. More-
over, investigating model reduction with preserving spe-
cific system properties such as network structure and port-
Hamiltonian structure is often desirable.
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1. INTRODUCTION

Braess’ paradox is a phenomenon in traffic flow networks,
first observed in Braess (1968), described by the coun-
terintuitive observation that adding a road (or improving
the capacity of a road) does not necessarily improve the
traffic flow. This phenomenon is a prevalent property of
such networks (Steinberg and Zangwill (1983)). Similar
observations for power grids are known. The papers Co-
hen and Horowitz (1991); Nagurney and Nagurney (2016)
report several physical examples of two-port DC circuits
for which the current flow exhibits behavior analogous to
Braess’ paradox in traffic flow networks. In these papers it
is shown that the addition of a line can lead to an increase
of the current flows in all lines, which goes against the
intuition that adding a line allows for improved flow in
the network, and is referred to as Braess’ paradox. These
phenomena have also been studied in Baillieul et al. (2015);
Wang and Baillieul (2016), which considers the effects of
adding a line (or an increase of the conductance of a line) in
DC circuits with voltage-controlled or current-controlled
nodes.

In this paper we study the power flow of DC power
grids with fixed voltage sources and constant-power loads.
Such loads may appear in practical power grids, and are
known to destabilize the power grid due to their nega-
tive impedance characteristic (Emadi et al. (2006)). In
these power grids it may occur that the sources cannot
satisfy the power demands of the loads, in which case
we say that the power flow is unfeasible. The feasibility
of the power flow is important for their long-term oper-

? This submission is an extended abstract to the paper “Braess’
paradox for power flow feasibility and parametric uncertainties in DC
power grids with constant-power loads,” Systems & Control Letters
161 (2022): 105146.
??This work was partially supported by NWO (Dutch Research
Council) project ‘Energy management strategies for interconnected
smart microgrids’ within the DST-NWO Joint Research Program
on Smart Grids, and by a MIUR grant Dipartimento di Eccellenza
2018–2022 [CUP: E11G18000350001]

ation, since sustained unfeasible power flow may lead to
unintended behavior system such as voltage oscillations,
voltage collapse, and blackouts (Kundur et al. (1994);
Van Cutsem and Vournas (2008)). This feasibility problem
is a classical problem in the literature (Tinney and Hart
(1967); Hill and Mareels (1990); Löf et al. (1993)) and has
gained more attention over the past decade (Bolognani and
Zampieri (2015); Barabanov et al. (2016); Simpson-Porco
et al. (2016); Matveev et al. (2020)). A full characterization
of this feasibility problem has been presented in Jeeninga
et al. (2020a,b).

The aim of the present paper is to study how the feasibility
of the power flow in these systems is affected by changes in
the line conductances. This study is primarily motivated
by Witthaut and Timme (2012), where it was observed
that increasing the conductance of a line in an AC power
grid leads to voltage oscillations, which can be attributed
to unfeasibility of the power flow after this increase. The
contributions of the present paper are of a theoretical
nature, and show that an analogue of Braess’ paradox can
also occur in DC power grids with constant-power loads,
and that this may occur for most practical power grids
with multiple sources.

The structure of this paper is as follows. In Section 2 we
state the model for DC power grids with constant-power
loads at steady state. In Section 3 we formulate the Braess’
paradox of power flow feasibility, and show that Braess’
paradox can occur in most practical power grids. Section 4
concludes the paper.

Notation

For a vector x = (x1 · · · xk)
>

we denote

[x] := diag(x1, . . . , xk).

We let 1 and 0 denote the all-ones and all-zeros vector,
respectively, and let I denote the identity matrix. We let
their dimensions follow from their context. We let ei denote
the i-th column of I. All vector and matrix inequalities are
taken to be element-wise.
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2. THE POWER GRID MODEL

Throughout this paper we study DC power grids at steady-
state, and model such systems by a resistive circuit. We
model a power grid consisting of n load nodes and m source
nodes as follows. If distinct nodes i and j are connected
by a line, we let Gij = Gji > 0 denote the conductance of
this line. If the nodes are not connected by a line we put
Gij = Gji = 0. The Kirchhoff matrix Y ∈ R(n+m)×(n+m)

associated to the lines in the grid is defined by

Yij :=





∑

k

Gki if i = j

−Gij if i 6= j
. (1)

The voltage potentials and injected currents at the loads
are collected in the vectors V ∈ Rn+m and I ∈ Rn+m,
respectively. The quantities V , I and Y are partioned as

V =

(
VL

VS

)
; I =

(
IL
IS

)
; Y =

(
YLL YLS

YSL YSS

)
,

according to whether nodes are loads (L) or sources (S).
We assume that the nodes in the power grid are connected,
which means that 1 spans the kernel of Y , and that the
principal submatrices YLL and YSS are positive definite.
Due to Kirchhoff’s and Ohm’s laws we have I = Y V . We
define the open-circuit voltages V ∗L > 0 to be the unique
vector of voltage potentials at the loads such that IL = 0,
which satisfies

V ∗L := −YLL
−1YLSVS (2)

(e.g., see Van der Schaft (2010)). The power injected at
the nodes is given by P = [V ]I. Since I = Y V and due to
(2) we have

PL = [VL](YLLVL + YLSVS) = [VL]YLL(VL − V ∗L ) (3a)

PS = [VS ](YSSVS + YSLVL). (3b)

The total power injected at the nodes is given by 1>P =
V >I.

We assume that all loads demand a constant power. Since
we study the power grid at steady state, this is to say
that we want to choose VL such that all power demands
are satisfied. The constant power demands are collected
in the vector Pc ∈ Rn. The question if such a VL exists
for a given Pc gives rise to the DC power flow feasibility
problem:

Definition 2.1. Given a power grid with Kirchhoff matrix
Y , source voltages VS > 0 and constant power demands
Pc, we say that the power flow (of the power grid) is feasible
if there exists a vector VL > 0 of load voltages such that

Pc = −PL = [VL]YLL(V ∗L − VL).

Put differently, feasibility of a power grid means that the
constant power demands at the loads can be satisfied
at steady state. It is noted from (3a) that if YLL is re-
ducible (or equivalently, block-diagonal), then power flow
feasibility can be analyzed for each reducible component
separately. Hence without loss of generality we assume that
YLL is irreducible, which is equivalent to saying that the
subgraph induced by the load nodes is connected.

The scalar −1>PL represents the total amount of power
that is drained by the loads. Intuitively, the total amount
of power that can be drained by the loads is bounded from
above. Recall that the power flow is feasible if we have that

Pc = −PL. Hence this means that also 1>Pc, the total
power demand of the load nodes, is bounded from above
whenever the power flow is feasible. The maximizing power
demand, given by

Pmax := − 1
4 [V ∗L ]YLSVS , (4)

is the unique vector of constant power demands for which
the power flow is feasible and the total power demand is
maximized:

Proposition 2.2. ((Jeeninga et al., 2020a, Lem. 2.17)).
Consider a power grid with Y and VS > 0 given. If Pc ∈ Rn

is a vector of power demands such that the power flow is
feasible, then

1>Pc ≤ 1>Pmax, (5)

with equality if and only if Pc = Pmax. Put differently,
the quantity 1>Pmax is the maximal total power demand
that can be satisfied by the power grid. The unique voltage
potentials corresponding to Pmax are VL = 1

2V
∗
L .

Note that (5) is a necessary condition for power flow
feasibility.

3. BRAESS’ PARADOX IN DC POWER GRIDS WITH
CONSTANT-POWER LOADS

The classical formulation of Braess’ paradox from Braess
(1968); Cohen and Horowitz (1991); Nagurney and Nagur-
ney (2016) is that, after increasing line conductances or
adding a line in a DC circuit, the quality of the current
flow in the power grid becomes measurably worse. In this
paper however we follow a stronger formulation of Braess’
paradox, inspired by Witthaut and Timme (2012), by
studying how adding lines or increasing conductances can
destabilize the power grid, and in particular, lose power
flow feasibility. We formalize this as follows:

Definition 3.1. Braess’ paradox for power flow feasibility
is the phenomenon that adding a line or increasing a line
conductance in a power grid destroys the feasibility of the
power flow and destabilizes the power grid. We say that
Braess’ paradox for power flow feasibility can occur in a
power grid if there exists a vector of power demands Pc

such that the power flow is feasible and becomes unfeasible
after increasing a line conductance or adding a line.

In the remainder of this paper we refer to Definition 3.1
simply as the Braess’ paradox, for the sake of brevity.

3.1 A sufficient condition for the occurrence Braess’
paradox

In this section we show how Braess’ paradox may occur by
studying the maximal total power demand 1>Pmax. It can
be shown that an increase of a line conductance can make
the maximal total power demand 1>Pmax decrease. This
means that the power flow in a power grid can become
unfeasible after such an increase, in particular when the
total power demand 1>Pc is close to its maximum 1>Pmax,
such as when Pc = Pmax. Hence, following Definition 3.1,
we have that Braess’ paradox occurs. We formalize this in
the following theorem, which presents a sufficient condition
for the existence of a pair of loads for which Braess’
paradox occurs when the line between them is altered (or
added).
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Fig. 1. A schematic depiction of a DC power grid with
two loads and two sources (n = 2, m = 2) for which
Braess’ paradox can occur.

Theorem 3.2. Consider a power grid with Kirchhoff ma-
trix Y , source voltages VS > 0 and at least two loads and
at least two sources. Let Pc be a vector of constant power
demands such that the power flow is feasible. If there exist
(distinct) load nodes i and j such that the open-circuit
voltages (2) satisfy (V ∗L )i 6= (V ∗L )j , and if Pc satisfies

1>Pc > 1>Pmax −
( 1
2 (V ∗L )i − 1

2 (V ∗L )j)
2

(ei − ej)>YLL
−1(ei − ej)

, (6)

then there exists a scalar c > 0 such that the power
flow becomes unfeasible after increasing Gij by c, either
through increasing the conductance of the line between
loads i and j, or adding a new line between loads i to j. In
particular, if we consider Pc = Pmax, then the power flow
becomes unfeasible for any increase of Gij .

Theorem 3.2 tells us that if the open-circuit voltages are
not all equal (i.e., V ∗L 6∈ span{1}), then Braess’ paradox
can occur when the power demands are close to the
maximizing power demands Pmax. We illustrate this by
the following example.

Example 3.3. Consider the power grid with two loads
and two sources, as depicted in Figure 1, where VS =

(1 3)
>

, G12 = 0.3, G14 = 1, G23 = 5 and G34 =
1. The corresponding open-circuit voltages are V ∗L =
1
6.8 (17.4 7.4)

>
, and are not a multiple of 1. The blue

area in Figure 2 depicts the set of all vectors Pc such
that the power flow is feasible. Since (V ∗L )1 6= (V ∗L )2,
Theorem 3.2 states that we will observe Braess’ paradox if
we increase the line between load 1 and load 2. We increase
the conductance of this line by 0.7. This results in the green

area in Figure 2 corresponding to the set F̂ of Pc such that
the power flow is feasible. It is observed that the blue area
is not contained in the green area. Hence there are vectors
of power demands for which the power flow has become
unfeasible after increasing the conductance of the line. In
particular we see that Pmax is no longer feasible after the
conductance is increased.

It should be noted that whenever only one source node
is present, then all open-circuit voltages are equal and
Theorem 3.2 cannot be applied. This is for example the
case in distribution grids where all loads are constant-
power loads, where the slack bus acts as the only source
node in the grid.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

0.2
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2

2.2

2.4

Pmax

P̂max
d

Pc,1

P
c,
2

G12 = 0.3
G12 = 1

Fig. 2. Plots for the sets of constant power demands
Pc for which the power flow of the power grid in
Example 3.3 is feasible. Throughout this paper the
plots of such sets have been obtained through the
parametrization of the feasibility boundary presented
in Jeeninga et al. (2020b). The blue and green regions
correspond to respectively G12 = 0.3 and G12 = 1.
This corresponds to increasing the conductance G12

of the line between node 1 and node 2 by 0.7 (see
Figure 1). The blue and green dashed lines are the
points for which equality holds in (5) for the respective
power grids. The decrease of the maximal total power
demand is indicated by d. We observe that Pmax is no
longer feasible after the conductance is increased. The
black dashed line corresponds the points for which
equality in (6) holds. Theorem 3.2 shows that Braess’
paradox may occur for all feasible vectors of constant
power demands beyond the black dashed line, such as
for Pmax.

3.2 Prevalence of Braess’ paradox for power flow feasibility

In Steinberg and Zangwill (1983) it was shown that Braess’
paradox is a widespread phenomenon which can occur in
most traffic flow networks. Similarly, Coletta and Jacquod
(2016) showed that Braess’ paradox may occur in any
coupled-oscillator network such as AC power grids. In
this section we validate that Braess’ paradox is also
common for DC power flow feasibility, and can occur in
most practical DC power grids with constant-power loads,
regardless of the grid topology.

It can be shown that the condition on the open-circuit
voltages V ∗L may be restated in terms of the source voltages

Theorem 3.4. Consider a power grid with Y and VS > 0
given and with at least two load nodes and at least
two sources. If YLS has full column rank and the source
voltages are not all equal (i.e., VS 6∈ span{1}), then there
exist a vector of power demands Pc and a line between
two load nodes such that the power flow is feasible and
becomes unfeasible after increasing the line conductance.

Theorem 3.4 shows that Braess’ paradox may occur if YLS

has full column rank and not all source voltages are equal.
Apart from the condition on YLS , this statement does
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not depend on the topology of the grid. Hence, Braess’
paradox may occur in both radial (tree) and meshed grid
topologies.

The condition that YLS has full column rank can be
interpreted as the property that there are no redundant
voltage sources, in the sense that the removal of one
source cannot be compensated by other sources. A study
on benchmark power grids was performed to illustrate
that the condition that YLS has full-rank is prevalent in
practical power grids. The results of this study are omitted
for spatial considerations, but are available in the full
version of the article.

For all power grids with a single source node we have that
YLS has full column rank. This shows that the premises
of Theorem 3.2 and Theorem 3.4 do not hold for power
grids with a single source. However, since practical power
grids commonly have multiple sources 1 , and all source
voltages are not likely to be the same, we conclude that
Braess’ paradox for power flow feasibility may occur in
most practical DC power grids.

4. CONCLUSION AND DISCUSSION

In this paper we have shown that an analogue of Braess’
paradox may occur in the power flow feasibility of a DC
power grid. The observed phenomenon states that an
increase of a line conductance has the potential to destroy
the feasibility of the power flow in a power grid. We have
shown that this phenomenon may occur in most practical
power grids with multiple sources.

An interesting further direction of research is studying
if Braess’ paradox for power flow feasibility could also
occur in the case where there is only one source node.
Moreover, the full article of this abstract also studies what
the implications are for the occurrence of Braess’ paradox
when only bounds of the line conductances are known. A
sufficient condition is presented in that article, but the
search for a necessary and sufficient condition is still open.
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Abstract: This paper is concerned with the feasibility of the power flow in DC power power
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guarantee a minimal p-norm distance between a configuration of power demands and the
infeasibility boundary in the space of power demands. The (non)convexity of these matrix
inequalities is studied subsequently.
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1. INTRODUCTION

Over the last decade, DC power grids have found an
increasing interest among applications such as smart grids
and high-voltage DC (HVDC) transmission. Currently, a
major challenge in DC power grids is the presence of
constant-power loads, which demand a constant amount of
power from the grid. Such loads are known to destabilize
the grid by selfishly extracting more power from the grid,
which can lead to a collapse of nodal voltages known as
voltage collapse. A particular example of such an event
results from the case where the power demands cannot be
met at steady state.

The power flow feasibility problem studies under which
conditions constant-power demands can be satisfied at
steady state. The problem has been fully characterized
in Jeeninga et al. (2022a,b), resulting in necessary and
sufficient conditions for power flow feasibility. Although
these results are able to assess this feasibility problem,
one shortcoming is that the robustness of power flow
feasibility cannot be guaranteed. Such a guarantee is
required when power grids should not be operated close
to the feasibility boundary, or when the parameters of
the system are uncertain. Sufficient conditions have been
presented in Bolognani and Zampieri (2015) for a p-
norm ball around the point where all power demands
are zero, and a similar result concerning a polyhedral
set was obtained in Simpson-Porco et al. (2016). To the
best of the author’s knowledge no other advances have
been made. In the current paper, necessary and sufficient
conditions are presented that guarantee the feasibility of
the power demands within a p-norm ball around a given
configuration of power demands.

Notation and matrix definitions

For a vector x = (x1 · · · xk)
>

we denote

[x] := diag(x1, . . . , xk).

We let 1 and 0 denote the all-ones and all-zeros vector,
respectively. We let their dimensions follow from their

context. All vector and matrix inequalities are taken to
be element-wise. We let ei denote the i-th column of
the identity matrix. We write A � B when A − B is a
symmetric positive semi-definite matrix, and A � B when
in addition A 6= B. We let ‖x‖p denote the p-norm of
x ∈ Rk.

2. THE DC POWER GRID MODEL

This paper considers DC power grids with constant-power
loads at steady state, which are modeled as a resistive
circuit. Nodes (buses) in the grid are either sources (S) or
loads (L). A source is a node at which the nodal voltage
potentials of the network are fixed, such as a slack bus.
A load is a node that demands a given quantity of power
from the grid. The power flow feasibility problem asks if
the nodal voltage potentials at the loads can be chosen
such that all the power demands are satisfied.

To give a mathematical formulation of this problem we

define the following quantities. We let V =
(
V >L V >S

)> ∈
Rn+m be the voltage potentials at the nodes, which we
assume to be positive. We let Y ∈ R(n+m)×(n+m) denote
the Kirchhoff matrix of the power grid, which relates
the voltage potentials in the grid to the nodal current
I ∈ Rn+m injected into the network by I = Y V . The
power that is injected into the network at the loads is
therefore given by

PL = [VL](YLLVL + YLSVS). (1)

Let Pc ∈ Rn denote the power demands of the load nodes.
The power flow feasibility problem asks if the demands Pc

can be satisfied for some VL > 0, in which case PL+Pc = 0.
We formalize this as follows.

Definition 2.1. Given Y and VS , we say that Pc is feasible
if there exists VL > 0 such that

[VL](YLLVL + YLSVS) + Pc = 0.

The set of all feasible Pc is denoted by F .

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



2.1 Power flow feasibility as an LMI

It has been shown in Jeeninga et al. (2022b) that the set F
is closed and convex, and that feasibility of Pc is equivalent
to the feasibility of an LMI in terms of the matrix

QPc
(λ) :=

(
1
2 ([λ]YLL + YLL[λ]) 1

2 [λ]YLSVS
1
2 ([λ]YLSVS)> λ>Pc

)
.

We repeat the result for the sake of completeness.

Theorem 2.2. (LMI for power flow infeasibility). Given Y
and VS , the vector Pc is not feasible if and only if there
exists a vector λ > 0 such that QPc

(λ) is positive definite.

Theorem 2.2 tells us that power flow infeasibility is equiv-
alent to the feasibility of an LMI. This equivalence may
be rephrased by using the alternative of the LMI, e.g.. see
Balakrishnan and Vandenberghe (2003). By doing so we
obtain the following LMI condition which is equivalent to
power flow feasibility.

Theorem 2.3. (LMI for power flow feasibility). Given Y
and VS , the vector Pc is feasible if and only if there
exists a nonzero positive semi-definite matrix Z = Z> ∈
R(n+1)×(n+1) such that

trace (Z QPc(ei)) ≤ 0

for all i = 1, . . . , n.

3. THE MINIMAL DISTANCE TO THE POWER
FLOW FEASIBILITY BOUNDARY

In a practical setting it is desirable that a feasible Pc does
not lie close to the feasibility boundary, for example in the
case when only estimates of Pc are available. This note is
therefore concerned with finding conditions that guarantee
a minimal distance of Pc to the feasibility boundary
∂F . Equivalently, we are interested in conditions that
guarantee the feasibility of all vectors of power demands
that lie in a neighborhood of Pc. To this end we let the
p-norm ball centered at y be defined by

Bp,γ(y) := { z | ‖y − z‖p ≤ γ } , γ > 0.

Additionally we would like to know if such conditions are
computationally attractive, as in the case of Theorem 2.2
and Theorem 2.3. Our main problem is formalized as
follows.

Problem 3.1. Let Y , VS and Pc be given. Under what

conditions do we have that any vector P̂c ∈ Bp,γ(Pc)
is feasible? Put differently, under what conditions does
the inclusion Bp,γ(Pc) ⊆ F hold? This is to say that
the distance between a feasible Pc and the power flow
feasibility boundary ∂F is at least γ.

This note answers Problem 3.1 by presenting matrix in-
equalities that are analogous to Theorem 2.2 and Theo-
rem 2.3, and necessary and sufficient for the feasibility of
a ball Bp,γ(Pc). In addition we prove that these matrix
inequalities are (multiple) LMIs when p = 1 or p = ∞,
and lead to non-convex matrix inequalities for other p.

3.1 The ∞-norm distance to ∂F

For a given Pc, the∞-norm ball B∞,γ(Pc) is the set of the

vectors P̂c of the power demand such that

|Pc,i − P̂c,i| ≤ γ,

which is equivalent to the condition

Pc − γ1 ≤ P̂c ≤ Pc + γ1.

Note that the inequalities are element-wise. The following
result from Jeeninga et al. (2022b) states that any vector
that is element-wise dominated by a feasible vector of
power demands is also feasible.

Lemma 3.2. If y ∈ F and ŷ ≤ y, then also ŷ ∈ F .

In particular Lemma 3.2 implies the equivalence

Pc + γ1 ∈ F ⇔ B∞,γ(Pc) ⊆ F .

Consequently, to verify that all P̂c ∈ B∞,γ(Pc) are feasible,
it suffices to verify the feasibility of Pc + γ1. Theorem 2.2
and Theorem 2.3 therefore imply the following character-
ization.

Theorem 3.3. Given Y and VS and Pc, then some P̂c ∈
B∞,γ(Pc) is not feasible if and only if there exists a vector
λ > 0 such that QPc+γ1(λ) is positive definite.

Theorem 3.4. Given Y and VS and Pc, then all P̂c ∈
B∞,γ(Pc) are feasible if and only if there exists a nonzero

positive semi-definite matrix Z = Z> ∈ R(n+1)×(n+1) such
that

trace (Z QPc+γ1(ei)) ≤ 0

for all i = 1, . . . , n.

In summary, we may check if the∞-norm distance between
a vector Pc and the power flow infeasibility boundary
∂F is at least γ by solving the LMI condition in either
Theorem 3.3 or Theorem 3.4.

3.2 The 1-norm distance to ∂F

For a given Pc, the 1-norm ball B1,γ(Pc) is equivalent to
the convex hull of the vectors

Pc − γei, Pc + γei,

with i = 1, . . . , n. Recall that the set F is convex, and we
therefore have that

B1,γ(Pc) ⊆ F ⇔ Pc ± γei ∈ F (2)

for all i = 1, . . . , n. Moreover, since Pc − γei ≤ Pc + γei,
Lemma 3.2 implies that it suffices to take only the positive
signs in (2). By virtue to Theorem 2.2 and Theorem 2.3
we obtain the following characterization.

Theorem 3.5. Given Y and VS and Pc, then some P̂c ∈
B1,γ(Pc) is not feasible if and only if there exists a vector
λ > 0 such that QPc+γei(λ) is positive definite for some
i ∈ {1, . . . , n}.
Theorem 3.6. Given Y and VS and Pc, then all P̂c ∈
B1,γ(Pc) are feasible if and only if for each i ∈ {1, . . . , n}
there exists a nonzero positive semi-definite matrix Zi =
Z>i ∈ R(n+1)×(n+1) such that

trace (Zi QPc+γei(ej)) ≤ 0

for all j = 1, . . . , n.

Note that Theorem 3.5 or Theorem 3.6 are equivalent to
solving n separate LMIs. To summarize, we may check if
the 1-norm distance between a vector Pc and the power
flow infeasibility boundary ∂F is at least γ by solving the
n LMI conditions in either Theorem 3.5 or Theorem 3.6.
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3.3 The p-norm distance to ∂F

In the remainder of this section we assume that p lies in
the open interval (1,∞) and we let q := p

p−1 such that

1
p + 1

q = 1.

For a given Pc, the p-norm ball Bp,γ(Pc) is the set of the

vectors P̂c of the power demand such that

‖Pc − P̂c‖p ≤ γ. (3)

We define δ = P̂c −Pc for the sake of brevity. By Hölder’s
inequality (e.g., see Roman (2008)) we know that

n∑
i=1

|λiδi| ≤ ‖δ‖p‖λ‖q. (4)

Moreover, equality holds in (4) for some λδ that lies in the
same quadrant as δ, in which case the left-hand side of (4)
equals λδ

>δ. Using (3) we therefore have the inequality

λδ
>δ ≤ γ‖λδ‖q.

Finally, by recalling that δ = P̂c − Pc we conclude that

λδ
>P̂c = λδ

>Pc + λδ
>δ ≤ λδ>Pc + γ‖λδ‖q. (5)

In the context of Theorem 2.2, inequality (5) implies that

if P̂c is not feasible then there exists a λ > 0 such that

QPc,q,γ(λ) :=

(
1
2 ([λ]YLL + YLL[λ]) 1

2 [λ]YLSVS
1
2 ([λ]YLSVS)> λ>Pc + γ‖λ‖q

)
.

is positive definite. In fact, by considering all P̂c in the ball
Bp,γ(Pc) we may prove the following equivalence condition.

Theorem 3.7. Given Y and VS and Pc, then some P̂c ∈
Bp,γ(Pc) is not feasible if and only if there exists a vector
λ > 0 such that QPc,q,γ(λ) is positive definite, where
1
p + 1

q = 1.

Note that the above argumentation is not complete, and
that a full proof is omitted for the same of brevity. An
analogous condition to Theorem 2.3 may also be obtained
by virtue of Hölder’s inequality.

Theorem 3.8. Given Y and VS and Pc, then all P̂c ∈
Bp,γ(Pc) are feasible if and only if there exists a nonzero

positive semi-definite matrix Z = Z> ∈ R(n+1)×(n+1) such
that

trace (Z QPc,q,γ(λ)) ≤ 0

for all λ ≥ 0, where 1
p + 1

q = 1.

To conclude we section we will analyze the (non)convexity
of the matrix inequalities in Theorem 2.2 and Theorem 2.3.
The matrix inequalities in Theorem 3.7 and Theorem 3.8
are not LMIs since the map λ 7→ QPc,q,γ(λ) is not linear.
Linear matrix inequalities are computationally attractive
since they describe a convex problem, which have the prop-
erty that local optima are also global optima. Moreover,
algorithms to find these optima are well-studied.

Focusing on Theorem 3.7, the corresponding matrix in-
equality would be convex if the map λ 7→ QPc,q,γ(λ) would
have to satisfy

αQPc,q,γ(λ1) + (1− α)QPc,q,γ(λ2)

� QPc,q,γ(αλ1 + (1− α)λ2) (6)

for α ∈ (0, 1), where we let λ1, λ2 such that 1>λi = 1.

This relationship implies the existence of a λ̂ that satisfies

1>λ̂ = 1 and for whichQPc,q,γ(λ̂) is the unique maximal el-
ement of the partial ordering induced by �. Consequently,
the matrix inequality in Theorem 3.7 may be evaluated by

finding this λ̂ and checking if QPc,q,γ(λ̂) is positive definite.
However, we will show that the inequality (6) only holds
when λ1 = λ2.

The triangle inequality implies that for vectors λ1, λ2 such
that 1>λi = 1 we have

α‖λ1‖q + (1− α)‖λ2‖q ≥ ‖αλ1 + (1− α)λ2‖q (7)

for α ∈ (0, 1). Moreover, since q ∈ (1,∞) we have that
if λ1 6= λ2 then the inequality in (7) is strict (e.g., see
Chapter 11 of Carothers (2004)). For such λ1 6= λ2 we
therefore have

αQPc,q,γ(λ1) + (1− α)QPc,q,γ(λ2)

� QPc,q,γ(αλ1 + (1− α)λ2)

for α ∈ (0, 1), which implies that the matrix inequality is
strictly concave, and that (6) only holds when λ1 = λ2.

By a similar argumentation it can be shown that Theo-
rem 3.8 is a non-convex problem.

In summary, for p ∈ (1,∞) we may check if the p-
norm distance between a vector Pc and the power flow
infeasibility boundary ∂F is at least γ by solving the
non-convex matrix inequality in either Theorem 3.7 or
Theorem 3.8.

Although the matrix inequality in Theorem 3.7 is not
convex, it is remarked that in special cases a unique
maximizer of the partial ordering induced by � may exist.
If this is the case, an algorithm that obtains a local
maximizer will therefore also obtain the global maximizer.

4. CONCLUSION

This note studied the distance of a feasible vector of power
demands to the power flow feasibility boundary. A p-
norm ball around a given vector of power demands was
considered, and it was shown that to verify that all vectors
of power demands that lie within the ball are feasible, one
may solve one of two matrix inequalities. In the case of
p =∞ this gives rise to a single LMI, in the case of p = 1,
this gives rise to n LMIs, and in the case of p ∈ (1,∞)
this gives rise to a non-convex (strictly concave) matrix
inequality.
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Abstract: We will consider the multidimensional truncated p × p Hermitian matrix-valued
moment problem. We will prove a characterisation of truncated p× p Hermitian matrix-valued
multisequence with a minimal positive semidefinite matrix-valued representing measure via
the existence of a flat extension, i.e., a rank preserving extension of a multivariate Hankel
matrix (built from the given truncated matrix-valued multisequence). Moreover, the support
of the representing measure can be computed via the intersecting zeros of the determinants
of matrix-valued polynomials which describe the flat extension. We will also use a matricial
generalisation of Tchakaloff’s theorem due to the first author together with the above result to
prove a characterisation of truncated matrix-valued multisequences which have a representing
measure. When p = 1, our result recovers the celebrated flat extension theorem of Curto and
Fialkow. The bivariate quadratic matrix-valued problem and the bivariate cubic matrix-valued
problem are explored in detail.
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We will investigate themultidimensional truncated matrix-
valued moment problem. Given a truncated multisequence
S = (Sγ)0≤|γ|≤m

γ∈Nd
0

, where Sγ ∈ Hp (i.e., Sγ is a p × p

Hermitian matrix), we wish to find necessary and sufficient
conditions on S for the existence of a p×p positive matrix-
valued measure T on Rd, with convergent moments, such
that

Sγ =

∫
Rd

xγdT (x) :=

∫
· · ·
∫
Rd

d∏
j=1

x
γj

j dT (x1, . . . , xd)

(1)
for all γ = (γ1, . . . , γd) ∈ Nd

0 such that 0 ≤ |γ| ≤ m. We
would also like to find a positive matrix-valued measure
T =

∑κ
a=1 Qaδw(a) on Rd such that (1) holds and and

κ∑
a=1

rankQa is as small as possible, (2)

i.e., T is a finitely atomic measure of the form

T =
κ∑

a=1

δw(a)Qa

with
κ∑

a=1

rankQa = rankM(n).

If (1) holds, then T is called a representing measure for
S. If (1) and (2) are in force, then T is called a minimal
representing measure for S.

Before proceeding any further, we will first introduce
frequently used notation. Commonly used sets are N0,R,C
denoting the sets of nonnegative integers, real numbers and

complex numbers respectively. Given a nonempty set E,
we let

Ed = {(x1, . . . , xd) : xj ∈ E for j = 1, . . . , d}.
Next, we let Cp×p denote the set of p × p matrices with
entries in C and Hp ⊆ Cp×p denote the set of p × p
Hermitian matrices with entries in C. Given

x = (x1, . . . , xd) ∈ Rd and λ = (λ1, . . . , λd) ∈ Nd
0,

we define

xλ =

d∏
j=1

x
λj

j and |λ| = λ1 + · · ·+ λd

and
Γm,d := {γ ∈ Nd

0 : 0 ≤ |γ| ≤ m}.
We shall let Cp×p[x1, . . . xd] denote the set of matrix
polynomials in the indeterminates x1, . . . , xd, i.e., the set of
all polynomials P (x) =

∑
λ∈Γn,d

xλPλ, where Pλ ∈ Cp×p

and n is arbitrary. We will also let

Cp×p
n [x1, . . . , xd] := {P ∈ Cp×p[x1, . . . , xd] :

the total degree of P (x) ≤ n}.

In order to communicate our main contributions, we will
need the notion of a d-Hankel matrix. Let S := (Sγ)γ∈Γ2n,d

be a given truncated Hp-valued multisequence and M(n)
be the corresponding d-Hankel matrix based on S and
defined as follows. We label the block rows and block
columns by a family of monomials (xγ)γ∈Γn,d

ordered by
the grader lexicographic ordering ≺grlex. We let the entry
in the block row indexed by xγ and in the block column
indexed by xγ̃ be given by

Sγ+γ̃ .
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For example if d = n = 2, then

M(2) =



1 X Y X2 XY Y 2

1 S00 S10 S01 S20 S11 S02

X S10 S20 S11 S30 S21 S12

Y S01 S11 S02 S21 S12 S03

X2 S20 S30 S21 S40 S31 S22

XY S11 S21 S12 S31 S22 S13

Y 2 S02 S12 S03 S22 S13 S04

.

If we are given S := (Sγ)γ∈Nd
0
, then shall let M(∞) denote

the infinite d-Hankel matrix based on S, which can be
defined analogously by letting the block rows and columns
be indexed by (xλ)λ∈Nd

0
(ordered by ⪯grlex). If d = 2, then

M(∞) =



1 X Y X2 XY Y 2 · · ·
1 S00 S10 S01 S20 S11 S02 · · ·
X S10 S20 S11 S30 S21 S12 · · ·
Y S01 S11 S02 S21 S12 S03 · · ·
X2 S20 S30 S21 S40 S31 S22 · · ·
XY S11 S21 S12 S31 S22 S13 · · ·
Y 2 S02 S12 S03 S22 S13 S04 · · ·
...

...
...

...
...

...
...

. . .

.

Let S := (Sγ)γ∈Γ2n,d
be a truncated Hp-valued multi-

sequence and let M(n) be the corresponding d-Hankel
matrix. Corresponding to any P (x) =

∑
λ∈Γn,d

xλPλ ∈

Cp×p
n [x1, . . . , xd], let P (X) denote the element of C

(
(n+d)!
n! d!

)
p×p

arising from
∑

λ∈Γn,d
xλPλ when we replace xλ by the cor-

responding block column in M(n). The variety of M(n),
denoted by V(M(n)), is given by

V(M(n)) :=
⋂

P∈Cp×p
n [x1,...,xd]

P (X)=col (0p×p)γ∈Γn,d

Z(det(P (x))).

Main contributions

(C1) We will characterise positive infinite d-Hankel matri-
ces with finite rank based on a Hp-valued multise-
quence via an integral representation. Indeed, we will
see that S(∞) = (Sγ)γ∈Nd

0
gives rise to a positive

infinite d-Hankel matrix M(∞) with finite rank if
and only if there exists a finitely atomic positive Hp-
valued measure T on Rd such that

Sγ =

∫
Rd

xγ dT (x) for γ ∈ Nd
0.

In this case, the support of the positive Hp-valued
measure T agrees with

V(I) :=
⋂

P∈I⊆Cp×p[x1,...,xd]

Z(detP (x)),

where V(I) is the variety of a right ideal of matrix-
valued polynomials based on the kernel of M(∞)
and the cardinality of the support of T is exactly
rankM(∞).

(C2) Let S = (Sγ)γ∈Γ2n,d
be a given truncated Hp-

valued multisequence. We will see that S has a min-
imal representing measure T =

∑κ
a=1 Qaδw(a) , i.e.,∑κ

a=1 rankQa = rankM(n), if and only if the cor-
responding d-Hankel matrix M(n) based on S has a

flat extensionM(n+1), i.e., a positive rank preserving
extension. In this case, the support of T agrees with
V(M(n + 1)), where V(M(n + 1)) is the variety of
the d-Hankel matrix M(n + 1) and

∑κ
a=1 rankQa =

rankM(n).

(C3) Let S be as in (C2). S has a representing measure if
and only if the corresponding d-Hankel matrix M(n)
have an eventual extension M(n+ k) which admits a
flat extension.

(C4) Let S = (S00, S10, S01, S20, S11, S02) be a given Hp-
valued truncated bisequence. We will see that neces-
sary and sufficient conditions for S to have a minimal
representing measure consist of M(1) being positive
semidefinite and a system of matrix equations having
a solution. More precisely, ifM(1) ⪰ 0 and there exist
S30, S21, S12, S03 ∈ Hp such that

Ran

(
S20 S11 S02

S30 S21 S12

S21 S12 S03

)
⊆ RanM(1)

(hence, there exists W = (Wab)
3
a,b=1 ∈ C3p×3p such

that M(1)W = B, where

B =

(
S20 S11 S02

S30 S21 S12

S21 S12 S03

)
)

and moreover, the following matrix equations hold:

W ∗
11S11 +W ∗

21S21 +W ∗
31S12 = S11W11 + S21W21

+ S12W31, (3)

W ∗
13S20 +W ∗

23S30 +W ∗
33S21 = W ∗

12S11 +W ∗
22S21

+ W ∗
32S12 (4)

and

W ∗
12S02 +W ∗

22S12 +W ∗
32S03 = S02W12 + S12W22

+ S03W32, (5)

then S has a minimal representing measure.
We will also see that if M(1) is positive definite

and obeys an extra condition (which is automatically
satisfied if p = 1), then S has a minimal representing
measure. However, if M(1) is singular and p ≥ 2, then
S need not have a minimal representing measure.
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Extended Abstract

The Classical Truncated Moment Problem (TMP) dates
back to the start of the twentieth century, and was initially
developed by a number of mathematicians, including A.A.
Markov, H. Hamburger, N.I. Akhiezer, M.G. Krein, A.A.
Nudel’man, M. Riesz and I.S. Iohvidov. The theory
ran parallel to the developments in the full moment
problem, where the main focus was placed. Many decades
later, renewed interest in TMP arose in connection with
the so-called Subnormal Completion Problem (SCP) for
unilateral weighted shifts. In 1966, J. Stampfli (52) proved
that for any three positive numbers a < b < c, it
is always possible to build a unilateral weighted shift
Wα acting on ℓ2(N0), with α ∈ ℓ∞(N0), having initial
weights α0 = a, α1 = b, α2 = c, and such that Wα

is subnormal. In (9; 10), R.E. Curto and L.A. Fialkow
solved the SCP for unilateral weighted shifts, by finding
necessary and sufficient conditions for a finite collection
of positive numbers to be the initial segment of weights
of a subnormal unilateral weighted shift. Their approach
was based on the fact that subnormality is detected by
the existence of a positive Radon measure on the closed
interval [0, ∥Wα∥2] whose moments are the moments γk of

the weight sequence α, defined recursively as γ0 := 1 and
γk+1 := α2

kγk (for all k ∈ N0). Thus, the subnormality of
Wα is intrinsically related to a TMP. In the process, Curto
and Fialkow proved the so-called Flat Extension Theorem
for moment matrices, which is an essential component
of their TMP theory in one and several real or complex
variables.

A few years after the Curto-Fialkow results were pub-
lished, J.B. Lasserre discovered some significant connec-
tions between real algebraic geometry, moment problems
and polynomial optimization; he introduced a method
known as semidefinite relaxations (see, e.g., (34)), which
led to renewed interest in solutions of TMP, especially
those with finitely atomic representing measures. The
importance of polynomial optimization problems and the
convenience of working with polynomials as algebraic and
computational objects as well as intensive research on
this area, is one of the main motivations for the study
of moment problems for the algebra of polynomials. For
ample information on the above mentioned developments,
the reader is referred to (11; 12; 13; 14; 15; 16; 17; 18; 23;
24; 29; 30; 31; 34; 35; 36; 37; 38; 43; 47; 48; 50; 54; 57).
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A fundamental tool in all those works is positivity. Given
a closed subset K of Rn, a linear functional L defined
on a subspace of R[X] := R[X1, . . . , Xn] is said to be
K−positive when it assumes nonnegative values in all the
elements of its domain which are nonnegative on K. For
a set A of monomials in R[X], a closed subset K of Rn,
and a K−positive linear functional L on the Span(A),
the A–truncated K–moment problem is the question of
establishing whether L can be represented as an integral
with respect to a positive Radon measure whose support
is contained in K. If such a measure exists then it is
called a K–representing measure for L. The A−Truncated
K−Moment Problem terminology was introduced by J.
Nie in (45), although he only considered the case when
the set A is finite. When A = {Xα : α ∈ Nn

0 , |α| ≤ d},
for some d ∈ N, the A–truncated K–moment problem is
usually known as the Classical K–TMP.

The Full K–Moment Problem, for closed K ⊆ Rn, cor-
responds to the case when A = {Xα : α ∈ Nn

0}; that
is, given a K−positive linear functional L on R[X], find
a criterion for the existence of a positive Radon measure
µ whose support is contained in K, and such that L is
represented as L(p) =

∫
p dµ, for all p ∈ R[X].

Partial answers to the A–truncated K–moment problem
are known. For example, when K is a closed subset of Rn

and A is the set of all monomials up to a certain degree 2d
or 2d+1, the existence of such aK–representing measure is
proved to be equivalent to the K–positive extendability of
L to the set of all polynomials of degree at most 2d+2, (16,
Theorem 2.2). When K is compact and Span(A) contains
a polynomial that is strictly positive on K, the existence
of a K–representing measure is known to be equivalent to
the K–positivity of L (see (56, Theorem I, p.129), (16, p.
2710), (19, Theorem 2.2) and (45, Algorithm 4.2)).

Our research deals with an abstract version of the trun-
cated moment problem. We show that all the above-
mentioned solutions can be considered as particular cases
of a general result about the existence of positive ex-
tensions of linear functionals to larger linear subspaces
containing an element that dominates all the members of
the original domain. The scope of our study is also much
broader as we consider unital commutative R–algebras
instead of R[X] and arbitrary linear subspaces of the
algebra in lieu of finite dimensional ones. Thus, our setting
is general enough to encompass also infinite dimensional
instances of the moment problem, e.g. when the algebra is

not finitely generated or when the representing measure is
supported on an infinite dimensional vector space.

Let A be a unital commutative R-algebra, K a closed
subset of the character space of A, and B a linear subspace
of A. For a linear functional L : B → R, we investigate
conditions under which L admits an integral representa-
tion with respect to a positive Radon measure supported
in K. When A is equipped with a submultiplicative semi-
norm, we employ techniques from the theory of positive
extensions of linear functionals to prove a criterion for
the existence of such an integral representation for L.
When no topology is prescribed on A, we identify suitable
assumptions on A,K, B and L which allow us to construct
a seminormed structure on A, so as to exploit our previous
result to get an integral representation for L. Our main
theorems allow us to extend some well-known results on
the Classical Truncated Moment Problem, the Truncated
Moment Problem for point processes, and the Subnormal
Completion Problem for 2–variable weighted shifts. We
also analyze the relation between the Full and the Trun-
cated Moment Problem in our general setting; we obtain a
suitable generalization of Stochel’s Theorem which readily
applies to Full Moment Problems for localized algebras.

Infinite dimensional moment problems have been studied
already in the sixties (see e.g. (8; 46; 20; 42; 3; 5; 39;
4; 49)) motivated by fundamental questions in applied
areas such as statistical physics and quantum mechanics.
Since then there has been an extensive production on
the infinite dimensional moment problems appearing in
the analysis of interacting particle systems as well as in
stochastic geometry, spatial ecology, neural spike trains,
heterogeneous materials and random packing (see, e.g.,
(1; 40; 33; 44; 6; 53; 55)). Despite the vast literature
devoted to the theory of the infinite dimensional moment
problem, and more generally of the moment problem on
unital commutative algebras (see (32; 21; 2; 7; 22; 41; 25;
51; 27; 28), just to mention a few recent developments),
several questions remain open (cf. (26)).

We also consider several applications of our main results,
ranging from the Classical TMP to the TMP for point
processes, and to the SCP for 2–variable weighted shifts.
In particular, in the case of bivariate polynomials, our
novel approach allows us to deal with not only the cases
of the Rectangular, Triangular, and Sparse Connected
TMP, but also with a new hybrid case which includes
the presence of infinitely many moments in one of the
variables.
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Abstract: In this extended abstract we present a general procedure to quantify the performance
of rectified linear unit (ReLU) neural network (NN) controllers that preserve the desirable
properties of a designed model predictive control (MPC) scheme. First, by quantifying the
approximation error between NN and MPC state-to-input mappings, we establish suitable
conditions involving the worst-case error and the Lipschitz constant that guarantee the stability
of the closed-loop system. Then, we develop an offline, mixed-integer (MI) optimization-based
method to compute those quantities exactly, thus providing an analytical tool to certify the
stability and performance of a ReLU-based approximation of an MPC control law.

Keywords: Model predictive control, Neural networks, Linear systems in control theory,
Mixed-integer programming.

1. INTRODUCTION

Model predictive control (MPC) is one of the most popular
control strategies for linear systems with operational and
physical constraints (Rawlings et al., 2017) and is based
on the repeated solution of constrained optimal control
problems. Although the theory underlying MPC provides
practical stability and performance guarantees, implemen-
tations of both implicit and explicit MPC suffer from
well-known practical difficulties (i.e., solving optimization
problems in real-time and complexity of the resulting
piecewise-affine (PWA) controller, respectively).

As a result, the idea of approximating an MPC policy
using (deep) NNs (Goodfellow et al., 2016) is particularly
attractive in view of their universal approximation capa-
bilities (Hornik, 1991). Starting from the pioneering work
in (Parisini and Zoppoli, 1995), indeed, interest in NN-
based approximations of MPC laws has increased rapidly
in recent years (Chen et al., 2018; Hertneck et al., 2018;
Karg and Lucia, 2020a,b; Zhang et al., 2021; Maddalena
et al., 2020; Paulson and Mesbah, 2020). Despite their
computationally demanding offline training requirements,
the online evaluation of NN-based approximations to MPC
laws is computationally inexpensive, since it only requires
the evaluation of an input-output mapping. However, unless
one assumes a certain structure, NNs are generally hard to
analyze due to their nonlinear, large-scale structure.

In this extended abstract we provide a means to assess
the training quality of a ReLU network in replicating
the action of an MPC policy. First, by considering the
approximation error between a ReLU network and an
MPC law, we give sufficient conditions involving the
maximal approximation error and the associated Lipschitz
constant that guarantee the closed-loop stability of a
? This work was partially supported through the Government’s
modern industrial strategy by Innovate UK, part of UK Research
and Innovation, under Project LEO (Ref. 104781).

discrete-time linear time-invariant (LTI) system when the
ReLU approximation replaces the MPC law. Successively,
we formulate a mixed-integer linear program (MILP) to
compute the Lipschitz constant of an MPC policy exactly.
Finally, we develop an optimization-based technique to
exactly compute the worst-case approximation error and
the Lipschitz constant characterizing the approximation
error. The outcome is a set of conditions involving the
optimal value of two MILPs that are sufficient to allow us
to certify the reliability of the ReLU-based controller, thus
proposing a unifying theoretical framework for analyzing
NN-based approximations of MPC policies (the proofs of
the technical results are in (Fabiani and Goulart, 2021)).

2. MOTIVATIONS, PROBLEM FORMULATION AND
PRELIMINARY RESULTS

We will consider the problem of stabilizing the constrained,
discrete-time, LTI system

x+ = Ax+Bu, (1)
with state variable x ∈ X , control input u ∈ U , A ∈ Rn×n
and B ∈ Rn×m. We will assume that the constraint
sets X ⊆ Rn and U ⊆ Rm are bounded polyhedral. A
popular control choice for constrained systems is MPC
that requires one to solve, at every iteration, the following
multi-parametric quadratic program (mp-QP) over a time
horizon of length T ≥ 1, T := {0, . . . , T − 1},

VT (x) =


min

(vi)i∈T

1
2
‖xT‖2P +

∑
i∈T

1
2
(‖xi‖2Q + ‖vi‖2R)

s.t. xi+1 = Axi +Bvi, i ∈ T ,
xi ∈ X , vi ∈ U , i ∈ T ,
x0 = x.

(2)

Starting from some x(0) ∈ X , the receding horizon
implementation of an MPC law computes an optimal
solution (v?i )i∈T , and then applies the control input u(0) =
v?0 taken from the first part of the optimal sequence (implicit
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version). This process is then repeated at every time k with
initial condition x0 = x(k), so that the procedure amounts
to the implicit computation of a mapping x 7→ v?0 , defined
as

uMPC(x) := v?0(x).

Under standard assumptions, it is well known that the
associated MPC control law u(k) = uMPC(x(k)) stabilizes
the constrained LTI system (1) about the origin (Borrelli
et al., 2017; Rawlings et al., 2017) while, at the same
time, respecting state and input constraints. In some
applications the dynamics of the underlying system may
be too fast relative to the time required to compute the
solution to the mp-QP in (2). One may then rely on
the explicit version of the MPC law in (2), i.e., explicit
model predictive control (eMPC) (Bemporad et al., 2002),
whose closed form expression can be computed offline.
The optimal solution mapping uMPC(·) enjoys a PWA
structure (Rockafellar and Wets, 2009, Def. 2.47)) that
maps any x ∈ X into an affine control action according
to some polyhedral partition of X . The partition and
associated affine functions for uMPC(·) can be computed
offline, e.g. using MPC Toolbox (Bemporad et al., 2021).
However, the computational effort required for this offline
computation may itself be too demanding, since the number
of regions in the optimal partition can grow exponentially
with the number of states and constraints in (2) (Alessio
and Bemporad, 2009). In addition, even if computable
offline, the online implementation of the explicit solution
may require excessive memory storage or processing power.

2.1 Approximation of MPC laws via ReLU networks

The aforementioned limitations motivate the design of an
approximation for uMPC(·) that can be implemented with
minimal computation and storage requirements while still
maintaining stability and good performance of the closed-
loop system. We focus on controllers implemented using
ReLU neural networks, which provide a natural means for
approximating uMPC(·) since the output mapping of such
a network has a PWA structure (Montufar et al., 2014).
An L-layered, feedforward ReLU network that defines a
mapping F : Rn → Rm can be formally described by the
following recursive equations across layers (Hagan et al.,
1997):

x0 = x,

xj+1 = max(W jxj + bj , 0), j ∈ {0, . . . , L− 1},
F (x) = WLxL + bL,

(3)

where x0 = x ∈ Rn0 , n0 = n, is the input to the network,
and W j ∈ Rnj+1×nj , bj ∈ Rnj+1 are the weight matrix and
bias vector of the (j + 1)-th layer, respectively (defined
during some offline training phase). The total number of
neurons is thus N :=

∑L

j=1 nj +m, since nL+1 = m.

Thus, after training a ReLU network to produce a mapping
uNN : X → Rm, uNN(x) := F (x), to approximate uMPC(·),
we ask whether the training was sufficient to ensure stability
of the closed-loop system in (1) with piecewise-affine neural
network (PWA-NN) controller uNN(·) in place of uMPC(·).
We characterize next the features of the approximation
error function e(x) := uNN(x) − uMPC(x) that are key to
guarantee the stability of the closed-loop system in (1) with
the PWA-NN controller uNN(·).

2.2 Closed-loop stability with neural network controllers

We hence investigate the robust stability of (1) with MPC
policy, uMPC(·), subject to an additive disturbance:

x+ = Ax+BuNN(x) = Ax+BuMPC(x) +Be(x). (4)

For some α ∈ {1,∞}, we assume that there exist finite
constants ēα, Lα(e,X∞) ≥ 0 such that ‖e(x)‖α ≤ ēα, for
all x ∈ X , and ‖e(x)− e(y)‖α ≤ Lα(e,X∞)‖x− y‖α, for all
x, y ∈ X∞, where the set X∞ will be defined later. In §4,
we will show how these conditions can be made to hold,
providing a MI optimization-based method to compute ēα
and Lα(e,X∞) exactly. For the remainder we make the
following mild assumption:
Standing Assumption 1. For the LTI system (1) under the
action of the MPC based controller uMPC:

i) the origin is exponentially stable;
ii) the mp-QP in (2) is recursively feasible starting from

any x ∈ X . �

By exploiting the optimal cost VT (·) of the mp-QP in (2),
with Ωc := {x ∈ X | VT (x) ≤ c} denoting the sublevel set
c := max {a ≥ 0 | Ωa ⊆ X}, we first establish that the
closed-loop system in (1) with an approximated MPC law
is input-to-state stable (ISS) (Jiang and Wang, 2001) when
the worst-case approximation error ēα is sufficiently small.
Lemma 1. There exists ζ > 0 such that, if ēα < ζ, the
system in (1) with u = uNN(x) converges exponentially to
some set Ωb ⊂ Ωc, for all x(0) ∈ Ωc. �

Thus, if the maximal approximation error over X is strictly
smaller than ζ, which is tunable through a nonnegative
parameter also affecting the size of Ωb, then the closed-
loop in (1) with PWA-NN controller uNN(·) is ISS and
its state trajectories satisfy the constraints, since Ωc is
robust positively invariant. Now, define X∞ as the set
of states for which the stabilizing unconstrained linear
gain (typically the linear quadratic regulator (LQR)),
K̄MPC ∈ Rm×n, satisfies both state and control constraints,
i.e., X∞ := {x ∈ X | x(0) = x ∈ X , Ax(k) +BK̄MPCx(k) ∈
X , K̄MPCx(k) ∈ U , k ∈ T , x(T ) ∈ X} (maximal output
admissible set – see (Gilbert and Tan, 1991)). Within X∞,
the system (4) still enjoys exponential convergence if the
local Lipschitz constant of e(·) meets a certain condition:
Lemma 2. There exists ϑ > 0 such that, if Lα(e,X∞) < ϑ,
the system in (1) with u = uNN(x) converges exponentially
to the origin for all x(0) ∈ X∞. �

Putting the previous results together gives us our main
stability result, upon which subsequent requirements on
the fidelity of our ReLU-based controllers will be based:
Theorem 2.1. If ēα < ζ, Lα(e,X∞) < ϑ, and b ≥ 0 is
chosen so that Ωb ⊆ X∞, the system in (1) with u = uNN(x)
converges exponentially to the origin, for all x(0) ∈ Ωc. �

In the remainder, we provide a MI optimization-based
method to compute the maximum approximation error and
the (local) Lipschitz constant of e(·) exactly, thus providing
conditions sufficient to certify the stability and performance
of a ReLU-based approximation of an MPC control law.
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3. EXACTL LIPSCHITZ CONSTANT COMPUTATION
VIA MIXED-INTEGER LINEAR PROGRAM

We next develop a method of computing the maximum
gain (Darup et al., 2017) (and hence the Lipschitz constant,
according to (Gorokhovik et al., 1994, Prop. 3.4)) of the
MPC policy uMPC(·) directly via MI programming.

Note that the maximum gain can also be computed by
means of available tools that compute the complete explicit
solution to mp-QP in (2) directly, e.g., the MPC Toolbox
(Bemporad et al., 2021). However, from (Jordan and
Dimakis, 2020) we know that the Lipschitz constant of
a ReLU network, which we will use to approximate the
MPC policy in (2), can itself be computed through a
MILP. We therefore require a technique compatible with
the one proposed in (Jordan and Dimakis, 2020), which
will also allow us subsequently to compute key quantities
characterizing the approximation error e(·), according to
§2. For the results we are about to introduce, we make a
further standard assumption characterizing the constraints
of (2) to rule out pathological cases when computing the
(unique) solution to the mp-QP in (2).
Standing Assumption 2. (Linear independence constraint
qualification (Borrelli et al., 2017, Def. 2.1)) For all x ∈ X ,
the linear independence constraint qualification (LICQ) is
assumed to hold for the mp-QP in (2). �
Proposition 1. Suppose X ⊆ Rn is a polytope and
K : X → Rm×n an affine function. Then computing
Lα(K,X ) = maxx∈X ‖K(x)‖α amounts to an MILP. �

Proposition 1 says that the norm of a matrix whose entries
are affine in x ∈ X can be computed through an MILP. We
now state the main result of this section, which says that
the maximum matrix norm taken over the entire partition
induced by uMPC(·) can also be computed via an MILP:
Theorem 3.2. Computing Lα(uMPC,X ) amounts to an
MILP. �

In Table 1 we contrast numerically our proposed approach
in Theorem 3.2 with the solution obtained via the MPC
Toolbox (Bemporad et al., 2021). Here, the column “# of
RA” reports the number of polyhedral partitions charac-
terizing eMPC.

4. QUANTIFYING THE APPROXIMATION QUALITY
OF PIECEWISE-AFFINE NEURAL NETWORKS

We can now develop computational results that ensure the
stability of a ReLU-based control policy uNN constructed
based on approximation of a stabilizing MPC law uMPC.

Since the MPC policy uMPC is designed to (exponentially)
stabilize the LTI system in (1) to the origin, then we
may expect that the ReLU based policy should also be
stabilizing if the approximation error e(·) = uNN(·) −
uMPC(·) is sufficiently small. This error function is the
difference of PWA functions, and so also PWA (Gorokhovik
et al., 1994, Prop. 1.1). Thus, it can similarly be shown to
be bounded and Lipschitz continuous on X , and we can
therefore apply the results of §2 to find conditions under
which stability is preserved. Whether or not the error can
be made sufficiently small to do so depends on both the
amount (and quality) of training data and the complexity
of the network (i.e., number of neurons and layers).

Theorem 4.3. The approximation error e(·) = uNN(·) −
uMPC(·) has the following properties:

i) The maximal error maxx∈X‖e(x)‖α =: ēα can be
computed by solving an MILP;

ii) The Lipschitz constant Lα(e,X ) can be computed by
solving an MILP. �

By combining known results available in the machine
learning literature and the ones developed in this extended
abstract, Theorem 4.3 provides an offline, optimization-
based procedure to compute exactly both the worst-case
approximation error between the PWAmappings associated
with the ReLU network in (3) and the MPC law in (2), as
‖e(x)‖α ≤ ēα, for all x ∈ X , and the associated Lipschitz
constant over X , Lα(e,X ), for α ∈ {1,∞}. These quantities
are precisely of the type required to apply the stability
results of §2, and thus allow us to certify the reliability,
in terms of stability of the closed-loop system, of a ReLU-
based approximation of a given MPC law.

We finally stress that, while uNN(·) can guarantee state
constraint satisfaction for any initial state x(0) ∈ Ωc if some
prescribed conditions are met (§2), the input constraints
may not be satisfied. This issue can be accommodated
either during the training phase by adopting the available
techniques in, e.g., (Chen et al., 2018; Karg and Lucia,
2020a,b; Paulson and Mesbah, 2020), or directly after
the training process through output verification methods
(Bunel et al., 2018; Fazlyab et al., 2020).

5. CONCLUSION

We have shown that the design of ReLU-based approx-
imations with provable stability guarantees require one
to construct and solve two MILPs offline, whose asso-
ciated optimal values characterize key quantities of the
approximation error. We have provided a systematic way
to encode the maximal gain of a given MPC law through
binary and continuous variables subject to MI constraints.
This optimization-based result is compatible with existing
results from the machine learning literature on computing
the Lipschitz constant of a trained ReLU network. Taken
together they provide sufficient conditions to assess the
reliability, in terms of stability of the closed-loop system,
of a given ReLU-based approximation of an MPC scheme.
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Abstract: We derive fundamental limitations on the performance that can be achieved by intrinsic
averaging algorithms in open multi-agent systems, which are systems subject to random arrivals and
departures of agents. Each agent holds an intrinsic value, and their objective is to collaboratively estimate
the average of the values of the agents presently in the system. We provide a lower bound on the expected
Mean Square Error for such algorithms where we assume that the size of the system remains constant.
Our derivation is based on the error obtained with an algorithm that achieves optimal performance under
a set of restrictions on the way agents obtain information about one another. This error represents a
lower bound on the error obtained with any other algorithm that can be implemented under the same
restrictions. This approach is then applied to derive lower bounds on the performance of the well-known
Gossip algorithm by considering restrictions that allow implementing it.

Keywords: Systems theory; control, Probability theory and stochastic processes, Average consensus,
Open systems

1. PRELIMINARY NOTE

This work is a resubmission of the extended abstract that was
accepted for MTNS 2020.

2. INTRODUCTION

Multi-agent systems are being largely studied in various ap-
plication fields, including e.g., formation control or opinion
dynamics, especially for their robustness, flexibility and scal-
ability. Yet, most results obtained in that framework build on
the assumption that the composition of the systems remains
unchanged throughout the whole process. This assumption is
getting increasingly challenged by the growing size of the sys-
tems, as it slows down the process, and makes small individual
probabilities of arrivals or departures within the system non-
negligible. Such systems, called open, can also naturally arise
when the process is slow enough or chaotic by nature and
where communications can be difficult or happen at a time-
scale similar to that of the process, e.g. collaborative multi-
vehicle systems where vehicles share a stretch of road for a
time before heading to different destinations.

In such configurations, analyses and algorithm design become
challenging as the state, size, and at some extent objective
pursued by the system vary over time with arrivals and depar-
tures of agents. Those incessant perturbations require designing
algorithms able to deal with a variable objective, and prevent
them to achieve the usual convergence. On top of that, results
obtained for closed systems do not easily extend to open ones,
see e.g. Hendrickx and Martin (2016); Abdelrahim et al. (2017).
? ICTEAM institute, UCLouvain (Belgium). This work was
supported by “Communauté française de Belgique - Actions de
Recherche Concertées”. C. M. is a FRIA fellow (F.R.S.-FNRS).
This work is supported by the “RevealFlight” ARC at UCLou-
vain. Email adresses: charles.monnoyer@uclouvain.be,
julien.hendrickx@uclouvain.be.

Little work exists around open systems, including simulation-
based analyses performed by Sen and Chakrabarti (2013) or
through size-independent quantities in Hendrickx and Martin
(2016), and algorithm design for MAX consensus from Abdel-
rahim et al. (2017). In this work, we extend the results presented
in Monnoyer de Galland and Hendrickx (2019) by proposing a
general formulation of fundamental performance limitations for
algorithms that can be implemented under some restrictions on
the exchange of information within the system, and apply it to
the Gossip algorithm.

3. PROBLEM STATEMENT

We consider a multi-agent system constituted of N agents
labelled from 1 to N, where each agent j owns a constant
intrinsic value x j drawn from some zero-mean distribution of
variance σ2. Every agent j is randomly replaced according to a
Poisson process of individual rate λ

( j)
r resulting in the erasure

of the memory of the agent, and to the attribution of a new
value x j to that agent, so that the system is open and its size
is constant. Hence the value held by the agents can be seen as a
time varying quantity x j(t) which is modified at replacements.
Observe however that our model differs from fixed-size systems
with time-varying states and/or topologies: as replacements
also induce the erasure of the memory of the replaced agent,
they actually correspond to a new agent connecting for the first
time to the system, without having access to any information
about the past of the process.

Moreover, we consider the agents can collect information about
each other at some times in a distributed manner through local
interactions. Based on these, their objective is to collaboratively
compute the time-varying average of the intrinsic values of the
system defined as x̄(t) := 1

N ∑
N
j=1 x j(t). In this work we study

the performance of algorithms solving this problem which
agents can implement in that setting.
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One such algorithm is the well-known Gossip algorithm (see
e.g. Boyd et al. (2006)) designed for closed systems. This
algorithm relies on pairwise interactions in order to update an
estimation of the average: an agent i initializes its estimate to its
own value yi(t) = xi, and then updates it each time it interacts
with some agent j at some time t as follows:

yi(t+) = y j(t+) =
yi(t−)+ y j(t−)

2
. (1)

Unlike closed systems, open systems do not allow averaging
algorithms to converge to the exact average, and we need to
design an alternative way to measure their performance. One
possible standard criterion, which we consider in this work, is
the Mean Square Error (MSE) defined as

C(t) :=
1
N

N

∑
i=1

(x̄(t)− yi(t))
2 . (2)

More precisely, we derive lower bounds on

E [C(t)] =
1
N

N

∑
i=1

E
[
(x̄(t)− yi(t))

2
]

(3)

for a set of algorithms that can be implemented under some
restrictions on the way agents obtain information about one
another. For that purpose, we will evaluate the performance
achieved by an algorithm that is provably optimal in a more
favorable setting than what is typically allowed. To that end we
provide agents with additional knowledge about the dynamics
of the system, such as its size and the way replacements and in-
teractions take place, or the distribution from which their values
are drawn. The bounds we obtain are then fundamental perfor-
mance limitations for any algorithms that can be implemented
under the same restrictions, even if they do not make use of all
the available information, and are thus a quality criterion for
those algorithms.

In what follows, we propose a generic expression for the lower
bound on (3) provided a set of restrictions on the way agents
obtain information about one another. We then define such
sets that allow implementing the Gossip algorithm presented
in equation (1) and derive the corresponding bounds, which are
thus valid lower bounds on the performance of that algorithm.

4. MAIN RESULT

In order to derive a lower bound on (3), we define the algorithm
that achieves optimal performance under restrictions on the way
agents acquire information about each other. This leads to the
following definition of that algorithm:

y∗i (t) := argmin
yi(t)

{
E
[
(x̄(t)− yi(t))

2 |ω∗i (t)
]}

, (4)

where ω∗i (t) refers to the set containing all the information
potentially accumulated by agent i at time t about the other
agents in the system under a set of restrictions noted ∗, which
characterizes the way that information is obtained by i.

By computing the MSE of algorithm (4), one can by definition
obtain a lower bound on that of any other algorithm that can be
implemented under the restrictions ∗. This computation relies
on a decomposition of the MSE allowing the reduction of its
analysis to that of the error of estimation of a single agent j
made by another agent i, which is entirely characterized by
the most recent information about that agent j available to i.
It ultimately leads to

E [C(t)]≥ 1
N3

N

∑
i=1

N

∑
j=1

(
1−

∫ t

0
f t,∗

j→(i)(s)e
−2λ

( j)
r s ds

)
σ

2, (5)

where f t,∗
j→(i)(s) is a probability density function which char-

acterizes the age of the most recent information about agent j
available to i at time t under the restrictions ∗. Observe that this
function encapsulates the way information travels in the system,
so that one can virtually model any specific graph topology by
properly defining it.

The bound (5) is thus a time-dependent lower bound on the
MSE of any algorithm that can be implemented under a given
set of restrictions ∗. This bound is generic, and properly defin-
ing such restrictions ∗ allows instantiating f t,∗

j→(i)(s) and then
deriving a proper expression for (5).

One can also refine that expression by considering a more
particular class of open systems. Typically, one could consider
systems characterized by a common replacement rate λ

( j)
r = λr

and by a probability density function independent of the agents
and the time f t,∗

j→(i)(s) = f ∗(s). Exploiting these properties and
taking the limit as t→∞, a few algebraic steps starting from (5)
yield the following reduced expression in steady state for this
class of systems:

lim inf
t→∞

E [C(t)]≥ N−1
N2

(
1−

∫
∞

0
f ∗(s)e−2λrs ds

)
σ

2. (6)

5. APPLICATION TO THE GOSSIP ALGORITHM

We finally propose several restriction sets that allow imple-
menting the Gossip algorithm in order to instantiate (5) and
(6). This will lead to properly defined bounds that are valid for
the Gossip algorithm, and for any other algorithm that can be
implemented under those restrictions. We focus on restrictions
allowing the agents to gather information through random pair-
wise interactions happening according to a Poisson process of
pairwise rate λc (i.e. a given pair of agents interacts on average
λc times per unit of time). One can show that those restrictions
indeed allow implementing the Gossip algorithm.

Ping restrictions: The first model relies on a strong assump-
tion which corresponds to the presence of a central unit per-
fectly knowing the state of the system at all times, and to the
absence of erasure of an agent’s memory at its replacements.
At a communication between two agents, they share what they
know, and learn the exact state of the whole system at that time
from the central unit. This model is called “Ping” in reference to
the software testing the reachability of machines in a network,
and the corresponding bound is given in steady state and under
assumptions of symmetry by the following expression:

lim inf
t→∞

E [C(t)]≥ N−1
N2

(
1

1+ N−1
2

λc
λr

)
σ

2. (7)

Infection restrictions: The second model is less permissive as
it considers that agents only exchange everything they know
at the time they communicate to build their estimates. One
observes that the travel of information under those restrictions
reduces to an infection process where the disease is the informa-
tion about an agent, and the infection rate is the communication
rate λc. Two variants of that model arise: respectively with and
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without healing (which corresponds to the memory erasure at
the replacement of an agent) that respectively lead to the “SIS”
and “SI” models. One then obtains the steady state bound (8)
under symmetry assumptions, where w and A contain the infor-
mation related to the continuous time Markov chains defining
the infection process, either for the SI or SIS model:

lim inf
t→∞

E [C(t)]≥ N−1
N2

(
1−wT A(2λr−A)−1 e1

)
σ

2. (8)

Those bounds are depicted in Fig. 1, which compares the
performance of the Gossip algorithm simulated for ten agents
with all the bounds that were obtained above in steady state.

Fig. 1. Steady state MSE comparison showing the validity of
(6) for the Gossip performance (blue), where Ping, SI and
SIS refer to valid models to instantiate f ∗(s) in (6).

It appears that tighter restrictions lead to higher lower bounds
on the Mean square Error. More precisely, working with re-
strictions closer to what the Gossip algorithm actually allows
provides a bound that is closer to the actual performance of
that algorithm. Moreover, one observes that even though there
is a gap between the performance of the Gossip algorithm (in
blue) and the different bounds, the general behavior of the MSE
is qualitatively well captured. The Gossip is indeed one of the
most naive algorithms that can be implemented for achieving
average consensus, and does not take into account the openness
of the system nor some provided information such as identifiers
in its implementation. Hence, it appears that most of the infor-
mation that was provided to the agents while computing the
bounds may be unnecessary in the design of efficient averaging
algorithms in open systems in the sense of the Mean Square
Error.

6. CONCLUSION

We considered the possibility for agents to join and leave the
system in the study of multi-agent systems, and highlighted sev-
eral challenges that arise in that framework. In particular, this
property prevents algorithms to achieve the usual convergence,
making their design and analysis challenging.

We focused on averaging algorithms in open systems, for which
we obtained a generic formulation of fundamental limitations
on their performance given restrictions on the way information
is exchanged within the system. Properly defining these restric-
tions allows deriving lower bounds on the performance of algo-
rithms that are implemented under those restrictions, and thus
serve as a quality criterion for them. This was then performed
for restrictions allowing implementing the Gossip algorithm,
leading to performance limitations for that algorithm.

It appears that defining more restrictive constraints on the in-
formation exchange leads to tighter bounds when evaluating
the performance of an algorithm. Interestingly, even naive al-
gorithms such as the Gossip show satisfying performance in
comparison with rather strong bounds, questioning the possible
impact of several parameters that were assumed to be known by
the agents when building the bounds, such as identifiers.

Finally, the generalization of our results to systems of time-
varying size N(t), i.e., subject to decoupled arrivals and de-
partures is a very interesting yet challenging follow-up for this
work. Most on the present analysis relies on the assumption
that agents know the system size N, which would be a very
strong assumption if that size changes as it gives a significant
amount of information about the system. More generally, this
extension would require estimating that size in parallel, which
is a significant challenge left for future research.
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Abstract: The H2 norm of an exponentially stable system described by Delay Differential
Algebraic Equations (DDAEs) might be infinite, due to the existence of hidden feedthrough
terms and it might become infinite as a result of infinitesimal changes to the delay parameters.
We first introduce the notion of strong H2 norm of semi-explicit DDAEs, a robustified measure
that takes into account delay perturbations, and we analyze its properties. Next, we discuss
necessary and sufficient finiteness criteria for the strong H2 norm in terms of a frequency
sweeping test over a hypercube, and in terms of a finite number of equalities involving multi-
dimensional powers of a finite set of matrices. Finally, we show that if the H2 norm of the DDAE
is finite, it is possible to construct an exponentially stable neutral delay-differential equation
which has the same transfer matrix as the DDAE, without any need for differentiation of inputs
or outputs. This connected with a neutral system enables the framework of Lyapunov matrices
for computing the H2 norm.

1. NOTION OF STRONG H2 NORM

We consider systems described by semi-explicit linear
delay-differential algebraic equations (also called coupled
delay differential -difference equations) of the form
d

dt
x1(t) =A(11)

0 x1(t) +A
(12)
0 x2(t) +

m∑
j=1

A
(11)
j x1(t− hi)

+
m∑

j=1
A

(12)
j x2(t− hj) +B1u(t)

x2(t) =A(21)
0 x1(t) +

m∑
j=1

A
(21)
j x1(t− hj)

+
m∑

j=1
Ajx2(t− hj) +Bu(t)

y(t) =C1x1(t) + Cx2(t),
(1)

where x1(t) ∈ Rr, x2(t) ∈ Rn, u(t) ∈ Rni and y(t) ∈ Rno

are state-variables, inputs and outputs at time t. The
delays are denoted by h := (h1, . . . , hm).

? This work was supported by project C14/17/072 the KU Leuven
Research Council and project G092721N of the Research Foundation-
Flanders (FWO - Vlaanderen).

The H2 norm is an important performance measure in the
field of control theory. For an exponentially stable system
of the form (1), it is defined as

‖G‖H2 :=

√
1

2π

∫ ∞
−∞

tr(G∗(ıω)G(ıω))dω,

where G is the transfer matrix of system (1).
In contrast to other classes of systems, the H2 norm
of system (1) might be infinite even if the system is
exponentially stable, as the DDAE formulation might
hide a nontrivial feedthrough term from u(t) to y(t).
Furthermore, the function

Rm
≥0 3 h 7→ ‖G(·; h)‖H2

may not be continuous, even if the system is strongly expo-
nentially stable, as illustrated with the following example.
Example 1. Consider a system of the form
x1(t) = −x1(t) + u(t),
x2(t) = A1x2(t− h1) +A2x2(t− h2) +A3x2(t− h3)

+Bu(t),
y(t) = x1(t) + Cx2(t),

with matrices

A1 =

0 0 0
1
4 0 − 1

4
0 0 0

 , A2 =

0 0 0
0 0 0
0 0 1

8

 ,
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A3 =

0 0 0
0 0 1

32
0 0 0

 , B =
(1

0
1

)
, C = (0 1 0) .

The characteristic equation is given by

(s+ 1)
(

1− 1
8e
−sh2

)
= 0,

from which we conclude exponential stability for all delay
values. The transfer function of the system is given by

G(s) = 1
s+ 1 −

1
4

(
e−s(h1+h2) − e−sh3

)
8− e−sh2

.

It is clear from this expression that ‖G‖H2 is finite if
and only if h3 = h1 + h2, while otherwise we have
‖G‖H2 = +∞. Thus, ‖G‖H2 has a discontinuity at each
tuple (h1, h2, h3) for which h3 = h1 + h2. �
When defining

B(h, ε) := {ϑ ∈ Rm
≥0 : ‖ϑ− h‖ < ε},

the strong H2 norm of a strongly explonentially stable
system of the form 1 is defined as
9G(·; h)9H2 := lim

ε→0+
sup{‖G(·; hε)‖H2 : hε ∈ B(h, ε)}.

In order to characterize its finiteness, we define matrix
polynomials Pk1,...,km(A1, . . . , Am), with kj ∈ Z≥0, j =
1, . . . ,m, which are recursively defined through the fol-
lowing expressions:

P0,...,0(A1, . . . , Am) := I,

Pk1,...,km(A1, . . . , Am) := A1Pk1−1,k2,...,km(A1, . . . , Am)
+A2Pk1,k2−1,...,km

(A1, . . . , Am) + . . .+
+AmPk1,k2,...,km−1(A1, . . . , Am)

and
Pk1,...,km(A1, . . . , Am) := 0 if any kj ∈ Z<0, j = 1, . . . ,m.
For instance, for m = 2 and k1 + k2 ≤ 3, these matrix
polynomials are

P0,0 = I,
P1,0 = A1, P0,1 = A2,
P2,0 = A2

1, P1,1 = A1A2 +A2A1, P0,2 = A2
2,

P3,0 = A3
1, P2,1 = A2

1A2 +A1A2A1 +A2A
2
1,

P1,2 = A1A
2
2 +A2A1A2 +A2

2A1, P0,3 = A3
2.

We can now formulate the following result.
Theorem 1. Assume that system (1) is strongly stable.
The following statements are equivalent.
(1) The strong H2 norm of (1) is finite.
(2) Condition

C

I − m∑
j=1

Aje
−ıϑj

−1

B = 0, (2)

∀(ϑ1, . . . , ϑm) ∈ [0, 2π]m, is satisfied, with ı =
√
−1.

(3) Conditions
CPk1,...,km

(A1, . . . , Am)B = 0, (3)
∀(k1, . . . , km) ∈ Zm

≥0 are satisfied.
(4) Condition (3) hold ∀(k1, . . . , km) ∈ Zm

≥0 such that
m∑

j=1
kj < n. (4)

Furthermore, if the strongH2 norm of (1) is finite, it equals
its H2 norm.

Determining whether (2) holds, corresponds to check-
ing a semi-infinite equality over a hyper-cube, that can
be reduced to checking an infinite but countable num-
ber of equalities (3) and finally to a finite number of
equalities determined by (4). As shall be discussed in
the presentation, the equivalence between statements (1)
and (2) follows from an analysis of the feedthrough
terms in the transfer matrix, the equivalence between
(1) and (3) from an explicit expression of the impulse
response. Finally, the restriction (4) in the numbers of
equalities to be checked stems from the observation that{
Pk1,...,km(A1, . . . , Am) :

∑m
j=1 kj = `

}
, with ` ≥ 0, are

the coefficients of the expansion of the multi-variable ma-
trix polynomial (A1z1 + . . . + Amzm)`, followed by an
application of the Cayley-Hamilton theorem.
It is at this point not yet clear how to compute the H2
norm whenever it is finite. These observations motivate
the developments in the next section.

2. TRANSFORMATION TO A NEUTRAL TYPE
SYSTEM

For the sake of a clear presentation, let us first recall the
two approaches that exist to perform the transformation of
(1) to a delay equation of neutral type, which we will refer
to in what follows as regularization mechanisms (RMs):

RM1 If B = 0, then one can apply the operator
(

d
dt + I

)
to the second set of equations, leading to

ẋ2(t)−
m∑

i=1
Aiẋ2(t− hi)−

m∑
i=0

A
(21)
i ẋ1(t− hi) =

− x2(t) +
m∑

i=1
Aix2(t− hi) +

m∑
i=0

A
(21)
i x1(t− hi),

which corresponds to a multiplication with (s + 1)
in the frequency domain. The reason for combining
differentiation with addition to the original equation
lies in the preservation of internal stability.

RM2 If C = 0, one can define a new variable x̂2 via
the stable differential equation ˙̂x2 + x̂2 = x2 and
subsequently substituting x2 in (1), leading to

ẋ1(t)−
m∑

i=0
A

(12)
i

˙̂x2(t− hi) =
m∑

i=0
A

(11)
i x1(t− hi)

+
m∑

i=0
A

(12)
i x̂2(t− hi) +B1u(t)

˙̂x2(t)−
m∑

i=1
Ai

˙̂x2(t− hi) = −x̂2(t) +
m∑

i=1
Aix̂2(t− hi)

+
m∑

i=0
A

(21)
i x1(t− hi) +Bu(t),

y(t) = C1x1(t).
It should be noted that RM2 is equivalent to applying
RM1 to the dual (transposed) system of (1), followed by
taking the transposed system again.
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If B 6= 0 in RM1, differentiation of the difference part
leads to derivatives of the input, whereas if C 6= 0 in
RM2, the change of variable implies taking derivatives of
the output. Derivatives of the input and output signals in
the regularized system are not desired, and their absence
is also of prime importance for the computation of ‖G‖H2 ,
as shall become clear from Corollary 3.
The presented approach to handle the general case, where
B 6= 0 and C 6= 0, consists of proving first that if the H2
norm is finite, system (1) has the same transfer matrix as
the augmented system
d

dt
x1(t) =A(11)

0 x1(t) +A
(12)
0 x2(t) +

m∑
j=1

A
(11)
j x1(t− hi)

+
m∑

j=1
A

(12)
j x2(t− hj) +B1u(t)

x2(t) =A(21)
0 x1(t) +

m∑
j=1

A
(21)
j x1(t− hj)

+
m∑

j=1
Ajx2(t− hj) +Bu(t)

x3(t) =A(21)
0 x1(t) +

m∑
j=1

A
(21)
j x1(t− hj)

+
m∑

j=1
Ajx3(t− hj)

y(t) =C1x1(t) + Cx3(t),
(5)

where an additional variable x3 is introduced, which allows
to alternatively express the output equation (in terms of
x1 and x3 instead of x1 and x2).
Next, the structure of (5) is such that we can apply
RM1 and RM2 without differentiation of input or output.
More precisely, since the equation for x3 does not depend
on the input we can turn it into a differential equation
by applying RM1. Since the alternative output equation
does not depend on x2 we can apply RM2 and substitute
x2 by ˙̂x2 + x̂2. The additional dynamics, introduced by
differentiation, are stable and either not controllable or not
observable. In this way, we arrive at the following result.
Theorem 2. Let system (1) be strongly stable and condi-
tion (3)-(4) be satisfied. Consider the neutral type system

D0ẋ(t)−
m∑

i=1
Diẋ(t− hi) =

m∑
i=0
Fix(t− hi) + Bu(t),

y(t) =Cx(t),
(6)

where x(t) ∈ R2n+r is a extended state vector composed
by x1, x̂2 and x3, BT :=

[
BT

1 BT 0
]
, C := (C1 0 C) ,

D0 =

 I −A(12)
0 0

0 I 0
−A(21)

0 0 I

 , Di =

 0 A
(12)
i 0

0 Ai 0
A

(21)
i 0 Ai


and

F0 =

A
(11)
0 A

(12)
0 0

A
(21)
0 −I 0

A
(21)
0 0 −I

 , Fi =

A
(11)
i A

(12)
i 0

A
(21)
i Ai 0

A
(21)
i 0 Ai

 ,

i = 1, . . . ,m, and its transfer matrix

G(s) := CH−1(s)B s ∈ C \ Λn

with Λn := {s ∈ C : det(H(s)) = 0}, and

H(s) = sD0 − s
m∑

i=1
Die
−shi −

m∑
i=0
Fie
−shi .

It holds that
G(s) = G(s), s ∈ C \ Λn.

Moreover, the spectrum of system (6) satisfies
Λn = Λ ∪ Λd ∪ {−1}, (7)

where Λd := {s ∈ C : det(A22(s)) = 0}.

This result is particularly relevant for providing a formula
for the computation of the H2 norm, as shown in the
next corollary. Note that if the strong H2 norm is finite,
it equals the H2 norm for the nominal delay values; see
Theorem 1.
Corollary 3. If system (1) is strongly stable and condition
(3)-(4) are satisfied, then we have

9G9H2 = ‖G‖H2 = ‖G‖H2 =
√

Tr (BTU(0)B),

where U : [−hm, hm] 7→ Rn×n is the so-called delay
Lyapunov matrix associated with CTC of neutral type
system (6).

3. FURTHER READING

For more details on the above notions and derivations and
more illustrative examples, we refer to Gomez et al. (2020)
and Mattenet et al. (2022).
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1. INTRODUCTION

A square matrix whose diagonal entries are all zero, is
sometimes called a hollow matrix, e.g. Charles et al. (2013);
Farber and Johnson (2015); Kurata and Bapat (2016);
Neven and Bastin (2018). By a theorem of Fillmore (1969),
which is closely related to older results of Schur (1923);
Horn (1954), every real square zero-trace matrix is orthog-
onally similar to a hollow matrix. Taken with a pinch of
salt, the structure of a hollow matrix can be viewed as the
negative of the spectral normal form (e.g. of a symmetric
matrix), where the zeros are placed outside the diagonal.
While the spectral form reveals an orthogonal basis of
eigenvectors, a hollow form reveals an orthogonal basis of
neutral vectors, i.e. vectors for which the quadratic form
associated to the matrix vanishes.
This property turns out to be relevant in asymptotic
eigenvalue considerations. More concretely, we use it to
extend and give new proofs for results on stabilization of
linear systems by rotational forces or by noise. Since the
pioneering work of Arnold et al. (1983) these phenomena
have received ongoing attention, with current interest e.g.
in stochastic partial differential equations or Hamiltonian
systems, Sri Namachchivaya and Vedula (2000); Cara-
ballo and Robinson (2004); Kolba et al. (2019). Our new
contribution concerns simultaneous stabilization by noise
and features a new method of proof, which relies on an
orthogonal transformation of matrices to hollow form.
It is easy to see that – in contrast to the spectral transfor-
mation – the transformation to hollow form leaves a lot of
freedom to require further properties. In the present note,
we first show that it is possible to transform two zero-
trace matrices simultaneously to an almost hollow form,
as will be specified in Section 2. In a non-constructive
manner, the proof can be based on Brickman’s theorem
Brickman (1961) that the real joint numerical range of
two real matrices is convex. Moreover, the simultaneous
transformation result allows to prove a stronger version of
Fillmore’s theorem, namely that every real square zero-
trace matrix is orthogonal-symplectically similar to a hol-
low matrix.

As an application, we show that a number of linear dis-
sipative systems can be stabilized simultaneously by the
same stochastic noise process, provided the coefficient ma-
trices can be made almost hollow simultaneously by an
orthogonal transformation.
The basis of this contribution is the paper Damm and Fass-
bender (2020), from which essential parts of this extended
abstract are taken. But we also consider some more recent
extensions and examples.

2. HOLLOW MATRICES AND ORTHOGONAL
TRANSFORMATIONS

We first review some known facts on hollow matrices and
then present our main results.
Definition 1. Let A = (aij) ∈ Rn×n.
(i) We call A hollow, if aii = 0 for all i = 1, . . . , n.
(ii) We call A almost hollow, if aii = 0 for i = 3, . . . , n

and a11 = −a22.
(iii) We say that A is 2×2-block hollow, if aii = −ai+1,i+1

for i = 1, 3, . . . and ann = 0 in the case that n is odd.
(iv) If traceA = 0, then A is called a zero trace matrix.

Obviously, ’hollow’ ⇒ ’almost hollow’ ⇒ ’2 × 2-block
hollow’ ⇒ ’zero trace’. Vice versa, traceA = 0 implies
that A is orthogonally similar to a hollow matrix. This
result has been proven in Fillmore (1969). We add a proof,
because similar arguments will be used later.
Lemma 2. Let A ∈ Rn×n with traceA = 0.
(a) There exists a vector v ∈ Rn with v ̸= 0, such that

vTAv = 0.
(b) There exists an orthogonal matrix V ∈ Rn×n, such

that V TAV is hollow.

Proof. (a) If a11 = 0, then we can choose v = e1.
Otherwise let (after possibly dividing A by a11) w.l.o.g.
a11 = 1. Since traceA = 0, there exists j ∈ {2, . . . , n}
with ajj < 0. For v = xe1 + ej with x ∈ R, we have

vTAv = x2 + (a1j + aj1)x+ ajj
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which has two real zeros. Hence (a) follows.
(b) Extend v1 = v/∥v∥ with v from (a), to an orthonormal

matrix V1 = [v1, . . . , vn]. Then V TAV =

[
0 ⋆
⋆ A1

]
with

A1 ∈ R(n−1)×(n−1) and traceA1 = traceA = 0. Therefore
we can proceed with A1 as with A.
Corollary 3. For A ∈ Rn×n, there exists an orthogonal
matrix V ∈ Rn×n, such that all diagonal entries of V TAV
are equal.

Proof. We set A0 = A− traceA
n I. By Lemma 2 there exists

an orthogonal matrix V such that V TA0V is hollow. Then
V TAV = V TA0V + traceA

n I.
Remark 4. (a) A transformation matrix V making V TAV

hollow as in Lemma 2 will sometimes be called an
(orthogonal) hollowiser (for A).

(b) As is evident from the construction, the hollowiser
V is not unique. In the following we will exploit this
freedom to transform two matrices simultaneously or
to replace V by an orthogonal symplectic matrix.

(c) Since V TAV is hollow, if and only if V T (A + AT )V
is hollow, there is no restriction in considering only
symmetric matrices.

(d) We are mainly interested in the real case, but it is
possible to transfer our results to the complex case,
where A ∈ Cn×n and V is unitary.

2.1 Simultaneous transformation of two matrices

Simultaneous transformation of several matrices to a cer-
tain form (e.g. spectral form) usually requires quite re-
strictive assumptions. Therefore it is remarkable that an
arbitrary pair of zero trace matrices can simultaneously
be transformed to an almost hollow pair. This is a conse-
quence of a Brickman’s theorem.
Theorem 5. (Brickman (1961)). Let A,B ∈ Rn×n with
n ≥ 3. Then the set

W (A,B) = {(xTAx, xTBx)
∣∣ x ∈ Rn, ∥x∥ = 1}

is convex.
Proposition 6. Let A,B ∈ Rn×n be zero trace matrices.
(a) If n ≥ 3, there exists a nonzero vector v ∈ Rn, such

that vTAv = vTBv = 0.
(b) There exists an orthogonal matrix V ∈ Rn×n such

that V TAV is hollow and V TBV is almost hollow.

Proof. (a): By Lemma 2, we can assume w.l.o.g. that A
is hollow. If bjj = 0 for some j, then we can choose v = ej .
Otherwise, since traceB = 0, not all the signs of the bjj
are equal. For simplicity of notation assume that b11 > 0
and b22 < 0. The points (eT1 Ae1, e

T
1 Be1) = (0, b11) and

(eT2 Ae2, e
T
2 Be2) = (0, b22) lie in the joint real numerical

range of A and B, defined as
W (A,B) = {(xTAx, xTBx)

∣∣ x ∈ Rn, ∥x∥ = 1} ⊂ R2 .

According to Theorem 5 the set W (A,B) is convex for
n ≥ 3. Hence it also contains (0, 0) = (vTAv, vTBv) for
some unit vector v ∈ Rn.
(b): Apply (a) repeatedly as in the proof of Lemma 2(b)
until the remaining submatrix is smaller than 3×3 (where
(a) is applied only for A).
Remark 7. The assumption in Proposition 6(a) that n ≥
3 is essential. As the standard counterexample consider

A =

[
1 0
0 −1

]
and B =

[
0 1
1 0

]
. For v = [ xy ], we have

vTAv = x2 − y2 and vTBv = 2xy. If both forms are zero,
then necessarily x = y = 0. Therefore, in general, a pair of
symmetric matrices with zero trace is not simultaneously
orthogonally similar to a pair of hollow matrices.

2.2 Symplectic transformation of a matrix

Symplectic transformations play an important role in
Hamiltonian systems, e.g. Meyer et al. (2009). We briefly
recapitulate some elementary facts. A real Hamiltonian
matrix has the form

H =

[
A P
Q −AT

]
∈ R2n×2n ,

where A ∈ Rn×n is arbitrary, while P,Q ∈ Rn×n are
symmetric. If J =

[
0 I
−I 0

]
, then all real Hamiltonian

matrices are characterized by the property that JH is
symmetric. A real matrix U ∈ R2n×2n is called symplectic
if UTJU = J . If U is symplectic, then the transforma-
tion H 7→ U−1HU preserves the Hamiltonian structure.
Amongst other things, symplectic orthogonal transforma-
tions are relevant for the Hamiltonian eigenvalue problem,
e.g. Paige and van Loan (1981); van Loan (1984); Fass-
bender (2000). There is a rich theory on normal forms of
Hamiltonian matrices under orthogonal symplectic trans-
formations (e.g. Byers (1986); Lin et al. (1999)). It is,
however, a surprising improvement of Lemma 2 that an
arbitrary zero trace matrix can be hollowised by a sym-
plectic orthogonal transformation.
Theorem 8. Consider a matrix A ∈ R2n×2n with n ≥ 1.
Then there exists a symplectic orthogonal matrix U , such
that UTAU has constant diagonal.

Proof. W.l.o.g. we can assume that A is symmetric with
traceA = 0. The transformation U is constructed in sev-
eral steps, where we make use of the orthogonal symplectic
transformations above.
1st step: Let d1, . . . , d2n denote the diagonal entries of A.
Using a suitable symplectic Givens matrix Gk(c, s) for the
transformation A+ = Gk(c, s)

TAGk(c, s) we can achieve
that d+k = d+k+n. After n such transformations we have

A+ =

[
A+

1 ⋆
⋆ A+

2

]
=



d+1 ⋆
. . .

⋆ d+n

⋆

⋆

d+1 ⋆
. . .

⋆ d+n


.

In particular traceA+
1 = traceA+

2 = 0.
2nd step: By Proposition 6, there exists an orthogonal
matrix V ∈ Rn×n, such that V TA+

1 V and V TA+
2 V

are (almost) hollow. Thus, for the symplectic orthogonal

matrix U =

[
V 0
0 V

]
, we have (with d1 = 0)
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UTA+U =


[
d1 a
a −d1

]
⋆

. . .
⋆ 0

⋆

⋆

[
d2 b
b −d2

]
⋆

. . .
⋆ 0

 .

3rd step: It suffices now to consider 4 × 4 matrices of

the form A =

[
d1 a ⋆ ⋆
a −d1 ⋆ ⋆
⋆ ⋆ d2 b
⋆ ⋆ b −d2

]
. For these, a symplectic

orthogonal transformation can be computed explicitly, but
the details are omitted here.

3. APPLICATIONS TO STABILIZATION PROBLEMS

In this section we present two related stabilization prob-
lems. Both deal with unstable linear ordinary differential
equations, whose coefficient matrix has negative trace.
Such systems have stable and unstable modes, but the
stable ones dominate. By a mixing of the modes the system
can be stabilized. This mixing can be achieved e.g. by
adding rotational forces or stochastic terms. For both cases
we extend known results from the literature. The basic idea
lies in an asymptotic analysis based on the hollow forms
constructed in the previous sections.

3.1 Hamiltonian stabilization by rotation

A linear autonomous system ẋ = Ax is called asymptoti-
cally stable, if all solutions x(t) converge to 0 for t → ∞.
It is well known, that this is equivalent to the spectrum of
A being contained in the open left half plane, σ(A) ⊂ C−.
In this case, necessarily traceA < 0. Vice versa, one can
ask, whether for any matrix A with traceA < 0, there
exists a zero trace matrix M of a certain type, such that
σ(A + M) ⊂ C−. In Crauel et al. (2007) it has been
shown, that such a matrix M can always be chosen to
be skew-symmetric. Then we say that M stabilizes A or
by rotation, see e.g. Baxendale and Hennig (1993). The
following theorem extends this result.
Theorem 9. Let A ∈ R2n×2n with traceA < 0. Then there
exists a skew-symmetric Hamiltonian matrixM , such that
σ(A+M) ⊂ C−.

3.2 Simultaneous stabilization by noise

Stabilization of a dynamic system by noise processes is
an interesting phenomenon, which was analyzed in Arnold
et al. (1983) (see also e.g. Arnold (1990); Caraballo and
Robinson (2004)). As a particular situation, we consider
the Stratonovich equation

dx = Axdt+Mx ◦ dw .

For a given matrix A ∈ Rn×n we want to constructM such
that this system is asymptotically mean square stable.
It follows from results in Arnold et al. (1983) that this
is possible (with a skew-symmetric M), if and only if
traceA < 0. Here we derive the following generalization.
Theorem 10. Let A1, A2 ∈ Rn×n with traceA1 < 0 and
traceA2 < 0 be given. Then there exists a common skew-
symmetric matrix M , such that the systems

dx1 = A1x1 dt+Mx1 ◦ dw1

dx2 = A2x2 dt+Mx2 ◦ dw2

are both asymptotically mean square stable.
Remark 11. The proof of Theorem 10 exploits a simulta-
neous orthogonal transformation of Aj− traceAj

n I, j = 1, 2
to 2× 2-block hollow form, which exists by Proposition 6.
If, more generally, such a simultaneous transformation is
possible for m > 2 matrices Aj ∈ Rn×n with traceAj < 0
for j = 1, . . . ,m, then by the same argument there exists
a common matrix M , such that all systems

dxj = Ajxj dt+Mxj ◦ dwj j = 1, . . . ,m

are asymptotically mean square stable.

4. OUTLOOK

Remark 11 raises the following question: How many zero-
trace n×n matrices can be transformed simultaneously to
2 × 2-block hollow form by an orthogonal matrix V ? Let
us call such a set now briefly 2× 2-hollowisable.
Note that the set of n×n orthogonal matrices constitutes
a manifold of dimension N = 1

2n(n− 1). We can view this
as the number of degrees of freedom. To count the number
of constraints let us assume n to be even. For a zero trace
matrix A ∈ Rn×n, the condition that Ã = V TAV is 2× 2-
block hollow imposes the C = 1

2 (n − 1) conditions ã11 =
−ã22, ã33 = −ã44, . . . , ãn−3,n−3 = −ãn−2,n−2. The last
condition ãn−1,n−1 = −ãn,n is then satisfied automatically
by the zero trace condition.
Thus, we might hope for N/C = n zero trace n ×
n matrices to be 2 × 2-hollowisable. This is endorsed
by numerical experiments with randomly generated zero
trace matrices. On the other hand, the following lemmas
provide counterexamples of, respectively, four 4 × 4 zero
trace matrices and five zero trace matrices of arbitrary
dimensions that are not 2 × 2-hollowisable. These results
follow by elementary but tedious calculations, which are
omitted.
Lemma 12. The set of matrices[

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

]
,

[
0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

]
,

[
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

]
,

[
1 0 0 1
0 −1 0 0
0 0 0 0
1 0 0 0

]
.

is not 2× 2 hollowisable.
Lemma 13. For the matrices B1, . . . , B5 given by[

1 0 0
0 −1 0
0 0 0

]
,
[
1 0 0
0 0 0
0 0 −1

]
,
[
0 1 0
1 0 0
0 0 0

]
,
[
0 0 1
0 0 0
1 0 0

]
,
[
0 0 0
0 0 1
0 1 0

]
let Aj =

[
Bj 0
0 0

]
∈ Rn×n with n ≥ 3 and j = 1, . . . , 5.

Then the set {A1, . . . , A5} is not 2× 2-hollowisable.

This gives rise to further connections and questions. For
instance, a simultaneous transformation to a 2 × 2-block
hollow form is related to the real 2-nd joint numerical
range (cf. Fillmore and Williams (1971); Li and Poon
(2000)). General conditions on the convexity of the real
2-nd numerical range (like e.g. in Gutkin et al. (2004)) do
not seem to be available.
In particular, we have to discuss the following questions:

• Are three zero trace matrices always 2×2-hollowisable?
• Are four zero trace n× n matrices with n > 4 always
2× 2-hollowisable?

• What general condition makes n zero trace n × n
matrices 2× 2-hollowisable?
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Abstract: In this work, we study economic model predictive control (MPC) in situations
where the optimal operating behavior is periodic. In such a setting, the performance of a plain
economic MPC scheme without terminal conditions can generally be far from optimal even with
arbitrarily long prediction horizons. Whereas there are modified economic MPC schemes that
guarantee optimal performance, all of them are based on prior knowledge of the optimal period
length or of the optimal periodic orbit itself. In contrast to these approaches, we propose to
achieve optimality by multiplying the stage cost by a linear discount factor. This modification
is not only easy to implement but also independent of any system- or cost-specific properties,
making the scheme robust against online changes therein. Under standard dissipativity and
controllability assumptions, we can prove that the resulting linearly discounted economic MPC
without terminal conditions achieves optimal asymptotic average performance up to an error
that vanishes with growing prediction horizons. Moreover, we can guarantee practical asymptotic
stability of the optimal periodic orbit under slightly stronger assumptions.

Keywords: Economic model predictive control, Optimal periodic operation, Turnpike property.
Mathematics Subject Classification (2020): Primary 93B45, 49N20.

1. INTRODUCTION

Economic model predictive control (MPC) (see, e.g., (Ellis
et al., 2014), (Grüne and Pannek, 2017), (Faulwasser et al.,
2018)) is an appealing control strategy for process control
and other engineering applications due to its ability to
directly optimize an economic criterion. In MPC, the
control input is computed at each time step by solving
a finite-horizon optimal control problem (OCP) online,
in which the cost to be optimized can represent energy
consumption, production amounts, or other physical or
virtual costs. Whereas this control strategy is intuitive
and in some examples very successful, its closed-loop
performance can generally be far from optimal.
It is known that optimal operation at a steady state or at
a periodic orbit is under a mild controllability condition
equivalent to a certain dissipativity property (Müller et al.,
2015). This property can be used to prove convergence
of the closed loop to the optimal operating behavior by
adding suitable terminal cost or terminal constraints to
the OCP (see, e.g., (Amrit et al., 2011) for steady states,
or (Zanon et al., 2017) for periodic orbits). Whereas this
modification leads to an optimal asymptotic average per-

? F. Allgöwer and M. A. Müller are thankful that this work was
funded by Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) – AL 316/12-2 and MU 3929/1-2 - 279734922.
L. Schwenkel thanks the International Max Planck Research School
for Intelligent Systems (IMPRS-IS) for supporting him.

formance of the closed loop, it requires significant of-
fline design efforts including knowledge of a local control
Lyapunov function with respect to the optimal steady
state or optimal periodic orbit. A different approach is
to implement the OCP without any terminal conditions.
In case that steady-state operation is optimal, this plain
MPC scheme achieves suboptimal asymptotic average per-
formance under a similar dissipativity and controllability
assumption, where the suboptimality is vanishing with
growing prediction horizons (Grüne, 2013), (Grüne and
Stieler, 2014). However, a fundamental limitation of this
scheme is observed in (Müller and Grüne, 2016, Ex. 4):
In case that periodic operation is optimal, the closed-loop
asymptotic average performance can generally be far from
optimal even for arbitrarily long prediction horizons. The
problem is when the value function varies on the optimal
periodic orbit, an unrewarding first step (e.g., waiting)
may be preferred just to have a certain phase at the end of
the prediction horizon. Since in MPC only the first step is
actually implemented, it can cause a severe performance
loss in closed loop if the first step is unrewarding. As
solution, Müller and Grüne (2016) propose to implement
a p?-step MPC scheme, where p? is the optimal period
length. Alternatively, Köhler et al. (2018) require the stage
cost and the value function to be constant on the optimal
periodic orbit. However, both solutions are not entirely
satisfying since they either only work in a particular spe-
cial case or still depend on the system and cost specific
knowledge of the optimal period length such that an offline
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design is necessary and needs to be repeated whenever the
system or the economic cost change during operation.
In this work, we provide a solution to this latter problem
and propose to mitigate the troubling effects at the end
of the prediction horizon by multiplying the cost with a
linear discount factor, which does not require any offline
design and must not be adapted if the system or the cost
change online. The main contribution of this work is a
mathematical proof that this linearly discounted economic
MPC scheme without terminal conditions achieves optimal
asymptotic average performance up to an error vanishing
with growing prediction horizons in situations where the
optimal operating behavior is periodic. Moreover, we show
that the MPC scheme renders the optimal orbit practically
asymptotically stable. Both results are established based
on a weaker version of the well known turnpike property,
which is commonly used to analyze economic MPC with-
out terminal conditions (e.g., (Grüne and Pannek, 2017)).
However, due to space limitations, all proofs and numerical
examples are omitted in this extended abstract and can be
found in the journal version (Schwenkel et al., 2022).
The extended abstract is structured as follows: After
denoting the problem setup more formally in Sec. 2 and
defining the discounted OCP in Sec. 3, we state the main
results in Sec. 4 and discuss our conclusions in Sec. 5.

Notation. We denote the set of naturals including 0 by
N, the set of reals by R, and the set of integers in the
interval [a, b] by I[a,b] for a ≤ b and define I[a,b] = ∅
for a > b. Further, we define the notation [k]p for the
modulo operation, i.e., for the remainder when dividing
k by p. Let K∞ denote the set of continuous and mono-
tonically increasing functions α : [0,∞) → [0,∞) that
satisfy α(0) = 0 and limt→∞ α(t) = ∞. Moreover, let L
denote the set of continuous and monotonically decreasing
functions δ : [0,∞)→ [0,∞) that satisfy limt→∞ δ(t) = 0.

2. PROBLEM SETUP

In this section, we state the problem setup, which is
to optimize the asymptotic average performance when
controlling a nonlinear system that is optimally operated
at a periodic orbit. As in (Müller and Grüne, 2016), (Zanon
et al., 2017), and (Köhler et al., 2018), we consider a
nonlinear discrete-time system

x(k + 1) = f(x(k), u(k)) (1)
subject to the constraints x(k) ∈ X ⊂ Rn and u(k) ∈ U ⊂
Rm. We denote the trajectory resulting from a specific
input sequence u ∈ UN and the initial condition x0 ∈ X
with xu(k, x0), defined by xu(0, x0) = x0 and xu(k +
1, x0) = f(xu(k, x0), u(k)) for k ∈ I[0,N−1]. Occasionally,
we will use this notation also for feedback laws µ : X→ U,
in the natural sense u(k) = µ(xµ(k, x0)). Further, for each
x ∈ X we denote the set of feasible control sequences of
length N starting at x with UN (x) := {u ∈ UN |∀k ∈
I[0,N ] : xu(k, x) ∈ X}. The system is equipped with a stage
cost function ` : X×U→ R and the control objective is to
operate the system such that ` is minimized. To be more
precise, for each x ∈ X and u ∈ UT (x) we can define the
accumulated cost

JT (x, u) :=
T−1∑
k=0

`(xu(k, x), u(k)). (2)

We are interested in finding a controller that generates in
closed loop a sequence of inputs u ∈ U∞(x) such that the
asymptotic average performance

Jav
∞ (x, u) = lim sup

T→∞

1
T
JT (x, u) (3)

is minimized. All assumptions in this paper are equivalent
to assumptions in Müller and Grüne (2016), especially the
main results are stated under the same assumptions.
Assumption 1. (Continuity and compactness).
The functions f and ` are continuous, and the constraints
X × U are compact. The set X is control invariant, i.e.,
U∞(x) 6= ∅ for all x ∈ X.

The assumption of control invariance of X is commonly
assumed in economic MPC without terminal conditions
(e.g., in (Grüne, 2013), (Müller and Grüne, 2016), or
(Köhler et al., 2018)) to simplify the analysis with the
argument that it can be relaxed using methods similar to
(Grüne and Pannek, 2017, Chapter 7.2 and 7.3).
Let us formally define (optimal, minimal) periodic orbits 1 .
Definition 2. (Optimal periodic orbit).
A p-tuple Π ∈ (X×U)p, p ∈ N is called a feasible p-periodic
orbit, if its projection ΠX onto Xp satisfies

ΠX([k + 1]p) = f(Π(k)) (4)
for all k ∈ I[0,p−1]. A p-periodic orbit Π is called minimal,
if ΠX(k) = ΠX(j) ⇒ k = j for all k, j ∈ I[0,p−1]. The
distance of a pair (x, u) ∈ X× U to the orbit Π is defined
as ‖(x, u)‖Π := infk∈I[0,p−1] ‖(x, u)− Π(k)‖. The set of all
feasible p-periodic orbits is denoted by SpΠ. The average
cost at Π ∈ SpΠ is defined as `p(Π) := 1

p

∑p−1
k=0 `(Π(k)). If

a feasible p?-periodic orbit Π? satisfies
`p
?

(Π?) = inf
p∈N,Π∈SpΠ

`p(Π) =: `?, (5)

then Π? is called an optimal periodic orbit and p? is called
an optimal period length.

Note that Ass. 1 guarantees that `? in (5) is finite and
that a minimizer Φ? exists. Further, note that in general
there might be several (minimal) optimal orbits not only
differing in their phase. However, if the following assump-
tion of strict dissipativity (taken from (Köhler et al., 2018,
Ass. 1)) is satisfied for a minimal orbit Π?, then this orbit
is optimal and unique up to phase shifts. Further, strict
dissipativity implies that the system is optimally operated
at a periodic orbit, i.e., the best achievable asymptotic
average performance is `? (Müller et al., 2015).
Assumption 3. (Strict dissipativity).
There exists a storage function λ : X → R bounded on X
and a function α˜̀ ∈ K∞, such that the rotated stage cost

˜̀(x, u) = `(x, u)− `? + λ(x)− λ(f(x, u)) (6)
satisfies for all x ∈ X and all u ∈ U1(x)

˜̀(x, u) ≥ α˜̀(‖(x, u)‖Π?). (7)
1 We use p-tuples Π ∈ (X×U)p as in (Zanon et al., 2017) instead of
subsets Π ⊆ X× U with p elements as in (Müller and Grüne, 2016).
The definition of minimal orbits, however, is analogous to (Müller
and Grüne, 2016) to not only exclude multiple laps of the same orbit
as in (Zanon et al., 2017) but to also exclude, e.g., 8-shaped orbits.
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Additionally, we need the following two controllability
conditions taken from (Müller and Grüne, 2016, Ass. 10
and 11).
Assumption 4. (Local controllability at Π?).
There exists κ > 0,M ′ ∈ N and ρ ∈ K∞ such that for
all z ∈ Π?

X and all x, y ∈ X with ‖x − z‖ ≤ κ and
‖y − z‖ ≤ κ there exists a control sequence u ∈ UM ′(x)
such that xu(M ′, x) = y and
‖(xu(k, x), u(k))‖Π? ≤ ρ

(
max{‖x‖Π?X , ‖y‖Π?X}

)
(8)

holds for all k ∈ I[0,M ′−1].
Assumption 5. (Finite-time reachability 2 of Π?).
For κ > 0 from Ass. 4 there exists M ′′ ∈ N such that for
each x ∈ X there exists K ∈ I[0,M ′′] and u ∈ UK(x) such
that ‖xu(K,x)‖Π?X ≤ κ.

In (Köhler et al., 2018, Cor. 2) it is shown that the local
controllability (Ass. 4) guarantees equivalence of the strict
dissipativity assumptions from our setup (Ass. 3) and
from (Müller and Grüne, 2016, Ass. 9). Hence, we impose
equivalent assumptions as Müller and Grüne (2016).

3. LINEARLY DISCOUNTED MPC SCHEME

In this section, we define the linearly discounted economic
MPC scheme starting with the finite-horizon discounted
cost functional

JβN (x, u) :=
N−1∑
k=0

βN (k)`(xu(k, x), u(k)) (9)

with the linear discount function βN (k) := N−k
N . Further,

the corresponding optimal value function is
V βN (x) := inf

u∈UN (x)
JβN (x, u). (10)

Due to Ass. 1 we know that JβN is continuous and that
for each x ∈ X the set UN (x) is nonempty and compact.
Therefore, there exists for each x ∈ X a possibly non-
unique input sequence uβN,x ∈ UN (x) that attains the
infimum, i.e., V βN (x) = JβN (x, uβN,x). Then we can define
the standard MPC feedback law

µβN (x) := uβN,x(0), (11)

that is, for a given x we minimize JβN (x, u) and take the
first element of the, or if non-unique of some, minimizing
sequence uβN,x.

Before we start analyzing the closed-loop performance of
this scheme, we want to share some intuition how discount-
ing can be beneficial when dealing with a periodic optimal
behavior. In the counter example in (Müller and Grüne,
2016, Exmp. 4) a plain economic MPC scheme without
terminal conditions fails to converge to the optimal peri-
odic orbit for all (arbitrarily long) odd prediction horizons.
The problem occurring therein is that a certain phase at
the end of the prediction horizon is preferred such that
for any odd prediction horizon, it is better to first wait
one time step before approaching the 2-periodic orbit. In
closed loop, the control law (11) leads to waiting forever.
2 Technically, Ass. 5 guarantees finite-time reachability of a neigh-
borhood of Π?. Together with the local controllability Ass. 4, reach-
ability of Π? in M ′′ + M ′ steps follows.

A discount can overcome this problem, as the reward of
ending at the right phase is discounted more than the cost
of waiting at the first time step.
The idea of discounting the stage cost function is not new,
however, in the context of economic MPC there are only
a few works considering exponential discounts, such as,
for example, (Grüne et al., 2016), (Grüne et al., 2021),
(Zanon and Gros, 2022). In our setup, an exponential
discount βN (k) = βk for some β ∈ (0, 1) would decrease
too fast as we need limN→∞

∑N−1
k=0 βN (k) = ∞ to make

sure that the reward in the discounted cost function of
being at the optimal orbit is larger than any transient
cost of approaching it as long as the prediction horizon is
sufficiently large. As the following section shows, a linear
discount factor provides not only this property but is also
appealing to analyze since we can exploit the linearity.
Linear discounts are much less common than exponential
discounts, nonetheless, a similar linear discount factor has
also been used by Soloperto et al. (2022), however, in a
different context of learning-based MPC.

4. OPTIMAL AVERAGE PERFORMANCE

In this section, we discuss the key contribution of this pa-
per: The linearly discounted economic MPC schemes with-
out terminal conditions from Sec. 3 achieves an asymp-
totic average performance that is optimal up to an error
vanishing with growing prediction horizons. This perfor-
mance result is analogous to the results known from other
economic MPC schemes without terminal conditions, com-
pare (Grüne and Stieler, 2014) in case of optimal steady-
state operation or (Müller and Grüne, 2016) in case of
optimal periodic operation using a p-step MCP scheme. In
these works, the proof of the performance bound is heavily
based on the so-called turnpike-property, which states that
solutions of the OCP stay for all but a fixed number
(independent of the length of the prediction horizon) of
time steps in the neighborhood of the optimal behavior.
Unfortunately, when discounting the stage cost we jeop-
ardize this property as due to the small weights at the
end of the horizon, more and more points could lie outside
the neighborhood, hence, this number now depends on the
length of the prediction horizon. The following theorem
shows that the number of points in the neighborhood still
grows faster than the number of points outside, which we
therefore call the weak turnpike property.
Theorem 6. (Weak turnpike property).
Let Ass. 1, 3, 4, and 5 hold. For ε > 0, N ∈ N and x ∈ X,
define the number of points of the optimal trajectory uβN,x
in an ε-neighborhood of the optimal orbit Π? as
Qβε (N, x) =

#
{
k ∈ I[0,N−1]

∣∣∣ ∥∥∥(xuβ
N,x

(k, x), uβN,x(k)
)∥∥∥

Π?
≤ ε
}
. (12)

Then, there exist α1 ∈ K∞ such that

Qβε (N, x) ≥ N −
√
N

α1(ε) (13)

holds for all x ∈ X, N ∈ N, and ε > 0.

Remember that in the commonly known turnpike property
(see, e.g., (Grüne and Pannek, 2017)) the

√
N term in

(13) is a constant independent of N . Hence, whereas the
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weak turnpike property does not imply that the number
of points outside the ε-neighborhood N − Qβε (N, x) is
bounded by a constant, it still satisfies that the proportion
of points inside is growing to 1, i.e., limN→∞

1
NQ

β
ε (N, x) =

1. This weaker property is actually still enough to show
the following performance bound, which is analogous to
the one from (Müller and Grüne, 2016).
Theorem 7. (Asymptotic average performance).
Let Ass. 1, 3, 4, and 5 hold. Then there exists δ ∈ L such
that for each prediction horizon length N ∈ N, the MPC
feedback law µβN defined in (11) results in an asymptotic
average performance that is not worse than

Jav
∞ (x, µβN ) ≤ `? + δ(N). (14)

If the storage function λ is continuous and the optimal
orbit Π? is minimal, we can even guarantee practical
asymptotic stability of the optimal periodic orbit Π?.
Theorem 8. (Practical asymptotic stability).
Let Ass. 1, 3, 4, and 5 hold with a continuous storage
function λ and assume that Π∗ is a minimal orbit. Then
there exists ε ∈ L such that the optimal periodic orbit Π? is
practically asymptotically stable under the MPC feedback
µβN w.r.t. ε(N), i.e., there exists β ∈ KL and l ∈ I[0,p−1]
such that for all x ∈ X and k ∈ N we have
‖xµ(k, x)−ΠX([k + l]p)‖ ≤ max{β(‖x‖ΠX , k), ε(N)}. (15)

5. DISCUSSION AND CONCLUSION

In this work, we have shown that a linearly discounted eco-
nomic MPC scheme without terminal conditions achieves
an asymptotic average performance that is optimal up
to any desired level of suboptimality when the prediciton
horizon is sufficiently large. The main novelty of this work
is that both the proposed scheme and the performance
guarantee are independent of the optimal period length p?
(compared to (Grüne, 2013), which only holds for p? = 1,
i.e., steady states, and (Müller and Grüne, 2016), which
uses a p?-step MPC scheme).
When facing real world applications, it is in most cases
very difficult or even impracticable to design terminal
conditions. Often, the only practicable solution is to omit
terminal conditions and increase the prediction horizon N
until the closed-loop behavior is satisfactory. The work
of Grüne (2013) provides a theoretical justification for
this procedure in the case where optimal operation is a
steady state. Similarly, in the case where optimal operation
is a steady state or a periodic orbit, the present work
provides a theoretical justification to implement a linearly
discounted economic MPC schemes without terminal con-
ditions and increase its prediction horizon N until the
desired performance is reached.
Future work will need to investigate what length of the
prediction horizon is actually needed for a decent perfor-
mance. We expect that the stronger theoretical guarantees
come at a price. In cases where both discounted and non-
discounted schemes guarantee near-optimal asymptotic
average performance (e.g., when the optimal behavior is
a steady state) the discount might lead to an increase in
the suboptimality bound δ(N). On the other hand, having
practical asymptotic stability (Theorem 8) is expected
to result in a better transient performance compared to

having only practical convergence as in the p?-step MPC
scheme from (Müller and Grüne, 2016). This expectation
can be justified with (Grüne and Stieler, 2014), where
transient performance guarantees are based on practical
asymptotic stability. The simulation study in (Schwenkel
et al., 2022) sheds more light on the differences between
the schemes and supports our expectations. Moreover,
the results of this work suggest that also other discount
functions may guarantee the same qualitative performance
bound, which could lead to interesting insights how differ-
ent discounts affect the performance.
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Grüne, L., Müller, M.A., Kellett, C.M., and Weller, S.R. (2021).
Strict dissipativity for discrete time discounted optimal control
problems. Mathematical Control & Related Fields, 11(4), 771.
doi:10.3934/mcrf.2020046.
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closed-loop learning in model predictive control. IEEE Trans.
Automat. Control. doi:10.1109/TAC.2022.3172453.

Zanon, M. and Gros, S. (2022). A new dissipativity condition for
asymptotic stability of discounted economic MPC. Automatica,
141, 110287. doi:10.1016/j.automatica.2022.110287.
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Abstract: Jan Willems and co-authors introduced the characterization of finite-time behaviors
of linear systems via the image of Hankel matrices already in 2005. The increasing popularity and
research interest of data-driven control techniques has catalyzed the use of this result—which is
commonly known as Willems’ fundamental lemma—for predictive control and beyond. In this
note, we recap recent results on a stochastic extension of the fundamental lemma from (Pan
et al., 2021). Specifically, we leverage the framework of polynomial chaos expansions to derive
a computationally tractable stochastic extension of the fundamental lemma.
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1. INTRODUCTION

Data-driven system descriptions based on the fundamental
lemma by Willems et al. (2005) are subject to contin-
ued research interest. Essentially, the lemma states that
the trajectories of any controllable Linear Time Invari-
ant (LTI) system can be represented without explicit
knowledge of a state-space model. Specifically, provided
persistency of excitation holds, over any finite horizon
the manifest system behavior is contained in the column
space of a Hankel matrix constructed from recorded input-
output data. In absence of process and measurement noise,
this representation is exact. There are recent variants of
the original result, e.g., extensions to nonlinear systems
(Alsalti et al., 2021; Lian et al., 2021), to linear parameter-
varying and time-varying systems (Verhoek et al., 2021;
Nortmann and Mylvaganam, 2020), to linear network sys-
tems (Allibhoy and Cortés, 2020), and to linear descriptor
systems (Schmitz et al., 2022). We refer to De Persis
and Tesi (2019); Markovsky and Dörfler (2021) for recent
overviews. Data-driven control design and system analysis
with not necessarily persistently exciting data has been
investigated by van Waarde et al. (2020b).

Beyond the LTI setting, Coulson et al. (2019) propose a
heuristic approach to deal with measurement noise and
mild system nonlinearities by introducing slack variables
and regularization in the objective function. There is also a
line of research focusing on the robustness with respect to
measurement noise and/or process noise. While Berberich
et al. (2020); De Persis and Tesi (2021); van Waarde
et al. (2020a) consider the design of robust state feedback
controllers to deal with process noise, Yin et al. (2020) uses
maximum likelihood concepts to obtain an optimal Hankel
representation, and Coulson et al. (2021) views the noise

? RO and TF acknowledge funding by the German Federal Ministry
of Education and Research (BMBF) in the course of the 6GEM
research hub under grant number 16KISK038.

entering the Hankel matrix as a problem of distributional
robustness.

However, to the best of the authors’ knowledge, so far there
appears to be no stochastic variant of the fundamental
lemma. Hence, this note recalls the main results of a recent
submission (Pan et al., 2021), wherein we presented a
stochastic fundamental lemma for LTI systems. To this
end, we rely on Polynomial Chaos Expansion (PCE) which
is an established method that can be applied in Markovian
and non-Markovian settings. Its core idea is based on
the observation that random variables can be regarded as
elements of an L2 probability space and hence they admit
representations in appropriately chosen polynomial bases
(Sullivan, 2015).

This note recaps main results of Pan et al. (2021). The
remainder is structured as follows: In Section 2 we recall
the problem statements, while in Section 3 we present
selected results without proofs. Finally, the note ends with
conclusions in Section 4.

2. PROBLEM STATEMENT

We consider LTI systems of the following form

xk+1 =Axk +Buk + Ewk, x0 = xinit ∈ Rnx (1a)

yk =Cxk +Duk (1b)

where x ∈ Rnx , u ∈ Rnu , w ∈ Rnu , and y ∈ Rny refer to
the state, the input, the disturbance, and the output.

Definition 1. (Persistency of excitation). Let T, t ∈ N+.
A sequence of inputs u[0,T−1] is said to be persistently
exciting of order t if the Hankel matrix

Ht(u[0,T−1])
.
=


u0 u1 · · · uT−t
u1 u2 · · · uT−t+1

...
...

. . .
...

ut−1 ut · · · uT−1


is of full row rank. �
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Moreover, since (1) is driven by the inputs and the process
noise realizations, the extension of the fundamental lemma
of Willems et al. (2005) to the exogenous input data
(u,w)[0,T−1] is immediate. Below we use the notation

∀z ∈ {x,u,w,y} to highlight equations which have to hold
for a set of variables.

Lemma 1. (Deterministic fundamental lemma). Let T , t ∈
N+. If (u,w)[0,T−1] is persistently exciting of order nx + t

and (1) is controllable with respect to the exogenous inputs
(u,w), then (x̃, ũ, w̃, ỹ)[0,t−1] is an element of the behavior

of (1) if and only if there exists a g ∈ RT−t+1 such that

Ht(z[0,T−1])g = z̃[0,t−1], ∀z ∈ {x,u,w,y}. �

The above result provides a non-parametric system de-
scription of the LTI system (1). It allows to capture the
dynamics, once the uncertainty surrounding the distur-
bance w has realized (or when it is sampled). Hence, we
refer to (1) as realization dynamics. The crux is, however,
that the future evolution of the disturbance w ∈ Rnw is
usually not known or difficult to predict.

Thus, an alternative modelling can be done in terms of
random variables. This yields

Xk+1 =AXk +BUk + EWk, X0 = Xinit (2a)

Yk =CXk +DUk, (2b)

with state Xk ∈ L2(Ω,Fk, µ;Rnx), where Ω is the sample
space, F is a σ-algebra, F .

= (Fk)k=0,...,N is a stochastic
filtration, and µ is the considered probability measure.
In the underlying filtered probability space (Ω,F ,F, µ),
the σ-algebra contains all available historical information.
Likewise, the stochastic input Uk is modelled as a stochas-
tic process that is adapted to the filtration F, that is, Uk

only depends on X0, X1, ..., Xk. Note that the influence of
the noise Wi, i ≤ k is implicitly handled via the state re-
cursion. For more details on filtrations we refer to Fristedt
and Gray (2013).

The process noise Wk, k ∈ N is considered as i.i.d. ran-
dom variables whose underlying probability distribution
is assumed to be known. Additionally, the distribution of
the initial condition Xinit is also assumed to be known.
We remark that neither the distribution of Xinit nor the
one of Wk, k ∈ N needs to be Gaussian. Indeed, under
mild assumptions, our proposed framework is applicable
to random variables of finite variance.

3. SELECTED RESULTS

Considering the stochastic system (2), we are interested in
deriving a counterpart to Lemma 1. To this end, we recap
the basics of Polynomial Chaos Expansion (PCE).

3.1 Basics of Polynomial Chaos Expansion

PCE enables the propagation of uncertainties through
dynamics and it provides a finite dimensional representa-
tion of random variables. Its origins date back to Wiener
(1938); for a general introduction to PCE see Sullivan
(2015).

The main idea of PCE is that an L2 random variable can
be expressed in a suitable polynomial basis. To this end,
an orthogonal polynomial basis {φj(ω)}∞j=0 which spans

L2(Ω,F , µ;R), i.e.,

〈φi, φj〉 .=
∫

Ω

φi(ω)φj(ω) dµ(ω) = δij〈φj , φj〉,

where δij is the Kronecker delta, is considered. The PCE
of a real-valued random variable V ∈ L2(Ω,F , µ;R) with
respect to this basis is given by

V =
∞∑
j=0

vjφj with vj =
〈V, φj〉
〈φj , φj〉

, (3)

where vj ∈ R is called the j-th PCE coefficient.

Applying PCE component-wise the j-th PCE coefficient
of a vector-valued random variable V ∈ L2(Ω,F , µ;Rn) is

vj =
[
v1,j v2,j · · · vn,j

]>
,

where vi,j is the j-th PCE coefficient of component V i.

In numerical implementations the series has to be termi-
nated after a finite number of terms, i.e., one works with

V =
L−1∑
j=0

vjφj , (4)

where L ∈ N. Naturally, this may lead to truncation errors.
For the purpose of this note, we assume that all considered
PCE series are exact with finite expansion order L− 1 (in
the L2-equivalence sense). For a detailed investigation of
how exactness of the uncertainty propagation for the LTI
system (2) we refer to Mühlpfordt et al. (2018).

Remark 1. (Cond. probabilities, moments, and PCEs).
From a stochastic control perspective, it is natural to
ask how the PCE framework sketched above relates to
widely used concepts such as conditional probabilities,
conditional probability densities, and statistical moments.
For starters, we remark that the moments are obtained
as polynomial functions of the PCE coefficients (Sullivan,
2015). Due to the fact that the L2 framework covers a
wide range of random variables, it is not immediate to
give closed-form expressions of probability densities in the
PCE framework. Yet, given a PCE for Z = f(X,C) where
X,C ∈ L2(Ω,Fk, µ;Rnx) are independently distributed,
conditional densities and probabilities (e.g. P (Z |C = c)
can be approximated via sampling of Z = f(X, c) over
X. While the numerical details are skipped due to space
limitations, it is crucial to note that density information
and conditional probability information is not lost using
PCEs. �

3.2 Stochastic Fundamental Lemmata

Replacing all random variables of (2) with corresponding
PCE expansions with respect to the basis {φj(ω)}∞j=0 and
performing a Galerkin projection onto the basis functions
φj(ω), one obtains the dynamics of the PCE coefficients

with given initial condition xjinit for j ∈ {0, . . . , L− 1}
xjk+1 =Axjk +Bujk + Ewj

k, xj0 = xjinit, (5a)

yjk+1 =Cxjk +Dujk, ∀j ∈ {0, . . . , L− 1} (5b)

Since (5) is a deterministic LTI system, it allows the con-
ceptual application of the usual LTI fundamental lemma.

Lemma 2. (Fundamental lemma for PCE coefficients).
Let T, t ∈ N+. For all j ∈ {0, . . . , L − 1} and given

a trajectory tuple ( x, u, w, y)j[0,T−1] generated by (5),

suppose (u,w)
j
[0,T−1] is persistently exciting of order nx+t
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and (5) is controllable with respect to (uj ,wj). Then, for

all j ∈ {0, . . . , L− 1}, (x̃, ũ, w̃, ỹ)j[0,t−1] is an element of the

behavior of (5) if and only if there exists a gj ∈ RT−t+1

such that

Ht(z
j
[0,T−1])g

j = z̃j[0,t−1], ∀z ∈ {x, u,w, y}. �

The proof follows directly from the results of Willems et al.
(2005). Lemma 2 as such is straightforward but of limited
practical use. Consider the case that the disturbance w
is i.i.d., i.e. identically and independently distributed. In
terms of PCE this implies that the coefficients modelling
Wk, wj

k, are constant for all k. Hence, persistency of
excitation cannot be satisfied. Moreover, it is not trivial
to measure/estimate PCE coefficients of a stochastic LTI
system from data.

Recently, we made an observation which allows to over-
come the issue of persistency of excitation in the PCE
coefficient dynamics (5) (Pan et al., 2021). Specifically,
it is worth to be noted—in a model-based setting—that
the realization dynamics (1), the stochastic dynamics (2),
and the dynamics of the PCE coefficients (5) are all
parametrized by the same matrices (A,B,C,D,E). This,
in turn, implies that the subspaces spanned by available
data are equivalent (provided persistency of excitation
holds).

To the end of exploiting this observation, we introduce the
notation (z,Z) ∈ {(x,X), (u,U), (w,W), (y,Y)} which
expresses that x corresponds as a realization trajectory
to the random-variable trajectory X and likewise for
(u,U), (w,W), (y,Y).

Lemma 3. (Column-space equivalence). Consider system
(2) and an L2(Ω,Fk, µ;Rnz ), nz ∈ {nx, nu, nx, ny}
random-variable trajectory tuple (X,U,W,Y)[0,T−1]. Let

the corresponding PCE coefficient trajectories (u, w)j[0,T−1],

j ∈ {0, . . . , L−1} and the realizations (u,w)[0,T−1] be per-

sistently exciting of order nx+t, and let (1) be controllable
with respect to (u,w).

(i) Then, for all j ∈ {0, . . . , L − 1} and all (z, z) ∈
{(x, x), (u, u), (w,w), (y, y)}, it holds that

colsp
(
Ht(z

j
[0,T−1])

)
= colsp

(
Ht(z[0,T−1])

)
. (6a)

(ii) Moreover, for all g ∈ RT−t+1, there exists a G ∈
L2(Ω,F , µ;RT−t+1) such that

Ht(Z[0,T−1])g = Ht(z[0,T−1])G. (6b)

for all (z, Z) ∈ {(x, X), (u, U), (w,W ), (y, Y )}. �

In slightly different form this result has appeared as
Lemma 3 in Pan et al. (2021). Hence its proof is omitted.

The crucial observation is that in (6a) PCE data appears in
the Hankel matrices on the left hand side, while realization
data is used on the right hand side. This allows to overcome
the issue of persistency of excitation for PCE coefficients
by resorting to realization trajectory data instead.

Lemma 4. (Stochastic fundamental lemma).
Consider system (2) and its L2(Ω,Fk, µ;Rnz ), nz ∈
{nx, nu, nx, ny} trajectory tuples of random variables,
PCE coefficients (5), and the corresponding realiza-

tions (1), which are (X,U,W,Y)[0,T−1], (x,u,w,y)
j
[0,T−1],

j ∈ {0, . . . , L− 1}, and (x,u,w,y)[0,T−1]. Let (1) be con-

trollable with respect to (u,w), then following assertions
hold:

(i) Let (u,w)[0,T−1] be persistently exciting of order nx+

t. Then (X̃, Ũ,W̃, Ỹ)[0,t−1] satisfies the dynamics (2)

if and only if there exists G ∈ L2(Ω,F , µ;RT−t+1)
such that

Ht(z[0,T−1])G = Z̃[0,t−1] (7a)

for all (z, Z̃) ∈ {(x, X̃), (u, Ũ), (w,W̃)}.
(ii) Let (U,W)[0,T−1] satisfy

Z[0,T−1] =
L−1∑
j=0

zjφj , Z ∈ {U,W}

with L ∈ N and all PCE trajectories (u,w)
j
[0,T−1] with

j ∈ {0, . . . , L − 1} are persistently exciting of order
nx + t. If there exists a g ∈ RT−t+1 such that, for all
Z ∈ {X,U,W,Y},

Ht(Z[0,T−1])g = Z̃[0,t−1] (7b)

then (X̃, Ũ,W̃, Ỹ)[0,t−1] satisfies the dynamics (2). �

In slightly modified form, the proof of this result is
contained in Pan et al. (2021), where the result appears as
Lemma 4.

3.3 Discussion

Recall the usual form of a fundamental lemma, i.e., the
columns of the Hankel matrix constructed by past vari-
ables span the full, finite-horizon system behavior of the
LTI system. It is crucial to note that if the Hankel ma-
trix is constructed directly from random variables, this
usual form of the lemma does not necessarily hold in the
stochastic setting, cf. Part (ii) of Lemma 4. Specifically,
notice that upon applying Galerkin projection for L ∈ N
PCE basis functions to (7a) and using the equivalence

of colsp
(
Ht(z

j
[0,T−1])

)
and colsp

(
Ht(z[0,T−1])

)
established

in (6a), we obtain the system of linear equations to
compute the vector g[0,L−1]. This linear problem reads(
IL ⊗Ht(z[0,T−1])

)
g[0,L−1] = z̃[0,L−1], where ⊗ denotes

the Kronecker product and g[0,L−1] ∈ RL(T−t+1) stacks the
vectors gj into one vector. In contrast, Galerkin projection
of (7b) combined with column-space equivalence gives(
1L ⊗Ht(z[0,T−1])

)
g = z̃[0,L−1],where 1L is the L × 1

vector of all 1 and g is of dimension T − t + 1. In other
words, Galerkin projection of (7b) does not give sufficient
flexibility to represent all trajectories.

Example 1. (If and iff statements in Lemma 4).
We present a simple example illustrating why Part (ii)
of Lemma 4 does not admit an iff statement. Consider
the scalar stochastic system Xk+1 = 2Xk + Uk with past
trajectories given in terms of their PCEs

X0 = 0φ0 + 0φ1, U0 = 0φ0 + 1φ1,

X1 = 0φ0 + 1φ1, U1 = 1φ0 + 0φ1,

X2 = 1φ0 + 2φ1, U2 = 1φ0 + 1φ1.

Note that the PCE coefficients of U[0,2] satisfy the per-
sistency of excitation required by Part (ii) of Lemma 4.
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We aim to find g ∈ R3 in (7b) to represent X̃0 = 0φ0 +

1φ1, Ũ0 = 0φ0 + 1φ1. We obtain (7b) as[
X0 X1 X2

U0 U1 U2

]
g =

[
X̃0

Ũ0

]
. (8)

After Galerkin projection onto the basis functions and
stacking the projected equations we obtain Mg = c with

M =

0 0 1
0 1 1
0 1 2
1 0 1

 c =

0
0
1
1


where the upper block corresponds to φ0 and the lower one
to φ1. By the Rouché–Capelli theorem, Mg = c admits a
solution g if and only if [M |c] has the same rank as M .
Observe that rankM = 3 and rank [M |c] = 4. Thus, we
conclude that (8) does not admit solutions g ∈ R3. �

Remark 2. (Knowlegde of past noise realizations).
From an applications point of view further comments are
in order. First, observe that Lemma 4 requires knowledge
of past realization of noise trajectories. Depending on
the context such realization data might be accessible
a posteriori through measurements—e.g., consider cases
in which the disturbance Wk models volatile renewable
energy production or randomly varying energy demands,
cf. Bilgic et al. (2022)—or one may estimate them from
available measurements. For details on the latter for the
case of state feedback and E = I see (Pan et al., 2021). �

Remark 3. (Data-driven stochastic control). One may won-
der how to put the presented stochastic fundamental
lemma to use for stochastic predictive control leveraging
the lemma including numerical examples are provided
by Pan et al. (2021). For tailored numerical solutions
methods see (Ou et al., 2023), stability results for state
feedback can be given (Pan et al., 2022). �

Remark 4. (L2 Equivalence). From a conceptual point of
view, we remark that the PCE approach gives finite-
dimensional representations of random variables only in
an L2 equivalence sense. Hence, also the non-parametric
system description via the fundamental lemma is in gen-
eral to be understood in an L2 equivalence sense. �

4. CONCLUSIONS

This note has recalled first steps towards a fundamental
lemma for stochastic LTI systems. To this end, we have
recalled parts of the results of our recently submitted
paper (Pan et al., 2021). The crucial insights obtained
include the column-space equivalence of Hankel matrices
for PCE coefficients and realizations which in turn enables
the derivation of a fundamental lemma wherein the Hankel
matrix contains deterministic data (of realizations or PCE
coefficients) while the vector expressing linear combina-
tions of the columns becomes a vector-valued random
variable. Moreover, we have shown that the counterpart,
i.e. Hankel matrices in terms of random variables and a
deterministic vector expressing linear combinations, does
not lead to an equivalent description.
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Real hyperplane sections and linear series
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Abstract: Given a real algebraic curve in projective space, we study the computational problem
of deciding whether there exists a hyperplane meeting the curve in real points only. More
generally, given any divisor on such a curve, we may ask whether the corresponding linear series
contains an effective divisor with totally real support. This translates into a particular type of
parametrized real root counting problem that we wish to solve exactly.
We will focus on examples and some general results and conjectures, based on recent work with
Huu Phuoc Le and Dimitri Manevich.
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1. INTRODUCTION

In this talk I will survey some computational problems
concerning real algebraic curves. Results will be based on
a joint paper

Computing totally real hyperplane sections and linear
series on algebraic curves

by Huu Phuoc Le, Dimitri Manevich, Daniel
Plaumann

available from

https://arxiv.org/abs/2106.13990

and accepted for publication in Le Matematiche.

From the introduction:

Given a real algebraic curve X of degree d embedded
into some projective space, we consider the computational
problem of deciding whether there exists a real hyperplane
meeting X in a prescribed number r of real points, counted
with multiplicity. Of particular interest is the case r = d,
i.e., hyperplanes meeting X in real points only. More
generally, given any divisor D on X defined over R,
and thus consisting of real points and complex-conjugate
pairs, we may ask whether the linear series |D| contains
an effective divisor with totally real support. (The first
question is the special case when D is a hyperplane section
of a suitably embedded curve.) A number of general results
have been obtained in this direction: The answer is known
to be positive for any divisor of sufficiently high degree (see
Scheiderer (2000)). However, the precise degree required,
relative to the genus of X, is the subject of several
results and conjectures, some of which we will investigate
from a computational point of view. Explicit bounds are
only known if the real locus X(R) has many connected
components (so-called M -curves or (M − 1)-curves), by
results due to Huisman (2001) and Monnier (2003). On
the other hand, very little is known about curves whose
number of connected components is not close to maximal.

Fig. 1. A real space curve of degree 6 with a totally real
hyperplane section.

Of course, the computational problem makes sense for any
given curve and divisor, regardless of whether or not there
is a general result covering all curves and divisors of the
given kind.

It comes down to “solving” polynomial systems whose
coefficients depend on parameters. More precisely, we con-
sider the coefficients of the equation defining the hyper-
plane as parameters. One then associates a hyperplane to a
point in the space of parameters. The number of real points
at the intersection of the considered hyperplane with the
curve may vary depending on the parameters, while the
number of complex intersection points between the curve
and the hyperplane is equal to the degree d for generic
values of the parameters. (If the points are counted with
intersection multiplicities and the curve is not contained
in a hyperplane, this complex intersection number is equal
to d for all values of the parameters.) Hence, from a com-
putational point of view, we are considering a polynomial
system, depending on parameters such that, when these
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parameters take generic values, the solution set over the
complex numbers is finite. When the input system gener-
ates a radical ideal, the algorithm we use , which is detailed
in Le and Safey El Din (2020), computes a partition of
a dense semi-algebraic subset of the space of parameters
into open semi-algebraic sets such that the number of real
simple solutions (i.e., without multiplicities) to the input
system is invariant for any point chosen in one of these
sets. To do this, we compute a symmetric matrix called
the parametric Hermite matrix, whose entries are polyno-
mials depending on the parameters and such that, after
specialization, its signature coincides with the number of
real solutions to the specialized system. This allows us
to classify the possible number of real roots to the input
system with respect to the parameters.

Our main findings can be summarized as follows.

1. There exist canonical curves X in P3 with one or
two ovals which do not allow simple totally real
hyperplane sections.

2. There exists a curve X in P3 of genus two and degree
five having one oval which does not allow a simple
totally real hyperplane section.

3. There are infinitely many plane quartics X with many
ovals possessing a (complete) linear series of degree
four which does not contain a totally real divisor.

4. For every d ≥ 3 and every number 1 ≤ s ≤ g+ 1 with

g = (d−1)(d−2)
2 , there exists a plane curve X of degree

d, genus g and having s branches such that the linear
series of lines |L| is totally real.
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Abstract: This extended abstract presents several recent results and generalizations that have
been obtained in the theory of collision-freeness studied in Zerz and Herty (2019). A nonlinear
ODE system ẋ(t) = f(x(t)) is called collision-free if the solution to the initial value problem
with x(0) = x0 has distinct components for all times t whenever the initial state x0 has distinct
components. This is an important structural property of particle systems. Here, we address the
case where the state of the i-th particle has d components xik, and a collision occurs if there
exists t and i 6= j such that xik(t) = xjk(t) for all 1 ≤ k ≤ d.

Keywords: Structural properties; multivariable systems; linear/polynomial/nonlinear systems.
AMS Codes: 93B25, 93B27.

1. PRELIMINARIES AND KNOWN RESULTS

Let N ≥ 1 be an integer, U ⊆ RN an open set, and let
f : U → RN be a C1-function. Consider the ordinary
differential equation (ODE) ẋ(t) = f(x(t)). Let x0 ∈ U be
given. The initial value problem (IVP) ẋ = f(x), x(0) = x0

has a unique nonextendable C1-solution

ϕ(·, x0) : J(x0)→ U,

where J(x0) ⊆ R is an open interval containing t0 = 0,
called the maximal existence interval of the IVP. A subset
S ⊆ U is called invariant for ẋ = f(x) if x0 ∈ S implies
that ϕ(t, x0) ∈ S for all t ∈ J(x0). Clearly, a set S is
invariant if and only if its complement U \ S is invariant.

We are particularly interested in the case where the set
S is given by polynomial equations. Given a subset P ⊆
P := R[X1, . . . , XN ], we write

V := V(P ) = {x ∈ RN | p(x) = 0 for all p ∈ P}

for the variety defined by P . Conversely, the set

J (V ) = {p ∈ P | p(x) = 0 for all x ∈ V }

is an ideal in P. We have J (V1∪V2) = J (V1)∩J (V2) and
V(I1∩I2) = V(I1)∪V(I2) for varieties Vi ⊆ RN and ideals
Ii ⊆ P. Since P is Noetherian, any ideal in P is finitely
generated.

The Lie derivative of p ∈ P along f is defined by

Lf (p) =

N∑
i=1

∂p

∂Xi
fi ∈ C1(U,R).

? This work was supported by DFG-SFB 1481 and DFG-TRR 195.

In the special case where f is a polynomial function, which
will be identified with some f ∈ PN , we set U = RN and
we have Lf (p) ∈ P for all p ∈ P.

The following two results are folklore, but we state them
for the sake of self-containedness; see also Zerz and
Walcher (2012) and Harms et al. (2017).

Lemma 1. Let f ∈ PN and a variety V ⊆ RN be given.
Then V is invariant for ẋ = f(x) if and only if Lf (J (V )) ⊆
J (V ).

The following basic facts from algebraic geometry can
be found in standard textbooks such as Kunz (1985). A
variety V is said to be irreducible if it cannot be written
as a union V = V1 ∪ V2 with subvarieties Vi ( V . A
maximal irreducible subvariety of V is called an irreducible
component of V . Any variety V has only finitely many
irreducible components Vi, and V can be written as a union
of its irreducible components such that none of the Vi is
superfluous. A variety V is irreducible if and only if J (V )
is a prime ideal. Recall that an ideal p ( P is called prime
if pq ∈ p implies p ∈ p or q ∈ p.

Theorem 2. Let f ∈ PN and a variety V ⊆ RN be given.
Let V =

⋃
Vi be the decomposition of V into its irreducible

components. Then V is invariant for ẋ = f(x) if and only
if each Vi is.

With these preparations, we now introduce the central
concept of this contribution.

Definition. Let n ≥ 2 and d ≥ 1 be integers. A vector
x = (xT1 , . . . , x

T
n )T ∈ Rnd with xi = (xi1, . . . , xid)

T is
said to have d-distinct components if the xi are (pairwise)
distinct. An ODE ẋ = f(x) is called d-collision-free if
for any vector x0 with d-distinct components, the solution
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ϕ(t, x0) to the IVP ẋ = f(x), x(0) = x0 has d-distinct
components for all t in the maximal existence interval. A
matrix A ∈ Rnd×nd is called d-collision-free if the linear
ODE ẋ = Ax is d-collision-free.

Let Iij := 〈Xi1 −Xj1, . . . , Xid −Xjd〉 ⊆ P, where

P = R[X11, . . . , X1d, . . . , Xn1, . . . , Xnd]

is a polynomial ring in nd variables, and let

Vij := V(Iij) = {x ∈ Rnd | p(x) = 0 for all p ∈ Iij} ⊂ Rnd

be its vanishing set. Finally, let

V =
⋃

1≤i<j≤n

Vij . (1)

Clearly {V := Rnd \ V is the set of all vectors with d-
distinct components. By definition, ẋ = f(x) is d-collision-
free if and only if U \ V is an invariant set of this ODE.
Equivalently, U ∩ V itself is an invariant set of ẋ = f(x).

Since (1) is the decomposition of V into irreducible com-
ponents, we may conclude from Theorem 2 that ẋ = f(x)
with f ∈ Pnd is d-collision-free if and only if each Vij
is invariant, which means that x0i = x0j implies that
xi(t) = xj(t) for all t in the maximal existence interval
of the solution x with x(0) = x0.

2. LINEAR AND POLYNOMIAL SYSTEMS

In this section, we first analyze the d-collision-freeness of
linear systems, that is, ẋ = Ax with A ∈ Rnd×nd.

Notation. Let n denote the set {1, . . . , n}. For a matrix A ∈
Rnd×nd, we consider the partition of A into submatrices
Aij ∈ Rd×d for i, j ∈ n.

Theorem 3. Let A ∈ Rnd×nd be given. The following are
equivalent:

(i) A is d-collision-free.
(ii) The submatrices Aij of A satisfy

Aik = Ajk for all i, j, k ∈ n with i 6= k, j 6= k (2)

and
n∑
k=1

Aik =
n∑
k=1

Ajk for all i, j ∈ n. (3)

Note that in view of (2), Equation (3) is equivalent to

Aii +Aij = Aji +Ajj for all i, j ∈ n.

From the theorem, we derive the following insights into
the structural properties of d-collision-free matrices.

Corollary 4. Let R ⊆ Rnd×nd denote the set of all d-
collision-free matrices. Then R is a subring of Rnd×nd.
Any A ∈ R is uniquely determined by A11, . . . , A1n and
A21, where these matrices can be freely chosen. Thus the
dimension of R as a real vector space equals (n+ 1)d2.

Corollary 5. Let f ∈ Pnd be given. Then ẋ = f(x) is d-
collision-free if and only if each fik − fjk is contained in
Iij , where 1 ≤ i < j ≤ n and 1 ≤ k ≤ d.

3. GENERAL C1-SYSTEMS

Next, we consider the general C1-case.

Consider ẋ = f(x), where f ∈ C1(U,Rnd) for some

open set U ⊆ Rnd. Let Vij =
⋂d
k=1 V(Xik − Xjk) and

V =
⋃

1≤i<j≤n Vij . Recall that {V = Rnd \ V is the set
of all vectors with d-distinct components. This is an open
and dense subset of Rnd and its boundary equals V .

Lemma 6. Let f ∈ C1(U,R) for some open set U ⊆ Rnd.
Suppose that f vanishes on U ∩ V(X11, . . . , X1d). Then
there exist functions ai ∈ C0(U,R) such that f(x) =
a1(x)x11 + . . . + ad(x)x1d for all x = (xT1 , . . . , x

T
n )T ∈ U

and x1 = (x11, . . . , x1d)
T .

Lemma 7. (a) Let q1, . . . , ql ∈ P be polynomials. If U ∩
V(q1, . . . , ql) is an invariant set of ẋ = f(x), then every
Lf (qk), where 1 ≤ k ≤ l, vanishes on U ∩ V(q1, . . . , ql).

(b) U ∩ Vij is an invariant set of ẋ = f(x) if and only if
every fik − fjk, where 1 ≤ k ≤ d, vanishes on U ∩ Vij .
Theorem 8. U ∩ V is an invariant set if and only if each
U ∩ Vij is an invariant set for 1 ≤ i < j ≤ n.

Corollary 9. The ODE ẋ = f(x), where f ∈ C1(U,Rnd)
for some open set U ⊆ Rnd, is d-collision-free if and only
if each fik − fjk vanishes on U ∩Vij for 1 ≤ i < j ≤ n and
1 ≤ k ≤ d.

Example. Consider

ẋi =

n∑
k=1

φ(xk − xi) (4)

for some φ ∈ C1(Rd,Rd) and 1 ≤ i ≤ n. This system is
d-collision-free.

4. DEPENDENCE ON d AND THE ROLE OF
PERMUTATION SYMMETRY

Corollary 10. Let N = nd = n′d′, where d is a multiple of
d′. Then d′-collision-freeness of an N -dimensional system
ẋ = f(x) implies d-collision-freeness. In particular, 1-
collision-freeness (as studied in Zerz and Herty (2019))
implies d-collision-freeness for all divisors d of the state
space dimension N .

Let G = {P ⊗ Id | P is an n× n permutation matrix} ⊆
Rnd×nd, where Id is the d×d identity matrix and ⊗ denotes
the Kronecker product.

Definition. A function f ∈ C1(U,Rnd) is called G-
symmetric if f(Tx) = Tf(x) holds for all T ∈ G and
x ∈ U with Tx ∈ U . Writing f = (f1, . . . , fn) with
fi ∈ C1(U,Rd), this means that

fπ(i)(x1, . . . , xn) = fi(xπ(1), . . . , xπ(n))

holds for any permutation π ∈ Sn of the n substates and
any x = (xT1 , . . . , x

T
n )T ∈ U such that both sides of the

equation are well-defined.

It turns out that many common models of particle inter-
actions, such as (4), are permutation symmetric in this
sense. This reflects the assumption that the particles are
identical and indiscernible.
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Example. Suppose that U = V n for some open set V ⊆ Rd.
Consider

fi(x) = fi(x1, . . . , xn) = χ(xi) +
n∑

k=1,k 6=i

ψ(xk, xi)

for some χ ∈ C1(V,Rd), ψ ∈ C1(V × V,Rd) and 1 ≤ i ≤ n.
Then f is G-symmetric.

Theorem 11. If f is G-symmetric, then ẋ = f(x) is d-
collision-free.

Corollary 12. Let A ∈ Rnd×nd be given and let Aij ∈
Rd×d for i, j ∈ n denote its submatrices as in Theorem 3.
Then A is G-symmetric, that is, it commutes with every
T ∈ G, if and only if A is both d-collision-free and block
symmetric, that is, Aij = Aji for all i, j ∈ n.

Both conditions are equivalent to

A =


C B . . . B

B
. . .

. . .
......

. . .
. . . B

B . . . B C


for some B,C ∈ Rd×d.

5. OUTLOOK AND FUTURE WORK

We expect the theory of d-collision-freeness to deepen the
understanding of ODE particle systems which arise with
traffic, swarm, or consensus models, for instance, see Albi
et al. (2015) or Miao et al. (2016). In particular, we are
interested in studying how this property carries over to
the PDE model resulting in the mean-field kinetic limit
considered e.g. in Herty et al. (2015); Tordeux et al. (2018).
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Miao, Z., Wang, Y., and Fierro, R. (2016). Collision-free
consensus in multi-agent networks: a monotone systems
perspective. Automatica, 64, 217–225.

Tordeux, A., Costeseque, G., Herty, M., and Seyfried, A.
(2018). From traffic and pedestrian follow-the-leader
models with reaction time to first order convection-
diffusion flow models. SIAM J. Appl. Math., 78, 63–79.

Zerz, E. and Herty, M. (2019). Collision-Free Dynamical
Systems. IFAC-PapersOnLine, 52, 72–76.

Zerz, E. and Walcher, S. (2012). Controlled invariant hy-
persurfaces of polynomial control systems. Qual. Theory
Dyn. Syst., 11, 145–158.

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



Port-Hamiltonian modeling of interacting
particle systems

Birgit Jacob ∗ Claudia Totzeck ∗∗

∗ Bergische Universität Wuppertal, Fakultät für Mathematik und
Naturwissenschaften, IMACM, Arbeitsgruppe Funktionalanalysis,

Gaußstraße 20, D-42119 Wuppertal, Germany (e-Mail:
bjacob@uni-wuppertal.de).

∗∗ Bergische Universität Wuppertal, Fakultät für Mathematik und
Naturwissenschaften, IMACM, Arbeitsgruppe Optimierung,
Gaußstraße 20, D-42119 Wuppertal, Germany (e-Mail:

totzeck@uni-wuppertal.de).

Abstract: A port-Hamiltonian formulation of a general class of interacting particle systems
and its corresponding mean-field partial-differential equation is discussed. To establish the port-
Hamiltonian structure of the interacting particle systems a specific variable transformation is
employed. It turns out that an appropriate retransformation of the characteristics corresponding
to the mean-field partial differential equation yields again a port-Hamiltonian structure.

Keywords: Port-Hamiltonian modeling, port-Hamiltonian distributed parameter systems,
interacting particle systems, mean-field limit, multi-agent systems.

1. INTRODUCTION

Port-based network modeling of complex physical systems
leads to port-Hamiltonian systems (PHS). For finite-
dimensional systems there is by now a well-established
theory, see van der Schaft (2006); Eberard et al. (2007);
Duindam et al. (2009). The port-Hamiltonian approach has
been further extended to the infinite-dimensional situation
in van der Schaft and Maschke (2002); Zwart et al. (2010);
Villegas (2007); Jacob and Zwart (2012). This class is
further closed under network interconnection. That is,
coupling of port-Hamiltonian systems again leads to a port-
Hamiltonian system. Furthermore, the port-Hamiltonian
approach is suitable for the investigation of the qualitative
solution behavior and optimization questions, as it provides
an energy balance.

In this talk we model interacting particle systems as well as
the corresponding mean-field partial-differential equation
as port-Hamiltonian system. A recent work by Matei
et al. (2019) discusses the port-Hamiltonian formulation
of a Cucker-Smale dynamic involving three particles. The
key idea leading the reformulation is the interpretation
of the Cucker-Smale interactions as generalized spring-
damper systems. The approach has several advantages:
the introduction of relative positions factors out the
translational invariance of the system, and, the port-
Hamiltonian structure allows to identify several conserved
quantities namely the Hamiltonian and the so-called
Casimir functions. In future work, the novel interpretation
of interacting particle dynamics as generalized spring-
damper systems with PHS structure can be employed for
new control-strategies of interacting particle systems.

2. MODELING

We recall the classical formulation of interacting particle
systems in position and velocity coordinates before we
introduce the reformulation in PHS structure.

Let us denote the space dimension d and consider N ∈ N
agents, let xi : [0, T ] → Rd and vi : [0, T ] → Rd denote
the position and velocity functions of the i-th agent,
respectively. We collect the positions and the velocities
of all agents in the vectors x and v with [x]i = xi and
[v]i = vi for i = 1, . . . , N , respectively. Let G ∈ C(R,R≥0)
model a generalized damper and V ∈ C1(Rd,R) be the
potential for the binary interactions of the particles. For
the forces resulting from the interactions we require

∇xi
V (xj − xi) = −∇xj

V (xj − xi). (1)

According to Newton’s second law, a general interacting
particle systems can be written as

d

dt
x = v, x(0) = x0, (2a)

d

dt
v = G(x)v −∇V(x), v(0) = v0, (2b)

where

[G(x)]ii = − 1

N

∑
j ̸=i

G(|xj − xi|)

[G(x)]ij =
1

N
G(|xj − xi|), i ̸= j,

model pairwise alignment of the agents, like for example
in the model by Cucker and Smale (2007), and

[∇V(x)]ii = 0, [∇V(x)]ij =
1

N
∇xiV (xj − xi), i ̸= j
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model pairwise interactions of the particles. We remark,
that the matrix G(x) is negative semi-definite by definition.
For well-posedness the systems is supplemented with initial
conditions x(0) = x0, v(0) = v0 with [x0]i and [v0]i drawn

independently from a probability distribution f̂ ∈ P(Rd ×
Rd).

This general class of interaction models contains the
following well-known examples: Cucker and Smale (2007),
Matei et al. (2019), Morse-interactions (sheep flocks, double
and single milling birds) as proposed in D’Orsogna et al.
(2006), or herding dynamics Burger et al. (2020).

For later use we mention the well-known mean-field PDE
corresponding to (2) given by

∂tft +∇x(vft) = ∇v ((G ∗ ϱt) +∇xV ∗ ϱt)ft) , (3)

f0(x, v) = f̂(x, v)

for some probability measure f̂ ∈ P(Rd × Rd), where we
used ϱt(x) =

∫
Rd ft(x, v)dv.

We note that the actual positions of the agents do not
influence the dynamic but rather the relative distances
xj − xi. This is exploited in the derivation of port-
Hamiltonian system (PHS) reformulation proposed below.
Indeed, following the approach of Matei et al. (2019) we
introduce new variables qij = xi − xj and pi = mvi,
the relative positions and impulses of the agents. In the
remainder we set m = 1 such that pi = vi and write
z = (q, p) with [q]ij = qij and [p]i = pi. For notational
convenience we fix the ordering of q as follows:
We consider the matrix Q with [Q]ij = qij for i ̸= j and
[Q]ii = 0.We ”remove” the diagonal of the matrix and write
the entries qij of the resulting matrix Q− ∈ (Rd)N×(N−1)

row-wise in the vector q.

Using the new variables the above dynamic can be written
as

d

dt
qij = pi − pj , qij(0) = (q0)ij , (4a)

d

dt
p = G(q)p−∇V(q), p(0) = v0, (4b)

where

[G(q)]ii = − 1

N

∑
j ̸=i

G(|qij |)

[G(x)]ij =
1

N
G(|qij |), i ̸= j,

[∇V(q)]ii = 0, [∇V(q)]ij =
1

N
∇V (qij), i ̸= j.

Remark 1. In order to be consistent, the initial conditions
of (2) and (4) have to be chosen carefully. In case
of independent uniformly distributed initial positions
law(xi(0)) = U [a, b] with a, b ∈ R, a < b, we can exploit the
fact that the probability distribution function of xi(0)−
xj(0) is given by a convolution, leading to law(qij(0)) =
U [a, b] ∗ U [−b,−a].

As the Hamiltonian reformulation for general N is quite
technical, we sketch the main ideas with the derivation of
the PHS formulation for N = 2 :

Let z = (q12, q21, p1, p2)
⊤ and consider the Hamiltonian

H(z) =
1

2
|p1|2 +

1

2
|p2|2 +

1

4
(V (q12) + V (q21)).

The dynamics of z is defined by (4) leading to

d

dt
z =

(
p1 − p2
p2 − p1

G(q)p−∇V(q)

)
Note that it holds

∂H(z)

∂z
= (

1

4
∇V (q12),

1

4
∇V (q21), p1, p2)

⊤

which allows us to rewrite

d

dt
z =

 0

(
I −I
−I I

)
(
−I I
I −I

)
G(q)


(
1

4
∇V (q)

p

)
+

(
0
B

)
u

=

[
J −

(
0 0
0 −G(q)

)]
∂H(z)

∂z

with

J =

 0

(
I −I
−I I

)
(
−I I
I −I

)
0

 .

Here I denotes the identity matrix in Rd×d. We want to
emphasize that the upper-right part of J is set by the
structure of qij and by the skew-symmetry of J this also
sets the lower-left part of J . Therefore assumption (1) is
crucial for port-Hamiltonian reformulation.

For N ∈ N the above derivation generalizes to z = (q, p)⊤

and

H(z) =
1

2
pT p+

1

2N

N∑
i=1

N∑
j ̸=i

V (qij).

We then derive
d

dt
z =

[(
0 J
−J 0

)
−
(
0 0
0 −G(q)

)]
∂H(z)

∂z

where J ∈ (Rd×d)N(N−1)×N is given by

J =

J1
...

JN


with

Ji ∈ R(N−1)×N , i = 1, . . . , N ,

[Ji]jk =


I, k = i

−I, (k = j + 1 ∧ j ≥ i) ∨ (k = j < i)

0, otherwise

.

In particular

J1 =


I −I 0 0 · · · 0
I 0 −I 0 · · · 0
...

...
I −I


and

J2 =


−I I 0 0 · · · 0
0 I −I 0 · · · 0
...

...
0 I −I
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Then it is easy to verify that (4) can be written as

d

dt
z = (J −R(z))

∂H(z)

∂z
, z(0) = (q(0), p(0)).

At first sight we have increased the number of variables
from 2Nd to dN2 during the reformulation process. Note
that due to the dependencies, it is enough to have the
information of one particle and then the relative positions
of all the other particles to recover the full information
of the system. This observation together with the fact
that the PHS formulation factors out the translational
invariance of the system, motivates us to introduce the

center of mass variable x̄ = 1
N

∑N
i=1 xi and the relative

positions ξi = 1
N

∑N
j=1,j ̸=i qij = xi − x̄. System (4) can

then by rewritten as

d

dt
ξi = pi −

1

N

N∑
j=1

pj , (5)

d

dt
pi =

1

N

N∑
j=1

[
G(ξi − ξj)pj −∇V(ξi − ξj)

]
(6)

supplemented with initial conditions ξi(0) = xi(0)− x̄(0)
and pi(0) = v(0).

Remark 2. It is important to note that we loose the port-
Hamiltonian structure with this reformulation. Indeed, the
right-hand side of (5) sets the structure of the upper-
right part of J. Nonlinearities of ∇V prevent a suitable
reformulation of (6) to meet this structure. We further
remark that in general the nonlinearity of ∇V prevents to
reduce the number of variables qij to only N variables.

3. MEAN-FIELD LIMIT

For interacting particle systems in x-v-formulation a model
hierarchy exists Carrillo et al. (2010) that ranges from
the particle description, to a mesoscopic and even a
hydrodynamic formulation. In the following we discuss
the mean-field limit in the port-Hamiltonian formulation.
We use the transformed version in (ξ, p) coordinates. It is
important to note that qij = ξi − ξj .

Let δ(x, y) denote the Delta-distribution on Rd × Rd and
define the empirical measure

fN (t, ξ, p) =
1

N

N∑
i=1

δ(ξ − ξi, p− pi).

Further, let φ ∈ C1(Rd ×Rd) be an arbitrary test function.
To compute the evolution of fN , we use the notation

⟨fN , φ⟩ =
∫
Rd×Rd

φ(ξ, p)dfN (ξ, p) =
1

N

N∑
i=1

φ(ξi, pi)

and (formally) obtain〈
∂tf

N , φ
〉
=

d

dt

〈
fN , φ

〉
=

1

N

N∑
i=1

(
∇pφ(pi, ξi) ·

d

dt
pi +∇ξφ(pi, ξi) ·

d

dt
ξi

)

= − 1

N

N∑
i=1

∇pφ(pi, ξi) ·

 1

N

∑
j ̸=i

G(ξi − ξj)pi



− 1

N

N∑
i=1

∇pφ(pi, ξi) ·

 1

N

∑
j ̸=i

∇V (ξi − ξj)


+∇ξφ(pi, ξi) ·

 1

N

∑
j ̸=i

pi − pj


=
〈
∇p ·

(∫
G(ξ − ξ̄)p−∇V (ξ − ξ̄) dfN

t (p̄, ξ̄)) fN
t (p, ξ)

)
−∇ξ ·

([
p−

∫
p̄ dfN

t (p̄, ξ̄)

]
fN
t (p, ξ)

)
, φ
〉
.

With the help of the Variational Lemma we can identify
the evolution equation for fN as

∂tf
N
t +∇ξ ·

([
p−

∫
p̄ dfN

t (p̄, ξ̄)

]
fN
t (p, ξ)

)
= ∇p ·

(∫
G(ξ − ξ̄)p−∇V (ξ − ξ̄) dfN

t (p̄, ξ̄))fN
t (p, ξ)

)
,

fN
0 (p, ξ) = f̂(p, ξ).

Note that this computation slightly differs from the
standard derivation of the mean-field equation (3) as the
drift with respect to ξ is shifted by the average momentum.

Remark 3. The characteristic equations of this PDE are
given by

d

dt
ξt = Pt −

∫
Pt(v̄)df̂(x̄, v̄), ξ0(x) = x,

d

dt
Pt = (G ∗ ϱt)(ξt)Pt − (∇V ∗ ϱt)(ξt), P0(v) = v.

Note that f̂ is the initial distribution of the particles, the
evolution of f over time is in terms of the characteristics

as ft = (pt, ξt)#f̂ , i.e., the distribution of the particles at
time t > 0 is the push forward of the initial distribution
along the characteristics.

To recover the PHS structure, we need to perform a
retransformation similar to the finite dimensional case. Due
to the relative positions the transformation is based on
the initial conditions of two independently chosen particles
z = (x, v) and z̄ = (x̄, v̄), respectively.

Let law(z) = law(z̄) = f̂ . As before it holds v = p and
v̄ = p̄. The initial conditions of the characteristics are given
by

ξ0(x) = x, ξ0(x̄) = x̄, P0(p) = p, P0(p̄) = p̄.

For the retransformation we set

Qt(q) := ξt(x)− ξt(x̄), Q0(q) = x− x̄ = q.

Then we obtain
d

dt
Qt(q) = Pt(p)− Pt(p̄),

d

dt
Qt(−q) = Pt(p̄)− Pt(p),

which implies Qt(−q) = −Qt(q). Moreover, the character-
istics of the impulses read

d

dt
Pt(p) = G(Qt(q))Pt(p)−∇V (Qt(q)),

d

dt
Pt(p̄) = G(Qt(−q))Pt(p̄)−∇V (Qt(−q)).

Our assumptions on G and U yield

G(Qt(q) = G(Qt(−q), ∇V (Qt(q)) = −∇V (Qt(−q))
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as in the finite dimensional case.

The Hamiltonian for Zt(z, z̄) = (Qt(q), Qt(−q), Pt(p), Pt(p̄))
is given by

H(Zt(z, z̄)) =
1

2
|Pt(p)|2+ |Pt(p̄)|+

1

2
V (Qt(q))+V (Qt(q̄)),

to obtain the Banach space valued ODE in PHS form

d

dt
Zt = (J −R)

∂H
∂Zt

supplemented with initial condition

Z0 = (q0,−q0, p0, p̄0) ∈ Rd × Rd × Rd × Rd

with law(q0) = fq and law(p0) = law(p̄0) = fp. The skew-
symmetric matrix J is the same as in the case N = 2
discussed above and

R =

0 0 0 0
0 0 0 0
0 0 −G(Qt(q)) 0
0 0 0 −G(Qt(−q))

 .

Note that the characteristic equations of the PHS systems
resemble as expected. Indeed, drawing N/2 independent
relative positions qi and N velocities pi and exploiting
the relationships of the finite dimensional PHS allows to
recover the PHS particle dynamics.

4. RELATIONSHIP OF THE DIFFERENT
APPROACHES

Starting from the ODE description of interacting particle
systems that is based on Newton’s Second Law, we find
a reformulation as finite dimensional port-Hamiltonian
System (a1). This reformulation is not directly feasible for
the passage to the limit N → ∞, but we obtain a mean-
field formulation via a shifting with respect to the center of
mass of the system. This is illustrated by the dashed arrow
below (a4). The classical formulation based on positions
and velocities admits a the well-known mean-field equation
also formulated in position and velocity variables (a2).
Considering again relative positions allows us to obtain
(a3). When drawing N/2 independent relative positions
and N independent impulses and let them follow the
characteristics of the mean-field PDE in PHS formulation,
we recover the finite-dimensional PHS description of the
interacting particle system (a4). Finally, note that all PHS
formulations are based on relative positions, therefore it is
only possible to recover the original (x, v) formulation on
the ODE as well as on the PDE level with center of mass
shifted to 0 ∈ Rd.

ODE (x, v)

PH-ODE (q, p)

PDE (x, v)

PH-PDE (p, q)

(a1)

(a2)

(a4)

(a3)

5. OUTLOOK

In future work, we plan to employ control-strategies based
on the new port-Hamiltonian formulation of interacting
particle systems. Moreover, the port-Hamiltonian structure
will be useful in a stability analysis of general interacting
particle systems.
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Abstract:
We study a network design problem (NDP) where the planner aims at selecting the optimal
single-link intervention in a transportation network to minimize the total congestion. Our first
result is to show that the NDP may be formulated in terms of electrical quantities on a related
resistor network, in particular in terms of the effective resistance between adjacent nodes. We
then suggest an approach to approximate such an effective resistance by performing only local
computations, and exploit this approach to design an efficient algorithm to solve the NDP,
without recomputing the equilibrium flow after the intervention. We then study the optimality of
the proposed procedure for recurrent networks, and provide simulations over relevant networks. ∗

∗ This extended abstract is an update of a previous work that was submitted and accepted to MTNS 2020.

Keywords: Transportation systems; Mathematical theory of networks and circuits.

1. INTRODUCTION

Congestion of transportation networks leads to massive
waste of time and money (European Union (2021)). To
mitigate such a problem, one approach is to optimize the
underlying network (e.g., add lanes to existing roads or
construct new roads) given a certain budget. This class
of problems, known as network design problem (NDP),
has been first defined in LeBlanc (1975). For a complete
survey we refer to Farahani et al. (2013). NDPs are
typically computationally hard. In this work we focus on
a specific NDP where one link only can be improved,
and show how to approximate its solution in a tractable
way when the link delay functions are affine functions of
the flow. Our contribution is twofold. First, we derive
an alternative formulation of the problem in terms of
electrical quantities, in particular the effective resistance
between adjacent nodes. Then, we propose a method
to locally approximate such a quantity, and based on
this method we propose an efficient algorithm to find an
approximated solution of the original problem. Our work
is related to Steinberg and Zangwill (1983) and Dafermos
and Nagurney (1984), where the travel time variation
after the addition of a new route is studied with similar
assumptions as ours. The main objective of those works
is to investigate the sign of the travel time variation, i.e.,
the emergence of Braess’ paradox. We instead study the
problem from an optimization perspective, and quantify
the travel time variation corresponding to a single link
intervention. Another related problem is the optimal toll

design (see, e.g., Hoefer et al. (2008) and Jelinek et al.
(2014)). However, the NDP and toll design differ in the fact
that tolling schemes modify the equilibrium flows on the
network, but the performance of the tolls is evaluated with
respect to the original delay functions. Instead, in NDP the
intervention modifies both the equilibrium flows and the
delay functions according to which the performance of the
NDP is evaluated.

2. MODEL AND PROBLEM STATEMENT

2.1 Notation and setting

We model the transportation network as a directed multi-
graph G = (N , E) with a single origin o and destination d,
where N and E denote respectively the node and the link
sets. We let ξ(e) and θ(e) denote respectively the head and
the tail of the link e. Let R denote the set of the routes
from o to d. Let τ denote the throughput of non-atomic
agents moving from the origin o to the destination d, and
ν = τ(δo−δd) ∈ RN denote the net inflow to the network,
where δi indicates the vector with 1 in position i and 0 in
the other positions. An admissible route flow is a vector
z ∈ RR+ satisfying the constraint zT1 = τ . A route flow z

induces a unique link flow f ∈ RE+ via the relation

fe =
∑

r∈R:e∈r
zr, (1)

i.e., the flow on link e is the sum of the flow over the
routes including link e. We endow each link with a delay

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



function, which is assumed affine, non-negative and strictly
increasing, i.e., in the form

de(fe) = aefe + be, ae > 0, be ≥ 0, ∀e ∈ E ,
and define the cost of the route r under flow f as

cr(f) =
∑

e∈E:e∈r
de(fe), (2)

which is the sum of the delay functions of the links
belonging to the route.

Definition 1. An affine routing game is a quadruple
(G, a, b, ν).

A Wardrop equilibrium is a flow distribution such that no
one has incentive in changing route.

Definition 2. (Wardrop equilibrium). A feasible route flow
z∗, with associated link flow f∗ obtained via (1), is a
Wardrop equilibrium if for every route r

z∗r > 0 =⇒ cr(f
∗) ≤ cq(f∗), ∀q ∈ R.

Let B ∈ RN×E denote the node-link incidence matrix,
with entries Bne = 1 if n = ξ(e), Bne = −1 if n = θ(e),
or Bne = 0 otherwise. It is known that a link flow f∗ is a
Wardrop equilibrium of a routing game if and only if it is
solution of the following convex program:

f∗ ∈ arg min
f∈RE

+
:Bf=ν

∑
e∈E

∫ fe

0

de(s)ds, (3)

where Bf = ν is the projection of zT1 = τ in the space of
link flows. Since the delay functions are assumed strictly
increasing, the objective function is strictly convex and
the Wardrop equilibrium f∗ is unique (Beckmann et al.
(1956)). We now define the social cost, which is the total
travel time at the equilibrium.

Definition 3. (Social cost). Let f∗ be the unique Wardrop
equilibrium of an affine routing game. The social cost is

C(f∗) =
∑
e∈E

f∗e de(f
∗
e ).

The social cost can be interpreted as a measure of per-
formance of the transportation network by a planner that
aims at minimizing the overall congestion of the network.

2.2 Problem statement

We consider a NDP where the planner can rescale the
slopes of the delay functions, from ae to ãe = ae/(κe +
1), with κe ≥ 0. We let he : [0,+∞) → [0,+∞)
denote the cost associated to the intervention on link e.
For every link e, we assume that he is non-decreasing
and convex in κe, with he(0) = 0. The goal of the
planner is to minimize a combination of the social cost
and the intervention cost, where α ≥ 0 is the trade-
off parameter. Specifically, by letting f∗(κ) denote the
Wardrop equilibrium corresponding to intervention κ, the
NDP reads

κ∗ ∈ arg min
κ≥0

∑
e∈E

ae
1 + κe

(f∗e (κ))
2

+ bef
∗
e (κ) + α

∑
e∈E

he(κe),

with

f∗(κ) = arg min
f∈RE

+
:Bf=ν

∑
e∈E

ae
2(1 + κe)

f2e + befe (4)

This problem is in general non-convex, and hard to solve
because of its bi-level nature, in the sense that the planner

optimizes the network intervention κ, but the cost function
depends on κ also via the Wardrop equilibrium f∗(κ),
which in turn is solution of the optimization problem (4),
whose objective function depends on the intervention κ
itself. For these reasons, we restrict our analysis to the
case where the planner can intervene on a single link. For
this special class of interventions, we are able to rephrase
the problem into a single-level optimization problem and
to provide an electrical interpretation of the problem. We
express interventions as pairs (e, κ) ∈ I, where κ is now a
scalar value and I denotes the set of the feasible interven-
tions. Let (G, a(e, κ), b, ν) and f∗(e, κ) denote the modified
routing game and the corresponding Wardrop equilibrium
respectively, and ∆C(e, κ) = C(f∗)−Ce,κ(f∗(e, κ)) denote
the corresponding social cost gain. Our goal is to identify
the optimal intervention (e∗, κ∗). The problem can be
expressed as follows.

Problem 1. Let (G, a, b, ν) be an affine routing game and
α ≥ 0 a trade-off parameter. Find

(e∗, κ∗) ∈ arg max
(e,κ)∈I

∆C(e, κ)− αhe(κ).

3. RESULTS

3.1 Electrical formulation

As anticipated, the social cost variation in the transporta-
tion network may be formulated in terms of electrical
quantities on a related resistor network. Let us define how
to construct such a resistor network GR.

Definition 4. Given the transportation network G =
(N , E), we construct the associated resistor network GR =
(N ,L,W ) as follows:

• the node set N is equivalent.
• W ∈ RN×N is the conductance matrix, which reads

Wij :=


∑
e∈E:

ξ(e)=i,θ(e)=j, or
ξ(e)=j,θ(e)=i

1

ae
if i 6= j

0 if i = j.

(5)

Note that W is symmetric, thus GR is undirected.
The element Wij indicates the conductance between
nodes i and j.
• Multiple links from the same pair of nodes are not

allowed, so that every link l ∈ L can be identified
by an unordered pair of nodes {i, j}, and the set L
is univocally determined by non-zero elements of W .
We define a mapping M : E → L that associates to
every link e ∈ E of the transportation network the
corresponding link l = M(e) = {ξ(e), θ(e)} of the
resistor network.

Definition 5. (Effective resistance). Consider a resistor net-
work (N ,L,W ) and an arbitrary link l = {i, j} ∈ L. We
define the effective resistance rl of the link l as the effective
resistance between i and j, i.e.,

rl = vi − vj ,
where v is the voltage vector when unitary current from i
to j is injected, i.e.,∑

k

Whk(vh − vk) = δi − δj ∀h ∈ N . (6)
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The next theorem establishes a relation between the social
cost variation corresponding to a single-link interventions
on the transportation network and the associated resistor
network. The result holds under the following regularity
assumption, which states that all the feasible interventions
do not modify the support of the Wardrop equilibrium.

Assumption 1. Let E+(e, κ) be the set of links j ∈ E
such that f∗j (e, κ) > 0 in the Wardrop equilibrium of
(G, a(e, κ), b, ν). We assume that E+(e, κ) = E for every
(e, κ) ∈ I.

Theorem 1. Let (G, a, b, ν) be a routing game, and suppose
Assumption 1 holds. Then,

∆C(e, κ) = ι
f∗e (vξ(e) − vθ(e))

1
κ +

rM(e)

ae

, (7)

where v is the voltage vector over the associated resistor
network when a unitary current from o to d is injected,
rM(e) is the effective resistance of the link M(e), and ι is
a positive constant.

The idea behind the proof is that with affine delay function
the Wardrop equilibrium is the result of a quadratic
program with constraints, whose KKT conditions are
linear. Moreover, it is possible to relate the social cost
variation to Lagrangian multipliers. Since Assumption 1
guarantees that interventions are rank-1 perturbation of
such linear system, we exploit Sherman-Morrison relation
to compute the Lagrangian multiplier variation, and then
relate it to electrical quantities by using some electrical
circuits theory. Observe that the social cost variation is
expressed in terms of quantities that do not depend on
the intervention, and does not require the computation
of the new Wardrop equilibrium. In particular, f∗ can
be computed by solving the convex program (3), and the
voltage v by solving a sparse linear system analogous to
(6). Also the constant ι can be easily computed. The
computational bottleneck is given by the computation of
all the link effective resistances, which require to solve |L|
sparse linear systems. In the next section we propose a
method to approximate rl that does not scale with the size
of the network. Before doing that, we discuss Assumption
1. The assumption is not new in NDP literature (Steinberg
and Zangwill (1983) and Dafermos and Nagurney (1984)).
Moreover, the next lemma shows that it is without loss
of generality on series-parallel graphs, provided that the
throughput is sufficiently large.

Lemma 1. Let (G, a, b, ν) be a routing game, and assume
that G is series-parallel. Then, there exists τ such that for
every τ ≥ τ the set of links such that f∗e > 0 does not
depend on a.

The result above follows from the fact that along all routes
of series-parallel networks the nodes are ordered in such
a way that the Lagrangian multipliers corresponding to
relation Bf = ν in (3) are always decreasing from the
origin to the destination.

3.2 Our algorithm

In this section we propose an algorithm to solve in ap-
proximation Problem 1. Our algorithm relies on Theorem
1, and on the idea that the effective resistance of a link
can be approximated by looking at a local portion of the
network. Let us introduce the following operations.
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Fig. 1. Square grid. Above: the yellow, orange and red
nodes are at distance 1, 2 and 3, respectively from the
green nodes. Bottom left : cut at distance 1. Bottom
right : shorted at distance 1.

Definition 6. A resistor network GR is cut at distance d
with respect to a link l = {i, j} ∈ L if every node at
distance greater than d from link l, i.e., from both i and
j, is removed, and every link having at least one endpoint
in the set of the removed nodes is removed. Let GUd

l and

rUd

l denote such a network and the effective resistance of
link l on it, respectively.

Definition 7. A resistor network GR is shorted at distance
d with respect to a link l ∈ L if all the nodes at distance
greater than d from the link l are shorted together, i.e.,
an infinite conductance is added between each pair of such
nodes. Let GLd

l and rLd

l denote such a network and the
effective resistance of link l on it, respectively.

We refer to Fig. 1 for an example of cut and shorted regular
grid. The next proposition states that cutting and shorting
a network provide respectively upper and lower bounds for
the effective resistance of a link. Moreover, the tightness
of the bounds is a monotone function of the distance d.

Proposition 1. Let GR be a resistor network. Then, for
every link l = {i, j} ∈ L,

r
Ud1

l ≥ rUd2

l ≥ rl ≥ r
Ld2

l ≥ rLd1

l , ∀ d2 > d1 ≥ 1.

The following algorithm provides an approximated solu-
tion of Problem 1 based on Proposition 1.

Theorem 2. Let ∆C(e, κ) be the cost variation corre-
sponding to intervention (e, κ) as given in Theorem 1, and

∆Cd(e, κ) = ι
f∗e (vξ(e) − vθ(e))

1
κ +

r
Ud
M(e)

+r
Ld
M(e)

2ae

be the cost variation estimated by Algorithm 1 for a given
distance d ≥ 1. Then,∣∣∣∣∆C(e, κ)−∆Cd(e, κ)

∆C(e, κ)

∣∣∣∣ ≤ εed

2
(

1
κ +

r
Ud
M(e)

+r
Ld
M(e)

2ae

)
where

εed :=
rUd

M(e) − r
Ld

M(e)

ae
.

Furthermore,

∆C(e, κ) ≥ ι
f∗e (vξ(e) − vθ(e))

1
κ +

r
Ud
M(e)

ae

. (8)
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Algorithm 1:

Input: The affine routing game (G, a, b, ν), the cost
functions {he}e∈E , and the distance d ≥ 1
used to approximate the effective resistance.

Output: The optimal intervention (e, κ)∗d ∈ I.
Construct the associated resistor network GR.
Compute v by solving the sparse linear system∑

k

Whk(vh − vk) = δo − δd ∀h ∈ N .

for each l ∈ L do

Construct GUd

l and GLd

l ;

Compute rUd

l on GUd

l , and rLd

l on GLd

l .
end
for each e ∈ E do

Select κ∗de such that

κ∗de ∈ arg max
κ:(e,κ)∈I

ι
f∗e (vξ(e) − vθ(e))

1
κ +

r
Ud
M(e)

+r
Ld
M(e)

2ae

− αhe(κ).

end

Select (e, κ)∗d such that

(e, κ)∗d ∈ arg max
(e,κ∗de )

ι
f∗e (vξ(e) − vθ(e))

1
κ +

r
Ud
M(e)

+r
Ld
M(e)

2ae

− αhe(κ).

Remark 1. Observe that the upper and lower bounds of
the effective resistance of a link depend only on the local
structure of the network. If we assume that the local
structure of the transportation network does not depend
on its size (which is a reasonable assumption, think for
instance of bidimensional grids), both the tightness of the
bounds and their computational complexity do not scale
with the size of the network. Thus, the complexity for
computing all the links effective resistance scale linearly
with the number of links (or nodes) of the network.

In the final part of the section we provide a sufficient
condition on the network topology under which the gap
between the upper and the lower bound of the effective re-
sistances, and therefore εed defined in Theorem 2, vanishes
in the limit of infinite distance. To this end, we interpret
the conductance matrix W of a resistor network as the
transition rates matrix of a continuous-time random walk,
and define the class of recurrent networks.

Definition 8. A network GR = (N ,L,W ) is recurrent if
the random walk with transition rates W visits its starting
node infinitely often with probability one.

The next theorem states that the gap between the upper
and the lower bound vanishes asymptotically on recur-
rent networks, provided that the degree of every node is
bounded.

Theorem 3. Let GR = (N ,L,W ) be an infinite recurrent
resistor network, and let the weighted degree of every node
be finite. Then, for every link l ∈ L,

lim
d→+∞

(rUd

l − r
Ld

l ) = 0.

Theorem 3 is a consequence of the relation between effec-
tive resistance and random walks over networks. The result
states that the gap between the bounds vanish asymptoti-

cally if the associated resistor network is recurrent. In the
next subsection we provide numerical results on an infinite
square grid, showing that gap between the bounds is quite
small even for small distances d.

3.3 Simulations on infinite grids

Grids are a significant test for our algorithm, since they
are a good proxy for the transportation network of many
cities. In Table 1 the performances of the upper and lower
bounds for a infinite square grid are shown. Despite the
grid being infinite, we get a good approximation even for
small distance. The simulations show that for every link l

rUd

l − rl = rl − rLd

l = O(1/d2).

The tightness of the bounds scales similarly in all the
regular grids.

Table 1. Table of upper and lower bound in
infinite square grid.

d = 1 d = 2 d = 3 d = 4 d = 5

(r
Ud
l

− rl)/rl 1/5 0.0804 0.0426 0.0262 0.0178

(rl − r
Ld
l

)/rl 1/5 0.0804 0.0426 0.0262 0.0178

4. CONCLUSION

In this work we reformulate a network design problem in
terms of electrical quantities. We then propose a method to
approximate the effective resistance between two adjacent
nodes, and exploit this method to construct an efficient al-
gorithm that finds in approximation the optimal interven-
tion on the transportation network. Future research lines
include the relaxation of some restrictive assumptions, as
well as studying the case of multiple interventions.
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Abstract: Recently, volumetric displays based on acoustic levitation have demonstrated the
capability to produce mid-air content using the Persistence of Vision (PoV) effect. In these
displays, acoustic traps are used to rapidly move a small levitated particle along a prescribed
path. This note is based on our recent work OptiTrap (Paneva et al., 2022), the first structured
numerical approach for computing trap positions and timings via optimal control to produce
feasible and (nearly) time-optimal trajectories that reveal generic levitated graphics. While
previously, feasible trap trajectories needed to be tuned manually for each shape and levitator,
relying on trial and error, OptiTrap automates this process by allowing for a systematic
exploration of the range of contents that a given levitation display can render. This represents a
crucial milestone for future content authoring tools for acoustic levitation displays and advances
volumetric displays closer toward real-world applications.

Keywords: Ultrasonic levitation, Minimum time problems, Path following, Optimal control

1. INTRODUCTION

Acoustic levitation displays use ultrasonic waves to trap
small particles in mid-air, acting as volumetric pixels
(voxels). Several practical aspects have been investigated
around these displays, such as low-latency particle manip-
ulation (Bachynskyi et al., 2018), and content detection
and initialisation (Fender et al., 2021).

The ability to move single (Hirayama et al., 2019) or multi-
ple (Plasencia et al., 2020) levitated particles at very high
speeds was instrumental for achieving dynamic and free-
form volumetric content. However, this was nonetheless
limited to relatively small sizes and simple vector graph-
ics (Fushimi et al., 2020). Little effort was made towards
optimising the levitated visual content while considering
the system dynamics of such displays, particularly for chal-
lenging content such as the one created by levitated parti-

Fig. 1. Shapes involving sharp edges and significant
changes in curvature demonstrated using acoustic lev-
itation.

cles moving at PoV speeds. Paneva et al. (2020) proposed
an interactive simulation of a levitation interface, using
a model of the particle movement in such a display. The
application operates in a feed-forward manner, simulating
the dynamics of the particle given a specific path for the
traps, however, it does not address the inverse problem.

OptiTrap (Paneva et al., 2022) is the first algorithm allow-
ing the definition of generic PoV content, requiring only a
geometric definition (i.e., shape to present, no timing in-
formation) and optimising it according to the capabilities
of the device and the dynamics of the trap-particle sys-
tem. OptiTrap automates the definition of levitated PoV
content, computing physically feasible and nearly time-
optimal trap trajectories given only a reference path. This
allows for larger shapes than previously demonstrated, as
well as shapes featuring significant changes in curvature
and/or sharp corners (Figure 1).

2. OPTIMAL CONTROL FOR LEVITATION
DISPLAYS

2.1 Hardware Setup

Our setup, illustrated in Figure 2, consists of two arrays
of 16 × 16 transducers facing each other, controlled by
an FPGA, and an OptiTrack 1 tracking system - Prime 13
motion capture cameras operating at a frequency of 240Hz.

1 www.optitrack.com
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With an update rate of up to 10kHz, the device can create
a single twin-trap within the levitation volume using the
method from Hirayama et al. (2019). We experimentally
determined the vertical and horizontal forces exerted on
the particle and found that the vertical force is double
the horizontal. This difference needs to be reflected by the
model that is introduced in the next section.

Fig. 2. Overview of the components of our levitation
display.

2.2 Modelling the Trap-Particle Dynamics

To model the trap-particle dynamics, we use simple New-
tonian mechanics, i.e.,

mp̈(t) = F (p(t), ṗ(t),u(t)), (1)

where p(t) = (px(t), py(t), pz(t))
⊤ ∈ R3 represents

the particle position in Cartesian (x, y, z) coordinates
at time t ∈ R+

0 , m is the particle mass, u(t) =
(ux(t), uy(t), uz(t))

⊤ ∈ R3 is the control input specifying
the position of the acoustic trap, and F is the net force
acting on the particle. Following Hirayama et al. (2019),
we neglect drag and gravitational forces due to the domi-
nating acoustic radiation forces.

In many cases, the acoustic force can be described by the
gradient of the Gor’kov potential (Bruus, 2012). Our spe-
cific setup (top-bottom transducer placement and vertical
twin traps) and objective (find where to place the acoustic
trap to produce a specific force) allows to consider only a
region around the peak forces. In this region, the forces in
our setup distribute mostly axis-symmetrically. Hence, we
approximate the force as

F (p,u) =

(
Fx(p,u)
Fy(p,u)
Fz(p,u)

)
:=

(
Fr(p,u) cosϕ
Fr(p,u) sinϕ

Fz(p,u)

)
, (2)

where

Fr(p,u) := Ar · cos (Vz · (uz − pz)) · (3a)

sin

(
Vxr ·

√
(ux − px)2 + (uy − py)2

)
,

Fz(p,u) := Az · sin (Vz · (uz − pz)) · (3b)

cos

(
Vzr ·

√
(ux − px)2 + (uy − py)2

)
,

ϕ =arctan

(
uy − py
ux − px

)
,

and where Ar,Az denote the peak forces along the radial
and vertical directions of the trap, respectively, and Vz,
Vxr, Vzr are the characteristic frequencies of the sinu-
soidals describing how the forces evolve around the trap.

For more details on this approximation procedure we refer
to the original paper (Paneva et al., 2022).

2.3 Rendering Content via Path Following

The task at hand is to render, as fast as possible, arbitrary
complex objects, formulated as an explicitly parameterised
curve

Q := {ξ ∈ R3 | θ ∈ [θ0, θf ] 7→ q(θ)}, (4)

where we require q ∈ C2(R;R3). The path parameter θ
models the progress on the path from the starting point
q(θ0) to the end point q(θf ). To create the PoV effect,
we consider periodic paths, for which q(θ0) = q(θf ) and
q̇(θ0) = q̇(θf ) hold. For example, consider the shape of
the cardioid in Figure 1 (left), which can be described by
q(θ) = (0, r sin(θ)(1+ cos(θ)),−r cos(θ)(1+ cos(θ)) + r)⊤,
where θ ∈ [0, 2π] and r > 0.

Since Q comes without any preassigned time informa-
tion, we need to determine the timing t 7→ θ(t). Follow-
ing Faulwasser (2012); Faulwasser et al. (2017), we assume
the particle follows the path Q exactly at all times, i.e.,
p(t)− q(θ(t)) ≡ 0. This leads to

p(t) = q(θ(t)), (5a)

ṗ(t) = q̇(θ(t)) =
∂q

∂θ
θ̇(t), (5b)

p̈(t) = q̈(θ(t)) =
∂2q

∂θ2
θ̇(t)2 +

∂q

∂θ
θ̈(t). (5c)

Using a virtual function v(t) ∈ R to control the progress
of the particle along Q, the timing law is modelled as a
double integrator

θ̈(t) = v(t) (6)

to avoid large jumps in the acceleration. To keep the
periodic nature, we impose

θ(0) = θ0, θ(T ) = θf , θ̇(0) = θ̇(T ), (7)

where the traversal time T will be an optimisation variable
in the latter optimal control problem (12). Using

z(t) := (θ(t), θ̇(t))⊤

we rewrite (6)-(7) as

ż(t) =

(
0 1
0 0

)
z(t)+

(
0
1

)
v(t), z(0) = z0, z(T ) = zT , (8)

solvable with standard Runge-Kutta methods (Butcher,
2016).

2.4 Coupling Path Following with Trap-Particle Dynamics

To render content on the levitator, we couple the path-
following approach from Section 2.3 with the trap-particle
dynamics (1)-(3) from Section 2.2. The usual approach of
rewriting (1) as

M(p̈(t),p(t),u(t)) := mp̈(t)− F (p(t),u(t)) = 0 (9)

and finding a local inversion u(t) = M−1(p̈(t),p(t)) is
not straightforward for (3). Hence, we tackle this task via
numerical optimisation by introducing auxiliary variables
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ζ1 := sin(Vxr

√
(ux − qx(θ))2 + (uy − qy(θ))2), (10a)

ζ2 := cosVz · (uz − qz(θ)), (10b)

ζ3 := sinVz · (uz − qz(θ)), (10c)

ζ4 := cosVzr

√
(ux − qx(θ))2 + (uy − qy(θ))2), (10d)

ζ5 := sinϕ, (10e)

ζ6 := cosϕ, (10f)

for each trigonometric term in (3), where pi is replaced by
qi(θ), i ∈ {x, y, z}. This allows us to formally express (2)
in terms of ζ := (ζ1, ..., ζ6):

F̃ (ζ) :=

(Arζ1ζ2ζ6
Arζ1ζ2ζ5
Azζ4ζ3

)
.

Similar to (9), along the path Q we define

M̃(z(t), v(t), ζ(t)) := mq̈(θ(t))− F̃ (ζ(t)) = 0. (11)

With this approach, we will need to extract the trap
positions u(t) by solving (10) numerically. To counter
numerical instabilities that could occur in particular for
ζi approaching ±1, we introduce additional constraints

Z :=
{
ζ ∈ [ε− 1, 1− ε]6 | ζ22 + ζ23 = 1, ζ25 + ζ26 = 1

}
,

with a user-chosen back-off parameter ε ∈ ]0, 1[ that cap-
tures the trade-off between numerically “stable” solutions
for u(t) and exploiting the maximum forces of the device.

The final OCP is then given by

min
v,T,ζ

T + γ

∫ T

0

v(t)2dt

subject to (8),

M̃(z(t), v(t), ζ(t)) = 0,

ζ(t) ∈ Z.

(12)

Lastly, we discretised the final OCP and solved the re-
sulting nonlinear programming problem using Ipopt (An-
dersson et al., 2018). The function evaluations and the
computation of the derivatives were performed with
CasADi (Wächter and Biegler, 2006).

3. EVALUATION

Next we compare our OptiTrap approach against a Base-
line, where the path parameter is homogeneously sampled
and the traps are placed directly on the reference path
of the particle. The evaluation was conducted on four
test shapes: circle, cardioid, squircle and fish, as shown in
Figures 3 and 4. The particle motion shown in these figures
comes not from simulations, but from actual experimental
results, captured using the OptiTrack tracking system.

In the first part of the evaluation, we investigate the
maximum shape size that can be rendered in PoV time
(0.1s) with each approach. We see in Figure 3 that the
most striking difference was obtained for the squircle,
where with OptiTrap 1.9 meters of content per second was
rendered, and with the Baseline only 0.29. The increase in
size was similar for both the cardioid (2.80m of content
per s with OptiTrap, 2.48 with the Baseline) and the
fish (2.75m of content per s with OptiTrap, 2.42 with the
Baseline), while there was not significant difference for the
circle. This is not surprising, as the circle is the simplest
and most homogeneous shape in the test parkour.

In the second part of the evaluation, we investigate the
maximum possible rendering frequency with OptiTrap and
the Baseline, while keeping the size of the test shape con-
stant. The results are illustrated in Figure 4. As expected,

Fig. 3. Maximum shape size of OptiTrap vs. the Baseline.

Fig. 4. Maximum rendering frequency of OptiTrap vs. the
Baseline.
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the same rendering frequency was obtained for the circle
using both methods. However, the cardioid was rendered
at 10Hz using OptiTrap, and 8Hz with the Baseline (25%
increase). The rendering frequency for the fish increased
by 11% using OptiTrap, i.e., from 9 to 10Hz, and lastly,
we obtain an increase of 150% for the squircle.

For a more extensive and detailed evaluation of OptiTrap,
also including a comparison to a more sophisticated base-
line, please refer to Paneva et al. (2022).

4. CONCLUSION

We briefly discussed OptiTrap – a structured numerical
approach to compute trap trajectories for acoustic levi-
tation displays. OptiTrap automatically computes physi-
cally feasible and nearly time-optimal trap trajectories to
reveal generic levitated content in mid-air, assuming only
a reference path. This is a particularly important step for
the adoption of PoV levitation displays, as it allows the
content designers to focus on the shapes to be rendered,
with feasible solutions taking into account the capabilities
of the specific device, being computed automatically by
the algorithm. As such, OptiTrap has the potential to
become an instrumental tool in helping to further explore
and develop these displays. In the future, this method
can be extended to include visual content composed of
multiple levitated particles, it can be applied to other
domains, such as photophoretic displays or containerless
matter transportation for applications in pharmacy and
biochemistry, or can be used as a base for developing more
complex learning-based approaches.
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Abstract: Owing to the wide availability of efficient convex optimization algorithms, convex
relaxation of optimum sensor selection problems has gained in popularity. Generally, however,
there is a performance gap between the optimal solution of the original combinatorial problem
and the heuristic solution of the respective relaxed continuous problem. This gap can be
small in many cases, but there is no guarantee that this is always the case. That is why
the D-optimality criterion is often extended by addition of some kind of sparsity-enforcing
penalty term. Unfortunately, the problem convexity is then lost and the question of how to
control the influence of this penalty so as not to excessively deteriorate the optimal relaxed
solution remains open. This work proposes an alternative problem formulation, in which the
sparsity-promoting term is directly minimized subject to the constraint that the D-efficiency
of the sensor selection is no less than a given threshold. This offers direct control of the
degree of optimality of the produced solution. An efficient computational scheme based on the
majorization-minimization algorithm is proposed, which reduces to solving a sequence of low-
dimensional convex optimization problems via generalized simplicial decomposition. A numerical
example illustrating the effectiveness of the proposed approach is also reported.

Keywords: system identification, distributed parameter systems, sensor location, convex
relaxation, sparsification.
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1. INTRODUCTION

Distributed parameter systems (DPSs) constitute a class
of dynamic systems whose states depend not only on time,
but also on the spatial variable. Their adequate description
are partial differential equations (PDEs). In most cases,
not all physical parameters underlying such models can
be directly measured and they have to be estimated via
calibration yielding the best fit of the model output to the
observations of the actual system which are provided by
measurement sensors. But the number of sensors is usually
limited and practitioners face the problem of where to
locate them so as to collect the most valuable information
about the parameters.

The traditional approach to optimal sensor location con-
sists in formulating it in terms of an optimization problem
employing various design criteria defined on the Fisher
information matrix (FIM) associated with the estimated
parameters. Comprehensive overviews of the works pub-
lished in this area are contained in the monographs by
Uciński (2005), Patan (2012) and Rafaj lowicz (2022).

In the past two decades, the interest in this problem has
increased rapidly due to the growing popularity of sensor
networks. More and more complex scenarios have been

investigated to accomodate to more and more demanding
practical settings. They have primarily been concentrated
around properly addressing the ill-posedness inherent in
problems with large (or even infinite) dimensions of the pa-
rameter space, see works by Alexanderian (2021), Alexan-
derian et al. (2014), Gejadze and Shutyaev (2012) and
Haber et al. (2010).

The number of sensors is usually fixed and imposed by
the available experimental budget. Most techniques come
down to the selection of optimal sensor locations from a
finite (but possibly very large) set of candidate locations.
Note that the problem of assigning sensors to specific
spatial locations can equivalently be interpreted in terms
of activating an optimal subset of all the available sensors
deployed in the spatial area (the non-activated sensors
remain dormant). This framework is typical of the mea-
surement regime in modern sensor networks.

A grave difficulty in selecting an optimal subset of gauged
sites from among a given set of candidate sites is the combi-
natorial nature of this optimization problem. As the cardi-
nalities of those sets increase, the exhaustive search of the
search space quickly becomes computationally intractable.
This stimulated attempts to solve this problem in a more
constructive manner. For problems with low or moderate

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



dimensionalities, Uciński and Patan (2007) set forth a
branch-and-bound method, which most often drastically
reduces the search space and produces an optimal integral
solution. In turn, for large-scale observation networks, the
existing approaches replace the original NP-hard combi-
natorial problem with its convex relaxation in the form
of a convex programming problem. This paves the way
for application of interior-point methods, see the works by
Joshi and Boyd (2009) and Chepuri and Leus (2015), or
polyhedral approximation methods, cf. Uciński and Patan
(2007), Herzog et al. (2018) and Uciński (2020b).

A major drawback of convex relaxation is the necessity
of transforming the optimal relaxed solution into an ac-
ceptable solution of the original combinatorial problem.
This is by no mean trivial and, when done carelessly, may
make the performance gap between both the solutions
quite wide. In recent years, handling the problem with
various sparsity-enforcing penalty terms have won popu-
larity. Although as a result of their addition to the original
design criteria the problem convexity is lost, this property
can be easily retrieved by resorting to iterations of the
majorization-minimization scheme, cf. Sun et al. (2017).
Unfortunately, it is not clear how to control the impact of
this penalty so as not to depart from the relaxed solution
too much.

The main contribution of this work consists in establishing
an alternative approach which explicitly controls the qual-
ity of the sparsified solution in terms of the original design
criterion. It focuses on directly minimizing the sparsity-
enforcing penalty within the set of relaxed solutions which
are allowed to deteriorate the optimal relaxed solution in
terms of the original design criterion by no more than
an arbitrarily set threshold. The technique reduces to a
sequence of nonlinearly constrained convex optimization
problems which are solved using an extremely fast gener-
alized simplicial decomposition. As a result, a relatively
simple and efficient technique of postprocessing relaxed
solutions is proposed.

2. D-OPTIMUM SENSOR LOCATION AND ITS
CONVEX RELAXATION

Consider a spatiotemporal system whose scalar state is
given by the solution y to a deterministic partial differ-
ential equation (PDE) accompanied by the appropriate
boundary and initial conditions. The PDE is defined on a
bounded spatial domain Ω ⊂ Rd (d ≤ 3) with a boundary
∂Ω and a bounded time interval T = (0, tf ]. It is specified
up to θ ∈ Rm, a vector of unknown parameters which are
to be estimated from noisy observations of the state. These
observations are going to be made by n pointwise sensors
at given time instants t1, . . . , tK ∈ T .

The sensor locations are to be selected from among N >
n candidate sites x1, . . . ,xN ∈ Ω̄ := Ω ∪ ∂Ω. Their
measurements are modelled as

zj = y(xij , tk; θ̄) + εij ,k (1)

for j = 1, . . . , n and k = 1, . . . ,K, where y(x, t;θ) stands
for the state at a spatial point x ∈ Ω̄ and a time instant
t ∈ T̄ := [0, tf ], evaluated for a given parameter θ. Here
θ̄ signifies the vector of ‘true’ values of the unknown
parameters, i1, . . . , in ∈

{
1, . . . , N

}
are the indices of the

gauged sites, and the εij ,k’s are independent normally-
distributed random errors with zero mean and constant
variance σ2.

Depending on whether or not prior background informa-
tion about θ̄ is accessible, Bayesian (e.g., maximum a pos-
teriori estimation) or frequentionist (maximum-likelihood
estimation, possibly combined with the Tikhonov-Phillips
regularization) approaches can be used to produce an

estimate θ̂ of θ̄. Its accuracy is characterized by the Fisher
information matrix (FIM), cf. Atkinson et al. (2007)

M(v) = M0 +
N∑
i=1

viM i, (2)

in which

M i =
1

σ2

K∑
k=1

g(xi, tk)g>(xi, tk), i = 1, . . . , n, (3)

with g(x, t) = ∇θ y(x, t;θ)
∣∣
θ=θ0 stands for the sensitivity

vector evaluated at a prior estimate θ0 of the ‘true’ vector
θ̄. Furthermore, v = (v1, . . . , vN ) and vi is the binary
indicator variable equal to 1 or 0 depending on whether
or not a sensor resides at site xi.

In the Bayesian setting, the inverse of M0 is the known
covariance matrix of the prior density of θ and then
M−1(v) approximates the covariance matrix of the pos-
terior density of θ. In the frequentionist setting when no
background information is available, M0 is set as zero,
and then M−1(v) approximates the covariance matrix of
the maximum-likelihood estimator of θ̄.

The ‘goodness’ of a sensor location represented as v is
quantified by a design criterion related to the confidence
ellipsoid, i.e., a highest probability regions for the pa-
rameters. The most common option is the D-optimality
criterion

ΦD(M) = det1/m(M), (4)

maximization of which is equivalent to minimizing the
volume of the confidence ellipsoid. Thus the spread of
the estimates of the unknown parameters around their
mean values is minimized (and on some not particularly
restricted assumptions, these means are at least approxi-
mately equal to the ‘true’ values of the unknown parame-
ters).

Consequently, we can formulate the following problem:

Problem 1. Find v?bin ∈ Vbin :=
{
v ∈ {0, 1}N : 1>v = n

}
to maximize ΦD(M(v)) Each minimizer v?bin is called a
D-optimum exact design.

Unfortunately, the search for v?bin through evaluating

ΦD(M(v)) for each of
(
N
n

)
possible choices of gauged

sites quickly becomes computationally intractable with
an increase in N . Therefore, following the customary
procedure adopted in OED, we relax the nonconvex 0–1
constraints on the design variables, thereby allowing them
to take any real values in the interval [0, 1]. Thus we get
the following much more convenient formulation:

Problem 2. Find v?D ∈ V :=
{
v ∈ [0, 1]N : 1>v = n

}
to

maximize ΦD(M(v)) Each minimizer v?D is called a D-
optimum relaxed design.
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3. SPARSITY-PROMOTING POSTPROCESSING OF
RELAXED DESIGNS

Obviously, the relaxed design v?D may have many frac-
tional components. On the one hand, there is an acute need
to convert it to a design desirably with binary weights.
Mathematically, the transformed design ought to be char-
acterized by minimal support, i.e., a minimal number of
nonzero components. On the other hand, however, the loss
in the attained extreme value of the D-optimality criterion
should be as small as possible.

For any design v ∈ V define its D-efficiency

ED(v) =
det1/m(M(v))

det1/m(M(v?D))
, (5)

cf. Atkinson et al. (2007). It quantifies the degree of D-
optimality of v with respect to v?D. Note that 0 ≤ ED(v) ≤
1 = ED(v?D).

Let us also denote by ‖v‖0 the number of nonzero com-
ponents of the vector v, i.e., ‖v‖0 = |supp(v)|, supp(v) ={
j ∈ {1, . . . , N} : vj 6= 0

}
,

The following formulation can address the above dilemma:

Problem 3. Find v?D,0 ∈ V :=
{
v ∈ [0, 1]N : 1>v = n

}
to

minimize ‖v‖0 subject to

ED(v) ≥ η, (6)

where η signifies a given minimal acceptable value of
D-efficiency. Each minimizer v?D,0 is called a minimum-
support relaxed design with guaranteed D-efficiency η.

The constraint (6) endows Problem 3 with the following
meaningful interpretation: Having obtained a D-optimum
design v?D, we sacrifice some (possibly high) degree of D-
optimality, which is controlled by η, for minimization of
the support of the relaxed design.

In the literature, ‖ · ‖0 is termed the `0-norm, although
it is not a norm, as it does not satisfies the condition of
absolute homogeneity. Its direct minimization is extremely
hard, which is why we replace the `0-‘norm’ by the `q-
‘norm’

‖w‖q =
( r∑
j=1

|wj |q
) 1

q

, (7)

which is justified by the property ‖w‖0 = limq↓0 ‖w‖q
valid for each fixed w. Observe that given 0 < q < 1, ‖ · ‖q
it is not a norm, either, as it does not satisfy the triangle
inequality.

Problem 3 is then replaced by its counterpart for a fixed
q ∈ (0, 1):

Problem 4. Find a vector v?D,q ∈ RN minimizing

J(v) = ‖v‖qq =
N∑
j=1

wqj (8)

over the feasible set W := {v ∈ V : ED(v) ≥ η}.

3.1 Majorization-minimization algorithm

At first sight the concavity of the design criterion J seems
to make the attendant optimization problems prohibitively

difficult. However, on close examination the majorization-
minimization (MM) algorithm, cf. Sun et al. (2017), turns
out a simple remedy to this problem.

For J the MM algorithm is going to generate a sequence
of feasible vectors

{
v(κ)

}∞
κ=0

starting from an arbitrary

feasible initial point v(0) by minimizing in each iteration a
surrogate function v 7→ Ψ(v|v(κ)). This function should be
a convex tangent majorant of J(v) at v(κ). Observe that
here, in view of the concavity of J , we have

J(v) ≤ J(v(κ)) + (v − v(κ))>∇J(v(κ))

:= Ψ(v|v(κ)), ∀v ∈ W,
(9)

and its right-hand side satisfies all the requirements for
the surrogate function in question.

The consecutive iterates of the MM algorithm are then
defined as

v(κ+1) = arg min
v∈W

Ψ(v|v(κ)). (10)

A characteristic feature of the MM algorithm is that the
sequence

{
J(v(κ))

}
is strictly decreasing until a minimizer

is attained. What is more, any limit point v? of
{
v(κ)

}
is

a stationary point of J . Note, however, that the function
J may have multiple local minima and only one of them
can be attained.

4. GENERALIZED SIMPLICIAL DECOMPOSTION
TO MINIMIZE THE SURROGATE FUNCTION

The linearity of the surrogate objective function Ψ( · |v(κ)),
the polyhedral form of the set V and the convexity of the
constraint (6) make the optimization problem (10) ideal
for the use of generalized simplicial decomposition (GSD)
to quickly solve it and drastically reduce the problem di-
mensionality, cf. Bertsekas and Yu (2011) and applications
in Uciński (2020a) and Uciński (2022). The essence of the
dimensionality reduction involved by GSD is that at each
iteration the polyhedral set V in RN is approximated with
the convex hull of an ever expanding set V(τ) that consists
of extreme points of V. The method alternates between
minimization of Ψ(v|v(κ)) over conv(V(τ)), subject to the
additional side constraint (6), and finding a new extreme

point v
(τ)
xtrm ∈ V to be added to V(τ). (These tasks are

called the restricted master problem, or RMP, and the
column generation problem, or CGP, respectively.) The
polyhedron conv(V(τ)) can be treated as a subset of Rτ+2

and for a typical run of GSD we have τ � N . This is
where a substantial dimensionality reduction emerges.

The low-dimensional RMP can be solved by any solver
for constrained nonlinear optimization which returns, as a
by-product, the values of the Lagrange multipliers (this is
usually the case when fast Newton-like methods, such as
SQP, are used).

5. NUMERICAL RESULTS

Consider the setting of the moving source identification
investigated in the paper by Uciński (2022). There are
seven unknown parameters characterizing the diffusion
coefficient and the moving source. The parameters are
going to be estimated using n = 150 sensors selected
from a total of N = 780 sensor network nodes residing
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(a)

(b)

Fig. 1. Optimum sensor configurations: relaxed D-
optimum design with some nonnegligible weights in
the centre and top-left subregions (a), sparse solu-
tion with a guaranteed D-efficiency of η = 0.95 (b).
Black points denote candidate sites and the colours
of the discs around them represent the weight values.
The arrow represents the movement of the pollution
source.

in a unit square. Figure 1 shows the original relaxed
D-optimum design weights and the same weights post-
processed with the proposed algorithm for the minimal
acceptable D-efficiency level set at 0.95 and q = 0.2. Only
two iterations of the MM scheme were needed. Overall, the
postprocessing took no more than 1 second on a mediocre
PC computer and an implementation in Python.
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The family of (matrix-valued) Positive real Odd, PO,
functions F (s) may be described as,

PO := {F (s) : F (s) = − (F (−s∗))∗ ∀s ∈ C }.
Resorting to the framework of the Quadratic Matrix
Inequality one can explicitly describe PO functions as,

PO =


40 ∀s∈CL

F (s) :

[
F (s)

Im

]∗[ 0 Im

Im 0

][
F (s)

Im

]
=0 ∀s∈iR

<0 ∀s∈CR

 . (1)

The subset of rational functions within this family (a.k.a.
Lossless or Foster) corresponds to electrical circuits with
reactive elements (i.e. L − C) and no resistance, see e.g.
Figures 1, 2 and 5, below.

In Figure 1 the elements sC and sL on the left-hand side,
are substituted, on the right, by an admittance network YF
and an impedance network ZG, respectively. In contrast,
in Figure 2 the elements sC and sL on the left-hand side
are substituted, on the right, by an admittance network
YG and an impedance network ZF , respectively.

Yin →

C

L

Yin(s) =
(
(sC)−1 + sL

)−1

Yin →

YF

ZG

Yin =
(
YF
−1 + ZG

)−1

Fig. 1. Driving point admittance of a series circuit of
degree 2

For instance, the elements sC and sL, on the left-hand
side of Figure 1 are substituted, on the right-hand side,
by admittance network YF and impedance network ZG,
respectively. In contrast, in Figure 2 sC and sL, on the

Zin → L C

Zin(s) =
(
(sL)−1 + sC

)−1

Zin → ZF YG

Zin =
(
ZF
−1 + YG

)−1

Fig. 2. Driving point impedance of a parallel circuit of
degree 2

left-hand side, are substituted, on the right-hand side, by
the admittance network YG and impedance network ZF ,
respectively.

It is now appropriate to introduce the notation,

φ(X,Y ) :=
(
X−1 + Y

)−1
, (2)

where X, Y are square variables so that X and (X−1 +Y )
are non-singular.

As a first application, one can write,
Figure 1 Figure 2

Yin(s)=φ(sC , sL) Zin(s)=φ(sL , sC)

Yin(s)=φ(YF , ZG) Zin(s)=φ(ZF , YG).

The rest of this section is devoted to showing that the role
of the function φ in Eq. (2), goes beyond an exercise in
circuits.

Following the spirit of the description of PO functions in
Eq. (1), φ is a PO function in the sense that,

40 40

(X+X∗) and (Y+Y ∗) =0 =⇒ Φ+Φ∗ =0

<0 <0

(3)

Note also that whenever in addition Y and (Y −1 +X) are
non-singular then,

φ(Y,X) :=
(
Y −1 +X

)−1
= φ(X−1, Y −1). (4)

Thus, one can conclude that φ is a PO function of two
non-commuting variables.
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In OutF

G
G ·Out

+
-

F−1 ·Out

Fig. 3. Out =
(
F−1 +G

)−1 · In = φ(F, G) · In

In analogy to Figures 1 and 2, one may view Figure 4 as
a complement to Figure 3.

In OutG−1

F−1

+
-

F−1 ·Out

G ·Out

Fig. 4. Out =
(
F−1 +G

)−1 · In = φ(G−1, F−1) · In

Let F and G are m×m-valued rational functions. Assum-
ing in Figure 3 that F and (F−1 + G) are invertible, or
assuming in Figure 4 that in addition G is invertible, one
has that in both cases,

In−G ·Out = F−1 ·Out =⇒ In =
(
F−1 +G

)
·Out

=⇒ Out = φ(F,G) · In.
In each of the Figures 1 and 2 the circuit was comprised
of a pair reactive element, i.e. a rational positive real odd
function of degree two. The circuit in Figure 5 is comprised
of four reactive elements.

Zin →

Ca

La

Lb Cb

Fig. 5. Zin(s) =
((

(sCa)−1 + sLa
)−1

+ (sLb)
−1 + sCb

)−1

.

The driving point impedance in Figure 5 can also be
written as,

Zin(s) = (

φ(sCa , sLa)︷ ︸︸ ︷(
(sCa)−1 + sLa

)−1
+

(φ(sLb , sCb))−1︷ ︸︸ ︷
sLb
−1 + sCb )−1

= φ ( φ(sLb , sCb), φ(sCa , sLa) ) .

(5)

As before, in analogy to the L − C circuit in Figure 5,
we have the multiple feedback loops in Figure 6.

As before one can re-write the input-output relation in
Figure 6 as,

Out =
((
Fb
−1 +Gb

)−1
+ Fa

−1 +Ga

)−1

In

= φ( φ(Fa , Ga) , φ(Fb , Gb) )In.

(6)

In Out

Ga

Fa

Fb

Gb

+

-

-

+

-

Fig. 6. Out =

((
Fb
−1 +Gb

)−1
+ Fa

−1
+Ga

)−1

In

Now, comparing Eq. (5) with Eq. (6), one can formally
identify the elements sCa, sLa, sCb, sLb, in Figure 5 with
the blocks Fa(s), Ga(s), Fc(s), Fd(s) in Figure 6.

This calls for adapting one of the classical construction
schemes of R− L− C circuits, e.g. Brune, Bott-Duffin,
Darlington, Foster, Cauer, etc., to introducing a design
tool for networks of feedback-loops, more elaborate than
that in Figure 6 (and as mentioned, the building blocks
need not be positive real).

A word of caution: The passage from one-port circuit de-
sign to that of feedback-loops networks can not be straight-
forward: Typically blocks like Fa(s), Ga(s), Fc(s), Fd(s)
are non-commutative. Hence, one needs to formally extend
the notion of PO functions to real rational functions of say
k non-commuting variables. See e.g. φ in Eqs. (2) (3)

As a hint to the potential of the propsed approach, the
feedback loop network from Figure 6 is extended in Figure
7, to having two inputs and two outputs.

In1

In2

Out1

Out2

Ga

Fa

Fb

Gb

+

-

-

+ +

-

Fig. 7. Multiple Feedback Loops

[
Out1

Out2

]
=

[
(Fc+G−1

c )
−1 −(Fc+G−1

c )
−1
G−1

c

G−1
c (Fc+G−1

c )
−1

(F−1
c +Gc)

−1

] [
In1

In2

]

=

[
(Fc+G−1

c )
−1 −F−1

c (F−1
c +Gc)

−1

(F−1
c +Gc)

−1
F−1

c (F−1
c +Gc)

−1

] [
In1

In2

] (7)
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where
Fc:=F−1

a +Ga Gc:=F−1
b

+Gb .
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Passive Rational Functions

Passivity is a physical property of dynamical systems.
Recently, it was shown that, at least in the linear time-
invariant framework, it is equivalent to an explicit mathe-
matical structure. See ?, ?.

As it is well known, physically the set of m × m-valued
positive real rational functions represents linear time-
invariant passive systems.

In fact, there are four variants. To describe them we shall
adopt the following notation. CR will be the open right
half of the complex plane, and Dc

= {c ∈ C : |c| > 1 },
i.e. the exterior of the closed unit disk.
Consider m×m-valued real rational functions F (z) (m is
a parameter).

P Positive-Real (continuous-time) Re (x∗F (s)x) ≥
0 ∀x ∈ Cm ∀s ∈ CR

B Bounded-Real, (continuous-time) 1 ≥ ‖F (s)‖2 ∀s ∈
CR.

DP Discrete-Time-Positive-Real Re (x∗F (s)x) ≥ 0 ∀x ∈
Cm ∀s ∈ Dc

DB Discrete-Time-Bounded-Real 1 ≥ ‖F (s)‖2 ∀s ∈ Dc

The above four families, are common in Engineering cir-
cles, in particular P can be viewed as the Laplace trans-
form of a continuous-time, stable, linear time-invariant
system, described by a differential equation, while DB may
be the Z-transform of a discrete-time, stable, linear time-
invariant system, described by a difference equation.

As already mentioned, in ?, ? the above two better known
families were characterized through their structure.

Theorem 1
Consider two families of functions.

P This set is a maximal matrix-convex cone of matrix-
valued real rational functions, closed under inversion,
which are analytic in CR .

Conversely, a maximal matrix-convex cone of matrix-
valued rational functions, closed under inversion, which
are analytic in CR and containing the zero degree function
Fo(s) ≡ I, is the set P.

DB Let F be a family of square matrix-valued (of various
dimensions) real rational functions F (s). For all s outside
the closed unit disk, each F (s) is analytic.

If as a family, F is matrix-convex, and a maximal set
closed under products of its elements (whenever dimen-
sions are suitable), this is the set DB of Discrete-time
Bounded real rational functions.

The converse is true as well.

By definition each of the pairs P, B along with DP, DB,
shares the same domain. In contrast, each of the pairs P,
DP along with B, DB shares the same range. To be more
specific, we recall the following: Assume that the Cayley
transform of F (s) is, almost everywhere, well defined, i.e.

C(F ) = (Im−F )(Im+F )−1 det (F (s) + Im) 6≡ 0. (1)

Then above four variants of passive functions satisfy the
following relations,

B = C (P) DB = C (DP)

F (s) ∈ P ⇐⇒ F
(

1+s
1−s

)
∈ DP

F (s) ∈ B ⇐⇒ F
(

1+s
1−s

)
∈ DB.

(2)

Namely the sets P, B, DP and DB are inter-related as
rational functions.

Here we proceed in the direction of exploring structure
of families passive systems, and now focus on state-
space realizations. Specifically, we show that realizations
of the above four families, are inter-related through Linear
Fractional Transformation. Specifically, starting with any
of the families (P, B, DP or DB) all other three can be
obtained.

Here are the details. Recall that with an arbitrary m×m-
valued rational function F (s), with no pole at infinity, i.e.

∃ lim
s −→ ∞

F (s),

one can associate a corresponding (n + m)× (n + m)
state-space realization array, RF i.e.

F (s) = C(sIn −A)−1B + D RF =

[
A B

C D

]
. (3)

The realization RF in Eq. (3) is called minimal, if n is the
McMillan degree of F (s).

We can now state the main result of this presentation.

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



Theorem 2
For l = P, B, DP and DB, let Fl be families of ra-
tional functions. Let RFl

be a corresponding state space
realization (assuming there is no pole at infinity). Then
(whenever inverses exit) the following is true.

(P) RFP =
[
ADB−In BDB

−CDB −DDB+Im

] [
ADB+In BDB

CDB DDB+Im

]−1
(B) RFB =

[
AP−BP(Im+DP)

−1CP −
√
2BP(Im+DP)

−1

√
2(Im+DP)

−1C (Im−DP)(Im+DP)
−1

]

(DP) RFDP =
[
AB+In BB

CB DB−Im

] [
AB−In BB

−CB −DB−Im

]−1
(DB) RFDB =

[
ADP−BDP(Im+DDP)

−1CDP −
√
2BDP(Im+DDP)

−1

√
2(Im+DDP)

−1C (Im−DDP)(Im+DDP)
−1

]
.

Roughly speaking, one can conclude that K-Y-P type
results for P, B, DP or DB, are all equivalent, up to linear
fractional transformation.

Although derived independently, one can relate Eq. (2) to
Theorem 2.

Remarks
a. Having the “matrix” RF non-singular, and the realiza-
tion array RF minimal, are two independent properties.

b. Recall in the realization of a Cayley transform of
a rational function: Let F (s) be a square matrix-valued
rational function along with its realization as in Eq. (3).
Then a realization of C(F ) is given by,

RC(F ) =

[
A−B(Im +D)−1C ∓

√
2B(Im +D)−1

±
√
2(Im +D)−1C (Im −D)(Im +D)−1

]
. (4)

This conforms with items (B) and (DB) in Theoremi 2.

c. From Eq. (3) one has that F (s) ∈ C(P) ⇐⇒ F
(

1+s
1−s

)
∈ DB.

Using Theorem ??, let RFP =

[
AP BP
CP DP

]
and RFDB =[

ADB BDB
CDB DDB

]
be realizations of P and DB functions, re-

spectively. Then whenever inverses exit, RFP = −C
(
R(FDB)−1

)
.
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Abstract: In recent years, network synthesis theory has been successfully applied to vibration
absorber design, to identify optimum mechanical networks providing performance improvements.
These identified mechanical networks consist of ideal linear modelling elements, such as springs,
dampers and inerters. For real-life applications, the essential next step is to transfer these
linear mechanical networks into physical absorber designs. There are two major challenges
for this step: firstly, in order to achieve practical physical realisations, multidomain physical
components (mechanical, hydraulic, pneumatic and electrical) need to be considered; and
secondly, nonlinearities and other parasitic properties of physical components must be taken
into consideration or potentially be made full use of. To this end, this paper, using a nonlinear
mechanical network-based model for a bespoke mechanical-hydraulic device, demonstrates the
feasibility of resolving both challenges.

Keywords: Vibration absorber design; nonlinearity; force control; mechanical network; physical
models

1. INTRODUCTION

For vibration absorber design, different from the tradi-
tional approach focusing on modifying the specific designs,
network synthesis theory has been applied in recent years,
allowing a wide range of absorber networks to be explored
systematically (Smith, 2002; Chen and Smith, 2009; Ya-
mamoto and Smith, 2015; Zhang et al., 2017b, 2019a;
Hughes, 2020). These networks consist of ideal linear mod-
elling properties, such as stiffness, damping and inertance
(Smith, 2002) and have demonstrated their advantages for
various engineering structures (Smith and Wang, 2004;
Jiang et al., 2012; Zhang et al., 2017a, 2019b; Lewis et al.,
2019). To achieve the real-life benefits, the next step is to
transfer these networks into physical absorber design.

Not only focusing on mechanical domain, the physical
realisation needs to consider the components from multiple
domains (mechanical, hydraulic, pneumatic and electrical)
allowing numerous design possibilities and functionalities
to be explored. There are challenges to be addressed
for this step. The first challenge is to achieve the ideal
mechanical network topology, which depends on how to
choose the multidomain components and coupling mecha-
nisms. The basic modelling elements from each domain
have been summarised in the table of Fig. 1 and the
physical component would need single or multiple basic
elements to represent, such as a hydraulic orifice as a

? Research is supported by the Engineering and Physical Sciences
Research Council (EPSRC) (Grant Reference: EP/P013546/1).

single resistance while a hydraulic tube as hydraulic in-
ertance and resistance in parallel (Liu et al., 2018, 2019).
In order to achieve the desirable force-velocity properties,
suitable coupling mechanisms need to be considered, such
as the piston-cylinder coupling (Liu et al., 2019), rubber-
fluid coupling (Li et al., 2019) and electrical transducers
(Wang and Chan, 2011). These mechanisms will determine
how the non-mechanical components and implementation
are mapped into equivalent mechanical components and
topological connections.

Once the desirable network topology is realised using mul-
tidomain components, the next challenge will be how to re-
alise the network modelling properties (stiffness, damping
and inertance) and the difficulty lies in that the physical
component nonlinearities and parasitic effects need to be
characterised. The approach proposed by Liu et al. (2019)
which develops a generalisable model for a physical device
with key design parameters will be used to address this
challenge. This generalisable model will not only help to
develop an accurate dynamic model but also allow the key
physical parameters to be optimum designed maximising
the performance benefits.

To address the aforementioned two challenges, a nonlinear
mechanical network-based model is needed, to transfer the
multidomain components into an equivalent mechanical
network and enable the component nonlinearity to be
characterised or potentially made use of. In this work,
a feasibility of resolving these two challenges will be
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Fig. 1. A mechanical-hydraulic-electrical analogy
(Schönfeld, 1954)

demonstrated using nonlinear mechanical network-based
model for a bespoke mechanical-hydraulic device.

2. A FEASIBILITY STUDY USING A
MECHANICAL-HYDRAULIC DEVICE

In this feasibility study, a mechanical-hydraulic device
which could realise a specific linear mechanical network
topology is first presented in Section 2.1. Based on
this physical device, the component-level nonlinearites
and parasitic effects are identified experimentally in Sec-
tion 2.2. By integrating such component nonlinearities and
parasitic effects into the mechanical network topology, the
final nonlinear mechanical network-based model, where
the properties are represented by physical design param-
eters, is developed in Section 2.3. Readers could refer to
Liu et al. (2019) for more details.

2.1 Mutlidomain Realisation of A Linear Network

A linear mechanical network shown in Fig. 2(a) is assumed
to be realised in this feasibility study.

(a) (b)

Fig. 2. (a) The linear mechanical network which needs
to be realised; (b) The equivalent linear hydraulic
network using the piston-cylinder coupling.

Considering a mechanical-hydraulic device and piston-
cylinder coupling mechanism, the physical device force F
and the relative terminal velocity ∆v can be transferred
to hydraulic pressure difference ∆p and flow rate Q due to
the piston movement, using the relationships:

F = AP ∆p, (1)

∆v =
Q

AP
, (2)

where AP is the piston area. Using these coupling equa-
tions, the mechanical through variable F is linked with
the hydraulic cross variable ∆p while the mechanical cross
variable ∆v with the hydraulic through one Q. Therefore,
the equivalent hydraulic network is dual to the mechanical
network, as shown in Fig. 2(b). For ideal linear modelling

elements, the corresponding transformation between hy-
draulic and mechanical elements are

c1 = AP
2R1 (3)

c2 = AP
2R2 (4)

b = AP
2I2. (5)

A schematic plot of a mechanical-hydraulic device in
Fig. 3, is proposed to realise the ideal hydraulic network
topology in Fig. 2(b). As shown in Fig. 3, the two cylinder
chambers are connected with a helical tube, which provides
the hydraulic inertance and resistance, and there are
valves in the piston providing the resistance. When the
piston is moving relatively to the cylinder, two main flow
paths, where one is through the helical tube and the
other through the valves on the piston, are considered and
hydraulically parallel. Note that the physical component
nonlinearity and parasitic effects will be introduced in
Section 2.2.

Fig. 3. A schematic plot of a mechanical-hydraulic device
which can realise the network in Fig. 2 (Liu et al.,
2019).

2.2 Experimental Identification of Component Nonlineari-
ties and Parasitic Effects

As introduced in the previous section, based on the linear
assumptions, the mechanical-hydraulic device can realise
the linear mechanical network topology shown in Fig. 2(a).
In order to achieve the desirable network element prop-
erties or making use of them, component nonlinearities
and parasitic effects need to be modelled. Note that due
to the introduction of nonlinearities, the linear transfor-
mation between hydraulic and mechanical elements, such
as equations (3), (4) and (5), will not hold. However, the
mechanical coupling equations between force and pressure
difference, relative velocity and flow rate (equations (1)
and (2)), still hold, hence the topological connection of
the nonlinear equivalent mechanical network is the same
as that of the linear equivalent one.

(a) (b)

Fig. 4. (a) The nonlinear hydraulic network of the
mechanical-hydraulic device, (b) the equivalent
nonlinear mechanical network of the mechanical-
hydraulic device (Liu et al., 2019)

.

Fig. 4(a) shows the nonlinear hydraulic network of the
mechanical-hydraulic device, where R1 is nonlinear orifice
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damping, Ch is the hydraulic compliance due to fluid
compressibility, Rs is the nonlinear leakage damping, R2,io

is the inlet/outlet damping of the helical tube, R2,h is the
damping due to surface friction in the tube and I2 is the
tube inertance. Using the mechanical-hydraulic coupling
equations (equations (1) and (2)), the nonlinear equiva-
lent mechanical network is presented in Fig. 4(b). Those
nonlinear element properties can be identified in separate
subsets using designated tests (Liu et al., 2019), which is
named as a generalisable model developing approach in
Liu et al. (2019).

2.3 Final Nonlinear Mechanical Network-based Model

By implementing all the component nonlinearities and
parasitic effects, the final nonlinear mechanical network-
based model has been developed, as shown in Fig. 5. In
this network model, it has been found that the effects
of piston leakage cs and tube inlet/outlet damping c2,io
are negligible. Extra effects, such as the friction force
f , coupler stiffness ks and backlash p are experimentally
identified to obtain accurate terminal behaviour. The key
element properties (c1, c2,h and b) in this nonlinear model
are expressed by formulae with key design parameters,
such as the valve size, tube length and cross-section area
(see Table 6 of Liu et al. (2019)). The validity of this
nonlinear model has been verified using different design
parameter settings.

Fig. 5. A schematic plot of a mechanical-hydraulic device
which can realise the network in Fig. 2 (Liu et al.,
2019).

3. CONCLUSION

Using the feasibility study, a nonlinear mechanical network-
based model has been developed for a force-controlling
device which could realise the linear mechanical network
using nonlinear multidomain components. This modelling
approach is applicable for different networks and realisa-
tion across different domains.
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Abstract: We present recent results joint with Mario Kummer (TU Dresden) on convex hulls of
curves. We see a large family of examples where these convex hulls turn out to be hyperbolicity
cones. For convex hulls of elliptic curves, we are able to show that these hyperbolicity cones are
spectrahedra, generalizing previous results by Henrion and Scheiderer.
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1. INTRODUCTION

Hyperbolic polynomials and the associated algebraic hy-
persurfaces are at the intersection of algebraic geometry,
optimization, combinatorics, and computer science. His-
torically, they go back to partial differential equations in
the work of Peter Lax and have started a new life in
convex programming since the advent of interior point
methods. In real algebraic geometry, (smooth) hyperbolic
hypersurfaces are an extremal topological type, namely the
most nested.

In this paper, we provide a geometric construction of
highly singular hyperbolic hypersurfaces, which is interest-
ing from several perspectives. The hyperbolicity of secant
varieties of M -curves is closely linked to a property of
linear systems on real algebraic curves that we call vastly
real. This is a common generalization of Ahlfors’s circle
maps, i.e. real fibered (also called separating or totally
real) morphisms to the projective line, and Mikhalkin
and Orevkov’s maximally writhed links. Vastly real linear
systems on curves are an extremal real embedding into
projective spaces of almost any odd dimension.

From the point of view of optimization, highly singular
hyperbolicity cones are necessary to even have a chance
to construct expressive hierarchies analogous to sum-of-
squares and moment methods widely used in semidefinite
programming (as shown in the work of Saunderson Saun-
derson (2020) building on Averkov (2019)). Our geomet-
ric construction provides such examples. It can be used
to write certain convex hulls of connected components
of real curves as projections of hyperbolicity cones. The
hyperbolic secant hypersurfaces for curves of genus at
least 2 are a promising testing ground for the Generalized
Lax-Conjecture, which claims that they admit definite
determinantal representations up to a cofactor with con-
trolled hyperbolicity cone. Vinnikov (2012). We construct
examples of hyperbolic polynomials with a highly singu-
lar hyperbolicity cone so that these cones have an inter-
esting facial structure. Our construction also generalizes
the Hankel spectrahedron for binary forms to the convex
hull of (a connected component) of an M -curve of genus
greater than 1. We also show that the hyperbolicity cones

constructed in this way are simplicial and therefore do not
admit small SDP-lifts. In general, we do not know, if these
hyperbolicity cones are spectrahedral.

In classical algebraic geometry, an attractive class of exam-
ples of hyperbolic hypersurfaces are definite symmetroids:
hypersurfaces whose defining polynomials are the determi-
nant of real symmetric matrix pencils that contain a defi-
nite matrix. We show the existence of such determinantal
representations for secant varieties of elliptic normal M -
curves.

2. CONCLUSION

This work provides many examples of highly singular hy-
perbolic polynomials. Singularities are necessary for an in-
teresting facial structure and therefore for expressive pow-
ers of possible hyperbolic hierarchies. So these examples
might lead to interesting applications later. Moreover, they
are a testing ground for the generalized Lax conjecture.
In genus 1, however, the hyperbolicity cones in question
are spectrahedral in the easiest possible way, generalizing
previous results by Henrion Henrion (2011) and Scheiderer
Scheiderer (2011).
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Abstract: An explicit algorithm will be presented for computing the H2 norm of a single
input single output system from the coefficients in its transfer function. The algorithm follows
directly from Cauchy’s residue theorem, and the most computationally intensive step involves
solving a polynomial Diophantine equation. This can be efficiently solved using subresultant
sequences in a fraction-free variant of the extended Euclidean algorithm. The coefficients in
these subresultant sequences correspond to the Hurwitz determinants, whereby a stability test
can be obtained alongside computing the H2 norm with little additional computational effort.
Implementations of the algorithm symbolically, in exact arithmetic, and in floating-point
arithmetic will be presented. The accompanying talk will demonstrate an example application
on the design of passive train suspension systems that optimise passenger comfort. The example
will demonstrate the algorithm’s greater robustness and computational efficiency relative to H2

norm algorithms requiring the computation of the controllability or observability Gramians.
The more general application of the techniques to the realisation of optimal lumped-parameter
networks will also be discussed.
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1. INTRODUCTION

TheH2 norm is a widely used metric for characterising sys-
tem performance, corresponding to the square root of the
power spectral density of the system’s output in response
to zero mean white noise input of unit power spectral den-
sity. It is a natural measure of system performance for the
design of mechanical networks, such as vehicle suspension
systems; for example, it is commonly used to characterise
passenger comfort as a vehicle traverses a rough surface
(see, e.g., Wang et al., 2009). The design of the famous
Linear Quadratic Gaussian controller also corresponds to
aH2 norm minimisation problem. There is therefore a need
for efficient algorithms for the computation of the H2 norm
of a given system. In safety critical applications, or when
numerical robustness is a consideration, it can be desirable
to compute the H2 norm using exact arithmetic. Moreover,
in the design of lumped-parameter systems, it can be
desirable to obtain symbolic expressions for the H2 norm
in terms of the system’s parameters. For example, this is
useful in the design of optimal mechanical networks, or in
other structured H2 norm optimisation problems, where it
is necessary to choose one or more system parameters to
optimise a H2 norm performance measure.

In this paper, an algorithm will be presented for the
computation of the H2 norm of a single input single output
system from the coefficients in its transfer function. The
most computationally demanding step in the algorithm
corresponds to solving a polynomial Diophantine equation.
This equation arises from the application of Cauchy’s
residue theorem to evaluate the frequency domain integral
formula (obtained from Parseval’s theorem) for the H2

norm. It will be shown how this equation can be solved
efficiently by a fraction-free variant of the extended Eu-
clidean algorithm, which corresponds to the computation
of subresultant and remainder polynomials generated from
the even and odd part of the denominator polynomial in
the system’s transfer function. Moreover, the coefficients
in these subresultant polynomials correspond to Hurwitz
determinants, whereby the stability of the system can be
determined alongside the H2 norm computation. Exam-
ples will be presented to demonstrate the robustness and
computational efficiency of the algorithm as compared
to H2 norm algorithms that involve computation of the
controllability or observability Gramians. The algorithm
is broadly applicable to the design of optimal lumped-
parameter networks (such as the aforementioned vehi-
cle suspension systems), and more general structured H2

norm optimisation problems.

The notation employed is as follows. R denotes the real
numbers; Rm×n the real matrices with m rows and n
columns; and R[s] and R(s) the univariate polynomials
and rational variables in the indeterminate s, respectively.
If p ∈ R[s], then deg(p(s)) denotes its degree, and LC(p(s))
its leading coefficient. If G ∈ R(s), then ‖G‖2 denotes its
H2 norm. For a complex number z, its conjugate is denoted
z∗, and j denotes the imaginary unit

√
−1. Finally, if

x ∈ R, then dxe rounds x ∈ R up to the next integer,
and bxc rounds x ∈ R down to the previous integer; and if
x is an integer then x%2 denotes the remainder of x upon
division by 2.
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2. COMPUTING THE H2 NORM USING THE
POLYNOMIAL DIOPHANTINE EQUATION

The H2 norm of a linear system has a number of well
known equivalent characterisations. From the perspective
of system performance, it is most naturally characterised
as the power spectral density of the system’s output when
the input is zero-mean white noise whose power spectral
density is equal to the identity matrix. For the purposes of
computation, there are three alternative characterisations,
corresponding to the system’s impulse response, frequency
response, and the controllability or observability Gramian.
For the case of a (rational and strictly proper) single
input single output system with impulse response g(t),
frequency response G(s) ∈ R(s) (the Laplace transform
of g(t)), and state-space realization (A,B,C) (i.e., A ∈
Rn×n, B ∈ Rn×1 and C ∈ R1×n satisfy G(s) = C(sI −
A)−1B), these three alternative characterisations are as
described next. It should be noted that the H2 norm as
defined below requires the system to be asymptotically
stable, and accordingly this will be assumed to be the case
throughout. The algorithm proposed in this paper for its
computation contains a test for stability and can flag when
this condition is not met.

Firstly, the H2 norm is the 2-norm of the impulse response,
i.e., ‖G‖22 = ∫∞−∞ g(t)2dt.

Secondly, using Parseval’s theorem, this can be evaluated
using the frequency response G(jω) as follows:

‖G‖22 =
1

2π

∫ ∞
−∞

G(jω)∗G(jω)dω. (1)

Thirdly, ‖G‖22 = BTLoB = CLcC
T , where Lo and Lc are

the observability and controllability Gramians, which are
the solutions to the Lyapunov equations ATLo + LoA +
CTC = 0 and ALc + LcA

T +BBT = 0, respectively.

Similar characterisations to the above also hold for multi-
input multi-output systems (see, e.g., Zhou et al., 1996,
pp. 112–113).

Owing to the abundance of efficient computational meth-
ods for solving Lyapunov equations, such as those char-
acterising the observability and controllability Gramians,
then algorithms for computing the H2 norm typically
employ the third of the aforementioned characterisations.
While the Lyapunov equations themselves are linear in the
entries in the observability and controllability Gramians,
the size of such equations are considerably greater than the
state dimension, and the solutions depend in a complicated
manner on the entries in the matrices A,B and C. In con-
trast, in this paper, an algorithm will be presented based
on the second of the aforementioned characterisations for
the H2 norm. The most computationally demanding step
in the calculation corresponds to solving a structured lin-
ear equation of dimension equal to the state dimension.
Moreover, the structural properties of this equation can
be handled in a computationally efficient manner via a
fraction-free variant of the extended Euclidean algorithm.

The algorithm for the computation of the H2 norm will
be stated in terms of the coefficients in the numerator and
denominator polynomials of the transfer function:

G(s) =
c(s)

a(s)
=
cn−1s

n−1+cn−2s
n−2+ . . .+c1s+c0

ansn+an−1sn−1+ . . .+a1s+a0
, (2)

where, without loss of generality, we let an > 0, and we
assume that c(s) and a(s) have no common roots in the
closed right half plane (whereupon G is asymptotically
stable if and only if the roots of a(s) are all in the
open left half plane). Following Ablowitz (2003, pp. 220–
221), it follows that the integral in equation (1) is equal
to
∮
D
G(−s)G(s)ds/(2πj), where D is a contour that

traverses the imaginary axis from a point s = −jR to
the point s = jR, then follows a semicircular arc of radius
R into the left half plane, for any given R > 0 such that
this contour encloses all of the poles of G(s) (see also Zhou
et al., 1996).

Since the roots of a(s) are all in the open left half
plane, then a(s) and a(−s) have no roots in common,
whereupon there exists a unique solution to the polynomial
Diophantine equation c(−s)c(s) = a(s)x(s)+a(−s)y(s) for
which the degrees of x(s) and y(s) are strictly less than
n. Moreover, it can be noted that if the pair (x(s), y(s))
satisfies the aforementioned equation, then so too does the
pair (y(−s), x(−s)), and it follows that x(s) = y(−s). In
other words, y(s) is the unique polynomial whose degree
is strictly less than n that solves the equation

c(−s)c(s) = a(s)y(−s) + a(−s)y(s). (3)

Rearranging (3) and substituting it into the previous
contour integral yields

2πj‖G‖22 =

∮
D

c(s)c(−s)
a(s)a(−s)

ds =

∮
D

y(−s)
a(−s)

ds +

∮
D

y(s)

a(s)
ds.

Since the roots of a(s) are all in the open left half plane,
then D contains all of the poles of y(s)/a(s) and none of
the poles of y(−s)/a(−s), whereupon by Cauchy’s residue
theorem it follows that

‖G‖22 =
1

2πj

∮
D

y(s)

a(s)
ds.

Since D contains all of the poles of y(s)/a(s), then the
above contour integral can be evaluated using the concept
of the residue at infinity (see Ablowitz, 2003, pp. 211–212).
Specifically, from (Ablowitz, 2003, equations (4.1.13) and
(4.1.14)), it follows that

‖G‖22 = lim
s→∞

(
sy(s)

a(s)

)
=
yn−1
an

,

where yn−1 denotes the coefficient of sn−1 in y(s). In sum-
mary, the computation of theH2 norm of the system whose
transfer function is as in (2) amounts to the determination
of the coefficient yn−1 from the polynomial solution y(s)
(of degree n− 1 or less) to equation (3).

Now, let

ce(s) = c0 + c2s+ . . .+ c2bn−1
2 c

sb
n−1
2 c,

co(s) = c1 + c3s+ . . .+ c2dn−3
2 e+1s

dn−3
2 e,

and z0(s) = (ce(s))2 − s(co(s))2, (4)

whereupon c(s) = ce(s2) + sco(s2) and

c(−s)c(s) = (ce(s2)− sco(s2))(ce(s2) + sco(s2)) = z(s2).

Further, let

ae(s) = a0 + a2s+ . . .+ a2bn2 cs
bn2 c,

and ao(s) = a1s+ a3s
2 + . . .+ a2dn2 e−1s

dn2 e, (5)

whereupon a(s) = ae(s2) + 1
sa

o(s2). It can be shown that
ae(s) and ao(s) do not share any common roots since the
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roots of a(s) are all in the open left half plane, and it
follows that there exist unique polynomials f(s) and g(s)
such that the degree of f(s) (resp. g(s)) is strictly less than
the degree of ao(s) (resp. ae(s)) and

ae(s)f(s) + ao(s)g(s) = z0(s). (6)

Then, with the notation

y(s) = 1
2 (f(s2)− sg(s2)), (7)

it is easily shown that the degree of y is strictly less
than n, and that a(s)y(−s) + a(−s)y(s) = c(−s)c(s). In
other words, y(s) in equation (7) is the unique solution
to equation (3) for which the degree of y(s) is strictly
less than n, whereupon the coefficient yn−1 of sn−1 in the
polynomial y(s) is determined from the solutions f(s) and
g(s) to the polynomial Diophantine equation (6).

3. EFFICIENT COMPUTATION OF THE SOLUTION
TO THE POLYNOMIAL DIOPHANTINE EQUATION

It has been shown that the H2 norm of the system whose
transfer function is as in (2) is equal to yn−1/an, where
yn−1 is the coefficient of sn−1 in the polynomial y(s)
in (7), where f(s) and g(s) are the solutions to the
polynomial Diophantine equation (6). Here, ae(s), ao(s)
and z0(s) are directly determined from the coefficients
c0, c1, . . . cn−1 and a0, a1, . . . , an in the transfer function
G(s) using equations (4) and (5). In this and the next
section, efficient algorithms for the computation of the
solution to this Diophantine equation will be presented.

First, by equating coefficients of s in equation (6), it follows
that the coefficients in the polynomials f(s) and g(s) can
be obtained by finding the solution x to the linear equation

HTx = b, (8)
where H is the n× n Hurwitz matrix

H =


an−1 an−3 an−5 · · ·
an an−2 an−4 · · ·
0 an−1 an−3 · · ·
0 an an−2 · · ·

. . .

 , (9)

and bT = [z0,n−1 z0,n−2 · · · z0,1 z0,0] where z0(s) =
z0,n−1s

n−1 + z0,n−2s
n−2 + . . . + z0,1s + z0,0. Here, if n is

odd (resp., even), then the odd (resp., even) entries in the
solution x to equation (8) correspond to the coefficients
in f(s) in equation (6), and the even (resp., odd) entries
correspond to the coefficients in g(s), in descending degree.
In either case, it follows that yn−1 = (−1)n+1x1/2, where
x1 denotes the first entry in the solution x to equation (8).

The preceding characterisation of theH2 norm is similar to
the approach taken by Betser et al. (1995) to characterise
the solution P to the Lyapunov equation −PA−ATP = Q
in the case that A is a companion matrix. In contrast to
the preceding derivation, the result of Betser et al. (1995)
used the theory of matrix polynomials. A similar approach
was followed by Hughes (2016), where an alternative char-
acterisation was also obtained in terms of the Bezoutian
of the polynomials ao(s) and ae(s), which allows one to
exploit the algorithms of Bini and Gemignani (1998) for
efficient triangularisation of Bezoutians.

This solution method via the polynomial Diophantine
equation (6) also lends itself to both exact computation

over the integers and to symbolic computation. This is
of particular interest in safety critical applications, and in
structured H2 norm optimisation problems. In these cases,
the solution can be efficiently obtained via the algorithm
to be described in the next section.

4. EXACT OR SYMBOLIC COMPUTATION USING
SUBRESULTANT SEQUENCES

In this section, an algorithm for solving the polynomial
Diophantine equation (6) will be provided that is partic-
ularly suitable for exact or symbolic computation. The
algorithm amounts to the computation of subresultant
and remainder sequences in a generalised version of the
extended Euclidean algorithm (see, e.g., Basu et al., 2006,
Section 8.3). The coefficients of these subresultant and
remainder sequences correspond to subdeterminants of the
Hurwitz matrix, and so a stability test can be performed
with little added computational cost. The method is also
fraction-free (i.e. at each stage of the computation, the
results are integers whenever the coefficients in the orig-
inating transfer function are integers), which allows for
efficient exact or symbolic computation. The algorithm
and its properties are presented in this section. The proof
will follow in a journal paper currently in preparation.

First, note that the definitions for the polynomials change
depending on whether the degree of the transfer function,
n, is odd or even. Owing to space constraints, we consider
only the case where n is odd in the following. Define

p1(s) = ao(s) = a1s+ a3s
2 + . . .+ a2dn2 e−1s

dn2 e,

p2(s) = ae(s) = a0 + a2s+ . . .+ a2bn2 cs
bn2 c,

and recall the definition of z0(s) in terms of the coefficients
in the numerator polynomial of the transfer function G(s)
from equation (4). To calculate the H2 norm, we recur-
sively compute polynomials z1, . . . , zn−1 and p3, . . . , pn+1

as follows. Firstly, the polynomials z1(s) and p3(s) are
obtained thus:

z1(s) = LC(p1)z0(s)− sd
n−2
2 ez0,n−1p1(s),

p3(s) = LC(p2)p1(s)− sn%2LC(p1)p2(s).

Here, and hereafter, zi−1,n−i denotes the coefficient of
degree n− i in the polynomial zi−1(s), which could equal
0 (i = 1, 2, . . . , n). Next, the polynomials z2(s) and p4(s)
are obtained thus:

z2(s) = LC(p2)z1(s)− sd
n−3
2 ez1,n−2p2(s),

p4(s) = LC(p3)p2(s)− s(n−1)%2LC(p2)p3(s).

Then, given polynomials pi(s), pi+1(s) and zi−1(s), the
polynomials pi+2(s) and zi(s) are obtained thus:

zi(s) =
LC(pi)

LC(pi−1)
zi−1(s)− sd

n−i−1
2 e zi−1,n−i

LC(pi−1)
pi(s),

pi+2(s) =
LC(pi+1)

LC(pi−1)
pi(s)− s(n−i+1)%2 LC(pi)

LC(pi−1)
pi+1(s),

for i = 3, 4, . . . , n − 1. The coefficients LC(pk) corre-
spond to principal subdeterminants of the Hurwitz matrix,
whereby LC(pk) > 0 for all k = 0, . . . , n+1 due to G(s) =
c(s)/a(s) being asymptotically stable (Gantmacher, 1980,
p. 194). Moreover, if any one of these coefficients is non-
positive, then the algorithm can terminate with notifica-
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tion that the roots of a(s) are not all in the open left-
half plane and thus the H2 norm is ill-posed. Asymptotic
stability is also sufficient to guarantee that the degrees
of the polynomials satisfy deg(pi+2(s)) = deg(pi(s)) − 1
for i = 1, 2, . . . , n − 1, and it is clear that deg(zi(s)) <
deg(zi−1(s)) for i = 1, 2, . . . , n − 1, whereupon it follows
that zn−1(s) and pn+1(s) are scalar constants.

Having computed this sequence of polynomials, the H2

norm is then obtained as

zn−1
2anpn+1

.

It can be shown that the coefficients of the polynomials
pi+2(s) and zi(s) will be integers whenever the coefficients
of the originating polynomials p1, p2 and z0 are integers,
for i = 1, 2, . . . , n − 1. In this case, all quantities can be
calculated exactly and efficiently using integer arithmetic.
This property also facilitates efficient symbolic compu-
tation when the coefficients are parametric, for example
when considering lumped parameter networks such as me-
chanical suspension systems.

The performance of this algorithm has been compared to
the norm command in MATLAB 2021b and is of the order
of 100 times faster for transfer functions of degrees in
the range from 5 to 21. MATLAB tends to take longer
to execute code when running code for the first time,
while it loads required functions and allocates memory for
variables. This is illustrated in Figure 1; it is particularly
prominent over the first 10 runs, but there are still spikes
in execution time during the first 1000. These spikes in
execution time still exist in runs after the first 1000 but
are less prominent.

Fig. 1. Execution times plotted for the first 100 and
following 1000 executions, respectively, for a transfer
function with degree n = 21.

The following table presents the executation times for this
algorithm in comparison with the norm command. Owing
to the speed up in performance, these results represent the
average execution time between the 1000th and 10000th
run. A similar order of magnitude improvement in execu-
tion time is also observed for the first run and the first
1000 runs. These metrics were obtained on an Intel i7-
12700K, and are reported in microseconds to 3 significant
figures. Transfer functions were constructed as follows:
c(s) =

∑n−1
i=0 s

i, a(s) =
∑n

i=0

(
n
i

)
si.

n MATLAB (inbuilt) MATLAB (New Algorithm)
5 707 9.09
7 742 14.6
9 784 14.9
21 1200 32.3

Furthermore, the command isstable, used to test the
stability of a transfer function in MATLAB 2021b, adds
a further 205 microseconds to the computation time for
n = 21, in comparison to checking the leading coefficient
of pi > 0, which has negligible effect on computation time.

In addition, direct solution to equation (8) was tested, us-
ing the backslash operator in MATLAB. This was roughly
3 times slower than the method outlined in this paper, yet
still significantly faster than MATLAB’s inbuilt function,
averaging at 98.3 microseconds between the 1000th and
10000th runs for n = 21.

The algorithm has particular value in terms of optimisa-
tion of lumped-parameter networks, such as mechanical
networks. For example, many vehicle suspension design
problems can be characterised in terms of optimising the
network parameters (such as the spring stiffnesses, damp-
ing rates and inertias) in order to optimise the H2 norm
of some driving-point or transfer admittance (see, e.g.,
Wang et al., 2009). The driving-point or transfer admit-
tance will be functions of these design parameters whose
coefficients can be obtained directly using graph theoretic
methodologies (see, e.g., Percival, 1953). Optimisation of
the H2 norm can be implemented efficiently with the new
algorithm, either numerically or symbolically. The sym-
bolic approach also enables computation of the gradient
vector and Hessian matrix to allow application of efficient
interior-point or similar methodologies for optimisation.
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Abstract: Traditional linear passive vibration-absorber networks, such as the tuned mass
damper (TMD), often contain springs, dampers and masses. Recently there has been a growing
trend to supplement or replace the masses with inerters. When considering the absorbers without
a mass, a structure-immittance approach was proposed to identify possible configurations
consisting of springs, dampers and inerters. This approach can characterise the full class of
network layouts with pre-determined numbers of each element type, and also prescribe the
allowed value range for each element. More recently, a mass-included passive absorber, the tuned-
mass-damper-inerter, was introduced, showing significant performance benefits on vibration
suppression. With the aim to further explore the potential of numerous mass-included passive
absorber layouts, a more generalised methodology was developed. Using this methodology, a
full class of absorber layouts with a mass and a pre-determined number of inerters, dampers
and springs connected in series and parallel can be systematically investigated. A 3-storey
building model is used to demonstrate the advantages of the proposed approaches for the cases
without and with a mass, where the performance improvements can be up to 21.6% and 65.6%,
respectively, compared to the TMD.

Keywords: Passive vibration damper, Network topologies, inerter, systematic methodology,
reaction mass.

1. INTRODUCTION

Tuned mass dampers (TMDs), in which a reaction mass
is attached to a structural system via a spring–parallel–
damper connection, are commonly used in a wide range of
applications to suppress deleterious vibrations. The inerter
was introdued by Smith (2002), which allows electrical
networks to be translated over to mechanical ones in a
completely analogous way, with the mechanical elements
springs, dampers and inerters corresponding to the elec-
trical elements inductors, resistors and capacitors. Hence,
any positive-real functions can be synthesised by passive
mechanical networks consisting of dampers, inerters and
springs using the theorem proposed by Bott and Duffin
(1949). When considering of possible configurations with
these elements broadly, two approaches are normally used:
one structure-based and one immittance-based. Both ap-
proaches have their advantages and disadvantages. Later,
a new approach was proposed by Zhang et al. (2017) –
the structure–immittance approach. Using this approach,
a full set of possible series–parallel networks with prede-
termined numbers of inerters, dampers and springs can

⋆ This is a resubmission of the MTNS2020 extended abstract.

be represented by structural immittances, obtained via a
proposed general formulation process. Using the structural
immittances, both the ability to investigate a class of ab-
sorber possibilities together (advantage of the immittance-
based approach), and the ability to control the complexity,
topology and element values (advantages of the structure-
based approach) are provided.

Recently, by adding an inerter into the TMD and employ-
ing two structural attachment points, Marian and Giaralis
(2014) proposed a new vibration suppression device, the
tuned-mass-damper-inerter (TMDI), with significant ben-
efits obtained. It demonstrates the potential advantages
of passive vibration absorbers including the mass and the
two-terminal mechanical elements springs, dampers and
inerters. However, there are countless topological connec-
tion possibilities with these elements included, some of
which can potentially provide much more advantageous
performance. Therefore, an approach was proposed by
Zhang et al. (2019) to systematically characterise a full set
of passive vibration absorbers with series–parallel connec-
tions of a mass and a pre-determined number of springs,
dampers and inerters.
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In this extended abstract, the structure-immittance and
mass-included synthesis approaches are introduced in Sec-
tions 2&3, respectively, to demonstrate the construction of
the generic networks and their corresponding mathemat-
ical representations. Examples containing one spring, one
damper and one inerter (termed as 1k1c1b) are demon-
strated accordingly. Finally, a three-storey building model
is used in Section 4 to show the advantages of the proposed
two approaches on identifying beneficial 1k1c1b mechani-
cal networks with and without a mass element.

2. STRUCTURE-IMMITTANCE APPROACH

The structure-immittance approach is based on the force-
current analogy where two-terminal networks are consid-
ered. Therefore, three elements p, q, r are considered.
They can represent in any order either inerters, dampers
and springs in the mechanical domain or capacitors, induc-
tors and resistors in the electrical one. Assume the num-
bers of p, q and r elements are P, Q and R, respectively
and P ≤ Q ≤ R is satisfied by selecting the p, q and r
elements appropriately. By using the structure-immittance
approach, generic networks which contain explicit infor-
mation of all topology possibilities for a given number of
each component are first constructed. The formulation of
a generic network representing P p, Q q and R r elements
requires a series of steps, summarised as a flow chart in
Figure 1. Detailed steps to obtain the generic networks
can be found in the paper by Zhang et al. (2017).

Fig. 1. Flow chart summarising the steps to obtain generic
networks done by Zhang et al. (2017) for P p, Q q
and R r case where P ≤ Q ≤ R .

One mechanical network example with one spring, one
damper and one inerter (i.e. 1k1c1b case) are constructed
based on the procedures shown in Figure 1. Two generic
networks, termed Q1 and Q2, can be obtained as shown

in Figure 2. Here we choose the damper and inerter as
the base element for the sub-networks and the spring is
appointed as the added element. Totally 8 layouts are
included by these two generic networks which contain all
the possible layouts for the 1k1c1b case.

Fig. 2. The generic networks obtained for the 1k1c1b case
where only one spring is actually present in each of
the generic networks.

After obtaining the generic networks, their corresponding
structural-immittances can be derived, which are defined
as the transfer functions of generic networks from force to
velocity, i.e.

Y (s) =
F (s)

V (s)
(1)

F (s) and V (s) are the force and relative velocity across the
two terminals in the Laplace domain, respectively. s is the
complex frequency parameter of the Laplace transform.
Here, for the 1k1c1b case, the structural-immittances of
generic networks Q1 and Q2 are represented as:

Y1(s) =
bcs2 + b(k4 + k6)s+ c(k2 + k6)

bc(1/k3)s3 + bs2 + cs+ k2 + k4
,

Y2(s) =
bc(1/k1 + 1/k2)s

3 + bs2 + cs+ k3
b(1/k1 + 1/k5)s3 + c(1/k2 + 1/k5)s2 + s

(2)

Note that, for Y1(s), only one of k2, 1/k3, k4 and k6 is
positive and all the others are equal to zero. Similarly, for
Y2(s), only one of 1/k1, 1/k2, k3 and 1/k5 is positive and all
the others are equal to zero. These transfer functions can
be used, along with the specific constraints on the num-
ber of spring elements, to find the optimum mechanical
network for a given system and objective functions.

3. MASS-INCLUDED SYNTHESIS APPROACH

The structure-immittance approach, which employed net-
work synthesis theory, made use of the fact that the inert-
ers, dampers and springs all have two terminals. When a
reaction mass is included into the networks, a systematic
approach becomes much more challenging, as the reaction
mass is always regarded as a one-terminal element. In
order for network synthesis to be directly applicable to
the systematic enumeration of vibration absorbers with a
reaction mass, it is necessary to treat the mass as a special
two-terminal element, with one terminal notionally con-
nected to the ground, denoted as a notional-ground (NG).
Accordingly, terminals connected to physical attachments
are denoted as physical-terminals (PTs).

Considering the fact that most vibration suppression de-
vices have no more than two attachment points, inves-
tigation of the mass-included synthesis approach focuses
on 1PT1NG and 2PT1NG networks. The 1PT1NG net-
work, represented by its force–velocity transfer function
H(s) = F1(s)/V1(s), is shown in Figure 3(a). At the
PT1, the force f1 (F1(s) in the Laplace domain) is applied
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and results in a velocity v1 (V1(s)). Figure 3(b) shows a
2PT1NG network, with forces f1, f2 and velocities v1, v2
at two PTs. Note that because of the presence of a reaction
mass, in contrast to the 2PT network (whose immittance
function is Y (s) = F (s)/(V1(s)− V2(s)), see Figure 3(c)),
the forces f1, f2 of the 2PT1NG network are not equal and
opposite. In the following parts, constructions of 1PT1NG
and 2PT1NG networks are briefly introduced, and generic
networks of an example mechanical network containing a
mass and 1k1c1b are demonstrated. Details can be found
in the work done by Zhang et al. (2019).

H(s)

v1

PT1

f1
NG PT1 PT2

v1 v2

f1 f2
L(s)

NG

PT1
f −f

Y (s)

v1 v2

PT2

(a) (b) (c)

Fig. 3. (a) 1PT1NG network, (b) 2PT1NG network and
(c) 2PT network (by Zhang et al. (2019)).

3.1 1PT1NG network layout enumeration

To construct the 1PT1NG networks, we consider joining
a 2PT network with a 1PT1NG Immittance-Function-
Network (IF-Network), where an IF-Network refers to a
network layout with its 2PT sub-networks represented by
Immittance-Function-Blocks (IF-Blocks). In order to for-
mulate series-parallel 1PT1NG IF-Networks, a collection
of finite numbers of IF-Blocks combined with a mass is
considered. A non-unique connection sequence is proposed,
with which all possible 1PT1NG IF-Networks can be ob-
tained. Start with a single IF-Block, it can be connected in
series or in parallel with other IF-Blocks, however, these
always reduce to a single IF-Block. At a certain step, the
resulting IF-Block is connected to the mass, where only a
series connection is possible, resulting in a new 1PT1NG
network. Further addition of IF-Blocks can only be con-
nected in series with this 1PT1NG network, as a parallel
connection would necessitate a NG being connected with
a PT. Hence, all the IF-Networks can be represented by
the generic IF-Network shown in Figure 4 with a single
IF-Block Y (s).

mY (s)PT1 NG

Fig. 4. The generic 1PT1NG IF-Network got by Zhang
et al. (2019).

For the 1PT1NG network layouts with one reaction mass
and 1k1c1b elements, all network possibilities can be
obtained using the generic IF-Network in Figure 4, by
enumerating the full class of 2PT network possibilities
consisting of 3 elements in Y (s). To this end, the structure-
immittance approach can be directly applied to obtain the
structural immittance Y (s), which is shown in Eq. 2 for
the 1k1c1b case. The transfer function of the generic IF-
Network can be obtained as:

H(s) = Y (s)ms/(ms+ Y (s)) (3)

With H(s), the optimum 1PT1NG vibration absorber can
be identified for a given vibration suppression problem.

3.2 2PT1NG network layout enumeration

In order to formulate 2PT1NG IF-Networks, a sequence
of steps is introduced based on the work by Nishizeki
and Saito (1974), as shown in Figure 5. The construction
of a three-terminal series-parallel network begins with
an empty graph as shown in Step 1. We first consider
joining the two terminals, PT1 and NG. Using the generic
1PT1NG IF-Network obtained in the previous section
(Figure 4), a network shown in Step 2 is obtained. Then a
single IF-Block Y2(s) is added to the network, resulting in
Step 3 via a parallel connection. Consider adding the next
IF-Block, Y3(s), resulting in the new IF-Network shown in
Step 4 using the series connection. Note that all the other
connection possibilities between Step 3 and the IF-Block
Y3(s) can all be simplified to Step 3. At this point, only
a parallel IF-Block can be added, with the resulting IF-
Network shown in Step 5, since series IF-Blocks can be
reduced to the network of Step 4. Following this parallel
addition, only series additions modify the network. Note
that series connections at both PT terminals need to be
considered, and we define connecting to PT2 as Step 6. An
additional IF-Block is then added in series at PT1 – the
resultant network is shown in Step 7. Consequent steps will
be adding IF-Blocks in parallel then in series by repeating
Steps 5-7, until all IF-Blocks in the original collection are
used.

Fig. 5. A procedure summarised by Zhang et al. (2019) to
form all possible series-parallel 2PT1NG IF-Networks
with a mass and a pre-determined number of IF-
Blocks .

Based on the obtained series-parallel 2PT1NG IF-Networ-
ks, the rest part focuses on generating generic 2PT1NG IF-
Networks. Different from 1PT1NG networks, where one
generic IF-Network is sufficient (Figure 4), for 2PT1NG
networks, different generic IF-Networks are needed de-
pending on the number, R, of IF-Blocks which are present.
In this extended abstract, 1k1c1b case is considered for
the possible 2PT1NG generic IF-Networks where at most
3 IF-Blocks exist. Therefore, three generic IF-Networks for
R =1, 2, 3 are obtained as shown in Figure 6.

To describe the relations between the velocities and the
forces of the 2PT1NG generic IF-Networks in the Laplace
domain, an Immittance-Function-Matrix (IF-Matrix), de-
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Y3(s) Y2(s)

m

(a)

Y3(s) Y2(s)

Y1(s) m

(b) Y4(s)

Y3(s) Y2(s)

Y1(s) m

(c)

Fig. 6. Generic IF-Networks of 2PT1NG networks contain-
ing one spring, one damper and one inerter where the
present IF-Blocks (a) R = 1, (b) R = 2 and (c) R = 3.

noted as L(s), is required, where the velocities and the
forces are related in Laplace domain, as:[

F1

F2

]
= L(s)

[
V1

V2

]
, (4)

L(s) is a 2× 2 matrix. For generic IF-Networks of 1k1c1b
2PT1NG networks as shown in Figure 6. Their IF-Matrices
can be found in the paper by Zhang et al. (2019). With
the obtained IF Matrices, the optimum 2PT1NG network
containing 1k1c1b with a reaction mass can be identified
for a given vibration suppression problem.

4. NUMERICAL APPLICATION ON THE EXAMPLE
STRUCTURE

In order to demonstrate the vibration suppression abilities
of the mechanical networks identified by the above intro-
duced systematic approaches for cases with and without
a mass element, a three degrees-of-freedom (DOFs) struc-
ture model is introduced, with floor masses ms = 10000 kg
and inter-storey stiffness ks = 15000 kN/m. The structural
damping is taken to be zero as it is typically negligible
compared with that introduced by absorbers. The ab-
sorber is connected between the second and third floors
with the reaction mass m =1000 kg if applicable. A brace
stiffness kb = 0.2ks in series with the absorber and con-
necting to the lower floor is included. In this example, the
inter-storey drift displacement is taken as the performance
measure. Therefore the objective function is defined as:

Jd = Max
(over i)

( Max
(over ω)

|Ts2X0→Xdi
|), (i = I, II, III), (5)

where Ts2X0→Xdi
denotes the transfer function from the

earthquake acceleration to the inter-storey drift displace-
ments and Max|Ts2X0→Xdi

| is the maximum magnitude of
Ts2X0→Xdi

.

b
c

k

PT1 PT2

(a)

TID

b c

k

m
PT1

NG

(b)

C1

b c

k
m

PT1 PT2

NG

(c)

C2

Fig. 7. Optimal mechanical layouts containing one mass
and 1k1c1b for the (a) 2PT network (TID), (b)
1PT1NG network (C1) and (c) 2PT1NG network
(C2).

When considering 2PT networks, the structure-immittance
approach is employed, where the optimum mechanical
absorber is the tuned inerter damper (TID) as shown in
Figure 7(a), with the parameter values in Table 1. For
the 1PT1NG and 2PT1NG networks, generic networks in
Figure 4 and Figure 6, respectively, are employed, and the
optimum layout is shown in Figure 7 as C1 and C2. Their
corresponding parameter values are shown in Table 1.

It can be obtained that the performance improvements
can be up to 21.6%, 34.8% and 65.6% for the identified
mechanical networks of 2PT, 1PT1NG and 2PT1NG cases.
Their corresponding frequency domain responses are illus-
trated in Figure 8.

Table 1. Optimisation results for the optimum
2PT, 1PT1NG and 2PT1NG layouts with m =

1000 kg where applicable.

Network type TMD TID C1 C2

Jd (×10−3 s2) 25.0 19.6 16.3 8.60
Percentage Imp. (%) (–) (21.6%) (34.8%) (65.6%)
Stiffness (kN/m) 2.75×102 4.35×103 4.92×102 2.13×102

Damping (kNs/m) 11.7 7.50× 102 30.5 3.26×102

Inertance (kg) – 7.94× 103 1.05×103 8.10×103
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Fig. 8. Frequency response of the inter-storey drift between
the ground and the first floor for the TMD (black
dashed), TID (blue solid), C1 (green solid) and C2
(magenta solid).
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Abstract: The resource allocation problem consists in the optimal distribution of a budget
between a group of agents. We consider a version of this optimization problem in open systems
where agents can be replaced, resulting in variations of the budget and the total cost function
to be minimized. We analyze the performance of the Random Coordinate Descent algorithm
(RCD) in that setting using natural performance indexes which are related to those used in
online optimization. We show that, in a simple setting, both the accumulated error obtained
from using the RCD as compared to the optimal solution and the accumulated gain obtained
from using the RCD instead of not collaborating grow linearly with the number of iterations
considered for the computation, so that in expectation an error cannot be avoided, but remains
bounded.

Keywords: Online optimization, Multi-agent systems, Convex optimization, Optimization and
control of large-scale network systems, Open systems, Dynamic Resource Allocation.

1. INTRODUCTION

We consider the optimal resource allocation problem,
where a fixed amount of resource must be distributed
among n agents while minimizing some separable cost
function f . Such problems arise in different fields of
research, such as actuator networks (Teixeira et al., 2013)
or energy resources (Dominguez-Garcia et al., 2012). In
some of their formulations, each agent i holds a quantity
di (which we call here the “demand” of agent i), so that
the total amount of resource to be distributed is

∑n
i=1 di;

the problem can then be written as

min
x∈Rnp

f(x) =
n∑

i=1

fi(xi) s.t.
n∑

i=1

xi =
n∑

i=1

di, (1)

where each function fi : Rp → R is α-strongly convex and
β-smooth, and represents the local cost held by agent i.

Problems of this type have received a lot of attention in
the last years, see e.g., (Yi et al., 2016). Yet, most of
these works assume that the composition of the system
remains the same during the whole process. We extend
such analyses to open multi-agent systems where agents
can join or leave the network at a time-scale comparable
⋆ C. Monnoyer de Galland and R. Vizuete equally contributed to
this work. C. Monnoyer de Galland is a FRIA fellow (F.R.S.-FNRS).
This work is supported by the “RevealFlight” ARC at UCLouvain,
by the Incentive Grant for Scientific Research (MIS) “Learning
from Pairwise Data” of the F.R.S.-FNRS and in part by the Agence
Nationale de la Recherche (ANR) via grant “Hybrid And Networked
Dynamical sYstems” (HANDY), number ANR-18-CE40-0010.

to that of the process. Those are motivated by the growing
size of the systems that tends to slow down the process
as compared to the time-scale of potential arrivals and
departures of agents. More generally, systems naturally
allowing agents to join and leave are becoming common,
such as e.g. multi-vehicle systems or with the Plug and
Play implementation. In the case of (1), it results in the
system size nt, the local cost functions f t

i , and the local
demands dti becoming time-varying. As a consequence, the
solution of (1), denoted x∗,t, changes with the time as well,
preventing classical convergence.

In this work, we analyze the behavior and performance
of the Random Coordinate Descent algorithm (RCD),
introduced in (Necoara, 2013), in open systems. The RCD
algorithm solves (1) by using pairwise interactions, where
at each step two randomly selected agents follow each
other’s local gradient to update their estimates, which is
more appropriate for open systems, in particular where
the number of agents can be large as it results in a low
computational complexity. The convergence of this algo-
rithm in open systems in terms of the distance to the
minimizer in expectation was studied in (Monnoyer de
Galland et al., 2021). In this work, we aim at analyzing
the RCD algorithm from another perspective, following
the assumption that the cost function must be paid at each
iteration, so that a natural choice is to evaluate the per-
formance accumulated over the iterations. Hence, we use
metrics related to those used in online optimization, which
commonly studies optimization with dynamical cost func-
tions using a similar approach. In particular, we compare
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the performance of the RCD algorithm with that of the
optimal solution x∗,t and of the selfish strategy, denoted
xs,t, which consists in the total absence of collaboration
between the agents (i.e., xs,t

i = dti at all times) and which is
expected to yield less good performance. A representation
of the behavior of these strategies is presented in Fig. 1.
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Fig. 1. Evolution of the function value f t evaluated with
the RCD algorithm, the optimal solution x∗,t, and
the selfish strategy xs,t, in a system subject to re-
placements of agents (i.e., simultaneous departures
and arrivals) happening as frequently as RCD steps.

2. PROBLEM FORMULATION

We consider the resource allocation problem defined in (1),
where the local functions satisfy the following assumption.

Assumption 1. (Local cost function). At any time t, the
local function f t

i of any agent i is

• continuous differentiable;
• α-strongly convex: f t

i (x)− α
2 ∥x∥

2 is convex ∀x;
• β-smooth: ∥∇f t

i (x)−∇f t
i (y)∥ ≤ β∥x− y∥,∀x, y;

• satisfies argminx∈Rd f t
i (x) = 0 and f t

i (0) = 0.

As a consequence of Assumption 1, the global cost function
f t is α-strongly convex and β-smooth as well at all time
t. Assumption 1 also implies that the cost function of an
agent i is zero only when xi = 0, i.e., when this agent does
not contribute to satisfying the total demand.

In this preliminary work, we restrict our analysis to the
specific setting described by the following assumptions.

Assumption 2. The local cost function of any agent i at
any time t is one-dimensional: f t

i : R → R.
Assumption 3. (Homogeneous demand). The demand as-
sociated with any agent i at any time t is dti = 1.

2.1 Random Coordinate Descent algorithm

We consider that agents interact through a graph G =
(V, E), where V = {1, . . . , n} is the set of agents and
E ⊆ V × V is the set of edges. To solve (1), the agents
perform the Random Coordinate Descent (RCD) algo-
rithm introduced in (Necoara, 2013), such that at each
iteration of the algorithm a pair of agents (i, j) ∈ E is
uniformly randomly selected and i and j update their
states according to

x+
i = xi −

1

β

(
f ′
i(xi)− f ′

j(xj)
)
;

x+
j = xj −

1

β

(
f ′
j(xj)− f ′

i(xi)
)
,

where we denote the derivative of the cost functions fi
with f ′

i by simplicity because they are 1-dimensional. At
the network level, the update rule can be expressed as:

x+ = x− 1

β
Qij∇f(x), (2)

where Qij is a n × n matrix filled with zeroes except for
the following four entries:[

Qij
]
i,i

=
[
Qij

]
j,j

=
1

2
;

[
Qij

]
i,j

=
[
Qij

]
j,i

= −1

2
.

For this preliminary work we also make the following
assumption, which means that pairwise interactions as
defined in (2) can potentially take place between any pair
of agents (i, j) in the systems.

Assumption 4. The graph G = (V, E) is complete.

2.2 Open system

We consider an open system, which is thus subject to
arrivals and departures of agents. Those are modelled as
follows, where we use respectively the subscripts out and
in to refer to the leaving and joining agent:

(1) Departure: the agent out is uniformly randomly se-
lected among the n agents in the system, and sends
a last message to all its neighbours (i.e. the complete
graph), such that for all i ̸= out there holds

x+
i = xi +

xout − xi

n
=

(
1− 1

n

)
xi +

1

n
xout. (3)

(2) Arrival: The agent in joins the system with its de-
mand as initial value: x+

in = din = 1.

In this preliminary work, we restrict our analysis to
open systems when only replacements take place (i.e. the
simultaneous occurrence of a departure and of an arrival),
so that the system size is fixed: for all t there holds nt = n.
We can then define the set of events possibly happening
in the system as

Ξ := R ∪ U =
(⋃

i∈V
Ri

)
∪
(⋃

(i,j)∈E
Uij

)
, (4)

where Ri denotes the replacement of agent i and Uij a
pairwise interaction between agents i and j leading to an
update of their estimates according to (2).

We assume that two distinct events never occur simulta-
neously, so that we consider a discrete evolution of the
time, where each time-step corresponds to an event ξ ∈ Ξ
happening in the system. Hence we can define the history
of the process until a given time-step k as

ωk := {(1, ξ1), . . . , (k, ξk)} , (5)

where ξi ∈ Ξ for all i = 1, . . . , k.

Assumption 5. The events ξi constituting a sequence ωk

happen independently of each other and of all past infor-
mation, so that at each time-step either an update (i.e., an
event U) happens with fixed probability p or a replacement
(i.e., an event R) with fixed probability 1− p.

One can show that the definitions of arrivals, departures
and of the RCD algorithm guarantee that at the occur-
rence of any event ξ ∈ Ξ, the estimate xt remains feasible,

i.e., such that xt
i ≥ 0 for all i, and

∑N
i=1 x

t
i =

∑N
i=1 d

t
i = n,

as long as the initial estimate x0 is feasible as well.

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



We can now reformulate original problem (1) in our
particular setting as

min
x∈Rn

f t(x) =
n∑

i=1

f t
i (xi) s.t.

n∑
i=1

xi = n. (6)

Since the local cost functions satisfy Assumption 1, one
can show that there exist Lf , Uf ≥ 0 with Lf ≤ Uf such
that ∀t there holds

f t(x∗,t) ∈ [Lf , Uf ] , (7)

where x∗,t is the solution of (6) at time t.

3. PERFORMANCE METRICS

Standard results on online optimization usually rely on
the analysis of the so-called “regret”, which quantifies
the accumulation of the errors made by an algorithm as
compared to the optimal solution over a finite number of
time steps T . In this work, we follow a similar approach to
analyze the performance of a given algorithm as compared
to two possible strategies. Due to the definition of our
problem, the conclusion is however expected to differ
from classical online optimization. We consider the three
following strategies for the study of the system:

• Perfect collaboration: we assume that at each
time instant t the agents know the optimal solution
denoted by x∗,t, which solves (6);

• Selfish players: we assume that the players do not
collaborate to minimize f t, and they operate at their
individual desired point so that xs,t = 1n at all t;

• Decided strategy: this case corresponds to the
action given by a specific algorithm used to solve the
problem, resulting in the estimate xt at time t.

From the definitions, it is clear that for a well-designed
algorithm it is expected that:

T∑
t=1

f t(x∗,t) ≤
T∑

t=1

f t(xt) ≤
T∑

t=1

f t(xs,t).

However, due to the replacements, there could be time
instants where the selfish strategy behaves better than the
decided strategy. An illustration of the evolution of these
strategies is given in Fig. 1, where the decided strategy is
the RCD algorithm defined in the previous section.

Based on these strategies and motivated by the techniques
used on online optimization, we define these three quanti-
ties:

• Dynamical Regret:

RegT :=
∑T

t=1

(
f t(xt)− f t(x∗,t)

)
; (8)

• Benefit:

BenT :=
∑T

t=1

(
f t(xs,t)− f t(xt)

)
; (9)

• Potential Benefit:

PotT :=
∑T

t=1

(
f t(xs,t)− f t(x∗,t)

)
. (10)

The “dynamical regret” corresponds to the accumulation
of the instantaneous errors obtained from using the de-
cided strategy with respect to the optimal solution x∗,t.
Similarly, the “benefit” quantifies the accumulated gain
obtained from using the decided strategy instead of the

selfish strategy xs,t. Finally, the “potential benefit” repre-
sents the accumulated advantage of the optimal strategy
with respect to the selfish one, and links the three quan-
tities together as PotT = BenT + RegT . Our goal is to
analyze the evolution of all these quantities in expectation.

4. PRELIMINARY RESULTS

From Assumption 5, and following an approach similar to
that used in (Monnoyer de Galland et al., 2021), we can
study the evolution of the quantities defined in (8) – (10)
in expectation by analyzing their evolution with each type
of event independently (in our case, single replacements of
agents and RCD iterations).

Observe that both f t(x∗,t) and f t(xs,t) are only impacted
by replacements, whereas f t(xt) changes with replace-
ments on the one hand, and on the other hand with
RCD updates accordingly with the results presented in
(Necoara, 2013). Hence, by properly analyzing the effect
of replacements on the quantities of interest, we can show
that the expected dynamical regret, the benefit and the
potential benefit all grow in O(T ), so that on average over
T they converge to a constant. In particular, we show the
following result.

Theorem 1. In the setting described in Section 2, there
holds

lim
T→∞

EPotT
T

≤ α

2
(κ− 1)n; (11)

lim
T→∞

ERegT
T

≤ ρRθκ(n− 1), (12)

for some θ ≥ 0 which depends on β and α, and with
ρR = 1−p

p .

The detailed proof of Theorem 1 is omitted here, and will
be presented elsewhere. Nevertheless, we provide a bit of
insights about it below.

The first result of Theorem 1 is obtained from studying the
largest possible improvement of using the optimal solution
as compared to the selfish strategy at each time-step. In
particular, using strong convexity and smoothness, one can
show that f t(xs,t) − f t(x∗,t) ≤ β

2 ∥1∥
2 − α

2 ∥x
∗,t∥2, which

ultimately yields (11). The second result of Theorem 1
relies on the separated analysis of f t+1(xt+1)− f t(xt) and
f t+1(x∗,t+1)− f t(x∗,t), which allow building the evolution
of f t(xt) − f t(x∗,t) as a recurrence on these quantities
over the iterations. One can then show that the sum of
the latter over the iterations is bounded using (7), thus
avoiding the introduction of an additive term related to the
optimal value of the function at each time-step. Additional
computations then ultimately lead to (12).

Consistently with the definition of the problem and of
the quantities of interest, the results above depend on the
condition number κ and on the system size n. Moreover,
only the regret, which depends on RCD updates, depends
on ρR = 1−p

p , i.e., the expected number of replacements

between two RCD updates, and thus illustrates how the
openness of the system interferes in the behavior of the
algorithm. Finally, the qualitative behavior of the bounds
matches that of the simulated results obtained with a
system of 5 agents subject to replacements, as illustrated
in Fig. 2. The derivation of a proper upper bound on the
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expected benefit, parallel to (11) and (12) is the next step
in this analysis. Furthermore, deriving the corresponding
lower bounds and showing that they grow linearly with
T as well would be the natural prosecution of these
preliminary results, as they would validate the behavior
illustrated in Fig. 2 and show that it is not possible to
obtain a sublinear behavior.
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Fig. 2. Evolution of ERegT , EBenT and EPotT (top) and
of the corresponding quantities averaged with respect
to the time (bottom) simulated in a system of 5 agents
subject to replacements as frequent as RCD steps.

5. CONCLUSION

We analyzed the performance and behavior of the Ran-
dom Coordinate Descent algorithm (RCD) for solving the
optimal resource allocation problem in an open system
subject to replacements of agents, resulting in variation of
the total cost function and of the total amount of resource
to be allocated. We considered a simple preliminary setting
where the budget is homogeneous and where the graph is
complete, and used tools inspired from online optimization
to show that it is not possible to achieve convergence to the
optimal solution with the RCD algorithm in expectation
in open system, but that the error is expected to remain
reasonable.

We have derived upper bounds on the evolution of the
regret and the potential benefit in expectation. A natural
continuation of this work is thus the derivation of the
corresponding upper bound for the benefit, and of lower
bounds for this quantities in order to validate the observed
behavior. More generally, our bounds could be extended to
more general settings, and their tightness can be improved
to match more accurately the actual performance of the
algorithm. Moreover, since our approach is based on the
analysis of the effect of arrivals and departures of agents
combined into replacements, the next step of this study is
to generalize it to the case where the system size changes
with the time, i.e., where arrivals and departures are
decoupled.
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controlling the computational effort at the same time. In both cases, I will discuss the algorithmic 

realization and computational complexity in detail. I will also discuss recent results on estimating the 

finite-data estimation error for Koopman generator models. 



 

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



Input-to-state stability for unbounded
bilinear feedback systems ?
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Abstract: We study input-to-state stability (ISS) of systems with a linear control and a bilinear
feedback term, depending on the state trajectory itself and the output of the system. Both,
the control and the bilinear feedback enter the system through possibly unbounded operators.
Further, the observation operator, associated to the output, is also considered to be unbounded.
We derive sufficient conditions for a global in time well-posedness result for small initial data as
well as sufficient conditions for an ISS-estimate. This extends recent investigations on bilinear
systems, where a second control was considered instead of an output. The developed results are
applied to a Burgers equation.

Keywords: Input-to-state stability, well-posed distributed parameter systems, semigroup and
operator theory, stability of nonlinear systems, robust control.

1. INTRODUCTION

The concept of input-to-state stability (ISS) as introduced
in Sontag (1989) unifies both asymptotic stability with
respect to initial values and robustness with respect to
external inputs. More specific, if we consider a system
Σ as a mapping which maps initial values z0 ∈ X and
inputs u : [0,∞) → U to the (unique) state trajectory
z : [0, T )→ X, defined on its maximal existence interval,
then, Σ is said to be ISS if for all initial values z0 ∈ X and
inputs u ∈ L∞loc(0,∞;U) there exists a unique global (i.e
T =∞) state trajectory and for all t ∈ [0,∞),

‖z(t)‖X ≤ β(‖z0‖, t) + γ(‖u‖L∞(0,t;U)),

for some functions β ∈ KL and γ ∈ K where the Lyapunov
classes K and KL are given by

K =
{
γ ∈ C(R+

0 ;R+
0 )
∣∣ γ is strictly increasing, γ(0) = 0

}
KL =

{
β ∈ C(R+

0 × R+
0 ;R+

0 )

∣∣∣∣∣ β(·, t) ∈ K ∀t ≥ 0 and
β(s, ·) is strictly

decreasing to 0 ∀s > 0

}
.

The Banach spaces X and U with norms ‖·‖X and ‖·‖U
are called the state space and input space of Σ.
Often one would like to consider a larger class of inputs than
L∞loc. For this reason we consider the following adoption
which is referred to as L2-ISS

‖z(t)‖X ≤ β(‖z0‖, t) + γ(‖u‖L2(0,t;U)),

? The first three authors have been supported by the German
Research Foundation (DFG) via the joint grant JA 735/18-1 / SCHW
2022/2-1.

with β and γ as before.

In this work abstract we investigate L2-ISS of unbounded
bilinear feedback systems{

ż(t) = Az(t) +B1u1(t) +B2N(z(t), y(t)),
y(t) = Cz(t),

(1)

where A is the generator of a C0-semigroup and Bi, i = 1, 2,
and C are possibly unbounded operators. The precise
setting is introduced in Section 2.
For the simple case of linear systems

ż(t) = Az(t) +Bu(t)

where B ∈ L(U,X), i.e. B is bounded from U to X, L2-
ISS is equivalent to uniform exponential stability of the
semigroup. For unbounded B, which appears naturally
when considering boundary control, L2-ISS becomes non-
trivial. Indeed, it is related to L2-admissibility of the control
operator B, see e.g. Jacob et al. (2018).

We refer to Karafyllis and Krstic (2019); Mironchenko and
Prieur (2020); Schwenninger (2020) for an overview on
ISS for infinite-dimensional systems and to Sontag (2008)
for a survey on ISS for ODEs. Recent results for infinite-
dimensional systems can be found in Dashkovskiy and
Mironchenko (2013a,b); Guiver et al. (2019); Jayawardhana
et al. (2008); Mironchenko and Wirth (2018) and in Jacob
et al. (2019); Karafyllis and Krstic (2017); Mazenc and
Prieur (2011); Mironchenko and Ito (2015); Mironchenko
et al. (2019); Zheng and Zhu (2018) for (semi-)linear
systems with a slight focus on the parabolic case.
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The results from Mironchenko and Ito (2016) on ISS for
bounded bilinear control systems has been generalized in
Hosfeld et al. (2022) to unbounded bilinear control systems
of the form

ż(t) = Az(t) +B1u1(t) +B2N(z(t), u2(t))

with unbounded operatorsB1, B2 and suitable boundedness
and Lipschitz assumptions on the non-linearity N . The
question of ISS becomes more delicate as soon as a feedback
law u2 = y = Cz is present which turns the above
system into (1). Even the question of well-posedness of
such systems is far from being evident. A local in time
well-posedness result for (1) can be found in Tucsnak and
Weiss (2014). This is insufficient for our considerations
since global in time well-posedness is a necessity for ISS.

This work is structured in the following way. In Section 2
we formalize the setting of a bilinear feedback system.
Afterwards we recall the concept of well-posedness of linear
systems in order to state the solution concept of the bilinear
feedback system. We close the section with an existence and
uniqueness result for the solution of the bilinear feedback
system with small input data. In Section 3 an ISS result
on the bilinear feedback system for certain parabolic and
hyperbolic systems is given which we apply in Section 4 to
a Burgers equation.

2. A BILINEAR FEEDBACK SYSTEM

Let X,U1, U2, Y be Banach spaces. We now consider the
unbounded bilinear feedback system of the form{

ż(t) = Az(t) +B1u1 +B2N(z(t), y(t)), t ≥ 0,
z(0) = z0,
y(t) = Cz(t), t ≥ 0,

(ΣN )

where

• A generates a C0-semigroup (T (t))t≥0 on X,
• B1 ∈ L(U1, X−1), B2 ∈ L(U2, X−1) are the (un-

bounded) control operators,
• C ∈ L(X1, Y ) is the (unbounded) observation opera-

tor,
• Y ⊆ X with continuous embedding and C has an

extension C ∈ L(X),
• N : X × Y → U2 is a continuous bilinear mapping

which satisfies for some K > 0, p ∈ (0, 1) and all
x ∈ X, y ∈ Y

‖N(z, y)‖U2 ≤ K‖z‖X‖y‖
1−p
X ‖y‖pY . (2)

The spaces X,U1, U2 and Y are referred as the state
space (X), the input spaces (U1, U2) and the output space
(Y ). By X1 and X−1 we denote the standard inter- and
extrapolation spaces associated to the generator A. That
is, X1 is D(A), the domain of A, equipped with the graph
norm and X−1 is the completion of X with respect to the
norm

‖x‖X−1 = ‖(β −A)−1x‖X
for some β ∈ ρ(A), the resolvent set of A. We have
the continuous and dense embeddings X1 ↪→ X ↪→
X−1. Furthermore, (T (t))t≥0 extends uniquely to a C0-
semigroup (T−1(t))t≥0 on X−1 whose generator, denoted
by A−1, is an extension of A with domain D(A−1) =
X. By ω0((T (t))t≥0) we denote the the growth bound
of the semigroup (T (t))t≥0. The semigroup (T (t))t≥0 is

exponentially stable if ω0((T (t))t≥0) < 0, i.e. there exist
M,ω0 > 0 such that

‖T (t)‖X ≤M e−ω0t for all t ≥ 0. (3)

Next we recall the definition and standard facts on well-
posedness (in the L2-sense, see e.g. Tucsnak and Weiss
(2014); Weiss (1989a,b); Curtain and Weiss (1989)) of the
to ΣN associated linear systems{

ẋ(t) = Ax(t) +B1u1(t) +B2u2(t), t ≥ 0,
x(0) = x0,
y(t) = Cx(t), t ≥ 0

(Σlin)

with spaces and operators as before. For simplicity we
understand L2(0, t;U) as a subspace of L2(0,∞;U) with
the usual conventions of truncating and extending functions
by zero. The linear system Σlin is well-posed, if

(i) A generates a C0-semigroup (T (t))t≥0 on X;
(ii) Bi, i = 1, 2, are L2-admissible control operators, i.e.

for some (and hence for all) t > 0 it holds that the
input maps Φit ∈ L(L2(0, t;Ui), X), where

Φitui :=

∫ t

0

T−1(t− s)Biui(s) ds, ui ∈ L2(0, t;Ui);

(iii) C is an L2-admissible observation operator, i.e. for
some (and hence for all) t > 0 it holds that the output
maps Ψt ∈ L(X,L2(0, t;Y )), where Ψt is the extension
of

Ψtx = CT (·)x, x ∈ D(A);

(iv) Some (and hence any) function Gi : Cω0((T (t))t≥0) →
L(Ui, Y ), i = 1, 2, satisfying

Gi(α)−Gi(β) = C[(α−A−1)−1 − (β −A−1)−1]Bi
is bounded on some right half-plane Cγ = {λ ∈ C |
Reλ > γ}.

The functions Gi, i = 1, 2 are called the transfer functions
associated to the triples (A,Bi, C), i = 1, 2 and they are
unique up to a constant operator. Given such a transfer
function, we can define the so called input output maps
Fit : L2(0, t;Ui)→ L2(0, t;Y ), which are given by

(Fitui)(·)=C

[∫ ·
0

T−1(· − s)Biui(s) ds−(α−A)−1Biui(·)
]

+Gi(α)ui(·),
where ui ∈ W 1,2

0 (0, t;Ui) (dense in L2(0, t;Ui)) and Reα
large enough. To see that Fit is well-defined we refer to
Curtain and Weiss (1989).

The functions z ∈ C([0,∞);X) and y ∈ L2
loc(0,∞;Y ) are

called the solution (or state trajectory) and the output
function (or output) of Σlin with input data z0 ∈ X and
ui ∈ L2(0,∞;Ui), i = 1, 2, if they satisfy

z(t) = T (t)z0 + Φ1
tu1 + Φ2

tu2,

y|[0,t] = Ψtz0 + F1
tu1 + F2

tu2.

In particular z satisfies the integrated version of the
differential equation in Σlin. From the above formula it
follows immediately that a well-posed linear system admits
a unique solution z and and output y for all z0 ∈ X
and ui ∈ L2(0,∞;Ui) and for t ≥ 0 there exist positive
constants k1,t and k2,t such that

‖z(t)‖X ≤ k1,t(‖z0‖X + ‖u1‖L2(0,t;U1) + ‖u2‖L2(0,t;U2)),

‖y‖L2(0,t;Y ) ≤ k2,t(‖z0‖X + ‖u1‖L2(0,t;U1) + ‖u2‖L2(0,t;U2)).
(4)
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If A generates an exponential stable semigroup, then k1,t
and k2,t can be chosen independent of t, see e.g. Weiss
(1989b,a); Curtain and Weiss (1989).

Definition 1. Let Σlin be well-posed. The functions z ∈
C([0,∞);X) and y ∈ L2

loc(0,∞;Y ) are called the solution
and output of ΣN with input data z0 ∈ X and u1 ∈
L2(0,∞;U1) if they satisfy

z(t) = T (t)z0 + Φ1
tu1 + Φ2

tN(z, y),

y|[0,t] = Ψtz0 + F1
tu1 + F2

tN(z, y).

Theorem 2. Let A be the generator of the exponentially
stable semigroup (T (t))t≥0 and choose M,ω0 > 0 accord-
ing to (3). If Σlin is well-posed then for every ω ∈ (0, ω0)
there exists a constant ε > 0 such that for all input data
z0 ∈ X and u1 ∈ L2(0,∞;U1) with

‖z0‖X + ‖eω· u1‖L2(0,∞;U1) ≤ ε (5)

it holds that ΣN admits a unique solution z ∈ C([0,∞);X)
and an output y ∈ L2(0,∞;Y ). Furthermore, there exists
a constant k1 > 0 such that

‖z(t)‖X ≤ 2k1ε e−ωt . (6)

3. ISS-ESTIMATES FOR A SPECIAL CLASS OF
UNBOUNDED BILINEAR FEEDBACK SYSTEMS

Throughout this section we assume X,U1, U2, Y to be
Hilbert spaces.

Definition 3. System ΣN is called L2-ISS with respect
to a non-empty subset S ⊆ X × L2(0,∞;U1) if ΣN

admits for all input data (z0, u1) ∈ S a unique solution
z ∈ C([0,∞);X) which satisfies

‖z(t)‖X ≤ β(‖z0‖X , t) + γ(‖u1‖L2(0,t;U1))

for all t ≥ 0 and some functions β ∈ KL and γ ∈ K.
If S = {(z0, u1) ∈ X × L2(0,∞;U1) | z0, u1 satisfy (5)}
for some ε > 0 then ΣN is called L2-ISS for small input
data (independent of ε > 0).

Recall that an operator A on X is called strictly dissipative
if there exists a constant wA < 0 such that

Re 〈Az, z〉X ≤ wA‖z‖
2
X for all x ∈ D(A). (7)

Additionally, if 〈Az, z〉X ∈ R for all z ∈ D(A), then A is
called strictly negative.
We consider the following two assumptions:

Assumption 1. The operator A is selfadjoint and strictly
negative, Bi ∈ L(Ui, X− 1

2
) and C ∈ L(X 1

2
, Y ), where the

spaces X 1
2

and X− 1
2

are introduced below.

Assumption 2. The operator A is of the form A = A0 +
K, where A0 is skew-adjoint and K ∈ L(X) is strictly
dissipative, Bi ∈ L(Ui, X), i = 1, 2 and C ∈ L(X,Y ).

Remark 4. Under Assumption 2, A is the strictly dissipa-
tive generator of an exponentially stable semigroup and
one could choose wA = wK , where wA and wK are the
(negative) constants according to (7).

If A is a selfadjoint and strictly dissipative operator
on X then it follows from Engel and Nagel (2000),
Chapter II, Corollary 4.7 & Chapter IV, Corollary 3.12
and the fact that σ(A) ⊂ (−∞, wA] that A is the generator
of an exponentially stable analytic semigroup on X. One
can define (c.f. Tucsnak and Weiss (2009), Section 3.4) the

spaces X 1
2

as the completion of D(A) with respect to the
norm

‖z‖X 1
2

=
√
〈−Az, z〉X , z ∈ D(A)

and X− 1
2

as its dual space with respect to the pivot space

X. We have the continuous and dense embeddings

X1 ↪→ X 1
2
↪→ X ↪→ X− 1

2
↪→ X−1.

From the concept of dual spaces with respect to pivot
space and the fact that A is selfadjoint we obtain a natural
continuous dual pairing 〈·, ·〉X− 1

2
,X 1

2

: X− 1
2
× X 1

2
→ C

which simplifies for z ∈ X and y ∈ X 1
2

to

〈z, y〉X− 1
2
,X 1

2

= 〈z, y〉X .

Further, it is easy to see that A−1 : X 1
2
→ X− 1

2
is isometric.

This allows to extend (7) to

〈A−1z, z〉X− 1
2
,X 1

2

= −‖z‖X 1
2

≤ wA‖z‖2X , (8)

for every z ∈ X 1
2
.

Remark 5. In order to obtain such a dual pairing it is
crucial to have D(A) = D(A∗).

Theorem 6. If Assumption 1 or Assumption 2 holds and
for some δ > 0 there exist m1,m2 ∈ R such that

1−m1 > 0, (1−m1)wA +m2 < 0

and

Re 〈N(z, Cz), B∗2z〉U2
≤ −m1 Re 〈Az, z〉X +m2‖z‖2X (9)

for all z ∈ D(A) with ‖z‖X ≤ δ, then there exists ε > 0
such that ΣN admits for all small input data z0 ∈ X and
u1 ∈ L2(0,∞;U1) in the sense of (5) a unique solution z
which satisfies

‖z(t)‖X ≤ e−ωt‖z0‖X + c‖u1‖L2(0,t;U1) (10)

for all t ≥ 0 and some constants ω, c > 0. In particular ΣN

is L2-ISS for small input data.

4. EXAMPLE: BURGERS EQUATION

Consider the following controlled version of the Burgers
equation
ż(t, x) = zxx(t, x)− zzx(t, x) + u1(t), t > 0, x ∈ (0, 1)
z(t, 0) = z(t, 1) = 0, t ≥ 0,
z(0, x) = z0(x), x ∈ [0, 1],
y(t, x) = z(t, x), t ≥ 0, x ∈ [0, 1].

Let the state, input and output spaces be given as in
Tucsnak and Weiss (2014), i.e.

X = H1
0(0, 1),

U1 = U2 = L2(0, 1),

Y = H2(0, 1) ∩H1
0(0, 1),

where all spaces are assumed to be real valued. We equip
H1

0(0, 1) with the norm

‖z‖H1
0

= ‖zx‖L2 .

which is equivalent to the standard norm on H1
0(0, 1) by

the Poincaré inequality.
Let the operator A on X be defined by

Aϕ = ϕxx, D(A) = {ϕ ∈ H3(0, 1) | ϕ,ϕxx ∈ H1
0(0, 1)}.

It is known that A is a selfadjoint and strictly dissipative
and hence the generator of an exponentially stable analytic
semigroup.
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Note that (see Tucsnak and Weiss (2014) and the references
therein)

X 1
2

= H2(0, 1) ∩H1
0(0, 1) and X− 1

2
= L2(0, 1).

Further, we consider the operators Bi ∈ L(Ui, X− 1
2
),

i = 1, 2 and C ∈ L(X 1
2
, Y ) to be the identity on the

respective spaces. The bilinear feedback law is defined by

N : X × Y → U2, N(z, y) = −zyx.
The validity of (2) for any p ∈ (0, 1) is not difficult to check
and can also be found in Tucsnak and Weiss (2014).

Theorem 7. The Burgers equation (4), with the above
spaces and operators, is a bilinear feedback system of the
form ΣN which is L2-ISS for small input data z0 ∈ H1

0(0, 1)
and u1 ∈ L2(0,∞; L2(0, 1)).
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Tucsnak, M. and Weiss, G. (2014). Well-posed systems—
the LTI case and beyond. Automatica J. IFAC, 50(7),
1757–1779. doi:10.1016/j.automatica.2014.04.016.

Weiss, G. (1989a). Admissibility of unbounded control
operators. SIAM J. Control Optim., 27(3), 527–545.
doi:10.1137/0327028.

Weiss, G. (1989b). Admissible observation operators for
linear semigroups. Israel J. Math., 65(1), 17–43. doi:
10.1007/BF02788172.

Zheng, J. and Zhu, G. (2018). Input-to-state stability with
respect to boundary disturbances for a class of semi-
linear parabolic equations. Automatica J. IFAC, 97,
271–277. doi:10.1016/j.automatica.2018.08.007.

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



A deterministic least squares approach for
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Abstract: This paper considers a deterministic estimation problem to find the input and state
of a linear dynamical system which minimise a weighted integral squared error between the
resulting output and the measured output. A completion of squares approach is used to find the
unique optimum in terms of the solution of a Riccati differential equation. The optimal estimate
is obtained from a two-stage procedure that is reminiscent of the Kalman filter. The first stage
is an end-of-interval estimator for the finite horizon which may be solved in real time as the
horizon length increases. The second stage computes the unique optimum over a fixed horizon by
a backwards integration over the horizon. A related tracking problem is solved in an analogous
manner. Making use of the solution to both the estimation and tracking problems a constrained
estimation problem is solved which shows that the Riccati equation solution has a least squares
interpretation that is analogous to the meaning of the covariance matrix in stochastic filtering.
The paper shows that the estimation and tracking problems considered here include the Kalman
filter and the linear quadratic regulator as special cases.

Keywords: Input and state estimation, least squares optimisation, Kalman filtering, optimal
trajectory tracking.

1. INTRODUCTION

Our goal in this paper is to pose and solve a filter-
ing/estimation problem for the simultaneous estimation of
inputs and states in a continuous time linear finite dimen-
sional dynamical system. The problem set-up is illustrated
in Fig. 1. A model of the physical system is assumed to
be available. The output of the dynamical system is the
vector z of all variables that are measured (e.g. by means
of sensors). The measurement of this output in an exper-
iment is denoted by z̃. The filter should make use only
of these measured outputs for the estimation and should
produce the best estimate of the system variables treat-
ing the exogenous inputs and states on an equal footing.
The meaning of “best” is to minimise a weighted integral
squared error between output z and measured output z̃.
The filtered signals w1(t), x1(t) provide best estimates of
w and x at a given time instant t based on measurements
up to that time, while the estimates ŵ(t), x̂(t) provide the
best estimates over a time interval [0, T ].

w

exogenous
input

system

x (state)

z

output

sensors
z̃

measured
output

filter/

estimator

w1, x1

ŵ, x̂

Fig. 1. Estimation problem for a dynamical system with
state x, exogenous input w and output z which is
measured.

Our solution to the problem of Fig. 1 is based on the
method of completion of squares and builds on the work
of Willems (2004) which gave a deterministic derivation

? The first author would like to acknowledge McLaren Automotive
ltd for a CASE studentship awarded for doctorate research.

of the filter of Kalman and Bucy (1961). The structure
of the solution is reminiscent of the standard (causal)
Kalman filter and the non-causal process of smoothing,
though the solution to the present problem has a more
general structure through placing the estimation of state
and exogenous input on an equal footing, and without
prior assumption on the nature of the exogenous input.
An important further contribution of the paper is to
provide a deterministic interpretation of the solutions of
the resulting matrix Riccati differential equations (which
correspond to the covariance matrices in the standard
Kalman filter). We note that the simpler version of the
question of providing such a deterministic interpretation
for the standard Kalman filter has not been addressed in
the literature so far.

Proofs are contained in a full version of this paper (see
Gakis and Smith (2022)) and are omitted from this ex-
tended abstract.

2. ESTIMATION PROBLEM

Consider the linear, finite-dimensional, continuous time
system with the state space description:

ẋ = Ax+Bw, (1)

z = Cx+Dw (2)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈
Rp×m (full column rank) are fixed known matrices 1 and
w ∈ Lm2,e, x ∈ Ln2,e and z ∈ Lp2,e are input, state and
output related through this linear system. We consider the
1 The assumption that the system matrices are constant is for
notational convenience. We note that all results are valid if the
system matrices A, B, C, D are time-varying, with no change
required in the proofs.
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problem to estimate w and x from the measurement of the
signal z, which is the same as estimating w and x(0) since x
is generated by (1). We assume that the state x and driving
input w are not measured directly, other than (indirectly)
through the measurement of z (i.e. all measurements of
the system are made through the output vector z). Each
element of z may correspond to an individual sensor or
multiple entries of z may be generated by a single device.
We will denote by z̃ the actual measured output signal in
an experiment (see Fig. 1). We introduce the performance
index:

CT (w, x(0)) =

∫ T

0

‖z̃(t)− z(t)‖2R−1dt+ ‖x(0)− γ‖2Γ−1

(3)

where 0 < R ∈ Rp×p, 0 < Γ ∈ Rn×n, γ ∈ Rn, 0 < T ∈ R
are specified. The second term on the RHS of (3) plays the
role of a penalty on the deviation of the initial state from
an assumed value γ. The problem we wish to solve is:

inf
w,x(0)

CT (w, x(0)) (4)

subject to (1) and (2). In particular we wish to compute
the optimal w and x(0) which we will denote by ŵ and
x̂(0). Using a “completion of squares” construction for the
performance index (3) we can show that (4) has a unique
solution (Theorem 1). First consider the system:

ẋ1 = (A1 −K1C1)x1 + (B1 +K1)z̃, (5)

Ṗ1 = A1P1 + P1A
T
1 −K1RK

T
1 +B1RB

T
1 , (6)

K1 = P1C
T
1 R
−1, (7)

w1 = D†(z̃ − z1), (8)

z1 = Cx1 (9)

with the initial conditions P1(0) = Γ and x1(0) = γ, where
we have defined:

A1 = A−B1C, (10)

B1 = BD†, (11)

C1 = (I−Π)C, (12)

Π = DD†, (13)

D† = (DTR−1D)−1DTR−1. (14)

Then the RDE (6) has a unique positive definite solution
P1(t) > 0 for all t ∈ [0, T ].

Theorem 1. The optimisation problem in (4) has a unique
solution ŵ, x̂(0) which is obtained as follows: first integrate
(5)–(7) forwards in time in the interval 0 ≤ t ≤ T with
initial conditions P1(0) = Γ and x1(0) = γ; then integrate:

˙̂x = A2x̂+B2z̃2 (15)

backwards in time with terminal condition:

x̂(T ) = x1(T ) (16)

to compute x̂(0) (and indeed x̂); and lastly set:

ŵ = D†(z̃2 − C2x̂) (17)

where:

A2 = A−B2C2, (18)

B2 = B1, (19)

C2 = C −RBT1 P−1
1 , (20)

z̃2 = z̃ −RBT1 P−1
1 x1. (21)

Furthermore, the minimum of the performance index (3)
is:

inf
w,x(0)

CT (w, x(0)) =

∫ T

0

‖(I−Π)(z̃(t)− z1(t))‖2R−1dt

=

∫ T

0

‖z̃(t)− ẑ(t)‖2R−1dt+ ‖x̂(0)− γ‖2Γ−1 (22)

where we have denoted the optimal output by:

ẑ = Cx̂+Dŵ. (23)

3. TRACKING PROBLEM

In this section we will consider a related tracking problem.
Assume the state q and input u satisfy:

q̇ = Fq +Gu, (24)

y = Hq + Ju (25)

where F ∈ Rn×n, G ∈ Rn×m, H ∈ Rp×n and J ∈ Rp×m
(full column rank) are fixed known matrices and u ∈ Lm2,e,
q ∈ Ln2,e and y ∈ Lp2,e are input, state and output related
through this linear system. We wish to find an input u such
that the output y best tracks a desired signal ỹ ∈ Lp2,e over
a finite horizon T together with a penalty on the deviation
of the terminal state from a desired state ξ for a given but
arbitrary initial state η. More precisely, we introduce the
performance index:

WT (u) =

∫ T

0

‖ỹ(t)− y(t)‖2R−1dt+ ‖q(T )− ξ‖2Ξ−1 (26)

where ξ ∈ Rn, 0 < Ξ ∈ Rn×n and propose the problem:

inf
u
WT (u) (27)

subject to (24), (25) and q(0) = η. We denote the optimal
solution to (27) by û. Similarly to Section 2 a completion
of squares construction is used to solve (27) in Theorem 2.
We first consider the system:

q̇1 = (F1 +M1H1)q1 + (G1 −M1)ỹ, (28)

Ṡ1 = F1S1 + S1F
T
1 +M1RM

T
1 −G1RG

T
1 , (29)

M1 = S1H
T
1 R
−1, (30)

u1 = J†(ỹ − y1), (31)

y1 = Hq1 (32)

with the terminal conditions S1(T ) = Ξ and q1(T ) = ξ,
where we have defined the matrices:

F1 = F −G1H, (33)

G1 = GJ†, (34)

H1 = (I− Λ)H, (35)

Λ = JJ†, (36)

J† = (JTR−1J)−1JTR−1. (37)

Then the RDE (29) has a unique positive definite solution
S1(t) > 0 for all t ∈ [0, T ].

Theorem 2. The optimisation problem in (27) has a
unique solution û which is obtained as follows: first in-
tegrate (28)–(30) backwards in time with terminal condi-
tions S1(T ) = Ξ and q1(T ) = ξ; then integrate:

˙̂q = F q̂ +Gû (38)

forwards in time with û given by the feedback law:

û = J†(ỹ2 −H2q̂) (39)

and initial condition q̂(0) = η, where we have defined:

H2 = H +RGT1 S
−1
1 , (40)

ỹ2 = ỹ +RGT1 S
−1
1 q1. (41)
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Furthermore, the minimum of the performance index (26)
is:

inf
u
WT (u) =

∫ T

0

‖(I− Λ)(ỹ(t)− y1(t)))‖2R−1dt

+ ‖η − q1(0)‖2S1(0)−1 . (42)

4. CONSTRAINED ESTIMATION PROBLEM

We now turn our attention to the constrained optimisation
problem:

inf
w,x(0)

CT (w, x(0)) subject to x(τ) = ζ (43)

for ζ ∈ Rn and 0 ≤ τ ≤ T where (1) and (2) hold. Here
CT (w, x(0)) is defined as in (3) with the same meaning for
z̃, γ and Γ. Again we wish to compute the optimal w and
x(0) which we will denote by ŵ and x̂(0). A solution of
this optimisation problem will show how the optimal cost
increases compared to the unconstrained value when we
demand that the state passes through a prescribed point at
a given time. This will give an indication in a least squares
sense of how “likely” it is that the state passes through
the optimum point for the unconstrained problem. For
example, if there is a sharp rise in the cost when the state
is required to pass through a different point, then we may
have more confidence in the value of the unconstrained
optimum state at that time. We first consider the system:

ẋ2 = A2x2 +B2z̃2, (44)

Ṗ2 = A2P2 + P2A
T
2 −B2RB

T
2 , (45)

w2 = D†(z̃2 − C2x2). (46)

Theorem 3. The optimisation problem (43) has a unique
solution ŵ, x̂(0) which is obtained as follows: first integrate
(5)–(7) forwards in time in the interval 0 ≤ t ≤ T with
initial conditions P1(0) = Γ and x1(0) = γ which gives x1

and P1 in the interval 0 ≤ t ≤ T ; then integrate (44)–(46)
backwards in time in the interval τ ≤ t ≤ T with terminal
conditions P2(T ) = P1(T ) and x2(T ) = x1(T ) which gives
x2 and P2 in the interval τ ≤ t ≤ T ; then integrate:

˙̂x = Ax̂+Bŵ (47)

backwards in time in the interval 0 ≤ t ≤ τ with the
feedback law:

ŵ = D†(z̃2 − C2x̂); (48)

and the terminal condition x(τ) = ζ to find x̂, ŵ in the
interval 0 ≤ t ≤ τ ; then integrate (47) forwards in time in
the interval τ ≤ t ≤ T with the feedback law:

ŵ = D†(z̃3 − C3x̂) (49)

and the initial condition x(τ) = ζ to find x̂, ŵ in the
interval τ ≤ t ≤ T . The minimum of the performance
index is:∫ T

0

‖(I−Π)(z̃(t)− z1(t))‖2R−1dt+ ‖ζ − x2(τ)‖2
P−1

2 (τ)
.

(50)

The solution to the constrained optimisation problem (43)
given in Theorem 3 introduced the vector and matrix
variables x2, w2 and P2. We recall that x2 and w2 coincide
with the state and input trajectories on the interval [0, T ]
that minimise the performance criterion (3) as shown in
Theorem 1. We may now provide an interpretation of the
matrix variable P2. In Theorem 3 it is shown that the
unique minimum of (43) takes the same form as the first

expression on the right hand side of (22) but with an
additional quadratic term which is zero when ζ = x2(τ), in
which case we recover the results of Theorem 1. Consider
now the eigenvector-eigenvalue decomposition of P2(τ).
Components of ζ−x2(τ) in those eigenvector directions of
P2(τ) which have small eigenvalues (i.e. large eigenvalues
of P−1

2 (τ)) give a large contribution to the second term
in (50). Hence the measurements provide high confidence
that the state x(τ) should be close to x2(τ) in those
directions. Fig. 2 illustrates the interpretation of P2(τ)
in the 2-D case. The figure shows an ellipse with centre
x2(τ) whose axes are aligned with the eigenvectors of P2(τ)
and lengths given by the corresponding eigenvalue square
roots. All points on the ellipse increase the minimum
performance index (50) by 1.

x2(τ)

√
λ1(τ)√

λ2(τ)

Fig. 2. An ellipse with semi-axes of length given by the
eigenvalue square roots of P2(τ),

√
λ1(τ) and

√
λ2(τ),

and aligned with the corresponding eigenvectors.

5. SPECIAL CASES

5.1 Standard Kalman filter

We now show how the continuous time Kalman filter can
be derived as a special case of the filter in Theorems 1. We
therefore consider a system described by:

ẋ = Ax+Bw (51)

z = Cx (52)

with noisy measurement z̃ of z. Note that we assume as
standard that sensor measurements of the state are not
directly affected by the process noise w. In the standard
Kalman filter the process noise w can be interpreted as a
small magnitude disturbance to the system. To translate
into our framework we need to incorporate a weighted 2-
norm constraint on w in the performance index (3). In
particular, we consider the following optimisation problem:

inf
w,x(0)

(∫ T

0

‖z̃(t)− z(t)‖2R−1dt

+

∫ T

0

‖w‖2Q−1dt+ ‖x(0)− γ‖2Γ−1

)
. (53)

To translate this into the framework of this paper we
introduce a virtual measurement of w which is equal to
zero. More precisely, we consider an augmented system
with (real and virtual) outputs given by:

za =

[
C
0

]
x+

[
0
I

]
w (54)
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and for which we have the measurement:

z̃a =

[
z̃
0

]
. (55)

We define an augmented block diagonal weighting matrix
Ra given by:

Ra =

[
R 0
0 Q

]
. (56)

The following result is obtained by applying Theorem 1 to
this augmented system.

Theorem 4. Consider the system:

ẋ1 = Ax1 +K(z̃ − Cx1), (57)

Ṗ1 = AP1 + P1A
T −KRKT +BQBT , (58)

K = P1C
TR−1 (59)

for P1(0) = Γ and x1(0) = γ. The optimisation problem
(53) where z is defined by (51)–(52) has a unique solution
ŵ, x̂(0) where ŵ is defined by the feedback law:

ŵ = QBTP−1
1 (x̂− x1) (60)

and x̂(t) is obtained by solving ˙̂x = Ax̂+Bŵ backwards on
the interval [0, T ] with terminal condition x̂(T ) = x1(T ).
Furthermore, the optimal cost (53) is given by:∫ T

0

‖z̃ − Cx1‖2R−1dt. (61)

The filter (57)–(59) is an end-of-interval estimator in the
sense that x̂(T ) = x1(T ), ŵ(T ) = w1(T ) and takes the
form of the standard Kalman filter with gain K. The above
result reduces to that given in Willems (2004) with R = I
and Q = I.

It is interesting to note that by substituting for ŵ from
(60) we obtain an equation for the optimal state estimate:

˙̂x = Ax̂+BQBTP−1
1 (x̂− x1) (62)

where x̂(T ) = x1(T ) that coincides with the standard form
for the smoothed estimate in Kalman filtering (see Kailath
and Frost (1968) eqn. 34(a)). Similarly by specialising (45)
to the present case we have the equation:

Ṗ2 = (A+BQBTP−1
1 )P2 + P2(A+BQBTP−1

1 )T

−BQBT (63)

where P2(T ) = P1(T ), which is the corresponding form
for the smoothed covariance (see Kailath and Frost (1968)
eqn. 34(b)).

5.2 Standard LQR on a finite time horizon

We now show how the solution of the standard linear
quadratic regulator (LQR) on a finite time horizon can
be derived as a special case of the tracking problem in
Theorem 2. In the standard LQR we wish to find a low
energy input u that brings the state q to the origin. More
precisely, we consider the optimisation problem:

inf
u

(∫ T

0

‖q(t)‖2
R−1

q
+ ‖u(t)‖2

R−1
u
dt+ ‖q(T )‖2Ξ−1

)
(64)

where the state q and input u satisfy:

q̇ = Fq +Gu (65)

and the initial state q(0) = η is known. To put this into
the form required to apply Theorem 2 we choose:

y =

[
I
0

]
q +

[
0
I

]
u, (66)

ỹ = 0, ξ = 0 and:

R =

[
Rq 0
0 Ru

]
. (67)

Theorem 5. Consider the RDE:

Ṡ1 = FS1 + S1F
T + S1R

−1
q ST1 −GRuGT (68)

with the terminal condition S1(T ) = Ξ. The optimisation
problem (64) has a unique solution û which is defined by
the feedback law:

û = −RuGTS−1
1 q̂ (69)

and q̂(t) is obtained by solving ˙̂q = F q̂ + Gû forwards
in the interval [0, T ] with the initial condition q̂(0) = η.
Furthermore, the optimal cost (64) is:

‖η‖2S1(0)−1 . (70)

This is recognised as the classical LQR result on a finite
time horizon.

6. CONCLUSIONS

The paper has proposed a framework for estimation in
which the output of the dynamical system comprises
all variables that are measured, and the variables to be
estimated comprise, equally, system states and exogenous
inputs. This framework is quite general in that if an
exogenous input is measured then we may include a
direct feedthrough component in the output vector to
reflect this. This estimation problem was solved for linear
systems with a full column rank feedthrough matrix. The
unique optimum solution on a finite horizon takes a two-
stage form in which the first stage provides an end-of-
interval estimator which can be solved in real time as
the horizon length increases. The full rank assumption is
general enough to include the Kalman filter and, for the
dual tracking problem, the linear quadratic regulator as
special cases. Generalising the result to the case where this
condition, or similar full rank assumptions on the Markov
parameters, does not hold remains an open problem.

A contribution of this paper has been to provide an inter-
pretation of the solution of the Riccati differential equation
which is analogous to the meaning of the covariance matrix
in stochastic filtering. The solution of a matrix Lyapunov
differential equation P2(t) is shown to have an analogous
interpretation to the smoothed covariance in the stochastic
case. This has been achieved by considering the least-
squares estimation problem with an additional constraint
that the state passes through a prescribed point at a
given time in the fixed horizon. To solve this problem a
tracking problem was also considered which is dual to our
estimation problem.
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Abstract: We present a new variant of the McEliece cryptosystem that possesses several
interesting properties, including a reduction of the public key for a given security level. In
contrast to the classical McEliece cryptosystems, where block codes are used, we propose the
use of a convolutional encoder to be part of the public key. The secret key is constituted by a
Generalized Reed-Solomon code and two Laurent polynomial matrices that contain large parts
that are generated completely at random. In this setting the message is a sequence of messages
instead of a single block message and the errors are added randomly throughout the sequence.
We analyse its security against ISD attacks in the first instants and when the whole message is
transmitted, as well as against structural attacks.

Keywords: Convolutional codes, Generalized Reed-Solomon codes, McEliece Cryptosystem,
Information Set Decoding.
AMS Subject Classification: 94A60, 94B10, 11T71.

1. INTRODUCTION

Code-based cryptosystems are considered promising alter-
natives for Public Key Cryptography (PKC) since their
security relies on well-known NP-hard problems and allow
fast encryption and decryption procedures. Moreover, they
are immune to attacks that use Shor’s algorithm and there-
fore are candidates for post-quantum cryptography. How-
ever, one of the main disadvantages of code-based schemes
is the large keys whose size is inherently determined by
the underlying Goppa block code used in the original
cryptosystem. For this reason, there have been several
attempts to substitute Goppa codes by other classes of
block codes, e.g. Generalized Reed-Solomon (GRS) codes
among many others. GRS codes are Maximum Distance
Separable (MDS) codes which, in the McEliece scheme,
translates into smaller key sizes. Hence, a major improve-
ment would be achieved if these codes could be securely
used in these cryptosystems. Unfortunately, due to their
strong algebraic structure, they are vulnerable to many
structural attacks. One recent interesting idea to remove
this algebraic structure was to replace the permutation
⋆ This work was supported by The Center for Research and De-
velopment in Mathematics and Applications (CIDMA) through the
Portuguese Foundation for Science and Technology (FCT), references
UIDB/04106/2020. The second and third authors were supported by
Spanish grants PID2019-108668GB-I00 of the ministerio de Ciencia
e Innovación of the Gobierno de España and VIGROB-287 of the
Universitat d’Alacant.

used in the original McEliece cryptosystem with a more
general transformation (see Baldi et al. (2016)). However,
this variant has also been fully broken using an attack
based on the Schur square code distinguisher that permit
to distinguish GRS codes from random ones in Couvreur
et al. (2015) and Couvreur and Lequesne (2020).

We continue this line of research and explore a new variant
that allows the use of GRS codes using a convolutional
mask. In our scheme, the plaintext is not a block vec-
tor but a stream of smaller vectors sent in a sequential
fashion. The public key is given by the polynomial con-
volutional encoder G′(D) = S(D)GP (D−1, D) where G is
the generator matrix of a GRS, S(D) a polynomial matrix
and P (D−1, D) an invertible Laurent polynomial matrix.
Hence, the proposed class of convolutional codes uses GRS
codes and adds a convolutional layer to it in order to
thwart the key recovery attack against GRS codes and at
the same time admits a simple iterative algebraic decoding
algorithm. This idea is different from the above ideas and
therefore the cryptanalysis has to be adapted to this case.

The matrices S(D) and P (D−1, D) are selected to protect
against both ISD and structural attacks. A crucial fact to
ensure security against ISD attacks to the first blocks and
bootstrap from there, is that the truncated sliding matrices
of the convolutional encoder are not full row rank and have
distance equal to one, so recovering the initial blocks is not
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possible. As for structural attacks, we build our matrix
P (D−1, D) to provide weight-2 masking at every instant.
As pointed out in Bolkema et al. (2017); Khathuria et al.
(2018), (see also Khathuria et al. (2021)), the weight-two
masking appears to be enough to remove any identifiable
algebraic structure from the public code and therefore
structural attacks, and in particular any distinguisher
attack based on the Schur product, seems to fail as well.
We note that our construction uses matrices with large
parts generated completely at random and can be easily
constructed. We present several examples for comparison
with previous variants of the McEliece cryptosystem to
illustrate the key size reduction of the public key achieved
by this novel scheme.

2. A MCELIECE CRYPTOSYSTEM WITH A
CONVOLUTIONAL ENCODER

For the purposes of this work we need to construct convo-
lutional codes with certain properties that will allow the
cryptosystem to work efficiently and resist cryptanalysis.
The ingredients for building up our cryptosystem are the
following: let F be a finite field with q elements, G ∈ F k×n

be an encoder of an (n, k) block code that admits an
efficient decoding algorithm and can correct up to t errors,

S(D) = S1D + S2D
2 ∈ F k×k[D] (1)

where S1 ∈ F k×k is an invertible constant matrix and
S2 ∈ F k×k is generated at random and

T (D−1, D) = T−1D
−1 + T0 + T1D ∈ Fn×n[D−1, D] (2)

is an invertible (in F (D)) Laurent polynomial matrix with:

(i) The determinant satisfies |T (D−1, D)| ∈ F \ {0}.
(ii) Nonzero rows of Tj have 2 nonzero elements, for

j ∈ {−1, 0, 1}.
(iii) Indices of nonzero columns of T−1, T0 and T1 form a

partition of n.
(iv) If we denote

T−1(D−1, D) = P (D−1, D) = P−1D
−1 + P0 + P1D,

then, the nonzero columns of each matrix P−1, P0 and
P1, have at least 2 nonzero entries.

With them, we construct the convolutional encoder

G′(D) = S(D) G P (D−1, D) (3)

=G′
0 +G′

1D +G′
2D

2 +G′
3D

3.

Let wt(v) be the Hamming weight of a vector v ∈ Fn, i.e.
the number of the nonzero components of v. This defini-
tion can be extended to polynomial vectors v(D−1, D) =∑
i∈Z

viD
i in a natural way as wt(v(D−1, D)) =

∑
i∈Z

wt(vi).

For the sake of simplicity we shall consider information
vectors that start at time instant zero and have finite
support, i.e., u(D) ∈ F k[D] is polynomial. We will also
consider the error vectors e(D) ∈ Fn[D] to be polynomial.

Lemma 1. Let T (D−1, D) be as described above and

e(D) =
∑
i≥0

eiD
i ∈ Fn[D] a random vector satisfying

wt([ei ei+1 ei+2]) ≤
t

2
(4)

for all i ≥ 0. Then all the coefficients of e(D)T (D−1, D)
have weight less than or equal to t.

Proof. The coefficient of degree ℓ of e(D)T (D−1, D) is

T−1eℓ+1 + T0eℓ + T1eℓ−1.,

where ei = 0 for i < 0. Since each row of Tj has at most
2 nonzero elements, then wt(eiTj) ≤ 2wt(ei) for all i ≥ 0
and j ∈ {−1, 0, 1}, and the result follows.

Condition (4) describes the maximum number of errors
allowed within a time interval and is similar to the sliding
window condition introduced in Badr et al. (2017) to
describe the possible error patterns that can occur in a
given channel.

Theorem 2. Let G′(D) be the encoder as described in (3),
t the correcting error capability of G,

u(D) = u0 + u1D + · · ·+ usD
s

the information sequence and

e(D) = e0 + e1D + · · ·+ es+3D
s+3

an error vector satisfying (4). Then, the received data
y(D) = u(D)G′(D) + e(D) ∈ Fn[D] can be decoded.

Proof. Multiplying y(D) by T (D−1, D) from the right
yields the polynomial equation

y(D)T (D−1, D) = u(D)S(D)G+ e(D)T (D−1, D).

Hence, for some coefficients ûi ∈ F k, we can write

u(D)S(D) =
s+2∑
i=1

ûiD
i (5)

and for some coefficients êi ∈ Fn, we can write

e(D)T (D−1, D) =
s+4∑
i=−1

êiD
i,

and therefore each coefficient of y(D)T (D−1, D) is of the
form ûiG+ êi. By Lemma 1 it follows that wt(êi) ≤ t, for
−1 ≤ i ≤ s + 4 and, therefore, each ûi can be recovered.
Further, from (5) we have that

[ û1 û2 · · · ûs+2 ] =

[ u0 u1 · · · us ]


S1 S2

S1 S2

. . .
. . .
S1 S2

 ,

so, one can recover each ui sequentially as

u0 = û1S
−1
1 ,

u1 = (û2 − u0S2)S
−1
1 ,

u2 = (û3 − u1S2)S
−1
1 ,

...

ui = (ûi+1 − ui−1S2)S
−1
1 .

The proposed scheme works as follows:
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Secret key: Generate a triple {S(D), G, T (D−1, D)},
compute G′(D) = G′

0 +G′
1D +G′

2D
2 +G′

3D
3 and define

the following sets

Nj = {indices of the null columns of G′
j}, j ∈ {0, 1, 2, 3}.

J0 = {1, . . . , n} \N0, J1 = N0 \N1, J2 = (N0 ∩N1) \N2.

Let G̃j be the submatrix of G′
j whose columns are indexed

by Jj , and define G̃ = [G̃′
0|G̃′

1|G̃′
2]. Let E(G′

0) and E(G̃)

be the reduced row echelon form of G′
0 and G̃ and check

if the following conditions are satisfied:

(a) E(G′
0) has rows of weight 1.

(b) E(G̃) has rows of weight 1.

If this is the case, then {S(D), G, T (D−1, D)} is correctly
generated. If not, generate another instance of S(D), G
and T (D−1, D).

Remark 3. After randomly generating a sample of 500
matrices T (D−1, D) of the form described in Section 2.1,
we found that about a 4% of them fulfill (a) and (b).

Public key: {G′(D) = S(D)GT−1(D−1, D), t/2}.

Encryption: Let πI(v) be the projection of v into the
coordinates in I and let us define the following sets:

L = {column indices of [G′
0|G′

1|G′
2] where the rows of

weight 1 of E(G̃) have the nonzero elements},
L′ = {column indices of the nonzero elements of the rows

of weight 1 of E(G′
0)}.

To encrypt a message

u(D) = u0 + u1D + u2D
2 + · · ·+ usD

s ∈ F k[D],

Alice selects an error vector

e(D) = e0 + e1D + · · ·+ es+3D
s+3 ∈ Fn[D],

satisfying (4) and the following additional conditions:

wt(πL′(e0)) = wt(e0), (6)

wt(πJ2(e1)) = 0, (7)

wt(πL([e0 e1 e2])) = wt([e0 e1 e2]), (8)

wt(πL([ei ei+1 ei+2]) ≥ 1, 0 ≤ i ≤ s+ 1 (9)

wt(πL′(ei)) ≥ 1, 0 ≤ i ≤ s (10)

and encrypts the message as

y(D) = u(D)G′(D) + e(D). (11)

Decryption: Bob multiplies (11) from the right by the
matrix T (D−1, D) to obtain

u(D)S(D)G+ e(D)T (D−1, D), (12)

he decodes using G and recovers the message u(D) from
u(D)S(D), as explained in the proof of Theorem 2.

2.1 Constructing T (D−1, D)

In this subsection we present a large family of matrices
T (D−1, D) satisfying properties (i), (ii), (iii) and (iv).
To this end, we first recall a technical lemma about the

determinant and inverse of a block matrix, first obtained
by I. Schur (Schur (1917)).

Lemma 4. (Cottle, 1974, Formulas (2) and (4)) Let T be
a block matrix of the form[

A B
C D

]
,

where A and D are nonsingular. Then

a) |T | = |A| |D − CA−1B|.
b) If T is invertible, the inverse of T is

P = −
[

−(A−BD−1C)−1 A−1B(D − CA−1B)−1

D−1C(A−BD−1C)−1 −(D − CA−1B)−1

]
.

Starting from a 2×2 block matrix facilitates the construc-
tion of a matrix satisfying (ii). Moreover, since the above
lemma tells us how the determinant and the inverse matrix
are, properties (i) and (iv) can be easily achieved as well.
The blocks we use to construct T (D−1, D) are denoted by
A(D−1, D) and are of size n

2 ×
n
2 , where n is the size of the

code (we use even values for n). These blocks are randomly
generated satisfying the following properties:

Properties 5. A = A(D−1, D) ∈ F
n
2 ×n

2 [D−1, D] satisfies:

(1) A is an upper triangular matrix;
(2) The entries of the principal diagonal of A are of the

form aDj , with a ∈ F \ {0}, and j ∈ {−1, 0, 1} in
such a way that there are δj entries with power Dj ,
satisfying

δ−1 = δ1; (13)

(3) Each row of A has at most one entry of the form γDj

for each j ∈ {−1, 0, 1}, with γ ∈ F \ {0};
(4) All nonzero entries of a column of A have the same

exponent of D.

Condition (13) can be understood as the sum of the ex-
ponents of D along the diagonal is 0. Since A is upper
triangular and the diagonal entries are nonzero, this im-
plies that |A| ∈ F \ {0}, i.e., the determinant is a nonzero
constant. Once we have determined how the blocks we will
use are, we can construct T (D−1, D) satisfying properties
(i), (ii), (iii) and (iv), as it shown the next theorem.

Lemma 6. Suppose |F | > 2. Let Γ ∈ Fn×n be a per-
mutation matrix, A = A(D−1, D) be a matrix satisfying
Properties 5, take β ∈ F \ {0, 1} and consider ∆(D−1, D)
to be the block matrix

∆(D−1, D) =

[
A βA
A A

]
∈ Fn×n[D−1, D].

Then T (D−1, D) = Γ∆(D−1, D) satisfies properties (i),
(ii), (iii) and (iv).

Proof. Using Lemma 4 a), we have

|∆(D−1, D)| = |A| |A−AA−1(βA)| = |A|2|I − βI|.

Since |A| ∈ F \{0} and β ̸= 1 then |T (D−1, D)| ∈ F \{0},
so condition (i) holds.

Conditions (ii) and (iii) hold due to Properties 5 and
our construction of ∆(D−1, D). Condition (iv) is obtained
using Lemma 4 b) since we have
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∆−1(D−1, D) =


1

1− β
A−1 β

β − 1
A−1

1

β − 1
A−1 1

1− β
A−1

 .

If we write ∆(D−1, D) =
1∑

j=−1

∆jD
j then, by construc-

tion, all rows of ∆j , and hence all columns of Pj , will have
an even number of nonzero entries, for j ∈ {−1, 0, 1}.

3. ATTACKS AGAINST THE PROPOSED
CRYPTOSYSTEM

In this section, we briefly comment some of possible
attacks to the proposed cryptosystem and show how the
properties analyzed in previous sections provide increased
key security with respect to previous variants of the
McEliece cryptosystem.

An attacker could consider the full row rank matrix
G′

0 G′
1 G′

2 G′
3

G′
0 G′

1 G′
2 G′

3

. . .
. . .

. . .
. . .

G′
0 G′

1 G′
2 G′

3


as the generator matrix of a block code. Note, however,
that the size of this block code is k(s+ 1)× n(s+ 4) and
therefore it will be very large for large values of s, even if n
and k are small. Table 1 illustrates a few specific examples
with the work factor (WF) needed to recover u(D) using
ISD attacks on that matrix (see Bolkema et al. (2017) for
more details on the computation of the WF).

n k s WF (bin. op.) Public Key (bits)

New Scheme

108 60 24 2129.3 182695
108 60 51 2256.7 182696
180 108 14 2128.5 624713
180 108 31 2262.6 624714
180 108 62 2512.6 624715
180 114 14 2132.0 659417
180 114 30 2260.6 659418
180 114 61 2513.2 659419

Classical McEliece with Goppa codes

2960 2288 2128 1537536
8192 6528 2256 10862592

GRS with 2-weight mask (Bolkema et al.)

764 496 2128.10 1329280
762 490 2128.02 1332800
766 498 2128.35 1334640

Table 1. Parameters, work force and public key
sizes of PKC

An attacker could also try to use the convolutional struc-
ture of the scheme and sequentially decode each block.
Notice that if the attacker has a method to recover u0

and e0, then by computing D−1(y(D) − u0G
′(D) − e0)

the process can be repeated to recover the rest of the ui,
ei, for i ≥ 1. For this purpose the attacker can start with
the block code C0 associated with G′

0. However, since the
distance of the code C0 is 1, the number codewords in a
ball of radius ≤ t centered in y0 is expected to be really
huge. Moreover, condition (6) implies that y0 is indeed a
codeword of C0.

Another way to try to recover u0 is to consider all the
equations involving u0 and none of the other ui, for i ≥ 1.

This system of equations is precisely given by the matrix G̃
and the associated parts of the vector [y0 y1 y2]. Again,
since the distance of the code generated by the matrix

G̃ has distance 1, it is expected to have a large list of
codewords centered in that vector and no methods to
decide which is the correct one.

For the structural attacks, since the weight of the nonzero
columns of Pi, with i ∈ {−1, 0, 1}, is larger than or equal to
2 due to condition (iv), the attacks presented in Couvreur
et al. (2015) and Couvreur and Lequesne (2020) don’t seem
to succeed against the proposed scheme.
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Abstract: This paper continues the work of Georgiou, Jabbari and Smith on lossless adjustable
mechanical devices. Defining equations and mechanical constructions of lossless adjustable springs and
inerters for translational and rotational devices will be recalled. The role played by the lossless adjustable
two-port transformer will be highlighted. A mechanical design will be described for a lossless adjustable
rotational two-port transformer involving a double-cone arrangement, movable carriage and a pair of
counter-rotating balls.

Keywords: Passivity-based control; Mechanical networks.

1. INTRODUCTION

In Georgiou et al. (2020) the question was posed as to
whether it is possible to build lossless adjustable springs and
inerters. A lossless adjustable spring would have a “workless
knob” and would behave like a conventional linear spring when
the knob is stationary. Energy imparted through compression or
extension would be available for extraction again. Adjustment
of the knob would not involve any energy transfer between the
environment and the contrivance. Current methods to adjust
the stiffness of springs do not answer this question, since they
require active actuation, dissipation, or restrictive conditions on
the switching of the spring constant.

The question is motivated by the ubiquity of the adjustable
damper which is extensively used in the control of mechanical
systems, e.g. automotive suspensions, see Butsuen and Hedrick
(1989), Savaresi et al. (2010), Brezas et al. (2015), Smith et al.
(2018). The variable damper constant plays the role of a control
input which may be adjusted by a control law that minimises
a performance criterion. Such devices are sometimes termed
“semi-active” since a (small) power source is employed to
effect the adjustment. Nevertheless, the instantaneous power
absorbed by the device can never be negative, and so from a
terminal point of view it appears passive.

An analogous question arises for the inerter which is a two-
terminal mechanical device such that the equal and opposite
force at the terminals is proportional to the relative accelera-
tion between them (see Smith (2002), Smith (2020)). The con-
stant of proportionality is termed the inertance. The question
is whether an adjustable inerter is physically realisable as a
lossless device, i.e. whether an inerter can be manufactured

? L. Gaudiesius acknowledges the support of an EPSRC doctoral studentship.
Partial support was provided by the NSF (1665031, 1807664, 1839441) and
AFOSR (FA9550-17-1-0435).

with a “workless knob” which freely adjusts its inertance in
real time.

In the robotics field “Variable Stiffness Actuators” have been
considered extensively (see Vanderborght et al. (2013), Wolf
et al. (2016) for recent surveys and the references therein).
Each of the methods described requires some form of active
force input, most commonly via electromechanical actuation.
In Bobrow et al. (1995), Jabbari and Bobrow (2002) a passive
“resettable” spring is proposed which requires minimal energy
for switching. The opening of the valve (to reduce the stiffness)
is constrained to times at which there is no stored energy in
the fluid, otherwise there is energy dissipation. The possible
benefits of adjustable inerters have been considered recently in
Chen et al. (2014), Brzeski et al. (2015), Lazarek et al. (2018),
Garrido et al. (2018) without identifying a method to make the
adjustments in a lossless manner.

The present extended abstract is structured as follows. Sec-
tion 2 highlights the mechanical constructions of Georgiou
et al. (2020): an idealised mechanical arrangement of a lever
with movable fulcrum to derive device laws for lossless ad-
justable springs and inerters. The definitions of the varspring
and varinerter will be recalled, as well as the rotational coun-
terparts of these concepts. Section 3 focusses specifically on the
rotary adjustable transformer and details a specific embodiment
of the physical realisation of the device.

2. PLANAR MECHANISM FOR LOSSLESS
ADJUSTABLE DEVICES

2.1 Lossless adjustable spring

We consider a theoretical mechanism as depicted in Fig. 1 in
which the x- and y-axes are fixed in the device housing. The
device terminals are located at (0,0) and (x1,0) according to
the convention of Georgiou et al. (2020) and accordingly we
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(x2,0) = (0,0) (x1,0)

F F

x

(xr,yr)

(x0,y0)(0,y0)

y
k0

Fig. 1. Spring and lever with movable fulcrum at (xr,yr).

define x = −x1 and v = −ẋ1. An internal spring with stiffness
k0 is constrained to move parallel to the x-axis with fixed y-
coordinate y0 and generates a force equal to −k0x0. An ideal
massless lever has a movable fulcrum at (xr,yr).

If the fulcrum is movable with an imposed condition that the
instantaneous power supplied at the external terminals of the
device equals the rate of change of the internal energy of the
spring then it can be shown as in Georgiou et al. (2020) that the
fulcrum must always move parallel to the bar. Setting k0 = 1 it
can be shown that the device is governed by the relation:

ẋ = p
d
dt

(pF) . (1)

where
p = yr/(y0 − yr). (2)

We can see that Fẋ = d
dt (I ) where we may define the internal

stored energy by:

I =
1
2

p2F2.

2.2 Lossless adjustable inerter

We consider the mechanism as depicted in Fig. 2 which is
similar to the device in Fig. 1 except that the spring is replaced
by an inerter which generates a force equal to −bẍ0.

(x2,0) = (0,0) (x1,0)

F F

x

(xr,yr)

(x0,y0)(0,y0)

y b

Fig. 2. Inerter and lever with movable fulcrum at (xr,yr).

Applying again the condition that the instantaneous power
supplied at the external terminals of the device equals the rate
of change of the internal energy of the inerter gives, for b = 1,

F = r
d
dt

(rẋ) (3)

where r = p−1. It is immediate to see that Fẋ = d
dt (I ) where

we may define the internal stored energy by:

I =
1
2

r2ẋ2.

2.3 Physical implementation

A conceptual scheme to realise such adjustability is shown in
Fig. 3. A wheel is attached to the bar at the fulcrum and is free to
rotate about a vertical axis through the fulcrum and the contact
point of the wheel on a supporting table. The wheel is allowed
to rotate about a horizontal axis which is perpendicular to the
bar to produce a rolling motion on the table which is always
instantaneously parallel to the bar. The rolling of the wheel is
the means of mechanism adjustment by altering the ratio r or
p = r−1 with p defined as in (2).

F

F

Fig. 3. Schematic of a lever mechanism with movable ful-
crum to allow a physical realisation of lossless adjustable
springs and inerters.

2.4 The varspring and varinerter

Based on the construction of Fig. 3, it appears justified to
introduce a pair of ideal, lossless adjustable mechanical one-
ports which we will name the varspring and varinerter. The
ideal devices are defined by the laws:

v = p
d
dt

(pF) (varspring) (4)

F = r
d
dt

(rv) (varinerter) (5)

where (F,v) is the force-velocity pair of the mechanical one-
port and p(t), r(t) are positive and freely adjustable parameters.
The internal energy of the devices is given by 1

2 p2F2 and 1
2 r2v2

respectively. It is important that physical devices may be con-
structed which approximate the ideal behaviour, for example,
having sufficiently small dissipation through friction, and as
in the case of the ideal inerter in Smith (2002), sufficiently
small mass, sufficient travel, have no physical attachment to a
fixed point in space, and have two terminals which are freely
and independently movable (Smith, 2002, Section II.C). The
construction of Fig. 3 suggests that devices satisfying these
conditions are physically realisable in principle. The varinerter
is realised as in Fig. 3 with an inerter replacing the spring. We
note that the above construction of the varspring and varinerter
in Fig. 3 can be conceptualized as a lossless adjustable two-port
transformer with one of the ports terminated with either a spring
or an inerter.

2.5 A lossless adjustable transformer

Motivated by the method of constructing the translational
varspring and varinerter in Sections 2.1 and 2.2 we consider
now the possibility of an adjustable rotary transformer. We
consider the construction depicted in Fig. 4 consisting of two
right circular cones of equal aperture on parallel rotating shafts,
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with opposite orientation, and hence a constant perpendicular
distance between the surfaces. Between the cones is an assem-
bly consisting of two balls within a housing which is movable
parallel to the surface of the cones to maintain contact of the
balls with the cones at the feet of the perpendicular beween the
cones. It is assumed that pure rolling is maintained between the
balls and the cones, and between themselves, and that there is
frictionless sliding between the balls and the housing. With the
assumption of negligible mass of the whole system the torques
on the two shafts are proportional, with the proportionality
being the instantaneous ratio of cone radii. The assumption
of pure rolling means that the angular velocities are similarly
proportional. Thus we may presume laws of the form:

T1 = pT, (6)

ω1 =−p−1
ω (7)

where T , T1 are the torques on the shafts, ω , ω1 are their
angular velocities, and p = p(t) > 0 is the instantaneous ratio
of cone radii. We note that T1ω1 + T ω = 0 so that no energy
is absorbed or dissipated in the ideal device. Hence we may
consider the schematic of Fig. 4 as a physical realisation of a
lossless adjustable rotary transformer.

It is important to emphasize that, besides being lossless, an
essential feature of the mechanism in Fig. 4 is that the ratio
between angular velocities can be freely adjusted, including the
case where the angular velocities are zero, as occurs when there
is a reversal of sign. This feature contrasts with typical concepts
of a continuously variable transmission (CVT), e.g., Brokowski
et al. (2002); Rotella and Cammalleri (2018).

ω,T ω1,T1

Fig. 4. Schematic of an adjustable rotary transformer with
counter-rotating cones and continuously movable connect-
ing assembly consisting of a pair of rotating balls within a
housing.

2.6 The rotary varspring and varinerter

We first consider attaching a rotary spring of rotational
stiffness k > 0 (constant) to the second shaft in Fig. 4 defined
by T1 = −kθ1 where θ̇1 = ω1. A passive (lossless) rotary
mechanical one-port is formed with the following relationship
between the equal and opposite torque applied to the external
(rotary) terminals T and the relative angular velocity ω between
the terminals: ω =−pω1 = pk−1 d

dt (pT ). Similarly, if a rotary
inerter (see Smith (2001)) with rotational inertance b > 0,
defined by T1 = −bω̇1, is connected across the second shaft in
Fig. 4 a passive (lossless) rotary one-port is formed satisfying
T =−brω̇1 = br d

dt (rω). The constants k and b can be absorbed

into p and r respectively (or equivalently setting k = 1 and
b = 1).

This motivates the following definitions of the rotary var-
spring and varinerter:

ω = p
d
dt

(pT ) (rotary varspring) (8)

T = r
d
dt

(rω) (rotary varinerter) (9)

where (T,ω) is the torque-angular-velocity pair of the mechan-
ical one-port and p(t), r(t) are positive and freely adjustable
parameters. The internal energy of the devices is given by
1
2 p2T 2 and 1

2 r2ω2 respectively.
It is interesting to compare the embodiments presented for

the translational and rotary varsprings and varinerters. A prac-
tical issue that arises with continuous operation of the trans-
lational devices, implemented in the manner of Fig. 3, is that
the movement of the fulcrum in the x-direction may exceed the
allowable travel. No such issue arises with the rotary devices.

3. PHYSICAL REALISATION OF A LOSSLESS
ADJUSTABLE TWO-PORT TRANSFORMER

The conceptual embodiment of the adjustable rotary trans-
former in Fig. 4 encounters the technical challenge to ensure
(nearly) frictionless sliding between the balls and the housing,
while maintaining pure rolling between the two balls, and also
between the balls and the cone surfaces. Next we describe a
physical realisation for the housing and carriage assembly that
offers a solution to this challenge.

Fig. 5. Drawing of the device that consists of two shafts, two
circular cones, and in between a carriage assembly with
two counter-rotating balls (together with magnified view).

Fig. 6. Detail on the positioning of the counter-rotating balls
with the supporting roller bearings.
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The drawing in Fig. 5 shows the positioning of the two
circular cones together with the housing that supports the two
counter-rotating balls. Preloading of the shafts that support
the cones can ensure sufficiently large normal forces at the
contact points between the two balls, and between the balls
and the cones, to ensure rolling (with no slippage) for a given
specification on torques applied to the shafts. Preloading needs
to ensure that the Hertzian contact stress is small enough so that
the resulting strains are within the elastic limit. The housing
encloses the two counter-rotating balls each constrained by two
pairs of roller bearings positioned on perpendicular axes. Fig. 6
shows the arrangement of the roller bearings, each pair being on
perpendicular axes which are themselves perpendicular to the
line joining the centres of the two balls. This geometry allows
each ball to freely rotate about any axis that lies within the
plane whose normal is the line joining the centres of the two
balls. This feature allows the carriage assembly to slide and
be positioned along the axis (marked with dash-dotted line in
Fig. 4) that runs parallel to the contact points between the balls
and the two cones. This axis is not shown in Figs. 5–6 to allow
a clear view of the internal structure of the housing and the
positioning of the roller bearings. A mechanical embodiment
of the device is shown in Fig. 7

Fig. 7. Mechanical embodiment manufactured in Cambridge
University Engineering Department.

With the assumption of negligible mass for the whole system,
the torques on the two shafts are proportional, with the propor-
tionality being the instantaneous ratio of cone radii. Further, no
(or negligible) energy is absorbed or dissipated since any forces
applied at the contact points are perpendicular to any direction
that the contact points can be displaced.

4. CONCLUSION

We have shown how adjustable lossless springs and inerters
can be realised. The central element of our construction is an
adjustable mechanical transformer which is interesting in its
own right. In this paper, we discuss the realisation of such
a device and describe an embodiment that uses two counter-
rotating cones that are coupled through two counter-rotating
balls, housed in a carriage assembly that allows (near) friction-

less motion of the balls while transfering torque between the
shafts of the two cones.
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Abstract: We investigate the modelling of sailing races as hybrid stochastic games, either with
zero or nonzero sum, where the first case is typical of match races and the second of fleet races. In
particular, we provide models of growing complexity and dimension, study the optimal strategies
in various racing situations and devise some fast and/or reduced memory implementation.

Keywords: Hybrid Systems, Optimal Control, Stochastic Control and Estimation

1. INTRODUCTION

In its typical formulation, the route planning problem
consists in driving a sailing vessel towards a target in a
partly stochastic wind field. This problem has recently
received a certain attention, not only because of its use
in sailing competitions, but also for the growing inter-
est in sustainable transport strategies. Actually, various
projects of sailing or hybrid commercial ships are currently
under consideration, and their use could significantly re-
duce costs and emissions related to the transport on sea:
exploiting in an optimal way the wind field would thus
become a crucial point for such projects. In sailing races,
the problems of optimizing the boat route appears critical,
and has already motivated a certain amount of studies,
in particular related to America’s Cup competitions (see
Philpott (2005); Vinckenbosch (2012)).

The main peculiarity in modelling the motion of sailing
boats is that their speed depends on the angle between
the boat direction and the (random) direction of the wind,
and presents a no-go region if the boat attempts to sail
opposite to the wind. A second point is that changing from
right to left tack of vice versa (i.e., changing the side of
the boat from which the wind comes) requires a complex
manoeuvre (tacking or gybing) which causes a speed loss,
to be correctly taken into account. A typical polar plot
of speeds is shown in Fig. 1, in which the arrows refer to
the speed obtained at various angles, on the left tack (i.e.,
with the wind arriving from left).

The interpretation of the tacking or gybing manoeuvre
as a switch between two different dynamics allows us to
formulate the problem in terms of hybrid control (see
Ferretti and Festa (2019)), where the angle with the wind
on a given tack is considered as a continuous control, while
a tacking or gybing represents a commutation between
the dynamics associated to respectively right or left tack.
? This research has been partially supported by INdAM–GNCS and
by the MIUR grant “Dipartimenti Eccellenza 2018–2022”.

Fig. 1. Polar plot of the speed of a sailing boat with respect
to the wind angle

A time loss (in other terms, a cost) is associated to this
change of dynamics.

2. MODELLING A RACE

In this work, we will apply this general hybrid stochastic
framework to the case of a sailing race, in which a set of
players (boats) A,B, . . . are placed in a two-dimensional
domain representing the race area. The wind direction
Θ(t) will be modelled, as usual in this framework, by
adding a deterministic drift γ to a Brownian motion, so
that

dΘ(t) = γdt+ σdW (t),

while, on the X1–X2 plane, the generic sailing boat P has
a position evolving as ẊP

1 (t) = sP (aP , XA, XB , . . .) sin
(

Θ(t) + (−1)Q
P (t)aP

)
ẊP

2 (t) = sP (aP , XA, XB , . . .) cos
(

Θ(t) + (−1)Q
P (t)aP

)
,

where a is the angle of the boat w.r.t. the wind,
sP (aP , XA, XB , . . .) is the boat speed, and the discrete
control QP (t) = 1 for the port tack, QP (t) = 2 on the
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starboard tack. Note that the boat speed depends on the
positions of all the players, thus including the effects of
mutual disturbance, which occurs in real races (and that
represent a key feature of the problem).

2.1 Various settings for the problem

We will consider various settings of increasing complexity,
all of them being of hybrid stochastic game type, for a
race among players of the form above. The basic problem
is sailing to windward in an infinite plane, as a model for
windward strategy when far from the target. This setting
has been used in Cacace et al. (2020) for treating the
case of match races, and in this situation we consider
a zero-sum game of pursuit–evasion form, which can be
conveniently treated in reduced coordinates with a state
space of dimension n = 3. Using a dynamic programming
approach, the value function v of the game solves an
Isaacs equation in the form of a system of quasi-variational
inequalities:

max {v −M[v],min {v −N [v], F [v]}} = 0,

where F [v] is the dynamic programming Hamiltonian
associated to the continuous controls, and M, N are the
switching operators of the two players. The numerical
examples carried out in Cacace et al. (2020) show that
the optimal strategy for both players is basically to follow
the optimal single player strategy, but as one of the players
gains some advantage, this player tends to disturb slightly
the other one, whenever in favourable position (see Figures
2–3).

In this work, we will examine various generalizations of
this setting, and in particular:

(1) Sailing to windward in an infinite plane, but in a
nonzero-sum framework. In this case we expect that a
nontrivial Nash equilibrium may appear, in which the
players are not interested to disturb each other. This
may be a first model for the onset of Nash equilibria
in a fleet race. However, the case can no longer be
treated in reduced coordinates, and this makes the
dimension of the state space raise to n = 2N + 1,
where N is the number of players;

(2) Sailing to windward, either in a zero- or nonzero-
sum game, with a target. In this case, while the
nonzero-sum game appears as a multiple minimum
time problem, in the zero-sum game we need to define
a suitable criterion of advantage for a player. The
dimension of the state space is still n = 2N + 1, the
use of reduced coordinates being impossible.

2.2 Computational issues

As we have outlined above, the state space may rise to a
relatively high dimension, as soon as the model becomes
realistic. In addition, a slow convergence may occur if the
numerical approximation is implemented in the form of a
plain value iteration. We will therefore discuss:

(1) A memory reduction technique, which uses the fact
that the interplay between two players appears only
at small distances, and therefore the coupled game
reduces to an optimal control problem for a single

S. Cacace, R. Ferretti and A. Festa / Applied Mathematics and Computation 372 (2020) 124966 11 
and imposing periodic boundary conditions at θ = ±π . Once the solutions v A and v B are computed, we set the boundary 
values v i, j,k 

q,r = (v A ) k q − (v B ) k r for all ( i, j, k ) such that i = 0 or i = N or j = 0 or j = N and 0 ≤ k ≤ N . Note that this relation 
can be used also in the internal nodes, to define a reasonable initial guess and save some iterations for the convergence of 
Algorithm 1 . 

We finally remark that, in the special case C A = C B and s̄ A = s̄ B , we can alternatively solve the nonlinear Eq. (19) by a 
standard root-finding algorithm, and build the initial guess using the explicit expression (20) for the difference v A − v B . 

We proceed by discussing how to build optimal trajectories for the game. With the value function v at hand, we have, 
by construction, the following inequalities for all i, j, k = 0 , . . . , N, all q, r = 1 , 2 and ˆ q = 3  − q, ˆ r = 3  − r

v i, j,k 
ˆ q ,r − C A ≤ v i, j,k 

q,r ≤ v i, j,k 
q, ̂ r + C B . 

Whenever an inequality is strict, the corresponding player keeps its discrete state, otherwise it can take an advantage on its 
opponent by switching to the other state and paying the corresponding cost. Then, we can easily define, for each player, an 
optimal switching map , depending on both the node (x i 1 , x j 2 , θ k ) and the state ( q, r ): 

S A i, j,k 
q,r = 

{ 
q if v i, j,k 

q,r > v i, j,k 
ˆ q ,r − C A 

ˆ q if v i, j,k 
q,r = v i, j,k 

ˆ q ,r − C A S B i, j,k 
q,r = 

{ 
r if v i, j,k 

q,r < v i, j,k 
q, ̂ r + C B 

ˆ r if v i, j,k 
q,r = v i, j,k 

q, ̂ r + C B 

Fig. 4. Test 1a. Optimal strategy for both players in symmetric conditions, player B (black trajectory) wins. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. A sample trajectory of the zero-sum game in
symmetric conditions, with the black player leading
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can be used also in the internal nodes, to define a reasonable initial guess and save some iterations for the convergence of 
Algorithm 1 . 

We finally remark that, in the special case C A = C B and s̄ A = s̄ B , we can alternatively solve the nonlinear Eq. (19) by a 
standard root-finding algorithm, and build the initial guess using the explicit expression (20) for the difference v A − v B . 

We proceed by discussing how to build optimal trajectories for the game. With the value function v at hand, we have, 
by construction, the following inequalities for all i, j, k = 0 , . . . , N, all q, r = 1 , 2 and ˆ q = 3  − q, ˆ r = 3  − r
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Fig. 4. Test 1a. Optimal strategy for both players in symmetric conditions, player B (black trajectory) wins. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Speeds of the two players for the example above

player as soon as the players are far enough from each
other;

(2) Solvers of fast marching or fast sweeping type, ex-
ploiting the direction of propagation of the value
function, along with the degeneracy of the stochastic
component of the dynamics;

(3) Solvers of policy iteration type.
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On the Optimal Control of Lossless
Electrical Networks

Richard Pates 1

Abstract: Electrical networks constructed out of resistors (R), inductors (L), capacitors (C),
transformers (T), and gyrators (G) are used throughout engineering and the applied sciences to
model physical processes. Synthesising RLCTG networks for control purposes is also important,
since in a number application domains the corresponding controllers can be implemented without
an energy source. We show that if a process can be modelled by an LCTG network, a controller
that maximises robustness with respect to normalised coprime factor perturbations can be
synthesised by a decentralised resistive network. The results are illustrated on an example
centred on the iterative solution to constrained least squares problems.

Keywords: Dissipativity, Robust and H-infinity control, Large-scale systems

NOTATION

Ln
2 and Lloc,n

2 denote the n-vectors of square integrable
functions, and locally square integrable functions, respec-
tively. Rn×m [s] denotes the n by m matrices of polynomi-
als in the indeterminate s with real coefficients. ‖·‖ denotes
either the L2 norm or the matrix 2-norm depending on
whether it acts on a function or matrix. I denotes the
identity matrix.

1. INTRODUCTION

We investigate the H-infinity control problem that un-
derpins the loop-shaping design procedure of McFarlane
and Glover (1992) in the context of electrical networks.
Our main contribution is to show that when the process
to be controlled corresponds to an LCTG network (an
electrical network constructed only from inductors, capac-
itors, transformers and gyrators), the resulting optimal
control law is decentralised, and can be implemented by
connecting unit resistors across all the external terminal
pairs of the network. This is illustrated in Fig. 1. This
gives an example of a class of optimal control problems
with inherently decentralised solutions, providing motiva-
tion for applying decentralised control in applications with
lossless (or nearly lossless) dynamics, such as electrical
power systems.

As discussed in Camlibel et al. (2003), the dynamics
of electrical networks cannot always be described in the
input-output framework. However the driving point cur-

rents i ∈ Lloc,n
2 and volatages v ∈ Lloc,n

2 of an electrical
network constructed out of resistors, inductors, capacitors,
transformers and gyrators can always be characterised by
the solutions to an equation that takes the form

R
(

d
dt

) [i
v

]
= 0,

1 The author is a member of the ELLIIT Strategic Research Area at
Lund University. This work was supported by the ELLIIT Strategic
Research Area. This project has received funding from VR grant
2016-04764 and ERC grant agreement No 834142.
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Fig. 1. (a) The standard setup for the H-infinity control
problem that underpins the loop-shaping design pro-
cedure of McFarlane and Glover (1992). The objective
is to minimise the H-infinity norm of the transfer
function from [wT

1 w
T
2 ]T to [uT yT]T. (b) Electrical

equivalent of the H-infinity control problem in (a).
The main contribution of the paper is to show that if
the electrical network is an LCTG network (it is con-
structed using only inductors, capacitors, transform-
ers and gyrators), then this H-infinity performance
criterion is minimised by connecting unit resistors
across all the open terminal pairs.
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where R (s) ∈ Rn×2n [s] (see Hughes (2017b)). We there-
fore study the following behavioral equivalent of the H-
infinity control problem in Fig. 1(a).

Problem 1: Let G (s) ∈ R·×m [s] define the uncontrolled
behavior of a process according to

BG(s) =
{

(w, z) ∈ Lloc,m
2 × Lloc,m

2 : G
(

d
dt

)
(w + z) = 0

}
.

Choose K (s) ∈ R·×m [s] to minimise

sup
{
‖z‖ : w ∈ Lm

2 , ‖w‖ = 1, (w, z) ∈ BG(s),K(s)

}
(1)

where BG(s),K(s) =
{

(w, z) ∈ BG(s) : K
(

d
dt

)
z = 0

}
.

To see the connection, partition R as

R (s) = [R1 (s) −R2 (s)] ,

and suppose that

R
(

d
dt

)
v = 0 ⇔

[
R2

(
d
dt

)−1
R1

(
d
dt

)
−I
]
v = 0.

That is the behavior associated with R (s) admits an
input-output representation with respect to the given
partition, with transfer function

P (s) = R2 (s)
−1
R1 (s) .

Splitting w and z compatibly according to

w =
[
w1

−w2

]
and z =

[
u
y

]
,

we then see that (w, z) ∈ BG(s) if and only if

y = w2 + P
(

d
dt

)
(u+ w1) ,

placing Problem 1 in the standard H-infinity control frame-
work. Problem 1 therefore represents a generalisation to
cases where this input-output representation is not neces-
sarily possible.

In the context of this paper, the idea behind Problem 1
is that G (s) characterises the dynamics of an electrical
network, w a set of disturbance currents and voltages, and
z a set of driving point currents and voltages that can be
constrained by another electrical network:

w =
[
idis

−vdis

]
and z =

[
ictl

vctl

]
.

Since Kirchhoff’s current and voltage laws at the terminal
pairs of the electrical network read as[

i
v

]
=
[
ictl

vctl

]
+
[
idis

−vdis

]
,

the objective is then to design an electrical network that
can be connected to the given electrical network to min-
imise the effect of the disturbance currents and voltages as
quantified by (1). This particular performance objective
has a wide range of interpretations (see §2 of Vinnicombe
(2000) for an extended discussion), including maximising
robustness to normalised coprime factor perturbations of
the process dynamics.

The rest of the paper is structured as follows. We begin by
demonstrating that whenever the process to be controlled
corresponds to an LCTG network, the optimal solution to
Problem 1 is given by

K (s) ≡ [I I] .

This control law can be implemented by connecting a
unit resistor across each of the open terminal pairs of the
perturbed electrical network, as depicted in Fig. 1(b). This
is the implication (1) ⇒ (2) in Theorem 1. Theorem 1
also demonstrates that the LCTG networks can be char-
acterised in terms of solutions to Problem 1. This is more

of a curiosity than anything else, but offers an alternative
classification of the LCTG networks to the conditions on
p.21 of Hughes and Branford (2021). The paper concludes
with an example showing that this optimal control law
arises naturally in a simple iterative algorithm for solving
constrained least squares problems.

2. RESULTS

Theorem 1. Given R (s) ∈ Rn×2n [s], the following are
equivalent:

(1) The behavior

B =

{[
i
v

]
∈ Lloc,2n

2 : R
(

d
dt

) [i
v

]
= 0

}
is the driving point behavior of an LCTG network,
where i and v denote the driving point currents and
voltages, respectively.

(2) The matrix
K (s) ≡ [I I]

minimises the performance objective in Problem 1
when G (s) ≡ R (s), and

K (s) ≡ [I −I]

minimises the performance objective in Problem 1
when G (s) ≡ R (−s). In both cases a value of

√
2

is achieved for the performance objective in (1).

Proof. (1) ⇒ (2): It follows from Theorem 5 of Hughes
(2017a) that under the hypothesis that B is the driving
point behavior of an LCTG network, there exists a per-
mutation matrix P = [P1 P2], and matrices[

−A −B
C D

]
= −

[
−A −B
C D

]T
, (2)

where the pair (C,A) is observable and (A,B) is control-
lable 2 , such that

B =

{[
i
v

]
:
[
i
v

] [
P1 0 P2 0
0 P2 0 P1

] [
u
y

]
, (u, y) ∈ Bss

}
,

where

Bss =

{
(u, y) :

[
x
u
y

]
∈ Lloc,2n+m

2 ,
[
A− I d

dt B 0
C D −I

][x
u
y

]
= 0

}
.

It then follows that BR(s) is given by the set of weak
solutions to the equations

d
dtx = Ax+ [B 0] d+Bu,

FTz =

([
C
0

]
x+

[
I 0
0 0

]
d+

[
D
I

]
u

)
,

y = Cx+ [0 I] d+Du,

(3)

where

F =
[
P1 0 P2 0
0 P2 0 P1

]
and w = Fd.

Since FFT = FTF = I and the realisation in (3) is
minimal, Problem 1 with G (s) ≡ R (s) corresponds to
minimising the H-infinity norm of the transfer function

2 The existence of an observabile and controllabile realisation can be
deduced from Hughes (2017b), since together Definition 7, Remark 8
and Theorem 9 from that paper imply that the driving point behavior
of an LCTG network is always behaviorally controllable. See also
the proof of Theorem 2 from Pates (2022) for an approach based on
state-space techniques.
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from d to FTz as defined by (3). This is precisely the H-
infinity control problem studied in Glover and McFarlane
(1989). If we let

R =
(
I +DDT

)
and S =

(
I +DTD

)
,

the optimal value for this problem is equal to√
1 + λmax,

where λmax is the largest eigenvalue of XY , X is the
unique positive semi-definite solution to the generalised
control algebraic Riccati equation(

A−BS−1DTC
)T
X+X

(
A−BS−1DTC

)
−XBS−1BTX + CTR−1C = 0,

and Z is the unique positive semi-definite solution to the
generalised filtering algebraic Riccati equation(

A−BS−1DTC
)
Z+Z

(
A−BS−1DTC

)T
−ZCTR−1CZ +BS−1BT = 0.

From (2) we see that A = −AT, B = CT, and D = −DT.
Direct substitution then reveals that X ≡ I and Z ≡ I
solve the Riccati equations under these constraints. It is
easily checked that the optimal value is achieved by the
control law u = −y, which corresponds to

K (s) ≡ [I I] .

A state-space description for BR(−s) can be similarly
obtained (make the substitutions A 7→ −A and B 7→ −B
in (3)), leading once more to the Riccati equation solutions
X ≡ I and Z ≡ I, but this time yielding the optimal
control law defined by

K (s) ≡ [I −I]

as required.

(2) ⇒ (1): First observe that for any s ∈ C,

rankR (s)
[
I
−I

]
≤ min {rankR (s), n}

and so there exist no non-zero v ∈ Lloc,n
2 such that

R
(

d
dt

) [ I
−I

]
v = 0

only if (Polderman and Willems, 1998, Lemma 5.4.8)

rankR (s) = n for all s ∈ C. (4)

Next observe that if G (s) ≡ R (s) and K (s) ≡ [I I], then
BG(s),K(s) is equal to the set of locally integrable (w, z)
such that

R
(

d
dt

)(
w +

[
I
−I

]
v

)
= 0 and z =

[
I
−I

]
v.

for some v ∈ Lloc,n
2 . Therefore under the hypothesis of

(2), (4) must hold, otherwise there would exist a v with

‖v‖ = 1/
√

2 such that for any α ∈ R(
−
[
I
−I

]
v, (1 + α)

[
I
−I

]
v

)
∈ BR(s),K(s),

which would imply that the performance objective in (1)
is infinite. This implies that B is behaviorally controllable,
from which it follows (Willems, 1991, §8) that there exist

matrices of rational functions M̃ (s) and Ñ (s) with no
poles in the closed right-half-plane such that[

i
v

]
∈ B ⇔ [

−M̃
(

d
dt

)
Ñ
(

d
dt

)][i
v

]
= 0.

Furthermore it is no loss of generality to assume that
this left coprime factorisation is normalised (Vidyasagar
(1988)), meaning that for all ω ∈ R

M̃ (jω) M̃ (jω)
∗

+ Ñ (jω) Ñ (jω)
∗

= I. (5)

From the inequalities on p.70 of Vinnicombe (2000), for

this control law to achieve a performance value of
√

2,

sup

{∥∥∥∥[−M̃ (s) Ñ (s)
][ 1√

2
I

− 1√
2
I

]∥∥∥∥ : s ∈ C,Re (s) > 0

}
≥ 1√

2
.

Using (5), the above is equivalent to the inequality

Ñ (s) M̃ (s)
∗

+ M̃ (s) Ñ (s)
∗ � 0 (6)

holding for all s ∈ C with Re (s) > 0. Repeating the above
steps for G (s) ≡ R (−s) and K (s) ≡ [I −I] demonstrates
that 3 for all ω ∈ R,

Ñ (jω) M̃ (jω)
∗

+ M̃ (jω) Ñ (jω)
∗ � 0. (7)

It then follows from (4), (6) and (7) that all the conditions
from (Hughes and Branford, 2021, p.21) are satisfied,
making B the driving point behavior of an LCTG network.
2

3. EXAMPLE

The objective of constrained least squares is to find an
x̄ ∈ Rn that satisfies

min
x̄∈Rn

‖Cx̄− b‖2 , s.t.Ax̄ = d, (8)

where C ∈ Rm×n, A ∈ Rp×n, b ∈ Rm and d ∈ Rp are
the problem data. Constrained least squares encompasses
a very broad class of problems including, for example,
finite horizon LQR, and includes standard least squares
and minimum norm solutions to a set of linear equations
as special cases (p = 0, and C = I and b = 0, respectively).
The solution to (8) can be obtained from the Karush-
Kuhn-Tucker conditions[

−CTC −AT

A 0

][
x̄
z̄

]
=
[
−CTb
d

]
, (9)

where we assume for simplicity that

i) A is right invertible;

ii)
[
C
A

]
is left invertible;

so that these equations have a unique solution. We will
now see that the solution to (9) arises naturally from the
solution to Problem 1.

To this end, consider the system

d
dtx =

[
0 −AT

A 0

]
x+

[
CT

0

]
(u+ w1 − r1) +

[
0
I

]
r2,

y = [C 0]x+ w2.
(10)

Together (i)-(ii) imply that this realisation is observable
and controllable, which implies (Willems, 1972, Theorem
8) that it can be synthesised using p inductors, n capacitors
and some transformers. In light of Theorem 1, the control
law that minimises (1) (with r1 = r2 = 0) can be
synthesised by connecting unit resistors across each of the
external terminal pairs. This maximises robustness with

3 A small technical point here is that M̃ (−s) and Ñ (−s) do not
give a left coprime factorization of R (−s), since the resulting factors
have poles in the right-half-plane. Nevertheless it is necessary that
the resulting inequalities must still hold on the imaginary axis, which
is all that is required to conclude (7).
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respect to normalised coprime factor perturbations. We
also see from (10) that the closed loop system becomes

d
dtx =

[
−CTC −AT

A 0

]
x+

[
CT

0

]
(w1 − r1) +

[
0
I

]
r2,

y = [C 0]x+ w2.

Therefore by applying the step inputs r1 = bH (t) and
r2 = dH (t), where H (t) denotes the unit step, we see
that

lim
t→∞

x (t) =
[
x̄
z̄

]
.

This means that for any b and d, the solution to the
constrained least squares problem can be obtained by
measuring the voltage across the capacitors. Of course
it is not necessary to actually use an electrical circuit to
implement the optimal control law. These equations could
equally well be interpreted as a simple algorithm which can
be easily distributed in the case of sparse C and A, and
Theorem 1 then shows that this algorithm has excellent
robustness properties.
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Abstract: We focus on computing certified upper bounds for the positive maximal singular
value (PMSV) of a given matrix. The PMSV problem boils down to maximizing a quadratic
polynomial on the intersection of the unit sphere and the nonnegative orthant. We provide a
hierarchy of tractable semidefinite relaxations to approximate the value of the latter polynomial
optimization problem as closely as desired. This hierarchy is based on an extension of Pólya’s
representation theorem. Doing so, positive polynomials can be decomposed as weighted sums of
squares of s-nomials, where s can be a priori fixed (s = 1 corresponds to monomials, s = 2
corresponds to binomials, etc.). This in turn allows us to control the size of the resulting
semidefinite relaxations.

Keywords: Polynomial optimization, Pólya’s representation, semidefinite programming, linear
programming, second-order conic programming, s-nomials, positive maximal singular value
AMS subject classifications: 90C22, 90C26

1. INTRODUCTION

Let N, R, R+ be the sets of nonnegative integers, real
numbers and nonnegative real numbers, respectively. In
the present paper, we focus on the problem of computing
the positive maximal singular value (PMSV) of a given
real matrix M ∈ Rn×n, denoted by σ+(M). Providing
PMSV bounds is crucial for certain induced norm analysis
of discrete-time linear time-invariant systems, where the
input signals are restricted to be nonnegative; see, e.g.,
Ebihara et al. (2021). The squared value σ+(M)2 can be
obtained by solving the following polynomial maximiza-
tion problem:

σ+(M)2 = sup
x∈Rn

+

{x>(M>M)x : ‖x‖22 = 1} ,

= sup
x∈Rn

+

{x>(M>M)x : ‖x‖22 ≤ 1} . (1)

? This work was supported by the Tremplin ERC Stg Grant ANR-
18-ERC2-0004-01 (T-COPS project), the FMJH Program PGMO
(EPICS project), as well as the PEPS2 Program (FastOPF project)
funded by AMIES and RTE. This work has benefited from the
European Union’s Horizon 2020 research and innovation program
under the Marie Sklodowska-Curie Actions, grant agreement 813211
(POEMA) as well as from the AI Interdisciplinary Institute ANITI
funding, through the French “Investing for the Future PIA3” pro-
gram under the Grant agreement n◦ANR-19-PI3A-0004.

For m ∈ N\{0}, let [m] := {1, . . . ,m}. Note that (1) is a
particular instance of a polynomial optimization problem
(POP) on the nonnegative orthant:

f? := sup
x∈S

f(x) , (2)

where f is a polynomial and S is a basic closed semialge-
braic set, i.e., the intersection of finitely many polynomial
inequalities as follows:

S := {x ∈ Rn : xi ≥ 0 , i ∈ [n] , gj(x) ≥ 0 , j ∈ [m]} ,
(3)

for some gj ∈ R[x], j ∈ [m] with gm := 1. Letting
x2 := (x2

1, . . . , x
2
n) and p̌(x) := p(x2) whenever p ∈ R[x],

it follows that problem (2) is equivalent to solving

f? = sup
x∈Š

f̌ , (4)

with
Š := {x ∈ Rn : ǧj(x) ≥ 0 , j ∈ [m]} . (5)

In the case of PMSV, one has m = 2, ǧ1 = 1−
∑
i∈[n] x

4
i ,

ǧ2 = 1 and f̌ = (x2)>M>Mx2.

In Dickinson and Povh (2015), the authors state a specific
constrained version of Pólya’s Positivstellensatz. Explic-
itly, if f, g1, . . . , gm are homogeneous polynomials, S is
defined as in (3), and f is positive on S\{0}, then

(
∑
j∈[n]

xj)
kf =

∑
j∈[m]

σjgj , (6)
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for some k ∈ N and homogeneous polynomials σj with
positive coefficients. They also construct a hierarchy of
linear relaxations associated with (6) converging from
above to f?.

Contributions. Here, we extend this result to the case
where the input polynomials f , gj are all even, i.e., invari-
ants under any variable sign flip, to get a representation
similar to (6), where each multiplier σj is a sum of s-nomial
squares. The case s = 1 corresponds to monomials, yield-
ing a hierarchy of linear programming relaxations similar
to Dickinson and Povh (2015), the case s = 2 corresponds
to binomials, yielding a hierarchy of second-order conic
programming relaxations. Fixing s > 2 in advance leads
to a hierarchy of SDP relaxations with controlled sizes
and allows us to overcome the potential ill-conditioning
of the linear relaxations. Our optimization framework can
be applied in particular to the PMSV problem and we
illustrate the related numerical performance at the end of
the paper.

Related works. A well-known method to approximate
f? is to consider the hierarchy of SDP relaxations by
Lasserre (2001) based on the representation by Putinar
(1993). Namely if f is positive on S and S involves the
polynomial g1 = L − ‖x‖22 for some L > 0, then f =∑
j∈[m] σjgj for some SOS polynomials σj . The resuling

hierarchy of SDP relaxations to approximate f? from
above is:

inf

λ : λ− f =
∑
j∈[m]

σjgj ,deg(σjgj) ≤ 2k

 . (7)

Increasing k imrpoves the accuracy of the resulting up-
per bounds but the size of the SDP becomes rapidly
intractable. To overcome this computational burden, a
remedy consists of exploiting sparsity of the input poly-
nomials; see the work by Waki et al. (2006) and Wang
et al. (2021a, 2020). Another research direction is to re-
strict each multiplier σj to be a sum of s-nomials. When
s ∈ {1, 2}, we retrieve the framework by Ahmadi and
Majumdar (2019) based on scaled diagonally dominant
sums of squares (SDSOS), generalized later on by Gouveia
et al. (2022) for arbitrary larger s. However, the resulting
hierarchy of linear or second-order conic programming
relaxations does not produce a sequence of upper bounds
converging to f?. It turns out that convergence can be
obtained by multiplying f by the power of a given positive
polynomial, e.g., 1 + ‖x‖22, or equivalently forcing the
multipliers σj to have denominators. Such representations
have been derived in Pólya (1928); Reznick (1995); Putinar
and Vasilescu (1999) and the latter led to the optimization
framework presented in Mai et al. (2021).

2. EXTENDING PÓLYA’S REPRESENTATION

We now state our main result, which extends Pólya’s
representation to even input polynomials. In addition, we
provide a degree bound for the multipliers.

Theorem 1. Let g1, . . . , gm be even polynomials such that
g1 = L − ‖x‖22 for some L > 0 and gm = 1. Let S be the
semialgebraic set defined by

S := {x ∈ Rn : g1(x) ≥ 0 . . . , gm(x) ≥ 0} . (8)

Let f be an even polynomial and nonnegative on S and
df := bdeg(f)/2c+ 1. Then the following statements hold:

(1) For all ε > 0, there exists Kε ∈ N such that for all
k ≥ Kε, there exist sums of monomial squares σj with
deg(σjgj) ≤ 2(k + df ), j ∈ [m] and

(1 + ‖x‖22)k(f + ε) =
∑
j∈[m]

σjgj . (9)

(2) If S has nonempty interior, there exist positive con-
stants c̄ and c depending on f and S such that for all
ε > 0, (9) holds with Kε = c̄ε−c.

Theorem 1 can be proved in the same way as (Mai and
Magron, 2022, Corollary 2). It is important to note that
the theorem still holds if we replace the first constraint
polynomial g1 = L − ‖x‖22 by L −

∑
i∈[n] x

4
i and we do

so for the PMSV problem. If we remove the multiplier
(1+‖x‖22)k in (9), Theorem 1 is no longer true. Indeed, let
n = 1, f := (x2− 3

2 )2 and assume that f = σ1(1−x2)+σ2

for some SOS of monomials σ1, σ2. Note that f is even and
positive on [−1, 1]. We write σi := ai + bix

2 + x4ri(x) for
some ai, bi ∈ R+ and ri ∈ R[x]. It implies that

x4 − 3x2 +
9

4
= (a1 + b1x

2 + x4r1(x))(1− x2)

+(a2 + b2x
2 + x4r2(x)) .

(10)

Then we obtain the system of linear equations: 9
4 = a1 +a2

and −3 = b2 − a1 + b1. Summing gives − 3
4 = a2 +

b2 + b1. However, a2 + b2 + b1 ≥ 0 since ai, bi ∈ R+,
yielding a contradiction. Thus, Putinar’s representation
with sums of monomial squares does not exist for even
input polynomials. With the multiplier (1+x2)2, we obtain
a Pólya’s representation:

(1 + x2)2f = σ̄1(1− x2) + σ̄2 , (11)

where σ̄1 = x4 + 15
4 x

2 + 9
4 and σ̄2 = x8 are SOS of

monomials.

3. TRACTABLE SEMIDEFINITE RELAXATIONS

Given α = (α1, . . . , αn) ∈ Nn, we write xα = xα1 · · ·xαn
n .

An s-nomial square is a polynomial which can be written
as (

∑
i∈[s] aix

α(i))2, with ai ∈ R, α(i) ∈ Nn, i ∈ [s].

Let us denote by Σs the set of sums of s-nomial squares.
The set of monomial squares corresponds to Σ1. For any
s ∈ N\{0}, one has the obvious inclusion Σ1 ⊂ Σs, thus
the representation result (9) from Theorem 1 holds with
multipliers σj ∈ Σs, j ∈ [m]. With f and S as in Theorem
1, we rely on this representation to derive a converging
sequence of upper bounds for f?. Each upper bound is
obtained by solving an SDP, indexed by s ∈ N\{0} and
k ∈ N:
ρk,s := inf

λ
λ

s.t. (1 + ‖x‖22)k(λ− f) =
∑
j∈[m]

σjgj ,

deg(σjgj) ≤ 2(k + df ) , σj ∈ Σs , j ∈ [m] .
(12)

As a consequence of Theorem 1, we obtain the following
convergence result.
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Corollary 2. Let f and S be as in Theorem 1. The follow-
ing statements hold:

(1) For all k ∈ N and for every s ∈ N\{0}, ρk,1 ≥ ρk,s ≥
f?.

(2) For every s ∈ N\{0}, the sequence (ρk,s)k∈N con-
verges to f?.

(3) If S has nonempty interior, there exist positive con-
stants c̄ and c depending on f and S such that for
every s ∈ N\{0} and for every k ∈ N,

0 ≤ ρk,s − f? ≤
(
k

c̄

)− 1
c

. (13)

Remark 3. We briefly outline the computational cost of
SDP (12). In the case without constraints, one can show

that the number of decision variables of is
(
n+k
n

)
·
(
s
2

)
,

to be compared with 1
2

(
n+k
n

)
·
((
n+k
n

)
+ 1
)

in the dense

case. Therefore, one expects a computational benefit when

s�
√(

n+k
n

)
.

4. NUMERICAL EXPERIMENTS

We demonstrate the accuracy and efficiency of our op-
timization framework, namely the SDP relaxations (12)
based on the extension of Pólya’s representation theorem.
Our framework is implemented in Julia 1.3.1 and available
online via the link https://github.com/maihoanganh/
InterRelax. We compare the upper bounds and runtime
with the ones of the standard SDP relaxations (7), based
on Putinar’s Positivstellensatz. These latter relaxations
are modeled by TSSOS Wang et al. (2021b). All SDP
relaxations are solved by the solver Mosek 9.1. We use
a desktop computer with an Intel(R) Core(TM) i7-8665U
CPU @ 1.9GHz × 8 and 31.2 GB of RAM. Our bench-
marks come from induced norm analysis of linear time-
invariant systems, where the input signals are restricted
to be nonnegative; we generate random matrices M as in
(Ebihara et al., 2021, (12)), that is

M :=


D 0 0 . . . 0
CB D 0 . . . 0
CAB CB D . . . 0
. . . . . . . . . . . . . . .

CAr−2B CAr−3B CAr−4B . . . D

 , (14)

where A,B,C,D are square matrices of size r, fixed in
advance. In our numerical experiments, we choose r ∈
{4, 5, 6, 7} and every entry of A,B,C,D is taken uniformly
in (−1, 1). Note that the number of variables of the result-
ing POP is n = r2. We associate an “Id” to each related
SDP relaxation, in which we compute a decomposition into
sums of s-nomial squares. For Putinar’s representation,
we take a small relaxation order k ∈ {1, 2} while for the
extension Pólya’s representation we let k = 0, leading
to decompositions without denominators. We indicate the
data of each SDP program, namely “nmat” and “msize”
correspond to the number of matrix variables and their
largest size, “nscal” and “naff” are the number of scalar
variables and affine constraints. The symbol “−” means
that the corresponding computation aborted due to lack of
memory. The most accurate upper bounds are emphasized
in bold. The total running time (including modeling and
solving time) is indicated in seconds.

The numerical results are displayed in Table 1. The SDP
relaxations associated to our extension of Pólya’s repre-
sentation provide more accurate upper bounds and they
are computed more efficiently.

Table 1. Upper bounds of PMSV of M .

Id n
Putinar Pólya

k upper bound time k s upper bound time

1
16

1 47.48 0.02
0 17 30.18 0.7

2 2 30.18 16

3
25

1 168.44 0.04
0 26 91.28 0.9

4 2 91.28 877

5
36

1 4759.12 0.2
0 37 2462.03 1

6 2 − −
7

49
1 1777.53 0.5

0 50 970.20 2
8 2 − −

Id
Putinar Pólya

nmat msize nscal naff nmat msize nscal naff

1 1 17 38 153
1 17 138 153

2 17 153 154 4845

3 1 26 27 351
1 26 327 351

4 26 351 352 23751

5 1 37 38 703
1 37 668 703

6 37 703 704 91390

7 1 50 51 1275
1 50 1227 1275

8 50 1275 1276 292825
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1. INTRODUCTION

The concept of input-to-state stability (ISS), introduced
by Sontag (1989) for ordinary differential equations, uni-
fies internal stability with respect to initial states and
external stability with respect to disturbances. For infinite-
dimensional systems, ISS has been also studied intensively
in recent years; see, e.g., the survey article of Mironchenko
and Prieur (2020) and the book of Karafyllis and Krstic
(2019). In this talk, we introduce the notions of semi-
uniform ISS and its subclass, polynomial ISS.

Semi-uniform stability of operator semigroups implies the
uniform asymptotic behavior of semigroup orbits with
respect to initial values from the unit ball of the domain of
the generator endowed with the graph norm. In this sense,
semi-uniform stability lies between exponential stability
and strong stability. We refer the reader to the overview
of Chill et al. (2020) for the recent developments of semi-
uniform stability. The motivation of introducing semi-
uniform ISS is to bridge the gap between uniform ISS and
strong ISS as in the semigroup case.

In this talk, we present results recently obtained by
Wakaiki (2022). First, we characterize semi-uniform ISS
by using attractivity properties. This result is the semi-
uniform version of the characterizations of uniform/strong
ISS in Theorems 5 and 12 of Mironchenko and Wirth
(2018). By this characterization, we show that semi-
uniform ISS implies strong ISS for bilinear systems. Next,
we provide sufficient conditions for linear systems to be
polynomially ISS. Under the sufficient conditions, the
range of an input operator is restricted depending on the
polynomial decay rate of ‖T (t)A−1‖, where (T (t))t≥0 is
the polynomially stable semigroup governing the state evo-
lution of the system without inputs and A is its generator.

2. DEFINITIONS

Let X and U be Banach spaces with norm ‖ · ‖ and ‖ · ‖U ,
respectively. Let U be a normed vector space contained
? This work was supported by JSPS KAKENHI Grant Number
JP20K14362.

in the space L1
loc(R+, U) of all locally integrable functions

from R+ to U . We denote by ‖·‖U the norm on U . Assume
that u(· + τ) ∈ U and ‖u‖U ≥ ‖u(· + τ)‖U for all u ∈ U
and τ ≥ 0.

Consider a semi-linear system with state space X and
input space U :

Σ(A,F )

{
ẋ(t) = Ax(t) + F

(
x(t), u(t)

)
, t ≥ 0

x(0) = x0,

where A is the generator of a C0-semigroup (T (t))t≥0 on
X, F : X × U → X is a nonlinear operator, x0 ∈ X is an
initial state, and u ∈ U is an input.

Definition 1. Suppose that for every τ > 0, f ∈
C([0, τ ], X), and g ∈ U , the map t 7→ F (f(t), g(t)) is
integrable on [0, τ ]. For τ > 0, a function x ∈ C([0, τ ], X)
is called a mild solution of Σ(A,F ) on [0, τ ] if x satisfies
the integral equation

x(t) = T (t)x0 +

∫ t

0

T (t− s)F
(
x(s), u(s)

)
ds

for all t ∈ [0, τ ]. Moreover, we say that x ∈ C(R+, X) is a
mild solution of Σ(A,F ) on R+ if x|[0,τ ] is a mild solution
of Σ(A,F ) on [0, τ ] for all τ > 0.

Throughout this talk, we consider only forward complete
systems defined as follows.

Definition 2. The semi-linear system Σ(A,F ) is forward
complete if there exists a unique mild solution of Σ(A,F )
on R+ for all x0 ∈ X and u ∈ U .

We denote by φ(t, x0, u) the unique mild solution of the
forward complete semi-linear system Σ(A,F ) with initial
state x0 ∈ X and input u ∈ U , i.e.,

φ(t, x0, u) := T (t)x0 +

∫ t

0

T (t− s)F
(
φ(s, x0, u), u(s)

)
ds

for t ≥ 0.

Let K∞ and KL be the sets of the classic comparison
functions from nonlinear systems theory. For the forward
complete semi-linear system Σ(A,F ), we introduce the no-
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tion of semi-uniform input-to-state stability. Before doing
so, we recall the definition of uniform global stability.

Definition 3. The semi-linear system Σ(A,F ) is called
uniformly globally stable (UGS) if the following two con-
ditions hold:

(1) Σ(A,F ) is forward complete;
(2) there exist γ, µ ∈ K∞ such that

‖φ(t, x0, u)‖ ≤ γ(‖x0‖) + µ(‖u‖U )

for all x0 ∈ X, u ∈ U , and t ≥ 0.

The graph norm ‖ · ‖A of a linear operator A : D(A) ⊂
X → X is defined by ‖x‖A := ‖x‖+ ‖Ax‖ for x ∈ D(A).

Definition 4. The semi-linear system Σ(A,F ) is called
semi-uniformly input-to-state stable (semi-uniformly ISS)
if the following two conditions hold:

(1) Σ(A,F ) is UGS;
(2) there exist κ ∈ KL and µ ∈ K∞ such that

‖φ(t, x0, u)‖ ≤ κ(‖x0‖A, t) + µ(‖u‖U )

for all x0 ∈ D(A), u ∈ U , and t ≥ 0.

In particular, if there exists α > 0 such that for all r > 0,
κ(r, t) = O(t−1/α) as t → ∞, then Σ(A,F ) is called
polynomially input-to-state stable (polynomially ISS) with
parameter α.

3. CHARACTERIZATION OF SEMI-UNIFORM ISS

We establish a characterization of semi-uniform ISS. The
following two semi-uniform attractivity properties are used
for the characterization.

Definition 5. The forward complete semi-linear system
Σ(A,F ) has the semi-uniform limit property if there exists
µ ∈ K∞ such that the following statement holds: For
all ε, r > 0, there is τ = τ(ε, r) < ∞ such that for all
x0 ∈ D(A),

‖x0‖A ≤ r ∧ u ∈ U
⇒ ∃t ≤ τ : ‖φ(t, x0, u)‖ ≤ ε+ µ(‖u‖U ).

Definition 6. The forward complete semi-linear system
Σ(A,F ) has the semi-uniform asymptotic gain property
if there exists µ ∈ K∞ such that the following statement
holds: For all ε, r > 0, there is τ = τ(ε, r) < ∞ such that
for all x0 ∈ X with ‖x0‖A ≤ r and all u ∈ U ,

t ≥ τ ⇒ ‖φ(t, x0, u)‖ ≤ ε+ µ(‖u‖U ).

Theorem 7. The following statements on the semi-linear
system Σ(A,F ) are equivalent:

1. Σ(A,F ) is semi-uniformly ISS.
2. Σ(A,F ) is UGS and has the semi-uniform limit prop-

erty.
3. Σ(A,F ) is UGS and has the semi-uniform asymptotic

gain property.

For linear systems and bilinear systems, semi-uniform
ISS implies strong ISS introduced in Definition 13 of
Mironchenko and Wirth (2018); see also Nabiullin and
Schwenninger (2018) for strong ISS.

Theorem 8. Assume that the operator F of Σ(A,F ) satis-
fies one of the following conditions:

1. There exists B ∈ L(U,X) such that F (ξ, v) = Bv for
all ξ ∈ X and v ∈ U .

2. For all ξ, ζ ∈ X and v ∈ U ,

F (ξ − ζ, v) = F (ξ, v)− F (ζ, v).

Then semi-uniform ISS implies strong ISS for Σ(A,F ).

4. POLYNOMIAL ISS OF LINEAR SYSTEMS

We recall the definition of polynomially stable semigroups.

Definition 9. A C0-semigroup (T (t))t≥0 on a Banach
space X generated by A : D(A) ⊂ X → X is called
polynomially stable with parameter α > 0 if (T (t))t≥0 is
uniformly bounded, if σ(A) is contained in the open left
half-plane, and if ‖T (t)A−1‖ = O

(
t−1/α

)
as t→∞.

Consider a linear system

Σlin(A,B)

{
ẋ(t) = Ax(t) +Bu(t), t ≥ 0

x(0) = x0,

where A is the generator of a polynomially stable semi-
group on X and B ∈ L(U,X). We provide a simple
sufficient condition for Σlin(A,B) to be polynomially ISS,
by restricting the range of the input operator B.

Proposition 10. Let X and U be Banach spaces. Suppose
that A generates a polynomially stable semigroup with
parameter α > 0 on X. If B ∈ L(U,X) satisfies ran(B) ⊂
D((−A)β) for some β > α, then Σlin(A,B) is polynomially
ISS with parameter α for U = L∞(R+, U).

We obtain a refined sufficient condition for polynomial
ISS when linear systems are consisted of diagonalizable
generators and finite-rank input operators; see Section 2.6
of Tucsnak and Weiss (2009) for diagonalizable operators.

Theorem 11. Let X be a Hilbert space and let U be a
Banach space. Suppose that A is a diagonalizable operator
generating a polynomially stable semigroup with parameter
α > 0 on X. If B ∈ L(U,X) is a finite-rank operator
and satisfies ran(B) ⊂ D((−A)α), then Σlin(A,B) is
polynomially ISS with parameter α for U = L∞(R+, U).
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Abstract: We describe here a non-intrusive data-driven time-domain formulation of balanced
truncation (BT) for bilinear control systems. We build on the recent method of Gosea et al.
(2021) that recasts the classic BT method for linear time invariant systems as a data-driven
method requiring only evaluations of either transfer function values or impulse responses. We
extend the domain of applicability of this non-intrusive data-driven method to bilinear systems,
arguably the simplest nontrivial class of weakly nonlinear systems.
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1. INTRODUCTION

Bilinear dynamical systems (BDS) are an important class
of weakly nonlinear systems that appear naturally in many
applications, see, e.g., Mohler (1970, 1973); Al-Baiyat et al.
(1993); Saputra et al. (2019); Qian and Zhang (2014).
They may be described through a state-space realization
given as

ẋ(t) = Ax(t) + bu(t) +Mx(t)u(t), y(t) = cTx(t), (1)

where x(t) : R → Rn is the system state, u(t) : R → R is
a (scalar) control input, and system matrices are given by
A,M ∈ Rn×n and b, c ∈ Rn. For simplicity, we describe
only the case of single-input single-output (SISO) BDS’s;
the analysis can be extended to multi-input multi-output
(MIMO) scenarios without difficulty.

In many applications of interest, the BDS represented
in (1) has large state-space dimension and one seeks
to reduce the model order to mitigate computational
burdens arising in subsequent simulation and control.
Many systems theoretic model reduction methods have
been extended to reducing BDS; see, e.g., Antoulas et al.
(2016a); Benner and Breiten (2012); Benner and Damm
(2011b); Flagg and Gugercin (2015); Goyal (2018) and
references therein. Balanced truncation (BT) in particular
Mullis and Roberts (1976); Moore (1981) has long been
one of the gold standards of model reduction. Classic BT
is an intrusive projection-based method, requiring access
to internal realizations of system dynamics. In recent work
Gosea et al. (2021), we have developed a data-driven
formulation of BT (called QuadBT), that only requires
access system response sampling (either through transfer
function evaluation or impulse response observation), but
requires neither state-space realizations nor observations
of the system state. The goal of this note is to extend this
data-driven reformulation of BT to BDS.

The extension of BT to bilinear systems is well established,
and generally requires the extraction of system Gramians
through the solution of generalized (”bilinear”) Lyapunov
equations (in lieu of the classical Lyapunov equations used
for LTI systems). The key to extending both BT, as well
as our data-driven reformulation of it, QuadBT, to bilinear
systems relies on the Volterra series representation of the
BDS system response. Under mild assumptions, one may
develop the solution of (1) as x(t) =

∑∞
k=1 xk(t) (see Rugh

(1981)), where

ẋ1(t) = Ax1(t) + bu(t), and

ẋk(t) = Axk(t) +Mxk−1(t)u(t), for k > 1.
(2)

The output is similarly expressed: y(t) =
∑∞

k=1 yk(t), with
yk(t) = cTxk(t), for k ≥ 1, and so, the initial BDS may be
recast as a cascade of coupled linear subsystems.

2. DATA-DRIVEN BILINEAR BT

The Volterra formalism of (2) may be resolved via vari-
ation of parameters and collected into an explicit series
representation as in (3). This Volterra series comprises an
infinite series of multivariate convolution integrals, and the
kernel associated with the kth term, hk(t, τ1, τ2, . . . , τk), is
called the kth triangular Volterra kernel.

Assigning τ0 = t and introducing the change of variables
tk−i = τi− τi+1, for i = 0, 1, . . . , k − 1, one obtains the so-
called kth regular Volterra kernel, which we write without
a change in notation as

hk(t1, t2, . . . , tk) = cT eAtkMeAtk−1 · · ·MeAt1b, k ≥ 1.

A multivariate Laplace transform of hk(t1, . . . , tk) yields
the multivariate transfer function:

H(s1, . . . , sk) = cT (skI−A)−1M(sk−1I−A)−1M · · ·
· · ·M(s2I−A)−1M(s1I−A)−1b.
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y(t) =

∞∑
k=1

∫ t

0

∫ τ1

0

· · ·
∫ τk−1

0

cT eA(t−τ1)MeA(τ1−τ2) · · ·MeA(τk−1−τk)b︸ ︷︷ ︸
hk(t,τ1,τ2,...,τk)

u(τk) · · ·u(τ1) dτk · · · dτ1. (3)

Not surprisingly, hk(t1, . . . , tk) and H(s1, . . . , sk) extend
the usual univariate impulse response and associated
transfer function from linear problems to nonlinear prob-
lems and so form a basic building block for extending linear
system-theoretic approaches for data-driven modeling to
nonlinear dynamical systems.

In the LTI case (i.e., M = 0 in (1)), the Gramians are

defined in the time domain as P =
∫∞
0

eAtbbT eA
T tdt and

Q =
∫∞
0

eA
T tccT eAtdt . For bilinear systems, the corre-

sponding algebraic Gramians are based on the Volterra
series expansion for y(t) and are naturally defined as (Al-
Baiyat and Bettayeb (1993); D’Alessandro et al. (1974))

P =
∞∑
k=1

∫ ∞

0

. . .

∫ ∞

0

zkz
T
k dt1 . . . dtk, (4)

where {
z1(t1) = eAt1b, for k = 1,

zk(t1, . . . , tk) = eAtkMzk−1, for k ≥ 2,
(5)

with analogous expressions for Q. Under conditions suffi-
cient to guarantee convergence of these infinite sums Zhang
and Lam (2002), the Gramians P andQ solve the “bilinear
Lyapunov equations”

AP+PAT +MPMT + bbT = 0 and

ATQ+QAT +MTQM+ ccT = 0.
(6)

Assuming the system (1) is reachable and observable, then
P andQ are positive definite matrices. See Zhang and Lam
(2002) for details. The bilinear extension of the classical
BT then proceeds as for the linear case. Let U,L ∈ Rn×n

be the square-root factors, i.e.,

P = UUT and Q = LLT . (7)

Then, pick a truncation index, 1 ≤ r ≤ n and compute the
SVD of the matrix L = LTU, which is then partitioned as

L = LTU = [Z1 Z2]

[
S1

S2

][
YT

1

YT
2

]
,
S1 ∈ Rr×r,

S2 ∈ R(n−r)×(n−r).

(8)
The singular values of L = LTU (i.e., the diagonal entries
of diag(S1,S2) in (8)) are called the Hankel singular values
of the underlying bilinear system. These values are system
invariants, i.e., they are independent of realization. BT
proceeds by truncating system states that correspond to
small Hankel singular values in S2. Model reduction bases

are then constructed from Wr = LZ1S
−1/2
1 and Vr =

UY1S
−1/2
1 . As a consequence, the reduced order bilinear

model can be constructed as

Â = WT
r AVr = S

−1/2
1 ZT

1 (L
TAU)Y1S

−1/2
1 ,

M̂ = WT
r MVr = S

−1/2
1 ZT

1 (L
TMU)Y1S

−1/2
1

b̂ = WT
r b = S

−1/2
1 ZT

1 (L
Tb),

and ĉ = VT
r c = S

−1/2
1 YT

1 (U
T c).

(9)

This provides a high-fidelity, input-independent, reduced-
order bilinear model. However, this approach is projection-
based and hence intrusive, a drawback that we intend to
improve upon. The key to our approach is the observation

is that BT for bilinear systems does not require explicit
access either to U or to L; instead it needs (the SVD
of) L = LTU in (8), and the related expressions LTAU,
LTMU, LTb, and UT c in (9). We describe below how
all these quantities can be approximated using only in-
put/output data, without access to internal variables.

Even though the bilinear Lyapunov equations of (6) are
linear in the unknowns, P and Q, the terms MPMT

and MTQM create significant computational bottlenecks
for large-scale problems. We refer the reader to, e.g.,
Kürschner (2016); Benner and Damm (2011a); Benner and
Breiten (2013) and the references therein for some solution
techniques.

One way of addressing this computational cost is to note
that the terms in the infinite series (4) often decay rapidly
and the whole series can be well approximated using
only the leading two or three terms. This motivates the
definition of truncated Gramians, PT and QT , which are
obtained by truncating the series (4) after T terms. For
example, if we pick a truncation index of T = 2, the
corresponding truncated Gramian, PT , is

PT =

∫ ∞

0

eAt1bbT eA
T t1dt1

+

∫ ∞

0

∫ ∞

0

eAt2MeAt1bbT eA
T t1MT eA

T t2dt1dt2,

with a similar expression for QT . PT and QT can be
computed recursively in the following way: Notice that PT

can be written as PT = P1 +P2, where P1 and P2 solve

AP1 +P1A
T + bbT = 0 =⇒ P1 = U1U

T
1

AP2 +P2A
T +MU1(MU1)

T = 0 =⇒ P2 = U2U
T
2

,

(10)
where U1 and U2 are the square-root factors of P1 and
P2. Note P1 and P2 can be written in time domain as

P1 =

∫ ∞

0

eAtbbT eA
T tdt and (11)

P2 =

∫ ∞

0

eAt(MU1)(MU1)
T eA

T tdt. (12)

This provides a direct path forward for us, since we can use
numerical quadratures on (11) and (12) to approximate

the square-roots factors U1 and U2. Let Ũ1 and Ũ2 be the
approximate square roots obtained via numerical quadra-
ture on (11) and (12), respectively. Then, an approximate

square-root factor Ũ for PT can be represented in terms

of Ũ1 and Ũ2:

PT = P1 +P2 ≈ Ũ1Ũ
T
1 + Ũ2Ũ

T
2

=
[
Ũ1 Ũ2

] [
Ũ1 Ũ2

]T
= ŨŨT .

(13)

One can similarly define a truncated observability Gramian
QT , which can be written as QT = Q1+Q2 (analogous to
(10)) with the corresponding time-domain formula (analo-

gous to (11) and (12)). Let L̃1 and L̃2 be the approximate
square factors for Q1 and Q2, respectively, obtained via a
numerical quadrature. Then
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QT = Q1 +Q2 ≈ L̃1L̃
T
1 + L̃2L̃

T
2

=
[
L̃1 L̃2

] [
L̃1 L̃2

]T
= L̃L̃T ,

(14)

thus given an approximate square-root factor L̃ for QT .

Recall (8): BT requires forming the SVD of L = LTU.

Approximate L using the approximate square-roots L̃ and

L̃; i.e.,

L̃ = L̃T Ũ =

[
L̃T
1 Ũ1 L̃T

1 Ũ2

L̃T
2 Ũ1 L̃T

2 Ũ2

]
.

Our preliminary analysis below shows that as in data-
driven BT for the LTI case Gosea et al. (2021), we will

be able to evaluate L̃ (and thus its SVD) directly from
input-output data.

To briefly illustrate this, apply a rectangular quadrature
scheme to approximate the Gramians in (11) and (12) with
two nodes in time, say τ1 and τ2. Then, we obtain,

Ũ1 = [z1(τ1) z1(τ2)] ,

Ũ2 = [z2(τ1, τ1) z2(τ1, τ2) z2(τ2, τ1) z2(τ2, τ2)] ,

where z1(t1) = eAt1b and z2(t1, t2) = eAt1MeAt2b, (with

the goal of P1 ≈ Ũ1Ũ
T
1 and P2 ≈ Ũ2Ũ

T
2 ). Similarly,

L̃1 = [w1(τ1) w1(τ2)] ,

L̃2 = [w2(t1, t1) w2(τ1, τ2) w2(τ2, τ1) w2(τ2, τ2)] ,

wherew1(t1) = eA
T t1cT andw2(t1, t2) = eA

T t1MT eA
T t2cT

(with the goal of Q1 ≈ L̃1L̃
T
1 and Q2 ≈ L̃2L̃

T
2 ). Hence, for

this simple set-up, one can show that

L̃1

T
Ũ1 =

[
h1(2τ1) h1(τ1 + τ2)

h1(τ1 + τ2) h2(2τ2)

]
,

L̃1

T
Ũ2 =

[
h2(2τ1, τ1) . . . h2(τ1 + τ2, τ2)

h2(τ1 + τ2, τ1) . . . h2(2τ2, τ2)

]
,

L̃2

T
Ũ1 =

 h2(τ1, 2τ1) h2(τ1, τ1 + τ2)
...

...
h2(τ2, τ1 + τ2) h2(τ2, 2τ2)

 ,

L̃2

T
Ũ2 =

 h3(τ1, 2τ1, τ1) . . . h3(τ1, 2τ2, τ2)
...

. . .
...

h3(τ2, τ2 + τ1, τ2) . . . h3(τ2, 2τ2, τ2)


As a consequence, the entries of L̃ = L̃T Ũ are solely
determined from input/output data using only (time)
samples of the subsystem kernels h1, h2 and h3. In a similar
way, one can also show that the other matrices in (9)

appearing in BT, namely, L̃TAŨ, L̃TMŨ, L̃Tb, and ŨT c
can be also be constructed relying only on kernels’ data.

Hence, by means of the SVD of L̃ as in (8), we are able to
compute the matrices Z1 and Y1 and construct reduced
models quantities in (9) directly from data. We call this
framework QuadBT for bilinear balanced truncation. Due
to the page limitations in this extended abstract, we have
presented our formulation using only 2 quadrature nodes
and unity weights. The general case follows immediately
and will be included in the full paper.

We outlined our approach above using numerical quadra-
ture in the time-domain but one can use an equivalent
frequency-domain representation of the Gramians and con-
sider instead quadrature rules in the frequency domain.

Such a frequency-domain formulation would yield data

matrices analogous to L̃, whose entries would now be
derivable from the sampling of the multivariate subsystem
transfer functions Hk(s1, . . . , sk) defined above (and from
associated divided differences).

The recent extensions of the Loewner framework applied to
the class of BDS’s in Antoulas et al. (2016b); Karachalios
et al. (2021) make also use of specific transfer functions
corresponding to the the BDS subsystems, i.e., regular
transfer functions for the former and symmetric transfer
functions for the latter. However, in these works, this
is done in order to construct interpolatory models. We
showed in Gosea et al. (2021) that our data-driven BT
formulation outperforms the classical Loewner framework
for LTI systems Mayo and Antoulas (2007) (in terms of the
approximation errors). We anticipate a similar conclusion
in the bilinear setting as well.

In our description given above, we have only consid-
ered the leading two terms of the Volterra series ex-
pansion. Although the leading two terms are enough in
many cases Flagg and Gugercin (2015); Goyal (2018),
we are investigating the impact of including higher-order
Gramians, e.g., P3,P4 etc. We anticipate similar exten-
sions that would require sampling of higher order kernels
hk(t1, . . . , tk) and/or transfer functions Hk(s1, . . . , sk).

3. PRELIMINARY NUMERICAL RESULTS

We consider the viscous Burgers’ equation model from Ben-
ner and Breiten (2012). After applying a finite differ-
ence scheme for approximating the spatial derivatives,
the resulting system of ODEs has a quadratic-bilinear
nonlinearities with dimension nq. By means of Carleman’s
linearization, a bilinear model of the form (1) with dimen-
sion n = n2

q + nq is obtained. To enforce positive-definite
Gramians as the solutions of the Lyapunov equations (6),
we multiply the matrix M with a positive scalar less than
1; here we choose γ = 1/5 ∈ (0, 1), i.e. M̃ = γM.

For a proof of concept example, we choose nq = 3, leading
to a bilinear system of dimension n = 12. Note that since
the proposed framework is data-driven, the order of the
underlying system does not play a role in our approach.
We choose 50 linearly spaced time samples tk in the
interval [0, 100]s, truncation index T = 2, and construct

the data-driven Loewner matrix L̃ whose singular values
are expected to approximate the Hankel singular values.
The results displayed in Fig. 1 verifies this expectation.
The approximated Hankel singular values (obtained via
the data-driven formulation) accurately match the original
ones.

The Hankel singular value decay indicates that the under-
lying bilinear model is of minimal order rb = 7. However,
for MOR purposes, we use a slightly lower truncation order
and choose r = 5. We simulate the full-model, the classical
(projection-based) BT reduced model, and the data-driven
QuadBT model with a control input u(t) = 20(cos(2πt) +
sin(12πt)e−0.4t) over t ∈ [0, 5]s. The resulting outputs
and the output errors shown in Fig. 2 illustrate that the
proposed data-driven QuadBT method closely mimics the
performance of the classical BT.
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Fig. 1. Hankel singular values (original vs. approximated).
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Fig. 2. Outputs (top) and output errors (bottom)

4. CONCLUSIONS

We developed a data-driven formulation for balanced
truncation of bilinear systems, which does not require
access to a state-space formulation and only works with
the samples of subsystems kernels. The numerical results
illustrate the potential of the new approach. Even though
using a truncation index of T = 2 already yielded an
accurate approximation, it would be interesting to include
higher-order terms in the Volterra expansion, which will
require sampling higher-order kernels. Since the Volterra
kernels are smooth, we expect that progressively coarser
sampling in each dimension will be sufficient for higher-
order kernels and we anticipate significant benefits may
accrue from sparse grid sampling and related methods.
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3D Cues for Human Control of Target Acquisition
in Auditory Augmented Reality ⋆
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Abstract: We compare the effectiveness of different auditory cues for attracting attention to spatial
targets around a mobile user, using a commercial 3D audio headset instrumented with GPS and inertial
sensors. We compare two approaches to spatial audio feedback with a baseline case that only provides
‘on target’ feedback: 1. hints as single sounds played from a 3D location and 2. frequency modulation of
inter-pulse gaps based on proximity. We illustrate the difference in user control behaviour created by the
different forms of feedback with phase plots. Single 3D sound hints provided the best improvement over
the baseline case of no hint. Frequency modulation of pulses performed more poorly for larger targets.
The choice of sound has a significant effect on targeting performance and there is a significant trade-off
between efficient targeting and aesthetically-pleasing audio.

1. INTRODUCTION

Instrumented headsets which can sense orientation, location
and bearing can be used to augment the user’s experience of
the world with a virtual audio layer. Fusing location awareness
with orientation sensing allows accurate alignment of the vir-
tual layer with real-world objects. In mobile contexts visual
attention is a scarce resource, and navigation systems based
on audio and vibrotactile cues Williamson et al. (2010); Hol-
land et al. (2002) have successfully provided spatial guidance
without overloading the visual channel. Positional audio could
increase the efficiency of these navigation mechanisms.

Aside from the benefits of disengaging from the visual display,
the advantages of positional audio cues are twofold. Firstly,
audio cues extend the field of awareness of the user, presenting
information close to their current location, but out of their
current field of view, as discussed in Bolia et al. (1999). Sec-
ondly, audio cues function as effective attention management
elements. Animation is an essential part of modern interfaces
as it directs user attention to key UI components; the audio
counterparts of animation cues can apply this attention man-
agement for entities out of view. We explore a range of possible
solutions for effectively and efficiently informing the user about
the location of nearby points of interest.

We used the Jabra Intelligent Headset 1 which includes 3D au-
dio, GPS location, magnetometers, accelerometers and gyro-
scopes in iOS with the Jabra API. This commercially-available,
integrated hardware package simplifies the equipment require-
ments for spatial audio target acquisition and provides a poten-
tial mass market for spatial audio applications.

2. TARGET ACQUISITION

There are several challenges when it comes to designing audi-
tory cues for spatialised content. The cues need to be both effi-
cient and result in a pleasant user experience. Key aspects of au-
⋆ We acknowledge funding from GN Store Nord and EPSRC grant
EP/R018634/1, Closed-loop Data Science
1 https://www.jabra.co.uk/supportpages/
jabra-intelligent-headset. Last accessed 25/1/2022.

ditory target display are informing the user about the nature and
number of targets nearby and their bearing and distance from
the user. This paper explores different feedback mechanisms
for informing users about the bearing of a single given target.
The purpose of guidance feedback is to ease (quicker, requiring
less effort) aligning head orientation with that of targets around
the user. It needs to give a user hints about which direction to
turn, and how close the target is. This feedback can be a single
event (e.g. a “ping" in the target direction), while in others it
is an ongoing process providing gradient information to ease
acquisition. For a review of the spatial audio targeting literature
see Marentakis (2006); Gröhn et al. (2005); Strachan et al.
(2005); Sandberg et al. (2006); Eriksson (2008); McGookin
et al. (2009). We explore three feedback conditions:

1. Baseline condition. No Hint In this experiment, the user is
given no cue about the target direction, to explore the user’s
behaviour and performance on the simplest scenario, as a
baseline. Instead, she only relies upon the simple feedback
when on-target. Consequently, in order to acquire the target,
she turns her head until feedback is heard.

2. Single-sound Hint from 3D location For each trial, a 3D
pulse sound (with duration of 0.3-1.00s) is played once, from
the direction of the target. We experiment with a number of
different sounds.

3. Frequency modulation of pulses based on proximity In this
case, the feedback given to the user simulated the behaviour of
feedback from parking sensors available in many modern cars,
where the delay between short pulses represents the distance
to another car. Assume that the feedback pulse has a duration
of τ , and the angular size of the target is wt. Within the
target area, feedback is played continuously, as in the previous
experiments. When the user is in the opposite direction (180◦
from the target’s centre), the pulse’s period was set to be kτ ,
where k is a specified multiplier. Consequently, when the user’s
distance from the target is ψ ∈ (wt/2, 180

◦], the pulse period
is ψ−wt/2

180◦−wt/2
(k − 1)τ + τ . k was set to 20 and the pulse used

was a sinusoidal tone of 261Hz of duration τ = 0.1s.
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As a pre-experiment, we investigated the sensitivity of faster
cue-based acquisition to the specific sound used by exploring
the impact of the types of sounds played on localisation speed.
Our baseline was a simple sinusoidal tone (261Hz). When
applying filters to white noise sounds, the widest filters (350-
8000Hz) give the best localisation results Susnik et al. (2003),
so the ideal sound should contain a wide range of frequencies.
We tested two “blowing bottle” sounds from Cook (2002),
and recorded two voiced vowel sounds. 4 further synthesized
sounds were tested, Buzz-0004, Buzz-0035, Buzz-0036 and
pulse1sec. 3D positional audio works best with sounds with
strong transients and significant high-frequency content, for
a clear inter-aural time delay and a perceptible effect of the
head-related transfer function, which primarily modulates high-
frequency components. As expected, the pure tone sound did
not perform well, but surprisingly the richer “blowing bottle”
sounds and the voiced sound performed worse. The sounds
with fastest responses are Buzz-0004, Buzz-0036, the ‘a’ vowel
recording and ‘pulse1sec’, which was the overall best. The aes-
thetic aspect of the sounds is important for the user experience,
but the best performing sounds, apart from Buzz-0004, were
considered to be somewhat robotic, squeaky or eccentric for a
mainstream target acquisition application.

Fig. 1. Spectrograms of sounds used. Clipped to 8KHz max.
freq, NFFT=1024, 1000 sample overlap.

3. EXPERIMENTAL SCENARIO

We investigate the impact of feedback choice on user behaviour,
in terms of speed of action, nature of movement and user
experience. In all cases, a simple 261Hz feedback tone indicates
that the user is ‘on-target’. The user is considered to be located
at a fixed position, so that the GPS location uncertainty does
not affect the results. As such the results provide a ‘best case’
scenario. The experimental task was performed on-campus,
and the targets used are parts of the University of Glasgow’s
Main Building, as shown in Figure 2. Successful acquisition
is defined as being achieved when the user looks towards the
target bearing ψt for 3 seconds consecutively. The target is
considered to be missed when the user has not acquired the
target within 20 seconds. The targets are considered to be at
the same distance d from the user and have the same angular
wt size (in degrees). We consider the user to be looking at the
target when the direction is within the angle range ψt ± wt

2 .

Fig. 2. Panoramic view of experiment location.

5 users aged between 23-46 and self-declared normal hearing
tested the system. Each test for each of 7 target sizeswt consists
of the same ten targets in sequence, and the order of condition
was cycled through participants. After acquiring or missing
one target, the user was immediately presented with the next
target. After all 10 targets at a given size wt, the user rested
for two minutes, then continued with the next sub-test of a
different target size. Each experiment consists of 7 tests, for

target sizes of wt = 5, 10, 20, 40, 60, 90 and 180◦, ordered
from easiest (largest) to smallest, to give users progressively
more challenging tasks. Within a particular feedback condition
(e.g. frequency modulation of pulses) the order of the targets
was kept constant. The users were not able to memorise the
sequence. The sequence was varied across conditions. In most
trials the users moved their whole body and not just the head in
order to acquire the target. The sounds used are shown in the
spectrogram plots in Figure 1.

4. ANALYSIS OF RESULTS

We view the user’s behaviour from the perspective of a control
system minimising the ‘error’ between the current bearing
angle ψ and the reference or target bearing ψt, such that error
e = ψt−ψ. The different feedback mechanisms will change the
overall control system behaviour, Jagacinski and Flach (2003);
Poulton (1974). In the ‘no hint’ case, feedback is only provided
when over the target, so the user has an exploration behaviour.
In the ‘3D hint’ case feedback is provided once, at the start,
to help the user infer target location so any error minimisation
is being done by the user, with respect to the user’s inferred
target location. In the ‘frequency modulation of pulses’ method,
explicit error feedback is provided in an ongoing fashion.

The experiments are sampled at 20Hz, and the data is smoothed
using a Savistky-Golay filter (length 41 samples, order 4 poly-
nomial), equivalent to least-squares polynomial fitting of a
quartic polynomial to the last 2.05 seconds of data. This filter
structure better preserves edges and transients than standard
low-pass filters and can be used to robustly estimate derivatives.

The phase and polar plots shown in Fig. 3 provide a visual
summary of acquisition performance. Target overshooting, os-
cillation and under-damped behaviour are all clearly visible.
In contrast to time-series, phase plots make it easier to align
and compare the dynamics of multiple acquisitions as time
offsets are ignored. An example of an unsuccessful acquisition
is illustrated in Figure 3a, where the user receives no hint about
the location of the target, and fails to acquire it within the 20s
time limit. The user enters and exits the target zone associated
with the feedback tone starting and stopping, but continues to
overshoot and ‘hunt’ around the small target.

4.1 No 3D hint

User performances are summarized in Figure 4, where the
standard error of the mean time is indicated by error bars.
The acquisition time decreases as the target size increases.
No hint was slowest for all users apart from User 2 who’s
slowest condition was frequency modulation of pulses. The
users missed significant numbers of targets on the 5 & 10◦ tests.
Figure 3b shows a successful acquisition for a larger, easier
target size of 20◦. The user was initially close to the target
(˜50◦), but with no cue, chose the longer, slower way (310◦).

4.2 With single sound 3D hint

Figure 4 shows a significant improvement in the acquisition
times compared to the baseline case of no hint. The 3D hint
that the user receives provides the approximate direction of the
target and lets the user turn immediately towards that direction.
As expected, the 3D audio made it clear whether a target is on
the left or right of the user, but it was not as easy to perceive
whether it was in front of or behind the user. The user’s search
for the target became faster on average for all users, with larger
improvements for smaller targets.
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4.3 Frequency modulation of pulses based on proximity

Fig. 4 shows that for small targets (wt 5-20◦), this approach
can speed responses over No 3D hint, but for larger targets
(wt 40-180◦), it adds little, or gets worse. User 2 was slower
throughout with this approach. Users had no initial hint of the
target’s direction, so to find the shortest path, some scanned the
area around them, by quickly turning to the left and right (as
shown in the edges of Fig. 5f), and then followed the path which
increased the pulse frequency. Others went for one direction or
the other until they heard the first target cues. The proximity
indication of target reduces the velocity near the target.

Summarising the statistics, comparing ratios of means for each
type of trial, the relative speed up using 3D hints over no hint
is 40% (µ = 1.40, σ = 0.55). The speed up of 3D hints over
the Frequency approach is 25% (µ = 1.25, σ = 0.74). The No
Hint case had most misses (µ = 1.39), followed by Frequency
(µ = 1.21) and fewest was 3D hint (µ = 0.79).

4.4 Comparison of Phase plots

The use of phase plots to represent the error convergence allows
us to show multiple acquisitions of different time lengths on
a single plot which allows us to test for consistent changes in
approach depending on the feedback style. We have grouped the
responses to small (wt = 5◦) targets and large (wt = 60◦) tar-
gets. Smaller targets in Figure 5 show underdamped responses
where the user oscillates around the target, whereas larger tar-
gets show overdamped responses where the user hits the target
and stays there. For larger initial errors, the velocity decrease
slows already before the target zone is reached in Figure 5b,
suggesting that the user enters a different control mode (akin
to Costello’s Surge Model Costello (1968)), however for larger

(a) Unsuccessful acquisition for target of size 5◦ without 3D hint

(b) Successful acquisition for target of size 20◦ without 3D hint

Fig. 3. User behaviour without an audio cue, during one target
acquisition. Left: evolution of the bearing error angle e on
polar axes. The radial part r represents time, the angle e is
the user’s bearing error. The 0 ± wt

2 target zone is shaded
to ease comparison. Right: phase plots of time derivative ė
against the user’s bearing error e.

targets, in Figure 5e there is less anticipatory change, and no
further oscillatory control near the target, leading to larger final
errors. The 3D hint led to smoother velocity profiles outside the
target zone, suggesting that the user has a good sense of tar-
get location, where other feedback mechanisms, especially no
feedback and pulse frequency modulation, have more variation
in bearing velocity. Oscillation around the target is worst with
no hint. Surges from initial conditions to close to the target are
larger for the single sound hint (the 3 largest velocities when
crossing 0◦ are for the 3 initial conditions closest to the target)
suggesting scope for improving performance for nearby targets.

4.5 Movement time and difficulty of task

We investigated the relationship between the movement time
and the index of difficulty for the “No 3D hint” and “With single
sound 3D hint” systems. Meyer et al. Meyer et al. (1990), de-
veloping earlier work Crossman and Goodeve (1983), proposed
that the time (MT ) to move to a target area is a function of
the distance to the target (A) and the size of the target (W ),
MT = a + bID, where the index of difficulty, ID = ( AW )

1
n ,

where n relates to the upper limit on submovements. n = 2.6
minimised the RMS error. Figs. 6a and 6b show the linear rela-
tionship between the MT and ID. The circles’ radii r ∝ W .
Blue circles indicate that the user did not go past 180◦, while
red circles indicate the user took the long way round, with
higher MT . Large targets have lower ID and lower MT .

5. CONCLUSIONS

We demonstrate auditory targeting behaviour with a commer-
cial, instrumented headset. The headset and API provided a
practical development platform for spatial audio systems. Ex-
perimental results demonstrate that the use of 3D hints for
auditory targeting is an improvement over no feedback. User
feedback indicated that this provides a simple, intuitive, aes-
thetically pleasing way for users to locate targets and required
the least mental and physical workload. The pulse-frequency
approach was less effective, slowing users for larger targets.

Visualisation of experimental results based on phase plots stan-
dard in control applications, can aid the design of bearing-based
interaction. Phase plots allow rapid comparison of behaviour
from time-series of varying lengths and present a clear visual
summary of the dynamics of target acquisition, where the dis-
tance cue leads to a ballistic ‘surge’ phase Costello (1968)
where the user moves towards the target zone to the final control
phase. The additional ‘radar’ visualisation approach to time-
series representation gives a clear representation of the head
movement during the acquisition process, highlighting areas of
high activity, which are likely to lead to lower usability results.
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Fig. 4. Time-to-target results for users 1-4 in experiments with and without 3D hint and “Frequency modulation of pulses”. Only
successful selections are included in the mean & std. err. # of misses are shown beside each point.

(a) No 3D hint (b) 3D Pulse1sec hint (c) Frequency modulation of pulses

(d) No 3D hint (e) 3D Pulse1sec hint (f) Frequency modulation of pulses

Fig. 5. Phase plots for User 1 for small (wt = 5◦, upper) and large (wt = 60◦, lower) targets. Blue = feedback zone.

(a) Without 3D hint.
a = −0.57, b = 3.31

(b) With single 3D Pulse1sec hint.
a = −0.06, b = 1.86

(c) Frequency modulation of pulses.
a = 1.11, b = 2.07

Fig. 6. Meyer’s Power Law analysis of successful targeting for User 1. Movement time vs Index of Difficulty
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Abstract: This extended abstract discusses the role that systems theory plays in unveiling
fundamental limitations of learning algorithms and architectures when used to control a
dynamical system, and in suggesting strategies for overcoming these limitations. As an example,
a feedforward neural network cannot stabilize a double integrator using output feedback.
Similarly, a recurrent NN with differentiable activation functions that stabilizes a non-strongly
stabilizable system must be itself open loop unstable, a fact that has profound implications
for training with noisy, finite data. A potential solution to this problem, motivated by results
on stabilization with periodic control, is the use of neural nets with periodic resets, showing
that indeed systems theoretic analysis is instrumental in developing architectures capable of
controlling certain classes of unstable systems. The abstract finishes by arguing that when the
goal is to learn control oriented models, the loss function should reflect closed loop, rather than
open loop model performance, a fact that can be accomplished by using gap-metric motivated
loss functions.

Keywords: Control Oriented Learning, Neural Nets, Reinforcement Learning.

1. INTRODUCTION AND MOTIVATION.

Despite recent advances in Machine Learning (ML), the
goal of designing control systems capable of fully exploiting
the potential of these methods remains elusive. Modern
ML methods can leverage large amounts of data to learn
powerful predictive models, but such models are not de-
signed to operate in a closed-loop environment. Recent
results on reinforcement learning offer a tantalizing view
of the potential of a rapprochement between control and
learning, but so far proofs of performance and safety
are mostly restricted to limited cases (e.g. finite horizon
LQR/LQG or iterative tasks). Thus, learning elements are
often used as black boxes within the loop, with limited in-
terpretability and less than completely understood proper-
ties. Further progress hinges on the development of a prin-
cipled understanding of the limitations of control-oriented
machine learning. This extended abstract presents some
initial results unveiling the fundamental limitations of
some popular learning algorithms and architectures when
used to control a dynamical system. For instance, it shows
that even though feed forward neural nets are universal
approximators, they are unable to stabilize some simple
systems. Along these lines we also show that a recurrent
neural net with differentiable activation functions that
stabilizes a non-strongly stabilizable system must be itself
open loop unstable, and discuss the implications of this
fact for training with noisy, finite data. On the other hand,
this difficulty can be overcome by using either time varying
architectures or architectures with periodic resets. We also
present some empirical evidence that conventional, off the

1 This work was partially supported by NSF grant CNS–2038493,
AFOSR grant FA9550-19-1-0005, and ONR grant N00014-21-1-2431.

shelf Reinforcement Learning will fail to stabilize non-
strongly stabilizable plants. The extended abstract finishes
by arguing that when the goal is to learn stabilizing
controllers, the loss function should reflect closed loop
performance, a fact that can be accomplished by using
gap-metric motivated loss functions.

1.1 Fundamental limitations of Feed Forward NN.

Even though Feed Forward NN (FFNN) are routinely used
as controllers, there are fundamental obstructions that
may prevent the existence of stabilizing FFNN controllers
with continuous activation functions (Sontag and Suss-
mann (1980)). In this portion of the extended abstract
we present some simple examples illustrating these limita-
tions.

Single Hidden Layer FNN. Recall the single hidden
layer FNN can approximate arbitrarily well any continuous
functions (Cybenko (1989). However, as shown in (Sontag
(1992)), there exists an asymptotically controllable system
that has the origin as a locally asymptotically stable
equilibrium point of the zero input dynamics and yet it
cannot be be stabilized on compact sets using a single
hidden layer FNN, even with discontinuous activation
functions. This limitation arises from the fact that the
(one sided) inverse needed to implement a stabilizing
controller cannot be generically approximated by a linear
combinations of scalar functions of linear combinations,
even when the forward mapping is continuous.

Similarly, single hidden layer FNN cannot control non-
honolomic systems due to their inability to implement
Lie Brackets. On the other hand, since continuous-time
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periodic controllers can overcome topological obstruc-
tions (Khaneja and Brockett (1980)) we conjecture that
if ẋ = f(x) + g(x)u is stabilizable, there is a recurrent
NN (RNN) with (continuous) activation ReLU, state z,
and input x, and a feedback u = k(z, x) so that {(0, z)} is
asymptotically stable.

The discussion above illustrates the limitations of single
hidden layer FFNNs when used as controllers. However,
this leaves open the question of whether multi-layer FFNN
can be used as universal controllers. In the next section we
show that this is not the case.

1.2 Inadequacy of Deep FFNNs for output feedback

In this section we illustrate with a simple example the
limitations of FFNNs when used to implement output
feedback controllers. To this effect, consider the stabiliza-
tion of a double integrator using output feedback,

ẋ1 = x2
ẋ2 = f(x1) ,

(1)

where f(x1) is implemented by a FFNN. Such a con-
troller can never render the origin a globally asymptot-
ically stable equilibrium point. To see this, consider the
“energy” function V (x1, x2) = 1

2x
2
2 −

∫ x1

0
f(λ)dλ. Since

dV/dt ≡ 0, trajectories starting at any (0, x2),x2 ̸= 0
cannot asymptotically approach the origin (0, 0). To be
precise, suppose f(x1) is locally bounded and Lebesgue

measurable. Then F (ξ) :=
∫ ξ

0
f(λ)dλ is locally Lipschitz,

and x1(t) is absolutely continuous (a.c.), so also F (x1(t)) is
a.c., so V is a.c. Thus, the chain rule can be applied, and V
is constant along trajectories. (The a.c. property rules out
examples such as the Cantor function, where derivatives
can be identically zero yet the function is not constant.)

1.3 RNNs and non-strongly stabilizable systems

This portion of the extended abstract discusses the chal-
lenges in using RNNs to control non-strongly stabilizable
plants, that is, Linear Time Invariant (LTI) plants that
cannot be stabilized by open loop stable LTI controllers.
These plants are interesting both on their own and because
their relationship to the problem of simultaneous stabi-
lization (Doyle et al. (1992)). Recall that a SISO plant
is strongly stabilizable if it satisfies the parity interlacing
property Doyle et al. (1992): the number of real poles in
the right half plane (RHP) (counted according to their
multiplicity) in between every pair of RHP zeros (including
those at infinity) is even.
Proposition 1. If a RNN with differentiable activation
functions stabilizes a non-strongly stabilizable plant, then
the RNN must be open loop unstable.

The proof follows by considering the controller obtained
by linearizing the input/output (between time series)
mapping implemented by the NN.

A more interesting case arises if we allow for recurrent NN
that implement non-smooth mappings. To investigate this
case, consider an ideal setting where a known, open loop
unstable internally stabilizing controller is used to train
the neural net (Fig. 1). This scenario arises for instance
when seeking to optimize performance. In this situation,
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Fig. 1. Using the closed-loop signals generated by a stabi-
lizing controller to train a NN.

one can use this pre-trained NN as an initial controller and
then adjust its weights (for instance via gradient descent)
to improve performance.

Let i(t) and o(t) denote the input output signals. Since
the controller stabilizes the loop, it follows that i(t), o(t) ∈
L∞, so in principle these bounded signals could be used
to train a NN. Nevertheless, as we show next, a NN that
interpolates all input/ouput pairs generated by an open
loop unstable controller, has to be open loop unstable.
Proposition 2. Consider an unbounded mapping C : L∞ →
L∞,e. Let Ib ⊆ L∞ denote the set of essentially bounded
inputs that result in bounded outputs, i.e.

Ib .
= {r ∈ L∞ : (s

.
= Cr) ∈ L∞}

Then, if an operator NN is such that NN r = Cr a.e. for
all r ∈ Ib, NN must be open loop unstable, in the sense
that there exists some ro ∈ L∞ such that NN ro ̸∈ L∞

From the observation above it follows that the NN can
be trained in open-loop using the closed loop signals
generated by an open loop controller only in the ideal
case that these signals are perfectly known. This is a
consequence of the fact that, since the NN is open-loop
unstable, a suitably chosen perturbation of the input
signal will lead to unbounded outputs. The discussion
above leaves open the question of whether the NN can
be trained in closed loop. As we show next, if the NN
has differentiable activations, closed loop training is also
likely to fail, due to the sensitivity of the parameters with
respect to the observed outputs. For simplicity, we consider
a SISO tracking scenario where the NN implements an LTI
controller and the goal is to find the controller parameters
θ that minimize some function L[e(θ, u)] of the output e
corresponding to a given input u, that is:

θo = argmin
θ

L[e(θ, u)]

where

e(θ) =
u(s)

1 + P (s)C(s, θ)

To illustrate the difficulties arising when the controller
is open loop unstable, we will compute the gradient of
the loss function with respect to the parameters of the
controller. Let C = N

D denote a coprime factorization of
C, parameterized directly in term of its poles and zeros,
that is D(s) = DoΠ(s−θi) and N(s) = NoΠ(s−ψi). Since
C is open loop unstable, at least one θi > 0 and

∂L
∂θi

=
∂L
∂e

∂e

∂C

∂C

∂θi
=
∂L
∂e

−P
(1 + PC)2

∂C

∂θi
u(s)

=
∂L
∂e

P

(1 + PC)2

(
C

s− θi

)
u(s)

(2)
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Fig. 2. Deep Reinforcement applied to a double integrator (top) and a non-strongly stabilizable plant (botton).

In the ideal case where ∂C
∂θi

can be exactly computed the

poles of ∂C
∂θi

are cancelled by the zeros of −P
(1+PC)2 and

the overall system is stable. On the other hand, if only
approximate values of the gradient are available (due for
instance to finite and/or discrete time approximations),
then this exact pole-zero cancellation no longer holds,
leading to an unstable mapping ∂C

∂θi
→ ∂L

∂θi
.

The developments above raise the question of whether
a non-strongly stabilizable plant can be stabilized by an
open loop stable controller. An affirmative answer to this
question was given in Savkin and Petersen (1997), showing
that this is indeed possible when using linear time varying,
infinite dimensional controllers. An alternative, simpler
controller is presented below:
Proposition 3. Consider a non-strongly stabilizable LTI
plant P and an LTI stabilizing controller with state space
realization: Ac, Bc, Cc, Dc. Then the controller

C(y) =


ẋc = Acxc +Bcy
xc(t

+) = xc(t
−), t ̸= kT

xc(kT ) = 0
u = Ccxc +Dcy

(3)

is open loop stable and stabilizes P .

Intuitively, the states of the controller are reset every T
seconds to prevent them from growing too large. At the
same time, since for t ∈ (kT, (k + 1)T ) the LTI controller
is acting, T can be chosen so that at the end of each cycle
the state of the plant satisfies ∥x(kT + T )∥ < ∥x(kT )∥.
While in principle this avoids the difficulties entailed in
training an open-loop unstable controller, at the moment
is unclear how to implement and train such a controller
using available NN architectures.

1.4 Reinforcement Learning

Next, we present some experiments illustrating the dif-
ficulties of using Reinforcement Learning to control non-
strongly stabilizable plants. Consider the problem of stabi-
lizing a plant using Deep Reinforcement Learning. To this
effect, we considered a neural network architecture consist-
ing of two hidden layers with leaky ReLu activations and
a set of discrete actions U . The NN takes an observation
(i.e., yk = Cxk) and outputs a vector qk = Vθ(yk) of the
same dimension as the number of actions, where each entry
is a prediction of the value from taking the corresponding
action. The next control action uk is selected as the one
corresponding to the maximal entry in q, with probability
1 − ϵk, or a random action with probability ϵk, where
ϵk = max{ϵmin, 0.99 ∗ ϵk−1} The reward corresponding to
the action uk at state xk is set to be −∥xk∥22.
The neural net was trained with Q-learning as follows. Let
utaken,k denote the action taken at step k, and let qk+1 be
the vector obtained by applying the neural network to the
next observation yk+1 = Cxk+1. We then set q̂k to be the
vector obtained by replacing the entry in qk corresponding
to utaken,k with −||xk||2+γmax{qk+1}, where max applied
to a vector denotes the largest entry. Finally, we perform
a gradient descent step on θ, the weights of the NN, with
objective ∥Vθ(yk) − q̂k∥2. Note that while knowledge of
the true states was used in training (through the reward),
the policy here depends only on the observations yk. We
applied this approach on both an “easy” plant (a double
integrator with state feedback)

x(k + 1) =

[
1 0
1 1

]
x(k) +

[
1
0

]
u(k)

y(k) = x(k)

(4)
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and a “hard” one (not strongly stabilizable)

x(k + 1) =

[
1.2 0
0.1 1

]
x(k) +

[
0.1
0

]
u(k)

y(k) = [1 −1]x(k)

(5)

As shown in Fig. 2 the Deep RL algorithm described above
stabilizes the “easy” case but fails to do so for the non-
strongly stabilizable one.

1.5 Open Loop vs Closed Loop Distances

In this portion of the extended abstract we argue that
when using a NN to model a plant, the loss function used
to train it should take into account the closed-loop distance
between the the unknown plant and its model, rather than
the open loop one. Consider the open-loop unstable plant
G1 = 100

2s−1 . Modelling this plant with a NN such that
the open loop distance, measured in terms of the induced
norm ∥(G1−NN)∥ℓi→ℓo is finite, will require an open loop
unstable net. On the other hand, when the loop is closed
with the simple controller K = 1, the original plant G1

and the open-loop stable plant G2 = 100
2s+1 have virtually

indistinguishable performance (Fig 3) Thus, if the goal

Fig. 3. Closed loop step responses of G1 and G2.

is to designing controllers, the stable plant G2, which is
substantially easier to model using a NN, can be used as
a proxy for G1 in the design process. This observation
suggests that, when training a NN, one should try to
minimize a closed-loop distance, rather than an open loop
one. One such metric is the gap metric (see for instance
Zhou and Doyle (1998)). Given two plants G1, G2 with
normalized coprime factorizations Gi = Ni

Di
, i = 1, 2 the

ν-gap δν is defined by

δν(G1, G2) = supw| −N2(jw)M1(jw)+

+M2(jw)N1(jw)|
Plants with small δν can be stabilized by the same H∞
optimal controller and have similar closed loop transfer
functions (see Zhou and Doyle (1998) for a formalization
of this statement). For instance, for the example above
δν(G1, G2) = 0.02, which explains the virtually indistin-
guishable closed loop responses. This suggest that one
should learn coprime factorizations, rather than plants,
and then perform a model (in)validation step, as proposed
in Steele and Vinnicombe (2001) to estimate the gap be-
tween the learned model and the true plant. This approach

has the additional advantage that it can handle unstable
plants. While learning coprime factors directly from data
is an open problem, the results below suggest that, at least
in the noiseless case, this can be accomplished by solving
two convex Nevanlinna Pick interpolation problems.
Proposition 4. Given input/output pairs {r(zi), y(zi)}ni=1
there exist stable transfer functions N(z),M(z) such that

y(zi) =
N(zi)r(zi)

M(zi)
if and only if there exist u(z) such that

following conditions hold:

PN =

[
r(zi)r

∗(zj)− u(zi)u
∗(zj)

1− (ziz∗j )
−1

]
i,j

⪰ 0

PM =

[
y(zi)y

∗(zj)− u(zi)u
∗(zj)

1− (ziz∗j )
−1

]
i,j

⪰ 0

Using Schur complements, these conditions can be trans-
formed into convex LMIs in u. Once the Pick matrices PN

and PM have been found, state space realizations for N
and M can be obtained using for instance the formulas in
Parrilo et al. (1998).

1.6 Conclusions

This extended abstract illustrates the challenges entailed
in using ML to control dynamical systems. As shown
here, learning stabilizing controllers places additional con-
straints on the architectures and on the algorithms used
to train them. Thus, we argue that control-agnostic ML
is unlikely to succeed in controlling challenging systems.
Rather, the choice of representations and training has to
be guided by systems theory.
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Abstract: Variation diminishment – the reduction in the number of sign changes and local
extrema in a signal – is an intrinsic system property that lies at the heart of positive systems
theory and over- and undershooting analysis in controlled systems. While, for general system
operators, this property is difficult to verify, we show that it can be readily verified for the
controllability and observability operators of finite-dimensional linear time-invariant systems
under an internal k-positivity assumption. This complements earlier results on verifying this
property for Hankel and Toeplitz operators, and establishes a bridge to internally positive
systems theory. Our results provide a new framework for upper bounding the number of over-
and undershoots in step responses, as well as a new realization theory of externally positive
systems.

Keywords: positive systems, total positivity, k-positivity, variation diminishing, step response
analysis

1. INTRODUCTION

Linear time-invariant (LTI) systems

x(t+ 1) = Ax(t) + bu(t)

y(t) = cx(t),
(1)

that map nonnegative inputs u to nonnegative outputs
y are characterized by a nonnegative impulse response
g(t) := cAt−1b ≥ 0, t ≥ 1 and are referred to as externally
positive (Farina and Rinaldi, 2000). A particular property
of such systems is the monotonicity of their step response,
which motivated several studies on the avoidance of over-
and undershooting in closed-loop design (Grussler and
Rantzer, 2021; Darbha, 2003; Phillips and Seborg, 1988).
Indeed, the number of sign changes of g, denoted by S(g)
and also known as the variation of g, equals the number
of local extrema in the step response (see Section 2.1 for
precise definitions).

The first problem addressed in this work is the extension
of the positivity framework towards establishing upper
bounds on the number of over- and undershoots in the step
response of non-externally positive systems. We consider
single-input-single-output (SISO) discrete-time systems of
the form (1). There exist many lower bounds for this prob-
lem (Damm and Muhirwa, 2014; Swaroop and Niemann,
1996; El-Khoury et al., 1993), but only few upper bounds
(El-Khoury et al., 1993). In our proposed solution, we
express the impulse response of (1) as g(t) = (O(A, c)b)(t),
with the observability operator given by
⋆ This work received support by grants from ONR and NSF as well
as under the Advanced ERC Grant Agreement Switchlet n.670645
and by DGAPA-UNAM under the grant PAPIIT RA105518.

(O(A, c)x0)(t) := cAtx0, x0 ∈ Rn, t ≥ 0 (2)

The main idea is to bound S(g) by deriving a computa-
tionally tractable certificate for the largest integer k such
that S(g) = S(O(A, c)b) ≤ S(b) for all {b : S(b) ≤ k}. An
(observability) operator verifying this property is said to
be k-variation diminishing. Although there exists a rich lit-
erature on variation diminishing transformations (see, e.g,
the monographs by Karlin (1968); Pinkus (2009); Fallat
and Johnson (2011)), including many recent contributions
to system and control theory (see, e.g., (Grussler and
Sepulchre, 2022; Grussler et al., 2021; Margaliot and Son-
tag, 2019; Wu and Margaliot, 2021)), it is unknown how
to efficiently verify this property for O(A, c). This is not
surprising, as the verification of external positivity (i.e.,
0-variation diminishment) is computationally challenging
in general (Blondel and Portier, 2002).

We therefore build our framework around the celebrated
subclass of internally positive systems, i.e., systems charac-
terized by nonnegative system matrices A, b and c (Luen-
berger, 1979), for which external positivity is an immediate
consequence. These systems have received considerable in-
terest due to their simplifying, scalable analysis properties
(Rantzer and Valcher, 2018; Tanaka and Langbort, 2011;
Farina and Rinaldi, 2000), and much effort has been put
into the computation of internally positive realizations
(Ohta et al., 1984; Farina, 1996; van den Hof, 1997; Farina
and Rinaldi, 2000; Benvenuti and Farina, 2004). In fact, if
we can find a realization with nonnegative A and c, it is
also trivial that O(A, c) is 0-variation diminishing. Here,
similar conditions and generalized realizability results are
derived for k > 0. Our approach recovers the results of
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El-Khoury et al. (1993) in the special case that k can
be chosen arbitrarily large, which is a consequence of
El-Khoury et al. (1993) using early results on variation
diminishing mappings.

The second problem addressed in this work is the es-
tablishment of generalized internally positive realizations.
Those are externally positive state-space systems that
allow negative elements in b, at the cost of more restrictive
assumptions on (A, c). It is envisioned that this will lead to
generalizations of recent scalable positive systems analysis
methods.

Finally, this work bridges recent external (input-output)
variation diminishing system theory (Grussler and Sepul-
chre, 2022; Grussler et al., 2021) with internal (unforced,
state-space) developments (see, e.g., Margaliot and Sontag
(2019); Wu and Margaliot (2021)). In particular, we arrive
at a positive realization theory of systems with variation
diminishing Hankel operators, where k = 0 corresponds
to classical external vs. internal positivity. The former has
only recently been characterized in (Grussler and Sepul-
chre, 2022) in terms of so-called k compound systems,
where our results are equivalent to simultaneous internally
positive realizability of these k systems.

2. PRELIMINARIES

In this section, we briefly introduce some concepts that are
essential for our results.

2.1 Variation diminishing maps

The variation of a sequence or vector u is defined as the
number of sign-changes in u, i.e.,

S(u) :=
∑
i≥1

1R<0(ũiũi+1), S(0) := 0

where ũ is the vector resulting from deleting all zeros in u.

Definition 1. A linear map u 7→ Xu is said to be order-
preserving k-variation diminishing (OVDk), k ∈ Z≥0, if
for all u with S(u) ≤ k it holds that

i. S(Xu) ≤ S(u).
ii. The sign of the first non-zero elements in u and Xu

coincide whenever S(u) = S(Xu).

If the second item is dropped, then u 7→ Xu is called k-
variation diminishing (VDk). For brevity, we simply say
X is (O)VDk.

2.2 Matrix k-positivity and compound matrices

For generic k, total positivity theory (Karlin, 1968) pro-
vides algebraic conditions for the OVDk property by
means of compound matrices. To define these, let the i-
th elements of the r-tuples in

In,r := {v = {v1, . . . , vr} ⊂ N : 1 ≤ v1 < · · · < vr ≤ n}
be defined by lexicographic ordering. Then, the (i, j)-th
entry of the r-th multiplicative compound matrix X[r] ∈
R(

n
r)×(

m
r ) of X ∈ Rn×m is defined by det(X(I,J)), where

I is the i-th and J is the j-th element in In,r and Im,r,
respectively. For example, if X ∈ R3×3, then X[2] reads

det(X{1,2},{1,2}) det(X{1,2},{1,3}) det(X{1,2},{2,3})
det(X{1,3},{1,2}) det(X{1,3},{1,3}) det(X{1,3},{2,3})
det(X{2,3},{1,2}) det(X{2,3},{1,3}) det(X{2,3},{2,3})

 .

Notice a nonnegative matrix verifies X[1] = X ≥ 0, which
is equivalent to X being OVD0. This can be generalized
through the compound matrix as follows (Grussler and
Sepulchre, 2022, Proposition 4).

Definition 2. Let X ∈ Rn×m and k ≤ min{m,n}. X
is called k-positive if X[j] ≥ 0 for 1 ≤ j ≤ k, and
strictly k-positive if X[j] > 0 for 1 ≤ j ≤ k. In case
k = min{m,n}, X is called (strictly) totally positive.

Proposition 3. Let X ∈ Rn×m with n ≥ m. Then, X is
k-positive with 1 ≤ k ≤ m if and only if X is OVDk−1.

The following is an important property of compound
matrices (Horn and Johnson, 2012, Subsection 0.8.1).

Lemma 4. Let X ∈ Rn×p and Y ∈ Rp×m. Then

(XY )[r] = X[r]Y[r]

2.3 Hankel k-positivity and compound systems

The OVDk property of LTI systems (1) has been studied
by Grussler and Sepulchre (2022), where a distinction
is made between LTI systems with OVDk Toeplitz and
Hankel operators. The latter are particularly relevant to
this work. For t ≥ 0, the Hankel operator

(Hgu)(t) :=
−1∑

τ=−∞
g(t− τ)u(τ) =

∞∑
τ=1

g(t+ τ)u(−τ) (3)

describes the evolution of the output y of an LTI system
subjected to an input u(t) = u(t)(1 − s(t)), where s(t)
denotes the Heaviside function. The Hankel operator obeys
the factorization

Hgu = O(A, c)(C(A, b)u) (4)

where

x(0) = C(A, b)u :=
−1∑

τ=−∞
A−τ−1bu(τ), u ∈ ℓ∞ (5)

denotes the controllability operator. Throughout this work,
A is asymptotically stable, which implies that our opera-
tors are well-defined. For t, j ∈ Z>0, we define the Hankel
matrix

Hg(t, j) :=


g(t) g(t+ 1) . . . g(t+ j − 1)

g(t+ 1) g(t+ 2) . . . g(t+ j)
...

...
. . .

...
g(t+ j − 1) g(t+ j) . . . g(t+ 2(j − 1))


(6a)

= Oj(A, c)At−1Cj(A, b) (6b)

where

Cj(A, b) :=
(
b Ab . . . Aj−1b

)
(6c)

Oj(A, c) := Cj(AT, cT)T. (6d)

Hankel k-positivity is defined as follows.

Definition 5. A system G(z) is called Hankel k-positive if
Hg is OVDk−1 (k ≥ 1). If k = ∞, G(z) is said to be Hankel
totally positive.

Notice that Hankel 1-positivity coincides with the famil-
iar property of external positivity (Farina and Rinaldi,
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2000). A characterization of Hankel k-positivity is given
by (Grussler and Sepulchre, 2022, Lemma 2):

Lemma 6. A system G(z) is Hankel k-positive if and only
if for all j ∈ Z≥k, Hg(1, j) is k-positive.

Using basic results from total positivity theory (Fallat
et al., 2017), it is easy to show that k-positivity of
Hankel matrices only requires checking the nonnegativity
of consecutive minors. From (6b), each of these consecutive
minors is given by

g[j](t) := det(Hg(t, j)),

which is interpreted as the impulse response of an LTI
system G[j](z), called the j-th compound system. If (A, b, c)
is a realization of G(z), then G[j](z) can be realized as

(A[j], Cj(A, b)[j],O
j(A, c)[j]). (7)

since

det(Hg(t, j)) = Hg(t, j)[j] = Oj(A, c)[j](A[j])
t−1Cj(A, b)[j]

by (6b) and Lemma 4.

3. INTERNALLY K-POSITIVE SYSTEM
OPERATORS

In this section, we present our main results on the char-
acterization of OVDk observability and controllability op-
erators to (1). The proofs of these results can be found in
our full paper (Grussler et al., 2022), where an extension
of the results to continuous-time is also studied.

We start with following simple lemma.

Lemma 7. For (A, b, c), the following are equivalent:

i. C(A, b) and O(A, c) are OVDk−1, respectively.
ii. For all t ≥ k, Ct(A, b) and Ot(A, c) are k-positive,

respectively.

Notice that for k = 1 Lemma 7 recovers the well-known
characterization of internal positivity in terms of the
nonnegativity of (A, b), and (A, c), respectively. Next, we
seek a finite-dimensional and computationally tractable
characterization as our first main result.

Theorem 8. Let (A, b, c) be a realization of G(z) such that
A is k-positive. The following hold:

i. If Cj(A, b)[j] ≥ 0 for 1 ≤ j ≤ k, then Ct(A, b) is k-

positive for all t ≥ k.

ii. If Oj(A, c)[j] ≥ 0 for 1 ≤ j ≤ k, then Ot(A, c) is

k-positive for all t ≥ k.

The proof of this result involves extending a test for matrix
k-positivity based on verifying the positivity of consecutive
minors, see (Grussler et al., 2022, Theorem 3.6).

3.1 Impulse response analysis

For LTI systems, the total number of over- and un-
dershoots (in the step response) equals the number of
sign changes in the impulse response. Since g(t) =
(O(A, c)b)(t), O(A, c) being OVDk−1 implies that re-
sponse of (A, b, c) changes its sign at most S(b) times
for all S(b) ≤ k − 1, and has the same sign-changing
order as b in case of an equal number of sign-changes.
Since our framework is realization-dependent, we derive

2 4 6 8 10 12 14
0

0.5

1

t

g
(t
)

Fig. 1. The impulse response of (8) has two zero crossings,
which coincides with our derived upper bound.

the following result, which is similar in spirit to classical
positive realization theory (Ohta et al., 1984).

Theorem 9. Let (A, b, c) be a minimal realization of G(z).
Then, G(z) admits a realization (A+, b+, c+) such that A+

and O(A+, c+) are OVDk−1 if and only if there exist a
k-positive N ∈ RK×K and a P ∈ Rn×K with K ≥ n

such that AP = PN and Oj(A, c)
T
[j] ∈ cone(P[j])

∗ for

1 ≤ j ≤ k, where k ≤ n.

As a consequence of the order preservation in the OVDk

definition, this also provides a first simple result on gener-
alized internally positive realizations.

Theorem 10. Let (A, b, c) be such that O(A, c) is OVD1,
S(b) ≤ 1. Further, assume that the first non-zero element
in b is negative and the first non-zero element of the
impulse response of (A, b, c) is positive. Then, (A, b, c) is
externally positive.

Theorem 10 is a new contribution that has not been
published in (Grussler et al., 2022).

Example Consider the following system, previously
shown as an example in (El-Khoury et al., 1993):

G(z) =
(z − 0.22)(z − 0.6)

z3(z − 0.7)

The transfer function G(z) has a realization given by

A =

0.7 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 b =

 0
1

−0.82
0.132

 c =

1
0
0
0


T

(8)

It can be verified that this realization has totally positive
A and O4(A, c). By Lemma 7 and Theorem 8, O(A, c)
is totally positive and the number of sign changes in
the impulse response of G(z) (and, hence, the number
of extrema in its step response) is upper bounded by
S(b) = 2; the same upper bound was previously obtained
by (El-Khoury et al., 1993). Figure 1 shows that this bound
is tight. However, in contrast to (El-Khoury et al., 1993),
our framework does not assume real poles or zeros. In
particular, the modified transfer function

Gm(z) =
(z − 0.5 + i)(z − 0.5− i)

z3(z − 0.7)
,

can be realized with the same A and c as in (8) and with

b = (0 1 −1 1.25)
T
. This again provides a tight upper

bound on the variation of the impulse response.

Finally, let A be as in (8), but b = (−1 1 1 1)
T
and c =

(1 1 0 0). By Lemma 7 and Theorem 8, O(A, c) is OVD1

(but not OVD2) and (g(1) g(2)) = (0 1.3). Applying
Theorem 10 proves that (A, b, c) is externally positive
without requiring a fully internally positive realization.
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3.2 Internally Hankel k-positive systems

Next, we introduce the following subclass of Hankel
k-positive systems:

Definition 11. (A, b, c) is called internally Hankel k-positive
if A, C(A, b), and O(A, c) are OVDk−1 (1 ≤ k ≤ n). If
k = n, we say that (A, b, c) is internally Hankel totally
positive.

Internally Hankel k-positive systems are thus OVDk−1

from past input u to x(0), and from x(0) to all future x(t)
and future output y. In particular, by (4), all internally
Hankel k-positive systems are also (externally) Hankel
k-positive, and setting u ≡ 0 recovers the k-positive prop-
erty of unforced systems as partially studied in (Margaliot
and Sontag, 2019; Wu and Margaliot, 2021). Thus, Def-
inition 11 bridges the external and the unforced notions
of variation diminishing LTI systems. A combination of
Lemma 7 and Theorem 8 gives the following characteriza-
tion of internal Hankel k-positivity.

Theorem 12. (A, b, c) is internally Hankel k-positive if and
only if the realizations of the first k compound systems of
(A, b, c) in (7) are (simultaneously) internally positive.

Similar to Theorem 9, we need to address the question of
the existence of (minimal) Hankel k-positive realizations.

Theorem 13. A system G(z) with order n and minimal
realization (A, b, c) has a minimal internally Hankel k-
positive realization, k ≤ n, if and only if there exists a
P ∈ Rn×n with rank(P ) = n such that for all 1 ≤ j ≤ k

AP = PN for some k-positive N (9a)

Cj(A, b)[j] ∈ cone(P[j]), (9b)

Oj(A, c)
T

[j] ∈ cone(P[j])
∗. (9c)

Finally, under an irreducibility condition, all unforced k-
positive systems give rise to an internally Hankel k-positive
system:

Proposition 14. Let A ∈ Rn×n be k-positive with irre-
ducible A[j], 1 ≤ j ≤ k. Then there exists a b ∈ Rn

such that Cj(A, b)[j] > 0 for all 1 ≤ j ≤ k and (A, b) is

controllable.
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Sciences et Techniques, Université de Limoges, Limoges, CO 87060
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1. EXTENDED ABSTRACT

Mean Field Games (MFGs) systems were introduced in-
dependently by Huang et al. (2006) and Lasry and Lions
(2007) in order to model dynamic differential games with
a large number of indistinguishable small players. In the
model proposed in Lasry and Lions (2007), the asymptotic
equilibrium is described by means of a system of two
Partial Differential Equations (PDEs). The first equation,
together with a final condition, is a Hamilton-Jacobi-
Bellman (HJB) equation describing the value function of
a typical player whose cost function depends on the dis-
tribution m of the entire population. The second equation
is a Fokker-Planck (FP) equation which, together with an
initial distribution m0, describes the fact that m evolves
following the optimal dynamics of the typical player.

In the case where both equations have a nondegenerate
second order term, several numerical methods have been
proposed to approximate solutions to the MFG system.
In this context, convergent finite difference and Semi-
Lagrangian (SL) schemes have been proposed in Achdou
and Capuzzo-Dolcetta (2010); Achdou et al. (2013), and
Carlini and Silva (2018) respectively.

In the case where both equations in the MFG system have
no second order terms, we say that the MFG system is of
first order. This system characterizes the limit behavior
of equilibria of deterministic and symmetric differential
games as the number of players tends to infinity. In this
framework, a SL scheme has been proposed in Carlini
and Silva (2014), where a convergence result is established
when the state dimension is equal to one. We also refer the
reader to Chowdhury et al. (2021) for a recent extension of
this result to the case where non-local and fractional diffu-
sion terms appear in both equations of the MFG system.
To the best of our knowledge, the only convergence result
in general state dimension of an approximation of the first
order MFG system has been established in Hadikhanloo
and Silva (2019). In these aforementioned works, it is sup-
posed that a typical agent in the game controls directly its
velocity and minimizes a cost functional whose dependence
on the state variable is rather restrictive.

In this talk, we consider deterministic MFGs where the
dynamics of a typical agent is non-linear with respect to
the state variable and affine with respect to the control
variable. Particular instances of this problem are MFGs
where the typical agent controls its acceleration (see e.g.
Achdou et al. (2020); Cannarsa and Mendico (2020)). We
propose a fully discrete scheme that combines a semi-
Lagrangian type discretization of the HJB equation, which
takes advantage of the particular structure of the dynam-
ics, and a discretization of the FP equation which has a
probabilistic interpretation in terms of an underlying dis-
crete time and finite state Markov chain Xn. The scheme
that we propose takes then the form of a discrete time an
finite state MFG (see Gomes et al. (2010)) which can be
solved by the fictitious play method (see Hadikhanloo and
Silva (2019)). Our main result is the convergence of solu-
tions to this approximation towards MFG equilibria, which
is numerically illustrated by several examples dealing with
MFGs with control on the acceleration.
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Abstract: The problem to reconcile observed marginal distributions with a given prior was
posed by E. Schrödinger in 1932/32, and is now known as the Schroödinger Bridge Problem.
It represents a stochastic counterpart of the Optimal Mass Transport (OMT). In either
setting, the problem to interpolate between “unbalanced” marginals has been approached
by introducing source/sink terms into the transport equations, in an adhoc manner, chiefly
driven by applications in image registration. In the present work we developed a formalism to
interpolate between “unbalanced” marginals in the original spirit of E. Schrödinger, seeking the
most likely transport of particles that may vanish along their path between given end points in
time. In this, we develop a Schrödinger system of equations that accounts for losses, by allowing
particles to “jump” into a coffin state according to a suitable probabilistic law. The solution
of the Schrödinger system allows constructing a stochastic evolution that reconciles the given
unbalanced marginals.

Keywords: Estimation, Stochastic control, Large deviation theory.

1. EXTENDED SUMMARY

The present extended abstract is based on Chen et al.
(2021). The main contribution is an extension of the
paradigm of the Schroödinger Bridge Problem that seeks
to reconcile marginal distributions with a prior probability
law, to the case where the marginal distributions are
unbalanced, corresponding to differing total mass that
needs to be accounted for via losses. A physical instance
that provides motivation for the scenario that we envision
can be described as follows.

Consider the problem of estimating the velocity field of
ocean currents by releasing into the water a cloud of tracer
particles and by sampling their distribution at a later time.
The diffusion coefficient is assumed known and the original
cloud that is released at time t = 0 consists of N particles.
These are expected to remain in suspension for a duration
of time while they diffuse and drift with the current. At
time t = 1, their distribution is sampled again. Some of the
particles in the meantime have sunk, so that the number
of found particles is less than N . Suppose this experiment
is performed several times, treating the model originating
from previous experiments as a “prior”. Is it conceivable to
“improve” a prior model in a rational way? More explicitly,
by relying on a prior model and the new sampling result, is
it possible to determine an updated model that represents
the most probable way that the tracer cloud may have
been transported?

Further motivation is provided by natural processes that
involve micro-organisms that may reproduce or die out

along the way between measurements, sediment or pol-
lution transport processes that dissipate or accentuate
between observations, or virtual processes where fusion
of data or morphing of images call for interpolation be-
tween distributions of varying total mass. However, our
basic framework appeals to a setting where the mechanism
generating losses has a physical origin as highlighted in the
example with tracer particles.

At first sight, this problem appears to be of a different
nature than those treated in the theory of Large Deviations
Varadhan (1966, 1984); Dembo and Zeitouni (2009), in
that the sought path-space measure is not a probability
measure per se. Nevertheless, in spite of the paucity of the
available data, it is possible to solve this inverse problem
by a natural embedding technique. A byproduct is a phys-
ically motivated framework to interpolate distributions of
unequal mass (integrals). The blueprint for the rationale in
our work is the celebrated duo of papers by E. Schrödinger
in 1931/32 Schrödinger (1931, 1932) where he considered
the problem of reconciling (equal-mass) marginal distribu-
tions with a prior stochastic evolution.

In our formulation of the unbalanced Schrödinger Bridge
Problem (uSBP), the marginals cannot be assumed to
be probability distributions as their integrals differ due
to losses. To this end, we embed the distributions into a
frame that includes a coffin/extinction state, leading to
a probability law on a continuum together with a discrete
state. Thereupon, we find the updated law and killing rate
that minimize the relative entropy to the prior with losses,
and are consistent with the two marginals. In the special
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case when the marginals are already consistent with the
prior, naturally, the solution coincides with the lossy prior,
differently from what happens in other formulations of
SBP with killing which are based on Feyman-Kac func-
tionals Nagasawa (1990); Wakolbinger (1989); Blaquière
(1992); Dawson et al. (1990); Aebi and Nagasawa (1992);
Léonard (2011); Chen et al. (2015, 2017), and unbalanced
transport Chizat et al. (2018a,b); Chen et al. (2019); Koehl
et al. (2021).

We would like to stress the fact that earlier proposals
on how to address unbalanced transport Chen et al.
(2015); Georgiou et al. (2008); Jiang et al. (2011); Chizat
et al. (2018a,b); Chen et al. (2019); Koehl et al. (2021)
resorted to ad-hoc regularization to cope with the unequal
marginals, where either adjustment at the two ends or
the presence of a source/sink contribution dynamically
adjusts the differing end-point masses. In contrast, our
formulation is cast in terms of prior knowledge and large-
deviation theory, advancing a viewpoint that is close in
spirit to the original rationale of E. Schrödinger. To this
end, we consider below a diffusion process with killing and
seek the closest update of the corresponding law that is
in agreement with the marginal data. That is, we seek
the most likely diffusion process with a suitably updated
killing that matches the two marginals of unequal mass.
We next summarize the main technical statements of the
theory that we will present.

Consider a diffusion process

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, (1)

over the Euclidean space Rn, with a nonnegative killing
rate V (t, x) (assume V (·, ·) is jointly continuous with re-
spect to (t, x) and not constantly zero). A thought exper-
iment similar to Schrödinger’s, calls for a large number
N of trajectories over a time interval [0, 1], that are
independently sampled from (1) with initial probability
distribution ρ0, and a recorded empirical distribution for
the surviving particles at time t = 1 approximated by ρ1,
which is inconsistent with the prior law, that is,

ρ1(·) 6=
∫
Rn

q(0, x, 1, ·)ρ0(x)dx.

The kernel q(0, x, 1, y) is no longer a probability kernel in
that ∫

Rn

q(0, x, 1, y)dy 6= 1,

in general, and thus, neither
∫
Rn q(0, x, 1, ·)ρ0(x)dx nor

ρ1 are necessarily probability densities, due to killing. In
particular,

∫
ρ1(x)dx = Ns/N ≤ 1 where Ns denotes

the number of survival particles at time 1. Just as in
the standard SBP, we consider continuous distributions,
assuming that N is large, and seek to identify the most
likely behavior of the particles. By behavior we mean the
most likely evolution of the particles along with the most
likely times that the particles may have gotten killed (or,
absorbed by an underlying medium).

As in the standard Schrödinger bridge, the problem arising
from the above thought experiment can be formally stated
using the theory of large deviations Dembo and Zeitouni
(2009). However, in this case, the space of trajectories
needs to be modified to accommodate for possible killing
of particles. To this end, we augment the state space of the

diffusion Rn with a “coffin state” c 6∈ Rn, see (Øksendal,
2000, Subsection 8.2), resulting in the state space

X = Rn ∪ {c}.
Let Ω = D([0, 1],X ) be the Skorokhod space over X ,
that is, each element in Ω is a càdlàg over X (Billingsley,
1999, page 121). Denote by P(Ω) and P(X ) the spaces
of probability distributions over Ω and X , respectively.
Each diffusion process Xt (t ∈ [0, 1]) on Rn with killing
corresponds to a process Xt taking values in X , and therby,
to a law in P(Ω).

In our unbalanced SBP setting, the set of probability
laws over path space P(Ω) that are in alignment with the
observations is

{P ∈ P(Ω) | P0 = p0, P1 = p1},
where p0, p1 are the natural augmentation of ρ0, ρ1 so that
they belong in P(X ), respectively. Specifically, assuming
that

∫
Rn ρ1(x)dx ≤ 1, we set

p0 = (ρ0(·), 0) (2a)

and

p1 = (ρ1(·), 1−
∫
Rn

ρ1(x)dx), (2b)

and arrive at the following.

Unbalanced Schrödinger Bridge Problem (uSBP): Deter-
mine

P? := arg min
P∈P(Ω)

{D(P‖R) | P0 = p0,P1 = p1} . (3)

Here, with the notation R(·) =
∫
X 2 R

xy(·)R01(dxdy), and

P(·) =
∫
X 2 P

xy(·)P01(dxdy) we denote path measures,
whereas R01 (P01) denotes the joint marginal distribution
of R (P) over the marginal X0,1, and Rxy (Pxy) denotes
the law conditioned on X0 = x ∈ X and X1 = y ∈ X .
Then, also, D(P‖R) denotes the Kullback-Leibler diver-
gence. A relation with a static SBP emerges.

Static uSBP: Determine

π? := arg min
π∈P(X 2)

{D(π‖R01) | π0 = p0,π1 = p1} . (4)

The two formulations can be seen to be equivalent, as
follows from the identity

D(P‖R) = D(P01‖R01) +

∫
X 2

D(Pxy‖Rxy)P01(dxdy).

The equivalence is highlighted in the following theorem.

Theorem 1. (see Chen et al. (2021)). Suppose P? solves
the dynamic uSBP (3), then P?01 also solves the static
uSBP (4). On the other hand, if π? solves (4), then setting
P? =

∫
X 2 R

xy(·)π?(dxdy) solves (3), while P?01 = π?.

The solutions to (3) and (4) are of the form

P? = f(X0)g(X1)R, and (5)

π? = f(X0)g(X1)R01, (6)

respectively. Explicit solution that includes an update on
the prior killing rate as well as determining the change of
measure effected by f, g, can be computed as follows.

The Fokker-Planck equation for a diffusion (1) with killing
rate V (t, x) is

∂tRt +∇ · (bRt) + V Rt =
1

2

n∑
i,j=1

∂2(aijRt)

∂xi∂xj
. (7)
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Throughout we assume that a(t,X) = σ(t,X)σ(t,X)′ is
a positive definite matrix. A corresponding Schrödinger
system and its relation to the law of P? can be expressed
after reparametrizing the pair (f, g) of functions on X as
follows

f(x)R0(x) =

{
ϕ̂(0, x) if x ∈ Rn

ψ̂(0) if x = c,
(8a)

g(y) =

{
ϕ(1, y) if y ∈ Rn

ψ(1) if y = c.
(8b)

A generalized Schrödinger system along with the non-
linear coupling constraints then takes the form

∂tϕ̂=−∇ · (bϕ̂)− V ϕ̂+
1

2

n∑
i,j=1

∂2(aijϕ̂)

∂xi∂xj
(9a)

dψ̂

dt
=

∫
V ϕ̂(t, x)dx (9b)

∂tϕ=−b · ∇ϕ+ V ϕ− 1

2

n∑
i,j=1

aij
∂2ϕ

∂xi∂xj
− V ψ(9c)

dψ

dt
= 0 (9d)

ρ0 = ϕ(0, ·)ϕ̂(0, ·) (9e)

ρ1 = ϕ(1, ·)ϕ̂(1, ·) (9f)

ψ̂(0) = 0 (9g)

ψ(1)ψ̂(1) = 1−
∫
ρ1. (9h)

The solvability of this Schrödinger system is claimed in
the next theorem.

Theorem 2. (see Chen et al. (2021)). Let R be the law of
a diffusion (1) with nontrivial killing rate V (t, x) and
a(t, x) = σ(t, x)σ(t, x)′ being positive definite for all
(t, x) ∈ R × Rn, and assume that ρ0, ρ1 are abso-
lutely continuous with respect to the Lebesgue measure.
There exists a unique (up to a constant scaling) 4-tuple

(ϕ̂(t, x), ψ̂(t), ϕ(t, x), ψ(t)) of non-negative functions that
satisfies the Schrödinger system (9).

Discretization of the Schrödinger system (9) leads to an

efficient algorithm to compute (ϕ̂(t, x), ψ̂(t), ϕ(t, x), ψ(t)),
and thereby, P? as well as the corresponding Fokker-
Planck equation for the corresponding marginals. This will
be discussed in the talk and is detailed in Chen et al.
(2021). Further, a dynamic formulation of the updated law
is possible in the form of a corresponding diffusion process
as we explain next.

We denote by Pt the marginal of Xt restricted to the first
component in X , and by qt the probabilty of the coffin
state. Thus, we use the vectorial notation

Pt =: (Pt, qt).

Accordingly, for the marginals Rt = (Rt, st) of the prior,
Rt satisfies the Fokker-Planck equation (7) while st = 1−∫
Rn Rt(x)dx. The solution P? to (3) is then characterized

by the following theorem.

Theorem 3. (see Chen et al. (2021)). The solution P? to
(3) corresponds to a diffusion process

dXt = (b(t,Xt) + a(t,Xt)∇ logϕ(t,Xt))dt+ σ(t,Xt)dWt

(10)
with killing rate ψV/ϕ, where ϕ is obtained from the
solution of the generalized Schrödinger system (9). Ac-
cordingly,

∂tPt +∇ · ((b+ a∇ logϕ)Pt) =
1

2

n∑
i,j=1

∂2(aijPt)

∂xi∂xj
− ψ

ϕ
V Pt.

(11)

The original Schrödinger bridge problem, when there is
no killing, is known to be equivalent to the stochastic
control problem of minimizing control energy subject to
the marginal two end-point constraints Chen et al. (2016),
or equivalently, to a fluid dynamic formulation whereby
the velocity field u(t, ·) effecting the flow minimizes this
action integral, namely,

min
Pt(·),u(t,·)

∫ 1

0

∫
Rn

1

2
‖u(t, x)‖2Ptdxdt (12a)

∂tPt +∇ · ((b+ σu)Pt)−
1

2

n∑
i,j=1

∂2(aijPt)

∂xi∂xj
= 0

(12b)

P0 = ρ0, P1 = ρ1. (12c)

The optimization takes place over the feedback control
policy-flow field u(t, x) together with the corresponding
density flow Pt(x). Below, we present an analogous for-
mulation for the Schrödinger bridge problems with unbal-
anced marginals.

Along the flow, the killing rate may deviate from the prior
V and is to be determined. To quantify the deviation of
the posterior killing rate from the prior, we introduce an
entropic cost inside the action integral, to penalize changes
in the ratio α(t, x) between the posterior and the prior
killing rate. That is, α is an added optimization variable
which is α(t, x) ≥ 0, and with the posterior killing rate
being αV . To penalize differences between the posterior
and the prior killing rates we introduce the factor

α logα− α+ 1 (13)

inside the action integral, which is convex and achieves
the minimal value 0 at α = 1. This entropy cost has
been used in Léonard (2014, 2016) to study Schrödinger
bridge problem over graphs. It is associated with the large
deviation principle for continuous-time Markov chain with
discrete state. Combining this entropic cost term for the
ratio of killing rates with (12) we arrive at

min
P,u,α

∫ 1

0

∫
Rn

[
1

2
‖u(t, x)‖2Pt + (α logα− α+ 1)V Pt

]
dxdt

(14a)

∂tPt +∇ · ((b+ σu)Pt) + αV Pt −
1

2

n∑
i,j=1

∂2(aijPt)

∂xi∂xj
= 0

(14b)

P0 = ρ0, P1 = ρ1. (14c)

Note that the control strategy has now two components,
a drift term u(t, x) and a correcting term α(t, x) for the
killing rate. We conclude with the existence and form of
solutions to (14).
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Theorem 4. Let (ϕ̂(t, x), ψ̂(t), ϕ(t, x), ψ(t)) be the solution
to the Schrödinger system (9), then the solution to (14) is
given by the choice

u?(t, x) = σ(t, x)′∇ logϕ(t, x) (15a)

α?(t, x) =
ψ(t)

ϕ(t, x)
(15b)

Pt(x) = ϕ(t, x)ϕ̂(t, x). (15c)

In summary, the key contribution in this work is to address
in a rigorous manner the needed update of prior evolution
and killing mechanism, through large deviation theory,
that extends Schrödinger’s dictum of seeking the most
likely law that reconciles given marginal distributions.
The solution that emerges differs in an essential way
from earlier approaches to do the same via Feynman-Kac
multiplicative reweighing Nagasawa (1990); Wakolbinger
(1989); Blaquière (1992); Dawson et al. (1990); Aebi and
Nagasawa (1992); Léonard (2011); Chen et al. (2015,
2017). It is important to underscore that in these earlier
approaches, when the prior is consistent with the given
marginals, the solution fails to coincide with the prior as
one would expect and want. Such a natural requirement for
the solution is inherent in our large deviation formulation
of the unbalanced Schrödinger Bridge Problem.
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Chizat, L., Peyré, G., Schmitzer, B., and Vialard, F.X.
(2018a). Scaling algorithms for unbalanced optimal
transport problems. Mathematics of Computation,
87(314), 2563–2609.
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Mario Osvin Pavčević ∗ Kristijan Tabak ∗∗

∗ University of Zagreb, Faculty of electrical engineering and computing,
Department of applied mathematics, Croatia

(e-mail: mario.pavcevic@fer.hr).
∗∗ Rochester Institute of Technology, Zagreb Campus, Croatia

(e-mail: kristijan.tabak@croatia.rit.edu)

Abstract: The fact that further constructions often don’t bring breakthrough results motivates
us to combine designs to be particles of other combinatorial structures. One of them are mosaics
of designs, where instead of having a matrix presenting incidences of a design, one might fill
the matrix with incidences of more than one design. Another way of combining designs are
design cubes. They can be thought of as 3-dimensional incidence 0-1 matrices, such that each
2-dimensional incidence submatrix satisfies the properties of a design. In this paper we shall be
concentrated on designing and combining t-designs although we are aware of the fact that the
ideas presented here might work and be interesting for other sorts of combinatorial designs.

Keywords: t-design, mosaic of designs, design cube, difference set
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1. INTRODUCTION AND PRELIMINARIES

Combinatorial designs are set systems (a collection of
subsets of a given set) and consist of two types of objects,
points (elements of the given set) and blocks (subsets of the
given set, e.g. members of the given collection), satisfying
some additional properties. There are different kinds of
combinatorial designs; a good overview of most of them
can be found in Colbourn et al. (2007). They are often
represented with an incidence matrix, which is a 0-1 matrix
with rows labelled by points and columns labelled by
blocks, where its (i, j)-th entry indicates whether a point
lies in a block or not.

In this paper we shall construct and combine t-designs, but
it is worth mentioning that the main ideas of combining
designs presented here would work for some other types of
designs as well. A t-design with parameters (v, k, λ) is a
collection B of k-element subsets (blocks) of a v-element
set X (of points), such that every t-element subset of X
is contained in exactly λ blocks. In such a case we speak
sometimes of a t-(v, k, λ) design. It is known that t, v, k
and λ must satisfy a number of more or less complicated
(necessary) divisibility conditions, whereas for t ≥ 2 the
existence of a t-design with parameters (v, k, λ) is known
only for particular cases which are not described by any
general set of sufficient conditions. The number of blocks
b can be calculated as b = λ ·

(
v
t

)
/
(
k
t

)
. A design is called

symmetric if b = v. Each point of a t-design is incident
with the same number of blocks, usually denoted by r = λ·(
v−1
t−1

)
/
(
k−1
t−1

)
.

Example 1. The most prominent and cited example in
combinatorial design theory is the Fano plane, having

? This work has been supported by the Croatian Science Foundation
under the projects 6732 and 9752.

parameters 2-(7, 3, 1). Its incidence matrix can be chosen
to be cyclic and given as

M =



0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1
1 1 0 1 0 0 0


Where are the borders of knowledge considering the exis-
tence of t-designs? For t = 2, it is not known whether 2-
(51, 6, 1), 2-(40, 10, 3) or 2-(39, 13, 6) exist. If you add the
condition for the design to be symmetric, then the smallest
examples with non-determined existence are 2-(157, 13, 1)
(the projective plane of order 12) or 2-(81, 16, 3). The
smallest 3-design with existence in question is 3-(16, 7, 5)
and the smallest 4-design 4-(13, 6, 6). Let us point out that
at the first glance these parameter sets look rather small.

2. CONSTRUCTION METHODS

A design is given when the blocks are known. Therefore,

the size of the search space is
((v

k)
b

)
. It explains immediately

the difficulty of finding designs by explicit constructions.
To reduce the search space, additional constraints might
be taken into account. If an automorphism group acts on
a design, it acts on the set of points X and on the set of
blocks B, partitioning them into orbits. It acts on the set(
X
k

)
from which we choose our blocks as well, partitioning

it into orbits of k-subsets. Clearly, only complete orbits
of blocks can be chosen to keep the automorphism group
acting on the design. That fact reduces the search space
size enormously.

The chosen orbits form a tactical decomposition of the
incidence matrix. Out of that fact one can determine
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additional necessary conditions for the existence of such
a decomposition and reduce the search space further (for
details, see Krčadinac et al. (2014)). The most general and
successfully widely used method for constructing t-designs
by computer goes back to Kramer et al. (1976), where the
problem is set as an integer system of linear equations.

3. MOSAICS OF DESIGNS

The rather unsatisfactory fact that a systematic approach
towards constructing and classifying designs is often not
possible due to the size of the search space, we came to the
idea of combining designs together. Looking at Example
1, if we treat the 0’s as incidences, we can interprete the
v×b incidence matrix as filled with incidences of two (here
complementary) designs. There is place for generalization.

Example 2. Here the matrix of order 7 is filled with 3
different numbers

M =



0 1 1 2 1 2 2
2 0 1 1 2 1 2
2 2 0 1 1 2 1
1 2 2 0 1 1 2
2 1 2 2 0 1 1
1 2 1 2 2 0 1
1 1 2 1 2 2 0


and if we interpret them as incidences, we can clearly write
this decomposition as

2-(7, 1, 0) ⊕ 2-(7, 3, 1) ⊕ 2-(7, 3, 1).

It is namely obvious that this matrix ”consists” of the
following three incidence matrices

M0 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

 , M1 =



0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1
1 1 0 1 0 0 0

 ,

M2 =



0 0 0 1 0 1 1
1 0 0 0 1 0 1
1 1 0 0 0 1 0
0 1 1 0 0 0 1
1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0

 ,
where M0 +M1 +M2 = J , J , being the all-one matrix.

In Gnilke et al. (2018) we have introduced the following
combinatorial object. Let c be a positive integer and let Bi
be designs with parameters ti-(v, ki, λi), i = 1, . . . , c with
the same number of points v and blocks b. A c-mosaic
of designs B1,B2, . . . ,Bc is a (v × b) matrix M = [mpq],
mpq ∈ {l1, l2, . . . , lc} for which holds that matrices Mi

defined as

[Mi]pq =

{
1, mpq = li
0, otherwise

are incidence matrices of designs Bi.
Once having defined mosaics of designs as a tiling of a
(v × b) matrix, the next task is again to find explicit
constructions of these objects.

A design B on a set X is called resolvable if there exists
a partition of the set of blocks B into so called parallel

classes, such that every class itself is a partition of the set
of points X. Note that for a resolvable t-(v, k, λ) design

the number of parallel classes is p = λ
(
v−1
t−1

)(
k−1
t−1

)−1
and

each class contains v
k blocks.

Theorem 1. Let D be the incidence matrix of a resolvable
t-(v, k, λ) design, where the columns have been arranged
by parallel classes. Let L be a latin square of order v

k with
entries l1, . . . , l vk . Then M := D(Ip ⊗ L) is a v

k -mosaic.

Corollary 2. Let F be the field with q elements. Then
there is a q-mosaic of affine planes of order q:

2-(q2, q2, q2 + q) = 2-(q2, q, 1)⊕ · · · ⊕ 2-(q2, q, 1).

Open question. Is there a mosaic of a matrix of order 31
of the following form (with the following parameters):

2-(31, 15, 7) ⊕ 2-(31, 10, 3) ⊕ 2-(31, 6, 1)?

We are still unable to answer this question because of the
number of combinatorial possibilities and at the same time
couldn’t find an argument against the existence.

Nice application of mosaics of designs have been described
in Wiese et al. (2022).

4. DESIGN CUBES

Another idea how to combine designs together is looking
at 3-dimensional incidence matrices A = [aijk], i, j, k =
1, . . . , v, aijk ∈ {0, 1}. We will not introduce a third
kind of objects (although this might be possible and
find its applications), but we want for each 2-dimensional
submatrix to be incidence matrix of a design. Hence, for
a given A, take a fixed i (from 1 to v), and observe the
v × v matrix Ai

jk = [aijk], j, k = 1, . . . , v which needs to

be an incidence matrix of a (symmetric) design. Do the
same for a fixed j = 1, . . . , v and fixed k = 1, . . . , v. If
all 3v matrices Ai

jk, A
j
ik and Ak

ij are incidence matrices of
a design, we shall call such a 3-dimensional matrix A a
design cube. If the parameters of the symmetric design
are 2-(v, k, λ), we shall assign this parameter triple to the
design cube as well.

Example 3. We continue with combining the incidence
matrix of the Fano plane from Example 1 in order to get
a design cube. The first matrix below is just a copy of it,
and the six others are row-shifts of that matrix.

0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1
1 1 0 1 0 0 0





0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1
1 1 0 1 0 0 0
0 1 1 0 1 0 0





0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1
1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0




1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1
1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1





0 1 0 0 0 1 1
1 0 1 0 0 0 1
1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0





1 0 1 0 0 0 1
1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
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1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1


Imagine putting these matrices one above the other, play-
ing the role of A1

ij , . . . , A
7
ij (the third index fixed) from

the definition above. We get a cube of order 7. We need to
check that all 2-dimensional (sub)matrices of order 7 are
incidence matrices of a 2-(7, 3, 1) design. This is trivial if
we fix the 3. dimension ”k”: all the matrices listed above
are incidence matrices of the Fano plane. If we fix the first
dimension (index) i, we see that the i-th rows are simply
shifts of the previous row. Finally, if we fix the second
dimension (index) j, we see that columns are shifts as well,
but in the opposite direction.

Theorem 3. If there exists a (v, k, λ) difference set, then
there exists a design cube with parameters 2-(v, k, λ).

The proof of this theorem follows facts listed in Example
3 and can be generalized easily. Namely, the incidence
matrix of the Fano plane in our example is presented as a
cyclic matrix hence it can be seen as the development of a
(7, 3, 1) difference set (Colbourn et al. (2007)) in the cyclic
group of order 7.

For the moment we are not aware of any examples not
coming from difference sets and finding such an example
would be the first task in continuing the research on design
cubes. Furthermore, it would be interesting to define and
find generalizations of design cubes in higher dimensions.
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Abstract: The fundamental lemma by Willems and coauthors facilitates a parameterization
of all trajectories of a linear time-invariant system in terms of a single, measured one. This
result plays an important role in data-driven simulation and control. Under the hood, the
fundamental lemma works by applying a persistently exciting input to the system. This ensures
that the Hankel matrix of resulting input/output data has the “right” rank, meaning that its
columns span the entire subspace of trajectories. However, such binary rank conditions are
known to be fragile in the sense that a small additive noise could already cause the Hankel
matrix to have full rank. Therefore, in this extended abstract we present a robust version of
the fundamental lemma. The idea behind the approach is to guarantee certain lower bounds
on the singular values of the data Hankel matrix, rather than mere rank conditions. This is
achieved by designing the inputs of the experiment such that the minimum singular value of
a deeper input Hankel matrix is sufficiently large. This inspires a new quantitative and robust
notion of persistency of excitation. The relevance of the result for data-driven control will also
be highlighted through comparing the predictive control performance for varying degrees of
persistently exciting data.

Keywords: Identification, linear systems, data-driven control

1. INTRODUCTION

The fundamental lemma from Willems et al. (2005) is
a powerful result that enables the characterization of
the subspace of all possible trajectories of a linear time-
invariant (LTI) system using raw time series data sorted
into a Hankel matrix. The result has inspired many meth-
ods for data-driven analysis and control; see (Markovsky
and Rapisarda, 2008; van Waarde et al., 2020; van Waarde,
2021; Coulson et al., 2019; De Persis and Tesi, 2019;
Berberich et al., 2020), and the survey by Markovsky and
Dörfler (2021) and references therein.

At its core, the fundamental lemma requires applying an
input sequence to the system that is persistently exciting
of sufficient order such that the resulting input/output
data Hankel matrix spans the entire subspace of possible
trajectories of the system. In other words, if a deeper
input data Hankel matrix is full row rank, the resulting
input/output data Hankel matrix spans the admissible tra-
jectory subspace. This input/output data Hankel matrix
can then be used as a non-parametric system model.

One major drawback of the fundamental lemma is that it
only holds for noise-free data. Indeed, when the data are
corrupted by noise, rank conditions are no longer sufficient
for the data matrix to span the admissible trajectory
subspace leading to poor performance when used for data-
driven analysis and control. This demonstrates that these
binary rank conditions can no longer indicate suitable data

when in the presence of noise. This motivates defining a
new quantitative notion of persistency of excitation that
gives a measure of how persistently exciting the inputs
are. In adaptive control, such quantitative notions are
studied (Åström and Wittenmark, 2008, Remark 1, pg.
64), but not in the context of the fundamental lemma.

In this extended abstract we propose a robust fundamental
lemma that relies on a new quantitative notion of persis-
tency of excitation. The result informs the input selection
such that the minimum singular value of the input/output
data matrix is lower bounded by a user specified param-
eter. This results in a data matrix that is more robust to
noise leading to better performance when used for data-
driven analysis and control.

The rest of the extended abstract is organized as follows.
We begin with notation. Section 2 formalizes the problem
of interest. Section 3 contains the main result whose
relevance is illustrated through a data-driven control case
study in Section 4. We conclude in Section 5.

Notation: Let m,n ∈ Z>0. Given a matrix M ∈ Rm×n
and integer i ∈ Z>0 we denote the i-th singular value of
M by σi(M) with the ordering 0 ≤ σ1(M) ≤ σ2(M) ≤
· · · ≤ σmin{m,n}. When m = n and M = M>, we denote
the i-th eigenvalue of M by λi(M) with the ordering
λ1(M) ≤ λ2(M) ≤ · · ·λn(M). We use ‖M‖ = σmin{m,n}
to denote the spectral norm of a matrix M , ‖M‖F the
Frobenius norm, and ‖x‖ to denote the 2-norm of a vector
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x. The Moore-Penrose pseudo inverse of M is denoted
by M†. Given i, j, T ∈ Z≥0 with i ≤ j and a sequence

{z(t)}T−1
t=0 ⊂ Rn define

z[i,j] := [z(i)> z(i+ 1)> · · · z(j)>]>.

Given an integer k ∈ Z>0 with k ≤ j − i + 1, define the
Hankel matrix of depth k associated with z[i,j] as

Hk(z[i,j]) :=


z(i) z(i+ 1) · · · z(j − k + 1)

z(i+ 1) z(i+ 2) · · · z(j − k + 2)
...

...
. . .

...
z(i+ k − 1) z(i+ k) · · · z(j)

 .
2. PROBLEM STATEMENT

Consider the discrete-time LTI system

x(t+ 1) = Ax(t) +Bu(t), (1)

where x(t) ∈ Rn is the state, and u(t) ∈ Rm is the control
input. Throughout this extended abstract we will focus on
a special case of full state measurements. We recall the
definition of persistency of excitation.

Definition 2.1. Let T ∈ Z>0. The input sequence
u[0,T−1] is called persistently exciting of order k ∈ Z>0

if Hk(u[0,T−1]) has full row rank.

We now state a version of the fundamental lemma (Willems
et al., 2005) for the special case of input/state data.

Theorem 2.1. Let (A,B) be controllable and T ∈ Z>0.
Let (u[0,T−1], x[0,T−1]) be an input/state trajectory of (1)
such that u[0,T−1] is persistently exciting of order n + 1.
Then the data matrix[

H1(x[0,T−1])
H1(u[0,T−1])

]
=

[
x(0) x(1) · · · x(T − 1)
u(0) u(1) · · · u(T − 1)

]
(2)

has rank n+m.

As a result, the matrix (2) along with x(T ) fully capture
the behaviour of (1) and can be used for data-driven
analysis and control or system identification (Markovsky
and Dörfler, 2021). However, the above rank condition on
the data matrix (2) is not always a valid indicator that the
data is suitable for characterizing the behaviour of (1). In
fact, when the data is corrupted by noise, (2) may have
full rank, but can lead to poor performance when used for
data-driven analysis or control. We present a motivating
example outlining precisely how we can improve on such
rank conditions.

Example 2.1. Suppose we wish to identify matrices A,B
of the system

x(t+ 1) = Ax(t) +Bu(t) + w(t), (3)

where w(t) ∈ Rn is a noise term. Let (u[0,T−1], x[0,T−1])
be an input/state trajectory of the noisy system such that
u[0,T−1] is persistently exciting of order n+ 1. To identify
A,B, we consider the least squares problem

min
A,B

∥∥∥∥H1(x[1,T ])− [A B]

[
H1(x[0,T−1])
H1(u[0,T−1])

]∥∥∥∥
F

with solution given by[
Â B̂

]
:= H1(x[1,T ])

[
H1(x[0,T−1])
H1(u[0,T−1])

]†
. (4)

The data satisfies

H1(x[1,T ]) = [A B]

[
H1(x[0,T−1])
H1(u[0,T−1])

]
+H1(w[0,T−1]).

Hence, the error of our estimate is given by∥∥[Â B̂
]
− [A B]

∥∥ =

∥∥∥∥∥H1(w[0,T−1])

[
H1(x[0,T−1])
H1(u[0,T−1])

]†∥∥∥∥∥
≤

σn(H1(w[0,T−1])

σ1

([
H1(x[0,T−1])
H1(u[0,T−1])

]) .
Note that the estimation error can be arbitrarily large,
regardless of whether (2) is full row rank. What is impor-
tant instead is the smallest singular value of (2). Indeed,
if we wish to identify A,B to within some specified error,
we require that the smallest singular value of the data
matrix (2) is bounded below by some threshold depending
on the noise term w. •

This example motivates us to develop a robust funda-
mental lemma that moves away from rank conditions by
defining a quantitative notion of persistency of excitation
which guarantees a lower bound on the minimum singular
value of the data matrix (2). More formally, the goal of
this extended abstract is to solve the following problem.

Problem 2.1. Let δ > 0. Design an input sequence
u[0,T−1] such that the resulting data matrix satisfies

σ1

([
H1(x[0,T−1])
H1(u[0,T−1])

])
≥ δ. (5)

3. MAIN RESULT

The two main ingredients of the fundamental lemma are
controllability and persistency of excitation. To establish a
robust fundamental lemma, we must develop quantitative
notions of these two main ingredients. We start with
persistency of excitation.

Definition 3.1. Let T ∈ Z>0, α > 0. The input sequence
u[0,T−1] is called α-persistently exciting of order k ∈ Z>0

if σ1(Hk(u[0,T−1])) ≥ α.

This is a natural generalization of persistency of excitation
since for any α > 0 an α-persistently exciting signal of
order k is necessarily persistently exciting of order k.

We now focus on the second main ingredient of the
fundamental lemma: controllability. Define matrix M ∈
R(n+m+nm)×(n+m+nm) and vector z ∈ Rn+m+nm as

M :=


A B 0 · · · 0
0 0 Im · · · 0
...
...

...
. . .

...
0 0 0 · · · Im
0 0 0 · · · 0

 , z =

[
ξ
η

0nm

]
(6)

where ξ ∈ Rn, η ∈ Rm, and Im and 0nm denote the
m ×m identity matrix and the zero vector of length nm,
respectively. Define for any z of the form (6)

Θz :=
[
z M>z · · · (M>)nz

]>
. (7)

Note that Θ>z can be viewed as an extended controllability
matrix of the pair (M>, z). We make the following quan-
titative controllability assumption on this pair.

Assumption 3.1. Let ρ > 0. For all z of the form (6)
with ‖z‖ = 1, assume

σ1(Θz) ≥ ρ. (8)
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This assumption can be thought of as ensuring that
the finite horizon controllability Gramian Θ>z Θz =∑n
j=0(M>)jzz>M j has lower bounded eigenvalues. This

assumption is not restrictive since for any controllable
(A,B), there exists uniform ρ0 > 0 that lower bounds
σ1(Θz) for all z with ‖z‖ = 1, by the following lemma.

Lemma 3.1. Let (A,B) be controllable. Then

(i) rank(Θz) = n+ 1, and
(ii) there exists ρ0 > 0 such that σ1 (Θz) ≥ ρ0,

for all z be of the form (6) with ‖z‖ = 1.

Proof. We begin by proving (i). Assume on the contrary
that the rows of Θz are linearly dependent. From the
structure of Θz, we must have that η = 0 and thus
z = (ξ, 0(n+1)m). Likewise, we must have that ξ>B =

ξ>AB = · · · = ξ>An−1B = 0. By controllability of (A,B),
this implies that ξ = 0, and hence z = 0. This contradicts
the fact that ‖z‖ = 1, proving the claim. We now prove (ii).
Assume on the contrary that ∀ρ0 > 0, ∃ z with ‖z‖ = 1
such that σ1(Θz) < ρ0. Let {ρj}∞j=1 ⊂ R be a sequence
such that limj→∞ ρj = 0. By assumption, for each ρj ,
there exists zj with ‖zj‖ = 1 and σ1(Θzj ) < ρj . Since the
set {z | ‖z‖ = 1} is compact, {zj}∞j=1 has a convergent
subsequence converging to some z̄ with ‖z̄‖ = 1. Thus,
σ1(Θz̄) ≤ 0. However, by part (i), Θz̄ has full row rank
and hence, there exists ρ̄ > 0 such that σ1(Θz̄) > ρ̄ which
is a contradiction, proving the result. �

We now state the main theorem which solves Problem 2.1.

Theorem 3.1. Let T ∈ Z>0, (A,B) be controllable,
and δ > 0. Suppose that Assumption 3.1 holds and
(u[0,T−1], x[0,T−1]) is an input/state trajectory of (1) such

that u[0,T−1] is δ
√
n+1
ρ -persistently exciting of order n+ 1.

Then

σ1

([
H1(x[0,T−1])
H1(u[0,T−1])

])
≥ δ.

Proof. Denote the minimum singular value of the in-
put/state data matrix (2) by σ ≥ 0 with corresponding
left and right singular vectors (ξ, η) ∈ Rn+m and v ∈ RT ,
respectively. Then, ‖(ξ, η)‖ = ‖v‖ = 1 and

[ξ> η>]

[
H1(x[0,T−1])
H1(u[0,T−1])

]
= σv>.

Let z = (ξ, η, 0nm). By definition of Θz in (9) and the
dynamics (1), we have

Θz

[
H1(x[0,T−n−1])
Hn+1(u[0,T−1])

]
= σHn+1(v[0,T−1]). (9)

By Cauchy’s interlacing theorem (Horn and Johnson,
1994, Corollary 3.1.3),

σ1

(
Hn+1(u[0,T−1])

)
≤ σn+1

([
H1(x[0,T−n−1])
Hn+1(u[0,T−1])

])
. (10)

By the Courant-Fischer-Weyl max-min principle (Horn
and Johnson, 1994, Theorem 3.1.2),

σn+1

([
H1(x[0,T−n−1])
Hn+1(u[0,T−1])

])
= min

U
dim(U)=n+1

max
y∈U
‖y‖=1

∥∥∥∥∥
[
H1(x[0,T−n−1])
Hn+1(u[0,T−1])

]>
y

∥∥∥∥∥ .

By Lemma 3.1, rank(Θz) = n+ 1, and hence

σn+1

([
H1(x[0,T−n−1])
Hn+1(u[0,T−1])

])
≤ max
y∈imΘ>

z

‖y‖=1

∥∥∥∥∥
[
H1(x[0,T−n−1])
Hn+1(u[0,T−1])

]>
y

∥∥∥∥∥
= max

q

‖Θ>
z q‖=1

∥∥σHn+1(v[0,T−1])
>q
∥∥

≤ σ
∥∥Hn+1(v[0,T−1])

>∥∥ max
q

‖Θ>
z q‖=1

‖q‖

≤ σ
√
n+ 1 max

q

‖Θ>
z q‖=1

‖q‖, (11)

where the equality comes from (9) and the last inequality
holds because the rows of Hn+1(v[0,T−1]) have norm at

most 1. Without loss of generality, write q =
∑n+1
j=1 αjµj

where αj ∈ R and µj ∈ Rn+1 are orthonormal eigenvectors
of ΘzΘ

>
z corresponding to eigenvalues λj(ΘzΘ

>
z ). Then

max
q

‖Θ>
z q‖=1

‖q‖2 = max
αj∑n+1

j=1
α2

jλj(ΘzΘ>
z )=1

n+1∑
j=1

α2
j .

We see the maximum is achieved for α1 = ± 1√
λ1(ΘzΘ>

z )
,

and αj = 0 for j ∈ {2, . . . , n+ 1}. Hence,

max
‖Θ>

z q‖=1
‖q‖ =

1√
λ1(ΘzΘ>z )

.

Combining the above with (10) and (11), we obtain

σ ≥ σ1

(
Hn+1(u[0,T−1])

)√λ1(ΘzΘ>z )

n+ 1
.

Substituting
√
λ1(ΘzΘ>z ) = σ1(Θz) ≥ ρ by Assump-

tion 3.1 and using the fact that u[0,T−1] is δ
√
n+1
ρ -

persistently exciting of order n+ 1 yields the result. �

The theorem tells us how the inputs should be chosen
such that for any user defined parameter δ, the smallest
singular value of the data matrix (2) is lower bounded by δ.
The degree of persistency of excitation needed depends on
ρ which is assumed to be a prior in our setting. However,
Lemma 3.1 shows that, for any controllable system (1),
there exists ρ0 > 0 such that σ1(Θz) ≥ ρ0 for all z.
To design an input sequence so that (5) holds, we only

require a lower bound on ρ0 since any input that is δ
√
n+1
ρ0

-

persistently exciting of order n+1 yields the desired result.

4. NUMERICAL EXAMPLE

In this section we compare the performance of several data
sets with varying degrees of persistency of excitation for a
data-driven control task. Our hypothesis is that data sets
whose inputs have a larger degree of persistency excitation
will perform better when the data is corrupted by noise.
Consider a controllable system (3) with

A =

[
1 1
0 1

]
, B =

[
0
1

]
.

We generated 3 input data sequences of length T = 50 with
varying degrees of persistency of excitation. We denote
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the i-th input data sequence by u
(i)
[0,T−1]. The inputs

for each input data sequence were chosen as u(1)(t) ∼
N (0, 10−2), u(2)(t) = 0.05u(1)(t), u(3)(t) = 0.01u(1)(t) for
all t ∈ {0, . . . , T − 1}. As a result, we obtained 3 input
sequences that were α(i)-persistently exciting of order n+
1, with α(1) = 0.48, α(2) = 0.024, α(3) = 0.0048. The

corresponding state data x
(i)
[0,T ] was generated by (3) where

the noise w(t) ∼ N (0, 10−4In) was the same across all data
sets. Using the data, we constructed 3 different data-driven
one-step predictors as in (4)

x(t+ 1) = H1

(
x

(i)
[1,T ]

)H1

(
x

(i)
[0,T−1]

)
H1

(
u

(i)
[0,T−1]

)† [x(t)
u(t)

]
. (12)

We then used the predictor equations (12) for a predictive
control reference tracking task by solving the following
optimization problem in a receding horizon fashion:

min
x,u

Tf−1∑
k=0

‖xk − r‖2 + ‖uk‖2

s.t. x0 = x(t)

xk+1 = H1

(
x

(i)
[1,T ]

)H1

(
x

(i)
[0,T−1]

)
H1

(
u

(i)
[0,T−1]

)† [xk
uk

]
k ∈ {0, . . . , Tf − 1}

(13)

where x(t) denotes the current state at time t, r ∈ Rn
is the reference, and Tf = 10 is the prediction horizon.
System (3) was simulated for each data set with noise
w(t) ∼ N (0, 10−4I) the same across all simulations and in-
puts obtained by solving (13) in receding horizon. Figure 1
depicts the performance of the three data-driven one-step
predictors for the reference tracking task.

0 5 10 15 20 25 30 35 40
0

10

20

0 5 10 15 20 25 30 35 40

-5

0

5

10

Fig. 1. State trajectories x(t) = (x1(t), x2(t)) controlled
by solving (13) in a receding horizon fashion for three
data sets with varying degrees of persistency of excita-
tion. The legend indicates the minimum singular value
of the data matrices (2) used for prediction in (13).

For this example, we approximated ρ0 for which Lemma 3.1
holds. By randomly sampling vectors z with ‖z‖ = 1, we
obtained ρ0 ≈ 0.105. Thus, Assumption 3.1 should hold
for any ρ ≤ ρ0. Based on ρ0 and the degree of persistency
of excitation of each input sequence, we can compute the
value δ(i) for which (5) holds for the i-th input/state
data. Theorem 3.1 guarantees that (5) holds for each
data set with δ(1) = 2.9 × 10−2, δ(2) = 1.4 × 10−3, and

δ(3) = 2.9×10−4. As we see from Figure 1, the performance
of the data-driven predictors decreases as the minimum
singular value of the data matrix (2) decreases. This can
be attributed to the fact that the one-step predictor in (12)
becomes more accurate as the smallest singular value of the
data matrix decreases (as seen in Example 2.1), leading to
better performance.

5. CONCLUSION

In this extended abstract, we defined a new quantitative
notion of persistency of excitation by analyzing the min-
imum singular value of an input Hankel matrix. Based
on this notion, we specified to what degree the inputs
should be persistently exciting to ensure that the small-
est singular value of the resulting input/state matrix is
larger than a user defined threshold, thus generalizing the
celebrated fundamental lemma. As a result, we are able
to move away from classical rank conditions and give a
quantitative notion of data suitability. A comparison of
the control performance of several data sets with varying
degrees of persistently exciting input data suggested that
data being generated by inputs with a larger degree of
persistency of excitation are better suited to control tasks.
Future work includes extending these results to the general
input/output case.
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Abstract: We propose a novel fully decentralized energy management scheme for aggregating
distributed energy resources for grid flexibility services in wholesale electricity market. We model
this problem as a multi-leader-multi-follower noncooperative game. Then a fully distributed
algorithm in discrete-time is proposed to solve the problem and find the Nash Equilibrium(NE).
In this algorithm, each aggregator only needs to exchange its estimate of the aggregate and
an auxiliary variable with its neighbours. This scheme shows the scalability and efficiency in
aggregating flexibility services from a large number of prosumers.

Keywords: Game theory, Smart grid, Flexibility service, Nash equilibrium seeking.

1. INTRODUCTION

In recent years, the growing climate and environmental
concerns have led to a rapid increase of the contribution
of renewable energy capacities in electricity generation.
However, the variability and uncertainty of renewable gen-
eration bring potential challenges in the operation of power
systems and influence the performance and outcome of
electricity market. Designing energy management mech-
anisms for Distributed Energy Resources(DERs) in the
smart grid has been considered as a potential solution
for a renewable-power future. The smart grid is typically
composed of a variety of new participants, such as micro-
grids, aggregators, and prosumers. Each of them is self-
interested and has different capabilities and objectives.
This heterogeneous nature of the smart grid motivates the
adoption of game theory as an analytical tool to study the
interactions among them.

In particular, managing DERs to response to the system’s
overall condition is a powerful solution to increasing grid
flexibility and facilitating the integration of renewable
generations. This will enable end-consumers to take up
an unprecedented proactive role(i.e. prosumers) and reap
financial benefits through leveraging their flexibility by
providing services to system operators. However, it is diffi-
cult to imagine that all these individual prosumers directly
participate in the wholesale electricity market, thus a
market participant, the aggregator, has been introduced
to manage these DERs locally and ensure no distribution
constraints are violated (Gkatzikis et al. (2013)). There are
two main approaches which an aggregator can employ to
steer the prosumers to the optimal operation point. One
is the fully centralized scheme, where the aggregator has
access to all parameters of the prosumers (Parvania et al.

(2013)). The other one is pricing based methods, where the
aggregator is treated as a leader and proposes some prices
to the following prosumers (see e.g. Zugno et al. (2013)).

Competition among participating agents can be incopo-
rated in a game theoretic setup, where the aggregator aims
to steer the prosumers to a desired setpoint, often taken to
be the Nash equilibrium of the game. Designing algorithms
for equilibrium-seeking problems has attracted substantial
research interest in the last decades. These algorithms can
be roughly divided into two categories in terms of methods
used: gradient-based algorithms (Franci and Grammatico
(2020), Pavel (2019)) and proximal-point algorithms (Bel-
gioioso and Grammatico (2019), Yi and Pavel (2018)).
In these works, each player is required to know or es-
timate the overall information of all the other players.
The algorithm in (Koshal et al. (2016)) only requires each
player maintains an estimate of the true aggregate, but
it requires diminishing step-sizes for exact convergence.
The work (Gadjov and Pavel (2020)) proposes a single-
layer distributed algorithm that reaches a variational gen-
eralized NE under constant step sizes while the initial
values of aggregate estimations must be same with those of
actions. In (De Persis and Grammatico (2019), Shakarami
et al. (2019)), continuous-time algorithms for aggregative
games are proposed. While discrete-time algorithms are in
general more suited for implementations in energy-domain
applications, their design requires additional care, e.g. a
careful choice of step sizes is needed.

This work consists of two parts: network modeling and
game-theoretic algorithms. In the first part, we consider a
fully decentralized energy management scheme for aggre-
gating distributed energy resources for grid flexibility ser-
vices in wholesale electricity market. We explicitly model
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this scheme as a multi-leader-multi-follower game. In the
upper level, the aggregators aim to maximize their profits
by incentivizing the prosumers to utilize their flexible
resources and providing these services to the transmission
network. In the lower level, the prosumers act as price
takers and change their supplies or demands based on the
incentivizing prices sent by the aggregators.

The dominant scenario in the literature of game-theoretic
algorithms in energy management systems is to consider
a single aggregator and study the competition among dif-
ferent prosumers. In this work, on the other hand, we con-
sider a multi-aggregator scheme in which the aggregators
compete among each other to increase their profit in the
market. A system operator aims to steer the aggregators
towards the NE of the game. The challenge here is that
the profit of an aggregator itself depends on the cost
functions of all of its prosumers. The latter cost functions
are unknown to the aggregator due to privacy reasons.

After carefully modeling the competition among ag-
grgeators and their coupling with the prosumers, we pro-
pose a fully distributed algorithm in discrete-time to solve
the resulting optimization problem and steer the aggrega-
tors towards the NE of the game. Each aggregator only
needs to exchange its estimate of the aggregate and an
auxiliary variable with its neighbours.

Notation We use 1 to denote a vector of all ones. We
use ∥A∥ to denote the maximum singular value of A. For
a differentiable scalar function f , we use f ′ and f−1 to
denote its derivative and inverse function respectively.

Operator theoretic definitions We use Id(·) to denote
the identity operator. For a closed set Ω ∈ Rn, the
mapping ProjΩ denotes the projection onto Ω. The set-
valued mapping NΩ denotes the normal corn operator for
the set Ω ∈ Rn. For a non-differentiable function f , ∂f
denotes its subdifferential set-valued mapping, defined as
∂f = {v ∈ Rn|f(z) ≥ f(x)+v⊤(z−v)} for all z ∈ dom(f).
A set-valued mapping F is ℓ-Lipschitz continuous, with
ℓ > 0, if ∥u − v∥ ≤ ℓ∥x − y∥ for all x, y ∈ Rn, u ∈ F(x),
v ∈ F(y). The mapping F is µ-strongly monotone, with
µ > 0, if (u − v)⊤)(x − y) ≥ µ∥x − y∥2 for all x, y ∈ Rn,
u ∈ F(x), v ∈ F(y). The mapping F is η-averaged, with
η ∈ (0, 1), if ∥u− v∥2 ≤ ℓ∥x− y∥2 − 1−η

η ∥(Id− (F )(x))−
(Id− (F )(y))∥2, for all x, y ∈ Rn, u ∈ F(x), v ∈ F(y). The
mapping F is β-cocoercive, with β > 0, if βF is 1

2 -averaged.

2. PROBLEM FORMULATION

We consider a scenario where there is an energy supply
deficit in the wholesale electricity market. This can be due
to a decrease in power generation from a wind or solar
farm because of a change in weather conditions and power
demand. The Transmission System Operator can procure
energy flexibility services to complement this deficit from
Distributed Energy Resources (DERs) connected at the
distribution level. We design a fully decentralized energy
management scheme for aggregating these DERs to freely
participate in the wholesale market and introduce a group
of aggregators to manage a population of prosumers, as
shown in Fig.1. The case of an excess in energy supply can
be treated analogously.

Transmission System Operator

Aggregator1 Aggregator� Aggregator�

�

�1 �� ��
communication

Pro11 Pro1� Pro1�1

�1 ���11 �12 �1�1
��1 ��2 ����

Pro�1 Pro�� Pro���

Fig. 1. The decentralized energy management scheme

2.1 Aggregator/Prosumer Model

The set of aggregators is denoted by I = {1, 2, ..., N}
and aggregator i provides flexibility xi by incentivizing
the prosumers to consume less or generate more energy.
Each aggregator aims to maximize its net revenue Ji, and
we employ the following optimization problem,

max
0≤xi≤xi

Ji(xi, pi, s(x)) = −xipi + l
(
s(x)

)
xi (1)

where pi and l(·) are the unit prices for buying and selling
flexibility services respectively, l : R → R, s : RN → R,
and x̄i is the maximum available flexibility due to the line
capacity constraint. We assume that the selling price l(·)
affinely depends on the aggregated flexibility, namely

l(s(x)) = l0 − λs(x), (2)

where λ is a positive parameter corresponding to price
elasticity and l0 is a basic price for unit flexibility; x =
col(xi)i∈I , s(x) =

1
N 1⊤

Nx and the coefficient 1
N is included

for convenience. We note that the individual optimization
problems are coupled with each other through the selling
price l.

We denote the the prosumer ij’s flexibility by xij for
each j ∈ Pi = {1, 2, ..., Pi}, where Pi is the set of pro-
sumers assosiated with aggregator i. So the total flexibility
xi :=

∑
j∈Pi

xij . The prosumer ij’s goal is to maximize
its revenue by altering its demand or supply based on
the incentivizing price pi. This results in the following
optimization problem,

max
xij≥0

Uij(xij) = xijpi − gij(xij) (3)

where Uij(·) denotes the utlitiy function of prosumer
ij, and gij(·) accounts for the cost/inconvenience for
providing the flexibility xij . We note that the first term
in (3) is the payment received from aggregator i in return
for the provided flexibility.

The model (1)-(3) for the aggregator i and its prosumers
gives rise to a bilevel optimization problem. In the re-
minder of this section, we transfer this model into an
equivalent convex problem by imposing a few assumptions.

Assumption 1. For each j ∈ Pi and xij ≥ 0, the cost
function gij is twice continuously differentiable and strictly
convex with g′ij(0) ≥ 0. Moreover, we assume that g′ij is
convex, µij-strongly monotone and ℓij-Lipschitz continu-
ous, for some constant µij , ℓij > 0.

The most common cost function, linear quadratic function
gij =

1
2aijx

2
ij+bijxij , aij > 0, bij > 0, satisfies Assumption

1 with µij = ℓij = aij .

The prosumer maximization problem (3) admits the fol-
lowing well-known solution descending from the KKT con-
dition.
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Lemma 1. Let Assumption1 hold. Then, (3) admits a
unique solution given by:

xij = πij(pi) =

{
g′−1
ij (pi) if pi ≥ g′ij(0)
0 if pi < g′ij(0)

(4)

Then we can build the relationship between pi and xi by
the following Lemma.

Lemma 2. Let Assumption 1 hold and let P̄i ⊆ Pi denote
the set of prosumers providing flexibility, i.e., xij > 0 for
all j ∈ P̄i. Then, there exits a continuous function ui
satisfying

pi = ui(xi) (5)

with the following properties: (i) ui ≥ maxj∈M{g′ij(0)};
(ii) ui is continuous, strictly increasing and convex; (iii)
µi-strongly monotone and ℓi-Lipschitz continuous, with
µi = 1/

∑
j∈P̄i

1
µij

and ℓi = 1/
∑

j∈P̄i

1
ℓij

.

To obtain more explicit expressions for optimal flexibility
response xi and price pi, we take linear-quadratic function
as an example for cost function and consider all prosumers
entering the market. In this case, we have

ui(xi) = βi + αixi (6)

where αi = 1/
∑

j∈Pi

1
aij

and βi =
∑

j∈Pi

bij
aij
/

∑
j∈Pi

1
aij

.

2.2 Game Theoretic Formulation

Following Lemma 2, we can substiute pi = ui(xi) in (5) to
obtain

min
x
i
≤xi≤xi

Ji(xi, s(x)) = xiui(xi)− l
(
s(x)

)
xi, (7)

where l
(
s(x)

)
is given by (2) and xi := u−1

i (maxj∈M{g′ij(0)}).
We now write the noncooperative game among aggregators
in a compact form as a triple

G = {I, (Ωi)i∈I , (Ji(xi, s(x)))i∈I},
where I is the set of the aggregators participating in the
game,

Ωi = {xi ∈ R|xi ≤ xi ≤ xi}
is the set of possible strategies that aggregator i can
take, and Ji(xi, s(x)) is the objective function. For this
aggregative game, we obtain the subdifferential of the
objective function with respect to xi as

fi(xi, s) = ∂xi
Ji(xi, s(x)) =

ui + (∂xiui(xi) + λ)xi +Nλs− l0.
(8)

The following property plays a crucial role for our NE
seeking algorithm design.

Lemma 3. Let Assumption 1 hold. Then, for all i ∈ I,
xi ∈ Ωi and s ∈ R, the mapping xi → fi(xi, s) is µ̄i-
strongly monotone with µ̄i := 2µi + λ and ℓ̄i-Lipschitz
continuous with ℓ̄i := 2ℓi + λ.

The following lemma demonstrates the existence and
uniqueness of the NE.

Lemma 4. Let Assumption 1 hold and 2µi + λ > Nλ.
Then, the aggregative game G has a unique NE x∗, which
satisfy

0 ∈ F (x∗, s(x∗)) +NΩ(x
∗) (9)

where, F (x, s(x)) := col(fi(xi, s(x))i∈I , Ω :=
∏

i∈I Ωi.

We consider the aggaregators communicate only locally
with their neighbours, over a communication graph G.

Assumption 2. The communication graph G is undirected
and connected.

3. ALGORITHM

3.1 Algorithm Design

In this section we present our proposed algorithm. To offset
the lack of full information, each aggregator i maintains
a local estimate σi of the aggregate s(x) and an addi-
tional auxiliary variable ψi to reach consensus of the local
estimate, and exchanges them with its neighbours over
G. The goal is that over time each aggregator will have
the same aggregate estimate, equal to the average of the
aggregators’ actions, and its decision will correspond to
NE. The proposed distributed algorithm is given below.

Algorithm 1 Distributed algorithm 1

Initialization: for all i ∈ I, set xi(0) ∈ Ωi, σi(0) ∈ R,
ψi(0) ∈ R
Iterate until convergence: For all i ∈ I, aggregator i
exchanges σi(k), ψi(k) with its neighbours Ni.
Local variable update:

xi(k + 1) = ProjΩi
(xi(k)− τiκifi(xi(k), σi(k)))

ψi(k + 1) = ψi(k) + vi(
∑
j∈Ni

(σi(k)− σj(k)))

σi(k + 1) = σi(k) + ρi(−σi(k) + xi(k)

−
∑
j∈Ni

(2ψi(k + 1)− ψi(k)))

where κi > 0 is a designed parameter, τi, vi and ρi are
positive step sizes.

To write the algorithm more compactly, letψ = col(ψi)i∈I ,
σ = col(σi)i∈I , K = diag(κi)i∈I , τ = diag(τi)i∈I , v =
diag(vi)i∈I , ρ = diag(ρi)i∈I , F (x,σ) = col(fi(xi, σi))i∈I .
Consequently, we can write the dynamics in Algorithm 1
as,

x(k + 1) = ProjΩ(x(k)− τKF (x(k),σ(k)))
ψ(k + 1) = ψ(k) + vLψ(k)

σ(k + 1) = σ(k) + ρ(x(k)− σ(k)− L(2ψ(k + 1)−ψ(k)))
(10)

where L is the Laplacian matrix of G.

3.2 Steady-State Analysis

Before we provide a convergence analysis, we show that
the steady state of the dynamics in (10) yields the NE of
the game. To this end, we define

Γ([x;ψ;σ]) :=

[
KF (x,σ) +NΩ(x)

−Lσ
σ − x+ Lψ

]
(11)

In what follows, we show that (10) can be written as the
following preconditioned forward-backward iteration:

ω(k + 1) = (Id + Φ−1B)−1 ◦ (Id− Φ−1A)(ω(k))

= VΦ ◦ UΦ
(12)
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where ω = col(x,ψ,σ), UΦ = (Id − Φ−1A), VΦ = (Id +
Φ−1B)−1, two operators A and B are split from Γ

A :=

[
KF (x,σ)

0
−x+ σ

]
,B :=

[
NΩ(x)
−Lσ
Lψ

]
(13)

and

Φ =

τ−1 0 0
0 v−1 L
0 L ρ−1

 . (14)

The main result of this subsection is provided below.

Proposition 1. Let Assumption 1 and 2 hold. Assume that
2µi + λ > Nλ, τi, vi and ρi are all positive, and let β and
v be chosen such that

max {ρi}i∈I < (∥L∥2v)−1. (15)

Then, dynamics (10) is equivalent to the forward-backward
iteration (12), hence the steady state ω = col(x,ψ,σ) of
(10) coincides with the fix point of iteration (12) and the
zero of the mapping Γ in (11). Moreover, x is the NE x∗

of game G.

3.3 Convergence Analysis

In this subsection, we show the convergence of Algorithm
1 to NE under suitable choices of step sizes.

We state several results which we will use to claim the
convergence of Algorithm 1.

Lemma 5. Let Assumption1 and 2 hold, 2µi + λ > Nλ
and

κi ∈
(
(
√
µ̄i −

√
µ̄i −Nλ)2

ℓ̄2i
,
(
√
µ̄i +

√
µ̄i −Nλ)2

ℓ̄2i

)
(16)

for i ∈ I, the mapping Ã is cocoercive,

Ã :=

[
KF (x,σ)
−x+ σ

]
(17)

Using the fact that Ã is cocoercive, we can now show
properties for the operators A and B, UΦ, VΦ in the Φ-
induced norm.

Lemma 6. Let Assumption1 and 2 hold, 2µi+λ > Nλ, κi
satisfies (16), τi, vi and ρi are all positive and satisfy (15).
Then, Φ−1A is ξ-cocoercive, UΦ is 1

2ξ -averaged, Φ
−1B is

maximally monotone, VΦ is 1
2 -averaged in the Φ-induced

norm.

Next we show the operator VΦ ◦ UΦ is averaged if the step
sizes are chosen small enough.

Lemma 7. The forward-backward iteration in (12), is θ-
averaged, with θ = 1

2−1/(2ξ) ∈ (0, 1), if

τi <
2ϵ

ℓ̃2
, ρi <

2ϵ

ℓ̃2
, vi <

1

∥L∥2
(
1

ρi
− ℓ̃2

2ϵ
) (18)

where ℓ̃ = max{max{ℓ̄i}i∈I , Nλ}+ 1, ϵ = min{ϵi}i∈I and

ϵi = −
√

(Nλκi+1)2+(κiµ̄i−1)2

2 + κiµ̄i+1
2 .

Now we can show the convergence of Algorithm 1.

Theorem 1. Let Assumption1 and 2 hold, 2µi+λ > Nλ, κi
satisfies (16), τ , β and v are chosen as in Lemma 7. Then,
the iteration (12) is θ-averaged, with θ ∈ (0, 1), thus the
sequence defined by Algorithm 1 converges to the zero of
the mapping Γ, ω = col(x,ψ,σ).

Proof of Theorem 1(sketch): It follows by Proposition 1
that Algorithm 1 corresponds to the fix point of iteration
(12) of the mapping VΦ ◦ UΦ, which is θ-averaged, with
θ ∈ (0, 1), by Lemma 7, if the step sizes satisfy (18). Then
the convergence of the sequence generated by the iteration
(12) to ω = col(x,ψ,σ) follows by (Bauschke et al. (2011),
Prop. 15.5).
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Abstract: We construct a structure-preserving finite element method and time-stepping scheme
for inhomogeneous, incompressible magnetohydrodynamics (MHD). The method preserves
energy, cross-helicity (when the fluid density is constant), magnetic helicity, mass, total squared
density, pointwise incompressibility, and the constraint divB = 0 to machine precision, both at
the spatially and temporally discrete levels.

Keywords: Structure-preserving discretization, magnetohydrodynamics, finite element method,
variational formulation, conservation laws.

1. INTRODUCTION

We construct a structure-preserving finite element method
for solving the inhomogeneous, incompressible magneto-
hydrodynamic (MHD) equations on a bounded domain
Ω ⊂ R3. These equations seek a velocity field u, magnetic
field B, pressure p, and density ρ satisfying

ρ(∂tu+ u · ∇u)− (∇×B)×B = −∇p, in Ω× (0, T ), (1)

∂tB −∇× (u×B) = 0, in Ω× (0, T ), (2)

∂tρ+ div(ρu) = 0, in Ω× (0, T ), (3)

div u = divB = 0, in Ω× (0, T ), (4)

u · n = B · n = 0, on ∂Ω× (0, T ), (5)

u(0) = u0, B(0) = B0, ρ(0) = ρ0, in Ω. (6)

The method we construct exactly preserves energy 1
2

´
Ω
ρu·

u + B · B dx, cross-helicity
´

Ω
u · B dx (when ρ ≡ 1),

magnetic helicity
´

Ω
A · B dx, mass

´
Ω
ρ dx, total squared

density
´

Ω
ρ2 dx, and the constraints div u = divB = 0

at the spatially and temporally discrete level. Here, A
denotes the magnetic potential; that is, A is any vector
field satisfying ∇×A = B and A× n|∂Ω = 0.

Our method, developed in Gawlik and Gay-Balmaz (2022),
builds upon a growing body of literature on structure
preservation in incompressible MHD simulations. Much of
this literature focuses on the setting of constant density.
In that setting, researchers have constructed energy-stable
schemes that preserve divB = 0 Hu et al. (2017); energy-
stable schemes that preserve div u = divB = 0 Hiptmair
et al. (2018); schemes that preserve energy, cross-helicity,
and div u = divB = 0 Liu and Wang (2001); Gawlik et al.
(2011); and schemes that preserve energy, cross-helicity,´
Adx, and div u = divB = 0 in two dimensions Kraus

and Maj (2017). More recently, Hu, Lee, and Xu Hu

? Sponsor and financial support acknowledgment goes here. Paper
titles should be written in uppercase and lowercase letters, not all
uppercase.

et al. (2021) constructed a finite element method for
homogeneous, incompressible MHD that preserves energy,
cross-helicity, magnetic helicity, and divB = 0.

2. WEAK FORMULATION AND CONSERVED
QUANTITIES

For every pair of smooth vector fields v and C satisfying
v · n|∂Ω = C · n|∂Ω = 0 and every pair of smooth scalar
fields σ and q, the solution (u,B, ρ, p) of (1-6) satisfies

〈∂t(ρu), v〉+ a(ρu, u, v)− a(B,B, v)

+b(u · u/2, ρ, v) = 〈p̃,div v〉, (7)

〈∂tB,C〉+ a(C,B, u) = 0, (8)

〈∂tρ, σ〉+ b(σ, ρ, u) = 0, (9)

〈div u, q〉 = 0, (10)

where p̃ = p+ ρu · u and

a(w, u, v) = 〈w,∇× (u× v)〉,
b(f, g, w) = −〈w · ∇f, g〉.

The structure of equations (7-10) is made even more
transparent if one introduces the Lagrangian `(u,B, ρ) =
1
2 〈ρu, u〉 −

1
2 〈B,B〉 of inhomogeneous, incompressible

MHD. In terms of δ`
δu = ρu, δ`

δB = −B, and δ`
δρ = 1

2u · u,

equations (7-10) take the form〈
∂t
δ`

δu
, v
〉

+ a
( δ`
δu
, u, v

)
+ a
( δ`
δB

,B, v
)

+b
( δ`
δρ
, ρ, v

)
= 〈p̃,div v〉, (11)

〈∂tB,C〉+ a(C,B, u) = 0, (12)

〈∂tρ, σ〉+ b(σ, ρ, u) = 0, (13)

〈div u, q〉 = 0. (14)

It is this variational structure that inspired the numerical
method we propose, see Gawlik and Gay-Balmaz (2021a,b,
2022).
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The formulation (7-10) allows one to easily deduce its
invariants of motion from basic properties of the trilinear
forms a and b. Namely, a and b satisfy:

a(w, u, v) = −a(w, v, u), (15)

a(w, u, v) = 0 if u · n|∂Ω = v · n|∂Ω = 0,∇× w = u, (16)

b(f, g, w) = −b(g, f, w) if divw = 0, w · n|∂Ω = 0. (17)

These properties give rise to the following conservation
laws. Taking σ = 1 in (9) gives:

d

dt

ˆ
Ω

ρ dx = 〈∂tρ, 1〉 = −b(1, ρ, u) = 0.

Taking σ = ρ in (9) and using (17) gives:

d

dt

1

2

ˆ
Ω

ρ2 dx = 〈∂tρ, ρ〉 = −b(ρ, ρ, u) = 0.

Taking v = u in (7) and C = B in (8) gives:

1

2

d

dt

ˆ
Ω

ρu · u+B ·B dx

= 〈∂t(ρu), u〉 − 〈∂tρ, u · u/2〉+ 〈∂tB,B〉
= 〈p̃,div u〉 − a(ρu, u, u) + a(B,B, u)

− b(u · u/2, ρ, u)− 〈∂tρ, u · u/2〉 − a(B,B, u) = 0,

where we used div u = 0, (15), and (9). If A satisfies
∇×A = B and A× n|∂Ω = 0, then:

d

dt

ˆ
Ω

A ·B dx = 〈∂tA,B〉+ 〈A, ∂tB〉

= 〈∂tA,∇×A〉+ 〈A, ∂tB〉 = 〈∇ × (∂tA), A〉+ 〈A, ∂tB〉
= 〈∂tB,A〉+ 〈A, ∂tB〉 = −2a(A,B, u) = 0,

from (8) and (16). Finally, if ρ ≡ 1, then taking v = B
in (7) and C = u in (8) gives:

d

dt

ˆ
u ·B dx = 〈∂tu,B〉+ 〈∂tB, u〉

= 〈p̃, divB〉 − a(u, u,B) + a(B,B,B)

− b(u · u/2, 1, B)− a(u,B, u) = 0,

where we used divB = 0, b(u·u, 1, B) = −b(1, u·u,B) = 0,
and (15).

3. SPATIAL DISCRETIZATION

To construct a spatial discretization of (7-10) that pre-
serves all the invariants discussed in Section 2, we will
design discretizations of the trilinear forms a and b that
satisfy analogues of (15), (16), and (17). By a careful choice
of finite element spaces, the method we construct will also
preserve the constraints div u = 0 and divB = 0 pointwise.

We make use of the following function spaces:

H1
0 (Ω) = {f ∈ L2(Ω) | ∇f ∈ L2(Ω)3, f = 0 on ∂Ω},

H0(curl,Ω) = {u ∈ L2(Ω)3 | curlu ∈ L2(Ω)3, u× n = 0 on ∂Ω}
H0(div,Ω) = {u ∈ L2(Ω)3 | div u ∈ L2(Ω), u · n = 0 on ∂Ω},
H̊(div,Ω) = {u ∈ H0(div,Ω) | div u = 0},
L2́

=0(Ω) = {f ∈ L2(Ω) |
´

Ω
f dx = 0}.

Let Th be a triangulation of Ω, and let Eh denote the
set of interior 2-dimensional faces in Th. For each integer
s ≥ 0 and each simplex K ∈ Th, we denote by Ps(K) the
space of polynomials of degree at most s on K. On a face
e = K1 ∩K2 ∈ Eh, we denote the jump and average of a
piecewise smooth scalar function f by

[[f ]] = f1n1 + f2n2, {f} =
f1 + f2

2
,

where fi = f |Ki
, n1 is the normal vector to e pointing

from K1 to K2, and similarly for n2.

Our numerical method will make use of four approxima-
tion spaces: a space Udiv

h ⊂ H0(div,Ω) for the velocity u
and magnetic fieldB, a space Fh ⊂ L2(Ω) for the density ρ,
a space Qh ⊂ L2́

=0
(Ω) for the pressure p̃, and an auxiliary

space U curl
h ⊂ H0(curl,Ω). For the velocity and magnetic

field, we use the Raviart-Thomas space

RTs(Th) = {u ∈ H0(div,Ω) |
u|K ∈ Ps(K)3 + xPs(K),∀K ∈ Th},

where s ≥ 0 is an integer. For the pressure, we use the
zero-mean subspace of the discontinuous Galerkin space

DGs(Th) = {f ∈ L2(Ω) | f |K ∈ Ps(K), ∀K ∈ Th}.
For the density, we use DGm(Th), where m ≥ 0 is an
integer (not necessarily equal to s). For the auxiliary space
U curl
h , we use the space of Nedelec elements of the first

kind,

NEDs(Th) = {u ∈ H0(curl,Ω) |
u|K ∈ Ps(K)3 + x× Ps(K)3, ∀K ∈ Th}.

In summary,

Udiv
h = RTs(Th), Qh = DGs(Th) ∩ L2́

=0(Ω),

U curl
h = NEDs(Th), Fh = DGm(Th).

We define trilinear forms ah : L2(Ω)3×L4(Ω)3×L4(Ω)3 →
R and bh : L2(Ω)× L2(Ω)× Udiv

h → R by

ah(w, u, v) =

ˆ
Ω

w · ∇ × πcurl
h (πcurl

h u× πcurl
h v) dx, (18)

bh(f, g, u) = −
∑
K∈Th

ˆ
K

(u · ∇πhf)πhg dx (19)

+
∑
e∈Eh

ˆ
e

u · [[πhf ]]{πhg} ds, (20)

where πcurl
h : L2(Ω)3 → U curl

h and πh : L2(Ω) → Fh
denote the L2-orthogonal projectors onto U curl

h and Fh,
respectively. Note that bh (restricted to Fh × Fh × Udiv

h )
is a standard discontinous Galerkin discretization of the
scalar advection operator Brezzi et al. (2004).

These trilinear forms possess two important properties
that mimic (15-17). The trilinear form ah is alternating
in its last two arguments:

ah(w, u, v) = −ah(w, v, u), (21)

for all (w, u, v) ∈ L2(Ω)3×L4(Ω)3×L4(Ω)3. Second, using
integration by parts, one checks that bh is alternating in its
first two arguments if its last argument is divergence-free:

bh(f, g, u) = −bh(g, f, u), (22)

for all (f, g, u) ∈ L2(Ω)×L2(Ω)× (Udiv
h ∩ H̊(div,Ω)). The

additional property of ah is shown as follows.

Lemma 3.1. The trilinear form (18) satisfies

ah(w, u, v) = 0 if ∇× w = u. (23)

Proof. If ∇× w = u, then we can integrate (18) by parts
and use the fact that n× πcurl

h (πcurl
h u× πcurl

h v)
∣∣
∂Ω

= 0 to
obtain
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ah(w, u, v) = 〈w,∇× πcurl
h (πcurl

h u× πcurl
h v)〉

= 〈∇ × w, πcurl
h (πcurl

h u× πcurl
h v)〉

= 〈u, πcurl
h (πcurl

h u× πcurl
h v)〉

= 〈πcurl
h u, πcurl

h u× πcurl
h v〉 = 0. �

We define our semidiscrete numerical method as follows.
We seek u,B ∈ Udiv

h , ρ ∈ Fh, and p ∈ Qh such that

〈∂t(ρu), v〉+ ah(ρu, u, v)− ah(B,B, v)

+bh(u · u/2, ρ, v) = 〈p,div v〉, (24)

〈∂tB,C〉+ ah(C,B, u) = 0, (25)

〈∂tρ, σ〉+ bh(σ, ρ, u) = 0, (26)

〈div u, q〉 = 0, (27)

for all v ∈ Udiv
h , C ∈ Udiv

h , σ ∈ Fh, q ∈ Qh.

Proposition 3.2. (Gawlik and Gay-Balmaz (2022)). The nu-
merical method (24-27) exactly preserves

´
Ω
ρ dx,

´
Ω
ρ2 dx,´

Ω
ρu · u+B ·B dx,

´
Ω
A ·B dx, and (if ρ ≡ 1)

´
Ω
u ·B dx.

Furthermore, div u(t) ≡ 0 and divB(t) ≡ 0 for every t.

Proof. We only prove the conservation of magnetic helicity,
see Gawlik and Gay-Balmaz (2022) for the other ones.
From (23), if A is any vector field satisfying ∇ × A = B
and A× n|∂Ω = 0, then

d

dt
〈A,B〉 = 〈∂tA,B〉+ 〈A, ∂tB〉

= 〈∂tA,∇×A〉+ 〈A, ∂tB〉
= 〈∇ × ∂tA,A〉+ 〈A, ∂tB〉
= 2〈∂tB,A〉 = 2〈∂tB, πdiv

h A〉
= −2ah(πdiv

h A,B, u) = −2ah(A,B, u) = 0. (28)

Above, we used (25) with C = πdiv
h A, and we used the

fact that ah(πdiv
h A,B, u) = 〈πdiv

h A,∇ × πcurl
h (πcurl

h B ×
πcurl
h u)〉 = ah(A,B, u) since ∇× U curl

h ⊆ Udiv
h . �

4. UPWINDING

To incorporate upwinding into the density advection equa-
tion (26), one can replace (26) by

〈∂tρ, σ〉+ b̃h(u;σ, ρ, u) = 0,∀σ ∈ Fh, (29)

where we introduced the u-dependent trilinear form

b̃h(u; f, g, v)

= bh(f, g, v) +
∑
e∈Eh

ˆ
e

βe(u)
( v · n
u · n

)
[[πhf ]] · [[πhg]] ds.

(30)

Here {βe}e∈Eh are nonnegative parameters which may
depend on u. A standard choice for βe is

βe(u) = c|u · n|,
Brezzi et al. (2004), where c ∈ [0, 1

2 ], although we have
found that the smooth approximation

βe(u) =
2c

π
(u · n) arctan

(u · n
ε

)
(31)

with ε > 0 small (e.g. ε = 0.01) tends to give better
numerical performance in our experiments. Full upwinding
corresponds to the choice c = 1

2 Brezzi et al. (2004). When
c > 0, this modification of the density advection equation
interferes with conservation of

´
Ω
ρ2 dx and

´
Ω
ρu · u+B ·

B dx, but not
´

Ω
ρ dx since

∑
e∈Eh

´
e
βe(u)[[1]] · [[ρ]] ds =

0. However, there is a simple way to restore energy

conservation. As suggested in Gawlik and Gay-Balmaz
(2020), one replaces the momentum equation (24) by

〈∂t(ρu), v〉+ 〈α, v〉+ b̃h(u; θ, ρ, v) = 〈p,div v〉, (32)

for all v ∈ Udiv
h .

Proposition 4.1. (Gawlik and Gay-Balmaz (2022)). With
the exception of

´
Ω
ρ2 dx, all of the invariants listed

in Proposition 3.2 are preserved by (24-27) if one re-
places (24) and (26) by (29) and (32), respectively.

5. TEMPORAL DISCRETIZATION

We now describe a temporal discretization of (the up-
winded version of) (24-27) that exactly preserves all of the
original invariants of (the upwinded version of) (24-27).

We use a time step ∆t > 0, and we write uk to denote
the value of the discrete solution u at time tk = k∆t. We
denote uk+1/2 = (uk + uk+1)/2, with similar notation for
p, B, ρ, and

(ρu)k+1/2 =
ρkuk + ρk+1uk+1

2
.

We consider the time discretization

〈D∆t(ρu), v〉+ ah(ρu, u, v)− ah(B,B, v)

+b̃h(u;uk · uk+1/2, ρ, v)− 〈pk+1,div v〉 = 0, (33)

〈D∆tB,C〉+ ah(C,B, u) = 0, (34)

〈D∆tρ, σ〉+ b̃h(u;σ, ρ, u) = 0, (35)

〈div uk+1, q〉 = 0, (36)

for all v ∈ Udiv
h , C ∈ Udiv

h , σ ∈ Fh, q ∈ Qh, where we
abbreviate uk+1/2, Bk+1/2, ρk+1/2, and (ρu)k+1/2 as u, B,
ρ, and ρu, respectively, and use the notation D∆t(ρu) =
ρk+1uk+1−ρkuk

∆t , D∆tB = Bk+1−Bk

∆t , etc.

Proposition 5.1. (Gawlik and Gay-Balmaz (2022)). If B0

satisfies divB0 ≡ 0, then the solution of (33-36) satisfiesˆ
Ω

ρk+1 dx =

ˆ
Ω

ρk dx, (37)
ˆ

Ω

ρ2
k+1 dx ≤

ˆ
Ω

ρ2
k dx, (= if βe = 0, ∀e ∈ Eh), (38)

ˆ
Ω

ρk+1uk+1 · uk+1 +Bk+1 ·Bk+1 dx (39)

=

ˆ
Ω

ρkuk · uk +Bk ·Bk dx, (40)
ˆ

Ω

uk+1 ·Bk+1 dx =

ˆ
Ω

uk ·Bk dx, if ρ0 ≡ 1, (41)
ˆ

Ω

Ak+1 ·Bk+1 dx =

ˆ
Ω

Ak ·Bk dx, (42)

as well as div uk ≡ 0 and divBk ≡ 0, for every k. Here,
Ak denotes any vector field satisfying ∇ × Ak = Bk and
Ak × n|∂Ω = 0.

6. NUMERICAL EXAMPLE

We simulated a magnetohydrodynamic rotor on Ω =
[0, 1]× [0, 1] with initial conditions

u(x, y, 0) = g(r) (5− 10y, 10x− 5) , (43)

B(x, y, 0) =

(
5

4
√
π
, 0

)
, (44)

ρ(x, y, 0) = 1 + 9g(r), (45)
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where r =
√

(x− 0.5)2 + (y − 0.5)2 and

g(r) =


1, if r ≤ 0.1,

(23− 200r)/3, if 0.1 < r < 0.115,

0, if r ≥ 0.115.

This setup, which leads to the development of torsional
Alfven waves, was considered in (Hiptmair and Pagliantini,
2018, Section 4.3.4) to test a numerical scheme for com-
pressible MHD; here we test our scheme for inhomoge-
neous, incompressible MHD.

We imposed periodic boundary conditions in the x-
direction and u · n = B · n = 0 along y = 0 and
y = 1. We used (33-36) with a time step ∆t = 0.005,
polynomial degree s = 0, and a uniform triangulation of
Ω with maximum element diameter h = 2−6

√
2. We used

upwinding for both the density and momentum.

Plots of the computed solution at time t = 0.5 are shown
in Figure 1. Torsional Alfven waves are seen propagating
away from the center of the domain in the horizontal
direction. One can compare Figure 1 loosely with Figure
4.12 in Hiptmair and Pagliantini (2018), bearing in mind
that the fluid considered there is compressible, and the
solutions computed there are plotted at different times.

Fig. 1. Contours of |u| (top left), |B| (top right), ρ (down
left), and p (down right) at time t = 0.5 in the
magnetohydrodynamic rotor simulation.
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1. INTRODUCTION

Control Lyapunov functions are a commonly used tool for
studying stability and for constructing stabilizing feedback
laws in systems and control theory. Since in most cases
there is no analytic method to compute control Lyapunov
functions, we are interested in the numerical computation
of such functions. However, common numerical methods
often suffer from the curse of dimensionality, i.e., an
exponential growth of the computational effort in the
state dimension. These approaches are thus limited to low-
dimensional systems.
It is known that functions with certain beneficial struc-
tures can be approximated by deep neural networks with-
out suffering from the curse of dimensionality. In this talk,
we discuss the use of deep neural networks for an efficient
approximation of control Lyapunov functions. To this end,
we extend the approach for computing Lyapunov functions
via deep neural networks that has been presented in Grüne
(2021).
Our study is inspired by results concerning the approx-
imation of solutions of partial differential equations and
optimal value functions, see, e.g., Han et al. (2018); Dar-
bon et al. (2020). These references rely on ideas from
reinforcement learning. Alternatively, in Kang et al. (2021)
a supervised learning based method is discussed, where an
external algorithm provides values of a Lyapunov function
that are then used for the training process. We note that
while in our numerical examples we also use ideas from
reinforcement learning, the complexity analysis presented
in this talk is independent of the concrete learning method.
There exist several algorithmically orientated papers that
use neural networks for the computation of control Lya-
punov functions, see, e.g., Long and Bayoumi (1993);
Khansari-Zadeh and Billard (2014); Richards et al. (2018).
Moreover, the authors in Gaby et al. (2021) propose a
training algorithm for a neural network that is based on
a preliminary chosen Lyapunov function candidate. How-
ever, these papers do not provide an analytical investiga-
tion concerning the curse of dimensionality.

⋆ This research has been supported by the German Research Foun-
dation (DFG) under project GR 1569/23-1 within the priority pro-
gram 2298 “Theoretical Foundations of Deep Learning”.

2. PROBLEM FORMULATION

We consider a nonlinear control system of the form
ẋ(t) = f(x(t), u(t)), (1)

where u ∈ L∞(R, U) with U ⊂ Rm and f : Rn×Rm → Rn
is continuous and Lipschitz continuous in x. We assume
that the system (1) has an equilibrium at the origin, i.e.,
f(0, 0) = 0.
Definition 1. Let 0 ∈ D ⊂ Rn be open. A C1-function
V : D → R is called (smooth) control Lyapunov function
if there exist α1, α2, α3 ∈ K∞

1 such that
α1(∥x∥) ≤ V (x) ≤ α2(∥x∥), (2)
inf
u∈U

DV (x)f(x, u) ≤ −α3(∥x∥) < 0 (3)

for all x ∈ D \ {0}.

In the following, we assume that such a smooth control
Lyapunov function exists for the system (1). Note that this
is a sufficient condition for asymptotic null-controllability
of (1) (cf. Sontag (1983)) and is in fact equivalent to the
existence of a (possibly discontinuous) stabilizing feedback
that is robust with respect to perturbations in the state
(cf. Ledyaev and Sontag (1999)).
It is our goal to construct a neural network architecture
that computes a control Lyapunov function avoiding the
curse of dimensionality.

3. DEEP NEURAL NETWORKS

We want to briefly recall the concept of deep neural net-
works and compare the well-known universal approxima-
tion theorem to an approximation result for compositional
functions.
Neural networks take an input vector and process it
through a certain number of layers in order to produce
an output. For our purpose of representing a control
Lyapunov function, we use the input vector x ∈ Rn and a
one-dimensional output W (x; θ) ∈ R. This means that the
input layer possesses N0 = n neurons and the output layer
consists of only one neuron. The numbers Nl of neurons
in the remaining layers (called hidden layers) may vary.
1 We define K∞ as the space of all continuous and strictly increasing
functions α : [0,∞) → [0,∞) with α(0) = 0 and limτ→∞ α(τ) = ∞.
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The vector θ ∈ Rp represents parameters that determine
the output of the neural network and have to be learned
during the training process. Denote with ylk ∈ R the value
of the neuron at position k in layer l. It is determined by
the values of the neurons at the previous layer via

ylk = σl

Nl−1∑
i=1

wlk,i y
l−1
i + blk

 ,

where σl : R → R is the so-called activation function of
the l-th layer and wlk,i, blk ∈ R are parameters that are
comprised in θ. The activation function of the output layer
is usually chosen to be an affine function. Figure 1 shows a
neural network with one hidden layer, where the activation
of the neuron y11 is highlighted. Note that in our setting
we have y0i = xi for i = 1, . . . , n and y21 =W (x; θ).

y01

y02

y0n

y1N1

y13

y12

y11
w1

1,1w1
1,1

w1
1,2w1
1,2

w1
1,nw1
1,n

y21...
...

Fig. 1. Neural network with one hidden layer

Based on Mhaskar (1996), the following universal approx-
imation theorem for single-layer neural networks has been
proven in Poggio et al. (2017).
Theorem 2. Let C > 0 and Kn ⊂ [−C,C]n ⊂ Rn be
compact. Define

Wn
r :=

g ∈ Cr(Kn,R)

∣∣∣∣∣∣
∑

1≤|α|≤r

∥Dαg∥∞,K ≤ 1

,
where for a continuous g : Kn → R we set

∥g∥∞,K := max
x∈Kn

|g(x)|.

Moreover, let σ1 : R → R be a C∞-function that is not
a polynomial. Then for any ϵ > 0 there exists a number
Nϵ ∈ N such that a neural network with one hidden layer
that has at least Nϵ neurons satisfies for all g ∈Wn

r

inf
θ
∥W (x; θ)− g(x)∥∞,Kn ≤ ϵ.

For the number of neurons it holds that
Nϵ = O(ϵ−

n
r )

and this is best possible.

Theorem 2 states that neural networks with one hidden
layer are capable of approximating C1-functions on com-
pact sets. However, the required size of neurons still grows
exponentially in the state dimension. For the class of
compositional functions, the curse of dimensionality can
be avoided.

Definition 3. A function g : Rn → R is called composi-
tional of degree K ∈ N and level L ∈ N, if there are
functions hlj : RK → R, 1 ≤ l ≤ L, 1 ≤ j ≤ n, such
that

g(x) =
n∑
j=1

βjz
L
j ,

where
zlj = hlj(αlj1z

l−1
ilj1

, . . . , αljKz
l−1
iljK

),

for l = 1, . . . , L, z0i = xi, iljk ∈ {1, . . . , n} and αljk,
βj ∈ R.

Let us once again consider the setting of Theorem 2 and
define ΩnK,L as the set of compositional functions with
degree K and level L such that hlj ∈ Wn

r , 1 ≤ l ≤ L,
1 ≤ j ≤ n. Then we can construct a neural network with
L hidden layers, where each activation function is a C∞-
function and not a polynomial, that is able to represent
functions in ΩnK,L efficiently. More precisely, under certain
regularity assumptions on the functions approximated in
the single layers, it can be shown that for all g ∈ ΩnK,L it
holds that

inf
θ
∥W (x; θ)− g(x)∥∞,Kn

≤ ϵ,

with a number Nϵ of neurons that satisfies
Nϵ = O(n1+K

r ϵ−
K
r ). (4)

In total, we observe that for compositional functions with
fixed degreeK and level L, the required number of neurons
grows only polynomially in the state dimension n, whence
the curse of dimensionality is avoided.
Thus, in this talk, we discuss conditions regarding the
system (1) such that this result can be applied for ap-
proximating a control Lyapunov function. To this end, we
focus on ensuring compositionality of control Lyapunov
functions. Furthermore, we present a corresponding net-
work architecture that enables us to overcome the curse of
dimensionality for control Lyapunov functions.

4. COMPUTING LYAPUNOV FUNCTIONS USING
DEEP NEURAL NETWORKS

Let us first consider the particular case, where f in (1)
does not depend on u, i.e., we have an ordinary differential
equation and want to compute a Lyapunov function. For
this case, we briefly present the approach from Grüne
(2021) that is extended in this talk. There a small-gain
condition (see, e.g., Dashkovskiy et al. (2010)) has been
used to establish the existence of a Lyapunov function of
the form

V (x) =
s∑
i=1

V̂i(zi), (5)

where V̂i : Rdi → R and zi ∈ Rdi such that x =
(z1, . . . , zs). Note that V is a compositional function of
level 1 and degree K = max1≤i≤s di.
Let K ∈ N and c > 0 be fixed and define FK as the set
of Lipschitz functions f : Rn → Rn, n ∈ N, such that the
ordinary differential equation ẋ(t) = f(x(t)) possesses a
Lyapunov function of the form (5) with max1≤i≤s di ≤ K.
We can then construct a neural network that approximates
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for every f ∈ FK such a Lyapunov function and has a
complexity of

Nϵ = O(n1+Kϵ−K),

see (4). However, for the construction of the neural net-
work, the separation of the state space into subsystems
x = (z1, . . . , zs) would have to be known beforehand. It is
shown in Grüne (2021) that this can be circumvented by
appending an additional layer to the neural network that
represents a linear transformation of the original system
into the desired form.
For the approximation of a Lyapunov function, our net-
work has to satisfy the conditions (2) and (3) adapted to
the uncontrolled case, i.e.,

α1(∥x∥) ≤W (x; θ) ≤ α2(∥x∥),
inf
u∈U

DW (x; θ)f(x) ≤ −α3(∥x∥) < 0.

To this end, we formulate a cost function L that depends
on the output W (x, θ) as well as on its derivative in
direction of the vector field DW (x, θ)f(x):

L(x,W (x; θ), DW (x; θ)f(x))

:= ([W (x; θ)− α1(∥x∥)]−)2 + ([W (x; θ)− α2(∥x∥)]+)2

+µ ([DW (x; θ)f(x) + α3(∥x∥)]+)2 ,
where [·]+ := max(·, 0), [·]− := min(·, 0) and µ > 0 is a
weighting factor. Using this cost function, the correspond-
ing neural network can be trained towards a Lyapunov
function via reinforcement learning.

5. COMPUTING CONTROL LYAPUNOV
FUNCTIONS

In order to extend the approach discussed in Section 4
to the controlled case, we investigate structural properties
for (1) that yield the existence of a compositional control
Lyapunov function. On the other hand, we also construct
a suitable network architecture and cost function. In
particular, we deal with the appearance of the infimum
in our cost function through equation (3).
For establishing compositionality of control Lyapunov
functions, we discuss the use of methods from nonlin-
ear control theory. These methods serve the purpose of
decoupling problems by decomposing them into smaller
subproblems. In our context, such a decomposition into
subproblems can be used to obtain a compositional form
of the respective control Lyapunov function.
Consider a system of the form

ż = f(z, ξ), (6)
ξ̇ = g(z, ξ) + u (7)

and assume that V0 is a control Lyapunov function for (6)
with input ξ and that γ is a stabilizing C2-feedback for
the same system. Then the backstepping procedure (cf.
Section 6.1 in Sepulchre et al. (1997)) yields that

V (z, ξ) := V0(z) +
1

2
∥ξ − γ(z)∥2

is a control Lyapunov function for the whole system (6) -
(7). In this talk, we discuss how an iterative application
of backstepping for a lower triangular system yields a
compositional control Lyapunov function. Furthermore,
we construct a neural network that approximates this

function. Similar to Section 4, we cannot only handle sys-
tems that are already given in the desired lower triangular
structure, but allow for all systems that have this form
after a suitable linear transformation that is learned by
the deep neural network.
Next to the network architecture, we also have to for-
mulate a suitable cost function for our purpose of rein-
forcement learning. To this end, we distinguish two cases.
Firstly, we consider the case where the expression

inf
u∈U

DW (x; θ)f(x, u) (8)

can be evaluated directly. This enables us to implement
condition (3) into the cost function analogously to Section
4. For example, if the system (1) is of the form

ẋ(t) = f(x(t), u(t)) = h(x(t)) + g(x(t))u(t)

with U = [−c, c]m for some c > 0, we have
inf
u∈U

DW (x; θ)f(x, u) =DW (x; θ)h(x)

−c∥DW (x; θ)g(x)∥1.
Secondly, for the cases where such an explicit calculation
of the expression (8) is not possible, we discuss methods for
learning an approximation of the respective control values
alongside the control Lyapunov function. This also leads
to the question, under which conditions a compositional
control Lyapunov function implies the existence of a com-
positional stabilizing feedback.
Further, in this talk we demonstrate how these and similar
approaches perform in practice.
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1. INTRODUCTION

In State Estimation or Filtering problems, when deal-
ing with a linear Gaussian state-space model, analytical
expressions computing the state estimates according to
posterior distributions can be derived by the well known
and widespread Standard Kalman Filter (SKF) (Kalman,
1960). Many extension of SKF are then provided by nu-
merous researches in different contexts (Mohamed and
Nahavandi, 2012, Combastel, 2015, Chen et al., 1997,
Lu et al., 2019). For nonlinear model without Gaussian
measurement assumption, Particle Filters (PF) have been
applied successfully to a variety of state estimation prob-
lems (Gordon et al., 1993, Doucet et al., 2001). The PF
efficiency and accuracy depend mostly on the number of
particles used in the estimation which may require a large
computation time.

One of the famous extensions of PF to set membership
approach is the Box Particle Filter (BPF) (Abdallah
et al., 2008). BPF handles box (interval vector of) states
and bounded errors by using interval computation and
constraint satisfaction techniques. This method has been
shown to control quite efficiently the number of required
particles, hence reducing the computational cost and pro-
viding good results in several experiments.

Since then, numerous variants of BPF are developed
(Nassreddine et al., 2010, Blesa et al., 2015, Tran et al.,
2018) to deal with measurements bounded uncertainty,
measurements stochastic uncertainty or measurements
mixed uncertainty. Various techniques and theories have
been proposed to address the diversity of requirements
in these contexts, e.g. weight updating using Bayesian
filtering technique extending to box particle case (Blesa
et al., 2015) or belief function theory with different meth-
ods (Nassreddine et al., 2010, Tran et al., 2018).

In the present work, regarding this large variety of BPF, a
scheme is proposed to give a generalized description that
highlights the specificity of this class of filters. An analysis
of the likelihood computation methodology is investigated.

Furthermore, the system under consideration is nonlinear
and concerned a concrete class of functions which is the L2

space. Throughout these developments, we aim to produce
a novel filter benefiting the advantages of existing methods
with a number of reinforcement techniques.

2. PROBLEM FORMULATION

2.1 Notations and definitions

A real interval matrix [X] of dimension p × q is a matrix
with real interval components [xij ], i ∈ {1, ..., p}, j ∈
{1, ..., q}. Write X ∈ [X] to indicate a point matrix
X = (xij) belonging element-wise to [X]. Define:

X ≡ sup([X])
M
= (sup([xij ])) ,

X ≡ inf([X])
M
= (inf([xij ])),

as element-wise operators applying to [X] and then

mid([X])
M
= (X + X)/2, rad([X])

M
= (X − X)/2,

width([X])
M
= X − X. Define also the (convex) hull of

two interval matrices [X1], [X2] of the same dimension as

hull{[X1], [X2]} M
= [min{X1, X2},max{X1, X2}].

Basic interval operators � ∈ {+,−,×,÷} defined in Jaulin
et al. (2001) can be used to compute directly all operations
[u] � [v] and α � [u], for real intervals [u], [v] and α ∈ R,
without any further approximation algorithm. Then, in-
terval matrix computations are defined similarly to matrix
computations using the basic operators while more general
operators are constructed by meant of inclusion function
[f ] (Jaulin et al., 2001). In practice, the package Intlab
developed for Matlab is used for computations.

2.2 Assumptions and discussions

Consider the following dynamical system:

(Σ) :

{
xk = f(xk−1, uk, wk) ,
yk = h(xk, uk, vk) ,

k ∈ N∗, (1)
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where xk ∈ Rnx and yk ∈ Rny are respectively state and
output measurement, uk ∈ Rnu input, wk ∈ Rnw state
dynamic disturbance and vk ∈ Rny measurement noise.

Assumption (A): State Process Uncertainty
uk and wk are unknown and belong to known intervals [uk]
and [wk] respectively.

Assumption (B): Measurement Bounded Uncer-
tainty
(B1) vk (unknown) belongs to known interval [vk].
(B2) The measurements are intervals [yk].
(B3) The measurements are assumed to be accurate in the
sense that [yk] 3 h(xk, uk) ≡ h(xk, uk, 0) (the zero noise
case), where xk is the real state .

Assumption (C): Measurement Stochastic Uncer-
tainty
(C1) vk are additive noises with known density pv.
(C2) The measurements are point values yk.

Assumption (D): Measurement Mixed Uncertainty
(D1) vk are additive Gaussian noises with unknown mean
µk ∈ Rny and covariance Σk ∈ Rny×ny .
(D2) µk, Σk belong to known intervals [µk], [Σk].
(D3) The measurements are point values yk.

Assumption (A) is used in Abdallah et al. (2008), Nassred-
dine et al. (2010), Blesa et al. (2015), Tran et al. (2018).

Assumptions (B) are under study in Abdallah et al. (2008),
Nassreddine et al. (2010). In Abdallah et al. (2008), the
BPF is introduced and becomes standard for many ex-
tensions or variants with essential steps: initialization, box
propagation, contraction, likelihood (weight) computation,
state estimation and resampling. In Nassreddine et al.
(2010), the Belief State Estimation algorithm is developed
using the belief function theory. It may require some tech-
niques for the construction and computation of masses, but
after being normalized, these masses become likelihoods
in the probability sense. Therefore, we also call likelihood
computation as an essential step of this method.

Assumptions (C) are used in Blesa et al. (2015). The
method proposed therein includes a different approach to
weight the box particles as well as a resampling procedure
based on repartitioning the box enclosing the propagated
states. There is no contraction step in this method.

Assumptions (D) are used in Tran et al. (2018), in which
(D1) is a special case of (C1) with a slight relaxation
by adding bounded uncertainties to Gaussian parameters
µk and Σk. In Tran et al. (2018), the belief function
theory is used with continuous mass functions to represent
these kinds of uncertainties and to compute box particle
likelihoods. The proposed approach therein leads to the
so-called Evidential Box Particle Filter (EBPF) including
all essential steps of the standard BPF.

Remark 1. (B3) is the implicit assumption deriving the
consistency between the predicted measurement boxes
[h]([xik], [uk]), i ∈ {1, ...,M} (M the number of partitioned
boxes), and the real measurement box [yk]. This consis-
tency is used in the contraction step and the likelihood
computation by penalizing all particle boxes with which
the intersections [h]([xik], [uk]) ∩ [yk] are empty.

Remark 2. Assumptions (D3) and (C2) are coincided.
They can be transformed into (B2) with a slight relaxation

of (B3). That is, knowing the density of vk, we deduce
its confidence intervals [vk] with some significant level α

and define [yk]
M
= yk − [vk]. Then (B3) is relaxed in the

sense that the observed measurements [yk] do not contain
h(xk, uk) with certainty but with only a high probability
(1− α).

3. GENERAL SCHEME OF BOX PARTICLE FILTER

3.1 Scheme

Although applying different background theories, the pro-
posed methods in Abdallah et al. (2008), Nassreddine et al.
(2010), Blesa et al. (2015), Tran et al. (2018) study State
Estimation in a framework of stochastic uncertainties
and/or bounded uncertainties with two main objectives:

Objective 1: Reduce as much as possible the width of
box particles to penalize the conservatism due to interval
computations (the wrapping effect).

Objective 2: Quantify (compute) box particle likelihoods
as well as possible to enhance the accuracy of the esti-
mates.

The methods used in these references can be considered as
variants of BPF and be summarized by Scheme 1 which is
applied in a mostly similar manner across them.

Remark 3. In this Scheme, for a general presentation, the
observed measurements are denoted as intervals since the
point values are considered as special cases of intervals.
Nk0

in the initialization step takes value in {1, ...,M} and
is the number of box particles obtained at the end of the
likelihood computation step at the previous time instant
(k0 − 1). For k0 = 0, the initialization concerns only the
partition of [x0] and not the resampling. The Condition C
in the while loop is different from method to method.

Remark 4. BPFs often use a non large (small) number of
particles to gain computation time and reduce the loss of
a guaranteed estimation. Consequently, the resampling or
repartition step happens almost always, at every or only
after a few iterations. Therefore, the fact that we hold
previous weights and update them afterward has no signif-
icant effect while this effect might not be quantified easily.
Furthermore, conditions under which the resampling or
repartition is implemented base usually on some heuristic
choice of a threshold. This is also an issue of discussion.

3.2 Performance evaluation of BPFs sharing Scheme 1

In order to evaluate how the computed likelihoods bring
efficiency to the estimation, it must compare the result of
a BPF with that of the basic scenarios of Scheme 1:

• Scenario 1: Using the contraction step without parti-
tion (1 box particle);

• Scenario 2: Using equi-likelihood 1/M and without
contraction step (M box particles);

• Scenario 3: Using equi-likelihood 1/M and with con-
traction step (M box particles).

The reason is that, in some applications, using solely
the contraction step, the algorithm performance has been
rather good and the efficiency brought by the computed
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Scheme 1 General Scheme of Box Particle Filtering

STEP 1. Initialization. At a time step k0 ≥ 0,
(re)partition the interval [xk0 ] or resample the set

{[xjk0
], wj}j=1:Nk0

into M disjoints equal-volume sub-

boxes with the same weights: {[xik0
], wi = 1/M}i=1:M .

while {[xik0
], wi}i=1,...,M still satisfies a predetermined

Condition C do
STEP 2. Propagation. Get a new set of box par-
ticles {[xik0+1] = [f ]([xik0

], [uk0
])}i=1,...,M estimating

the box containing the real state xk0+1 = f(xk0
, uk0

)
with or without a contraction step.
STEP 3. Likelihood computation
a) Compute (and normalize) the likelihoods of box
particles {[xik0+1]}i=1,...,M being the box containing
the real state xk0+1. This computation bases on
the consistency between the estimated measurement
[h]([xik0+1], [uk0 ])’s and the obtained measurement
[yk0+1] using different criteria and methods.
By this step, the following set of box particles with
updated weights is obtained : {[xik0+1], wi}i=1,...,M .

b) Some techniques can be applied at this step to get
a more ”efficient” set of box particles, e.g. discarding
the boxes with small weights (smaller than some
predetermined threshold) and with or without repli-
cating the box associated with the greatest weight,...
From this, the set of box particles becomes
{[xik0+1], wi}i=1,...,Nk0+1

, 1 ≤ Nk0+1 ≤M .

STEP 4 : Estimation
Interval estimate:

[xk0+1] =

M∑
i=1

wi.[x
i
k0+1] (2)

Point estimate:

xk0+1 =
M∑
i=1

wi.mid([xik0+1]) (3)

STEP 5 : k0 = k0 + 1
end while
STEP 6 : Restarting at STEP 1.

likelihoods might be insignificant. The same manner might
happen for the other scenarios.

Following indexes, proposed in Tran et al. (2018), will be
used for performance evaluations:

RMSEj = sup

√√√√ N∑
k=1

(xk,j − [x̂k,j ])2/N,

Ej =

N∑
k=1

width([x̂k,j ])/N,

Oj =

(
N∑

k=1

1(xk,j ∈ [x̂k,j ])/N

)
× 100,

where j ∈ {1, ..., nx}, RMSE is the root mean squared
error upper bound, 1(x) equal 1 (element-wise) if the con-
dition x holds true (element-wise) and vanishes otherwise.

3.3 Likelihood computation methodology

In the next, the diagram in Fig.1 is used to discuss the
methodology of Likelihood Computation Methods (LCM)
using in Scheme 1.

Criteria to
decide how a box
particle be chosen

as preferable
than others

Likelihood
Computation

Method
(LCM)

Information issued
from assumptions

Fig. 1. Likelihood computation methodology diagram

First of all, that is the assumptions of the system under
consideration supply the information needed to build the
likelihood. For instance, the information may be:

• Information (a): The intersection between [yk] and the
box [h]([xik], [uk]) containing the real value yk must be
non empty,

• Information (b): The distribution of vk and hence of
rk = yk − h(xk, uk) is Gaussian (for additive measure-
ment noise),

• (or more other piece of information)...

The information can be directly an assumption or a
deduction of the later. In bounded-error context, only
Information (a) is treated (Abdallah et al., 2008) while
in the mixed uncertainty case, both Information (a) and
Information (b) are taken into account (Tran et al.,
2018).

Criteria and methods are then chosen to exploit the
information. On the one hand, once a criterion is chosen,
different methods can be used to calculate the likelihood.
On the other hand, a calculation method may correspond
to one or many criteria. There are also calculation methods
that exploit better the supplied information than others.

4. CONCLUSION

Thanks to the initialized investigations aforementioned,
we go to the essential of this class of BPF methods which
helps to produce an enhancing method. Furthermore, the
additional assumption that f and h of (1) belonging to
L2 space enlarges the problem with many theoretical and
applied aspects to be solved.
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1. INTRODUCTION

Given a minimal linear input-state-output (i-s-o) system

x(t+ 1) = Atruex(t) +Btrueu(t)

y(t) = Ctruex(t) +Dtrueu(t) , (1)

where Atrue ∈ Rntrue×ntrue , Btrue ∈ Rntrue×m, Ctrue ∈
Rp×ntrue and Dtrue ∈ Rp×m and T > 0, denote by

u[0,T ] := [u(0) . . . u(T )] ∈ Rm×(T+1)

y[0,T ] := [y(0) . . . y(T )] ∈ Rp×(T+1) , (2)

a finite input-output (i-o) trajectory generated by (1).
The deterministic system identifiability problem is usually
stated as follows:

Determine (necessary and) sufficient conditions on
u[0,T ] and y[0,T ] such that (1) can be uniquely identified,
up to a nonsingular transformation of the state variable.

Standard references on deterministic system identifiability
with non-impulsive inputs are Grewal and Glover (1976),
Sontag (1980), Kalman (1983), Gevers and Wertz (1984),
Willems et al. (2005). More recent publications dealing
with finite length data are Heij (1993), Markovsky et al.
(2005), Markovsky and Dörfler (2020). The relation of
some of these results with ours is deferred to remarks
interspersed in the text.

We study identifiability relative to a model class. A pri-
ori knowledge on (1), or properties required of a model
compatible with the data, are integrated in the problem
formulation by specifying the model class Spk that the
identified systems belong to. Spk consists e.g. of systems
with a given upper bound on the state-space dimension; of
controllable systems; of minimal ones; and so on. We use
a data informativity (see van Waarde et al. (2020)) per-
spective: an i-o trajectory is informative about a property
(e.g. stability, controllability) if it is shared by all systems
compatible with the data. The problem of informativity
for system identification is:

Given Spk establish necessary and sufficient condi-
tions on u[0,T ] and y[0,T ] such that a model in Spk
compatible with the data can be uniquely identified, up
to a nonsingular transformation of the state variable.

The deterministic system identifiability problem is a spe-
cial case of this one. Due to space limitations, we only state
necessary and sufficient conditions for identifiability when
Spk consists of minimal i-s-o systems with a given upper
bound on the state dimension, and we omit the proofs of
the necessary results. A complete illustration of our results
will be given elsewhere.

Notation and terminology

Intervals. Given i, j ∈ N ∪ {0}, i 6 j, we denote by [i, j]
the set [i, j] := {k ∈ N ∪ {0} | i 6 k 6 j}.
Matrices and vectors. The set of n×m matrices with real
entries is denoted by Rn×m. If one of the dimensions of
M ∈ Rn×m is zero, then we take Rn×m to denote the
empty set, and M to denote a void matrix, i.e. a matrix
with zero rows and zero columns.

Hankel matrices. Given T ∈ N∪{0}, a set ofm-dimensional
vectors {ft}t=0,...,T , and 0 6 i 6 T , we denote by

f[i,T ] := [fi . . . fT ] ∈ Rm×(T−i+1),

the matrix associated with {ft}t=0,...,T .

Given f[i,j] = [fi · · · fj ] ∈ Rm×(j−i+1) and k with j −
k ∈ [i, j], the Hankel matrix of f[i,j] with depth k+1 is the
(k + 1)m× (j − k − i+ 1) matrix defined by:

Hk(f[i,j]) =

 fi · · · fj−k
...

...
fi+k · · · fj

 . (3)

The “depth” is the number of block-rows of (3).

Dynamical systems. Given an i-s-o discrete-time system
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x(t+ 1) =Ax(t) +Bu(t)

y(t) =Cx(t) +Du(t) , (4)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, and
k ∈ N, we define the k-th observability matrix by

Ωk :=
[
C> (CA)> . . .

(
CAk

)>]>
.

We denote by `(C,A) the smallest integer k ∈ N such that
rank Ωk = rank Ωk−1. Note that `(C,A) 6 n; if (C,A) is
observable, then `(C,A) is the observability index of (4).

2. PROBLEM FORMULATION

The set of all systems (4) is denoted by

S :=
{

[ A B
C D ] ∈ R(n+p)×(n+m) | n > 0

}
. (5)

S includes memoryless systems (n = 0), in which case A,
B and C are void.

Definition 1. (Explanatory system). A system [ A B
C D ] ∈ S

with A ∈ Rn×n explains the data (u[0,T ], y[0,T ]) if there

exists x[0,T ] ∈ Rn×(T+1) such that

x[1,T ] =Ax[0,T−1] +Bu[0,T−1]

y[0,T ] =Cx[0,T ] +Du[0,T ] . (6)

The set of all systems explaining u[0,T ] and y[0,T ] is denoted
by E and called (the class of) explanatory systems:

E := {[ A B
C D ] ∈ S | there exists n > 0

and x[0,T ] ∈ Rn×(T+1) such that (6) holds
}
.(7)

We are also interested in subclasses of explanatory systems
such as those with a given state space dimension and those
with a given lag, respectively defined by

E(n) :=
{

[ A B
C D ] ∈ E | A ∈ Rn×n} ,

E(`, n) := {[ A B
C D ] ∈ E(n) | ` = `(C,A)} .

The system (1) belongs to E , E(ntrue), and E(`true, ntrue).

It is straightforward to check that E(n) and E(`, n) are
invariant under nonsingular state space transformations.

Definition 2. (Isomorphism property).

[
Ai Bi

Ci Di

]
∈ E(n),

i = 1, 2 with n > 1 are called isomorphic if D1 = D2

and there exists a nonsingular matrix S ∈ Rn×n such that
A1 = S−1A2S, B1 = S−1B2, C1 = C2S.

If n > 1, E(n) has the isomorphism property if all systems
in it are isomorphic to each other. If n = 0, we say that
E(0) has the isomorphism property if it is a singleton.

To formalize prior knowledge or assumptions about the
‘true’ system (1), a subset Spk ⊆ S is defined. For example,
bounds on the state dimension or on the observability
index are formalized defining Spk by

SN :=
{

[ A B
C D ] ∈ S | A ∈ Rn×n with n 6 N

}
SL,N := {[ A B

C D ] ∈ SN | `(C,A) 6 L} . (8)

and the class of minimal models defining Spk by

M := {[ A B
C D ] ∈ S | [ A B

C D ] is minimal} . (9)

The following definition formalizes the property of a finite
i-o sequence that we seek to characterize in this paper.

Definition 3. (Informativity for identification). Define S by
(5), and let Spk ⊆ S. The data (u[0,T ], y[0,T ])

• uniquely determine the state dimension within Spk if
E ∩ Spk ⊆ E(ntrue).
• are informative for system identification within Spk if

they uniquely determine the state dimension in Spk,
and if E ∩ Spk has the isomorphism property.

The following are two standing assumptions.
Assumption A.

N ∈ N is given, such that ntrue 6 N 6 T . (A)

Assumption B.

u[0,T ] has full row rank . (B)

Remark 1. It is straightforward to check that condition
(B) is necessary for data informativity for system identi-
fication, and consequently it is not restrictive. Note also
that if (B) holds, then T > m − 1; this provides a lower
bound on the number of data points to allow system
identification. We give a tighter lower bound on T further
in this communication; see Theorem 2 in sect. 3.

3. MAIN RESULT

Our necessary and sufficient conditions for informativity
for system identification are formulated in terms of the
rank of a Hankel matrix built from the data, and of some
structural integers that we now introduce.

For k ∈ [0, T ], we denote by Hk ∈ R(k+1)(m+p)×(T−k+1)

the block-Hankel matrix of depth k + 1 constructed from
the data (u[0,T ], y[0,T ]):

Hk :=

[
Hk(u[0,T ])
Hk(y[0,T ])

]
=



u0 · · · uT−k
...

...
uk · · · uT
y0 · · · yT−k
...

...
yk · · · yT


, (10)

and by Gk ∈ R((k+1)m+kp)×(T−k+1) the matrix

Gk :=



u0 · · · uT−k
...

...
uk · · · uT
y0 · · · yT−k
...

...
yk−1 · · · yT−1


. (11)

From Hk and Gk we define

ρk :=

{
p if k = −1

rankHk − rankGk if k ∈ [0, T ] .
(12)

Note that 0 6 ρk 6 p for all k. The Hankel structure of Hk

and Gk implies that ρk = 0 if and only if every annihilator
of the i-o sequence with lag 6 k is the linear combination of
annihilators with lag 6 k−1 and their shifts. Equivalently,
ρk > 0 if and only if there exists an annihilator of the i-o
sequence with lag 6 k that is not “implied” by lower lag
annihilators and their shifts.

The following result can be proved exploiting the Hankel
structure of the matrices Hk and Gk.
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Lemma 1. Define sk by

sk := ρk−1 − ρk for k ∈ [0, T ] ; (13)

then sk > 0 for all k ∈ [0, T ]. Moreover,
∑T

i=0 si = p.

Remark 2. The si’s are related to the integers ζt intro-
duced on p. 569 in Willems (1986) in the context of system
identification from infinite length data, associated with the
shortest lag description of a behavior (p. 569 ibid.). More-
over, the maximal lag in the shortest lag description equals
the integer `(A,C) defined in section 1 (see statement (vii)
Theorem 6 p. 570 ibid.).

We denote by q the smallest integer such that
∑q

i=0 si = p:

q := min

{
k ∈ [0, T ] |

k∑
i=0

si = p

}
. (14)

Remark 3. Lemma 1 implies that q is well defined, and
can be computed directly from the data, by computing ρk
from (12), and sk from (13).

We define the minimum number of states nmin and the
shortest lag `min by:

nmin := min{n > 0 | E(n) 6= ∅} (15)

`min := min{` > 0 | ∃n > 0 such that E(`, n) 6= ∅} .
The following result shows that these two integers can
be computed in terms of the integers sk and q, and
consequently, in view of Lemma 1, directly from the data,
via linear algebraic computations involving the matrices
Hk and Gk defined in (10) and (11).

Theorem 1. Define nmin and `min by (15), and q by (14).
Then

`min = q and nmin =

`min∑
i=0

isi .

Moreover,

E(nmin) = E(`true, nmin) = E(nmin) ∩ O .

Remark 4. The proof of Theorem 1 is based on a series of
intermediate results, some of independent interest. Most
prominent among these is an iterative procedure to con-
struct a state sequence with nmin components from a given
finite length i-o trajectory. The procedure uses the left-
annihilators of the Hankel matrices (10) of the data; it is
a modification of the shift-and-cut procedure introduced in
Rapisarda and Willems (1997). An explanatory model (4)
can be straightforwardly computed from the finite length
state-trajectory obtained in this way.

This algorithm offers an alternative to subspace identifica-
tion procedures in the case of finite measurements, without
assumptions on the length of the data set. On subspace
identification for finite length data, see Markovsky et al.
(2005), where such procedures are formulated under the
assumption that the number of available measurements is
at least twice the maximum lag of the system.

Remark 5. It follows from the relation between the sk’s
and the shortest lag description of a behavior (see Remark

2) that the equality nmin =
∑`min

i=0 isi in the second claim
of Theorem 1 is analogous to statement (v) of Theorem 6
of Willems (1986).

The main result of this paper is the following characteri-
zation of informativity for system identification within the
class of minimal systems with an upper bound on the state
dimension.

Theorem 2. Assume conditions (A) and (B). Define nmin

and `min by (15), SN by (8), M by (9). Moreover, define

d := N − nmin + `min .

The data (u[0,T ], y[0,T ]) are informative for system identi-
fication within SN ∩ M if and only if the following two
conditions hold:

T + 1 > (d+ 1)m+ d+ nmin

rankHd = (d+ 1)m+ nmin . (16)

Remark 6. The constraints (16) represent truly data-based
necessary and sufficient conditions for system identifiabil-
ity: to verify them, one only needs to know `min and nmin.
It follows from Theorem 1 and Remark 3 that both integers
are computable directly from the data.

Remark 7. The first constraint in (16) improves on the
trivial lower bound T > m − 1 formulated in Remark 1.
It implies that identifiability is possible only if a minimal
number of measurements is available.

Remark 8. (The SISO case). When m = p = 1, it can be
shown that `min = nmin and consequently d = N . The
conditions (16) in this case are

T > 2N + nmin and rankHN = N + 1 + nmin . (17)

The relation between T and N appearing in the first
condition in (17) has an intuitive interpretation. For ex-
ample, a larger uncertainty about the complexity of the
generating system translates to larger values of N , and
implies that more measurements should be available to
uniquely identify the dynamics.

In another situation, if prior knowledge about the gen-
erating system suggests a high complexity, then a larger
N should be chosen; in this case, the complex dynamics
require a larger number of measurements to be uniquely
identified.

Remark 9. In Sontag (1980) a bound is derived on the
minimum number of measurements necessary to identify
a linear, discrete-time system from i-o data. However, the
underlying assumption in that work is that the system
starts from the zero initial state, while our bound holds
also for the case in which the initial conditions are nonzero.
Moreover, the input is assumed to be generic, while our
result is valid also for the case of structured inputs. See
also Example 1 below.

Remark 10. The second condition in (16) concerns the
quality of the data: identifiability requires that the com-
bination of initial conditions and of the input sequence is
“sufficiently rich”, as reflected in the rank of the Hankel
matrix.

The relation between the rank of the data Hankel ma-
trix and the dimension of the state space is known since
Kalman’s work on realization from impulse response data
(see Kalman et al. (1969)). Such relation, together with
some “persistency of excitation” conditions on the input
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sequence, lies at the foundation of several results and pro-
cedures to compute explanatory models (see for example
Theorem 2 in Moonen et al. (1989), or Cor. 1 in Willems
et al. (2005)). The second condition in (16) is in the same
spirit, but with the fundamental difference that persistency
of excitation is not assumed. The result of Theorem 2
can consequently be applied also to the case of structured
inputs.

Example 1. (State construction with structured inputs).
For zero initial conditions, T = 5 and u(t) = 1

2t , t ∈ [0, 5],
the SISO system (m = p = 1) described by

y(t) + 3y(t− 1) + 2y(t− 2) = −u(t− 1) + u(t− 2) ,

generates the output y[0,5] =

[
0 −1

7

2
−33

4

143

8
−593

16

]
.

It is straightforward to verify that rankHk = k + 2,
rankGk = k+1, k = 0, 1, rankHk = rankGk, k ∈ [2, 5]. It
follows that si = 0 for i ∈ {0, 1, 3, 4, 5}, and that s2 = 1.
It follows from the definition (14) of q and from Theorem
1 that q = `min = 2 and nmin = 2.

When T = 5, it follows from Remark 8 that the two
conditions of Theorem 2 reduce to 5 > 2N + 3 and
rankHN = N + 3.

We now show that the data is not informative for any
bound N on the state space dimension of an explanatory
system. The inequality can only be satisfied for N 6 1. If
N = 0, then the second condition cannot be satisfied, since
H0 ∈ R2×5 has rank 2. If N = 1, the second condition is
satisfied if and only if rankH1 = 4; however

rankH1 = rank



1
1

2

1

4

1

8

1

16
1

2

1

4

1

8

1

16

1

32

0 −1
7

2
−33

4

143

8

−1
7

2
−33

4

143

8
−593

16


= 3 .

The data is not informative for system identification.

The vector [1 −1 0 −2 −3 −1] is a left annihilator of H2.
Using the “shift-and-cut” procedure mentioned in Remark
4, the following state trajectory is computed:

x[0,5] =


0 1

5

2
−27

4

133

8
−571

16

0 −1
7

2
−33

4

143

8
−593

16

 ,

corresponding to the matrices A, B, C and D defined by

A :=

[
0 −2
1 −3

]
, B :=

[
1
−1

]
, C := [0 1] , D := 0 .

These matrices define an i-s-o explanatory model for the
given i-o trajectories. It is straightforward to verify that
the system described by

Ã :=

[
0 −2
1 −3

]
, B̃ :=

 3

2
−2

 , C̃ := C , D̃ := D ,

is also a minimal explanatory system, with the state
sequence

x̃[0,5] :=

1
3

2

11

4
−53

8

267

16
−1141

32

0 −1
7

2
−33

4

143

8
−593

16

 .

This system is not isomorphic to [ A B
C D ]: the sequences

x̃[0,5] and x[0,5] cannot be transformed into each other by
a nonsingular transformation. Note also that

C̃
(
zI − Ã

)−1
B̃ + D̃ =

−4z + 3

2 (z2 + 3z + 2)
.

4. CONCLUSIONS

We introduced the concept of informativity within a model
class, and we gave a characterization of such property for
the case of minimal models with a given upper bound on
the McMillan degree.
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Abstract: In this extended abstract we consider input-output systems described by higher order
difference equations, also called autoregressive systems. We assume that we have input-output
data obtained from an underlying true, but unknown, system. The problems we then consider
is to determine on the basis of these data whether this unknown system is stable. We also deal
with the problem of determining whether a stabilizing controller exists, and, if so, to determine
one using only the data. In order to tackle these problems we heavily rely on methods from
the behavioral approach to systems and control, in particular the notion of quadratic difference
form.

Keywords: Data-driven control, behavioral approach, input-output data, S-lemma.

1. INTRODUCTION

A research topic that has received a lot of attention in
the past few years is data-driven analysis and control. A
central problem in this area is to verify certain system
properties and to design control laws for an unknown
dynamical system using noisy data obtained from that
system. The main challenge is to do the analysis and design
without the intermediate step of modeling the system
using system identification, but work directly with the
data instead. This has been the subject of many recent
publications in the area, mainly in the context of input-
output systems in state space form, see , for example, van
Waarde et al. (2020); De Persis and Tesi (2020); Berberich
et al. (2021); Trentelman et al. (2020).

In the present note we will leave the realm of input-output
systems in state space form, and will instead work with
input-output systems described by higher order differ-
ence equations, also called auto-regressive (AR) systems.
We will assume that noisy input-output data have been
obtained from some unknown AR system. These data
are available to check stability and to verify whether a
dynamic feedback controller exists that stabilizes the un-
known system, and, if so, to compute such controller.

We will establish data-based tests to tackle these problems.
To do this, we will heavily rely on methods from the be-
havioral approach to systems and control. In particular we
will adopt the notion of quadratic difference form (QDF)
as a framework for Lyapunov functions for autonomous
systems described by higher order difference equations, see
Kojima and Takaba (2005, 2006); Willems and Trentelman
(1998).

We will generalize the concepts of informativity of data
for quadratic stability and quadratic stabilization in the

context of input-state-output systems to input-output AR
systems. Our main results will be necessary and sufficient
condition for informativity in terms of feasibilty of certain
linear matrix inequalities (LMIs) obtained from the data.
An important tool in deriving these conditions is a matrix
version of Yakubovich’s S-lemma, as that was recently
established in van Waarde et al. (2022).

We will use the following notation. The space of all
symmetric real q×q matrices is denoted by Sq. For a given
partitioned matrix

Π =

[
Π11 Π12

Π21 Π22

]
,

with Π11 ∈ Sq, Π>12 = Π21 and Π22 ∈ Sr, an important
role in this note will be played by the quadratic matrix
inequality [

I
Z

]>
Π

[
I
Z

]
> 0

in the unknown Z ∈ Rr×q. The set of all solutions Z is
denoted Zr(Π). This set is nonempty and bounded if and
only if Π22 < 0 and Π11 −Π12Π−1

22 Π21 > 0.

2. INPUT-OUTPUT SYSTEMS IN AR-FORM AND
NOISY DATA

In this note we consider input-output systems represented
by auto-regressive (AR) models of the form

P (σ)y = Q(σ)u, (1)
where σ denotes the shift operator (σf)(t) = f(t+ 1) and
P (ξ) and Q(ξ) are real p×p and p×m polynomial matrices
of the form

P (ξ) = IξL + PL−1ξ
L−1 + . . . P1ξ + P0,

Q(ξ) = QL−1ξ
L−1 + . . .+Q1ξ +Q0.

(2)
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Here L is a positive integer, called the order. The input
u(t) and output y(t) are assumed to take their values in
Rm and Rp, respectively. The parameters of the model are
real p × p matrices P0, P1 . . . , PL−1 and p × m matrices
Q0, Q1, . . . QL−1. Note that we assume that the leading
coefficient matrix of P (ξ) is the p×p identity matrix. This
immediately implies that P (ξ) is nonsingular and that
P−1(ξ)Q(ξ) is strictly proper. Thus, indeed, (1) represents
a (strictly) causal input-output system with input u and
output y.

In this note, we will deal with analysis and control design
for systems of the form (1), where the polynomial matrices
P (ξ) and Q(ξ) are unknown. We do assume that the order
L and the dimensions m and p are known. We assume that
we have noisy input-output data on a given finite time
interval. These data are assumed to be obtained from an
underlying true (but unknown) system. In case there are
no inputs, i.e. m = 0, we want to use these data to check
whether the true system is stable. In case that control
inputs are present we want to check whether there exists
a stabilizing feedback controller and, if so, determine such
controller using only the data. In the present section we
focus on the situation that m > 0, i.e. control inputs are
present.

As stated above, we have noisy input-output data
u(0), u(1), . . . , u(T − 1), y(0), y(1), . . . , y(T ) (3)

on a given time interval {0, 1, . . . , T} with T > L. These
noisy data are obtained from the true system. Assume that
this true system is represented by (unknown) polynomial
matrices Ps(ξ) and Qs(ξ) of the form (2). In other words,
the true system is represented by Ps(σ)y = Qs(σ)u.
We assume that the data have been obtained in the
presence of unknown noise. More concretely, we assume
that u(0), u(1), . . . , u(T ), y(0), y(1), . . . , y(T ) are samples
on the interval {0, 1, . . . , T} of u and y that satisfy

Ps(σ)y = Qs(σ)u + v

where v is an unknown noise signal. We do put the
following assumption on the noise v during the sampling
interval.
Assumption 1. The noise samples v(0), v(1), . . . , v(T −L),
collected in the real p× (T − L+ 1) matrix

V := [v(0) v(1) · · · v(T − L)]

satisfy the quadratic matrix inequality[
I
V >

]>
Π

[
I
V >

]
> 0, (4)

where Π ∈ Sp+T−L+1 is a known partitioned matrix

Π =

[
Π11 Π12

Π21 Π22

]
,

with Π11 ∈ Sp, Π12 ∈ Rp×(T−L+1), Π21 = Π>12 and Π22 ∈
ST−L+1. In addition, Π22 < 0 and the Schur complement
Π11 − Π12Π−1

22 Π21 > 0. In particular this implies that the
set ZT−L+1(Π) of matrices V > that satisfy (4) is nonempty
and bounded.

Now denote q := p + m and denote the unknown p × q
polynomial matrix [−Q(ξ) P (ξ)] by R(ξ). Also denote

w :=

[
u
y

]
.

Then (1) can be written as R(σ)w = 0. Collect the
(unknown) coefficient matrices of R(ξ) in the p×Lq matrix

R := [−Q0 P0 −Q1 P1 · · · −QL−1 PL−1] (5)
Also arrange the data u(0), . . . , u(T ), y(0), . . . , y(T ) into
the vectors

w(t) =

[
u(t)
y(t)

]
(t = 0, 1, . . . , T )

and define an associated depth L Hankel matrix by

H1(w) :=


w(0) w(1) · · · w(T − L)
w(1) w(2) · · · w(T − L+ 1)
...

...
. . .

...
w(L− 1) w(L) · · · w(T − 1)

 . (6)

Furthermore, define H2(w) := [y(L) y(L+ 1) · · · y(T )].
It is then easily verified that any input-output system (1)
for which the coefficient matrix R defined by (5) satisfies

[R I]

[
H1(w)
H2(w)

]
= V (7)

for some V with V > ∈ ZT−L+1(Π) could have gener-
ated the noisy input-output data (3). In other words,
w(0), w(1), . . . , w(T − 1), y(T ) are samples on the interval
{0, 1, . . . , T} of w that satisfy

R(σ)w = v

for some v satisfying Assumption 1. Therefore, if R sat-
isfies (7) for some V with V > ∈ ZT−L+1(Π), we call the
system with coefficient matrix R compatible with the data.
Now define

N :=

[
I H2(w)
0 H1(w)

]
Π

[
I H2(w)
0 H1(w)

]>
. (8)

Then by combining (4) and (7) we see that the system
with coefficient matrix R is compatible with the data if
and only if R> satisfies the QMI[

I
R>

]>
N

[
I
R>

]
> 0, (9)

equivalently R> ∈ ZLq(N). As the true system is assumed
to be compatible with the given data, the set ZLq(N) is
nonempty.

3. AUTONOMOUS AR SYSTEMS AND DATA

As already touched upon in Section 2, a special case of AR
systems of the form (1) occurs if m = 0, i.e. the system
has no inputs. In that case (1) reduces to

P (σ)y = 0, (10)
which, since P (ξ) is a nonsingular polynomial matrix,
represents an autonomous system. In this section we will
briefly discuss the notion of noisy data for this special case.
In fact, in this case we have only output data

y(0), y(1), . . . , y(T ) (11)
on a finite time-interval {0, 1, . . . , T} with T > L. We
assume that these data come from an unknown true au-
tonomous system. Suppose this true system is represented
by the unknown polynomial matrix Ps(ξ), with Ps(ξ) of
the form (2). Again we assume that the data samples are
noisy, in the sense that they are samples of a signal y that
satisfies Ps(σ)y = v for some v satisfying Assumption 1.

Any system in the model class of systems of the form (10)
with fixed dimension p and order L is parametrized by
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its coefficient matrices P0, P1, . . . , PL−1. We collect these
matrices in the p× Lp matrix

P := [P0 P1 · · · PL−1] . (12)
Recalling that there are no inputs present (so w = y), let
H(y) be the Hankel matrix associated with the data as
given by (6), and as before partition this matrix as

H(y) =

[
H1(y)
H2(y)

]
,

where H1(y) contains the first (L − 1)p rows and H2(y)
the last p rows. Also define

N :=

[
I H2(y)
0 H1(y)

]
Π

[
I H2(y)
0 H1(y)

]>
. (13)

Then as in Section 2, the autonomous system with coeffi-
cient matrices collected in the matrix P is compatible with
the data if and only if[

I
P>

]>
N

[
I
P>

]
> 0, (14)

equivalently P> ∈ ZLp(N).

4. QUADRATIC DIFFERENCE FORMS AND
LYAPUNOV FUNCTIONS

Here we will review the basics of quadratic difference
forms. Assume that N and q are positive integers and let
Φ ∈ S(N+1)q be a partitioned matrix given by

Φ :=


Φ0,0 Φ0,1 · · · Φ0,N

Φ1,0 Φ1,1 · · · Φ1,N

...
. . .

...
ΦN,0 ΦN,1 · · · ΦN,N


with Φi,i ∈ Sq and Φi,j = Φ>j,i. This real symmetric matrix
defines a quadratic difference form (QDF), to be denoted
by QΦ. This quadratic difference form is the operator
QΦ that maps Rq-valued functions w on Z+ to R-valued
functions QΦ(w) on Z+ defined by

QΦ(w)(t) :=
N∑

k,`=0

w(t+ k)>Φk,` w(t+ `).

For a given QDF QΦ, its rate of change along a given
w : Z+ → Rq is given by QΦ(w)(t + 1) − QΦ(w)(t). It
turns out that the rate of change defines a QDF itself.
Indeed, by defining the matrix ∇Φ ∈ S(N+2)q by

∇Φ :=

[
0q 0
0 Φ

]
−
[
Φ 0
0 0q

]
, (15)

it is easily verified that
Q∇Φ(w)(t) = QΦ(w)(t+ 1)−QΦ(w)(t)

for all w : Z+ → Rq.

Quadratic difference forms are particularly relevant in
combination with AR systems. Let R(ξ) be a real p × q
polynomial matrix and consider the AR system R(σ)w =
0. Let

B(R) := {w | R(σ)w = 0}
be the behavior of this system. The QDF QΦ is called
nonnegative on B(R) if QΦ(w) > 0 for all w ∈ B(R). It is
called positive on B(R) if, in addition, QΦ(w) = 0 if and
only if w = 0. We denote this as QΦ > 0 on B(R) and
QΦ > 0 on B(R). Likewise we define nonpositivity and
negativity on B(R).

Stability of autonomous AR systems can be characterized
in terms of QDFs. In fact, the following proposition holds.
Proposition 2. Let P (ξ) be a nonsingular polynomial ma-
trix. The corresponding autonomous system P (σ)y = 0 is
stable if and only if there exists a QDF QΨ(y) such that
QΨ > 0 on B(R) and Q∇Ψ < 0 on B(R).

For obvious reasons, we refer toQΨ as a Lyapunov function
for the AR system P (σ)y = 0.

5. DATA-DRIVEN STABILITY ANALYSIS OF
AUTONOMOUS AR SYSTEMS

In this section we study data-based stability analysis
for autonomous systems of the form (10). Our aim is
to develop a test that determines on the basis of the
output data y(0), y(1), . . . , y(T ) whether our true system
is stable. As we saw, the data do not determine the true
system uniquely. Thus we are forced to test stability for all
autonomous systems that are compatible with the data, so
for all systems in ZLp(N), with N given by (13).

In order to proceed, we will first express the existence
of a Lyapunov function QΨ for the autonomous system
P (σ)y = 0 in terms of a quadratic matrix inequality.
This QMI involves a symmetric matrix Ψ of dimensions
Lp×Lp leading to a Lyapunov functionQΨ, and the matrix
P = [P0 P1 · · · PL−1]. Indeed, we have:
Theorem 3. Let P (ξ) = IξL + PL−1ξ

L−1 + . . .+ P1ξ + P0

and let P (σ)y = 0 be the corresponding autonomous
system given by (10). This system is stable if and only
if there exists Ψ ∈ SLp, Ψ > 0, such that[

I
−P

]>([
0p 0
0 Ψ

]
−
[
Ψ 0
0 0p

])[
I
−P

]
< 0. (16)

Any such Ψ defines a Lyapunov function QΨ.

Based on this, we give the following definition of informa-
tivity for quadratic stability.
Definition 4. The noisy output data y(0), y(1), . . . , y(T )
are called informative for quadratic stability if there exists
a matrix Ψ ∈ SLp, Ψ > 0 such that the QMI (16) holds for
all P = [P0 P1 · · · PL−1] that satisfy the QMI (14), with
N defined by (13).

Informativity for quadratic stability thus means that there
exists a matrix Ψ ∈ SLp such that the QDF QΨ is a
Lyapunov function for all systems that are compatible with
the data, i.e., all systems in ZLp(N) are stable with a
common Lyapunov function.

Below, we will formulate a necessary and sufficient con-
dition on the data y(0), y(1), . . . , y(T ) to be informative.
This condition is in the form of feasibility of a linear matrix
inequality. Define a matrix Z by

Z :=
[
0(L−1)p×p I(L−1)p

]
. (17)

Then we have the following theorem:
Theorem 5. Assume that H1(y) has full row rank and that

N̄=

[
[0 −Ip] 0

0 ILp

]>[
I H2(y)
0 H1(y)

]
Π

[
I H2(y)
0 H1(y)

]>[
[0 −Ip] 0

0 ILp

]
has at least one positive eigenvalue. Then the output data
y(0), y(1), . . . , y(T ) are informative for quadratic stability
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if and only if there exists Φ ∈ SLp, Φ > 0 and a scalar
α > 0 that satisfy the LMI[

Φ−
[
Z> 0

]>
Φ
[
Z> 0

] [
Z> 0

]>
Φ

Φ
[
Z> 0

]
−Φ

]
− αN̄ > 0. (18)

In that case the QDF QΨ with Ψ := Φ−1 is a Lyapunov
function for all systems of the form (10) compatible with
the data.

6. DATA-DRIVEN STABILIZATION OF
INPUT-OUTPUT AR SYSTEMS

In this section we will discuss data-driven stabilization of
input-output systems in AR-form. We will work in the
setup of Section 2, with systems of the form (1), with
polynomial matrices of the form (2) of given degree L.

A feedback controller for the input-output system (1) with
P (ξ) and Q(ξ) of the form (2) will be taken to be of the
form

G(σ)u = F (σ)y (19)
with

G(ξ) = IξL +GL−1ξ
L−1 + . . .+G1ξ +G0,

F (ξ) = FL−1ξ
L−1 + . . .+ F1ξ + F0.

The leading coefficient matrix of G(ξ) is assumed to be
the m × m identity matrix and Gi ∈ Rm×m, Fi ∈
Rm×p for i = 0, 1, . . . , L − 1. The closed loop system
obtained by interconnecting the system and the controller
is represented by[

G(σ) −F (σ)
−Q(σ) P (σ)

] [
u
y

]
= 0. (20)

Note that the leading coefficient matrix of the polynomial
matrix in (20) is the q × q identity matrix. Hence the
controlled system is autonomous. We call the controller
(19) a stabilizing if the controlled system (20) is stable.
Now define

C(ξ) := [G(ξ) −F (ξ)] .

Then (20) can equivalently be written as[
C(σ)
R(σ)

]
w = 0. (21)

Collect the coefficient matrices of F (ξ) and G(ξ) in the
coefficient matrix C defined by

C := [G0 −F0 G1 −F1 · · · GL−1 −FL−1] (22)
and recall that the coefficient matrix of R(ξ) is given by
(5). Then an immediate application of Theorem 3 yields:
Lemma 6. The controlled system (21) is stable if and only
if there exists Ψ ∈ SLq, Ψ > 0, such that[

ILq

−C
−R

]>([
0q 0
0 Ψ

]
−
[
Ψ 0
0 0q

])[ILq

−C
−R

]
< 0. (23)

This leads to the following definition.
Definition 7. We call the input-output data u(0), u(1),
. . . , u(T ), y(0), y(1), . . . , y(T ) informative for quadratic sta-
bilization if there exist C ∈ Rm×Lq and Ψ ∈ SLq, Ψ > 0
such that the QMI (23) holds for all R that satisfy the
QMI (9), with N defined by (8).

Informativity for quadratic stabilization thus means that
there exists a controller C(σ)w = 0 (equivalently,

G(σ)u = F (σ)y) and a matrix Ψ ∈ SLq such that the
QDF QΨ is a common Lyapunov function for all closed
loop systems obtained by interconnecting the controller
with an arbitrary system that is compatible with the data.

We will now state necessary and sufficient conditions for
informativity for quadratic stabilization. Define the matrix
Z by

Z :=
[
0(L−1)q×q I(L−1)q

]
. (24)

Let N be given by (8) and define

N̄ :=

[
[0 0 −Ip] 0

0 ILq

]>
N

[
[0 0 −Ip] 0

0 ILq

]
Next, consider the LMI in the unknowns D and Φ given
by Φ

[
ΦZ> D 0

]> [
ΦZ> D 0

]>[
ΦZ> D 0

]
−Φ 0[

ΦZ> D 0
]

0 Φ

− α

[
N̄ 0
0 0Lq

]
> 0.

(25)
Then the following theorem holds.
Theorem 8. Assume thatH1(w) has full row rank and that
N̄ has at least one positive eigenvalue. Then the input-
output data u(0), u(1), . . . , u(T ), y(0), y(1), . . . , y(T ) are
informative for quadratic stabilization if and only if there
exist matrices D ∈ RLq×m, Φ ∈ SLq, Φ > 0, and a scalar
α > 0 such that the LMI (25) holds. In that case, the
feedback controller with coefficient matrix C := −D>Φ−1

stabilizes all systems of the form (1) that are compatible
with the input-output data. Moreover, the QDF QΨ with
Ψ := Φ−1 is a common Lyapunov function for all resulting
closed loop systems.
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Abstract: We present a nonlinear ODE-based thermo-hydraulic model of a district heating
system with multiple heat producers, consumers and storage devices. We analyze the conditions
under which the hydraulic and thermal subsystems of the model exhibit shifted passivity
properties. For the hydraulic subsystem, our claims on passivity draw on the monotonicity
of the vector field associated with the district heating system’s flow dynamics, which mainly
codifies viscous friction effects on the system’s pressures. For the temperature dynamics, we
propose a storage function based on the ectropy function of a thermodynamic system, recently
used in the passivity analysis of heat exchanger networks.

Keywords: Heating networks, modeling, shifted passivity.

1. INTRODUCTION

District heating (DH) has been identified as a key tech-
nology to enable the heating sector’s potential to reduce
greenhouse emissions due to the possibility to seamlessly
include environmentally friendly energy sources and stor-
age devices (see, e.g., Lund et al. (2014)). A DH system
comprises a network of pipes connecting buildings in a
neighborhood, town center or whole city, so that they can
be served from varied heat production units (Lund et al.,
2014). To further unlock the potential of DH systems,
prospective installations will feature multiple, distributed
heat sources, e.g., waste-to-energy facilities or solar collec-
tors Lund et al. (2014), promoting as a consequence heat
distribution networks of meshed topology, as opposed to
the salient tree-like structure of conventional installations
with a single heat source (Wang et al., 2017; Vesterlund
et al., 2017).

On the one hand, modeling of DH systems with a single
heat producer has been addressed, e.g., in De Persis and
Kallesoe (2011); Scholten et al. (2015); Hauschild et al.
(2020), whereas the multi-producer case has been consid-
ered in Wang et al. (2017); Vesterlund et al. (2017); Trip
et al. (2019); Alisic et al. (2019). In Wang et al. (2017);
Vesterlund et al. (2017), (static) steady-state hydraulic
and thermo-hydraulic models are respectively considered

? This research was performed as part of the TOP-UP project (No
91176), which received funding from the Netherlands Organisation
for Scientific Research (NWO) and the framework of the joint pro-
gramming initiative ERA-Net Smart Energy Systems’ focus initia-
tive Integrated, Regional Energy Systems, with support from the
European Union’s Horizon 2020 research and innovation programme
under grant agreement No 775970.
??This in an extended abstract of the article Machado et al. (2022).

for solving operational optimization problems. Dynamic
volume storage modeling and control is considered in Trip
et al. (2019) for a DH system with multiple storage tanks
and neglecting the thermal dynamics. A similar model
further considering thermal dynamics is established in
Alisic et al. (2019), but it neglects the flow dynamics of
the distribution network.

On the other hand, passivity analysis within the context of
heating networks has been considered in Mukherjee et al.
(2012); Dong et al. (2019). In Mukherjee et al. (2012), a
(linear) model to describe the temperature dynamics of a
multi-zone building is presented and subsequently shown
to be passive via a storage function which is quadratic in
the rooms’ temperatures. In Dong et al. (2019), a general
model of a network of heat exchangers is shown to be
shifted passive using a novel storage function based on the
concept of ectropy (Haddad, 2019). It was mentioned in
a previous paragraph that port-Hamiltonian formulations
of (single producer) DH system models are presented in
Hauschild et al. (2020), thus, passivity follows directly
under mild assumptions (van der Schaft and Jeltsema,
2014). 1

Based on De Persis and Kallesoe (2011); Scholten et al.
(2015); Wang et al. (2017); Hauschild et al. (2020) and oth-
ers (see all the details and proper referencing in Machado

1 Ectropy is a quadratic function on the total energy of a thermo-
dynamic system and is described in Haddad (2019) as the dual of
entropy in the sense that it represents a measure of the tendency of a
thermodynamic system to do useful work and grow more organized
(see also Willems (2006)). On the other hand, shifted passivity is
particularly relevant in these applications by allowing the stability
assessment and stabilization of non-trivial equilibria (see Jayaward-
hana et al. (2007); Monshizadeh et al. (2019b,a)).
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et al. (2022)), we present a nonlinear ODE-based model
to describe the hydraulic and thermal dynamics of a DH
system with multiple heat producers, storage devices and
consumers. Moreover, we describe the conditions under
which flow and thermal dynamics of the proposed model
are shifted passive. Our claims on the passivity of the
DH system’s flow dynamics are based on the observations
made in De Persis and Kallesoe (2011), in the single
producer setting, about the monotonicity of the associated
vector field. On the other hand, following Dong et al.
(2019) (see also Hauschild et al. (2020)), for the thermal
dynamics we propose a quadratic storage function based
on the total ectropy, extending the results of Dong et al.
(2019); Hauschild et al. (2020) to multi-producer systems
with storage units.

Notation: The symbol R denotes the set of real num-
bers. For a vector x ∈ Rn, xi denotes its ith com-
ponent, i.e., x = [x1, . . . , xn]>; moreover, sign(x) =
[sign(x1), . . . , sign(xn)]>, with sign(0) = 0, and |x| =
[|x1|, . . . , |xn|]>. An m × n matrix with all-zero entries is
written as 0m×n. An n-vector of ones is written as 1n,
whereas the identity matrix of size n is represented by In.
For any vector x ∈ Rn, we denote by diag(x) a diagonal
matrix with elements xi in its main diagonal. For any time-
varying signal w, we represent by w̄ its steady-state value,
if exists. Also, we write time derivatives as ẋ(t), and omit
the argument t whenever is clear from the context.

2. SYSTEM SETUP

A schematic representation of a DH system with multiple
heat producers, consumers and storage tanks is shown
in Fig. 1. Producers and consumers are interconnected
through a distribution network (DN) with independent
supply (hot) and return (cold) layers. The specific compo-
sition of producers and consumers is shown in Fig. 2. Note
that each producer drains water from the DN’s return layer
and injects heated water into the supply layer; a converse
operation follows for consumers.

A storage tank stores a mixture of hot and cold water
perfectly separated by a thermocline, hot layer is on top
and the cold one at the bottom. It is assumed that there
is no heat or mass exchange between the mixtures. Also,
each storage tank has four valves, two at the top and two
at the bottom, which are used as inlets and outlets of hot
and cold water, respectively. Out of simplicity, we assume
that each producer is interfaced to the DN via a storage
tank, i.e., each producer drains water from the cold layer
of a storage tank and injects it into the storage tank’s hot
layer. Using the other pair of inlet/outlet valves, each tank
drains water from the return layer of the DN and injects it
into its cold layer, and at the same time, the storage tank
injects the same amount of water from its hot layer into
the DN’s supply layer.

The overall DH system is viewed as a connected graph G =
(N , E) with no self-loops (see, e.g., De Persis and Kallesoe
(2011); Wang et al. (2017); Hauschild et al. (2020)). The
set of edges E contains all two-terminal devices (valves,
pumps or pipes), and the set of nodes N contains all
junctions as well as the hot and cold layers of each storage
tank. The cardinalities of N and E are denoted by nN
and nE, respectively. Taking as reference the sketch in
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Fig. 1. Sketch based on Wang et al. (2017) of a DH system with 3
heat producers and 9 consumers.
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Fig. 2. Topologies of producers, consumers and storage tanks; see
Scholten et al. (2015); De Persis and Kallesoe (2011). For
producers and consumers, the pipes represent heat exchangers.

Fig. 1, the gray, blue and red lines therein represent edges,
whereas colored circles, nodes.

The variables qE,i, VE,i, TE,i and pE,i denote the flow rate,
volume, temperature and pressure of the stream through
i ∈ E . Analogous descriptions follow for the variables VN,k,
TN,k and pN,k, k ∈ N . Also, we fix an arbitrary orientation
to every edge of G. Then, for any i ∈ E with end nodes
j, k ∈ N , j 6= k, we say that j is the head and k is the tail
of i, or viceversa, that j is the tail and k is the head of i.
Then, for each node we define the following sets (Hauschild
et al., 2020; Krug et al., 2021; Vladimarsson, 2014):

Sk = {i ∈ E : k is the tail of i ∈ E}, k ∈ N , (1a)

Tk = {i ∈ E : k is the head of i ∈ E}, k ∈ N . (1b)

We define a constant incidence matrix B0 associated with
the arbitrary orientation we have fixed for the DH system’s
edges, as follows:

(B0)i,j =


1, if node i is the head of edge j,

−1, if node i is the tail of edge j,

0, otherwise.

(2)

For simplicity of exposition, we introduce the preliminary
assumption that the orientation of any edge i ∈ E matches
the direction of the stream through it. That is, if j, k ∈ N ,
j 6= k, are the tail and head of any i ∈ E , respectively,
then the stream through i is assumed to flow from j to k
and we consider that qE,i ≥ 0.

The following are standing assumptions in this work:

Assumption 1. (i) The density ρ > 0 and specific heat
cs.h. > 0 of water are spatially uniform and constant in
time; for ease of notation we take ρ = cs.h. = 1. (ii) All
pipes are cylindrical. (iii) The flow through any edge i ∈ E
is (spatially) one-dimensional. (iv) Gravitational forces are
neglected. (v) The pressure of each k ∈ N is spatially
uniform and for each tank the pressure of its layers is
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equal. (vi) Each device (pipe, valve, pump, storage tank,
junction) is completely filled with water all the time.

3. HYDRAULIC DYNAMICS

In this section we present a model to describe the dynamic
behavior of the hydraulic variables of the DH system.

Under Assumption 1, the equations for mass and momen-
tum balance at each edge i ∈ E can be written as follows:

qE,i = qinE,i = qoutE,i (3a)

pinE,i − poutE,i = JE,iq̇E,i + fE,i(qE,i)− wE,i, (3b)

fE,i(qE, i) = θE,i|qE,i|qE,i, (3c)

where qinE,i, q
out
E,i and pinE,i, p

out
E,i are the pipe’s inlet-outlet

flow and pressure pairs. Note that VE,i is constant all the
time. If i ∈ E is a pipe, then JE,i = (ρ`E,i)/AE,i > 0,
where `E,i and AE,i are the pipe’s length and cross-section
area; also θE,i > 0 depends on the pipe’s friction factor
and diameter. If i is a valve, then JE,i = VE,i = wE,i =
0 and θE,i > 0. The latter parameter is constant and
represents the valve’s friction coefficient. If i is a pump,
then JE,i = VE,i = 0 and wE,i is the pressure difference
produced between its terminals.

On the other hand, for each node k ∈ N the following
constraints are considered:

V̇N,k =
∑
i∈Tk

qE,i −
∑
i∈Sk

qE,i, (4a)

pN,k = pinE,i, i ∈ Sk, pN,k = poutE,i , i ∈ Tk, (4b)

where the sets Sk and Tk are defined in (1). Equation (4a)
represents mass balance and (4b) guarantees pressure con-
sistency at each node. Note that under Assumption 1.(vi),
the right hand side of (4a) must be zero if k ∈ N is a
simple junction. Moreover, if a, b ∈ N represent the hot
and cold layer of a given storage tank, then pN,a = pN,b
and VN,a + VN,b = V max, for some V max > 0 denoting
the storage tank’s capacity. These additional constraints
complement (4).

We note that (3) and (4) can be represented in vector form
as the following DAE:

−B>0 pn = diag(JE)q̇E + fE(qE)− wE, (5a)

V̇n = 0 = B0qE, (5b)

where pN, VN are the pressure and volume vectors of the
reduced DH system’s graph G = (N, E), resulting from
G when for each storage tank we merge its hot and cold
layers. Also, B0 is an incidence matrix for G.

Following De Persis and Kallesoe (2011), a set of indepen-
dent flows can be identified from which the entire hydraulic
state of the DH system can be determined. These flows are
associated with a selected collection of pipes that generate
fundamental loops of G.

Theorem 1. There exists a collection C ⊂ E of nf pipes
whose flows qf,i are independent variables. All system flows
can be computed as qE = F>qf , where F is the (full
rank) fundamental loop matrix associated with C (and G).
Moreover, the following claims hold true:

(I) If there is an independently controlled pump with
pressure wf,i adjacent to each pipe in C, then qf is governed
by the dynamics

Jf q̇f = −ff(qf) + wf +Bbwb, (6)

where Jf = Fdiag(JE)F> > 0 and ff(qf) = FfE(F>qf)
is a monotone function. Also, Bbwb, with (Bb)α,β ∈
{−1, 0, 1}, codifies the effect on qf of any other pump in the
system (here we assume they provide a constant pressure
difference).

(II) There exists W ∈ RnST×nf , with entries in {0, 1} and
nST being the number of storage tanks, such that the
dynamics of the storage tanks’ hot layer volume are given
by

V̇sh = Wqf . (7)

Also, V̇sc = −Wqf holds for the cold layers’ volumes.

(III) If wb is constant, then (6) is shifted passive with
passive output qf and storage function Sf(qf) = 1

2 (qf −
q̄f)
>Jf(qf − q̄f). It follows that Ṡf ≤ (wf − ūf)>(qf − q̄f)

holds for all time and for any equilibrium pair (w̄f , q̄f) of
(6).

4. TEMPERATURE DYNAMICS

We present now a model to describe the dynamic behavior
of the DH system’s temperatures. More details, as well
as the standing assumptions behind it are described in
Machado et al. (2022). For ease of notation, we assume
that the orientation of each i ∈ E matches the direction of
the stream through it, i.e., qE,i ≥ 0 all the time.

Let i ∈ E either be a pipe, a valve of a pump. Then, the
energy balance at i is equivalent to:

VE,iṪE,i = qE,i
(
T in
E,i − T out

E,i

)
+ αpr,iPpr,i − βc,iPc,i

+ qE,ifE,i(qE, i), (8)

where T in
E,i (T out

E,i ) is the temperature at the inlet (outlet)
of the pipe. If i is associated with the heat exchanger
of a producer (consumer), then Ppr,i (Pc,i) is the heat
injection (extraction) into (from) the DH system by the
producer (consumer). Also, each Ppr,i is a control input,
whereas each Pc,i is a disturbance. The term qE,ifE,i(qE,i)
represents heat dissipation due to frictional forces.

Now let k ∈ N be an arbitrary node of the DH system.
Then, the energy balance at k can be written as

d

dt
(VN,kTN,k) =

∑
j∈Tk

qE,jT
out
E,j −

∑
j∈Sk

qE,jT
in
E,j . (9)

The term in the left-hand side represents the rate of change
of the thermal energy stored at node k whereas the terms
in the right-hand side are the sum of the thermal energies
of the streams that target and source from k, respectively.

Based on the (upwind) semi-discretization scheme dis-
cussed in Hauschild et al. (2020) and on the nodal con-
straints described in Krug et al. (2021), we complement
(8) and (9) with the following constraints for each i ∈ E
and j ∈ N :

T in
E,i = TN,j , ∀i ∈ Sj ⊂ E , and T out

E,i = TE,i. (10a)

It follows that (9) can be written in a the following,
equivalent form:

VN,kṪN,k =
∑
j∈Tk

qE,jTE,j −

∑
j∈Tk

qE,j

TN,k,
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where we have used (4a). Note that VN,k is constant for
most of the nodes, with the exception of the layers of
storage tanks.

By defining T = 1
2 (B0 + |B0|) and S = 1

2 (B0 − |B0|), then
the system (8), (10) and (11) can be written as follows:

diag(VE, VN)

[
ṪE
ṪN

]
= A(qE)

[
TE
TN

]
+BprPpr −BcPc

+

[
diag(qE)fE(qE)

0nN×nE

]
, (11)

where

A(qE) =

[
−diag(qE) diag(qE)S>
T diag(qE) −diag(T qE)

]
. (12)

Also, Ppr (Pc) collects the producers (consumers) heat
injections (extractions) to (from) the DN, then Bpr (Bc)
is a suitable constant matrix with entries in {0, 1}.
Consider the following:

Theorem 2. Consider the system (6) and (12) and assume
that Pc is constant. Then, the following claims hold true:

(I) The system is cyclo-dissipative (van der Schaft, 2021)
with the total energy H = 1

2q
>
f Jfqf +

∑
i∈E VE,iTE,i +∑

i∈N VN,iTN,i as storage function and w>f qf + 1>Ppr −
1>Pc as supply rate.

(II) Assume that qE is at equilibrium. Then A(qE) is a
Kirchhoff Convection Matrix, which implies that A(qE) ≤
0. It follows that (11) is shifted passive with passive output
Tpr := B>prTE and storage function Sth(TE) = 1

2 (TE −
T̄E)>diag(VE)(TE− T̄E)+ 1

2 (TN− T̄N)>diag(VN)(TN− T̄N).

That is, Ṡth ≤ (Ppr − P̄pr)
>(Tpr − T̄pr) holds for all time

and for any equilibrium pair (P̄pr, T̄E, T̄N) of (11).

We note that the storage function Sth in Theorem 2 is
based on the shifted ectropy (Haddad, 2019), which is
quadratic in the total energy of the system (Haddad,
2019, Chapter 3). Also, the passive output Tpr stacks
the temperatures of the heated water streams that each
producer injects into the DH system, respectively.

5. CONCLUSION

Invoking conservation laws and graph theoretic tools we
have derived a thermo-hydraulic model of a multi-producer
DH system and established that it is cyclo-dissipative.
Also, its hydraulic and thermal subsystems are shifted
passive under certain conditions.

In the talk we will discuss and present numerical simu-
lations about how the established shifted passivity prop-
erties can be used in the synthesis of decentralized con-
trollers with closed-loop stability guarantees. We will also
discuss current modeling extensions aimed at designing
optimal control strategies for the real time minimization of
meaningful cost functions related with consumers’ thermal
comfort.

REFERENCES
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Abstract:
A semilinear infinite-dimensional system with a disturbance input is considered. The observation
is modelled by an affine linear map with a different disturbance. An observer, based on the
extended Kalman filter (EKF), is constructed and its well-posedness is proven under mild
conditions. Moreover, local exponential stability of the error dynamics is shown. Thus, if the
error in the initial condition is small enough, the estimation error converges to zero. This
is a first generalization of the EKF to infinite-dimensional systems. Since only detectability,
not observability, is assumed, this result is new even for finite-dimensional systems. An
implementation is provided for a magnetic drug-delivery system and numerical results support
the effectiveness of the observer.

Keywords: estimation, extended Kalman filter (EKF), infinite-dimensional system, semilinear
partial differential equations
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1. INTRODUCTION

In many physical applications, the system’s state varies
with spatial variables as well as time. The state of such
systems is modelled by partial differential equations and
evolves on an infinite-dimensional space, and so they are
an important class of infinite-dimensional systems, as are
systems modelled by delay-differential equations. The full
state of these systems cannot be measured. As for finite-
dimensional systems, a system, referred to as an observer
or estimator, can be designed to estimate the state using
the mathematical model and the measurements provided
by sensors.
For linear systems, the Kalman filter (KF) minimizes the
variance of the error under certain assumptions on the
disturbances. The observer can be calculated through solu-
tion of a Riccati equation. The Kalman filter is widely used
and was extended to infinite-dimensional linear systems in
the 1970’s; see the review papers Curtain (1975) and ?.
This theory was recently extended to time-varying infinite-
dimensional systems, see Wu et al. (2015).
Due to its success in a wide range of applications, an exten-
sion of the KF to nonlinear systems, the extended Kalman
filter (EKF), was developed for finite-dimensional systems.
The EKF design is based on a linear approximation of
the system around the estimated state. The linearized
⋆ Financial support of Natural Sciences and Engineering Research
Council of Canada (NSERC) and of the U.S. AFOSR under Grant
FA9550-16-1-0061 for this research is gratefully acknowledged.

system is used to derive a Riccati equation and this is
used to calculate the observer gain; e.g. Simon (2006);
Grewal and Andrews (2011). This method is widely used;
see for example, Reif and Unbehauen (1999); Reif et al.
(1999, 2000); Kai et al. (2010, 2011); Einicke and White
(1999). However, although this method may work well, it
is well known that it may lead to divergent error estimates.
Convergence of the estimation error for EKF depends on
the size of the nonlinearity and the initial condition, see
for instance, Liang (1983); Ribeiro (2004).
Further convergence results include local exponential con-
vergence of the estimation error in Baras et al. (1988) or
Reif et al. (1998) under certain conditions, as well as in
Ahrens and Khalil (2007) using the normal form of the
governing ordinary differential equations.
Observers for nonlinear infinite-dimensional systems are
often designed using a finite-dimensional approximation of
the system. This enables the use of techniques for nonlinear
finite-dimensional systems. For an example thereof, using
the EKF, see Rigatos et al. (2017) and Afshar et al. (2018).
There are some studies for nonlinear infinite-dimensional
systems where the observer is designed directly using the
infinite-dimensional system equations. To name some se-
lect examples, see the second-order sliding mode observer
in Miranda et al. (2012), an observer with correction by a
linear output error injection in Bitzer and Zeitz (2002), or
spatially-distributed linear output injection in Efe* et al.
(2005) for a one-dimensional nonlinear Burgers’ equation.
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The EKF is formally shown here to be well-posed for
a class of semilinear infinite-dimensional systems with
bounded observation. As for a finite-dimensional EKF,
the observer dynamics are a copy of the original system’s
dynamics with an injection gain defined by the solution
of an Riccati equation. Since the Riccati equation is cou-
pled with the observer equation, conventional results in
the literature including Curtain and Pritchard (1976) for
existence of solutions to the Riccati equation cannot be
directly used. This is due to the fact that for linear equa-
tions the Riccati equation does not depend on the state of
the system. In our, nonlinear, case, such a dependence still
remains after linearizing the system, making the analysis
more involved.
Also, for sufficiently small initial error, and smooth nonlin-
earity, the error dynamics are exponentially stable. Sim-
ilar results for finite-dimensional systems; see Elizabeth
and Jothilakshmi (2015); Alonge et al. (2014); Reif et al.
(1999, 2000) assumed uniform observability . Here only
detectability is assumed so the results are new for finite-
dimensional systems. The estimation error is bounded in
presence of disturbances.
For implementation, the infinite-dimensional EKF must be
approximated using some method. The paper concludes
with illustration of implementation using a finite-element
method for estimation of concentration in a magnetic drug
delivery system.
The proof of well-posedness was done in the thesis Germ
(2019) for nonlinearities without time dependence, and
briefly sketched in the conference paper Afshar et al.
(2020). Complete details of the results described in this
talk are in ?.

2. PROBLEM STATEMENT

Let H be a Hilbert space and let A : D(A) → H be a
linear operator that generates a C0-semigroup T (t) on H
and F : H × [0, tf ] → H be strongly continuous in time,
satisfying F (0, t) = 0 for every t.
We consider the semilinear evolution system

∂z(t)

∂t
= Az(t) + F (z(t), t) +Bu(t) +Gω(t),

z(0) = z0 ∈ H,
(1)

where for Hilbert spaces H1 and H2, u(t) ∈ C([0, tf ],H1)
is the control input, ω(t) ∈ C([0, tf ],H2) is the input dis-
turbance and B ∈ L(H1,H), G ∈ L(H2,H), with L(A,B)
denoting the space of linear and bounded operators from
A to B. We refer to z(t) as the state of the system (1).

Assumption 1. The operator F admits a Fréchet-derivative
DF (·, ·) such that for a constant δDF > 0 we have
∥DF (x, t)∥ ≤ δDF for all (x, t) ∈ H× [0, tf ], and for every
δ > 0 there exists a Lipschitz constant ιDF > 0 such that
for all ∥x− y∥ < δ and all t ∈ [0, tf ],

∥DF (x, t)−DF (y, t)∥ ≤ ιDF ∥x− y∥.

The disturbance ω and control u may be lumped as
Bd = [B,G], uTd (t) = [uT (t),ωT (t)].

The state-equation for z in system (1) then becomes

∂z(t)

∂t
= Az(t) + F (z(t), t) +Bdud(t),

z(0) = z0 ∈ H.
(2)

With disturbance η(t) ∈ C([0, tf ],Rp), p ≥ 1, let
y(t) = Cz(t) + η(t)

be the system measurement, where C ∈ L(H,Rp).
Our objective is to design an observer for the system (2).
Most generally, an observer is a dynamical system with
state ẑ(t) such that, in the absence of disturbances,

lim
t→∞

∥z(t)− ẑ(t)∥ = 0.

In our case, as is common, the observer dynamics contain
a copy of the system’s dynamics and a feedback term that
corrects for the error between the predicted observation,
Cẑ, and the actual observation, y. The general form of
the observer is
∂ẑ(t)

∂t
= Aẑ(t) + F (ẑ(t), t) +Bu(t) + L(t)[y(t)−Cẑ(t)]

ẑ(0) = ẑ0 ∈ H,
(3)

where L(t), referred to as observer gain, needs to be
selected so that in the absence of disturbances ω(t) and
η(t), ẑ(t) → z(t).

3. OBSERVER DESIGN

The problem of observer design for linear systems has been
well studied. The most widely known and used approach
is the Kalman filter. Consider, instead of (2), the linear
system

∂z(t)

∂t
= Ã(t)z(t) +Bu(t) + ω(t). (4)

y(t) = Cz(t) + η(t).

where Ã(t) generates an evolution operator U(t, s),and
ω(t) and η(t) are process and output disturbance respec-
tively.
Assumption 2. Let linear operators P 0 ∈ L(H), W (t) ∈
C([0, tf ],L(H)) and R(t) ∈ C([0, tf ],L(Rp)) be self-
adjoint. Let P 0 be positive definite and W (t) be non-
negative definite for all t ∈ [0, tf ]. The operator R(t) is
uniformly coercive; meaning that there exists a δ0 > 0
such that for every w ∈ Rp and t ∈ [0, tf ], (w,R(t)w) ≥
δ0∥w∥2.

Note that since R(t) is self-adjoint, coercive and bounded
for each t, it follows that for all t ∈ [0, tf ], it has a self-
adjoint bounded inverse R−1(t) ∈ C([0, tf ],H).

Linear integral Riccati equations are defined in the
following theorem. For the proof we refer to (Curtain and
Pritchard, 1976, Theorem 3.1 & 3.3) or (Curtain, 1976,
Theorem 2.1).
Theorem 3. Let U(t, s) be an evolution operator on
∆(tf ) := {(s, t) ∈ [0, tf ]

2, 0 ≤ s ≤ t ≤ tf}. Under
Assumption 2, the following integral Riccati equation

P (t)w =UP (t, 0)P 0U
∗(t, 0)w (5)

+

∫ t

0

UP (t, s)W (s)U∗(t, s)wds, w ∈ H,

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



where the perturbed evolution operator
UP (t, s)w =U(t, s)w (6)

−
∫ t

s

U(t, r)P (r)C∗R−1(r)CUP (r, s)wdr,

w ∈ H, admits a unique, positive definite, self-adjoint
solution P (t) ∈ C([0, tf ],L(H)).

This solution P (t) defines an observer gain,
LP (t) = P (t)C∗R−1(t).

This defines observer dynamics for (4) are
∂ẑP (t)

∂t
= Ã(t)ẑP (t) +Bu(t) + LP (t)(y(t)− Cz(t)).

(7)
In the case that ω(t) and η(t) are process and sensor
noises with covariances W (t) and R(t) respectively and
the covariance of the initial condition ẑ(0) is P 0 then the
observer gain LP (t) and corresponding estimate ẑ(t) are
optimal in a sense that ẑ(t) minimizes the error covariance
Curtain (1976). This observer is the Kalman filter. For
details, see Curtain and Pritchard (1978) and for recent
work on time-varying systems, Wu et al. (2015).
The linearization of (2) will be used to define a integral
Riccati equation similar to (5). The solution P defines the
observer gain. In the case of finite-dimensional systems,
this approach is known as an extended Kalman filter
(EKF) and this terminology will be used here.
First, the linearization of the system is defined. For this
purpose, for ẑ(t) ∈ C([0, tf ],H), at time t the Fréchet-
derivative of F (·, t), denoted by DF (·, t) : H → L(H),

DF (ẑ(t), t) =
∂F (z, t)

∂z
|z=ẑ(t) . (8)

Linearizing the system (2) around ẑ(t) yields
∂z(t)

∂t
=Az(t) + F (ẑ(t), t) (9)
+DF (ẑ(t), t)[z(t)− ẑ(t)] +Bdud(t).

To obtain EKF equations, the solution to the integral
Riccati equations for the linear system (9) is needed. Since
U in (6) is now given by, for w ∈ H,

U(t, s)w =T (t− s)w (10)

−
∫ t

s

T (t− r)DF (ẑP (r), r)U(r, s)wdr,

these will contain the Fréchet-derivative DF (ẑP (t), t), a
possibly nonlinear function of the observer state ẑP (t).
Therefore recent results on the Riccati equation do not
provide well-posedness for the coupled system.
For a bounded linear operator P (t) ∈ C([0, tf ];L(H)) and
ẑ0 ∈ H, the mild solution ẑP (t) to (7) is

ẑP (t) =T (t)ẑ0 +

∫ t

0

T (t− s)
(
F (ẑP (s), s) +Bu(s)

)
ds

+

∫ t

0

T (t− s)P (s)C∗R−1(s)[y(s)−CẑP (s)]ds.

(11)

The following is the first of our main results.
Theorem 4. Let Assumptions 1 and 2 hold. For any u(t) ∈
C([0, tf ],H1), y(t) ∈ C([0, tf ],Rp) and ẑ0 ∈ H there exist

ẑP (t) ∈ C([0, tf ],H) and P (t) ∈ C([0, tf ],L(H)) such that
ẑP (t) solves (11) and P (t) satisfies the Riccati equation
(5), coupled to (6) and (10).

The other main result concerns the error dynamics.
ϕ(e, t) = F (z, t)− F (z − e, t)−DF (z − e, t)(e). (12)

The error e(t) = z(t) − ẑP (t) between the system state
z(t) and the observer state ẑP (t) has the dynamics
∂e(t)

∂t
= Ae(t)−LP (t)Ce(t) +DF (z(t)− e(t), t)e(t)

+ ϕ(e(t))− LP (t)η(t)−Gw(t).
(13)

These dynamics are well-posed, and furthermore, locally
exponentially stable.
Theorem 5. Let the system (Ad(t),C), where Ad(t) =
A + αI + DF (ẑP (t), t), be uniformly detectable, and
(Ad(t),W

1/2(t)) be uniformly stabilizable. Assume that
there exist time T > 0 and positive numbersm > 1, ϵφ > 0
and δφ > 0 such that if ∥e∥H ≤ ϵϕ, then defining ϕ(·) as
in (12),

∥ϕ(e, t)∥H ≤ δϕ∥e∥mH, 0 ≤ t ≤ T. (14)
In the absence of disturbances, ξ = η ≡ 0, there exists
ϵ, δe,0 > 0, Me > 0, such that if ∥e(0)∥ = ∥z(0) −
ẑP (0)∥H < ϵ then for t ≥ 0,

∥z(t)− ẑP (t)∥H ≤Me exp(−αe(t− 0))∥z(0)− ẑP (0)∥H.

If disturbances are present, the estimation error is bounded.
Corollary 6. Consider the same assumptions as in Theo-
rem 5 except that there are disturbances ξ(t),η(t) satis-
fying for some δd > 0 ∥ξ(t)∥, ∥η(t)∥ ≤ δd. There exists
δe > 0 such that if ∥e(0)∥ ≤ δe and, the estimation error
is bounded.

These results will be illustrated by implementation of
an EKF observer for a magnetic drug delivery system
modelled by a system of semilinear partial differential
equations.
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Abstract: Dynamic consensus is a property of networked systems that pertains to the
case in which all the interconnected systems synchronise their motions and a collective
behaviour arises. If the coupling strength is large such behaviour may be modelled by a
single system, but if it is weak, the behaviour is best modelled by a reduced-order network.
For networks of homogeneous Stuart-Landau oscillators under weak coupling, we characterise
the dimension and dynamics of such reduced-order network in function of the coupling strength.
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1. CONTEXT

We analyse the dynamical behaviour of N identical
Stuart-Landau oscillators interconnected via a distributed
consensus-control law and with interconnection gain γ > 0,

żj = f(zj)+µzj − γ
N∑

k=1

akj(zj − zk), j ∈ {1, 2, ..., N},

(1)
where zj , µ ∈ C, and f : C → C is defined as

f(zj) = −zj |zj |2. (2)

Equations of interconnected Stuart-Landau systems, such
as (1)–(2), are often used as a universal dynamical system
to model networks exhibiting oscillations, such as lasers,
genetic and neuronal networks, among others (Hasty et al.,
2001; Soriano et al., 2013).

More precisely, we are interested in the possible synchro-
nised behaviour of these oscillators under the effect of the
last term on the right-hand-side of (1). Two factors affect
the collective behaviour of the multi-agent system. On one
hand, the network’s topology, which is defined by the co-
efficients akj , and on the other hand, the magnitude of the
coupling strength. For instance, for networks of identical
oscillators with an underlying undirected connected-graph
topology and with γ > 0 sufficiently large, the networked
systems trajectories zj(t) converge to the solution of an
averaged dynamical system,

żm = Fm(zm, e) (3)

where zm = 1√
N

∑N
k=1 zk and e is a synchronisation error

defined as

e := z − 1

N
1N1⊤

Nz ⇐⇒

 z1 − zm
...

zN − zm

 (4)

⋆ This work was supported by the French ANR via project HANDY,
contract number ANR-18-CE40-0010 and by CEFIPRA under the
grant number 6001-A.

—see (Pogromsky et al., 1999). For networks of het-
erogeneous oscillators, i.e., with different µjs in (1), in
(Maghenem et al., 2016) it is shown that for sufficiently
large values of γ the synchronisation error defined in (4)
is ultimately bounded and the solutions are frequency-
synchronised. This is significant because the function
(zm, e) 7→ Fm(zm, e) is such that

Fm(zm, 0) = −zm|zm|2 + µmzm (5)

where µm ∈ C is defined as µ := µR + iµI and

µR :=
1√
N

N∑
1

µRk, µI :=
1√
N

N∑
1

µIk. (6)

In other words, for sufficiently large values of the coupling
strength γ the response of each oscillator in (1) approaches
that of a single emergent oscillator of the same nature,

żm = −zm|zm|2 + µmzm, zm ∈ C. (7)

In general, for heterogeneous systems, such motion is
called dynamic consensus (Panteley and Loŕıa, 2017). For
Eq. (7), the solutions are either periodic trajectories whose
frequency and amplitude are defined by µ or the unstable
equilibrium point {zm = 0}. Because the right-hand side of
(7) corresponds to Fm(zm, 0), this equation describes the
asymptotic collective behaviour of the networked systems,
provided they enter in synchrony.

Besides the coupling gain being relatively high, the fact
that the collective behaviour of the networked systems (1)
may be approximated asymptotically by that of a single
oscillator is also a consequence of the graph being con-
nected and undirected. Indeed, in this case, the associated
Laplacian matrix

LN := [ℓkj ] ∈ RN×N , ℓkj =


∑
l∈Nk

akl k = j

−akj k ̸= j,
(8)

has exactly one null eigenvalue and v1 := 1√
N
1N is its

associated left eigenvector. That is,

zm := v⊤1 z and e = [IN − v1v
⊤
1 ]z. (9)
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It is well-documented in the literature that for relatively
small values of γ networks of Stuart-Landau oscillators
can exhibit a rich variety of behaviours, such as chaotic
motion, emergence of cluster states, and coherence reso-
nance, among others (Golubitsky et al., 2012). Such richer
behaviours cannot be captured by that of a single oscil-
lator with dynamics as in (7). In (Tumash et al., 2019)
it is shown that, in some cases, rich behaviour can be
characterised by a network of reduced order. Specifically,
the main results in (Tumash et al., 2019) only apply to
networks of even dimension and a specific topology, and
the reduced-order model’s interconnections are nonlinear.

In this extended abstract we consider networks of arbitrary
dimension and with circulant-graph topology. We show
that the dimension of the reduced model depends on
the magnitude of the coupling strength γ relative to the
eigenvalues of the Laplacian matrix LN . Significantly, and
in contrast to (Tumash et al., 2019), the reduced-order
model has exactly the same structure as the original
multiagent system, with linear interconnections.

2. MAIN RESULT

Consider systems modelled by (1), which we rewrite in the
compact form

ż = F (z) + γL̃Nz (10)
where z = [z1 z2 · · · zN ]⊤,

F (z) = [ f(z1) f(z2) · · · f(zN ) ]⊤

and

L̃N :=
[
− LN +

µ

γ
IN

]
, (11)

under the following hypothesis.

Assumption 1. The network is undirected and connected,
has an underlying circulant-graph topology. That is, the
adjacency matrix is circulant.

Assumption 1 implies that the Laplacian LN with coef-
ficients defined in (8) is a circulant matrix. That is, the
(k + 1)st row of LN corresponds to the kth row in which
the last element, ℓkN , is placed first in the (k + 1)st row
and all other elements are shifted right. An example of a
network satisfying Assumption 1 corresponds to one with
an underlying ring topology, and in which the nodes may
have supplementary cross-links, but with the restriction
that each node has the same number of neighbours,m ≥ 2.
See Fig. 1 in Section 3 for an illustration.

Then, we have the following.

Proposition 2. (Main result). Consider a network of N
Stuart-Landau oscillators with dynamics (10)–(11), such
that the Laplacian LN satisfies Assumption 1. Then, there
exists γm > 0 such that, for each γ > γm, there exists
NR(γ) < N and a network of reduced order NR(γ), with
dynamics given by

żR = F (zR) + γL̃RzR, (12)

where L̃R ∈ CNR×NR , zR ∈ CNR , z = [zR1 zR2 · · · zRNR
]⊤,

F (z) = [ f(zR1) f(zR2) · · · f(zRNR
) ]⊤

Moreover, the solutions of (10) satisfy

lim
t→∞

z(t)− z̄R(t) = 0 (13)

for any initial conditions in CN , where z̄R = MzR and
M ∈ CN×NR is a matrix such that its columns generate a
subspace of dimension NR. □

In this extended abstract we do not provide a complete
proof of Proposition 2, but the main rationale behind.

First, we observe that because the graph is connected (see
Assumption 1), LN has a unique zero eigenvalue and it
admits the Jordan decomposition

LN = U

[
0 0
0 Λ2

]
U∗, (14)

where U∗ ∈ CN×N denotes the conjugate transpose of U ,
which is orthonormal, so UU∗ = U∗U = IN . Furthermore,
Λ2 ∈ CN−1×N−1 is a diagonal matrix whose elements
correspond to the nonzero eigenvalues of LN . Then, in
view of its definition—see Eq. (11), L̃N satisfies the same
decomposition as LN . That is, denoting by λi(LN ) the
eigenvalues of LN , after (11), we have

L̃N = U



µ

γ
0 · · · 0

0 −λ2(LN ) +
µ

γ

...

...
. . . 0

0 · · · · · · 0 −λN (LN ) +
µ

γ


U∗.

(15)
Clearly, the number of eigenvalues of the matrix above
with positive real part varies from one to N depending
on the value of γ. On the other hand, by convention, the
eigenvalues λi are ordered in a way that 0 < ℜe {λ2} ≤
ℜe {λ3} ≤ . . . ≤ ℜe {λN}.
Furthermore, under Assumption 1, if N is odd, the non-
zero eigenvalues λk come in conjugate pairs, that is
ℜe{λk} = ℜe{λk+1} for all k ∈ {2, 4, . . . , N − 1}. Hence,
for any γ such that for some k ∈ {2, 4, . . . , N − 3}

ℜe{µ/λk+2} < γ < ℜe{µ/λk}
the matrix in (15) has necessarily an odd number NR(γ) =
k + 1 eigenvalues with positive real part, and NR(γ) =
N for any γ < ℜe{µ/λN−1}. Thus, for any γ >
γm := ℜe{µ/λN} = ℜe{µ/λN−1}, the matrix in (15) has
NR(γ) < N eigenvalues with positive real part. Similar ar-
guments apply to the case in which N is even, considering
that λN ∈ R>0.

Now, for the sake of argument, let us disregard momen-
tarily the nonlinear terms in (10), F (z). For the system

ż = γL̃Nz, the eigenvalues with positive real part in L̃N

generate unstable modes while those with negative real
part generate stable ones. That is, the solution may be
written as

z(t) = v1v
∗
1z(t)+v2v

∗
2z(t)+ · · ·+vNR

v∗NR
z(t)+ e(t), (16)

where vk ∈ CN , for all k ∈ {1, 2, . . . , NR} are eigenvectors
associated with eigenvalues with positive real part and e(t)
contains the contributions to the solution generated by the
stable modes. As e(t) → 0 only the contributions of the
unstable modes remain. This motivates the choice for the
synchronisation errors,

e := z − U1U
∗
1 z, (17)

where U1 ∈ CN×NR is such that its columns correspond
to the NR eigenvectors associated with the NR eigenvalues
with positive real part, that is, vk farther above. Since
vk denote the columns of U1, note that if NR = 1 we
recover the expression (4). On the other hand, on the
synchronisation manifold {e = 0} the dynamics of the
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system (10) reduces to that of reduced-order network
evoked in Proposition 2. Exponential stability of {e = 0}
can be established along the lines of (Tumash et al., 2019).

Now, the statement of Proposition 2 asserts that the solu-
tion of the networked system converges asymptotically to
a trajectory that we denote z̄R(t). This trajectory, loosely
speaking, may be regarded as a linear combination of the
elements, zRk

(t), of the vector zR(t), solution of (12).
Indeed, introducing the notation M = [v′1 v′2 · · · v′NR

],
we see that

z̄R = v′1zR1 + v′2zR2 + · · ·+ v′NR
zRNR

(18)

and the NR vectors v′k are uniquely determined by the
properties of the Laplacian LN and the interconnection
strength γ. It is important to remark that v′k ̸= vk. As a
matter of fact, it may be shown that

M := U1[U
∗
11 − U∗

21(U
∗
22)

−1U∗
12 ],

where the matrices on the right-hand side above come from
a suitable partition of U and its conjugate transpose,

U =:

[
U11 U21

U12 U22

]
, U∗ =

[
U∗
11 U∗

21

U∗
12 U∗

22

]
. (19)

With these definitions, it may also be shown that e = z −
MzR or that Eq. (16) is equivalent to z(t) = e(t)+MzR(t)
so, in the limit, as e(t) → 0, z(t) = MzR(t)—cf. (13). In
that regard, (12) is reminiscent of the zero-dynamics of
the networked system (10) with respect to the converging
output e ∈ CN . This corroborates the initial observation
that, for complex networked nonlinear systems, the collec-
tive behaviour in the state of synchronisation, that is, on
the manifold {e = 0} depends on the coupling strength γ.

The importance of the latter observations transcend the
rationale behind the proof of Proposition 2, which is omit-
ted due to space constraints. The fact that, asymptotically,
z(t) = MzR(t), implies that the solutions of the (poten-
tially) high-order network (10) may be reconstructed using
the solutions of a reduced-order model, at least asymptot-
ically, as synchronisation is reached. This is possible using
a change of coordinates that leads to (12).

3. EXAMPLE

We have that if the coupling gain is large (γ > γM ) then,
NR = 1; that is, (12) becomes, simply, Eq. (7). In this case,
the oscillators synchronise globally. If γ is relatively small
(γM > γ > γm), which is the case of most interest here,
there exists a network of reduced order N > NR(γ) > 1.

For illustration, let us consider a network of eleven oscilla-
tors modelled as in (1), with µ = 1+2i and interconnected
over a graph satisfying Assumption 1, which is illustrated
in Fig. 1. We consider two cases that pertain to different
values of the coupling strength. First, we set γ < 1, which
is relatively small given that µR = 1. Indeed, for such γ,
L̃N in (11) has three eigenvalues with positive real part.
Hence, according to Proposition 2, there exists a reduced-
order network of dimension NR = 3 whose behaviour
approaches asymptotically that of the original one. Then,
the coupling strength is increased to γ = 2.5, so only the
first element in the diagonal of the matrix in (15) has
positive real part. Consequently, it is expected that the
collective behaviour of the networked systems approach
asymptotically that of a single one with dynamics as in
Eq. (7).

1

2

34
5

6

7

8
9 10

11

Fig. 1. Example of a ring graph in which each node has the same
(even) number of undirected links

In both simulation tests the initial conditions are set to
zj(0) = 1 + i ∀ j ∈ {1, 2, . . . , 5} ,
z6(0) = 0,

zj(0) = −1− i ∀ j ∈ {7, 8, . . . , 11} .
(20)

The results are shown in Figs. 2–6, for a coupling strength
set to γ = 0.75, and in Fig. 7 for γ = 2.5.

0 5 10 15 20
-1

-0.5

0

0.5

Fig. 2. Response of N = 11 oscillators under relatively small coupling
strength γ = 0.75

In Fig. 2 are shown the trajectories of all oscillators. It may
be appreciated that they all synchronise in frequency, but
the oscillations have different amplitudes and there are two
groups of in-phase oscillators. This is also appreciated from
Fig. 3, which shows the evolution of the synchronisation
errors as defined in (17) and from the plot on the left in
Fig. 4 where the trajectories are depicted on the complex
plane.

0 5 10 15 20
-2

-1

0

1

2

Fig. 3. Synchronisation error e(t) with e as in (17)

The behaviour of the three oscillators composing the
reduced-order network (12) is depicted in Fig. 5.

Three different behaviours appear: one, generated by the
mode related by the null eigenvalue of LN , is equivalently
equal to 0 since the initial condition is set at the origin,
which is an equilibrium. Two other modes, related to the
conjugate eigenvectors v1 and v2, generate trajectories
which are opposite to one another.
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Fig. 4. Oscillators’ trajectories on the complex plane for the network
of 11 oscillators (left plot) and for their behaviour reconstituted
from that of the reduced-order network (right plot)
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-0.5

0

0.5

1

Fig. 5. Simulations results of NR = 3 reduced order system

Note that the oscillators of the original network of dimen-
sion 11 do not necessarily synchronise their behaviour with
any of the three oscillators described by (12). However,
the behaviour of each zi(t) in (1) may be reconstructed,
asymptotically, using the responses of the reduced-order
network. The reconstituted behaviour, against time, is
shown in Fig. 6 and on the complex plane in the right
plot on Figure 4.

0 5 10 15 20
-1

-0.5

0

0.5

1

Fig. 6. Simulations results for the reduced system lifted to N = 11

In Fig. 7 are shown the oscillators’ responses with the ini-
tial conditions as in (20) and with high coupling strength,
γ = 2.5. In this case, all the oscillators’ trajectories con-
verge exponentially to zero. This is explained by the fact
that they approach the dynamics of the average system
in (7) with zero initial condition zm(0) = 0, which corre-
sponds to the average of zi(0) in (20).

Finally, to illustrate the influence of the initial conditions,
in Fig. 8 we show the response of the oscillators, with
coupling gain γ = 2.5 and in which case, z6(0) = 1 + i.
Asymptotically, all the systems converge to the trajectory
of one averaged oscillator, thereby achieving dynamic
consensus. In addition, the asymptotic behaviour of the
network may also be reconstructed from that of the
averaged motion, from t ≈ 1s.

0 2 4 6 8 10 12 14 16 18 20

-1

-0.5

0

0.5

1

Fig. 7. Oscillators response with γ = 2.5 with initial conditions as in
(20)

0 5 10 15 20
-1

-0.5

0

0.5

1

Fig. 8. Oscillators response with γ = 2.5 with initial conditions as in
(20), except for z6(0) = −1

4. CLOSING REMARKS

Our results illustrate how to reconstruct the asymptotic
behaviour of complex networked systems, with specific
topology, via a model-reduction. Undergoing research is
aimed at analysing the reduced-order model and consider-
ing other network topologies.
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Abstract: Building on the strong connection between dissipativity theory and Integral
Quadratic Constraints, we show how feedback loops involving neural networks can be analysed
computationally with respect to both stability and robustness. A basic building block is
the ReLU (Rectified Linear Unit) nonlinearity and we present both old and new dissipation
inequalities that are useful for its analysis.
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1. INTRODUCTION

The pioneering work on dissipativity in Willems (1972)
has been a cornerstone of systems analysis ever since.
Many extensions were developed over the years and more
recently the concept Integral Quadratic Constraint (IQC)
Megretski and Rantzer (1997) emerged in an effort to
unify dissipativity analysis with frequency domain meth-
ods dating back to Yakubovich (1967). Many IQCs can be
expressed as dissipativity inequalities with an explicitly
given non-negative storage function. For others, the non-
negativity is replaced by a more relaxed constraint and the
storage function may not be explicitly given. See Megretski
et al. (2010).
In recent years, deep learning with neural networks has
achieved impressive successes in many fields. Following in
the footsteps of this progress, many groups have worked on
robustness for systems involving neural networks. Neural
networks are well-suited to the IQC formalism and previ-
ous work along this line draws on old results. Static prop-
erties like reachability were treated in Hu et al. (2020) and
Lipschitz constant estimation was carried out in Fazlyab
et al. (2019), which can be used as one part in a larger
analysis of robustness of the full system. The closed loop
system can also be analysed as a whole as done in Yin et al.
(2020), and provides guarantees of global stability in the
presence of uncertain dynamics. The IQC formalism has
also been used in other contexts to provide other kinds of
guarantees, and those kinds of guarantees would transfer
to systems with neural networks. The limitation is that the
IQC-framework assumes all nonlinear elements, as well as
all properties, to be expressed in terms of quadratic forms,
limiting the number of questions that the framework can
answer. The strength, is that guarantees are global and
can be verified even in the face of adversarial attacks on
the network.
Here, and in Grönqvist and Rantzer (2022), we present
a larger class of constraints that can be used for neu-
ral networks, than used in the works cited above. We

ζ0 ξ1 ζ1 ξ2 ζ2 . . . ζN ζN+1
W1

b1
ϕ W2

b2
ϕ WN+1

bN+1

Fig. 1. A neural network, with input ζ0, output ζN+1 =
WN+1ζN + bN+1, and a sequence of N hidden layers
with affine mappings ξk = Wkζk−1+ bk and nonlinear
mappings ζk = ϕ(ξk), for k = 1, . . . , N .

also provide examples showing that a larger library of
constraints can enable stricter bounds on the behaviour
of neural networks, and that there is a trade-off in the
choice of constraints. After introducing neural networks,
we describe three different analysis settings, followed by a
listing of the available constraints in each analysis setting.
Finally, we present two small examples, highlighting the
different levels of expressiveness that can be achieved by
choosing an analysis setting and a selection of constraints.

2. NEURAL NETWORKS

Figure 1 shows a simple feedforward neural network and
lists the defining equations. More generally, the network
can be a graph with nodes representing either affine re-
lations or nonlinear activation functions. Activation func-
tions are often scalar and applied componentwise.
The internal variables, ξk and ζk, are vectors, and we may
have several neural networks in our closed loop system.
We assemble all components from all variables ξ1, . . . , ξN
into a large vector ξ, and all components from ζ1, . . . , ζN
into a large vector ζ, and we write

ζ = ϕ(ξ) (1)
where we now have a componentwise application of the
nonlinear function ϕ on a vector with a large number of
components.
This structure is described as a repeated nonlinearity, and
enables us to find a large set of quadratic constraints
to help us obtain guarantees for systems with neural
networks.
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We note that neural network typically contain affine layers,
defined by ξk = Wkζk−1 + bk that can be cumbersome in
some analyses. We discuss how we handle this issue using
the relative setting in section 4.

3. FORMS OF CONSTRAINTS

For the IQC formalism, there are two kinds of blocks in
a system. One kind includes linear time invariant sys-
tems, and all other blocks are characterized by quadratic
inequalities that hold for their inputs and outputs. We
describe three kinds of constraints here.
Static constraints, hard IQCs and soft IQCs take the forms(

ξ(t)
ζ(t)

)>

G

(
ξ(t)
ζ(t)

)
≥ 0 for all t∫ T

t=0

(
ξ(t)
ζ(t)

)>

G

(
ξ(t)
ζ(t)

)
dt ≥ 0 for all T∫ ∞

−∞

(
ξ̂(iω)

ζ̂(iω)

)?

Ĝ(iω)

(
ξ̂(iω)

ζ̂(iω)

)
dω ≥ 0.

(2)

A static quadratic constraint automatically gives a hard
IQC and a hard IQC automatically gives a soft IQC, with
the same matrix G used in all cases. We typically have
constraints on the structure of G, that reflect the quadratic
inequalities they are based on.
We will only list IQCs for the continuous time case, but
analogous forms for the discrete time case exist, except
for the Popov IQC. The constraints are then combined
using the S-procedure to provide guarantees for the neural
network or closed loop system, as used in our examples,
and as discussed at length in Megretski and Rantzer (1997)
and Megretski et al. (2010).

3.1 From Static to Dynamic

There are several ways to construct IQCs from quadratic
inequalities, beyond the immediate hard and soft IQCs
obtained from static inequalities as described above. Non-
negative expressions in ξ and ζ can be combined using
nonnegative matrices or convolution kernels to form IQCs.
The two special constructions in our lists, the Popov and
Zames-Falb IQCs, are well-established results from the
literature, and discussed in more detail in, e.g., Megretski
et al. (2010); D’Amato et al. (2001); Safonov and Kulkarni
(2000).

4. ANALYSIS SETTINGS

We consider three different analysis settings, and they
give us different sets of constraints. We refer to them
as the absolute, the relative and the incremental setting,
respectively.
The absolute setting uses constraints on the mapping from
inputs ξ to outputs ζ.
The relative setting considers a known reference input
ξ(ref), that often represents a steady state of the dynamics.
It considers constraints on the deviations from the refer-
ence signals, in both inputs and output, ∆ξ = ξ − ξ(ref)

and ∆ζ = ζ − ζ(ref). The nonlinearity from ∆ξ to ∆ζ is
now no longer repeated, as we have

∆ζ = ϕ
(
∆ξ + ξ(ref)

)
− ϕ

(
ξ(ref)

)
, (3)

which depends on the reference value.
For nonzero reference values, we consider instead the map-
ping from ∆ξ∣∣ξ(ref)∣∣ to ∆ζ∣∣ξ(ref)∣∣ and find that for reference

values of the same sign, this is a repeated nonlinearity
sharing many of the properties of the relu function. As the
reference values are constant and known in advance, this
simple rescaling of our signals allows us to use most of our
IQCs from the absolute setting.
Referring back to the affine relations in the neural network
layers, those relations become linear in the relative setting,
which enables us to keep using most of our IQCs for
netwoks with nonzero bias terms, bk, in figure 1.
Lastly, in the incremental setting, we have two arbitrary
inputs, ξ(1) and ξ(2), and we study the mapping from
∆ξ = ξ(1) − ξ(2) to ∆ζ = ζ(1) − ζ(2) = ϕ(ξ(1)) − ϕ(ξ(2)),
without any further assumptions on ξ(1) and ξ(2). This has
two consequences, compared to the incremental setting.
Firstly, we cannot use the rescaling trick to get repeated
nonlinearities, and, secondly, we no longer have a function,
as knowing ∆ξ = 1 is not sufficient to tell us what ∆ζ is.

5. ACTIVATION FUNCTIONS

Several activation functions are used in real networks,
but many networks contain almost only relu or leakyrelu
activations, with a single softmax nonlinearity in the last
layer.
We focus on the relu nonlinearity and note that this
enables the corresponding analysis of the very common
leakyrelu nonlineary, as the latter satisfies
leakyrelua(x) = max(ax, x) = ax+ (1− a) relu(x), (4)

where a is a constant that is known in advance.

5.1 Relu

For a single scalar relu, y = relu(x) = max(0, x) ∈ R, we
have the basic properties

y = 0 if x ≤ 0

y ≥ 0 and y − x ≥ 0

(y − x)y = 0.

(5)

For a pair of relus, yi = relu(xi) and yj = relu(xj), we
have a sector condition, thanks to a rate-limit and to
relu(0) = 0,

(yi − yj)((xi − xj)− (yi − yj)) ≥ 0. (6)

The above relations form the basis for our IQCs.
We now discuss a new form of constraint for the repeated
relu-nonlinearity. For our pair of relu operations, we have
the linear inequalities of equation (5), and any pairwise
product is a quadratic inequality, such as, e.g.,

(yi − xi)(yj − xj) ≥ 0 (7)
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We can convolve with a kernel h(t) such that h(t) ≥ 0 for
all t, to obtain the IQC (where a hat denotes a Laplace
transform)∫ ∞

−∞
(ŷi(iω)− x̂i(iω))

†ĥ(iω)(ŷj(iω)− x̂j(iω)) dω ≥ 0. (8)

Including all pairwise producs of linear inequalities, and
writing it in terms of our vectors ζ and ξ with a large
number of components, we have the IQC∫ ∞

−∞

[
ζ̂(iω)− ξ̂(iω)

ζ̂(iω)

]†
ĥ(iω)

[
ζ̂(iω)− ξ̂(iω)

ζ̂(iω)

]
dω ≥ 0. (9)

5.2 Other activation functions

While we focus on leakyrelu and relu as the most common
activation functions, other nonlinearities exist, and are
primarily of two kinds.
The first kind is a repeated nonlinearity, much like the
relu-case, but lacking some of the inequalities from section
5.1. They often satisfy a rate-limit, enabling some of
our constraints to hold also for this class of activation
functions.
The second kind is the softmax nonlinearity, which is
not a repeated nonlinearity. Instead, it is a vector valued
function, and it is nonvanishing for vanishing input. These
two properties limit the set of constraints available.

6. CONSTRAINTS

We list static constraints and IQCs available to us for
the repeated relu-nonlinearity. As discussed above, this
enables a corresponding set of constraints on the leakyrelu,
thanks to equation (4).
This section assumes a repeated relu-nonlineariy whose
input is a vector or vector valued signal. These may be
chosen as any subset of the relu-units in the system, i.e.,
of the vectors ξ and ζ from equation 1.

6.1 Absolute

We look for positive semidefinite quadratic forms in the
input and output of the repeated relu-unit.
(1) We can use the quadratic equality of equation (5),

multiplied by an arbitrary real number, as a static
constraint, and we obtain the corresponding hard and
soft IQCs.

(2) As discussed in section 5.1, products of the linear in-
equalities give us static and dynamic constraints when
multiplied with nonnegative coefficients or convolved
with nonnegative kernels.

(3) The rate-limit inequalities, equation (6), are also
quadratic, and we can use them for any pair of relu-
units, giving us static and dynamic constraints.

(4) The Popov IQC is a special construct that we can use
for our relu-nonlinearity

(5) There have been several works based on ideas of
Zames and Falb, and,we use the results from D’Amato
et al. (2001), which are formulated as IQCs, but also
give us static constraints as a special case if we set
the frequency dependent parts to zero.

6.2 Relative

In the relative setting, we have a set of reference values,
as discussed in section 4, and we rescale our inputs
and outputs into three sets of repeated nonlinearities, as
described in that section.
For rate-limits, we use the full set of inputs and outputs,
but for some other constructions, we use the three sets as
separate sets of repeated nonlinearities.
(1) The relu units still satisfy linear inequalities in the

relative setting, and we again multiply them with
nonnegative parameters or convolve with nonnegative
kernels to obtain a large family of constraints.

(2) The rate-limit still holds, within each of our three sets
of repeated nonlinearties, analogous to the absolute
setting.

(3) The rate-limit can be used in an additional way in the
relative setting, as every signal is a difference between
actual signal and reference signal.

(4) Within each of our three sets of repeated nonlineari-
ties, the results of D’Amato holds, and gives us static
and dynamic constraints.

6.3 Incremental

In the incremental case, the rate-limit is our only remain-
ing source of inequalities, and only in a single variant. The
linear inequalities no longer hold for the difference between
arbitrary signals, and the Zames-Falb construction cannot
be used, as our nonlinearity is not a function, as mentioned
in section 4.

6.4 Other Activation Functions

Many other activation functions satisfy rate-limits, and
the rate-limit related constraints hold for these as well.
The corresponding IQCs also hold, similar to the case for
the relu-nonlinearity.
As described in section 5.2, the set of constraints for the
softmax function is restricted in a different way, due to its
special structure.

7. SELECTION OF CONSTRAINTS

The library of constraints is provided here with the aim
of completeness, but in practical applications, a selection
of which constraints to use is often needed. In particular,
for deep neural networks, even the most efficient SDP
solvers will struggle as the network grows larger. This can
be alleviated by selecting constraints that lead to sparse
SDP problems, and we have found it useful to include
constraints that couple nonlinearites from adjacent blocks
in the block-diagram.
In the neural network, this amounts to constraints that
mix signals from adjacent layers, and for a more general
setup, it will also mix, e.g., the signals in the first layer of
the neural network with the nonlinear block before it, if
such constraints are available.
This retains sparsity in the problem, and keeps most of
the expressiveness of the IQC formalism.
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Fig. 2. Block diagram of system used in Closed Loop
example.
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Fig. 3. Training loss vs. number of gradient steps, with
guaranteed stability achieved after 884 steps.

8. EXAMPLE

8.1 Static Gain of a Deep Network

We consider a small network defined by

x1 =

(
1
−1

)
y0; y1 = relu(x1)

x2 = (1 −1) y1

(10)

where the input y0 and output x2 are both scalar.
The network was designed so that x2 = y0 in all cases, and
we will compare analyses of the static gain of this network
in the absolute and incremental settings.
In the incremental setting, all we have access to is the rate-
limit, and we cannot exclude that relu(x) = x might hold.
In that case, the static gain of the network would be 2,
and our analysis is unable to provide a lower bound. In
particular, for a deep network that is a repetition of the
above structure, the gain bounds of the layers are multi-
plied together to a gain bound that grows exponentially
with the depth of the network.
In the absolute setting, we have a more expressive set of
constraints, allowing us to obtain a gain bound of 1, and
the gain bound no longer grows exponentially with the
depth of the network.

8.2 Closed Loop Stability

We consider a double integrator controlled by a stabilizing
PD-controller. The output is filtered through a neural
network before passing to the controller. Our network
structure is a few-layer variant of the network from the
previous example, with the first-layer weights fixed, and
with remaining weights trained from random initialization.
We use the main theorem of Megretski and Rantzer (1997)
together with the KYP lemma discussed in Rantzer (1996)

to obtain closed-loop stability guarantees based on the
IQC formalism.
Our training progress is shown in figure (3) and sees
decreasing loss for a large number of iterations, with our
use of the IQC framework giving us guaranteed global
stability after 884 gradient steps.

9. CONCLUSION

We provide a list of constraints that can be used for ob-
taining guarantees for systems involving neural networks.
We discuss new constraints, as well as many from previous
literature.
We discuss three analysis settings, and provide two small
examples showing that we can obtain guarantees using
the formalism, and that the absolute setting can provide
stronger guarantees than the incremental setting.
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Abstract: We introduce a new numerical method to approximate the solutions of a class of
static Hamilton-Jacobi-Bellman equations arising from minimum time optimal control problems.
We rely on several grid approximations, and look for the optimal trajectories by using the coarse
grid approximations to reduce the search space for the optimal trajectories in fine grids. This may
be thought of as an infinite dimensional version, for PDE, of the “highway hierarchy” method
which has been developed to solve discrete shortest path problems. We obtain, for each level,
an approximate value function on a sub-domain of the state space. We show that the sequence
obtained in this way does converge to the viscosity solution of the HJB equation. Moreover,
the number of arithmetic operations that we need to obtain an error of O(ε) is bounded by

Õ(1/ε
2d

1+β ), to be compared with Õ(1/ε2d) for ordinary grid-based methods. Here β ∈ (0, 1]

depends on the “stiffness” of the value function around optimal trajectories, and the notation Õ
ignores logarithmic factors. Under a regularity condition on the dynamics, we obtain a bound of
Õ(1/ε(1−β)d) operations, for β < 1, and this bound becomes O(| log ε|) for β = 1. This allowed
us to solve HJB PDE of eikonal type up to dimension 7.

Keywords: Minimum Time, Eikonal equation, Fast Marching Method, Highway Hierarchies.

1. INTRODUCTION

We consider the minimal time optimal control problem,
consisting in finding a trajectory minimizing the travel
time between two points. The minimal time, together
with optimal trajectories, can be obtained by solving a
Hamilton-Jacobi-Bellman (HJB) partial differential equa-
tion (PDE) of eikonal type. Such an equation is obtained
from the dynamic programming principle, and has to be
thought in viscosity sense, see Fleming and Soner (2006).

One of the most famous methods to solve the eikonal PDE
is the fast-marching method, see Sethian (1996). Though it
is computationally efficient, it is still a grid-based method,
and hence suffers from the ”curse of dimensionality” of the
dynamical programming approach. Our algorithm intends
to bypass this difficulty by narrowing the search space
around optimal trajectories, hence solving a series of PDE,
in which the domain is becoming smaller and smaller
with the discretize grid becoming finer and finer. This
is inspired by the recent development of the ”Highway
Hierachies” algorithm, which applies to shortest path
problems in discrete time and in discrete space, see Sanders
and Schultes (2012).

The idea of our algorithm is as follows: instead of comput-
ing the optimal trajectories directly in the whole domain,
we first find a subdomain which contains the optimal tra-
jectories, then do the search in such a subdomain. This will
be achieved by using coarse and fine grids discretization
method. We first use a coarse grid to discretize the whole
domain, and do a partial fast marching search in this
coarse grid. Then, we find a subdomain which contains the

true optimal trajectories, by using the approximate value
function on the coarse grid, together with the error bound.
Finally we use a finer grid to discretize the subdomain, and
perform a fast marching search on this fine grid. We repeat
this operation, considering different levels of finer and finer
grids.

We show that using our algorithm, the final approximation
error is as good as the one obtained by directly discretizing
the whole domain with the finest grid. Moreover, the num-
ber of elementary operations and the size of the memory
needed to get an error of ε are considerably reduced.
Indeed, let κ(M) := M logM , and recall that the fast
marching method implemented in a d-dimensional grid
with M points requires a number of arithmetic operations
of order κ(M)Kd, in which the constant Kd ∈ [2d, 2d]
depends on the stencil of the discretization used for the fast
marching method. For our method, the number of arith-

metic operations is in the order of κ(( 1
ε )

2d
1+β )Cd, where

C > 1 and β ∈ (0, 1] are fixed constants (see Section 5), to
be compared with κ(( 1

ε )2d)Kd for conventional grid-based
methods. Moreover, under a regularity condition on the
dynamics, our complexity bound reduces to an order of
κ(( 1

ε )(1−β)d)Cd for β < 1, and κ(d| log ε|) for β = 1.

2. HAMILTON-JACOBI EQUATION FOR MINIMUM
TIME PROBLEM

Let Ω be an open, bounded domain in Rn. Let S1 be the
unit sphere in Rn, i.e., S1 = {x ∈ Rn, ‖x‖ = 1}, where ‖ ·‖
denotes the Euclidean norm. Let A = {α : [0,+∞]→ S1 :
α(·) is measurable} denote the set of controls. We denote
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by f the speed function, and assume the following basic
regularity assumption:

Assumption 2.1.

i. f : Ω× S1 → (0,+∞) is continuous.
ii. There exists positive constants Lf , γ, Lf,α such that

|f(x, α) − f(x
′
, α)| 6 Lf |x − x

′ |, and |f(x, α) −
f(x, α

′
)| 6 Lf,α|α− α

′ |γ ,∀x, x′ ∈ Ω, α, α
′ ∈ S1.

Our goal is to find the minimum time necessary to travel
from the source point xsrc ∈ Ω to the destination point
xdst ∈ Ω, and the optimal trajectories, together with the
optimal control α. We consider the controlled dynamical
system:

ẋ(t) = f(x(t), α(t))α(t) . (1)

We denote by xα,xsrc , or simply xα, the solution of (1)

with α ∈ A, such that xα(0) = xsrc and xα(s) ∈ Ω for
all 0 6 s 6 t. We restrict the set of control trajectories
so that the state xα stays inside the domain Ω forever,
i.e., we consider the following set of admissible controls
trajectories:

AΩ,xsrc
:= {α ∈ A | xα,xsrc

(s) ∈ Ω,∀s > 0},
and we further assume AΩ,xsrc

6= ∅. In other words, the
structure of AΩ,xsrc

is adapted to the state constraint

xα(s) ∈ Ω. By doing so, the minimum time function can
be defined as

Ts )(x) = inf
α∈AΩ,xsrc

inf{τ | xα,xsrc(τ) = x} .

Consider the Kruzkov change of variable:

vs )(x) = 1− e−Ts )(x) .

Then, vs )(x) is the viscosity solution of the following state
constrained HJB equation:

F (x, vs )(x), Dvs )(x)) = 0, x ∈ Ω,

F (x, vs )(x), Dvs )(x)) > 0, x ∈ ∂Ω,

vs )(xsrc) = 0 .

(2)

where F (x, r, p) = −minα∈S1
{−p · f(x, α)α+ 1− r}.

3. THE OPTIMAL TRAJECTORIES OF THE
CONTINUOUS SPACE PROBLEM

In this section we show how to reduce the state space Ω of
the original minimum time problem, while preserving the
optimal trajectories.

Definition 3.1. For every x, y ∈ Ω, we denote by Γ(x, y)
the set of geodesic points from x to y, defined as

Γ(x, y) = {xα,x(s) | s ∈ [0, τ ], α ∈ AΩ,x, xα,x(τ) = y

and

∫ τ

0

e−sds = inf
τ>0,α∈AΩ,x, xα,x(τ)=y

{
∫ τ

0

e−sds}}.

In other words, z is a geodesic point between x and y if
an optimal trajectory from x to y passes through z.

Let us consider a new minimal time optimal control
problem ending in xdst with the same dynamics as (1),
but starting at any x ∈ Ω. The associated minimal time
function is

T )t(x) = inf
α∈AΩ,x

inf{τ |xα,x(τ) = xdst} .

By doing so, we have Ts )(xdst) = T )t(xsrc), and we denote
τ∗ = Ts )(xdst) = T )t(xsrc). We then use the same change
of variable technique to get v )t(x) = 1− e−T )t(x).

Let us denote:

Fv(x) := vs )(x) + v )t(x)− vs )(x)v )t(x) .

Let Γ∗ = Γ(xsrc, xdst) denote the union of all optimal
trajectories from xsrc to xdst. Then, by the dynamic
programming principle, the following result holds :

Lemma 3.1. We have

vs )(xdst) = v )t(xsrc) = inf
y∈Ω
Fv(y) . (3)

Moreover, if Γ∗ is not empty, then for every x ∈ Γ∗ we
have Fv(x) = vs )(xdst), that is x is optimal in (3). If there
exists an optimal trajectory between any two points of Ω,
then x is optimal in (3), that is Fv(x) = vs )(xdst) if and
only if x ∈ Γ∗.

Let us now consider an open subdomain of Ω, Oη ⊆ Ω,
determined by a parameter η > 0, and defined as follows:

Oη = {x ∈ Ω | Fv(x) < inf
y∈Ω
{Fv(y) + η}} . (4)

We intend to reduce the state space of our original optimal
control problem from Ω to Oη. More precisely, we consider
a new optimal control problem with the same dynamics,
but we restrict the controls so that the state xα stays inside
the domain Oη, leading to the new set of controls:

Aη,xsrc
:= {α ∈ A |xα,xsrc

(s) ∈ Oη,∀s > 0}.

Let vηs )(x) denote the value function of the new problem,
then vηs )(x) is a viscosity solution of the following HJB
equation: 

F (x, vηs )(x), Dvηs )(x)) = 0, x ∈ Oη,
F (x, vηs )(x), Dvηs )(x)) > 0, x ∈ ∂Oη,
vηs )(xsrc) = 0 .

(5)

Then we have the following result:

Proposition 3.1. If Γ∗ is not empty, then Γ∗ ⊆ Oη, and
for all x ∈ Γ∗ we have vs )(x) = vηs )(x), v )t(x) = vη)t(x).

The above results express properties of exact optimal tra-
jectories. We will also consider approximate, δ−optimal,
trajectories:

Definition 3.2. For every x, y ∈ Ω, for any δ > 0, we
denote Γδ(x, y) the set of δ−geodesic points from x to y ,
defined as :
Γδ(x, y) = {xα,x(s) | s ∈ [0, τ ], α ∈ AΩ,x, xα,x(τ) = y,

and

∫ τ

0

e−sds 6 inf
τ>0,α∈AΩ,x, xα,x(τ)=y

{
∫ τ

0

e−sds}+ δ} .

Let Γ∗δ = Γδ(xsrc, xdst) denote the set of all δ−geodesic
points from xsrc to xdst. Then we have the following
results:

Lemma 3.2. For every η > δ > 0, we have Γ∗δ ⊆ Oη .

Lemma 3.3. For every η > 0, there exists δ
′
< η such that

Oη ⊆ Γ∗
η+δ′

.

The above two lemmas entail that the sets of δ−geodesic
points and Oη constitute two equivalent families of neigh-
borhoods. Thanks to these properties, we establish the
following result :

Theorem 3.1. For every x ∈ Γ∗δ , we have

vηs )(x) = vs )(x), vη)t(x) = v )t(x) .
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Thus, if we are only interested to find vs )(xdst) and the
optimal trajectories between xsrc and xdst, we only need to
solve the reduced problem (5) in the subdomain Oη. This
is equivalent to solving the original problem in Ω as long
as Oη contains the optimal trajectories of this problem.

4. THE MULTI-LEVEL FAST-MARCHING
ALGORITHM

4.1 Motivation

The main idea of our algorithm is based on the property
proposed above. Instead of computing the optimal trajec-
tories directly, we first find an approximate subdomain
of Oη by applying the fast marching search in a coarse
grid, with relaxed accuracy and error requirements. Then,
we further discretize Oη using a finer grid, and perform a
search on this fine grid.

4.2 The Update Operator for The Fast-Marching Search

Based on Assumption 2.1, there exist constants f, f such

that: 0 < f 6 f(x, α) 6 f < ∞. We define Υ := f
f > 1,

and observe that this constant can be interpreted as a
measure of anisotropy of the minimum time problem.

Let X = Ω∩ (hZ)d, we define Vs ) as the approximation of
the value function vs ) in X. Let x ∈ X, for any I adjacent

nodes x1, x2, ..., xI in the grid X, we define xρ =
∑I
i=1 ρixi

for ρ ∈ ∆I = {ρi > 0,
∑I
i=1 ρi = 1}. Let us denote

d(ρ) = ‖xρ − x‖ and αρ =
xρ−x
‖xρ−x‖ , which are the distance

and the direction from x to xρ.

Let I = {1, 2, ..., I}. Let Vs )(x; (xi)i∈I) denote the ap-
proximate value Vs )(x) of vs )(x) depending on the nodes
(xi)i∈I . Then, applying a semi-Lagrangian discretization
scheme, we have:

Vs )(x; (xi)i∈I)

= min
ρ∈∆I

{(1− d(ρ)

f(x, αρ)
)
∑
i

(ρiVs )(xi)) +
d(ρ)

f(x, αρ)
} .

Let us denote N(x) the set of neighborhood nodes of x,
defined as follows:

N(x) :={xj ∈ X | ∃xk ∈ X, s.t.
∃x̃ ∈ [xj , xk], ‖x̃− x‖ 6 Υh},

where we use [a, b] to denote the line segment between a
and b. Then, the update operator for the value function in
the fast-marching method is as follows:

U(Vs )(x)) := min{Vs )(x), min
(xi)i∈I∈N(x)

Vs )(x; (xi)i∈I)} .

4.3 The Algorithm

Two Level Fast Marching. We start by describing the
special case of the algorithm with only two levels of
grid. The algorithm consists of three main steps: Step 1.
Discretize Ω using the grid XH , and find a good OH,Iη ⊆ Ω.

Step 2. Discretize OH,Iη using the fine grid Ohη . Step 3.

Doing a fast marching search in grid Ohη . We give the
details of the first two steps:

Step 1, discretization in coarse grid. We start with
the full domain Ω. Let XH = Ω ∩ (HZ)d. Without loss of
generality, we assume xsrc, xdst ∈ XH .

By doing a fast marching search in XH starting from xsrc

and xdst respectively, we get the numerical approximation
V Hs ) for vs ), and V H)t for v )t. We use the approximate
value functions V Hs ) and V H)t to construct a subset of XH ,
denoted by OHη :

OHη = {xH ∈ XH | FV H (xH) 6 min
xH∈XH

FV H (xH) + ηH}.

Then we construct a continuous analogue of the grid
OHη , denoted by OH,Iη , by defining the approximate value
functions Vs ) and V )t on the whole domain using linear
interpolation of the functions V Hs ) and V H)t .

Step 2, discretization in fine grid-h. Let the finite
set Xh denote the approximation of Ω with mesh step h.
Without loss of generality we assume xsrc, xdst ∈ Xh. Let
the finite set Ohη be the approximation of OH,Iη with the
mesh step h, given by:

Ohη ={xh ∈ Xh |
∃xH ∈ OHη : ‖xh − xH‖ 6 max((H − h), h)}.

Multi-Level Grids. The computation in the 2-level
method above can be easily extended to the Multi-Level
case. For each level l, we consider the optimal control
problem in which the domain Ω is restricted to the fine-

grid region O
Hl−1,I
ηl−1 of the previous level l − 1. Then, by

applying the first two steps of the 2-level algorithm as
above, we get a new domain, OHl,Iηl

, taken to be the new
state space for the optimal control problem to be solved
at the next level. At the end, we do a fast-marching search
starting from xsrc in the final fine grid.

4.4 Implementation

Algorithm 1 Two-Level Fast-Marching Method

Input: Mesh step of coarse and fine grids: H,h. The
parameter ηH . The update operator for fast-marching
method: U . Start and end point: xsrc, xdst.
Output: Approximated value function: V hs )(x).

1: Do the fast-marching search staring from xsrc and xdst.
2: for Every node xH ∈ XH do
3: if FV H (x) 6 minxH∈XH FV H (xH) + ηH then
4: Set xH as Active , store it’s position.
5: end if
6: end for
7: Begin with set Fine be empty.
8: for Every node xH in the Active set do
9: for Every xh ∈ Xh : ‖xh−xH‖∞ 6 max{H−h, h}

do
10: if xh does not exist in set Fine then
11: Add xh in the set Fine, store it’s position.
12: end if
13: end for
14: end for
15: Do fast-marching search starting from xsrc in Fine.

In Algorithm 2, the selection of active nodes corresponds
to Step 1 in the two-level algorithm, the selection of fine
grid corresponds to Step 2 in the two-level algorithm.
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Algorithm 2 Multi-Level Fast-Marching Method

Input: The parameter Hl, ηl, for l ∈ {1, 2, ..., N}. The
update operator for fast-marching scheme: U . Start and
end point: xsrc, xdst.
Output: Approximated value function: V hs )(x).

1: Let XH1 be the Coarse-grid.
2: for l = 1 to N − 1 do
3: Do the partial fast marching search starting from
xsrc and xdst.

4: Select the Active nodes from the Coarse-grid.
5: Select the set Fine nodes based on the Active

nodes, as in Algorithm 1.
6: Let the Fine be the new Coarse-grid.
7: end for
8: Do the fast-marching search starting from xsrc in Fine.

To implement efficiently these algorithms, we need to store
the successive constrained grids OHlηl−1

in an effective way.
In particular, we need to determine if a candidate point
x ∈ XHl is in the constrained gridOHlηl−1

, and access to any

of its neighbors, in time O(1), while keeping the storage
to be in the order of the size of the (constrained) grids.
Moreover, we need to store only the points of XHl that are
in the set OHlηl−1

. These sets are much smaller compared

to the sets XHl , so we maintain them as a collection
of nodes (hash table) accessed through a hash function,
with a linked list to handle collisions. Each node of the
constrained grid OHlηl−1

is instrumented with informations
providing the value at this node, its position in the grid,
and additional variables needed to maintain the set of
active nodes in the fast marching propagation. For points
of XHl that are not in the constrained grid OHlηl−1

, the hash
function returns an empty pointer.

5. COMPUTATIONAL COMPLEXITY

In order to choose the parameters of our algorithm, we
shall assume that the following error estimation for the
approximate value function V hs ) holds for some θ > 0:

|V hs )(x)− vs )(x)| 6 Chθ . (6)

Indeed, by adapting the results of Capuzzo Dolcetta and
Ishii (1984), using Assumption 2.1, one can obtain (6) with
θ = 1/2. If we further assume that f is of class C2, then
we obtain (6) with θ = 1.

So, our multi-level algorithm need to compute a numerical
approximation with an error bound of same order in h,
i.e., ε ∼ Chθ, for each level. In the two-level case, the two
following parameters should be chosen:

1. The mesh step of the coarse grid H.
2. The parameter ηH , which should be big enough for
OHη to contain the true optimal trajectories.

The estimation (6) give us a theoretical upperbound for
ηH . Then, we have the following result:

Proposition 5.1. Assume there exists a finite number of
optimal trajectories, and that the distance betweenOη and
Γ∗ is in the order of ηβ , with 0 < β 6 1. Then the total
computational complexity of the two level fast marching
algorithm is

C(H,h) ∼ κ((
D

H
)d + (

(ηH)β

h
)d−1D

h
)

where D denotes the Euclidean distance from xsrc to xdst.

Note that the “stiffness” parameter β can take any value
in (0, 1], as shown in further work. Regarding the error
estimation we want to have in fine grid, the parameter H
has an optimal value, which we can compute easily.

Similarly, optimizing the parameters of the multi-level fast
marching method, and using the error estimation for V hs ),
we get the following result:

Theorem 5.1. With same assumption as Proposition 5.1.

(i) In order to have an error bound ε, we shall take

h = Cε2, Hl = C(Hl+1)
2l+1−2

2l+1−1 ,∀l ∈ {2, 3, ..., N − 1}.
In this case the total computational complexity of our

N -level algorithm is in the order of ( 1
ε )

2
1+β d.

(ii) Suppose now f ∈ C2 or θ = 1 in (6), and β < 1.

Then, we shall take h = Cε and H1 = Ch
1
N , Hl =

C(Hl+1)
l
l+1 ,∀l ∈ {1, 2, ..., N − 1}. In this case, the

total computational complexity of our N -level algo-
rithm in the order of ( 1

ε )(1−β)d.
(iii) When β = 1, set N = −dd log(h)e and take

{H1, H2, ...,HN−1} as proposed in (ii). Then, the
total computational complexity of our algorithm re-
duces to κ(−Cdd log( 1

ε )).

We implememented the algorithm in C++, and ran it
on a single core of a Quad-Core IntelCore I7 at 2.3Ghz,
with 16Gb of memory. For an eikonal problem on a cubic
domain, with obstacles, in dimension 4, with 5 grid levels,
the algorithm ran in 59.2s, giving an error of 3.1%, to
be compared with a time of 4241.9s for the classical
fast marching method, with the same error. Classical fast
marching ran out of time from dimension 5. Our algorithm
solved a dimension 7 instance in 1300s, with 6 grid levels,
leading to an accuracy of 7%.

6. CONCLUSION

We developed a multilevel fast marching algorithm, allow-
ing one to solve an eikonal PDE by reducing the search
space to neighborhoods of optimal trajectories. This yields
improved complexity bounds, and solves examples of PDE
up to dimension 7, for which it leads to a major speedup by
comparison with ordinary grid based methods. We believe
our method can be extended to HJB PDE of non-eikonal
type. To do so, one needs to replace the fast marching
sweeps by Bellman-type updates.
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Abstract: The optimal control of mechanical systems satisfies an optimal control version of
Noether’s theorem. Accordingly, there exist generalized momentum maps on the level of the
optimal control problem which are conserved if the system has symmetry. For constrained
mechanical systems different approaches to define the necessary optimality conditions are known.
These approaches will be compared with respect to their capability to preserve the generalized
momentum maps. In addition to that, a discretization approach will be proposed which is
capable to preserve the generalized momentum maps.
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1. INTRODUCTION

In the case of constrained mechanical systems the choice
of coordinates plays a crucial role. In particular, the choice
of coordinates affects the specific form of the equations of
motion. In the case of minimal coordinates the equations
of motion take the form of nonlinear ordinary differential
equations (ODEs) and numerical methods to solve related
optimal control problems are well established. On the
other hand, the choice of redundant coordinates facilitates
the description of general multibody systems. Due to the
presence of holonomic constraints the equations of motion
take the form of differential-algebraic equations (DAEs).
Numerical methods for optimal control problems with
DAEs as state equations have not yet reached the level
of maturity when compared to optimal control problems
with ODEs as state equations.

Using redundant coordinates in the state equations of the
optimal control problem affects the necessary optimality
conditions. In addition to that, holonomic constraints in
the state equations also place restrictions on the boundary
conditions of the optimal control problem. Uncontrolled
mechanical systems often have symmetry which leads
to the conservation of generalized momentum maps on
the level of the optimal control problem (Djukić (1973);
van der Schaft (1987); Torres (2002)). An analogous state-
ment can be made in the context of constrained mechanical
systems (Betsch and Schneider (2021)).

We show that the generalized momentum maps of the opti-
mal control problem can be preserved under discretization.
Moreover, we confirm that the numerical results for the
optimal control problem in terms of redundant coordinates
converge with the results obtained by using minimal coor-
dinates. In this connection, we investigate the role played
by different forms of the optimality conditions commonly
used in the optimal control of mechanical systems subject
to holonomic constraints.

2. STATE EQUATIONS OF CONSTRAINED
MECHANICAL SYSTEMS

The present work deals with the optimal control of
mechanical systems subject to holonomic constraints.
The motion of such systems is governed by differential-
algebraic equations (DAEs). The DAEs are typically in
index-3 Hessenberg form. For some applications minimal
coordinates can be used along with projection methods to
eliminate the holonomic constraints, see e.g. Leyendecker
et al. (2010). However, using minimal coordinates may lead
to coordinate singularities. To prevent the singularities,
coordinate switching can be necessary which, on the other
hand, is highly inconvenient in the solution of optimal con-
trol boundary value problems. In contrast to that, using re-
dundant coordinates associated with the underlying DAEs
may provide a general and singularity-free description of
the state equations of constrained mechanical systems.

A simple but representative example of a constrained
mechanical system is depicted in Figure 1. The config-
uration manifold of the mathematical pendulum is just
the two-dimensional sphere. Thus, the motion can be ei-
ther described in minimal coordinates by two angles or
in redundant coordinates q = (q1, q2, q3) along with the
constraint

g1(q) =
1

2

(
qTq− l20

)
= 0

where l0 is the length of the pendulum. As already men-
tioned, by using minimal coordinates there will always be
a singular point at the pole of the sphere depending on the
choice of the minimal coordinates. These coordinate sin-
gularities and the problems arising in the optimal control
problem can be circumvented easily by using redundant
coordinates instead, which point out the importance of
redundant coordinates in optimal control problems.

Using Livens principle, the enhanced action integral reads
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Fig. 1. The controlled mathematical pendulum

S =

∫ T

0

T (q,v)− V (q)− pT (v− q̇)− yTg(q) dt (1)

with q ∈ Rn being the position on the configuration
manifold, v ∈ Rn being the velocities at the configuration
manifold, p ∈ Rn being the conjugate momenta and
y ∈ Rm being the Lagrangian multipliers. Actuating forces
can be taken into account by adding their contribution to
(1) in the spirit of d’Alembert’s principle. Now taking the
first variation of (1) yields the equations of motion in the
form

q̇ =
∂H(q,p,y)

∂p

ṗ = −∂H(q,p,y)

∂q
+ F(x,u)

 ẋ = f(x,y,u) (2)

0 = g(q) (3)

with the Hamiltonian given by

H(q,p,y) = T (q, q̇) + V (q) + yTg(q) (4)

In (2) the state variables are summarized in the compact
form x = (q,p) ∈ P , where P = Rn × Rn and F (x,u) :
Rn × Rnu → Rn accounts for the actuating forces.

3. OPTIMAL CONTROL PROBLEM

Now let the optimal control problem seek to minimize the
cost function ∫ T

0

L(x,u) dt (5)

subject to the state equations (2) and (3), which need to
be satisfied throughout the time interval [0, T ]. In (5),
L : P × Rnu 7→ R is the cost density function. The
necessary conditions of optimality may be defined within
the Hamiltonian formalism in analogy to Livens principle
by using the Pontryagin maximum principle. However,
there are different approaches to define the Hamiltonian
of the optimal control problem. The simple approach
incorporates the constraints (3) directly leading to

H̃(x,y,u,λ,η) = λT f(x,y,u) + ηTg(q)− L(x,u) (6)

On the other hand, according to Roub́ıček and Valášek
(2002) the Hamiltonian for the optimal control problem
reads

H̃(x,y,u,λ,η) = λT f(x,y,u) + ηTG(x,y,u)− L(x,u)
(7)

where G(x,y,u) = d2

dt2 (g(q)). Supposing the Hamiltonian
and the cost function have symmetry, then there exists an
optimal control version of Noether’s theorem. This holds
true for state equations both in the form of ordinary dif-
ferential equations (Betsch and Becker (2017)) and DAEs
(Betsch and Schneider (2021)). Accordingly, if the optimal
control problem has symmetry, an associated generalized
momentum map is conserved along the solution of the
optimal control problem.

In the talk the different approaches will be compared with
respect to the conservation of the generalized momentum
map and a conserving discretization method will be pro-
posed.
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Leyendecker, S., Ober-Blöbaum, S., Marsden, J., and
Ortiz, M. (2010). Discrete mechanics and optimal
control for constrained systems. Optim. Control Appl.
Meth., 31(6), 505–528.
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Abstract: We present a framework to formulate infinite dimensional port-Hamiltonian systems
by means of system nodes, which provide a very general and powerful setting for unbounded
input and output operators that appear, e.g., in the context of boundary control or observation.
One novelty of our approach is that we allow for unbounded and not necessarily coercive
Hamiltonian energies. To this end, we construct finite energy spaces to define the port-
Hamiltonian dynamics and give an application in case of multiplication operator Hamiltonians
where the Hamiltonian density does not need to be positive or bounded. In order to model
systems involving differential operators on these finite energy spaces, we show that if the total
mass w.r.t. the Hamiltonian density (and its inverse) is finite, one can define a unique weak
derivative.

Keywords: Port-Hamiltonian Systems, Infinite Dimensional Systems Theory, Dissipativity

1. INTRODUCTION

The class of port-Hamiltonian (pH) systems provides a
flexible and energy-based modeling framework for a wide
range of physical systems. Due to their inherent passivity,
pH systems are accessible for various control approaches,
such as passivity-based control or control by interconnec-
tion (van der Schaft and Jeltsema, 2014; van der Schaft,
2000).

Already in finite dimensions there are manifold formu-
lations of pH systems via, e.g. explicit state-space sys-
tems (Beattie et al., 2018) or implicit geometric structures
(van der Schaft and Jeltsema, 2014). Some formulations
could be shown to be equivalent by means of linear re-
lations (Gernandt et al., 2021). In infinite dimensions,
classical definitions of port-Hamiltonian systems range
from, e.g., the operator theoretic approach of the textbook
(Jacob and Zwart, 2012) for distributed parameter systems
on one-dimensional domain and its generalization to mul-
tidimensional domains (Skrepek, 2021), to implicit defini-
tions with (Stokes)-Dirac structures (van der Schaft and
Maschke, 2021, 2002; Schöberl and Siuka, 2014; Le Gorrec
et al., 2005; Reis, 2021).

We present a formulation by means of system nodes. This
framework poses a generalization of the class of well-posed
systems in the sense of Staffans (2005). One feature of
system nodes, that is particularly appealing for modeling,
is that the generator A and the input map B are not
considered separately but rather as a composite operator
A&B, allowing for a natural inclusion of the boundary
control directly in dom(A&B). For results in view of
impedance and scattering passivity of system nodes, we
refer to Staffans (2002).

In (Villegas, 2007, Section 2.6, Section 3.2), the concepts
and relations of boundary control systems and system
nodes for scattering or impendance conserving systems

with particular focus on port-Hamiltonian systems on one-
dimensional domains was analyzed. More precisely, in (Vil-
legas, 2007, Theorem 2.37) the author showed a one-to-
one correspondence between port-Hamiltonian boundary
control systems with skew-symmetric main operator and
system nodes. Further, a relation between Dirac structure
and the graph of the system node was provided in (Ville-
gas, 2007, Theorem 3.12).

Here, we also choose the system node approach to port-
Hamiltonian systems. We consider multidimensional do-
mains and possible dissipation by means of a dissipative
(not conservative) main operator. To this end, we in-
troduce the notion of dissipative system node. Further,
we allow for unbounded Hamiltonians or Hamiltonians
with non-trivial kernel, which leads to the definition of
finite-energy spaces, being the domain of the Hamiltonian
function.

Notation. In the following, (X ,U ,Y) denotes a triple
of Hilbert spaces and by PX , PU and PY we denote the
orthogonal projection onto X , U and Y, respectively. By
dom(S) we mean the domain and by ρ(S) := {λ ∈
C |λI − S : dom(S) → X is bijective} the resolvent set
of a possibly unbounded operator S on X . We denote the
closed right-half plane by C+ = {λ ∈ C | Reλ ≥ 0} and
nonnegative real numbers by R+.

2. DISSIPATIVE SYSTEM NODES

Consider an unbounded operator S : X × U → X × Y
describing the (abstract) dynamics[

ẋ(t)
−y(t)

]
= S

[
x(t)
u(t)

]
.

The concept of operator nodes poses natural assump-
tions on the operator S, in order to guarantee favorable
properties and a suitable solution concept to the abstract
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dynamics above. We provide the standard definition given,
e.g., in (Opmeer and Staffans, 2014, Definition 2.1).

Definition 1. (Operator Node). An operator node on the
triple (X ,U ,Y) is defined by a (possibly unbounded) linear
operator S : [XU ] →

[X
Y
]

that is decomposed into S =[
A&B
C&D

]
with A&B = PXS : dom(S) → X and C&D =

PYS : dom(S) → Y. Further, we set Ax = A&B [ x0 ]
and dom(A) = {x ∈ X | [ x0 ] ∈ dom(S)} and demand the
following conditions:

(i) S : [XU ]→
[X
Y
]

with domain dom(S) is closed.

(ii) A&B : [XU ]→ X with domain dom(S) is closed
(iii) For any u ∈ U there is x ∈ X with [ xu ] ∈ dom(S).
(iv) dom(A) is dense in X and A has nonempty resolvent

set. �

The operator A is also called the main operator of the
operator node, cf. Opmeer and Staffans (2014).

Definition 2. (System Node). An operator node is called
a system node, if its main operator A generates a strongly
continuous semigroup on X . �

In the following, we will consider the case Y = U as
usual for passive systems. Recall that a densely defined
linear operator T : X ⊃ domT → X in the Hilbert
space X is called dissipative if Re〈Tx, x〉 ≤ 0 for all
x ∈ domT . It is called maximally dissipative if it is
dissipative with no proper dissipative extension. By the
Lumer-Phillips theorem, the latter is equivalent to ran(λ−
T ) = X for some λ > 0. The same theorem shows that
T is maximally dissipative if and only if it generates a
contraction semigroup. Moreover, a closed and densely
defined operator T in X is maximally dissipative if and
only if both T and T ∗ are dissipative.

Proposition 3. For a linear operator S : [XU ] → [XU ] the
following statements are equivalent:

(i) S is a dissipative system node.
(ii) S is a maximally dissipative system node.
(iii) S is a maximally dissipative operator node.
(iv) S is a dissipative operator node with main operator

A satisfying ran(λ−A) = X for some λ > 0.

Proof. (i)⇒(ii). This is a consequence of Lemma 5 and
(Staffans, 2002, Lemma 4.3).

(ii)⇒(iii). This is trivial.

(iii)⇒(iv). The operator A is dissipative. Indeed,

Re〈Ax, x〉X = Re

〈
A&B

[
x
0

]
, x

〉
X

= Re

〈
S

[
x
0

]
,

[
x
0

]〉
X×U

≤ 0.

(1)

Now, by (Malinen et al., 2006, Proposition 2.4), also S∗ is
an operator node, whose main operator coincides with A∗.
As S is maximally dissipative, also S∗ is dissipative and
so is A∗. Hence, A is maximally dissipative, which implies
ran(1−A) = X .

(iv)⇒(i). As in (1) it is seen that A is dissipative. The
condition in (iv) on A and the Lumer-Phillips theorem
hence imply that A is maximally dissipative and thus
generates a contraction semigroup. The operator S is thus
a system node. �

We briefly recall a suitable solution concept for dynamics
governed by system nodes given, e.g., in (Opmeer and
Staffans, 2019, Definition 2.3). Let S =

[
A&B
C&D

]
be an

operator node on (X ,U ,Y). We call the triple[
x
u
y

]
∈

C1(R+;X )
C(R+;U)
C(R+;Y)


a classical trajectory if for all t ≥ 0[

x(t)
u(t)

]
∈ dom(S) and

[
ẋ(t)
−y(t)

]
=

[
A&B
C&D

] [
x(t)
u(t)

]
.

The following result gives existence of unique solutions
with suitable control functions and initial values.

Lemma 4. ((Opmeer and Staffans, 2019, Proposition 2.4)).
Let S be a system node on (X ,U ,Y). Then, for all ini-

tial values x0 ∈ X and controls u ∈ W 1,2
loc (R+;U) with[ x0

u(0)

]
∈ dom(S), there is a unique classical trajectory

with x(0) = x0. �

The following result shows that dynamics governed by
dissipative system nodes are impedance passive, cf. also
(Staffans, 2002, Theorem 3.3)

Lemma 5. Let S =
[
A&B
C&D

]
be a dissipative system node.

Then, classical trajectories (x, u, y) satisfy
d
dt

1
2‖x(t)‖2 ≤ Re〈u(t), y(t)〉U .

Proof. We provide the short proof for the sake of illus-
tration:

d
dt

1
2‖x(t)‖2

= Re〈x(t), ẋ(t)〉X
= Re

〈[
x(t)
u(t)

]
, S
[
x(t)
u(t)

]〉
X×U

− Re
〈
u(t), C&D

[
x(t)
u(t)

]〉
U

≤ Re 〈u(t), y(t)〉U .
�

3. PORT-HAMILTONIAN SYSTEM NODES

In this part, we will introduce the notion of port-
Hamiltonian system nodes by means of dissipative system
nodes. To this end, let a closed and densely defined positive
sesquilinear form h on X be given. We will not assume
that h is coercive or bounded, but we require h(x, x) > 0
for all non-zero x ∈ domh. The form h then induces the
quadratic energy Hamiltonian H via

H(x) := 1
2 · h(x, x), x ∈ dom(H) = dom(h).

By means of Kato’s second representation theorem (Kato,
2013, Chapter 6.2), there exists a unique non-negative self-
adjoint operator H in X with dom(H1/2) = dom(h) such
that for all x ∈ dom(H), y ∈ dom(h), we have

h(x, y) = 〈Hx, y〉.
Note that our positivity condition on h is equivalent to
kerH = {0}.
If h is coercive and bounded, one can define infinite-
dimensional linear port-Hamiltonian systems as[

ẋ
−y

]
=

[
A&B
C&D

] [
Hx
u

]
=

([
A&B
C&D

] [
H 0
0 I

])[
x
u

]
, (2)

where S =
[
A&B
C&D

]
is a dissipative system node on (X ,U).

It is not hard to see that then also
[
A&B
C&D

]
[H 0

0 I ] is a
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system node so that solution theory for (2) is available.
Here we consider energies that are neither coercive nor
bounded. We then define the space Xh as the completion
of dom(h) = domH1/2 with respect to the norm induced
by the energy, i.e.,

‖ · ‖h :=
√
H(x) =

√
1
2h(x, x) = 1√

2
·
∥∥H1/2x

∥∥.
The space Xh will be refered to as the space of finite energy.
We note that in case of coercive and bounded energy (i.e.,
‖ · ‖ ∼ ‖ · ‖h on dom(h)) we have Xh = X . If the form h is
coercive but unbounded, we have Xh = (dom(h), ‖H1/2·‖),
which is already complete. It can be shown that H extends
naturally to an isometric isomorphism

H̃ : Xh → X ∗h
which actually coincides with the Riesz map for the Hilbert
space Xh.

3.1 Definitions and the solution concept

Using the space of finite energies introduced before, we
can now state the definition of a port-Hamiltonian system
node in case the Hamiltonian is positive. The case of non-
negative energies is subject to current research.

Definition 6. Let h be a positive symmetric sesquilinear
form on X . Then a linear port-Hamiltonian system with
respect to the energy form h has the state space Xh and
takes the form [

ẋ
−y

]
=

[
A&B
C&D

] [
x
u

]
,

where
[
A&B
C&D

]
is a dissipative system node on (Xh,U).

In what follows, let H : Xh × U → X ∗h × U denote the
isometric isomorphism

H :=

[
H̃ 0
0 I

]
.

We say that an operator M : X ∗h×U ⊃ dom(M)→ Xh×U
is dissipative, if MH is dissipative as an operator in Xh×U
(or, equivalently, if HM is dissipative as an operator in
X ∗h × U).

The next proposition can be proved in a straight-forward
manner.

Proposition 7. A linear operator S in Xh ×U is a dissipa-
tive system node on (Xh,U) if and only if

S = MH,
where

M : X ∗h × U ⊃ dom(M)→ Xh × U
is dissipative and closed and, moreover, satisfies the fol-
lowing properties:

(i) PXh
M : X ∗h × U ⊃ dom(M)→ Xh is closed.

(ii) For any u ∈ U there is x∗ ∈ X ∗h such that
[
x∗

u

]
∈

dom(M).
(iii) The operator F : X ∗h ⊃ domF → Xh with domF =

{x∗ ∈ X ∗h :
[
x∗

0

]
∈ domM} and Fx∗ = PXh

M
[
x∗

0

]
is densely defined.

(iv) There is λ > 0 such that λH̃−1 − F : dom(F ) → Xh
is onto.

In what follows, we shall frequently write M as

M =

[
F&G
K&L

]
,

where the operators F&G and K&L are defined in the
obvious way.

3.2 Multiplication operator Hamiltonians

Let n ∈ N. Here, we treat the particular case X =
L2(0, 1)n ∼= L2((0, 1),Rn), where the Hamiltonian is the
operator of multiplication with a measurable matrix func-
tion m : (0, 1) → Rn×n such that m(ξ) is symmetric
positive definite for a.e. ξ ∈ (0, 1). That is, we have

domH = {x ∈ L2(0, 1)n : mx ∈ L2(0, 1)n}
and (Hx)(ξ) = m(ξ)x(ξ) for x ∈ domH and ξ ∈ (0, 1). It
is well known that H is a positive self-adjoint operator in
L2(0, 1)n with

domH1/2 = {x ∈ L2(0, 1)n : m1/2x ∈ L2(0, 1)n}

and (H1/2x)(ξ) = m(ξ)1/2x(ξ) for x ∈ domH1/2 and
ξ ∈ (0, 1).

The Hilbert spaces Xh and X ∗h can now be represented as

Xh = {m−1/2x : x ∈ L2(0, 1)n}
and X ∗h = {m1/2x : x ∈ L2(0, 1)n}

with inner products

〈m−1/2x,m−1/2y〉Xh
= 〈x, y〉2

and 〈m1/2x,m1/2y
〉
X∗

h

= 〈x, y〉2,

where 〈·, ·〉2 denotes the inner product of L2(0, 1)n. Note

how the extension H̃ : Xh → X ∗h of H can be likewise
represented as multiplication by m.

Our aim is now to define the domain of differential oper-
ators as operators from X ∗h to Xh. To this end, we need
to be able to define a weak derivative on a subset of X ∗h
with values in Xh, that is, for x ∈ X ∗h ∩L2(0, 1)n, we want
that we recover the integration by parts formula in the
pivot space L2(0, 1)n, i.e., for all ϕ ∈ C∞0 (0, 1)n ∩X ∗h with
ϕ′ ∈ Xh:

〈x′, ϕ〉Xh×X∗
h

= 〈x′, ϕ〉L2(0,1)n = −〈x, ϕ′〉L2(0,1)n

= −〈ϕ′, x〉Xh×X∗
h
.

In this regard, we obtain the following result guaranteeing
a unique weak derivative.

Proposition 8. If ‖m(·)‖, ‖m(·)−1‖ ∈ L1
loc(0, 1), then

C∞0 (0, 1)n ⊂ {ϕ ∈ C∞0 (0, 1)n ∩ X ∗h : ϕ′ ∈ Xh} ⊂ X ∗h
and C∞0 (0, 1)n is dense in X ∗h . In particular, the weak
derivative x′ ∈ Xh of x ∈ X ∗h defined via

〈x′, ϕ〉Xh×X∗
h

= −〈ϕ′, x〉Xh×X∗
h

(3)

for all ϕ ∈ C∞0 (0, 1)n ∩ X ∗h with ϕ′ ∈ Xh, is unique

Proof. The proof follows by straightforward computa-
tions and application of the fundamental lemma of calculus
of variations.

Example 9. As an example, we consider the wave equation
with Dirichlet boundary control on a one-dimensional
domain Ω = (0, `).
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∂
∂t

(
q(t, ξ)
p(t, ξ)

)
=

([
0 ∂

∂ξ
∂
∂ξ 0

]
−
[
0 0
0 d(ξ)

])(
T (ξ)q(t, ξ)

1
ρ(ξ)p(t, ξ)

)
(
q(0, ξ)
p(0, ξ)

)
=

(
q0(ξ)
p0(ξ)

)
0 = p(t, 0), u(t) = p(t, `),

y(t) = q(t, `).

As state space, we choose X = L2(0, 1)2, x = (q,p). The
Hamiltonian is given by

H(q,p) = 1
2

(
‖
√
T (·)q‖2L2(Ω) + ‖ 1√

ρ(·)
p‖2L2(Ω)

)
.

Set Hx =
[
T 0
0 1/ρ

]
x for x ∈ X , Xh = (X , 〈H·, ·〉), and

H̃ = H. Further, in order to define spatial derivatives, we
asume that the assumptions of Proposition 8 are satisfied,
i.e.

T, T−1, ρ, ρ−1 ∈ L1(0, `).

Note that the condition ρ ∈ L1(0, `) can be interpreted as
a finite total mass assumption.

Further, we set U = R,

F&G

[
x
u

]
=

([
0 ∂

∂ξ
∂
∂ξ 0

]
−
[
0 0
0 d(ξ)

])
x,

K&L

[
x
u

]
= −q(`)

and domM = {((q,p), u) ∈ W 1,2(Ω)2 × R : p(`) =
u,p(0) = 0}. Dissipativity of MH can be concluded
by straightforward integration by parts arguments. The
verification of the remaining assumptions of Proposition 7
are subject to current research, in particular as they have
to be checked on the finite energy space.
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Abstract: This note discusses an essentially decentralized interior point method, which is well
suited for optimization problems arising in energy networks. Advantages of the proposed method
are guaranteed and fast local convergence for problems with non-convex constraints. Moreover,
our method exhibits a small communication footprint and it achieves a comparably high solution
accuracy with a limited number of iterations. Furthermore, the local subproblems are of low
computational complexity. We illustrate the performance of the proposed method on an optimal
power flow problem with 708 buses.
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1. INTRODUCTION

Distributed and decentralized optimization algorithms are
key for the optimal operation of networked systems. 1 Ap-
plications range from power systems (Worthmann et al.,
2015; Erseghe, 2015), via optimal operation of gas net-
works (Arnold et al., 2009), to distributed control of data
networks (Low and Lapsley, 1999).

Classical distributed optimization algorithms used in the
above works are, however, typically guaranteed to converge
only for problems with convex constraints. Sufficiently
accurate models are often non-linear leading to problems
with non-convex constraints. Thus, researchers either ap-
ply classical methods without convergence guarantees in a
heuristic fashion (Erseghe, 2015), or they rely on simplified
convex models (Worthmann et al., 2015). Both approaches
come with the risk of computing infeasible solutions, which
leads to severe risks in practice. Moreover, the convergence
rate of classical distributed algorithms is at most linear
(Hong and Luo, 2017; Yang et al., 2019).

Lu and Zhu (2018), Yan et al. (2011), and Engelmann et al.
(2019) propose distributed second-order methods with
fast—i.e. superlinear—convergence guarantees for non-
convex problems. These approaches rely on the exchange
of quadratic models of the subproblems, which in turn
implies a substantial amount of communication and/or
central coordination. Quadratic model exchange can be

1 We refer to an optimization algorithm as being distributed if one
has to solve a (preferably cheap) coordination problem in a central
entity/coordinator. We denote an optimization algorithm as being
decentralized in absence of such a coordinator and when the agents
rely purely on neighbor-to-neighbor communication (Bertsekas and
Tsitsiklis, 1989; Nedić et al., 2018). We call an algorithm essentially
decentralized if it requires no central coordination but a small
amount of central communication. We remark that the definition
of distributed and decentralized control differs (Scattolini, 2009).

avoided by a combination of an active-set strategy and
techniques from inexact Newton methods (Engelmann
et al., 2020). However, the detection of the correct active
set is difficult and often numerically unstable.

Decomposition of interior point methods can be achieved
by solving Newton steps in a decentralized fashion leading
to an overall essentially decentralized algorithm. Interior
point methods have the advantage that they avoid an ac-
tive set detection and simultaneously guarantee fast—i.e.
superlinear—local convergence for non-convex problems.
This note considers the application of the essentially de-
centralized interior point method (d-IP) from (Engelmann
et al., 2021) to an optimal power flow problem, which arises
frequently in power systems.

2. PROBLEM FORMULATION

A common formulation of optimization problems in the
context of networked systems is

min
xi,...,x|S|

∑
i∈S

fi(xi) (1a)

subject to gi(xi) = 0, ∀i ∈ S, (1b)

hi(xi) ≤ 0, ∀i ∈ S, (1c)∑
i∈S

Aixi = b, (1d)

where, S = {1, . . . , |S|} denotes a set of subsystems,
each of which is equipped with an objective function
fi : Rni → R and equality and inequality constraints
gi, hi : Rni → Rngi ,Rnhi . The matrices Ai ∈ Rnc×ni and
the vector b ∈ Rnc are coupling constraints between the
subsystems.
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3. A DECENTRALIZED INTERIOR POINT METHOD

Interior point methods reformulate problem (1) via a
logarithmic barrier function and slack variables vi ∈ Rnhi ,

min
x1,...,x|S|,v1,...,v|S|

∑
i∈S

fi(xi)− 1⊤δ ln(vi) (2a)

subject to gi(xi) = 0, ∀i ∈ S, (2b)

hi(xi) + vi = 0, vi ≥ 0, ∀i ∈ S, (2c)∑
i∈S

Aixi = b. (2d)

The variable δ ∈ R+ is a barrier parameter, 1 =
(1, . . . , 1)⊤ ∈ Rnhi and the function ln(·) is evaluated
component-wise. Note that the inequality constraints are
replaced by barrier functions. Moreover, (2) and (1) share
the same minimizers for δ → 0.

The main idea of interior point methods is to solve (2)
for a decreasing sequence of δ. It is often too expensive to
solve (2) to full accuracy—hence one typically performs a
hand full Newton steps only (Nocedal and Wright, 2006).
In this note, we use a variant which computes only one
Newton step per iteration.

Next, we give a brief summary of distributed interior point
methods; details are given in (Engelmann et al., 2021).

3.1 Decomposing the Newton Step

An exact Newton step∇F δ(p)∆p = −F δ(p) applied to the
first-order optimality conditions F δ(p) = 0 of (2) reads

∇F δ
1 0 . . . Ã⊤

1

0 ∇F δ
2 . . . Ã⊤

2
...

...
. . .

...

Ã1 Ã2 . . . 0



∆p1
∆p2
...

∆λ

=


−F δ
1

−F δ
2

...

b−
∑
i∈S

Aixi

 , (3)

where

∇F δ
i =

 ∇xxLi 0 ∇gi(xi)
⊤ ∇hi(xi)

⊤

0 −V −1
i Mi 0 I

∇gi(xi) 0 0 0
∇hi(xi) I 0 0

 ,

Mi = diag(µi), Vi = diag(vi), and Ãi = (Ai 0 0 0),
cf. (Nocedal and Wright, 2006, Thm. 12.1). Here, p =
(p1, . . . , p|S|, λ) and pi = (xi, vi, γi, µi), where γi, µi, and
λ are Lagrange multipliers assigned to (2b), (2c), and
(2d) respectively. Observe that the optimality conditions
F δ(p) = 0 are parameterized by the barrier parameter δ.

The coefficient matrix in (3) has an arrowhead structure,
which we exploit for decomposition. Note that each ∇F δ

i
can be computed based on local information only. Assume
that ∇F δ

i is invertible. Then, one can reduce the KKT
system (3) by solving the first S block-rows for ∆pi. Hence,

∆pi = −
(
∇F δ

i

)−1
(
F δ
i + Ã⊤

i ∆λ
)

for all i ∈ S. (4)

Inserting (4) into the last row of (3) yields(∑
i∈S

Ãi

(
∇F δ

i

)−1
Ã⊤

i

)
∆λ

=

(∑
i∈S

Aixi − Ãi

(
∇F δ

i

)−1
F δ
i

)
− b.

(5)

Define

Si
.
=Ãi

(
∇F δ

i

)−1
Ã⊤

i , and (6a)

si
.
=Aixi − Ãi

(
∇F δ

i

)−1
F δ
i − 1

|S|
b. (6b)

Then, equation (5) is equivalent to(∑
i∈S

Si

)
∆λ−

∑
i∈S

si = S∆λ− s = 0. (7)

Observe that once (7) is solved, one can compute
∆p1, . . . ,∆p|S| locally in each subsystem based on ∆λ
via back-substitution into (4). This way, we are able to
solve (3) in a distributed fashion, i.e., we first compute
(Si, si) locally and then collect (Si, si) in a coordinator.
Solving (7) and distributing ∆λ back to all subsystems
i ∈ S yields ∆pi by evaluating (4).

3.2 Decentralization

Solving (5) in a central coordinator is typically undesirable
due to the large amount of information exchange for
large-scale systems and due to safety reasons. Hence, we
solve (7) in a decentralized fashion via decentralized inner
algorithms.

One can show that S is symmetric and positive-semidefinite.
Hence, a decentralized version of the conjugate gradient
method (d-CG) is applicable. As an alternative, the use
of decentralized inner optimization algorithms is possible
by reformulating (7) as a convex optimization problem
(Engelmann and Faulwasser, 2021).

Solving (7) to full accuracy by inner algorithms is typically
expensive in terms of communication and computation.
Thus, we use techniques from inexact Newton methods to
terminate inner algorithms early based on the violation
of the optimality conditions F δ(p) = 0, cf. (Nocedal and
Wright, 2006, Chap. 7.1) . Doing so, one can save a
severe amount of inner iterations—especially in early outer
iterations. When ∥F δ(pk)∥ gets closer to zero, we also
force the residual of (7) to become smaller to guarantee
convergence to a minimizer.

Updating Stepsize and the Barrier Parameter The bar-
rier parameter δ and the stepsize α for the Newton step
pk+1 = pk + α∆pk require a small amount of central
communication but no central computation. Indeed, it is
possible to compute local surrogates {αi}i∈S and {δi}i∈S
and take their minimal/maximal values over all subsys-
tems to obtain (α, δ).

The Overall Algorithm The overall distributed interior
point algorithm is summarized in Algorithm 1. Algo-
rithm 1 has local superlinear convergence guarantees for
non-convex problems in case the barrier parameter and the
residual in (5) decrease fast enough, cf. (Engelmann et al.,
2021, Thm. 2).

4. APPLICATION TO OPTIMAL POWER FLOW

Optimal Power Flow (OPF) problems compute optimal
generator set-points in electrical power systems while
meeting grid constraints and technical limits (Frank and
Rebennack, 2016).
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Algorithm 1 Ess. Decentralized Interior Point Method

1: Initialization: p0i for all i ∈ S, δ0, λ0, ϵ
2: while ∥F 0(pk)∥∞ > ϵ do
3: compute (Sk

i , s
k
i ) locally via (6)

4: while residual of (7) too large do
5: iterate (7) via a decentralized algorithm
6: end while
7: compute stepsize αk and update pk+1 = pk+α∆pk

8: update δk+1 < δk, k → k + 1
9: end while

10: return p⋆

Fig. 1. Six interconnected 118-bus systems.

A basic formulation of the OPF problem reads

min
s,v∈CN

f(s) (8a)

subject to s−sd = diag(v)Y v∗, (8b)

p ≤ re(s) ≤ p̄, q ≤ im(s) ≤ q̄, (8c)

v ≤ abs(v) ≤ v̄, v1 = vs. (8d)

Here, v ∈ CN are complex voltages, and s ∈ CN are
complex power injections at all buses N . The operators
re(·) and im(·) denote the real part and imaginary part of a
complex number, and (·)∗ denotes the complex conjugate.
The objective function f : CN → R encodes the cost
of power generation. The grid physics are described via
the power flow equations (8b), where Y ∈ CN×N is the
complex bus-admittance matrix describing grid topology
and parameters. Moreover, sd ∈ CN is a fixed power
demand. The constraints (8c) describe technical limits on
the power injection by generators, and (8d) models voltage
limits. The second equation in (8d) is a reference condition
on the voltage at the first bus, v1, where the complex
voltage is constrained to a reference value vs.

Note that one can reformulate the OPF problem (8) in
form of (1) by introducing auxiliary variables. Different
variants of doing do exist; here we rely on a reformulation
from Mühlpfordt et al. (2021).

4.1 A case study

As a case study, we consider 6 interconnected IEEE 118-
bus test systems shown in Fig. 1. Each of these systems
corresponds to one subsystem i ∈ S in problem (1). We
use grid parameters from MATPOWER, and we interconnect
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Fig. 2. Convergence of Algorithm 1.

the subsystems in an asymmetric fashion to generate non-
zero flows at the interconnection points. In total, we get an
optimization problem with about 3.500 decision variables.

Fig. 2 depicts the convergence of Algorithm 1 over the iter-
ation index k with algorithm parameters from (Engelmann
et al., 2021). The figure depicts the consensus violation
∥Axk − b∥∞, which can be interpreted as the maximum
mismatch of physical values at boundaries between sub-
systems. Furthermore, the relative error in the objective
function |fk − f⋆|/f⋆, the infeasibilities ∥g(xk)∥∞ and
∥max(0, h(xk))∥∞, the distance to the minimizer ∥xk −
x⋆∥∞, the number of inner iterations of d-CG, the barrier
parameter sequence {δk}, and the primal and dual step
size (αp, αd) are shown. The centralized solution x⋆ is
computed via the open-source solver IPOPT (Wächter and
Biegler, 2005).

One can observe that the consensus violation is at the
level of 10−5 for all iterations. This means that the
iterates are feasible with respect to the power transmitted
over transmission lines. This results from the fact that
the consensus constraint (2d) is implicitly enforced when
solving (7) via d-CG. A low consensus violation has the
advantage, that one can terminate d-IP early and apply
one local NLP iteration to obtain a feasible but possibly
suboptimal solution. 2 We note that feasibility is typically
of much higher importance than optimality in power
systems, since feasibility ensures a safe system operation,
cf. Remark 1. From ∥g(xk)∥∞ and ∥max(0, h(xk))∥∞ 3 in
Fig. 2 one can see that feasibility is ensured to a high
degree after 20-30 dIP iterations. At the same time we
reach a suboptimality level of almost 0.01%, which is much
smaller than in other works on distributed optimization for
OPF, cf. (Erseghe, 2015; Guo et al., 2017). Moreover, one
can see that the distance to the minimizer ∥xk − x⋆∥∞
is still quite large due to the small sensitivity of f with
respect to the reactive power inputs. This is a well-known
phenomenon in the context of OPF problems.

2 Assuming that the local OPF problem is feasible for the current
boundary value iterate.
3 The blank spots in the plot for ∥max(0, h(xk))∥∞ correspond to
zero values, since log(0) = −∞.
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Regarding Algorithm 1 itself, one can see that the barrier
parameter δ steadily decreases in each iteration. Moreover,
during the first 20 iterations, comparably small step-sizes
are used. The domain of local convergence is reached after
around 30 iterations. Note that we use different stepsizes
αp for the primal variables and αd for the dual variables.
Observe that due to the dynamic termination of inner
d-CG iterations based on the inexact Newton theory,
Algorithm 1 requires a small amount of inner iterations
in the beginning and the number of iterations increases
when coming closer to a local minimizer. This effect saves
a substantial amount of inner iterations.

The widely used Alternating Direction Method of Mul-
tipliers (ADMM) does not converge for the considered
case. This seems to occur rarely, but was also reported
in other works (Christakou et al., 2017). Algorithm 1
requires 25 seconds for performing 35 iterations with serial
execution. The MATPOWER solver MIPS needs about
13 seconds when applied to the distributed formulation
and 2 seconds when applied to the centralized problem
formulation. Executing 497 ADMM iterations—this re-
flects the number of d-CG iterations in Algorithm 1—
requires 210 seconds with serial execution. This illustrates
the large computation overhead of ADMM in the local
steps, since here one has to solve an NLP in each iteration
and for each subsystem. In contrast, d-IP only requires one
matrix inversion every outer iteration. All simulations are
performed on a standard state-of-the-art notebook.

Remark 1. (Sufficient feasibility in power systems ). Note
that feasibility in a range of 10−3 to 10−5 is typically suf-
ficient for a safe power system operation. The parameters
in the OPF problem (8), such as power demands and line
parameters, induce uncertainty to the problem, which is
typically much larger than this level (Kim and Baldick,
2000). Hence, in applications there is typically little-to-no
benefit in solving OPF problems to machine precision.

5. SUMMARY & OUTLOOK

We have presented an essentially decentralized interior
point method for distributed optimization in energy net-
works with advantageous properties in terms of conver-
gence guarantees, communication footprint, and practical
convergence. We have illustrated the performance of our
method on a 708-bus case study. Future work will consider
improvements in implementation aspects of d-IP, where we
aim faster execution times and at scalability up to several
thousand buses.
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Mühlpfordt, T., Dai, X., Engelmann, A., and Hagenmeyer,
V. (2021). Distributed power flow and distributed opti-
mization—Formulation, solution, and open source implemen-
tation. Sustainable Energy, Grids and Networks, 26. doi:
10.1016/j.segan.2021.100471.
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Abstract: We investigate Singleton-like bounds in the Lee metric and characterize extremal
codes. We then focus on Plotkin-like bounds in the Lee metric and present a new bound that
extends and refines a previously known bound, which it out-performs in the case of non-free
codes. We then compute the density of codes that meet this bound. Finally, we fill a gap in the
characterization of Lee-equidistant codes.
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1. INTRODUCTION

We consider codes over Z/psZ for the Lee metric. One
question of interest concerns the behaviour of maximum
Lee distance (MLD) codes, which are those codes that are
extremal with respect to Singleton-like bounds in the Lee
metric. Two proposals of a Lee-metric Singleton bound
are known, namely Shiromoto (2000) and Alderson and
Huntemann (2013). We show that independently of which
bound one considers, MLD codes are sparse, which is done
through a characterization of MLD codes. We also provide
an answer to the question of whether dual codes preserve
this property, by giving examples of MLD codes whose
dual is also MLD as well as counterexamples.

We also consider Plotkin-like bounds in the Lee metric.
The first such bound was proposed by Wyner and Graham
(1968) and was later improved by Chiang and Wolf (1971).
However, the Plotkin bound of Chiang and Wolf holds
only for free codes. We thus give a generalization of their
bound and in addition obtain an improvement. We then
characterize codes attaining this new bound and compute
their density.

2. PRELIMINARIES

Throughout this paper we will consider codes to be sub-
modules over the integer residue ring Z/psZ, where p is a
prime and s is a positive integer. We write 〈pi〉 to denote
either the ideal piZ/psZ or the submodule pi(Z/psZ)n,
depending on the context. For the remainder, we write
M := bps/2c . See Honold and Landjev (2000) for a
detailed treatment of the topic of linear codes over finite
chain rings.

Definition 1. A Z/psZ-module of (Z/psZ)
n

is called a
linear code of length n.

? The second author is supported by the Swiss National Science
Foundation grant number 195290.

In the standard case, over finite fields, a code is a linear
subspace of Fn

q and thus has a dimension k. We take as an
analogue of the dimension, the parameter given by:

k := logps(| C |).

It is well known that a Z/psZ module C is isomorphic to

(Z/psZ)
k1 ×

(
Z/ps−1Z

)k2 × · · · × (Z/pZ)
ks .

Therefore, as an additional parameter of the code we call
(k1, . . . , ks) its subtype. It holds that

k =

s∑
i=1

s− i+ 1

s
ki.

In addition, k1 is called the free rank of the code and
K =

∑s
i=1 ki is called its rank.

Definition 2. Let C ⊆ (Z/psZ)
n

be a linear code of rank
K. We call any K×n matrix G a generator matrix of C, if
its row-span is C. For the codes considered here, the socle
of C is 〈ps−1〉 ∩ C.

The dual of the linear code C is denoted by C⊥ and defined
in the usual way, that is:

C⊥ = {x ∈ (Z/psZ)
n | x · c = 0 for all c ∈ C}.

Proposition 3. Let C ⊆ (Z/psZ)
n

be a linear code of order
psk, subtype (k1, k2, . . . , ks), free rank k1 and rank K.
Then C⊥ is a linear code of order ps(n−k), subtype (n −
K, ks, . . . , k2), free rank n−K and rank n− k1.

In this paper we will focus on the Lee metric. However, this
will often be in reference to the Hamming metric. Recall
that for x, y ∈ (Z/psZ)

n
, the Hamming distance between

x and y is defined to be

dH(x, y) = |{i ∈ {1, . . . , n} | xi 6= yi|}.

Furthermore, the Hamming weight of x is wH := dH(0, x).
The minimum Hamming distance of C is dH(C) :=
min{dH(x, y) | x, y ∈ C, x 6= y}.
Definition 4. For x ∈ Z/psZ we denote by wL(x) the Lee
weight of x, which is defined to be:

wL(x) = min{x, ps − x},
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where x is interpreted as an integer in {0, . . . ,M} in the
evalutation wL(x). For x ∈ (Z/psZ)

n
, the Lee weight is

defined additively, that is

wL(x) =
n∑

i=1

wL(xi).

The Lee weight induces the Lee distance, i.e., for x, y ∈
(Z/psZ)

n
we set

dL(x, y) = wL(x− y).

Note that for x ∈ (Z/psZ)
n
, wH(x) ≤ wL(x) ≤MwH(x).

Definition 5. Let C ⊆ (Z/psZ)
n

be a linear code. Then the
minimum Lee distance of C is defined as

dL(C) = min{wL(c) | c ∈ C, c 6= 0}.

One can easily observe that

dH(C) ≤ dL(C) ≤MdH(C).

In order to simplify the proofs used in the following
bounds we start by making some initial observations and
hence unifying the techniques. For the Hamming metric
on Z/psZ the following Singleton-like bounds are known:

Proposition 6. Let C ⊆ (Z/psZ)
n

be a code of order psk,
then

dH(C) ≤ n− k + 1.

Of course the above bound holds even if the code is not
linear. It is well known (see for example Dougherty (2017);
Dougherty and Shiromoto (2000)) that for linear codes one
can also formulate a tighter bound:

Proposition 7. Let C ⊆ (Z/psZ)
n

be a linear code of rank
K, then

dH(C) ≤ n−K + 1.

Codes that achieve the bound of Proposition 7 are said
to have the property of being maximum distance with
respect to the rank and are referred to as (MDR) codes.
Note that any linear code that is MDS is also MDR and
C ⊆ (Z/psZ)

n
is an MDR code if and only if its socle C′ is

an MDS code over Fp.

Let C be a Z/psZ-module. We define

wL(C) :=
1

|C|
∑
a∈C

wL(a),

that is, wL(C) is the average Lee weight of the Z/psZ-
module C.
A Plotkin-like bound in the Lee metric is:

dL(C) ≤ |C|
|C| − 1

wL(C). (1)

Clearly, this bound is met if and only if every non-zero
codeword of C has the same Lee weight, i.e., if and only if
C is Lee-weight equidistant.

3. OVERVIEW OF EXISTING BOUNDS

3.1 Singleton-like Bounds

For the most well-known case, i.e., Z/4Z, the Singleton
bound is given through the Gray isometry.

Theorem 8. (Z/4Z-Singleton Bound). Let C ⊆ (Z/4Z)
n

of
order psk. Then

dL(C) ≤ 2(n− k) + 1.

Theorem 9. (Shiromoto (2000)). Let C ⊆ (Z/psZ)
n

have
order psk. Then ⌊

dL(C)− 1

M

⌋
≤ n− dke.

Corollary 10. Let C ⊆ (Z/psZ)
n

be a linear code of rank
K. Then

dL(C) ≤M(n−K + 1).

Corollary 11. Let C ⊆ (Z/psZ)
n

be a linear code of rank
K. Then ⌊

dL(C)− 1

M

⌋
≤ n−K.

If a linear code C is such that dL(C) = M(n−k+1) which
is greater or equal to M(n−K + 1), we must have that it
attains the bound of Corollary 10 as well and that C is a
free MDS code.

One can also consider the bound provided by Alderson and
Huntemann (2013).

Theorem 12. For any code C in (Z/psZ)
n

of order psk,
k ∈ {2, . . . , n} we have that

dL(C) ≤M(n− k).

A first Lee-metric Plotkin-like bound was provided by
Wyner and Graham (1968) and then extended in Chiang
and Wolf (1971). Equidistant codes attain these bounds.

The following generalizes the result of Chiang and Wolf to
any (possibly non-free) code.

Proposition 13. Let C be a linear code in (Z/psZ)
n

of
subtype (k1, . . . , ks), with k1 ≥ 1. Then

dL(C) ≤


ps + 1

4
(n− k1 + 1) if p is odd,

22s−2

2s − 1
(n− k1 + 1) if p = 2.

3.2 Characterization

We now characterize codes attaining the Singleton-like
bounds in the Lee metric.

Proposition 14. The only linear codes that attain the
Z/4Z-Singleton bound of Theorem 8 are C = 〈(2, . . . , 2)〉,
its dual C⊥ and the ambient space (Z/4Z)

n
itself.

While the Singleton-like bound from Theorem 9 is sharp,
there are very few linear codes that attain this bound. We
exclude the trivial case C = (Z/psZ)

n
of minimum Lee

distance 1, which always attains the bound.

Theorem 15. The only linear codes C ⊂ (Z/psZ)
n

of order
psk and rank K that attain the bound of Theorem 9 are

• for p odd: codes equivalent to C = 〈(1, 2)〉 ⊂ (Z/5Z)
2

or over any ps with k < dke = K = n < k + 1, i.e.,
dL(C) = 1;

• for p = 2: C = 〈(2s−1, . . . , 2s−1)〉 with dL(C) = 2s−1n,
or such that k 6= K = dke ∈ {n, n − 1} giving
dL(C) ≤ 2s−1 and dL(C) = 2s respectively.
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In (Alderson and Huntemann, 2013, Lemma 13), it was
already observed that for k > 1 ∈ N, there is no linear
code that attains the bound of Theorem 9. We have
thus extended their characterization. However, also for
the bound of Theorem 12 from Alderson and Huntemann
(2013), we have that only very few linear codes are
extremal:

Theorem 16. The only linear codes C ⊂ (Z/psZ)
n

of order
psk and rank K that attain the bound of Theorem 12 are

• for p odd: codes with ps = 5, k + 1 ≤ n ≤ k + 3 or
free codes with ps ∈ {7, 9}, n = k + 1;
• for p = 2 : free codes with s = 2, k+1 ≤ n ≤ k+2, free

codes with s = 3, n = k+1 or k+1 = K ∈ {n, n−1}.

In particular, this implies that in the case of p odd, we
must have dL(C) ∈ {2, 3, 4, 6} and if p = 2 we must have
dL(C) ∈ {2, 4, 2s−1, 2s}.
Since an extremal code for the bound of Theorem 9 is
such that dke = K and dL(C) = M(n− dke) + α for some
α ∈ {1, . . . ,M}, Theorem 15 also includes the bound of
Corollary 11.

Corollary 17. The only linear codes C ⊆ (Z/psZ)
n

that
attain the bound of Corollary 11 are:

• for p odd: K = n or a code equivalent to C =
〈(1, 2)〉 ⊂ (Z/5Z)

2
;

• for p = 2: C = 〈(2s−1, . . . , 2s−1)〉, and K ∈ {n, n−1}.

We will call a code maximum Lee distance (MLD) if it
is extremal code with respect to any of the considered
Singleton-like bounds. One can immediately see that the
density of MLD codes is 0 for p → ∞. For any fixed rate
R = k/n or for any fixed p > 7 we can also see that the
density of MLD codes is 0 for n→∞.

Notice, however, that also with more sophisticated bounds
the number of maximum Lee distance codes for p = 2 will
remain small, due to the fact that the socle C ∩ 〈2s−1〉 is
a trivial binary MDS code, which cannot be avoided.

The characterizations just shown also answer the question
as to whether the dual of MLD codes is also MLD; for
the special case of Z/4Z, we have seen that non-trivial
linear codes that achieve the Z/4Z-Singleton bound, i.e.,
dL(C) ≤ 2(n − k) + 1, are only the codes C = 〈(2, . . . , 2)〉
and its dual. Thus, for this particular bound it is true that
the dual of an optimal code attains the bound as well,
however, for the other Singleton-like bounds, this is (in
general) not true, as the choice of n is very restrictive.

4. NEW BOUNDS

Let C be a Z/psZ-submodule of (Z/psZ)
n
. For each ideal

i ∈ {0, ..., s}, we define

ni := |{j ∈ {1, . . . , n} | 〈πj(C)〉 = 〈pi〉}|,

where for each j ∈ {1, . . . , n}, πj is the projection onto the
j-th coordinate. We call (n0, . . . , ns) the support subtype
of C.
Lemma 18. Let C be an Z/psZ-submodule of (Z/psZ)

n
of

support subtype (n0, . . . , ns). Then

wL(C) =


1

4ps

(
p2s(n− ns)−

s−1∑
i=0

p2ini

)
if p is odd,

2s−2(n− ns) if p = 2.

Theorem 19. Let C be a Z/psZ-submodule of (Z/psZ)
n

and let C′ be a non-trivial subcode of C. Then

dL(C) ≤ |C′|(|C′| − 1)−1wL(C′). (2)

Definition 20. Let p be a prime and let s be a positive
integer. Define

A(p, s, i) :=


ps−i(pi + 1)

4
if p is odd,

2s−2+i

2i − 1
if p = 2.

With respect to this notation, the Chiang-Wolf bound of
Proposition 13 is given by:

dL(C) ≤ bA(p, s, s)c(n− k1 + 1).

Theorem 21. Let C be a Z/psZ-submodule of (Z/psZ)
n
.

Let ` ∈ {1, . . . , s} such that there exists y ∈ C satisfying
wH(y) = dH(〈y〉) and y ∈ 〈ps−`〉. Then

dL(C) ≤ A(p, s, `)dH(C).

For any linear code C ⊆ (Z/psZ)
n

there exist words in
C ∩ 〈ps−1〉 of Hamming weight dH(C), so certainly the
hypothesis of Theorem 21 holds with ` = 1.

Combining Proposition 7 and Theorem 19 we get the
following bound.

Corollary 22. Let C ⊆ (Z/psZ)
n

be a linear code of rank
K. Then

dL(C) ≤ bA(p, s, 1)c(n−K + 1). (3)

Let ` ∈ {1, . . . , s} such that there exists y ∈ C satisfying
wH(y) = dH(〈y〉) and y ∈ 〈ps−`〉. Then

dL(C) ≤ bA(p, s, `)c(n−K + 1).

Corollary 23. Let C be a Z/psZ-submodule of (Z/psZ)
n

of
rank K. Then ⌊

dL(C)− 1

A(p, s, 1)

⌋
≤ n−K.

Example 24. Let C = 〈(1, 2, 1, 3)〉 ⊂ (Z/5Z)
4
. Then

dL(C) = 6. C meets the bound of Proposition 13 and
Corollary 23.

Example 25. Let C = 〈(0, 1, 1), (2, 0, 0), (0, 0, 2)〉 ⊂ (Z/4Z)
3
.

C attains the bound of Corollary 23 and does not attain
the bound of Proposition 13.

4.1 Characterization

Lee-equidistant codes satisfy (1) with equality. The work
of Wood (2001) and Dyshko (2019) yields the following.

Corollary 26. Let C be a constant weight submodule of
(Z/psZ)

n
of rank K with generator matrix G. Let U be

the collection of orbits of (Z/psZ)K under the action of
{1,−1}. Then one of the following holds:

(1) s = 1 and a representative of each member of U
appears as a column G with the same multiplicity,
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(2) p = 2 and every member of Z/psZK appears with the
same multiplicity as a column of G,

(3) K ≤ 2.

Setting p = 2 and ` = 1 in Corollary 22 gives the same
bound as p = 2 in Corollary 11, characterized in Theorem
17. We thus focus on the case p odd.

Proposition 27. Let p be an odd prime. Let C ⊂ (Z/psZ)
n

have rank K. If C meets the bound (3) of Corollary 22
then n ≤ p+ 1 and either

K = n− p+ 2 ≤ 3 and dL(C) =
ps−1(p2 − 1)

4
, or

K = n+ 1− p− 1

2
≤ p+ 5

2
and dL(C) =

ps−1(p2 − 1)

8
.

Theorem 28. The density of optimal linear codes C ⊂
(Z/psZ)

n
of rank K for the bound of Corollary 22 with

` = 1 is 0 as either n −→∞ or p −→∞.

5. CHARACTERIZING LEE-EQUIDISTANT CODES

Theorem 29. Let C ⊆ (Z/psZ)
n

be a minimal-length linear
Lee-equidistant code of rank K = 1 and minimum Lee
distance w. Let i be the positive integer such that ki = 1,
then C has support subtype (0, . . . , 0, ni−1, . . . , ns−1, 0)
where, for 1 ≤ j ≤ s− 1,

w =
p+ 1

4
ps−1ni−1 and ni−1(p− 1) = pj−i+2nj .

As we have seen in Theorem 29 we have that ps−i+1 | ni−1.
Since the socle of C can be identified with a code over Fp,

from Corollary 26 we have that ni−1 = p−1
4 a, for some

a ∈ N. With this we can exactly determine the support
subtype of a smallest-length linear Lee-equidistant code.

Corollary 30. Let C ⊆ (Z/psZ)
n

be a minimal-length
linear Lee-equidistant code of rank K = 1 and minimum
Lee distance w. Let i be the integer such that ki = 1, then
C has support subtype (0, . . . , 0, ni−1, . . . , ns−1, 0) where,
for all j ∈ {i, . . . , s− 1},

w = p2s−i p
2 − 1

8
, ni−1 = ps−i+1 p− 1

2
, nj = ps−j−1 (p− 1)2

2
.

Corollary 31. Let C = 〈g1, g2〉 ⊆ (Z/psZ)
n

be a minimal-
length linear Lee-equidistant code of rank K = 2
and minimum Lee distance w, with g1 ∈ 〈pi−1〉 and
g2 ∈ 〈ps−1〉. Then C has support subtype of the form
(0, . . . , 0, ni−1, . . . , ns−1, 0) and 〈g1〉, 〈g2〉 have respective
support subtypes

(0, . . . , 0, ni−1, . . . , ns−2, n
(1)
s−1, n

(1)
s ),

(0, . . . , 0, n
(2)
s−1, n

(2)
s ),

where,

w = p2s−i
p2 − 1

8
, ni−1 = ps−i+1 p− 1

2
, n(1)s =

p− 1

2
,

n(2)s = ps−i
p− 1

2
, n

(1)
` = ps−`−1

(p− 1)2

2
,

for all ` ∈ {i, . . . , s− 1}.

For each ` ∈ {i, . . . , s−1}, let U` be the set of all elements
in 〈p`〉 \ 〈p`+1〉 up to ±1. We denote by u` the length

(p − 1)α` tuple consisting of p − 1 repetitions of each
element in U`. We denote by ũi−1 the tuple of length
pαi−1 consisting of p repetitions of all elements in Ui−1.
Let x be the length p−1

2 tuple of all elements in Us−1, let

y = (x,−x), and let z = (0, y). Let a be ps−i p−12 copies of

z, b be
(
ps−i − 1

)
p−1
2 copies of y, and let c be p−1

2 copies
of x.

Theorem 32. The matrix

G =

(
ũi−1 ui · · · us−1 0
a b c

)
generates a Lee-equidistant code over Z/psZ with ki =
1, ks = 1.

Example 33. Let us consider the case Z/27Z and k1 =
1, k3 = 1. Let

ũ0 = (1, 1, 1, 2, 2, 2, 4, 4, 4, . . . , 13, 13, 13),

i.e., the tuple consisting of 3 repetitions of all elements in

{1, 2, 4, 5, 7, 8, 10, 11, 13},
let u1 = (3, 3, 6, 6, 12, 12) and u2 = (9, 9). Let a be the
tuple consisting of 9 repetitions of (0, 9, 18) and b be the
tuple consisting of 4 repetitions of (9, 18). Then the matrix

G =

(
ũ0 u1 u2 0
a b 9

)
generates a Lee-equidistant code.
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∗ Department of Mathematics, University of Alicante, Alicante, Spain
(e-mail: clementa.alonso@ua.es).

∗∗ Department of Mathematics, University of Alicante, Alicante, Spain
(e-mail: miguelangel.np@ua.es)

Abstract: In network coding, a flag code is a collection of flags, that is, sequences of nested
subspaces of Fn

q , being Fq the finite field with q elements. If the sequence of subspace dimensions
is (1, 2, . . . , n− 1), we speak about full flag codes. The familiy of flag codes was first introduced
in Liebhold et al. (2018). In this work we present some combinatorial tools coming from the
classical theory of partitions that can be naturally associated with full flag codes in order to
extract relevant information about them. In particular, we state a combinatorial characterization
of those full flag codes that attain the maximum possible distance.

Keywords: Flag codes, flag codistance, Ferrers diagrams, integer partitions.

1. INTRODUCTION

In Ahlswede et al. (2000), random network coding was
introduced as the most efficient way to send data across
a non-coherent network with multiple sources and sinks.
However, it is very susceptible to error propagation and
erasures. To solve this problem, in Koetter et al. (2008)
the authors propose just considering subspaces of Fn

q as
the codewords of subspace codes. Since this seminal paper,
much research has been made to construct large subspace
codes as well as to determine their properties. In case all
the subspaces in the code have the same dimension, we
have constant dimension codes. To have an overview of the
most important works in this subject, consult Trautmann
et al. (2018) and references therein.

In Liebhold et al. (2018) the authors developed techniques
for the use in network coding of constant type flags, that is,
sequences of nested subspaces of prescribed dimensions. In
this context, collections of flags are denominated flag codes
and they generalize constant dimension codes. The recent
works Alonso-González et al. (2020); Alonso-González
et al. (2021a); Kurz (2021) are dedicated to this topic.

A way to naturally associate constant dimension codes
with a flag code is by considering all the subspaces of a
given dimension of all the flags in a flag code. In this way
we obtain a projected code. In the study of flag codes,
one of the principal proplems is the determination of
the relationship between the parameters of a flag code
and the ones of its projected codes. In Alonso-González
et al. (2021b); Alonso-González et al. (2020); Alonso-
González et al. (2021a); Navarro-Pérez et al. (2021)
this question has been undertaken for the family of flag
codes attaining the maximum distance (optimum distance
flag codes) whereas in Alonso-González and Navarro-Pérez
(2020), the authors define consistent flag codes as precisely

⋆ The authors receive financial support from Ministerio de Ciencia
e Innovación (PID2019-108668GB-I00).

those whose projected codes completely determine their
parameters. In this work we contribute to advance in this
question from an innovative combinatorial perspective.

One of the main difficulties when investigating the parame-
ters of a flag code relies on the definition of the distance be-
tween flags provided that it is obtained as the sum of their
subspace distances. This causes that we can attain a flag
distance value by many different combinations. To capture
such a variability, in Alonso-González et al. (2021), the
authors introduce the notion of distance vector (associated
to a given distance value). Here, we draw distance vectors
in the distance support to obtain the so-called distance
paths. This geometrical representation allows us to intro-
duce the codistance of the flag code (the complement of
the distance) and hence, naturally associate to a flag code
different combinatorial objects coming from the classical
theory of partitions that result very convenient for our
purposes. The results presented in this work summarize
the ones appearing in Alonso-González and Navarro-Pérez
(2021).

2. SOME PRELIMINAIRES

2.1 Partitions and Ferrers diagrams

Let us first fix some notation on integer partitions and
their representation by Ferrers diagrams. Given a positive
integer s, a partition of s is a sequence of non-increasing
positive integers λ = (λ1, . . . , λm) such that λ1 + · · · +
λm = s. Each value λi is called a part of λ and we say
that m is the length of λ.

Ferrers diagrams allow us to give geometrical representa-
tions of partitions and to extract relevant properties about
them in some cases.

Given a partition λ = (λ1, . . . , λm), its associated Ferrers
diagram Fλ is constructed by stacking right-justified m
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rows of dots, where the number of dots in the i-th row is
λi. The dot at the top right position is called the corner
of the Ferrers diagram.

2.2 Flags and flag distance

Throughout the paper q will denote a fixed prime power
and k, n two integers with 1 ≤ k < n. Consider Fq the
finite field with q elements and denote by Gq(k, n) the
Grassmannian, that is, the set of k-dimensional subspaces
of Fn

q . This set can be equipped with the so-called injection
distance: given two subspaces U ,V ∈ Gq(k, n), it is defined
as

dI(U ,V) = k − dim(U ∩ V). (1)

Using this distance, we can define a constant dimension
code C of length n and dimension k as a nonempty subset
of Gq(k, n). The minimum distance of C is defined as

dI(C) = min{dI(U ,V) | U ,V ∈ C, U ̸= V}
whenever |C| ≥ 2. In case |C| = 1, we put dI(C) = 0.

See Trautmann et al. (2018) and the references therein for
more information on this class of codes.

The concept of constant dimension code can be extended
when considering flags of constant type on Fn

q , that is,
sequences of nested subspaces of Fn

q where the list of
corresponding dimensions is fixed. The use of flags in
network coding as a generalization of constant dimension
codes was first proposed in Liebhold et al. (2018). Let us
recall some basic background on flag codes.

A flag F = (F1, . . . ,Fr) on Fn
q is a sequence of nested Fq-

vector subspaces {0} ⊊ F1 ⊊ · · · ⊊ Fr ⊊ Fn
q . The vector

(dim(F1), . . . ,dim(Fr)) is called the type of F and Fi is
the i-th subspace of F . In particular, if the type vector is
(1, 2, . . . , n− 1), we say that F is a full flag.

The set of all the flags on Fn
q of a fixed type vector

(t1, . . . , tr) is said to be the flag variety Fq((t1, . . . , tr), n)
and, for every i = 1, . . . , r, we define the i-projection
as the map pi : Fq((t1, . . . , tr), n) → Gq(ti, n), given by
pi((F1, . . . ,Fr)) = Fi.

The flag variety Fq((t1, . . . , tr), n) is a metric space: given
two flags F = (F1, . . . ,Fr) and F ′ = (F ′

1, . . . ,F ′
r) in

Fq((t1, . . . , tr), n), the (injection) flag distance between
them is the value

df (F ,F ′) =
r∑

i=1

dI(Fi,F ′
i). (2)

A flag code of type (t1, . . . , tr) on Fn
q is a nonempty subset

C ⊆ Fq((t1, . . . , tr), n). Its minimum distance is given by

df (C) = min{df (F ,F ′) | F ,F ′ ∈ C,F ̸= F ′}.
when |C| ≥ 2. If |C| = 1, we put df (C) = 0. The i-projected
code of C is the set

Ci = {pi(F) | F ∈ C} ⊆ Gq(ti, n).

Remark 1. Note that the i-projected code Ci of C is a
constant dimension code in the Grassmannian Gq(ti, n)
closely related to the flag code C.Moreover, the cardinality
of |Ci| always satisfies |Ci| ≤ |C|, whereas there is not a clear
relationship concerning the distance. In fact, we can have
df (C) > dI(Ci), df (C) = dI(Ci) or even df (C) < dI(Ci).
So, the problem of obtaining the parameters of a flag code

from the ones of its projected codes and conversely is a
central one in the study of flag codes.

3. COMBINATORIAL TOOLS

From now on we work just with full flags. For each
dimension 0 ≤ i ≤ n, we define the distance support S(i, n)
of Z2 by

S(i, n) = {i} × {0, 1, . . . ,min{i, (n− i)}}. (3)

We extend it to the full flag variety as follows: the distance
support of the full flag variety on Fn

q is the set

S(n) =
n⋃

i=0

S(i, n) ⊂ Z2. (4)

3.1 Distance paths

If we consider two full flags F ,F ′ on Fn
q , their flag distance

can be geometrically represented by means of a collection
of n + 1 points in the distance support S(n), each one
of them in a different column S(i, n), then we can define
their distance path Γ(F ,F ′) as the directed polygonal
path whose vertices are the points (i, dI(Fi,F ′

i)) for every
0 ≤ i ≤ n.

Fig. 1. Two distance paths in S(7).

Similarly, the set of distance paths of a given flag code C
is

Γ(C) = {Γ(F ,F ′) | F ,F ′ ∈ C, F ̸= F ′}.

3.2 Flag codistance

The simple idea of drawing the distance between flags by
means of a distance path in a suitable distance support
allows us to pay attention to the complementary param-
eter to the flag distance. If Dn is the maximum possible
distance between flags in the full flag variety, given a flag
distance value d, i.e., an integer such that 0 ≤ d ≤ Dn, we
define its (injection flag) codistance as the value d̄ = Dn−
d. Similarly, given a full flag code C on Fn

q , we define its

associated codistance as the value d̄f (C) = Dn − df (C).

3.3 Ferrers diagram frame

Now, fixed a positive integer n, we consider the enriched
distance support Ŝ(n) by adding auxiliary red points and
making a rotation around the point (n, 0) as below.
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Fig. 2. Rotated enriched supports Ŝ(8) and Ŝ(7).

If we eliminate the crossed dots, we obtain a Ferrers
diagram frame FF(n). Here we can stablish a one-to-
one correspondence between the set of distance paths
(associated to a given value of the flag distance) and
certain partitions that correspond to the set of circle black
points cointained in a suitable Ferrer subdiagram of FF(n).

3.4 Ferrers subdiagrams and embedded partitions

Every Ferrers diagram contained in FF(n) is said to be
a Ferrers subdiagram. We also say that the partition
λ = (λ1, . . . , λm) of the integer

∑m
i=1 λi is an embedded

partition on FF(n) if

(1) 1 ≤ m ≤ n− 1 and,
(2) for every 1 ≤ i ≤ m, it holds λi ≤ n− i.

We denote by Fλ the Ferrers subdiagram associated to an
embedded partition λ and also consider the empty Ferrers
subdiagram F0, associated to the null embedded partition
λ = (0).

Two Ferrers subdiagrams of FF(n) are said to be distance-
equivalent if they have the same underlying black diagram,
that is, they contain the same set of black dots. Analo-
gously, two embedded partitions λ and λ′ are said to be
distance-equivalent if their associated Ferrers subdiagrams
Fλ and Fλ′ are.

Fig. 3. Distance-equivalent Ferrers subdiagrams in FF(8).

We can show that a distance path with distance d, de-
termines a set of Ferrers subdiagrams, all of them being
distance-equivalent. In fact, each of those Ferrers diagrams
is associated to an underlying partition to which we can
associate a distinguished value: given λ = (λ1, . . . , λm)
an embedded partition in FF(n), we define its underlying
distribution as the vector

Uλ =


(⌈

λ1

2

⌉
,

⌊
λ2

2

⌋
,

⌈
λ3

2

⌉
, . . .

)
if n is even,(⌊

λ1

2

⌋
,

⌈
λ2

2

⌉
,

⌊
λ3

2

⌋
, . . .

)
if n is odd.

We denote by uλ the sum of the components of Uλ. With
this notation, the next result holds.

Theorem 2. Let Γd be a distance path associated to the
distance value d. If Fλ is a Ferrers subdiagram determined
by Γd, then it holds

d̄ = Dn − d = uλ.

3.5 Codistance splittings

We introduce a new concept that relates embedded parti-
tions and codistance. Given λ = (λ1, . . . , λm) an embedded
partition in FF(n), we say that its underlying distribution
Uλ splits the value uλ defined above, or that it is an
splitting of uλ. This value uλ is common for Fλ and all
its distance-equivalent Ferrers subdiagrams.

Finally, the next result provides the bridge to translate
the information given by distance paths to the embedded
partitions level and conversely.

Theorem 3. Let n ≥ 2 be an integer and 0 ≤ d ≤ Dn a
flag distance value. Then there is a bijection between the
set of distance paths of distance d in S(n) and the set of
splittings of the codistance d̄ = Dn − d.

4. DERIVED RESULTS FOR FLAG CODES

The previously introduced combinatorial tools can be ap-
plied to establish connections between the parameters of a
given full flag code and the ones of its projected codes. We
summarize here some of the most important consequences.
See Alonso-González and Navarro-Pérez (2021) for more
details.

Theorem 4. Consider a full flag code C on Fn
q with codis-

tance d̄f (C) and take a dimension 1 ≤ i ≤
⌊
n
2

⌋
. If the

codistance satisfies

d̄f (C) <
⌈
i(n− i)

2

⌉
, (5)

then |C| = |Ci| = · · · = |Cn−i|.
Theorem 5. Let C be a full flag code on Fn

q with associated

codistance d̄f (C). Take a dimension 1 ≤ i ≤ ⌊n
2 ⌋ and

consider an integer 0 ≤ r ≤ i. Hence, whenever

d̄f (C) <
⌈
r(r + n− 2i)

2

⌉
, (6)

then |Ci| = |C| and dI(Ci) > i− r.

Theorem 6. Let C be a full flag code on Fn
q and take

1 ≤ i ≤
⌊
n
2

⌋
.

(1) If |Ci| = |C|, then

dI(Ci)2 ≤ df (C) ≤ Dn−
⌈
(i− dI(Ci))(n− i− dI(Ci))

2

⌉
(2) If |Ci| < |C|, then

0 ≤ df (C) ≤ Dn −
⌈
i(n− i)

2

⌉
.

To finish, we state a combinatorial characterization of full
flag codes attaining the maximum possible distance:

Theorem 7. Let C be a full flag code on Fn
q . They are

equivalent:

(1) df (C) = Dn (or d̄f (C) = 0).
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(2) The set Γ(C) consists of the only distance path
passing either through the point (n2 ,

n
2 ), if n is even,

or through the points (
⌊
n
2

⌋
,
⌊
n
2

⌋
) and (

⌈
n
2

⌉
,
⌊
n
2

⌋
), if

n is odd.
(3) The set of Ferrers subdiagrams associated to C is

F(C) =
{
{F0} if n is even or
{F0,F(1)} if n is odd.
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C. Alonso-González and M. A. Navarro-Pérez,
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Abstract: This paper studies the integral turnpike and turnpike in average for a class of random
ordinary differential equations. We prove that, under suitable assumptions on the matrices that
define the system, the optimal solutions for an optimal distributed control tracking problem
remain, in an average sense, sufficiently close to the associated random stationary optimal
solution for most of the time horizon.
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1. INTRODUCTION

We consider an optimal control distributed tracking-type
problem of linear ordinary differential equations with ran-
dom coefficients. This kind of differential equation is the
stochastic counterpart of deterministic differential equa-
tions. The term random differential equations, in general,
refers to differential equations with random coefficients,
having either deterministic or random inhomogeneous
parts and initial conditions.

Differential equations with random coefficients have been
studied and used for various engineering and science prob-
lems. The latter is because the solution of a dynamic
system is a function that depends on the parameters which
constitute the system. These parameters are experimen-
tally determined and are usually the mean value of a set
of experimental observations. However, the observations
might be measured with errors due to the conditions’ vari-
ability, uncertainties, or lack of knowledge. Therefore, a
suitable approach to analysis would be to consider systems
with random variables as coefficients. We can mention
the earlier work on this area Bergmann (1946) where the
author studied the propagation of high-frequency sound
waves in the atmosphere of randomly varying refraction
index. We refer to the books Soong (1973, 1981) for a
complete study of this kind of equations and interesting
applications in science, engineering, physics, and biomed-
ical systems, among others.

On the other hand, in the context of optimal control, in
Porretta and Zuazua (2013) the authors studied the con-
cept of the turnpike for the solutions of an optimal control

⋆ The work of R. Lecaros was partially supported by FONDE-
CYT Grant 11180874. S. Zamorano was partially supported by the
ANID-PAI Convocatoria Nacional Subvención a la Instalación en la
Academia Convocatoria 2019 PAI77190106.
⋆⋆2020 Mathematics Subject Classification. Primary: 49K15, 49K40;
Secondary: 49K45, 93D20.

problem subject to ordinary differential equations without
randomness. The turnpike property, roughly speaking, de-
scribes that the optimal evolutionary solution is made of
three arcs. The first and the last arcs are transient short-
time, and the middle piece is a long-time arc remaining
exponentially close to the optimal steady-state of the
corresponding stationary optimal control problem. This
concept was formulated in the earlier work Dorfman et al.
(1987), in the context of the econometric field.

Motivated by the previous considerations, we will inves-
tigate if any connection exists between the average, with
respect to the random variable, of an optimal solution of a
certain optimal control problem for an ordinary differential
equation with random coefficients, with the corresponding
stationary random problem. Specifically, we will analyze
the turnpike phenomenon for a class of random differential
equations, which is important to understand the behavior
of solutions to optimal control problems on large time
horizons. In the context of stochastic differential equations,
this property has been the focus of recent interest Sun et al.
(2022). However, to the best of our knowledge, it is the
first time that the turnpike property has been studied for
ordinary differential equations with random coefficients.

Stating things more mathematically, in this paper we con-
sider a probability space (Ω,F , µ) and three random ma-
trices A,C ∈ C0(Ω,L(Rn)) and B ∈ C0(Ω, L(Rm,Rn)),
constant in time, which will represent the random coef-
ficients of the equation, the random observation and the
random control, respectively. We assume that the joint
probability distribution of matrices A,B and C is speci-
fied. We consider the following optimal control problem

min
u∈L2(0,T ;Rm)

{
JT (u) =

1

2

(∫ T

0

∥u(t)∥2Rmdt

+

∫ T

0

∥C(·)x(t, ·)− z∥2L2(Ω,Rn)dt

)}
,

(1)
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subject to x solving the following evolutionary problem{
xt +A(ω)x = B(ω)u t ∈ (0, T ),

x(0, ω) = x0(ω),
(2)

where z ∈ Rn is a fixed target. Here x = x(t, ω) ∈ Rn

represents the state and u(t) ∈ Rm the control of the
system, respectively.

The first aim of this paper it is prove that when the
time-horizon goes to infinity, the optimal pair (uT , xT ) of
(1)-(2) converges in an averaged sense to (u, x) in Rm ×
L2(Ω,Rn), where (u, x) solves the associated stationary
random optimal control problem

min
u∈Rm

{
Js(u) =

1

2

(
∥u∥2Rm +∥C(·)x(·)−z∥2L2(Ω,Rn)

)}
, (3)

subject to x solving the problem

A(ω)x(ω) = B(ω)u, (4)

where z ∈ Rn is the same target of the problem (1). That
is, we will analyze the following limits, which are usually
called integral turnpike property

1

T

∫ T

0

xT (t, ·)dt → x(·) in L2(Ω,Rn),

1

T

∫ T

0

uT (t)dt → u in Rm.

(5)

The second main result is to show an exponential turnpike
property. Namely, we will prove the existence of two pos-
itive constants K and δ, independent on the time-horizon
T , such that the solutions of the extremal equations
(uT , xT , φT ) remains exponentially close to the steady
state solution, the so-called turnpike, for the majority of
the time. That is,

∥xT (t, ·)− x(·)∥2L2(Ω,Rn) + ∥φT (t, ·)− φ(·)∥2L2(Ω,Rn)

≤ K(e−δ(T−t) + e−δt),

for every t ∈ (0, T ). Here, (φT , φ) represents the char-
acterization of minimizers via the first order necessary
optimality conditions (the dual variables). In addition, as a
consequence of the previous estimate, we prove an average
exponential turnpike, that is

∥E(xT − x)∥Rn + ∥E(φT − φ)∥Rn + ∥uT − u∥Rm

≤ K(e−δ(T−t) + e−δt),

for every t ∈ (0, T ) and where E(xT ) denotes the expected
value of xT and is given by

E(xT ) =

∫
Ω

xT dµ. (6)

Let us mention that both results are based on stability
assumptions for A, B, and C, which are the matrices that
define the system. These assumptions are related to the
existence of feedback operators in such a way that we
can ensure an ellipticity-type condition. Besides, these
hypotheses allow us to establish relevant observability
inequalities, which play an essential role in the proof of
our main results. We refer to Section 2 for a complete
discussion on the subject. As a final remark, the C matrix
must not be square. However, we will continue to assume
C ∈ C0(Ω,L(Rn)) just for simplicity.

2. OPTIMAL CONTROL PROBLEMS

We consider the following random ODE

{
xt +A(ω)x = B(ω)u t ∈ (0, T ),

x(0, ω) = x0(ω),

where ω ∈ Ω corresponds the random parameter, x =
x(t, ω) ∈ Rn is the state of the system, the n × n matrix
A ∈ C0(Ω,L(Rn)) governs its free dynamics, u(t) ∈ Rm is
the control function which is assumed to be independent of
the randomness and acts on the system through the control
matrix B ∈ C0(Ω,L(Rm,Rn)) which is a m×n parameter
dependent matrix. The initial datum x0(ω) belongs to the
space L2(Ω,Rn;µ), which is defined below.

Let us define the space

L2(Ω,Rn;µ) :=

{
ω ∈ Ω 7→ y(ω) ∈ Rn measurable :

∥y(·)∥2L2(Ω,Rn;µ) =

∫
Ω

∥y(ω)∥2Rndµ(ω) < ∞
}
,

which is a Hilbert space endowed with the inner product

⟨x, y⟩L2(Ω,Rn;µ) =∫
Ω

⟨x(ω), y(ω)⟩Rndµ(ω), ∀x, y ∈ L2(Ω,Rn;µ).

In what follows, we denote by L2(Ω,Rn) := L2(Ω,Rn;µ).

Additionally, we also assume that the matrices A and B
are uniformly bounded with respect to ω.

Concerning the integrability of the solutions for (2), we
have the next result, which can be consulted in Lohéac
and Zuazua (2016).

Theorem 1. ((Lohéac and Zuazua, 2016, Corollary 2.2)).

Assume the map ω 7→ (A(ω), B(ω)) is continuous on Ω.
Then, for every x0 ∈ L2(Ω,Rn), every u ∈ L2

loc(R+,Rm),
and every t ≥ 0, the solution x of (2) satisfies x(t, ·) ∈
L2(Ω,Rn). In addition, the solution x can be represented
by

x(t, ω) = etA(ω)x0(ω)

+

∫ T

0

e(t−s)A(ω)B(ω)u(s)ds, ∀ω ∈ Ω, t ∈ [0, T ].

2.1 Evolutionary problem

Let us consider first the optimal control for the evolution-
ary problem (2) with initial datum independent of ω. That
is,

min
u∈L2(0,T ;Rm)

JT (u), (7)

where

JT (u) =
1

2

(∫ T

0

∥u(t)∥2Rm dt

+

∫ T

0

∥C(·)x(t, ·)− z∥2L2(Ω,Rn) dt

)
,

subject to x solving the following evolutionary problem{
xt +A(ω)x = B(ω)u t ∈ (0, T ),

x(0, ω) = x0,
(8)

where z ∈ Rn is a fixed target. The case of initial condition
x0 ∈ L2(Ω,Rn) does not lead to any essential new difficulty
throughout the following. Thus, for sake of simplicity of
the presentation, we only deal with the case where x0 is
independent of ω.
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By using the direct method of the calculus of variations
and noting that the solution x of (8) depends linearly and
continuously on u, we obtain the existence and uniqueness
result of the optimal control. Besides, the characterization
of the control can be done using the Gateaux derivative of
JT . These results are included in the following theorem.

Theorem 2. There exists a unique solution (uT , xT ) ∈
L2(0, T ;Rm) × C0([0, T ];L2(Ω,Rn)) to the minimization
problem (7)-(8), where xT is the optimal state associated
to the control uT . In addition,

uT (t) = −
∫
Ω

B∗(ω)φT (t, ω)dµ, (9)

where φT ∈ C0([0, T ];L2(Ω,Rn)) is the solution of the
backward problem{

−φT
t +A∗(ω)φT = C∗(ω)(C(ω)xT − z) t ∈ (0, T ),

φT (T, ω) = 0.

(10)

In what follows, we assume the following two conditions
concerning the dynamics and the cost functional.

Hypothesis 1: For the pair (A,C) we assume the
following condition. There exists a feedback operator
KC ∈ C0(Ω,L(Rn)) uniformly bounded with respect
to ω such that, and there exist α > 0 such that

⟨(A+KCC)v, v⟩L2(Ω,Rn) ≥ α ∥v(·)∥2L2(Ω,Rn) , (11)

for all v ∈ L2(Ω,Rn).
Hypothesis 2: For the pair (A∗, B∗) we consider the
next assumption. There exists κ1 ∈ R and κ2 > 0 such
that

⟨A∗v, v⟩L2(Ω,Rn) + κ1

∥∥∥∥∫
Ω

B∗(ω)v(ω)dµ

∥∥∥∥2
Rm

≥ κ2 ∥v(·)∥2L2(Ω,Rn) , (12)

for all v ∈ L2(Ω,Rn).

These assumptions are closely related to exponential sta-
bilizability and exponential detectability, as mentioned in
Grüne et al. (2019) for abstract differential equations.
Under the previous assumptions we have the following
“observability” estimates for xT (T ) and φT (0).

Lemma 3. Let us assume thatHypothesis 1 holds. Then,
there exists a constant K > 0 independent of T > 0 such
that, for every t ∈ [0, T ]

∥xT (t, ·)∥2L2(Ω,Rn) ≤ K

(∫ T

0

[
∥B(·)uT (t)∥2L2(Ω,Rn)

+ ∥C(·)xT (t, ·)∥2L2(Ω,Rn)

]
dt+ ∥x0∥2Rn

)
, (13)

where (uT , xT ) is the optimal pair given by Theorem 2.

Lemma 4. Let us assume thatHypothesis 2 holds. Then,
there exists a constant K > 0 such that for every t ∈ [0, T ]

∥φT (t, ·)∥2L2(Ω,Rn) ≤ K

∫ T

0

[
∥C(·)xT (t, ·)− z∥2L2(Ω,Rn)

+

∥∥∥∥∫
Ω

B∗(ω)φT (t, ω)dµ

∥∥∥∥2
Rm

]
dt, (14)

where φT is the solution of (10).

2.2 Stationary problem

We continue analyzing the stationary optimal control
problem (3)–(4).

Under the Hypothesis 2 we have the following existence
and uniqueness for the optimal pair for problem (3)–(4).

Theorem 5. Assume that Hypothesis 2 holds true. Then
the problem (3)–(4) admits a unique optimal pair (u, x) ∈
Rm ×L2(Ω,Rn), with x the optimal state associated to u.

Now, we define the following set

D := {u ∈ Rm : B(ω)u ∈ Ran(A(ω)), for each ω ∈ Ω}.

(15)

Theorem 6. Assume that Hypothesis 2 holds true and
let (u, x) be the unique solution of the optimal control
(3)–(4). Then, there exists φ ∈ L2(Ω,Rn) such that for
a.e. ω ∈ Ω we have

A∗(ω)φ = C∗(ω)(C(ω)x− z), (16)

and

⟨u, v⟩Rm + ⟨φ,Bv⟩L2(Ω,Rn) = 0, ∀v ∈ D. (17)

3. MAIN RESULTS

In this section we state and prove the main results of
this work. For this, let us recall the evolutionary and
stationary optimality systems. Let (uT , xT ) be the optimal
pair of (7)–(8), and (x, u) the optimal pair of (3)–(4) (see
Theorems 2 and 6). In addition, we have that there exist
φT solution of (10), such that the optimal control uT of
(7) is given by

uT (t) = −
∫
Ω

B∗(ω)φT (t, ω)dµ, (18)

and u the optimal control associate to (3) satisfies

⟨u, v⟩Rm + ⟨φ,B(ω)v⟩L2(Ω,X) = 0, ∀v ∈ D, (19)

where φ is the solution of (16). Besides, the following
optimality systems hold:

xT
t +A(ω)xT = B(ω)uT t ∈ (0, T ),

−φT
t +A∗(ω)φT = C∗(ω)(C(ω)xT − z) t ∈ (0, T ),

xT (0, ω) = x0, φT (T, ω) = 0,

(20)

and {
A(ω)x = B(ω)u,

A∗(ω)φ = C∗(ω)(C(ω)x− z).
(21)

The first main result concerns the average convergence of
the optimal pair (uT , xT ) to the corresponding stationary
ones (u, x), stated in the following theorem. The proof is
based on the results contained in Porretta and Zuazua
(2013).

Theorem 7. Let us assume that Hypothesis 1 and 2
hold. Then,

1

T

∫ T

0

xT (t, ·)dt −→ x(·) in L2(Ω,Rn),

1

T

∫ T

0

uT (t)dt −→ u in Rm,

as T → ∞, where (uT , xT ) is the optimal pair of (7)–(8),
and (x, u) is the optimal pair of (3)–(4).
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Corollary 8. Let us assume that Hypothesis 1 and 2
hold. Then, there exists a unique φ solution of (16). In
addition, the stationary optimal control u is given by

u = −
∫
Ω

B∗φdµ.

Our second main result, which is the following theorem,
shows the average exponential turnpike property. The
proof is inspired by the results obtained in Grüne et al.
(2019).

Theorem 9. Let us assume that Hypothesis 1 and 2
hold. Let δ ≥ 0 be a real number. Let (uT , xT , φT ) be the
solution of (20) and (u, x, φ) the corresponding stationary
solution of (21). Then, there exists a positive constant
K = K(δ) > 0 (independent of T ) such that∥∥xT (t, ·)− x(·)

∥∥2
L2(Ω,Rn)

+
∥∥φT (t, ·)− φ(·)

∥∥2
L2(Ω,Rn)

≤ K(e−δ(T−t) + e−δt), (22)

for every t ∈ (0, T ). In particular, we obtain an averaged
exponential turnpike as follows∥∥E(xT − x)

∥∥
Rn +

∥∥E(φT − φ)
∥∥
Rn +

∥∥uT − u
∥∥
Rm

≤ K(e−δ(T−t) + e−δt),

for every t ∈ (0, T ).

Remark 10. (1) It is immediately noted that in The-
orems 7 and 9 one can also consider the case
where x0, z ∈ L2(Ω,Rn). The proof of both The-
orems applies replacing the terms ∥x0∥Rn , ∥z∥Rn by
∥x0(·)∥L2(Ω,Rn), ∥z∥L2(Ω,Rn), respectively.

(2) Finally, it is interesting to note that our second
main result, namely estimates (22) in Theorem 9,
means that the turnpike holds for each parameter
separately. This result is a strong consequence of
our main assumptions Hypothesis 1 and 2. Also is
interesting that this holds with optimal control, which
is independent of random parameters. However, it
captures, at the same time, all the information of the
adjoint system (in an average sense).

4. NUMERICAL EXPERIMENTS

This section will perform numerical experiments to vali-
date the average turnpike property. We focus our attention
on the particular case A(ω) = α(ω)A and B(ω) = β(ω)B,
with A and B constant matrices and α, β scalar random
variables. Besides, the observability matrix will be inde-
pendent of ω. In addition, we consider a discrete sample
space Ω.

Let Ω = R+ and β be a random variable with exponential
distribution with parameter λ = 7 i.e. β ∼ exp(7) and
α ∼ Unif([1/2, 2]). We consider the following optimal
control problem

min

{
JT (u) =

1

2

(∫ T

0

∥u(t)∥2Rm

+ ∥Cx(t, ·)− z∥2L2(Ω,Rn) dt

)}
,

subject to x solves the system{
xt + α(ω)Ax = β(ω)Bu t ∈ (0, T ),

x(0) = x0.

where A,B and C satisfy the Hypothesis 1 and 2. The
corresponding stationary optimal control problem is

min

{
Js(u) =

1

2

(
∥u∥2Rm + ∥Cx(·)− z∥2L2(Ω,Rn)

)}
,

subject to x solves the problem α(ω)Ax = β(ω)Bu. We
compute the optimal solutions (xT , uT ) in time T = 10,
and (x, u), by using the Gekko library on Python and
considering seven realizations of the random variables β
and α, which were generated using the numpy.random
library on Python.

Fig. 1. Norm difference between evolutionary and station-
ary solutions and controls.
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Abstract: Learn-to-Fly is a framework for incorporating learning methods into the development
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Fly and improvements to the procedure for more practical and widespread use. Ongoing efforts
are needed to continue to develop the necessary underlying technologies for integration into this
framework.
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1. INTRODUCTION

NASA’s Learn-to-Fly (L2F) concept seeks to apply learn-
ing methods to the modeling and control of aircraft. The
current paradigm for aerodynamic modeling and control
law design of a new vehicle relies on significant input
from ground-based methods, such as computational fluid
dynamics (CFD) simulations and wind tunnel testing, to
develop a simulation model that is then used for the devel-
opment of the control law. With the control law designed
based on the simulation model, flight tests are performed,
and it is often determined from the flight data that there
are areas requiring additional data for aerodynamic model
improvement. Additional flight test sorties are planned
until sufficient data has been captured and the control
laws are improved to desired levels of performance and ro-
bustness. This iterative, sequential process requires many
different subject matter experts to be engaged throughout
the development of the aerodynamic model and control
law. Conversely, the L2F concept is built upon real-time
modeling, real-time guidance, and learning control that
work together to identify the aerodynamic model and
design the control law for the vehicle with minimal human
input. By developing the aerodynamic model based on
flight data, the control system is designed with actual
flight dynamics responses rather than analogous results,
removing the need for corrections due to Reynolds number
(if flights are full-scale), wind tunnel blockage, boundary-
layer turbulence, etc.

Recent advances in aerodynamic modeling allow such
learning processes to operate onboard an aircraft in real
time with commercially available computing hardware,
e.g., see Morelli (2018, 2020). This allows the flight data
content to be assessed in near real time while performing
system identification maneuvers, providing a means of
determining when a valid aerodynamic model has been
generated. If an aerodynamic model of a vehicle can be

⋆ Current funding for Learn-to-Fly technologies is provided by
NASA under the Transformational Tools and Technologies (TTT)
project.

determined in flight, then there is the potential for auto-
matically modifying control laws, allowing the aircraft to
autonomously “learn to fly” and improve its performance
with additional flight time (experience). See Snyder et al.
(2018), Snyder (2020), Weinstein et al. (2018), and Grauer
(2018) for examples.

One would be remiss not to acknowledge the advances in
ground testing capabilities. Over time, CFD simulations
have become more accurate and cost efficient to perform,
and CFD methods are expected to continue improving
(see Cary et al. (2021)). Murphy and Brandon (2017) have
applied modern design of experiment methods to improve
wind tunnel test designs. Additional research has been
performed on automating some of these test procedures
to reduce the amount of engineering judgment and human
input required, as described by Murphy et al. (2020, 2021).
Given this, it seems likely that the future may hold a
combination of automated ground testing and automated
inflight modeling and control updates, like those in L2F.

The remainder of this paper includes a brief overview
of the technologies within the current L2F framework in
Section 2 along with some highlights of early L2F flight
test results in Section 3. Finally, Section 4 contains a
discussion of some open areas of research that should be
filled to improve implementations of the L2F concept.

2. COMPONENTS OF THE LEARN-TO-FLY
FRAMEWORK

As mentioned above, L2F contains three primary compo-
nents: 1) real-time modeling, 2) real-time guidance, and 3)
learning control. A block diagram showing the connections
between these components and some of the data flow is
depicted in Figure 1. Each of these pieces is described
briefly below with references for more details on the im-
plementation used in flight testing. Note that different
algorithms that perform these functions could be swapped
in and out of this framework.

Real-time Modeling
The goal of the real-time modeling module is to iden-
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Fig. 1. Block diagram of the Learn-to-Fly architecture.

tify a six-degree-of-freedom mathematical model of the
aerodynamic forces and moments acting on the vehicle.
It is assumed that the rigid-body kinematic relations are
known. The measured states and control surface positions
are used as the explanatory variables for the aerodynamic
forces and moments. Non-dimensional forces and moments
depend not only on the measured aircraft states, but also
on the vehicle geometry and mass properties. Since these
cannot be measured directly during flight, the geometry
and mass properties must be known a priori. Two factors
play a role in the creation of an accurate global aerody-
namics model during flight: safe and efficient flight maneu-
vers to sufficiently excite the targeted aircraft dynamics,
and a recursive system identification algorithm that can
be implemented in real time.

The maneuvers used for excitation were created by in-
jecting orthogonal phase-optimized multi-sine inputs into
the control surface commands during portions of the flight
tests, as discussed by Morelli (2018, 2020). These inputs
are referred to as programmed test inputs (PTIs). The
phase optimization indirectly minimizes the peak ampli-
tude, and they only result in a small net perturbation to
the aircraft dynamics because the inputs have zero mean.
Because these signals are orthogonal, the effect of the
inputs can be determined despite simultaneous actuation.
This provides a rich amount of excitation over a small
window of time.

The recursive system identification algorithm that was im-
plemented is described in detail by Morelli (2018). The ap-
proach is based on a candidate pool of multivariate orthog-
onal functions, referred to as regressors. These functions
can be of arbitrary complexity and are selected a priori by
the designer. Theoretically, the pool of candidates could
be arbitrarily large, yet in practice, the size is limited by
onboard computing capabilities. A recursive QR decompo-
sition is used to recursively orthogonalize the regressors in
order to isolate and quantify their explanatory capabilities
of the dynamics. A least-squares estimator then calculates
coefficients for each orthogonalized regressor by minimiz-
ing the sum of squared differences between the computed
non-dimensional forces and moments, and those predicted
by the model. Measures of model fit quality and a penalty
for model complexity are then balanced to determine the
model structure, i.e., the orthogonalized regressors that
will be included within the model. Finally, the model is
transformed back into physical quantities by reversing the
orthogonalization procedure. Applying this multivariate
orthogonal function modeling to each of the rigid-body
degrees of freedom will result in the desired six-degree-of-

freedom mathematical model. Uncertainty bounds corre-
sponding to each model parameter estimate can also be
computed from the generated statistics. A more thorough
discussion of the time-domain modeling procedure is given
by Morelli (2018). Morelli (2020) provides updates to the
modeling procedure in the frequency domain.

Real-time Guidance
Several functions were overseen by the real-time guid-
ance algorithm, including waypoint navigation, energy
management for autonomous landing, and limited flight
envelope protection. Some degree of autonomous enve-
lope expansion was also provided by the guidance, which
systematically adjusted the nominal angle of attack and
sideslip commands so that the PTIs could excite the vehi-
cle dynamics in different parts of the flight envelope. By
monitoring the real-time global model for instabilities, the
guidance algorithm could limit the envelope expansion in
order to preserve system safety and keep the vehicle within
the stable portion of the flight envelope. Navigation was
performed by computing the ground track to the desired
waypoint. After flying through a given acceptance radius
of the waypoint, the guidance would advance to the next
waypoint and compute the ground track relative to it.

When flown on a glider-type aircraft, an altitude trigger
would switch the guidance commands over to a landing
mode. In this mode, the longitudinal guidance command
would switch from angle of attack to flight path angle. The
optimal angle, in terms of maximizing the ratio of lift to
drag, would be calculated from the real-time aerodynamic
model and sent to the control law.

For a powered vehicle flyable by a radio control (R/C)
pilot, takeoffs and landings can be performed by the pi-
lot. An altitude and speed profile can be provided along
with the waypoint tracking, and the guidance algorithm
can then compute a desired flight path angle and speed
to demand from the control law. Additionally, with the
capability of piloted flight, the real-time modeling can
be performed either under manual control or autonomous
control. More details on the guidance algorithm and capa-
bilities are given by Foster (2018).

Learning Control
The main objective of the vehicle’s control law is to ro-
bustly stabilize the vehicle and track the provided guid-
ance commands. The controller must handle disturbances
and uncertainties within the system. It uses a traditional
adaptive control architecture, complete with a reference
model, to react to any immediate disturbances or un-
knowns. However, as patterns emerge within these un-
knowns, the real-time modeling results capture these pat-
terns, making those unknowns known. The baseline con-
troller and reference model are modified based on the real-
time modeling results, and the system no longer needs
to react to those specific disturbances since it can now
predict them. The distinction here is between modifying
behavior based on a reaction to something that has already
happened (adaptation) and modifying behavior based on a
prediction of what will happen (learning). Past experiences
are required to generate an appropriate prediction.

Some amount of perturbation from the flight condition is
required for the real-time modeling to learn the aerody-
namics. This is provided by the multi-sine inputs described
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above, yet the excitation provided by these inputs goes
contrary to the controller’s goal of stabilization and are
seen by the controller as a disturbance. Simulation studies
during the L2F development have shown that rejecting
too much disturbance reduced the real-time aerodynamic
modeling’s ability to identify a model. These conflicting
goals of identification and stabilization need to be balanced
throughout the L2F process.

The structure of the controller used contains two ele-
ments, a baseline controller and an adaptive augmentation.
For the baseline controller, a nonlinear dynamic inversion
(NDI) control law was designed based on the model learned
in real time. NDI essentially seeks to cancel any undesir-
able dynamics within the determined mathematical model.
The desired dynamics after inversion were chosen such
that the natural frequency of the vehicle is preserved and
sufficient damping is provided for tracking the guidance
commands. To augment the baseline controller, a model-
based adaptive law compares the measured response to
the predicted response of the desired dynamics, adjusting
the control signal to reduce any discrepancies. Additional
details and results on the control laws are given by Snyder
et al. (2018).

Due to the periodic updates of the learned model, the
reference model (desired dynamics) exhibits a switching
behavior. Switching makes the theoretical analysis of the
model-based adaptive controller more challenging than for
simple linear time-invariant systems, but an initial analysis
framework for an L1 adaptive controller for this class of
systems was developed by Snyder et al. (2022).

3. FLIGHT TESTS

The flight tests discussed here were performed on a 40%-
scale, conventional, powered aircraft. The vehicle, known
as E1, was modified to split the flaperons into conven-
tional flaps and ailerons and to split the elevator into
independent left and right surfaces. These extra control
surfaces enabled the use of a hidden feedback loop to
modify the apparent dynamics of the vehicle. This feed-
back loop could, for example, command the left elevator
to destabilize the pitch channel based on the angle of
attack, unbeknownst to the modeling, guidance, or control
modules. The destabilization could be used to create a
static instability in pitch or, by feeding back the roll rate
to the flaps, create unstable roll damping. Thus, the L2F
method could be tested on an effectively unstable vehicle.
Figure 2 shows how the surfaces were allocated between
stability degradation and control.

Of course, for piloted takeoffs and landings, it is unde-
sirable to have an unstable vehicle. Therefore, the R/C
pilot was provided the ability to engage or disengage this
destabilizing feedback. Three modes were available to the
pilot. The first mode bypassed the L2F computer and
allowed the pilot to fly with conventional R/C avionics.
The second mode passed the pilot commands through
the L2F computer, allowing the pilot commands to be
augmented, such as with the destabilizing feedback. The
final mode was for fully autonomous flight.

Select Test Results
In the tests described here, the pilot took off in the bypass

Fig. 2. Schematic of how control surfaces were allocated
between control and stability degradation.

mode. Upon reaching the specified test altitude, he then
either engaged the autonomous mode, which enabled both
the modeling PTIs and the destabilization feedback loop
along with the L2F software, or he engaged the pilot pass
through mode, which injected the PTIs on top of the pilot
inputs and also enabled the destabilizing feedback. The
vehicle was flown twice with the pitch destabilization, once
piloted and once autonomously.

Figure 3 overlays the responses of the autonomous L2F
system and the pilot. A post-flight analysis of the data
determined that the static margin of the vehicle was
approximately −16.4%, which is a significant instability.
This can explain why the R/C pilot had difficulty getting
the pitch angle under control, even with large inputs. The
pilot traces within the figure are short because the pilot felt
uncomfortable attempting to fly the destabilized vehicle
through a turn that was required for range safety purposes.
As such, he reverted to the safety mode to regain control
of the vehicle. With the autonomous L2F system running,
some initial pitch oscillations occur. The pitch angle θ of
the vehicle can be seen in the first plot, along with the
elevator deflection (input signal) δe in the second plot as
the controller tries to stabilize the aircraft. While the real-
time modeling procedure does not rely on any sort of initial
guess of the vehicle dynamics, the control laws do. In each
case, the initial guess provided to the controller was of a
stable aircraft, which can be seen by the initial negative
value of the model’s pitch coefficient due to angle of attack,
Cmα

, in the third plot. Thus, the initial pitch oscillations
are not surprising.

After about 1 s, the autonomous system begins learning
the vehicle dynamics and updating the model parameters
(highlighted area). Remember that learning requires ex-
perience. This is why one cannot expect the model to
update instantaneously. It must first see the pattern in
order to learn it. The principal frequency of the pitch
dynamics of this vehicle is roughly 1 Hz. Notice that it
takes about two cycles (approximately 2 seconds) for the
real-time modeling to learn what it is seeing and converge
appropriately. Based on the updated model, the gains of
the control law, as represented by Kα in the fourth plot,
are also updated.
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Fig. 3. Overlay of two flights with pitch destabilization, one with the pilot and one with the autonomous L2F system.

4. DISCUSSION

Learn-to-Fly is an interesting application area for learning-
based methods in control and one that could benefit the
aviation industry. However, many of the improvements
needed to push L2F forward are the same developments
generally needed for higher level autonomous agents.

Imagine cooperative agents whose objectives compete, at
least temporarily. How can those conflicts be resolved so
that the team can thrive, especially in cases when the
agents are not just cooperative but also codependent? In
the L2F scenario, the modeling and control modules are
exactly that—codependent. Without model information,
control of the vehicle could easily be lost, and if the vehicle
is out of control—whether tumbling or possibly crashing—
meaningful models cannot be produced.

Many systems that contain some sort of learning element
will always have its learning engaged or have it be con-
trolled by a human user. If the system response is consis-
tent with the autonomous agent’s expectation, then the
learning process need not be active, freeing up resources.
However, some level of monitoring would likely be prudent
in case the expectation and measured response should, at
some future point, diverge. How can resources be balanced
between learning and doing? For a system like L2F, it
is worth noting that different levels of learning could be
applied, such as self learning—which has been the focus
thus far—and external learning, which is learning about
the environment or other agents within it. Balance would
need to be struck between these tasks as well.
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Abstract: In the recent history of the theory of network coding the multi-shot network coding
has been prove as a good alternative for the classical one-shot network theory which is managed
by using block codes. To perform communications in this multi-shot context we have, among
others, rank-metric convolutional codes and concatenated codes (using a convolutional code as
an outer code and a rank-metric code as inner code). In this work we analyse their performance
over the rank deficiency channel (described by Gilbert-Elliot channel model) in terms of the
correction capabilities and the complexity of the two decoding schemes.
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1. INTRODUCTION

Since its raising at the beginning of 2000’s, network coding
has been a research topic that has attracted significant
interest in many areas, including electrical engineering,
computer science and applied mathematics. Network cod-
ing theory provides a pragmatic instrument to disseminate
information (packets) over networks where there may be
many information sources and possibly many receivers.
From a mathematical point of view, these packets can
be modelled by columns of matrices over a finite field Fq

and during the transmission, these columns are linearly
combined at each node of the network. To achieve reliable
communication over this channel, rank-metric codes are
typically employed.

Most of the literature deals with the situation in
which the network is used only once to propagate the
information. Such scenario is referred to as one-shot net-
work coding, as the encoding and transmission is per-
formed over one use (shot) of the network. If one needs
to transmit more data (packets), then these packets are
again encoded and transmitted in the following instant,
independently on the previous transmissions. However,
one can improve the error-correction capability of the
code in the scenario where we need to use the network
several times (multi-shot) by creating correlation among
the transmitted data in different shots. This new approach
has recently attracted much attention due to possible
interesting applications, e.g., in streaming communications
Mahmood et al. (2015). Nevertheless, network coding tech-

⋆ This work has been partially supported by the Portuguese
Foundation for Science and Technology (FCT-Fundação para a
Ciência e a Tecnologia), through CIDMA - Center for Research
and Development in Mathematics and Applications, within project
UIDB/04106/2020. The second author was also supported by the
Ministerio de Ciencia e Innovación under the grant with ref.
PID2019-108668GB-I00.

niques for streaming are fundamentally different from the
classical ones. To be optimised they must operate under
low-latency, sequential encoding and decoding constraints,
and as such they must inherently have a convolutional
structure. That is the reason why most of the proposed
schemes for this scenario employ convolutional codes in
different ways Wachter-Zeh et al. (2015); Napp et al.
(2017a); Mahmood et al. (2015); Almeida et al. (2020).

In this work we present a comparison of two different
and important schemes for multi-shot network coding:
rank metric convolutional codes and concatenated codes
(concatenation of a convolutional code and a rank metric
code) Napp et al. (2018). In particular, we compare their
performance over a rank-deficiency channel focusing on the
correction capabilities and the complexity of the encoding
and decoding procedures of each proposal. For practical
reasons, in our comparison we limit the field size. Since
the construction of optimal rank-metric codes for this
channel exists Mahmood et al. (2015) only for large finite
fields, such codes cannot be used in this context. The con-
catenated codes, however, can be constructed optimally.
In Section 2 we present the necessary background about
convolutional codes, rank-metric convolutional codes and
concatenated codes and the nature of the used channel.
In Section 3 we make a comparison of the performance of
both codes over this kind of channel. Later, in Section 4 we
compare the complexity in the decoding process under the
circumstances established in the previous section. Finally,
in Section 5 we make some review of this work and present
future possible works.

2. PRELIMINARIES

2.1 Convolutional codes

Let Fq be a finite field and Fq[D] the ring of poly-
nomials with coefficients in Fq. A convolutional code C
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of rate k/n is a rank k Fq[D]-submodule of Fq[D]n. If
G(D) ∈ Fq[D]k×n is a full row rank matrix such that

C = ImFq [D]G(D) =
{
u(D)G(D) : u(D) ∈ Fq[D]k

}
,

then G(D) is called an encoder of C.

Any other encoder G̃ of C differs from G(D) by

a unimodular matrix U(D) ∈ Fq[D]k×k. i.e., G̃(D) =
U(D)G(D). Therefore, we can consider G(D) to be mini-
mal, i.e., in row reduced form Johannesson and Zigangirov
(1999). In this case, the sum of the row degrees of G(D)
attains its minimum among all the encoders. This value
is usually denoted by δ and called the degree of C. A
convolutional code with rate k/n and degree δ is called an
(n, k, δ) convolutional codes, McEliece (1998). The largest
row degree over one, and therefore all, reduced encoders
of C is called the memory of C and denoted by µ. If the
memory is considered instead of the degree, a convolu-
tional code with rate k/n and memory µ is referred to as
an (n, k, µ) convolutional code Mahmood et al. (2015).

An important distance measure for convolutional
codes C is its free distance which is defined as

dfree(C) = min
v(D)∈C,v(D) ̸=0

wt(v(D)),

where wt(v(D)) is the Hamming weight of a polynomial
vector v(D) =

∑
i∈N viD

i ∈ Fq[D]n, defined as

wt(v(D)) =
∑
i∈N

wt(vi),

being wt(vi) the number of the nonzero components of vi.
Another important distance measure is the j-th column
distance,

djH(C) = min
{
wt(v(D)|[0,j]) | v(D) ∈ C, v0 ̸= 0

}
where v(D) =

∑
i∈N viD

i and v(D)|[0,j] =
∑j

i=0 viD
i.

This measure is also upper-bounded in Johannesson and
Zigangirov (1999):

djH(C) ≤ (n− k)(j + 1) + 1

for j ≤ L where L = ⌊δ/k⌋ + ⌊δ/(n − k)⌋. The convo-
lutional code achieving the bound for all j ∈ {0, . . . , L}
is called maximum distance profile (MDP) convolutional
code Gluesing-Luerssen et al. (2006).

2.2 Rank-metric codes

Let A,B ∈ Fn×m
q . The rank distance between two

matrices is

drank(A,B) = rank(A−B).

This defines a distance, called rank distance, and rank-
metric codes are subsets of C ⊆ Fn×m

q equipped with the

rank distance. Rank metric codes in Fn×m
q are usually

constructed as block codes of length n over the extension
field Fqm as in Kötter and Kschischang (2008). For a given
basis of Fqm viewed as an m vector space over Fq, any
element of Fqm can be seen as a vector in Fm

q . In this
paper we will follow this approach and consider rank-
metric codes as linear codes [n, k] over Fqm . For the sake
of simplicity we assume that m ≤ n. In this case, linear
rank metric codes of length n and dimension k over Fqm

must satisfy the following Singleton-type bound:

drank(C) ≤ n− k + 1.

A code that achieves this bound is called Maximum Rank
Distance (MRD). Gabidulin codes are a well-known class
of MRD codes as showed in Gabidulin (1985).

2.3 Rank-metric convolutional codes

Rank metric convolutional codes over Fqm were first intro-
duce in Wachter-Zeh et al. (2015) for unitmemory codes
and for unrestricted memory in Mahmood et al. (2015);
Almeida et al. (2020). These are convolutional codes de-
fined over an extension field Fqm and equipped with a
rank-type metric, and as such, are referred to as (n, k, δ)-
rank metric convolutional codes (over Fqm) if have length
n, dimension k and degree δ. Later, a wider definition
of convolutional codes over Fq (instead of over Fqm) was
proposed in Napp et al. (2017b).

In Mahmood et al. (2015) a new column rank-base
distance is considered. Let C be a (n, k, µ) be a convolu-
tional code over FqM . The j-th column rank distance of C
is:

djSR(C) = min
x[0,j]∈C

j∑
t=0

rank(ϕn(x[0,j]))

where ϕn : Fn
qM → Fn×M

q is the bijective mapping

which allows to use the rank based metric instead of the
Hamming metric. This column distance is upper-bounded
by:

djSR(C) ≤ (n− k)(j + 1) + 1.

The codes which achieves this bound are named Maximum
Sum Rank codes (MSR). These codes are showed to exists
and a construction is given Mahmood et al. (2015). The
larger the column distance is, the better is the correction
capability within an interval of time. Hence, rank metric
convolutional codes with optimal column distance profile
are ideal for fast decoding, i.e., for streaming application
with low delay constrains. For these reasons we shall
consider in this work MSR convolutional codes for our
analysis.

2.4 Concatenated codes

In this section we introduce a completely different class
of codes in the context of multi-shot network coding.
Such a scheme comprises the concatenation of a Hamming
metric convolutional code as an “outer code” and a rank
metric block code as an “inner code”. These codes are
described by the concatenation scheme proposed in Napp
et al. (2018) as follows: Let CI be a linear (nI , kI) rank
metric code over Fqm with (rank) distance drank(CI) and

generator matrix GI ∈ FkI×nI
qm . Let CO be an (nO, kO, δ)

convolutional code over the field FqmkI with Free distance

dH(CO), column distance djH(CO) and a generator matrix
GO(D) ∈ FqmkI [D]kO×nO .

The information (row) vector u(D) = u0 + u1D +
u2D

2 + · · · ∈ FqmkI [D]kO is encoded through GO(D) to
generate

v(D) = v0 + v1D + v2D
2 + · · · = u(D)GO(D) ∈ CO.

We write vi = (v0i , v
1
i , . . . , v

nO−1
i ), vji ∈ FqmkI . Now, we

identify vji ∈ FqmkI with a vector νji ∈ FkI
qm (for a given
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basis of FqmkI ) and write νi = (ν0i , ν
1
i , . . . , ν

nO−1
i ) ∈

(FkI
qm)nO and therefore

ν(D) = ν0 + ν1D + ν2D
2 + · · · ∈ FkI

qm [D]nO .

Finally, the codewords x(D) of the concatenated code C are

obtained through the matrix GI ∈ FkI×nI
qm in the following

way:

xj
i = νjiGI ∈ FnI

qm ,

xi = (x0
i , x

1
i , . . . , x

nO−1
i ) ∈ (FkI

qm)nO ,

x(D) = x0 + x1D + x2D
2 + · · · ∈ C ⊂ FkI

qm [D]nO .

The sum rank metric and the j-th column sum rank
distances are bounded by (see Napp et al. (2018)):

dSR(C) ≤ (nOnI − kOkI)(

⌊
δ

kO

⌋
+ 1) + δkI + 1,

djSR(C) ≤ (nOnI − kOkI)(j + 1) + 1,

respectively.

2.5 Network model

In multi-shot network coding the information (pack-
ets) sent in the different uses of the network (shots) are
correlated to improve the correction capability of the
codes. The natural tool to use in this network are the
convolutional codes which take into account this delay in
the transference of the information. The network channel
considered here is the deficiency channel which is a simpli-
fication of more general network channel and can be seem
as the analogue of the erasure channel in the context of
networks, see Mahmood et al. (2015) for more details. In
this channel, at each shot the destination node observes
yt = xtAt, where At ∈ Fn×n

q is the channel matrix at time
t, and is known to the receiver, as explained in Ho et al.
(2006). Communication over a window [t, t+W − 1] of W
shots is described using y[t,t+W−1] = x[t,t+W−1]A[t,t+W−1],
where A[t,t+W−1] = diag(At, . . . , At+W−1) is a block di-
agonal channel matrix as described in Mahmood et al.
(2015). Let ρt ≜ rank(At) denote the rank of At, for

all t ≥ 0, we have that
∑t+W−1

i=t ρi = rank(A[t,t+W−1]).
If during the circulation of the information, some of the
intermediate nodes fails, the transmission will continue to
work without including it in the linear combinations of the
packets If all links are functional in the shot at any time t,
then ρt = n, but failing links may result in a rank-deficient
channel matrix at that time.

In the context of rank deficiency channels, we shall
consider channels that satisfy certain conditions within
an interval of time (window), see Mahmood et al. (2015).
These are called Rank-Deficient Sliding Window Networks,
denoted by CH(S,W ) and have the property that in any
sliding window of length W , the rank of the block diagonal

channel decreases by no more than S, i.e.,
∑t+W−1

i=t ρi ≥
nW−S for each t ≥ 0. We will say that a linear code C over
FqM is defined as feasible for the channel CH(S,W ) if the
encoding and decoding functions for the code are capable
of perfectly recovering every source packet transmitted
over it with delay T , i.e., to achieve the information of
the packet xt received at moment t by performing the
necessary operations with at most the next T received
packets, that is xt, . . . , xt+T−1.

3. PERFORMANCE OF THE CODES

3.1 Discussion

In this subsection we will compare the correction
capabilities of the two proposed codes over a rank-deficient
sliding window channels. First, we will see under which
constrains the cited codes are feasible for the channel
CH(S,W ). Secondly, we will compare their bounds on the
j-th column distances and discuss the capabilities of them.

In Mahmood et al. (2015), a construction for the
MSR convolutional codes is proposed. It is said that these
codes are feasible for a rank-deficiency sliding window
channel CH(S,W ) with delay T ≥ W under the assump-

tion S < dW−1
SR (C), where C is the MSR convolutional code.

In the case in which T < W it is enough to consider
S < dTSR(C). These codes guarantee the recover of the
information under the worst channel conditions for a fixed
delay and rate, i.e., they identify the largest rank deficiency
S for which a code with a given rate is feasible.

On the other hand, we consider the concatenated
codes constructed in Napp et al. (2018). Let C, CO and
CI be the concatenated code, the convolutional code and
the rank-metric code, respectively as described above. The
concatenated codes are also feasible for the rank-deficiency
sliding window channel CH(S,W ) with delay T ′ ≥ W if

S < dT
′

H (CO)drank(CI) where T ′ =
⌊
W−1
nI

⌋
due to the

construction of the code. When T < W it is enough to

consider S < dT
′

H (CO)drank(CI) where T ′ =
⌊

T
nI

⌋
. The

next result, establish which of these two families of codes
have better distance bounds under the same conditions:

Theorem 1. Let CMSR be a MSR convolutional code and
CConc, CO and CI be a concatenated, convolutional and
rank metric codes, respectively. Over a rank-deficiency
sliding window channel CH(S,W ), with fixed rate k/n =
kOkI/nOnI and delay T , then

dj
′

H(CO)drank(CI) < dj−1
SR (CMSR)

where j′ =
⌊
j−1
nI

⌋
with 1 ≤ j ≤ T .

Note that in the theorem above, we compare the
corresponding column distance after receiving the same
amount of shots. Since the bound established for CH(S,W )
cannot be achieved by the concatenated codes, MSR
convolutional codes are the only optimal codes, but huge
finite fields are necessary to ensure their existence. To
build a (n, k, µ) MSR convolutional code, where µ is the
memory of the code, the field required for the construction
presented in Mahmood et al. (2015) is FqM with M =

qn(µ+2)−1. For example, to obtain the codes (3, 1, 2) and
(2, 1, 2) the fields F22048 and F2128 are needed.

This last condition is an issue from the practical
point of view, since the memory required for storage
and usage of these codes are enormous. For this reason,
it makes sense to restrict the size of the fields for the
construction of codes used in networks described as above.
Taking this into account, we have two possibilities: a) to
look for an alternative family of codes which achieves or
improve the bounds of the Rank-Deficient Sliding Window
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Network CH(S,W) over fields of minimum size or b) to find
a construction for MSR codes for smaller fields.

With this in mind, an alternative family of codes for
this sort of channel are the concatenated codes. Despite
the fact that their distance is significant smaller that
the one of MSR codes (as indicated in Theorem 1) it is
important to note that the distribution of the deficiencies
within the window is crucial for recovering the missing
packets. For instance, suppose that in the first t instances
we send x0, . . . , xt and received y0, . . . , yt. In order to
recover x0 at time instant t with the MSR code, we
need to have less than dj−1

SR (CMSR) deficiencies for some
j = 0, 1, . . . , t independently of the distribution of these
deficiencies within the intervals. However, if we use a
concatenated code then depending on the distribution of
the deficiencies within the windows, the inner rank metric
code gives very different erasures patterns to the outer
code.

4. COMPLEXITY

In this section we compare the complexity of the
decoding performance of both, the concatenated codes and
the MSR convolutional codes. In Mahmood et al. (2015),
it is said that the complexity of the decoding method, over
a window of length j−1, for the MSR convolutional codes
is O(((j − 1)k)3) over FqM . This is due to the decoding
method can be reduced to the inversion of a square matrix
of this size.

In order to obtain the complexity of the decoding
performance of the concatenated codes over a window of
length j − 1 we have to observe that it can be divide
into two parts. First, the MRD code corrects the rank
deficiency errors or give an erasure. Second, once all the
packets are processed by the MRD code, the convolutional
code corrects all the erasures in the window by solving a
linear system. The performance of the MRD code over the
window has complexity O((j−1)(kI)

3) over Fqm , while the

second part has O((nId
j
H(CO))

2), since the convolutional

code correct up to djH(CO) packets that contains nI

elements over the field FqmkI . Thus the complexity of the
decoding performance of the concatenated code is O((j −
1)(kI)

3) over Fqm . By considering, M = m in order to
compare comparable complexities, we have O(j(kI)

3) ≤
O((jk)3) which means that, exponentially, the decoding
for the concatenated codes is faster.

5. CONCLUSION

In this paper we have discussed the difference in
the performance of both MSR convolutional codes and
concatenated codes under the same channel. We can say
that the concatenated codes are faster by correcting the
rank deficiencies and they correct a considerable amount
of rank deficiencies with high probability. These codes can
be constructed for fields of a more affordable size than the
required for the existence of MSR codes.

There are some open problems that arise from this
discussion. One of them is to find a construction of rank-
metric convolutional codes with greater correction capa-
bility than the concatenated codes over a same size field

or develop a construction for MSR codes for limited field
size. In this sense, in Alfarano et al. (2020), a construction
for optimal codes for Hamming column distance is pre-
sented. One last open question emerges, the search for new
concatenated codes that improve the bounds presented in
Napp et al. (2018) due to the flexibility of concatenation
technique.
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Abstract: We introduce a new class of hybrid Lur’e dynamical systems where a sector nonlinearity
may affect both the continuous-time evolution and the reset map acting on suitable closed-loop states,
under a time-regularization mechanism ensuring dwell time of solutions. For this class of systems we
characterize Lyapunov-based exponential stability conditions exploiting homogeneity of the closed loop.
In particular, we show that, with quadratic Lyapunov certificates these conditions can be cast as linear
matrix inequalities. We then focus on the control design problem, where both the feedback gains acting
on the continuous evolution and the reset action must be designed, in addition to the sets where such
resets are triggered, expressed by sign-indefinite quadratic forms. For this control design problem we
also show that the synthesis can be performed by solving a set of linear matrix inequalities.
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1. INTRODUCTION

Reset control systems (see, for example, Goebel et al. (2009,
2012), Prieur et al. (2018), Le and Teel (2021) and references
therein) is a specific class of hybrid dynamical systems wherein
continuous motion of the plant-controller dynamics is equipped
with resetting rules inducing instantaneous re initializations of
certain controller states, whenever the so-called reset condi-
tions are satisfied. Beyond the fact that this class of systems
allows to deal with a broad range of applications, as automo-
tive systems, power systems and biological systems, they can
overcome the limitation of classical continuous control law and
achieve desired behavior as for example robustness, perfor-
mance improvement (see, e.g., Hespanha and Morse (1999);
Prieur (2005), Safaei et al. (2010), Aangenent et al. (2010);
Beker et al. (2001); Goebel and Teel (2009); Hespanha et al.
(2003); Prieur and Astolfi (2003); Nešić et al. (2008, 2011),
Prieur et al. (2011, 2013)).

In this paper, a new class of hybrid Lur’e dynamical systems
is introduced, where a sector nonlinearity may affect both the
continuous-time evolution and the reset map acting on suitable
closed-loop states. In other words, we consider reset control
systems with Lur’e non-linearity, consisting in the intercon-
nection between a linear plant and a non-linearity through a
feedback loop. The nonlinearity verifies a cone bounded sec-
tor condition Khalil (2002), Castelan et al. (2008). Lyapunov-
based exponential stability conditions exploiting homogeneity
of the closed loop are proposed by adapting results issued from
Goebel et al. (2012); Nešić et al. (2008); Zaccarian et al. (2011).
Following the ideas presented in Fichera et al. (2016a), Fichera
et al. (2016b), with quadratic Lyapunov certificates these con-
ditions can be cast as linear matrix inequalities (LMIs). We then
focus on the control design problem, where we must design 1)
the state feedback gains acting on the continuous evolution and
the reset action and 2) the shape of the sets where such resets
are triggered, expressed as sign-indefinite quadratic forms. For

this control design problem we also show that the synthesis can
be performed by solving a set of linear matrix inequalities. The
contribution of the current note can be viewed as complemen-
tary to the results developed in Fiacchini et al. (2012) dealing
with quadratic stability problem for hybrid systems with nested
saturations.

The extended abstract is organized as follows: Section 2 intro-
duces the class of hybrid systems under consideration and states
the problems at stake. Section 3 presents theoretical results
dealing with the stability analysis. Section 4 then expands the
stability analysis results in order to handle the control design
problem. Finally, some concluding remarks are given in Sec-
tion 5.

Notation. The notation is standard. The Euclidean norm of a
vector is denoted by | · |. If A is a compact set, the notation
|x|A = min{|x− y| : y ∈ A} indicates the distance of the
vector x from the set A. If A is the origin then |x|A = |x|. For
any s ∈ R, the function dz : R → R is defined by dz(s) = 0
if |s| ≤ 1 and dz(s) = sign(s)(|s| − 1) if |s| ≥ 1. Given a
matrixQ, He(Q) = Q+Q>. Moreover, λmin(Q) (respectively,
λmax(Q)) denotes the minimum (respectively, the maximum)
eigenvalue of Q.

2. PROBLEM STATEMENT

Consider the following hybrid system, including an input non-
linearity φ,ẋ = AFx+BFφ(uF ),

τ̇ = 1− dz

(
τ

ρ

)
(x, τ) ∈ C (1a)

{
x+ = AJx+BJφ(uJ)

τ+ = 0,
(x, τ) ∈ D (1b)

where x ∈ Rn is the physical state, τ ∈ R is a dwell-time
logic (with ρ > 0), and uF ∈ Rm and uJ ∈ Rm are suitable
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control inputs to be designed. The flow and jump sets C and D
are defined as follows:

C := {(x, τ) : x ∈ F or τ ∈ [0, ρ]}
= {(x, τ) : x ∈ F} ∪ {(x, τ) : τ ∈ [0, ρ]} (2)

D := {(x, τ) : x ∈ J and τ ∈ [ρ, 2ρ]}
= {(x, τ) : x ∈ J } ∩ {(x, τ) : τ ∈ [ρ, 2ρ]} (3)

with F and J symmetric cones defined by a symmetric (typi-
cally not sign definite) matrix M = M> ∈ Rn×n as

F := {x ∈ Rn : x>Mx ≤ 0}
J := {x ∈ Rn : x>Mx ≥ 0}. (4)

The nonlinearity φ affecting the system input is a known,
continuous, decentralized cone bounded nonlinearity (see, for
example, Khalil (2002), Castelan et al. (2008)) as stated in the
following assumption.
Assumption 1. The nonlinearity φ : Rm → Rm is a known,
continuous and decentralized function, which verifies the fol-
lowing generic cone bounded sector condition for any diagonal
positive definite matrix S ∈ Rm×m:

φ>(ζ) S (φ(ζ)− Ωζ) ≤ 0 ∀ζ ∈ Rm (5)
Matrix Ω ∈ Rm×m is a positive definite diagonal matrix
defining the sector [0,Ωi,i], where each component φi of φ lies.

In this note, the inputs of the flow and jump maps are selected
as linear static state feedbacks:

uF = KFx and uJ = KJx, (6)
with KF ∈ Rm×n, KJ ∈ Rm×n. Then the closed loop (1)-(6)
can be rewritten asẋ = AFx+BFφ(KFx)

τ̇ = 1− dz

(
τ

ρ

)
,

(x, τ) ∈ C (7a)

{
x+ = AJx+BJφ(KJx)

τ+ = 0,
(x, τ) ∈ D, (7b)

where the flow and jumps sets C and D are defined in equa-
tion (2) and (3), respectively.
Remark 1. Note that in the closed-loop system (7), the two non-
linearities φ(KFx) and φ(KJx) satisfy Assumption 1. There-
fore, the generic relation (5) can be particularized for both
φ(KFx) and φ(KJx) as follows

φ(KFx)> SF (φ(KFx)− ΩFKFx) ≤ 0 ∀x ∈ Rn (8)

φ(KJx)> SJ (φ(KJx)− ΩJKJx) ≤ 0 ∀x ∈ Rn, (9)
which holds for any diagonal positive matrices SF ∈ Rm×m,
SJ ∈ Rm×m and where ΩF ∈ Rm×m and ΩJ ∈ Rm×m are
suitable positive definite diagonal matrices. Matrices ΩF and
ΩJ are supposed to be known.

In this note we address 1) the stability analysis of system (1)-
(6), or equivalently system (7), whenKF areKJ are given, and
2) the design problem where KF are KJ must be designed.

These two complementary problems can be summarized as
follows.
Problem 1. Given the gains KF are KJ , devise conditions to
guarantee that the compact set A defined as

A = {0} × [0, 2ρ] ⊂ Rn × [0, 2ρ] (10)
is globally asymptotically stable for the closed loop (1)-(6)
(equivalently, system (7)).
Problem 2. Design the gains KF are KJ in (4) such that the
compact set A defined as in (10) is globally asymptotically
stable for the closed loop (1)-(6) (equivalently system (7)).

3. STABILITY ANALYSIS RESULTS

In this section, theoretical results addressing Problem 1 are
proposed by exploiting some ingredients provided in Fichera
et al. (2016a), Prieur et al. (2018).

Recall that due to the dwell-time, the solutions (x, τ) to system
(7) may flow outside the flow set as emphasized for example in
Zaccarian et al. (2005),Prieur et al. (2018). Hence, to deal with
the effects of dwell-time on trajectories and in order to allow
for more design flexibility consider the following definitions,

F̃ = {x ∈ Rn : x>M̃x ≤ 0} (11)

F̃ε = {x ∈ Rn : x>M̃x− εx>x ≤ 0} (12)

with M̃ = M̃> ∈ Rn×n and ε > 0 to be designed.

Note that (12) is the ε-inflated version of (11), therefore the
inclusion F̃ ⊂ F̃ε is always satisfied.

Stability conditions to solve Problem 1 are first proposed by
focusing on a generic Lyapunov function, and then they are
specialized to a quadratic Lyapunov function, thus leading
to a convenient formulation involving convex linear matrix
inequalities (LMI).
Theorem 1. Consider system (7) and the sets defined in (11)
and (12). Assume that there exist a continuously differentiable
function V : Rn → R≥0, positive real scalars α1, α2, α3 and a
nonnegative scalar ρ satisfying

α1|x|2 ≤ V (x) ≤ α2|x|2, ∀x ∈ Rn, (13)
〈∇V (x), AFx+BFφF 〉+ α3V (x)

− 2φ>FSF (φF − ΩFKFx) < 0, ∀x ∈ F̃ε \{0} (14)
V (AJx+BJφJ)− exp(α3ρ)V (x)

− 2φ>J SJ(φJ − ΩJKJx) ≤ 0, ∀x ∈ J (15)

x+ ∈ F̃ , ∀x ∈ J (16)

F ⊂ F̃ε (17)

with φF and φJ being shorthands for φ(KFx) and φ(KJx),
respectively. Then there exists ρ̄ > ρ such that, for any ρ ∈
(ρ, ρ̄), the set A := {0} × [0, 2ρ] ⊂ Rn × [0, 2ρ] is globally
asymptotically stable for the hybrid closed-loop system (7).

Proof. The proof is omitted in this extended abstract. However,
the key ingredients of the proof emerge from a careful expan-
sion of the proof of Theorem 5.1 in Prieur et al. (2018) to the
case of system (7) subject to the nonlinearities φ(KFx) and
φ(KJx) satisfying the cone-bounded conditions (8) and (9),
respectively. �

An interesting way to particularize Theorem 1 is to select a
quadratic Lyapunov function V (x) = x>Px, in order to derive
LMI-based conditions. Then, the following result can be stated
in the context of Problem 1.
Proposition 1. Given System (7) and positive scalars α3 > 0,
ρ > 0, assume that there exist matrices P = P> > 0,
M̃ = M̃>, SF , SJ and S̃J diagonal positive definite matrices,
non-negative scalars τS , τR, τ̃C , τ̃F and a positive scalar ε such
that the following inequalities hold,(

He(PAF ) + α3P − τS(M̃ − εI) PBF +K>F ΩFSF
B>F P + SFΩFKF −2SF

)
< 0

(18)
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(
A>J PAJ − exp(α3ρ)P + τRM A>J PBJ +K>J ΩJSJ

B>J PAJ + SJΩJKJ B>J PBJ − 2SJ

)
≤ 0

(19)(
A>J M̃AJ + τ̃CM A>J M̃BJ +K>J ΩJ S̃J

B>J M̃AJ + S̃JΩJKJ B>J M̃BJ − 2S̃J

)
≤ 0 (20)

M̃ − τ̃FM ≤ εI. (21)

Then there exists ρ̄ > ρ such that for any ρ ∈ (ρ, ρ̄) the set
A is globally asymptotically stable for the hybrid closed-loop
system (7).

Proof. We only present a sketch of the proof, which consists
in rewriting the conditions of Theorem 1 fpr the case where
V (x) = x>Px. Indeed, let us consider the case of relation (14),
which reads

2x>P (AFx+BFφF ) + α3x
>Px

−2φ>FSF (φF − ΩFKFx) < 0,∀x ∈ F̃ε \{0}

with φF the shorthands for φ(KFx). We can handle the fact that
the condition has to be satisfied for any x ∈ F̃ε \{0} by using
the S-procedure (see Boyd et al. (1994)) and the definition (12),
which leads to

2x>P (AFx+BFφF ) + α3x
>Px

−2φ>FSF (φF − ΩFKFx)−−τSx>(M̃ − εI)x < 0

with τS ≥ 0. Hence, if relation (18) is verified then the above
inequality and therefore condition (14) are satisfied.

The same reasoning holds for relation (15). In the case of
condition (16), since φJ is involved, one has to consider that
this relation holds for φJ satisfying the cone-bounded condition
(9). This leads to relation (20). �

Remark 2. The inequalities presented in Proposition 1 are not
LMIs in the matrix decision variables P , M̃ , SF , SJ , S̃J and
the scalar decision variables τS , τR, τ̃C , τ̃F , ε due to the product
between certain scalar and matrix decision variables. These
products can be eliminated, thereby transforming the conditions
into authentic LMIs, when multiplying by τS inequalities (20)
and (21), and performing the following change of variables:

M̄ = τSM̃, ε̄ = τSε, τ̄C = τS τ̃C , τ̄F = τS τ̃F , τSS̃J = S̄J .

so that the emerging conditions become linear in the trans-
formed decision variables P , M̄ , SF , SJ , S̄J , τR, τ̄C , τ̄F and
ε̄.

It still is required to fix a priori the two scalars α3 and ρ but we
emphasize that these quantities should be selected small enough
for the construction to be effective and this helps in an iterative
selection.

4. DESIGN RESULTS

In this section we take inspiration from Proposition 1 and
Remark 2, to propose sufficient conditions to solve Problem
2. Recall that the matrices ΩF and ΩJ involved in relations (8)
and (9) are supposed to be known.
Proposition 2. Given System (7) and positive scalars α3 > 0
and ρ > 0, if there exist matrices P = P> > 0, M̄ = M̄>,
K̄F , K̄J , diagonal matrices SF > 0 and SJ > 0, non-negative
scalars τ̄F , τ̄C , τR ∈ R≥0 and positive scalar ε̄ such that the
following inequalities hold,

(
A>FP + PAF + α3P − M̄ + ε̄I PBF + K̄>F

B>F P + K̄F −2SF

)
< 0 (22)(

A>J PAJ − exp(α3ρ)P + τRM A>J PBJ + K̄>J
B>J PAJ + K̄J B>J PBJ − 2SJ

)
≤ 0

(23)(
A>J M̄AJ + τ̄CM A>J M̄BJ + K̄>J
B>J M̄AJ + K̄J B>J M̄BJ − 2SJ

)
≤ 0 (24)

M̄ − τ̄FM ≤ ε̄I, (25)
Then there exists ρ̄ > 0 such that for any ρ ∈ (ρ, ρ̄) the
set A is globally exponentially stable for the hybrid closed-
loop system (7) with the gains KF = S−1F Ω−1F K̄F and KJ =

S−1J Ω−1J K̄J .

Proof. The proof follows the same lines as in the proof of
Proposition 1 by modifying the conditions thanks to the change
of variables suggested in Remark 2. Furthermore, one can also
use the change of variables K̄F = SFΩFKF and K̄J =
SJΩJKJ , allowing to recover the gains KF and KJ because
matrices SF , SJ , ΩF and ΩJ are all diagonal positive definite
and therefore nonsingular. �

5. CONCLUSION

This note introduced a new class of hybrid Lur’e dynami-
cal systems where a sector nonlinearity may affect both the
continuous-time evolution and the reset map acting on suit-
able closed-loop states, under a time-regularization mechanism
ensuring dwell time of solutions. For this class of systems,
both the stability analysis and the control design problems
have been addressed by exploiting Lyapunov-based stability
conditions and homogeneity of the closed loop. By selecting
a quadratic Lyapunov certificate these conditions can be cast as
linear matrix inequalities. In the control design problem, both
the feedback gains acting on the continuous evolution and the
reset action can be designed. For this control design problem
the synthesis can also be performed by solving a set of linear
matrix inequalities.

The studies proposed are preliminary but pave the way for
future directions of research including addressing regional sta-
bility properties and taking into account nonlinearities affecting
also the shape of the flow and jump sets. Another interesting
problem could be to study how the conditions change if the flow
and jump maps are subject to different input-nonlinearities,
with independent sector bounds.
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Abstract: For a symmetric Lie algebra g = k⊕p we consider a class of bilinear or more general
control-affine systems on p defined by a drift vector field X and control vector fields adki

which
gain fast and full control on the adjoint orbits of the corresponding compact group K. We show
that under quite general assumptions on X such a control system is essentially equivalent to a
natural reduced system on a maximal Abelian subspace a ⊆ p, and likewise to related differential
inclusions defined on a.

Keywords: Control-affine Systems; Differential Inclusions; Symmetric Lie algebras; Adjoint
Orbits

1. INTRODUCTION

We consider control systems that admit fast controllability
on certain degrees of freedom, represented by a Lie group
action. The goal is to define an associated (reduced) con-
trol system on the remaining degrees of freedom, and to
show that the two systems are essentially equivalent (in a
sense which will be specified later). Of course, this idea is
not new and has been applied, e.g., in a seminal work by
[Khaneja et al. (2001)] to compute time-optimal controls
in certain low-dimensional closed quantum systems. The
success of their approach is based on the symmetric space
structure of the resulting quotient manifold, i.e. of the
manifold which results from factoring out the orbits of the
fast controllable dynamics. This method was further ex-
ploited by Khaneja and Yuan to characterise the reachable
sets of certain bilinear systems, cf. [Yuan et al. (2018)].

In contrast, our subsequent framework is motivated by
open quantum dynamics, where for certain experimental
settings with switchable noise (i.e. fast controllable cou-
pling to an environment [Chen et al. (2014); Wong et al.
(2019)], described in [Bergholm et al. (2016)]) one can as-
sume fast and full control on the unitary orbits in the state
space of all density matrices. The drift vector field then
usually describes relaxation or, more generally, interaction
of the system with some environment. In [Dirr et al. (2019)]
a simplified model for such systems was studied, where the
state space could be restricted to diagonal density matrices
(due to some invariance condition on the drift vector field)
and unitary orbits therefore collapsed to a discrete Weyl

⋆ The project was supported i.a. by Excellence Network of Bavaria
under ExQM and is part of Munich Quantum Valley of the Bavarian
State Government with funds from Hightech Agenda Bayern Plus.

group action (of permutation matrices). However, without
the said invariance condition one is led to factor out the
full unitary dynamics. This approach has been pursued in
[Rooney et al. (2018)] yet under an additional boundedness
condition, which is superfluous as we will show in Thm. 2.

Our general setting will be as follows: Let g = k ⊕ p be
a semisimple, orthogonal, symmetric Lie algebra defined
by its Cartan-like decomposition. This means that g is a
semisimple Lie algebra, where k and p are the +1 and −1
eigenspaces of some involutive Lie algebra automorphism
θ of g. We will set K := Intg(k), the subgroup, generated
by k, of the group of inner automorpisms of g. Then
K is a compact Lie group and we can endow p with a
K-invariant inner product. By a we denote a choice of
maximal Abelian subspace of p, and by W = N(a)/Z(a)
the Weyl group acting on a, where N(a) and Z(a) denote
the normalizer and centralizer of a in K. The Weyl group
is a finite reflection group, and it admits a (closed) Weyl
chamber w ⊂ a. One can show that w ∼= a/W ∼= p/K
are canonically isometric. For further details we refer to,
e.g., [Helgason (1978)].

Example 1. (Eigenvalue decomposition). Consider the sym-
metric Lie algebra sl(n,C) = su(n) ⊕ herm0(n,C), where
herm0(n,C) denotes the traceless Hermitian matrices. The
corresponding Lie algebra automorphism is θ(x) := −x∗.
Then a convenient choice of a maximal Abelian subspace
of herm0(n,C) is the set diag0(R) of real traceless diagonal
matrices. The Weyl group is isomorphic to the symmetric
group Sn acting by permutation of the diagonal entries of
the elements of diag0(R), and a natural choice of a Weyl
chamber is given by the real traceless diagonal matrices
with diagonal elements in weakly decreasing order.
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Example 2. Consider the symmetric Lie algebra su(n) =
so(n,R)⊕ isym0(n,R) corresponding to the compact Rie-
mannian symmetric space SU(n)/SO(n). Here sym0(n,R)
denotes the traceless real symmetric matrices. This sym-
metric Lie algebra is isomorphic to the symmetric Lie
algebra sl(n,R) = so(n,R)⊕sym0(n,R), which now corre-
sponds to the non-compact Riemannian symmetric space
SL(n,R)/SO(n). Such a duality holds for all symmetric Lie
algebras. Note that the latter example corresponds to the
orthogonal diagonalization of (traceless) real symmetric
matrices.

In fact many common matrix diagonalizations, e.g. the
singular value decomposition, and also some uncommon
ones, can be rephrased in the setting of symmetric Lie
algebras [Kleinsteuber (2006)].

After these preliminaries we can define the class of control-
affine systems on p that we want to study in the sequel.
Given a vector field X ∈ X(p), and a set of control
directions k1, . . . , km ∈ k satisfying ⟨k1, . . . , km⟩Lie = k,
we consider the control system

ṗ(t) = X(p(t)) +
m∑
i=1

ui(t) adki
(p(t)), p(0) = p0 ∈ p (A)

where adx denotes the adjoint operator of x, that is,
adx(y) := [x, y]. The control functions ui : [0, T ] → R are
required to be locally integrable. A solution p : [0, T ] → p
is an absolutely continuous function satisfying (A) almost
everywhere. Obviously (A) reduces to a bilinear system
[Elliott (2009)] if X is linear.

Since the control directions ki generate the entire Lie
algebra k, and since we do not impose any bounds (neither
of L∞ nor of L1 type) on the control functions, we can
move within the K-orbits of p from any starting point
to any desired target point arbitrarily quickly [Jurdjevic
and Sussmann (1972)]. We say that we have fast and full
control on the Lie group K and consequently on any K-
orbit of p. In particular we can move into the maximal
Abelian subspace a at any time. This motivates us to
define a reduced control system on a. To this end we first
introduce some useful concepts.

For every K ∈ K, we define the induced vector field

XK := Πa ◦Ad⋆K(X) ∈ X(a),

where Πa is the orthogonal projection in p on a. By AdK
we denote the adjoint action of K on p and by Ad⋆K its
pullback action, i.e.,

Ad⋆K(X) = Ad−1
K ◦X ◦AdK .

If X is linear, then so are all XK . Furthermore we define
the set of achievable derivatives at a ∈ a by

Λ(a) = {XK(a) : K ∈ K} ⊂ Taa ∼= a.

Since K is compact, Λ(a) is also compact for all a. We can
interpret Λ : a → P(a) as a set valued function. It turns
out that if X is Lipschitz, e.g. if it is linear, then the set
valued function Λ is also Lipschitz. This means that for all
x, y ∈ a,

Λ(x) ⊆ Λ(y) + L∥x− y∥B1

for some (global) Lipschitz constant L > 0 and where B1

denotes the closed unit ball in a.

Now we can define the reduced control system by

ȧ(t) = XU(t)(a(t)), a(0) = a0 ∈ a, (Q)

where the control function U : [0, T ] → K has to be
measurable 1 . Again, a solution a : [0, T ] → a is absolutely
continuous and satisfies (Q) almost everywhere. We can
also define a corresponding differential inclusion

ȧ(t) ∈ Λ(a(t)), a(0) = a0 ∈ a, (I)

where a solution a : [0, T ] → a needs to be absolutely
continuous and satisfy (I) almost everywhere. In fact, if X
is continuous, (Q) and (I) are equivalent, i.e. they have
the same solutions, see Thm. 2.3 in [Smirnov (2002)]. Often
it will be convenient to consider a relaxed version of the
differential inclusion given by

ȧ(t) ∈ conv(Λ(a(t))), a(0) = a0 ∈ a, (R)

where conv denotes the convex hull. This will slightly
enlarge the set of solutions, however, if X is Lipschitz,
every solution of (R) can still be approximated uniformly
(on compact time intervals) by solutions to (I), see Ch. 2.4,
Thm. 2 in [Aubin et al. (1984)].

If X is Lipschitz, then Λ is Lipschitz with compact values,
which implies some convenient properties of the relaxed
control system (R), see Ch. 4 in [Smirnov (2002)].

Proposition 1. Let X be Lipschitz and let a0 ∈ a. It holds
that:

(i) The set S[0,T ](a0) of solutions to (R) is path con-

nected in the AC-topology 2 ;
(ii) If Λ is bounded, then S[0,T ](a0) is compact in the

standard C-topology of uniform convergence;
(iii) If a ∈ S[0,T ](a0) is a solution to (R) with a(T ) ∈

∂reach[0,T ](a0), then a(t) ∈ ∂reach[0,t](a0) for all
t ∈ [0, T ];

(iv) If Λ is bounded, then there exist time-optimal so-
lutions to (R) starting in a given compact set and
ending in a given closed set, if any such solution
exists;

(v) If X is Lipschitz with global Lipschitz constant L,
then the map S[0,T ] : a → AC([0, T ], a) is Lipschitz

with global Lipschitz constant 1 + TLeTL.

2. MAIN RESULTS

Our main results describe the equivalence of the control-
affine system (A) on p and the reduced control system (Q)
on a. Detailed proofs will be presented in the MTNS-talk
and published in a subsequent journal paper. Here – due
to page constraints – we focus on a sketch of the key ideas.

First we show a local equivalence result which illustrates
why the definition of the reduced control system is reason-
able. For this we need the following fact: if p : [0, T ] → p is
differentiable at t ∈ [0, T ], then there is some a : [0, T ] → a
differentiable at t satisfying π ◦p = π ◦a. Furthermore this
derivative is well defined up to a Weyl group action on the
pair (a(t), ȧ(t)). 3 Hence we can define the set

1 Due to the compactness of K, the control function U is automat-
ically bounded, and hence in L∞.
2 By AC([0, T ], a) we denote the Banach space of absolutely con-
tinuous functions a : [0, T ] → a with the norm ∥a∥AC = |a(0)| +∫ T

0
|ȧ(t)|dt.

3 In the case of unitary diagonalization of Hermitian matrices (Ex-
ample 1), this is a well-known result, see Ch. I.§5, Thm. 1 in [Rellich
(1969)]. We extended the result to all semisimple, orthogonal, sym-
metric Lie algebras.
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Λ̃(a) = {ḃ(t) : b : [0, T ] → a differentiable at t, b(t) = a,

π ◦ b = π ◦ p, and p : [0, T ] → p solves (A)},
which is the set of all possible derivatives in a of solutions
to (A). Recall that Ka and Wa denote the stabilizers of a
in K and W respectively.

Proposition 2. (Local equivalence). It holds that

Λ̃(a) ⊆ Λ(a) =
⋃

v∈Λ̃(a)

conv(Wav) ⊆ conv(Λ̃(a)),

and in particular,

conv(Λ(a)) = conv(Λ̃(a)).

Proof. [Sketch of proof] The first inclusion follows from a
computation as in the proof of the following theorem. For
the first equality a computation shows that (we replace a
by b for clarity)

Λ(b) =
⋃

[K]∈K/Kb

{(Πa ◦Ad−1

K̃
◦Ad⋆K(X))(b) : K̃ ∈ Kb}

=
⋃

[K]∈K/Kb

conv(Wb · (πb ◦Πb ◦Ad⋆K(X))(b)),

where the second transformation uses Kostant’s convexity
theorem applied to the symmetric Lie subalgebra of g
given by the commutant of b. Here Πb denotes the or-
thogonal projection onto the commutant of b in p, and
πb : pb → pb/Kb denotes the quotient map. The rest is
straightforward.

Now we will prove a global equivalence result. The first
direction, projecting from p to a is the easier one. In the
following we denote by π : p → w ∼= p/K the quotient
map, where w is some choice of Weyl chamber.

Theorem 1. Let p : [0, T ] → p be a solution to the control-
affine system (A). Then a = π ◦ p is a solution to the
reduced control system (Q).

Proof. [Sketch of proof] The quotient map π is non-
expansive, and hence a is absolutely continuous. On the
subset J ⊆ [0, T ] where both p and a are differentiable, it
holds that there is someK : J → K such that a = Ad−1

K (p)

and ȧ = Ad−1
K ◦Πp(ṗ). Then a computation shows that

ȧ = XK(a) on J , and hence (as J clearly has full measure)
a satisfies the differential inclusion (I) almost everywhere.

More delicate is the other direction, lifting from a to p.

Theorem 2. Assume that X is Lipschitz and real analytic.
Let a : [0, T ] → a be a solution to the reduced control
system (Q) with control function U : [0, T ] → K. Then,
for every ε > 0 there exists a solution p : [0, T ] → p to the
control-affine system (A) satisfying ∥Adk(a)−p∥∞ ≤ ε. In
particular ∥π ◦ p− π ◦ a∥∞ ≤ ε.

Proof. [Sketch of proof] Using standard L1-approximation
results we may assume that U is real analytic and that a(0)
is regular 4 , see Sec. 2.8 Thm. 1 in [Sontag (1998)]. Hence a
is real analytic and regular with finitely many exceptions.
Now we define an ideal lift q of a by q = AdU (a). Moreover
we define an approximating solution p by ṗ = (adh +X)p

4 Recall that a ∈ a is called regular if it has trivial stabilizer in W ,
or equivalently, if it lies in the interior of a Weyl chamber.

and p(0) = q(0), where h contains the derivative of U as
well as the part of X(q) tangential to the K orbit, outside
of an ε region around the singular points of a. By definition
h is bounded and hence p is well-defined. Then one can use
Gronwall’s inequality to bound the difference p−q and one
finds that p approximates q uniformly as ε → 0. Finally, by
standard techniques from control theory, cf. [Liu (1997)],
one can uniformly approximate p using solutions to (A).

The problems occur at the points where the stabilizers in
K or W respectively are not minimal. When projecting,
this generally reduces the regularity. To deal with this we
generalized several known results for Hermitian matrices
to the setting of semisimple, orthogonal, symmetric Lie
algebras. In particular, although the quotient map π :
p → w is not differentiable at the singular points, it still
preserves absolute continuity, and at the points where the
projected path is differentiable, we can give an explicit
expression for the derivative. When lifting, the control
functions might need to diverge at these points. Intuitively
this happens because the orbits of the corresponding
stabilizers become arbitrarily small, and so the control
in these directions becomes increasingly ineffective. In
[Rooney et al. (2018)] the control system on the eigenvalue
simplex was defined with the additional condition that
such a divergence was not allowed to occur. We showed
that this assumption is unnecessary, by approximating the
solutions in a neighborhood of the singular points.

Example 3. To see that the approximation cannot be
avoided in general, consider a system where X(0) ̸= 0.
Then p ≡ 0 is not a solution of (A), but a ≡ 0 is a solution
of (Q). Indeed, by Kostant’s convexity theorem [Kostant
(1973)], and assuming that X(0) ∈ a, we see that

Λ(0) = {Πa ◦AdK(X(0)) : K ∈ K} = conv(W(X(0)))

and hence Λ(0) contains the convex combination
1

|W|
∑
w∈W

w ·X(0),

which equals 0, the unique fixed point of a Weyl group
action. Thus a ≡ 0 is a solution to (Q).

Finally, the above findings suggest to formalize the notion
of equivalence 5 of control systems as follows:

Definition 1. Let X and Y be two (state) spaces on
which are defined two control systems whose solutions are
absolutely continuous functions. Let π : X → Y be a (at
least Lipschitz-continuous) surjection. We say that the two
control systems are equivalent if

(i) whenever x : [0, T ] → X is a solution on X, then
π ◦ x is a solution on Y ;

(ii) whenever y : [0, T ] → Y is a solution on Y , there exist
solutions xn : [0, T ] → X such that π ◦ xn uniformly
approximates y as n → ∞.

Then the equivalence between the control-affine and the
reduced system follows immediately from Theorem 1 and
Theorem 2. Moreover, their proofs reveal the following
equivalence between their reachable sets:

Theorem 3. Assume that X is Lipschitz and real analytic.
Then for each T > 0 and p ∈ p one has
5 Note that this definition does not yield an equivalence relation.
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reachT (p) ⊆ AdK(reachT (π(p))) ⊆ reachT (p),

where the reachable sets refer the the control-affine sys-
tem (A) on p and the relaxed control system (R) on a.

3. CONCLUSION

We have shown that for a class of control systems defined
on symmetric Lie algebras and with fast control on the
corresponding compact Lie group (examples of which
appear naturally in quantum control theory), one can
define a reduced control system whose state space has
a much lower dimension. The equivalence theorem shows
that this reduction does not incur any loss of information.
Hence this method yields a new perspective on these
control systems, and in some cases allows to visualize
properties of the system due to the reduction in dimension.
Furthermore the new control system can be represented
by a differential inclusion with nice properties, and thus
allows for many new methods to be applied to the system.
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Abstract: Gas transport in one-dimensional pipe networks can be described as an abstract
dissipative Hamiltonian system, for which quantitative stability bounds can be derived by
means of relative energy estimates for subsonic flow. This allows to establish convergence to the
parabolic limit problem in the practically relevant high friction regime. The stability estimates
carry over almost verbatim to a mixed finite element approximations with an implicit Euler
time discretization, leading to order optimal convergence rates that are uniform the high friction
limit. All results are proven in detail for the flow on a single pipe, but by the port-Hamiltonian
formalism, they naturally extend to pipe networks.

Keywords: port-Hamiltonian systems, relative energy estimates, asymptotic preserving schemes

1. INTRODUCTION

We consider dynamical systems modelling the transport
of gas in long pipes and pipe networks. On each pipe,
identified with the interval (0, ℓ), the flow is modelled by
the barotropic Euler equations which after transformation
and rescaling are given by

a∂τρ+ ∂x(aρw) = 0, (1)

ε2∂τw + ∂x
(ε2
2
w2 + P ′(ρ)

)
= −γ|w|w. (2)

Here a is the cross-sectional area of the pipe, ρ the gas
density, τ , w and γ the rescaled time, velocity and friction
coefficient, P (ρ) the pressure potential, and ε a scaling
parameter, proportional to the Mach number.
Of particular interest for the operation of gas transporta-
tion networks is the low-Mach, respectively, high friction
limit ε → 0, which describes to the practically relevant
setting of long length and time scales; see Brouwer et al.
(2011) for details. In this case, one can expect smooth
solutions bounded away from vacuum, which is important
in practice and therefore assumed in the following.
By formally setting ε = 0 in the system (1)–(2), and elimi-
nating the velocity w via (2), one obtains a doubly nonlin-
ear parabolic model for gas transport which is widely used
in practice and which has also been studied intensively in
the mathematical literature. Existence of weak solutions,
uniform bounds, and converging discretization methods

⋆ Supported by DFG via Grant TRR 154, projects C04 and C05.

have been established for this models; see e.g. Bamberger
et al. (1979); Schöbel-Kröhn (2020).

2. ABSTRACT HAMILTONIAN FORMULATION.

The functions ρ, w in (1)–(2) are the state variables of the
system, and we define corresponding co-state variables by

h := ε2

2 w
2 + P ′(ρ), m := aρw, (3)

which have the physical interpretation of the total spe-
cific enthalpy and mass flux, respectively. These auxiliary
functions are linked via ah = δH

δρ and ε2m = δH
δw to the

variational derivatives of the associated energy functional

H(ρ,w) :=

∫ ℓ

0

a
(ε2
2
ρw2 + P (ρ)

)
dx. (4)

Multiplying (1)–(2) with suitable test functions, integrat-
ing over (0, ℓ), and applying integration-by-parts in the
second equation leads to

(a∂τρ, q) + (∂xm, q) = 0, (5)
(ε2∂τw, r)− (h, ∂xr) = −(γ|w|w, r)− hr

∣∣ℓ
0
, (6)

which hold for all smooth test functions q and v, and for all
points in time. We use (u, v) =

∫ ℓ
0
uv dx for abbreviation.

By construction, any smooth solution of (1)–(2) satisfies
these variational identities.
The system (5)–(6) can further be written as an abstract
dissipative Hamiltonian system of the form

C∂τu+
(
J +R(u)

)
z(u) = B∂z(u), (7)

with u = (ρ,w) and z(u) = C−1H′(u) = (h,m) denoting
the state and co-state variables, and with appropriate
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operators C, J , R, B∂ . Note that C is positive definite,
J skew-symmetric, and R(u) positive. From the abstract
form of the problem, we immediately deduce the following
energy identity or inequality for smooth solutions of (7)

d

dτ
H(u) = ⟨∂τu,H′(u)⟩ (8)

= −⟨R(u)z(u), z(u)⟩+ ⟨B∂z(u), z(u)⟩
where ⟨·, ·⟩ denotes the duality product. This shows that
the change in the total energy of the system over time is
caused only by dissipation due to friction at pipe walls and
by flux over the boundary.

3. ASYMPTOTIC STABILITY

In the following, we further investigate the dependence of
solutions to (1)–(2) on the scaling parameter. To do so, we
use the concept of relative energy, which is defined by

H(u|û) = H(u)−H(û)− ⟨H′(û),u− û⟩. (9)
For appropriately bounded subsonic states u and û, the
relative energy introduces a distance measure which is
equivalent to an ε-weighted L2-norm; see Dafermos (2005);
Egger and Giesselmann (2020) for details.
Now let u = (ρ,w), û = (ρ̂, ŵ) be solutions of (1)–(2)
for different scaling parameters ε, ε̂. Further assume that
the pressure potential P (ρ) is smooth and strictly convex,
that the flow subsonic, and that the solutions are uniformly
bounded and sufficiently smooth. Then we can show that

∥ρ(τ)− ρ̂(τ)∥2L2(0,ℓ) + ε2∥w(τ)− ŵ(τ)∥2L2(0,ℓ) (10)

+

∫ τ

0

∥w(s)− ŵ(s)∥3L3(0,ℓ) ≤ Cecτ |ε2 − ε̂2|

with constants c, C only depending on bounds for the
solutions and parameters; see Egger and Giesselmann
(2020) for the details. Let us note that this result holds
in particular for ε̂ = 0, and thus yields asymptotic
convergence towards the parabolic limit problem.

4. ASYMPTOTIC PRESERVING DISCRETIZATION

For discretization of the variational identities (5)–(6),
we use a mixed finite element method in space together
with an implicit Euler method in time. Then ρnh and
mn
h denote the piecewise constant resp. piecewise linear

approximations for ρ and m, while wh = w(ρh,mh) and
hh = h(ρh,mh) are defined explicitly as functions of these
functions. This amounts to a generalization of standard
approximation schemes for related linear wave propagation
problems Joly (2003). By formally setting ε = 0, we also
obtain a viable numerical method for the parabolic limit
problem, i.e., the scheme is asymptotic preserving.
Since the abstract Hamiltonian structure (7) of the prob-
lem is inherited by this variational discretization approach,
also the stability analysis via relative energy estimates
transfers directly. This allows us to prove error estimates

∥ρ(τn)− ρnh∥2L2(0,ℓ) + ε2∥m(τn)−mn
h∥2L2(0,ℓ) (11)

+
n∑
k=1

∆τ∥m(τk)−mk
h∥3L3(0,ℓ) ≤ C(∆τ2 + h2)

with a uniform constant C being independent of ε; see
Egger et al. (2021) for details. Let us emphasize that the

error estimate remains valid in the asymptotic limit ε = 0
and thus also covers the parabolic limit problem. Further
note that similar arguments were also employed for the
analysis of numerical methods for the compresible Navier-
Stokes equations; see Feireisl et al. (2018).

5. EXTENSION TO NETWORKS

Based on the variational framework employed in our analy-
sis, all results presented for a single pipe can be generalized
quite naturally to pipe networks, which are described by
finite, directed and connected graphs. On every edge of
the graph, representing a pipe of the network, the equa-
tions (1)–(2) are assumed to hold. Additional coupling
conditions now have to be imposed in order to guarantee
conservation of mass and energy across pipe junctions; see
Reigstad (2015) for details. The weak formulation of this
problem again leads to a system of the abstract form (7),
such that all stability and convergence results derived for a
single pipe carry over to the network almost immediately.
Also the numerical scheme as well as its stability and
convergence analysis via relative energy estimates hold
almost verbatim.
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∗∗Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des
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Abstract: We present and develop tools to analyze stability properties of discrete-time switched
linear systems driven by shuffled switching signals. A switching signal is said to be shuffled if all
modes of the system are activated infinitely often. We establish a notion of joint spectral radius
related to these systems: the shuffled joint spectral radius (SJSR) which intuitively measures
the impact of shuffling on the decay rate of the system’s state. We show how this quantity
relates to stability properties of such systems. Specifically, from the SJSR, we can build a lower
bound on the minimal shuffling rate in order to stabilize an unstable system. Then, we present
several methods to approximate the SJSR, mainly by computing lower and upper bounds using
Lyapunov methods and some automata theoretic techniques.

Keywords: Switched Systems, Lyapunov Functions, Exponential Stability, Formal Languages
and Automata.

1 INTRODUCTION

Switched systems are dynamical systems with several
modes of operations where the active mode is determined
by a switching signal. Early works focus on proving sta-
bility of switched systems driven by arbitrary switching
signals or by switching signals with dwell-time conditions
[Liberzon (2003); Sun (2006); Lin and Antsaklis (2009)].
More recent works have considered systems with con-
strained switching signals where the switching signals are
generated by labeled graphs [Lee and Dullerud (2007);
Dai (2012); Athanasopoulos and Lazar (2014); Philippe
et al. (2016); Pepe (2018)]. Shuffled switching signals is
also a class of constrained switching signals that has been
considered in the literature [Gurvits (1995); Wang et al.
(2017); Girard and Mason (2019)]. A switching signal is
said to be shuffled if all the modes of the switched systems
are activated infinitely often. In this paper, we focus on the
discrete-time switched linear systems driven by shuffled
switching signals.

It is well known that the question of stability of discrete-
time switched systems with arbitrary switching can be
answered efficiently with the notion of the joint spectral ra-
dius (JSR) (see Jungers (2009) and the references therein).
Intuitively the JSR represents the maximal asymptotic
growth rate of products of matrices taken in a set. Com-
puting the JSR is not an easy task but several techniques
exist to approximate it. With a similar approach, it is
possible to define a joint spectral radius related to the

? This work was supported in part by the Agence Nationale de la
Recherche (ANR) under Grant HANDY ANR-18-CE40- 0010.

shuffled switched systems: the shuffled joint spectral radius
(SJSR).

In this talk, we will present the notion of shuffled switched
systems, we will also introduce the SJSR and investigate
its properties. Then we will relate this quantity with
the stability of such systems and finally we will describe
numerical techniques for the SJSR approximation. Also,
we mention that the proofs of theoretical results and
numerical examples can be found in the preprint [Aazan
et al. (2021)].

2 SHUFFLED JOINT SPECTRAL RADIUS

In this section, we present the concept of shuffled switched
systems, then we introduce the notion of the ρ-SJSR, also
we state a theorem that relates this quantity with the
shuffled switched systems trajectories. Finally we present
a resulting corollary that relates the system stabilizability
with the ρ-SJSR.

2.1 Definition

We consider a discrete-time switched linear system de-
scribed by the following equation

x(t+ 1) = Aθ(t)x(t), (1)

where t ∈ N, x(t) ∈ Rn is the state and θ : N → I
is the switching signal belonging to a particular class of
arbitrary switching signals: the shuffled switching signals.
I = {1, · · · ,m}, with m ≥ 2 is the finite set of modes and
A = {Ai ∈ Rn×n|i ∈ I} is a finite set of matrices indexed
by the modes. For a switching signal θ, let Aθ,0 = In, and
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Aθ,T =
T−1∏
t=0

Aθ(t) = Aθ(T−1) · · ·Aθ(0), ∀T ≥ 1.

Given an initial state x0 ∈ Rn, the trajectory defined
by (1) with x(0) = x0 is denoted x(., x0, θ), it satisfies
for all t ∈ N, x(t, x0, θ) = Aθ,tx0.

Formally, the shuffled switching signal is defined as in
[Girard and Mason (2019)]:

Definition 1. A switching signal θ : N→ I is shuffled if

∀i ∈ I,∀T ∈ N,∃t ≥ T : θ(t) = i.

Following the previous definition, it is natural to define the
following quantities related to a shuffled switching signal
θ:

• The sequence of shuffling instants (τθk )k∈N is defined
by τθ0 = 0 and for all k ∈ N,

τθk+1 = min

{
t > τθk

∣∣∣∣ ∀i ∈ I,∃s ∈ N :
τθk ≤ s < t and θ(s) = i

}
.

• The shuffling index κθ : N→ N is given by

κθ(t) = max{k ∈ N| τθk ≤ t}.
• The shuffling rate γθ is defined as

γθ = lim inf
t→+∞

κθ(t)

t
.

Let Ss(I) be the set of all shuffled switching signals taking
values in I.

Now we are in a good position to define the ρ-SJSR. Given
a finite set of matrices A ⊆ Rn×n, let ρ(A) be its joint
spectral radius (JSR), we recall that the JSR of a set of
matrices A ⊆ Rn×n is defined as following:

ρ(A) = lim
k→+∞

sup

∥∥∥
k∏
j=1

Aj

∥∥∥1/k
∣∣∣∣∣∣ Aj ∈ A,
j = 1, . . . , k


 .

We define the ρ-SJSR as following:

Definition 2. For all ρ > ρ(A), the Shuffled Joint Spectral
Radius relative to (A, ρ) (ρ-SJSR for short) is defined as

λ(A, ρ) = lim sup
k→+∞

 sup
θ∈Ss(I)

(∥∥Aθ,τθ
k

∥∥
ρτ

θ
k

)1/k
 . (2)

It is useful to say that the limsup in the above definition
can be replaced by a simple limit. Due to the norm
equivalence, one can replace the norm in (2) by any
submultiplicative matrix norm.

2.2 Shuffled switched systems and ρ-SJSR

Now, when λ(A, ρ) > 0, we bring out the relation between
the system’s trajectories and the ρ-SJSR. Then, we will
derive a sufficient condition for stabilization based on
the minimal shuffling rate and the ρ-SJSR. The following
theorem clarifies the relationship between the ρ-SJSR and
the behavior of the trajectories of (1).

Theorem 1. For all ρ > ρ(A), for all λ ∈ (λ(A, ρ), 1], there
exists C ≥ 1 such that

‖x(t, x0, θ)‖ ≤Cρtλκ
θ(t)‖x0‖,

∀θ ∈ Ss(I), ∀x0 ∈ Rn, ∀t ∈ N. (3)

Conversely, if there exists C ≥ 1, ρ ≥ 0 and λ ∈ [0, 1] such
that (3) holds, then either ρ > ρ(A) and λ ≥ λ(A, ρ), or
ρ = ρ(A) and λ ≥ sup

ρ′>ρ(A)

λ(A, ρ′).

A remarkable result from the previous theorem is a suf-
ficient condition for stabilization based on the minimal
shuffling rate.

Corollary 1. Assume λ(A, ρ) > 0 for every ρ > ρ(A).
Let θ ∈ Ss(I), if there exists ρ > ρ(A) such that γθ >

− ln(ρ)
ln(λ(A,ρ)) , then

lim
t→+∞

‖x(t, x0, θ)‖ = 0, ∀x0 ∈ Rn. (4)

The proof of this corollary follows from the previous
theorem and from the shuffling rate definition.

3 APPROXIMATION OF THE ρ-SJSR

We have seen in the previous section that the ρ-SJSR
plays an important role in the stability analysis of shuffled
switched systems. However, like the JSR, this quantity is
difficult to calculate. In this section, we will consider the
problem of approximating the ρ-SJSR. In the following,
we will give an explicit expression for a lower bound based
on the JSR of a set constructed from A, we will show
that this lower bound is asymptotically tight, moreover an
exact expression for the ρ-SJSR will be given under certain
conditions. Next, an approach to find upper bounds will be
given based on multiple Lyapunov functions and automata
theoretic techniques.

3.1 Lower bounds computation

Let NI be the set of products of matrices where all modes
in I appear exactly once, formally:

NI =

{
m∏
k=1

Ajk

∣∣∣∣ j1, . . . , jm ∈ I,
∀i ∈ I,∃k ∈ {1, . . . ,m}, jk = i

}
.

The following theorem gives an explicit expression of a
lower bound for the ρ-SJSR based on the JSR of NI . Also,
it shows that this lower bound is asymptotically tight,
moreover, under certain conditions, it reveals an explicit
expression of the ρ-SJSR.

Theorem 2. The following results hold true.

(i) For all ρ > ρ(A),

λ(A, ρ) ≥ ρ(NI)

ρm
. (5)

(ii) We have the asymptotic estimate

lim
ρ→+∞

ρmλ(A, ρ) = ρ(NI). (6)

(iii) If there exists a norm ‖ · ‖∗ that is extremal 1 for NI ,
then there exists R ≥ ρ(A) such that for all ρ ≥ R,

λ(A, ρ) =
ρ(NI)

ρm
. (7)

Remark: If A consists of invertible matrices only, an
explicit expression of R can be given.

In the next section, we give a method for computing upper
bounds using Lyapunov theory.
1 An induced norm ‖.‖∗ is said to be extremal for a set of matrices
A, if it satisfies ρ(A) = max

A∈A
‖A‖∗.
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3.2 Upper bounds computation

This section details a method for computing upper bounds
on the JSR and the ρ-SJSR.

Theorem 3. If there exist V : (2I \ {I}) × Rn → R+
0 ,

α1, α2, ρ > 0 and λ ∈ [0, 1] such that the following
inequalities hold true for every x ∈ Rn

α1‖x‖2 ≤ V (J, x) ≤ α2‖x‖2, ∀J ( I (8)

V (J ∪ {i}, Aix) ≤ ρ2V (J, x), if J ∪ {i} 6= I (9)

V (∅, Aix) ≤ ρ2λ2V (J, x), if J ∪ {i} = I (10)

then the bound (3) holds. Conversely, if the matrices Ai are
invertible, for all i ∈ I and the bound (3) holds for some
ρ > 0, λ ∈ [0, 1] and C ≥ 1, then there exists a function
V : (2I \ {I}) × Rn → R+

0 such that the inequalities (8),
(9) and (10) are satisfied.

The proof of the direct result relies on a finite state
automaton whose states corresponds to subsets of I,
where each time the switching signal shuffles, there will
be a transition to the automaton’s initial state which
corresponds to the empty set, therefore, based on the
automaton, it is not hard to construct the conditions of
the theorem. The proof of the converse result relies on a
multiple Lyapunov function (each corresponds to a state)
which can be seen as the supremum of trajectories norm
that lead from the corresponding state to a specific state.

By combining the result of the previous theorem with
Theorem 1, one can easily compute upper bounds on the
ρ-SJSR and the JSR using some LMIs.

4 CONCLUSION

In this work, we have defined the ρ-SJSR, a special
kind of JSR related to shuffled switched systems. We
successfully related this notion to the stabilization of
such systems. Also, we provided some theoretical tools for
approximation using automata theoretic techniques and
Lyapunov functions. Some interesting numerical examples
can be found in [Aazan et al. (2021)] and will be presented
in the talk.

The current work opens several research directions for the
future. First, the development of numerical and theoretic
techniques to compute tighter bounds on the ρ-SJSR. Sec-
ondly since our approach is based on automata theoretic
techniques, it is natural to think that one can derive sta-
bility conditions by working directly on the Büchi, Rabin
or Muller automaton specifying the ω-regular language.

References

Aazan, G., Girard, A., Greco, L., and Mason, P.
(2021). Stability of shuffled switched linear sys-
tems: A joint spectral radius approach. URL
https://hal.archives-ouvertes.fr/hal-03257026.

Athanasopoulos, N. and Lazar, M. (2014). Stability
analysis of switched linear systems defined by graphs. In
IEEE Conference on Decision and Control, 5451–5456.

Berger, M.A. and Wang, Y. (1992). Bounded semigroups
of matrices. Linear Algebra and its Applications, 166,
21–27.

Dai, X. (2012). A Gel’fand-type spectral radius formula
and stability of linear constrained switching systems.
Linear Algebra and its Applications, 436(5), 1099–1113.

Girard, A. and Mason, P. (2019). Lyapunov functions
for shuffle asymptotic stability of discrete-time switched
systems. IEEE Control Systems Letters, 3(3), 499–504.

Gurvits, L. (1995). Stability of discrete linear inclusion.
Linear algebra and its applications, 231, 47–85.

Jungers, R. (2009). The joint spectral radius: theory and
applications, volume 385. Springer Science & Business
Media.

Lee, J.W. and Dullerud, G.E. (2007). Uniformly stabilizing
sets of switching sequences for switched linear systems.
IEEE Transactions on Automatic Control, 52(5), 868–
874.

Liberzon, D. (2003). Switching in systems and control.
Springer Science & Business Media.

Lin, H. and Antsaklis, P.J. (2009). Stability and stabi-
lizability of switched linear systems: a survey of recent
results. IEEE Transactions on Automatic control, 54(2),
308–322.

Pepe, P. (2018). Converse Lyapunov theorems for discrete-
time switching systems with given switches digraphs.
IEEE Transactions on Automatic Control.

Philippe, M., Essick, R., Dullerud, G.E., and Jungers,
R.M. (2016). Stability of discrete-time switching sys-
tems with constrained switching sequences. Automatica,
72, 242–250.

Sun, Z. (2006). Switched linear systems: control and
design. Springer Science & Business Media.

Wang, Y., Roohi, N., Dullerud, G.E., and Viswanathan,
M. (2017). Stability analysis of switched linear systems
defined by regular languages. IEEE Transactions on
Automatic Control, 62(5), 2568–2575.

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



A time-varying approach for model
reduction of singular linear switched

systems in discrete time

Md. Sumon Hossain ∗ Sutrisno ∗,∗∗ Stephan Trenn ∗

∗ Bernoulli Institute for Mathematics, Computer Science, and
Artificial Intelligence, University of Groningen, The Netherlands.

∗∗ Dept. of Mathematics, Diponegoro University, Indonesia.

Abstract: We propose a model reduction approach for singular linear switched systems in
discrete time with a fixed mode sequence based on a balanced truncation reduction method
for linear time-varying discrete-time systems. The key idea is to use the one-step map to find
an equivalent time-varying system with an identical input-output behavior, and then adapt
available balance truncation methods for (discrete) time-varying systems. The proposed method
is illustrated with a low-dimensional academic example.
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1. INTRODUCTION

In this paper we consider singular linear switched systems
(SLSSs) in discrete time of the form

Sσ :

{
Eσ(k)x(k + 1) = Aσ(k)x(k) +Bσ(k)u(k),

y(k) = Cσ(k)x(k), k ∈ N, (1)

where x(k) ∈ Rn is the state at time k ∈ N and σ : N →
Q = {0, 1, 2, · · · , m}, m ∈ N, is the switching signal with
the switching times 0 < s1 < s2 < · · · < sm in the
bounded interval [k0, kf ) := {k0, k0 + 1, . . . , kf − 1} of
interest. The system matrices are Ei, Ai ∈ Rn×n, Bi ∈
Rn×m, Ci ∈ Rp×n, where i ∈ Q. The matrices Ei are in
general singular, which is related to the presence of (mode-
dependent) algebraic constraints. We assume that the i-th
mode is active in the interval [si, si+1), for i = 0, 1, · · · , m
(where s0 := 0) and define the duration of the i-th mode
as τi = si+1 − si. Since we will be interested in the input-
output behavior of Sσ we assume in the following that
x(0) = 0.

Control problems governed by SLSSs arise in a variety of
practical applications including circuit simulation, compu-
tational electromagnetics, fluid dynamics, mechanical and
chemical engineering; see Luenberger (1977); Xia et al.
(2008). In some cases, these systems lead to analyzing
large-scale and complex dynamical systems. Although,
the computational speed and performance of the modern
computers are increasing; simulation, optimization or real
time controller design for such large-scale systems are still
difficult due to extra memory requirements and additional
computational complexity. Model order reduction (MOR)
is a useful tool for dealing with such complexity, wherein
one seeks a simpler model that can then be used as an
efficient surrogate model to the original model. There are

⋆ Email Addresses: s.hossain@rug.nl; s.sutrisno[@rug.nl,
@live.undip.ac.id]; s.trenn@rug.nl;

already some existing results on MOR for switched ODEs,
see e.g. Schulze and Unger (2018); Gosea et al. (2020)
for continuous time case, and Baştuğ et al. (2016, 2014);
Shaker and Wisniewski (2012); Birouche et al. (2012) for
discrete time case. However, in contrast to the existing
literature, we view here the SLSS (1) as a time-varying
linear systems, in particular, the reduction in general de-
pends on the specifically given switching signal and results
in a time-varying reduced model.

The remaining paper is structured as follows. We discuss
the problem formulation and some preliminaries for singu-
lar system in Section 2. Section 3 provides the computation
procedure of time-varying balanced realization in discrete
time. In Section 4, we present time-varying balanced trun-
cation method for SLSS. Finally, some numerical results
are presented in Section 5.

2. PRELIMINARIES AND PROBLEM STATEMENT

In this section, it is shown that the solutions of a SLSS
can equivalently be expressed in terms of a time-varying
system. For the existence and uniqueness of solutions of
SLSSs the following assumption is needed.

Assumption 1. The SLSS (1) is jointly index-1, i.e.

Si ⊕ kerEj = Rn, ∀i, j ∈ Q,

where Si = A−1
i (imEi). ⋄

Under the jointly index-1 assumption, the solution of SLSS
(1) with x(0) = 0 exists. This solution is unique and
satisfies the following lemma.

Lemma 1. (Cf. Anh et al. (2019)) Assume the SLSS (1)
is jointly index-1. For a given switching signal σ, there

exist corresponding matrices Ãk, B̃k and F̃k, such that all
solutions of (1) with x(0) = 0 satisfy

x(k + 1) = Ãkx(k) + B̃ku(k) + F̃ku(k + 1), k ∈ N. (2)
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Proof. Let σ(−1) := σ(0) and, for k ∈ N,

Ãk := Vσ(k)

[
Ā1

σ(k),σ(k−1) 0

−Ā2
σ(k+1),σ(k)Ā

1
σ(k),σ(k−1) 0

]
V −1
σ(k−1), (3a)

B̃k := Vσ(k)

[
B̄1

σ(k),σ(k−1)

−Ā2
σ(k+1),σ(k)B̄

1
σ(k),σ(k−1)

]
, (3b)

F̃k := Vσ(k)

[
0

−B̄2
σ(k+1),σ(k)

]
, (3c)

where[
Ā1

i,j 0
−Ā2

i,j In2

]
= V −1

i G−1
i,j AiVj ,

[
B̄1

i,j

B̄2
i,j

]
= V −1

i G−1
i,j Bi,

Gi,j = Ei +AiQi,j , Qi,j = Vj

[
0 0
0 In2

]
V −1
i ,

Vi = [g1i , ..., g
n1
i , hn1+1

i , ..., hn
i ], g

1
i , ..., g

n1
i are the bases of

Si, and hn1+1
i , ..., hn

i are the bases of kerEi. The remaining
proof is similar to the proof of (Anh et al., 2019, Thm. 5.1)
and therefore omitted. ■

Remark 2. The one-step map from x(k) to x(k + 1) de-
pends on the modes at time k − 1, k and k + 1. This
concludes that the allowed space of consistent initial values
also depends on the choice of σ(−1), here we assume
that σ(−1) = σ(0). As pointed out in (Anh et al., 2019,
Rem. 5.2), the effect of a different choice σ(−1) is not yet
fully understood, and is still under investigation; neverthe-
less, since we restrict our attention to the initial condition
x(0) = 0, this is of no further concern to us here.

Motivated by Lemma 1, we consider the following time-
varying surrogate system for (1) with given switching
signal σ:

S̃σ :

{
x(k + 1) = Ãkx(k) +

[
B̃k F̃k

]
ũ(k),

y(k) = Ckx(k), k ∈ N,
(4)

where x(0) = 0, ũ(k) =
[

u(k)
u(k+1)

]
, Ck := Cσ(k) and

Ãk, B̃k, F̃k are given by (3). Writing ũ =
[

I
T1

]
u, where

T1{u}(k) := u(k + 1) denotes the time-shift operator,
by Lemma 1, (1) and (4) have the same input-output
behaviour.

Note that the solution of jointly index-1 SLSS (1) does
not exist for any initial value x(0) ∈ Rn. In fact, the
consistency space of jointly index-1 (1), under the assump-

tion σ(−1) = σ(0), is imVσ(0)

[
I 0

−Â2
σ(0),σ(0) B̂2

σ(0),σ(0)

]
. This

has some implications on the relationship between system

Sσ and S̃σ in terms of observability and reachability.
Here, observability means that if the input and output are
identically zero on [k0, kf ) also the state has to be zero;
reachability means, that for each xf ∈ Rn, there exists an
input such that the corresponding solution satisfies x(kf −
1) = xf . Clearly, a reachable SLSS Sσ implies a reachable

time varying surrogate system S̃σ whereas an observable

SLSS Sσ does not imply that its surrogate system S̃σ is

observable. However, an observable S̃σ implies that Sσ is
also observable.

Our goal is to find for the time-varying system (4) a
reduced size time-varying system

Ŝσ :

{
x̂(k + 1) = Âkx̂(k) + [ B̂k F̂k ]

[
u(k)

u(k+1)

]
,

ŷ(k) = Ĉkx̂(k), k ∈ N.
(5)

with reduced system matrices Âi ∈ Rr×r, B̂i, F̂i ∈ Rr×m,

Ĉi ∈ Rp×r and r ≪ n, such that ŷ ≈ y for a large class
of inputs u. Due to the input-output equivalence between
(1) and (4), the reduced system (5) will then also be good
surrogate model for the original SLSS.

3. TIME-VARYING BALANCED REALIZATIONS

3.1 Time-varying Gramians

Consider a time-varying discrete time system of the form

x(k + 1) = Akx(k) +Bku(k), k ∈ [k0, kf )

y(k) = Ckx(k).
(6)

Definition 3. The time-varying reachability and observ-
ability Gramians of (6) are defined recursively as

P (k) = Ak−1P (k − 1)A⊤
k−1 +Bk−1B

⊤
k−1, (7)

Q(k) = A⊤
k Q(k + 1)Ak + C⊤

k Ck, (8)

with some positive semi-definite initial/final values P (k0) =
P0 and Q(kf ) = Qf

Note that the reachability Gramian is constructed forward
in time, while the observability Gramians evolves backward
in time.

Remark 4. The choice of the initial/final Gramians is
crucial in the sense that they play an important role for
the magnitude of all other subsequent Gramians. At this
moment the best choice of the initial/final Gramians is
not clear. In the context of time-varying case, two versions
can be proposed for the initial/final Gramians. One choice
could be to assume that the first mode is active in the
past, i.e. (−∞, k0], and the Gramians of the first mode is
considered as the initial reachability Gramian. Similarly,
by assuming that the last mode will be active in the future,
i.e. [kf ,∞), and the Gramian of the last is considered
as the final value for observability Gramian. However,
in this choice, the computation of infinite Gramians is
only possible for stable modes; here, we do not assume
stability of each mode. On the other hand, a second choice
could be the identity matrix which would not affect the
direction of the states which are difficult to control and
difficult to observe. By scaling the identity matrix with
a smaller magnitude, one can restrict the influence of
these artificial initial/final Gramians relatively to the time-
varying Gramians and also for the bounded time-varying
coordinate transformation matrices.

Note that, P (k) and Q(k) are both symmetric and pos-
itive semidefinite for all k ∈ [k0, kf ] if P0 and Qf are
positive definite. It is assumed that the input-output bal-
ancing with respect to the reachability and observability
Gramians is defined over specific time intervals. Hence, no
assumption is needed with regard to the stability of the
system.

Applying any time-varying coordinate transformation

x(k) = T (k)x(k)

to (6) results in an equivalent system
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x(k + 1) = Akx(k) +Bku(k)

y(k) = Ckx(k),

with Ak := T (k+1)−1AkT (k), Bk := T (k+1)−1Bk, Ck :=
CkT (k). It is easily seen, the corresponding Gramians
satisfy

P (k) = T (k)−1P (k)T (k)−⊤,

Q(k) = T (k)⊤Q(k)T (k),

if the initial/final values satisfy P 0 = T (0)−1P0T (0)
−⊤

and Qf = T (kf )
⊤QfT (kf ). In particular,

P (k)Q(k) = T (k)−1P (k)Q(k)T (k).

This shows that, under such transformation, the eigenval-
ues of the product of Gramians are invariant.

The key idea of balanced truncation is to find a coordinate
transformation such that the corresponding Gramians be-
come equal and diagonal. How to achieve such a balancing
transformation is given in the following lemma.

Lemma 5. Assume that Gramiens P (k) and Q(k) of the
time-varying system (6) are nonsingular on [k0, kf ). Then,
there exists a transformation T : [k0, kf ] → Rn×n such
that

T (k)−1P (k)T (k)−⊤ = T (k)⊤Q(k)T (k) = Ξ(k), (9)

for all k ∈ [k0, kf ] and Ξ(k) = {ξ1(k), . . . , ξn(k)} is a
diagonal matrix. In fact, the transformation matrices are
given by

T (k) = R(k)U(k)Ξ(k)−1/2,

T (k)−1 = Ξ(k)−1/2V (k)⊤L(k)⊤,

where U(k)Ξ(k)V (k)⊤ is the singular value decomposi-
tion of R(k)⊤L(k), and where R(k)R(k)⊤ = P (k) and
L(k)L(k)⊤ = Q(k) are the Cholesky decompositions of P
and Q, respectively.

Proof. The proof is similar to the proof of (Hossain and
Trenn, 2020, Lemma 11) and therefore omitted. ■

4. MODEL REDUCTION

We now combine the above results to propose a model
reduction method for SLSS (1) based on balanced trun-
cation. By Assumption 1, we can instead consider system
(4) and we can construct the corresponding time-varying

reachability/observability Gramians P̃ (k) and Q̃(k) for

(Ãk, [B̃k, F̃k], C̃k) for some initial/final Gramians P̃0, Q̃f .
Now an assumption is needed for model reduction meth-
ods.

Assumption 2. Assume a transformation T̃ such that the
balanced Gramians are obtained by

T̃ (k)−1P̃ (k)T̃ (k)−⊤ = T̃ (k)⊤Q̃(k)T̃ (k) = Ξ̃(k)

and let, the (uniformly) partitioned form Ξ̃(k) =
[
Ξ̂(k) 0

0 Ξ(k)

]
,

where all diagonal entries in Ξ(k) are significantly smaller

than those in Ξ̂(k). ⋄
With the Assumption 2, the singular value decomposition
is then given by

R̃(k)⊤L̃(k) =
[
Û(k) U(k)

] [Ξ̂(k) 0
0 Ξ(k)

] [
V̂ (k) V (k)

]⊤

where R̃(k)R̃(k)⊤ = P̃ (k) and L̃(k)L̃(k)⊤ = Q̃(k) are
obtained by a Cholesky decomposition. According to this

splitting, let T̃ (k) = [Π̂R(k), ∗] and T̃ (k)−1 = [Π̂L(k), ∗]⊤,
and define

Âk := Π̂L(k + 1)ÃkΠ̂R(k),[
B̂k F̂k

]
:= Π̂L(k + 1)

[
B̃k F̃k

]
,

Ĉk := C̃kΠ̂R(k),

which results in our proposed reduced system (5), where
the left- and right-projectors are calculated as

Π̂R(k) := R̃(k)Û(k)Ξ̂(k)−1/2 ∈ Rn×r,

Π̂L(k) := Ξ̂(k)−1/2V̂ (k)⊤L̃(k)⊤ ∈ Rr×n.

5. NUMERICAL RESULTS

This section illustrates the proposed method by providing
an example.

Example 6. Consider a SLSS with two modes

(E0, A0, B0, C0)=

([
1 0 0 0
1 1 0 0
0 0 1 0
0 0 0 0

]
,

[
1 0 0 0
1 0 1 0
1 1 1 0
0 0 0 1

]
,

[
0.02
2
1
0.2

]
,

[−0.1
0.1
0.1
2

]⊤)
,

(E1, A1, B1, C1) =

([
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

]
,

[
1 0 0 0
0 1 1 0
1 0 1 0
0 0 0 1

]
,

[
0.01
2
0.5
0.1

]
, C0

)
,

Consider a switching signal σ : [0, 9) → {0, 1},

σ(k) =

{
0 : k ∈ [0, 4) ∪ [7, 9),

1 : k ∈ [4, 7).

It can easily be verified that the pairs (E0, A0) and
(E1, A1) are jointly index-1. Hence, by Lemma 1, the time-
varying system (4) is obtained with the following system
matrices

(Ãk, B̃k) =


([

1 0 0 0
0 0 1 0
1 1 1 0
0 0 0 0

]
,

[
0.02
1.98
1
0

])
: k = 0, 1, 2, 3, 7, 8,([

1 0 0 0
0 1 1 0
1 0 1 0
0 0 0 0

]
,

[
0.01
2
0.5
0

])
: k = 4, 5, 6,

F̃k =


[

0
0
0

−0.2

]
: k = 0, 1, 2, 6, 7, 8,[

0
0
0

−0.1

]
: k = 3, 4, 5.

The corresponding reachability and observability Grami-

ans are calculated respectively, P̃ (k) and Q̃(k) for k ∈
[0, 9) with initial/final values P̃0 = 0.002I and Q̃f =
0.002I. The corresponding HSVs are depicted in Figure 1
and it is apparent that the last two HSVs are significantly
smaller than the first two. Hence, a two dimensional re-
duced system is obtained which approximates the time-
varying system (4) and hence, the original SLSS.

The computed two dimensional reduced systems at each

time steps are given by (Âk, [B̂k, F̂k], Ĉk) =([
0.9206 −0.0051
−0.0107 0.0012

] [−1.8615 0.0046
−0.0535 0.6305

] [−0.1410
−0.6334

]⊤)
,([

0.9761 −0.0071
−0.0058 −0.0076

] [−1.0832 0.0074
−0.0603 0.6287

] [−0.2387
−0.6332

]⊤)
,([

0.9887 −0.0116
−0.0027 −0.0071

] [−0.7265 0.0117
−0.0445 0.8861

] [−0.3859
−0.4449

]⊤)
,
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([
1.1336 −0.0155
−0.4762 −0.0398

] [−0.3934 0.0143
−0.0311 0.4016

] [−0.7193
−0.4515

]⊤)
,([

0.9856 −0.0335
−0.0019 0.1912

] [−0.2249 0.0206
−0.0536 0.4158

] [−1.0114
−0.4262

]⊤)
,([

0.9719 −0.0475
−0.0036 0.0701

] [−0.1850 0.0286
−0.0047 0.2986

] [−1.3323
−0.5423

]⊤)
,([

0.8014 −0.0770
−0.8119 0.0689

] [−0.1249 0.0523
0.1196 −0.5938

] [−1.4777
0.5432

]⊤)
,([

0.9471 0.0834
−0.0047 0.0125

] [−0.1026 0.1118
−0.0261 0.4245

] [−2.8391
−0.1943

]⊤)
.

1 2 3 4 5 6 7 8

0

1

2

3

4

Fig. 1. Hankel singular values of balanced Gramians at
each time instance.

Consider randomly generated input u(·) with u(0) =
0, and the input-output behavior is calculated for the
system (4) and its reduced system with relative errors.
Figure 2 displays the output, the input signal, and the
relative error for the original system and the proposed two
dimensional reduced system. Clearly, both outputs match
nicely and the relative error is less then 6%.

1 2 3 4 5 6 7 8

0

2

4

6

Original system

Reduced system

1 2 3 4 5 6 7 8
-1

0

1

2

1 2 3 4 5 6 7 8
0

0.05 Relative error

Fig. 2. Outputs and the relative error of the original
system (4) and the proposed 2nd order approximation.

Next, another initial /final value of the Gramians is

considered by increasing the magnitudes as P̃0 = 0.5I

and Q̃f = 0.5I. With the same input sequence as in
Figure 2, the input-output behavior with the relative error
is depicted in Figure 3, which shows that the choice of the
initial /final values of Gramians plays an important role in
the error analysis. Therefore, it is concluded that taking
small magnitude with identity matrix could be the best
choice for the initial /final values of the Gramians.

1 2 3 4 5 6 7 8

0

2

4

6

Original system

Reduced system

1 2 3 4 5 6 7 8
-1

0

1

2

1 2 3 4 5 6 7 8
0

0.5

1

Relative error

Fig. 3. Outputs and relative errors of the original sys-
tem (4) and the proposed 2nd order approximation

with initial/final values P̃0 = 0.5I, Q̃f = 0.5I.

6. CONCLUSION

In this paper, we have presented a time-varying approach
for proposing a reduced system for singular linear switched
systems. The key novelty is the viewpoint of the SLSS
as a piecewise-constant time-varying system. At first, we
have focused on input-extended time-varying ODEs, which
gives identical input-output behavior as the original index-
1 SLSSs. Then, by applying the well known time-varying
balanced truncation method for the discrete time case, we
find a good approximation of the time-varying system.
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F. J. Lobillo ∗,∗∗∗ G. Navarro ∗∗,∗∗∗

∗ Department of Algebra, University of Granada
∗∗ Department of Computer Science and Artificial Intelligence,

University of Granada, Spain
∗∗∗ CITIC, University of Granada

∗∗∗∗ IEMath-GR, University of Granada

Abstract: Finding the minimum distance of linear codes is an NP-hard problem. Traditionally,
this computation has been addressed by means of the design of algorithms that find, by a
clever exhaustive search, a linear combination of some generating matrix rows that provides
a codeword with minimum weight. Therefore, as the dimension of the code or the size of the
underlying finite field increase, so it does exponentially the run time. In this work, we prove
that, given a generating matrix, there exists a column permutation which leads to a reduced
row echelon form containing a row whose weight is the code distance. This result enables the
use of permutations as representation scheme, in contrast to the usual discrete representation,
which makes the search of the optimum polynomial time dependent from the base field. In
particular, we have implemented genetic and CHC algorithms using this representation as a
proof of concept. Experimental results have been carried out employing codes over fields with two
and eight elements, which suggests that evolutionary algorithms with our proposed permutation
encoding are competitive with regard to existing methods in the literature. As a by-product,
we have found and amended some inaccuracies in the Magma Computational Algebra System
concerning the stored distances of some linear codes.

Keywords: linear codes, minimum distance, genetic algorithms

1. INTRODUCTION

This talk is based in some results published in Cuéllar
et al. (2021).

The computation of a word with minimum weight for a
linear code is not an easy task. Vardy showed in Vardy
(1997) that the decision problem associated to the com-
putation of the minimum distance of a binary linear code
is NP-complete. Hence, unless P = NP, we cannot expect
to find a general polynomial time exact algorithm to com-
pute the distance of an arbitrary linear code. This feature
has been used to develop Code-based Cryptography, see
D. J. Bernstein (2009), as one of main research lines look-
ing for a possible new standard concerning Post-quantum
Cryptography.

We can find different approaches in the literature to
overcome the distance calculation. One is to design the
linear code C subject to certain constraints using higher
algebraic structures, to guarantee a lower bound for the
distance d(C). These approaches do not tackle the problem
of finding the true distance, which remains unknown,
although they ensure an error correction capability given
by its precalculated lower bound.

⋆ Research partially supported by SRA (State Research Agency /
10.13039/501100011033) under Grant No. PID2019-110525GB-I00.

Another kind of approaches focuses on finding the true
distance using exact algorithms. Here, the problem is
considered as a search procedure over a solution space,
using heuristics to guide the search and to reduce the
computational time of the algorithms. The most known
algorithm was designed by Brouwer and Zimmermann,
see Betten et al. (2006), and later extended by Lisonek
and Trummer (2016), and it essays to build information
sets from a generating matrix. The main drawback is that
the efficiency of these methods is still non-polynomial,
since the whole solution space has to be explored in
the worst case. They have been successfully applied over
small binary codes, but their computational time increases
exponentially with the length of the code and the bit-size
of the underlying finite field.

A third class of attemtps focuses on providing approxi-
mate methods to find lower and/or upper bounds of the
distance. In this category, one of the first algorithms was
provided in Leon (1988). Metaheuristics have also been
used to solve the problem. Here, the methodology consists
on finding an optimal solutionm∗ ∈ Ak that minimizes the
fitness f(m∗) = minm{w(mG)} subject to the restriction
f(m∗) > 0 (or equivalently, m∗ ̸= 0), where w denotes the
Hamming weight. These methods provide an upper bound
of d(C). Some proposals we have found in the literature to
tackle the problem were Genetic Algorithms, see Dontas

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



and De Jong (1990), Simulated Annealing, see Muxiang
and Fulong (1994), Ant Colony Optimization, see Bland
(2007) and Bouzkraoui et al. (2018), for example.

One of the main limitations in many of the approximate
methods is the high selective pressure over the non-valid
trivial message s = (0, 0, . . . , 0), which leads to the fitness
f(s) = 0. This problem has been highlighted and studied
by some authors, as for instance in Berkani et al. (2015),
and more recently in Berkani et al. (2017).

In this work we propose to address this problem from
a completely new perspective. We prove that, given a
generating matrix, there exists a column permutation
which leads to a reduced row echelon form containing
a row whose weight is the code distance. This result
allows us to provide a novel problem statement and,
therefore, new search mechanisms could be applied to
provide a problem solution. In our case, we propose to
use a permutation representation of the solution space
to search the minimum distance. Hence a Generational
Genetic Algorithm (GGA) and a Cross generational elitist
selection, Heterogeneous recombination, and Cataclysmic
mutation algorithm (CHC) are designed for solving the
problem.

This has allowed us to discover some inaccuracies in the
Magma Computational Algebra System concerning the
stored distances of some linear codes.

2. PERMUTATION-BASED SCHEME

Let 0 < k ≤ n be two non negative integers, and Fq the
field with q elements. Our new perspective to compute the
minimum distance relies in the the following result:

Theorem 1. Let G be a k × n generating matrix of a
[n, k]q-linear code C over the finite field Fq. There exists
a permutation σ ∈ Sn such that the RREF, R, of GPσ,
where Pσ is the permutation matrix of σ, satisfies that the
Hamming weight of some of its rows reaches the minimum
distance of C. Consequently, if b is a row of R verifying
such property, then bP−1

σ is a non zero codeword of C with
minimal weight.

By Theorem, finding the minimum distance of an [n, k]q-
linear code is reduced to find the minimum of the map
d : Sn → N defined by

d(σ) = min {w(b) | b is a row of the RREF of GPσ} (1)

for any σ ∈ Sn. This encoding is then invariant with
respect to the base field. Obviously, the computation of
d(σ), for some permutation σ, does depend on q and n.

3. ALGORITHMS

The Generational Genetic Algorithm (GGA) follow the
classic genetic algorithm with elitism and reinitialization
Back et al. (1997).

By Theorem 1, we are looking for permutations in order
to compute the weights of the rows in the RREF of
the permuted generating matrix. The algorithm works
as follows: A population P (t) ⊆ Sn is initialized and
evaluated with N random solutions at iteration t =
0. Then, the main loop of the algorithm is executed
until a stopping condition is met. In this paper, the

stopping criterion is to evaluate a maximum number of
solutions so that the algorithms can be compared in
performance. In order to test the algorithms, an additional
stopping criterion has been included when a solution in the
population reaches a previously known lower bound of the
distance.

The loop of the algorithms start by selecting N parents
according to the binary tournament selection operator
Blickle and Thiele (1997). A crossover operator is applied
to two parents to generate a pair of new solutions with
probability pc. If they are not combined, the mutation
operator acts on the parents to generate two mutated
solutions. All the N new solutions generated by either
crossover or mutation form the population at the next
iteration P (t + 1). Finally, the solutions in P (t + 1) are
evaluated. An elitism component is included before the
next iteration starts: If no solution in P (t+1) has a fitness
equal or better than the best in P (t), then then worst
in P (t + 1) is replaced with the best in P (t). Also, we
include a reinitialization of P (t + 1) with N new random
solutions after MaxReinit solution evaluations with no
improvement in the fitness of the best solution found.

The CHC algorithm is an evolutionary algorithm whose
initial version was proposed for binary encoding Eshelman
(1991). This algorithm holds a balance between genotypic
diversity in the solutions of the population, and conver-
gence to local optima. It is based on four main components:
elitist selection, the HUX solution recombination operator,
an incest prevention check to avoid the recombination of
similar solutions, and a population reinitialization method
when a local optimum is found. Later versions of this
algorithm are proposed for real and permutation encoding
in Eshelman and Schaffer (1993); Cordón et al. (2006);
Simões and Costa (2011). The adaptation of this algorithm
it is mainly inspired in the proposals of Cordón et al.
(2006); Simões and Costa (2011).

The distance between two solutions x, y in the population
is computed using the Hamming distance, and the decre-
ment dec of the crossover is updated as a percentage τ
of the maximum Hamming distance between individuals
in the population, where τ ∈ [0, 1] is an update rate, an
input parameter to the algorithm.

The algorithm starts by initializing a population P (t) ⊆
Sn with N random solutions. Then, the average and
maximum distances between all solutions are computed.
The crossover threshold d is assigned to the average
distance, and a threshold update rate dec is initialized to
τ multiplied by the maximum distance. The main loop of
the algorithm finishes when the aforementioned stopping
condition is met. It works as follows: Firstly, the solutions
in P (t) are randomly shuffled and matched by pairs. These
pairs of solutions are the parents to be combined. Then,
the crossover operator is applied to each pair of parents
to generate two offsprings, only if the distance between
the two parents is not under the distance threshold d.
If so, the offsprings are evaluated, and the population
at the next iteration P (t + 1) is created containing the
best N solutions coming from P (t) and the new generated
solutions by crossover. If P (t+1) is the same as P (t), the
crossover threshold d is decreased by dec. Only when d is
zero or under zero, the population is reinitialized. In our
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work, the reinitialization procedure replaces P (t+1) with
N −1 randomly generated solutions, and the best solution
in P (t). The values d and dec are recalculated for this new
population.

4. EXPERIMENTATION

The parameters used in the experimentation are shown in
Table 1. The row Mutation probability by gene describes
the probability of mutation of each coordinate in a solu-
tion. The row Evaluations stands for the main stopping
criterion of each algorithm (i.e. to reach a maximum
number of evaluations). The row Reinitialization shows
the number of solutions evaluated with no improvements
required to reinitialize the population in GGA proposals.
A secondary stopping criterion was set for all algorithms:
if the true known distance of the code being evaluated (or
a lower bound) is found, the algorithm stops even if the
main stopping criterion is not satisfied yet.

Parameter GGA-Order CHC-Order

Population size 400 400
Crossover AX2 AX2

Mutation 2-swap –
Crossover probability 0.8 –

Mutation probability by gene – –
Evaluations 500000 500000

Reinitialization 100000 –

Table 1. Algorithms’ parameters for experi-
mentation with codes over F8

Tables 2 and 3 show the results obtained for each dataset
containing a code over F8. The columns Dataset display
the parameters of the corresponding best known linear
codes according to Grassl (2007). Columns B describe
the minimum weight found by each algorithm, and the
subindices indicate the number of experiments that pro-
vided such result. Columns W introduce the worst min-
imum weight obtained. Columns M show the average of
the minimum weights obtained in the 100 experiments.
Finally, Columns T/E print the average time in seconds
of each experiment, together with the average number of
evaluations required to finish it.

5. ANALYSIS OF THE CODE (75, 45, 17− 27) OVER
F8

According to Grassl (2007) and Bosma et al. (1997),
the best known linear code over F8 with length 75 and
dimension 45 is (75, 45, 17 − 27) as it can be verified
executing the first 7 lines of the Magma source code
in Figure 1. However, our algorithms obtain the column
permutation in (2), which provides a matrix whose RREF
contains a row whose weight is 15. A codeword with
this weight is exhibited in (3). Magma source code to
verify our findings is set in lines 9 to 13 in Figure 1,
which can be tested in the online version of Magma
at the URL http://magma.maths.usyd.edu.au/calc/.
Thus, the minimum distance is less or equal to 15, which
is below of the lower bound provided by Magma.

(53, 11, 58, 36, 17, 27, 44, 8, 73, 24, 20, 71, 69, 46, 10, 43,

26, 61, 29, 57, 23, 6, 5, 67, 14, 4, 50, 45, 72, 59, 18, 25, 47, 28,

51, 68, 22, 48, 52, 42, 60, 21, 38, 64, 16, 34, 2, 3, 31, 33, 49,

63, 74, 54, 62, 19, 7, 1, 0, 15, 13, 66, 39, 65, 41, 30, 12, 37, 32,

70, 56, 40, 55, 9, 35) (2)

(a2 + a, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, 0, 0, 1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, 0, 0, 0, 0, 0, 0, a2 + a, a2,

0, a2 + a+ 1, 1, 0, a+ 1, 0, 0, a, 0, 0, 0, 0, 0,

a2 + a+ 1, 0, 0, 0, a+ 1, 1, 0, 0, 0, 0, 0, a2 + a+ 1,

0, 0, 0, 0, 0, 0, a+ 1, 0, 0, 0, 0) (3)

According to Grassl (2007), the linear code (75, 45, 17−27)
is constructed from the code with parameters (77, 46, 18)
described in Xing and Ling (2000). By additional experi-

GGA (order)

Dataset B W M T / E

(30, 16, 10− 13) 10(100) 10 10(1) 0.003(1)/1.6

(30, 18, 9− 11) 9(100) 9 9(1) 0.004(1)/2

(45, 22, 15− 21) 15(100) 15 15(1) 0.009(1)/57.8

(45, 24, 14− 19) 14(100) 14 14(1) 0.01(1)/13.4

(45, 26, 12− 17) 12(100) 12 12(1) 0.01(1)/9.5

(45, 28, 11− 15) 11(100) 11 11(1) 0.01(1)/1.9

(60, 28, 21− 28) 21(100) 21 21(1) 0.017(1)/42.8

(60, 30, 20− 27) 20(100) 20 20(1) 0.018(1)/5

(60, 32, 19− 25) 19(100) 19 19(1) 0.02(1)/8.3

(60, 34, 17− 23) 17(100) 17 17(1) 0.021(1)/18.4

(75, 30, 28− 40) 28(100) 28 28(1) 0.028(1)/19.1

(75, 35, 24− 35) 24(100) 24 24(1) 0.134(1)/1716.2

(75, 40, 20− 31) 20(100) 20 20(1) 0.036(1)/5.9

(75,45,17− 27) 15(100) 15 15(1) 12.713(2)/77303.3

(90, 19, 49− 63) 49(100) 49 49(1) 0.252(2)/5249.6

(90, 50, 21− 35) 22(28) 24 22.8(1) 38.437(3)/239954.9

(90, 60, 16− 26) 16(99) 17 16(1) 15.42(3)/86775.2

(90, 70, 11− 17) 11(100) 11 11(1) 0.066(2)/48.9

(130, 85, 23− 40) 23(2) 26 25(1) 145.695(4)/293522

(130, 95, 18− 30) 18(80) 19 18.2(1) 87.796(3)/177852.8

Table 2. Results of GGA-Order over F8 codes

CHC (order)

Dataset B W M T / E

(30, 16, 10− 13) 10(100) 10 10(1) 0.004(2)/1.6

(30, 18, 9− 11) 9(100) 9 9(1) 0.005(2)/2

(45, 22, 15− 21) 15(100) 15 15(1) 0.01(2)/57.8

(45, 24, 14− 19) 14(100) 14 14(1) 0.011(2)/13.4

(45, 26, 12− 17) 12(100) 12 12(1) 0.011(2)/9.5

(45, 28, 11− 15) 11(100) 11 11(1) 0.011(2)/1.9

(60, 28, 21− 28) 21(100) 21 21(1) 0.019(2)/42.8

(60, 30, 20− 27) 20(100) 20 20(1) 0.019(2)/5

(60, 32, 19− 25) 19(100) 19 19(1) 0.021(2)/8.3

(60, 34, 17− 23) 17(100) 17 17(1) 0.021(2)/18.4

(75, 30, 28− 40) 28(100) 28 28(1) 0.029(2)/19.1

(75, 35, 24− 35) 24(100) 24 24(1) 0.12(1)/1269.2

(75, 40, 20− 31) 20(100) 20 20(1) 0.037(2)/5.9

(75,45,17− 27) 15(100) 15 15(1) 11.695(2)/72438.6

(90, 19, 49− 63) 49(100) 49 49(1) 0.179(1)/3279.7

(90, 50, 21− 35) 22(34) 24 22.7(1) 41.898(4)/267888.3

(90, 60, 16− 26) 16(100) 16 16(1) 13.265(3)/78140

(90, 70, 11− 17) 11(100) 11 11(1) 0.066(1)/48.9

(130, 85, 23− 40) 23(1) 26 24.9(1) 63.325(3)/135700

(130, 95, 18− 30) 18(88) 19 18.1(1) 84.811(3)/185147.7

Table 3. Results of CHC-Order over F8 codes
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Fig. 1. Magma source code exhibiting a codeword with
weight 15 for the code (75, 45, 17− 27)

/* Build the code */

F<a> := GF(8);

V := VectorSpace(F,75);

C := BKLC(F,75,45);

C:Minimal;

/* Show the lower and upper bounds for the code */

BKLCLowerBound(F,75,45), BKLCUpperBound(F,75,45);

/* Set the word of weight 15 */

c := V ! [a^2 + a, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, a, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, a, 0, 0, 0, 0, 0, 0, a^2 + a, a^2, 0,

a^2 + a + 1, 1, 0, a + 1, 0, 0, a, 0, 0, 0, 0, 0,

a^2 + a + 1, 0, 0, 0, a + 1, 1, 0, 0, 0, 0, 0,

a^2 + a + 1, 0, 0, 0, 0, 0, 0, a + 1, 0, 0, 0, 0];

/* Checks if the word c belongs to code C */

c in C;

/* Prints the weight of the codeword c in code C */

Weight(c);

ments we have found a codeword of weight 15 in this code.
Additional tests were performed for other codes considered
in Xing and Ling (2000). More specifically, we calculated
permutations for the codes (75, 44, 18) and (76, 45, 18),
respectively, which helps us finding the corresponding
codewords both with weight 15.
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Abstract: We investigate the scenario where a perturbed nonlinear system communicates its
output measurements to a remote observer via a network. The sensors are grouped into N
nodes and each of these nodes decides when its measured data is transmitted over the network
independently. Given a (continuous-time) observer, we present an approach to design local
(dynamic) transmission policies to obtain accurate state estimates, while only sporadically using
the communication network. We prove a practical convergence property to the origin for the
estimation error and we show there exists a uniform strictly positive minimum inter-event time
for each local triggering rule under mild conditions on the plant. The analysis relies on hybrid
Lyapunov tools. The efficiency of the proposed techniques is illustrated on a numerical case
study of a flexible robotic arm.

Preamble: This extended abstract is based on the journal
submission Petri et al. (2022), which is in agreement with
the conference policy.

While digital networks exhibit a range of benefits for
control applications in terms of ease of installation, main-
tenance and reduced weight and volume, they also require
adapted control theoretical tools to cope with the induced
communication constraints (e.g., sampling, delays, packet
drops, scheduling, quantization), see e.g., Hespanha et al.
(2007); Heemels and Van De Wouw (2010). In this work,
we concentrate on the state estimation of nonlinear sys-
tems over a digital channel and we focus on the effect of
sampling. In particular, we consider state estimation where
the plant is nonlinear, perturbed and communicates its
measurements over a digital network to a remote observer,
whose goal is to estimate the plant state, see Fig. 1.

The communication schedule is very important to guar-
antee good estimation performance. An option is to gen-
erate the transmission instants based on time, in which
case we talk of time-triggered strategies for which various
results are available in the literature, see, e.g., Postoyan
and Nešić (2011); Li et al. (2017); Ferrante et al. (2016);
Mazenc et al. (2015); Dačić and Nešić (2008). However,

‹ This work was funded by Lorraine Université d’Excellence LUE,
HANDY project ANR-18-CE40-0010-02, the France Australian col-
laboration project IRP-ARS CNRS and the Australian Research
Council under the Discovery Project DP200101303.

this paradigm may generate (significantly) more trans-
missions over the network than necessary to fulfil the
estimation task, thereby leading to a waste of the network
resources. As a potential and promising solution, one can
use event-triggered transmissions to overcome this draw-
back, see e.g., Heemels et al. (2012) and references therein.
In this case, an event-based triggering rule monitors the
plant measurement and/or the observer state and decides
when an output transmission is needed.

Various event-triggered techniques are available in the
literature for estimation, see, e.g., Scheres et al. (2021);
Li et al. (2010); Shi et al. (2014); Li and Lemmon (2011);
Trimpe (2014); Yu et al. (2021); Song et al. (2021); Shi
et al. (2016); Huang et al. (2019); Sijs and Lazar (2012);
Hu et al. (2020); Etienne and Di Gennaro (2016); Etienne
et al. (2017a,b); Tong et al. (2020); Niu et al. (2020). A
dominant approach consists in implementing a copy of the
observer within the sensor and then use its information
to define the transmission instants, see e.g., Scheres et al.
(2021); Li et al. (2010); Shi et al. (2014); Li and Lemmon
(2011); Trimpe (2014); Yu et al. (2021); Song et al. (2021).
A possible drawback then is that it may require significant
computation capabilities on the sensors, especially in the
case of large-scale systems, or highly nonlinear dynamics,
which may be unavailable. Another possible solution is to
follow an event-triggered strategy, which is only based on
a static condition involving the measured output and its
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past transmitted value(s) see, e.g., Shi et al. (2016); Huang
et al. (2019); Sijs and Lazar (2012); Hu et al. (2020);
Etienne et al. (2017a); Etienne and Di Gennaro (2016);
Etienne et al. (2017b); Tong et al. (2020). Consequently,
it is not necessary to implement a copy of the observer
in the sensors and thus the sensors are not required to
have significant computation capabilities. However, such
static triggering rules may generate a lot of transmissions,
moreover the results in Shi et al. (2016); Huang et al.
(2019); Sijs and Lazar (2012); Hu et al. (2020); Etienne
and Di Gennaro (2016); Etienne et al. (2017a,b); Tong
et al. (2020) only apply to specific classes of systems
and a centralized scenario, where all sensors communicate
simultaneously over the network, with the exception of Shi
et al. (2016) and Hu et al. (2020).

In this work, we adopt an event-triggered approach based
only on the measured output and the last transmitted out-
put value. This strategy keeps monitoring the plant out-
put, and thereby may lead to less transmissions compared
to a self-triggering approach, and it does not require a copy
of the observer, which simplifies the implementation and
requires less computation capability on the sensor. The
main novelties are, first, the design of a new triggering rule,
which involves an auxiliary scalar variable for each sensor
node, that will have several benefits. Second, the proposed
results apply to general, perturbed nonlinear systems con-
trary to the vast majority of works in the literature, which
concentrates on specific classes of systems, see e.g., Li et al.
(2010); Shi et al. (2014); Li and Lemmon (2011); Trimpe
(2014); Yu et al. (2021); Song et al. (2021); Shi et al.
(2016); Huang et al. (2019); Sijs and Lazar (2012); Hu
et al. (2020); Etienne and Di Gennaro (2016); Etienne
et al. (2017a,b); Tong et al. (2020); Niu et al. (2020).
Third, the triggering strategies are decentralized. Indeed,
we consider the scenario with N sensor nodes, where each
node decides independently when to transmit its local data
to the observer via a digital network. Consequently, each
sensor node has its own triggering rule and several nodes
are allowed to communicate at the same time instant. The
considered setup is depicted in Fig. 1.

Our design is following an emulation-based approach in the
sense that the observer is first designed ignoring the effects
of the communication network. In particular, we assume
that the observer has been designed in continuous-time
in such a way that it satisfies an input-to-state stability
property, that holds for many observer design techniques
of the literature, see e.g., Astolfi et al. (2021); Shim and
Liberzon (2015) and the references therein. Afterwards,
we take the network into account and consequently the
observer knows only the networked version of the output,
which is generated using a zero-order-hold device between
two successive transmission instants. We then design a
triggering rule for each sensor node to approximately
preserve the original properties of the observer. As already
stated, the triggering rules are dynamic in the sense
that they involve a local scalar auxiliary variable, which
essentially filters an absolute threshold type condition, see
e.g., Etienne et al. (2017a,b); Etienne and Di Gennaro
(2016); Tong et al. (2020). This is a new in the context
of estimation, to the best of the authors knowledge, and
is inspired by related event-triggering control techniques,
see e.g., Girard (2014); Tanwani et al. (2015); Tabuada

(2007). Importantly, there is no need to implement a
copy of the observer at each sensor node, which has clear
computational advantages. Indeed, each sensor just needs
to know the difference between its current output and its
last transmitted output value and its local auxiliary scalar
variable. We model the overall system as an hybrid system
using the formalism of Goebel et al. (2012); Heemels et al.
(2021), where a jump corresponds to a transmission of the
current output measured by one of the sensor nodes to the
observer.

To design the event-triggered estimation scheme, we pro-
vide easily usable conditions on the triggering rules, which
ensure that the estimation error system satisfies a global
practical stability property. The analysis relies on hybrid
Lyapunov tools, see Goebel et al. (2012). Note that, we
do not guarantee an asymptotic stability property, but
only a practical one in general, which is a consequence
of the absence of a copy of the observer in the trigger-
ing mechanism. Afterwards, we prove that there exists a
uniform strictly positive minimum time between any two
successive transmissions for each local triggering rule un-
der mild boundedness conditions on the plant state and its
input, thereby excluding the Zeno phenomena. Moreover,
we provide explicit conditions under which the proposed
event-triggered observer stops transmitting, which it is
a clear advantage against time-triggered strategies. The
proposed results can then be extended in various ways
(to be robust to additive measurement noise, to the case
where the plant input is also triggered etc.). Finally, we
will illustrate the efficiency of the approach in a numerical
case study of a flexible robotic arm.

This work is an extension of the preliminary conference
paper Petri et al. (2021), where only linear time-invariant
systems and a centralized transmission strategy were con-
sidered.
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Fig. 1. Block diagram representing the system architecture (ETM: Event-Triggering Mechanism) Petri et al. (2022),
where x P Rnx is the state to be estimated, u P Rnu is the measured input, y :“ py1, . . . , yN q P Rny :“ Rny1 ˆ

¨ ¨ ¨ ˆ RnyN is the measured output, where yi, with i P t1, . . . , Nu is the output measured by sensor i, v P Rnv

is an unmeasured disturbance input, z P Rnz is the observer state with nz ě nx, x̂ P Rnx is the state estimate,
ȳ :“ pȳ1 . . . ȳN q P Rny :“ Rny1 ˆ ¨ ¨ ¨ ˆ RnyN is the networked version of the output y.
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Abstract: We study tree-like networks of leaderless Kuramoto-like non-identical oscillators
having time-varying natural frequencies taking values in a compact set. We interconnect the
oscillators via a novel class of hybrid coupling rules inducing uniform global practical asymptotic
stability of the synchronization set, thereby ensuring global uniform convergence. Moreover, we
show that the synchronization set is uniformly globally finite-time stable whenever the coupling
function is discontinuous at the origin. Numerical simulation results illustrate the advantage
of the proposed model with respect to non-uniform behavior typically found with classical
Kuramoto models.

Keywords: Synchronization, hybrid dynamical systems, multi-agent systems, finite-time
stability, Lyapunov methods.

This extended abstract presents the results given in the
paper “Leaderless uniform global asymptotic and finite-
time synchronization of Kuramoto-like oscillators” (Mari-
ano et al. (2021)) submitted to Automatica for publication,
as allowed by the conference guidelines.

Oscillatory behaviours and their studies have always been
a topic of interest in engineering and science in general.
To address this problem, the Kuramoto model (Kuramoto
(1975)), while being proposed originally as a model to
describe chemical and biological oscillators, has found
widespread applications to describe a broad family of
oscillatory behaviours Acebron et al. (2005). In Kuramoto
(1975), the evolution of an “all-to-all” network, i.e., a fully
connected graph, of n phase-coupled (possibly) heteroge-
neous oscillators is described as

θ̇i = ωi +
κ

n

∑
j∈Vi

sin(θj − θi) i ∈ {1, . . . , n} (1)

where θi ∈ R is the phase of the i-th oscillator, Vi :=
{1, . . . , n} \ {i}, ωi ∈ R is its natural frequency and
κ > 0 is the gain of the coupling action between each
pair of oscillators. Neuroscience (Tass (2003); Cumin and
Unsworth (2007)), chemistry (Forrester (2015)) and elec-
trical engineering (Dörfler and Bullo (2012)), to cite a
few, are examples of contexts where the Kuramoto model
has been successfully used. The control community has
taken an active interest in the Kuramoto model and in the
last two decades has provided rigorous guarantees of its
synchronization properties in various settings, see, e.g., Ja-
farpour and Bullo (2019); Jadbabaie et al. (2004); Chopral
and Spong (2009); Dörfler and Bullo (2011); Leonard et al.

? Work supported by the ANR under grant HANDY ANR-18-CE40-
0010

(2012); Aokii (2015); Sepulchre et al. (2007); Aeyels and
Rogge (2004).

Among the phenomena characterizing oscillating systems,
collective synchronization plays a key role. However,
the results in the existing literature come with several
shortcomings preventing this phenomenon from occurring.
First, when the network comprises oscillators with the
same natural frequency, i.e., when ωi = ω for all i ∈
{1, . . . , n} in (1), it is now well-known that a system of
Kuramoto oscillators admits, in addition to stable equilib-
ria coinciding with the synchronization set, equilibria that
are unstable (see, e.g., Strogatz (2000); Sepulchre et al.
(2007)). The downside of this result is that the closer a
solution is initialized to an unstable equilibrium, the longer
it will take for phase synchronization to arise: we talk of
non-uniform convergence Sepulchre et al. (2007). While
non-uniform synchronization may naturally characterize
certain physical (Oud (2006)) and biological systems, in
general it is not a desirable property for engineering ap-
plications, for which we have the freedom to design the
interconnection rules. Indeed, as a first drawback, the lack
of uniformity may induce arbitrarily slow convergence to
the attractor set and poor robustness properties (Miller
and Pachter (1997)). Secondly, it may occur in the clas-
sical Kuramoto model that the angular phase mismatch
between adjacent oscillators remains constant and differ-
ent from zero indefinitely: in this case we talk of phase
locking (Aeyels and Rogge (2004)), which hampers the
capability to reach asymptotic collective synchronization.
Thirdly, in critical applications, finite-time convergence,
instead of only asymptotic synchronization, may be a
mandatory requirement (Polyakov (2011)). To the authors’
best knowledge, the case of finite-time synchronization of
Kuramoto oscillators has been studied only in (Wu and
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Li (2018)), where the authors propose a multiplex con-
trol to synchronize non-identical oscillators in fixed-time.
Finally, contrary to the case of non-identical oscillators
with constant natural frequencies, which has been widely
investigated in the literature (Dörfler and Bullo (2014)),
oscillators with time-varying natural frequencies have been
studied only in the settings of second order Kuramoto
models, see, e.g., Dörfler and Bullo (2012), as far as we
know.

In this context, we propose novel hybrid rules to intercon-
nect oscillators, by exploiting the periodicity of phases.
We consider an undirected tree graph Gu = (V, Eu) with
n = |V| nodes and m = |Eu| edges and we assign an
arbitrary orientation to Gu, which leads to the oriented tree
G = (V, E). The continuous dynamics of each oscillator,
represented by a node in G, is defined as

θ̇i = ωi(t)+κ
∑
j∈Oi

σ(θj − θi + 2qijπ)

−κ
∑
j∈Ii

σ(θi − θj + 2qjiπ), x ∈ C, (2)

where the sets Ii ∪ Oi := Vi represent the in-neighbors
and out-neighbors of node i. We consider each phase θi,
i ∈ V, evolving on [−π− δ, π+ δ], with δ ∈ (0, π). Variable
qij , (i, j) ∈ E , is a logic state, taking values in {−1, 0, 1}.
The role of qij is to unwind the difference between the two
phases θj and θi through jumps while it remains constant
along flows. The time-varying parameter ωi(t) ∈ [ωm, ωM ]
in (2) is the instantaneous frequency of oscillator i while
the strictly positive gain κ ∈ R>0 scales the coupling
between oscillators. The coupling action is expressed by σ,
which is piecewise continuous on domσ := [−π− δ, π+ δ],
and is selected such that σ(s) = −σ(−s) for any s ∈ domσ
and that sgn(s)σ(s) ≥ α(|s|) for any s ∈ domσ \ {0} and
for some function α positive definite and non-decreasing.
Examples of suitable functions σ are depicted in Figure 2,
together with the sine function used in (1), for the sake of
comparison (additional selections can be found in Mariano
et al. (2021)). The state x collects all the qij , (i, j) ∈ E ,
and θi, i ∈ V. The flow set C in (2) is selected as the
closed complement of the jump set D. Through jumps we
ensure that the proposed model is well-defined: We design
a first set of jump rules to guarantee that the argument
θj−θi+2qijπ of σ in (2) belongs to domσ = [−π−δ, π+δ]
when flowing. A second set of jump rules is introduced for
when one of the oscillators i ∈ V reaches |θi| = π + δ.
In this case, a jump of 2π is enforced so that the phase
is mapped into (−π − δ, π + δ) while remaining the same
modulo 2π.

The novel class of hybrid coupling rules proposed to in-
terconnect the oscillators induces uniform global practical
asymptotic stability of the synchronization set, defined as

A := {x ∈ C ∪D : θi = θj + 2kijπ,∀(i, j) ∈ E}, (3)

thereby ensuring global uniform convergence, while still
locally preserving the original behavior of Kuramoto os-
cillators for suitable selections of σ. The practical stabil-
ity results can be summarized in the following theorems,
whose proofs are given in Mariano et al. (2021).

Theorem 1. Given set A in (3), the following holds.

(i) All maximal solutions of the considered hybrid model
are t−complete, i.e., their continuous time domain is
unbounded;

(ii) there exists a class KL function β◦ and a class K gain
γ◦, both of them independent of κ, such that, for any
κ > 0, all solutions x satisfy

|x(t, j)|A ≤ β◦(|x(0, 0)|A, κt)+γ◦((κ)−1(|ωM −ωm|)), (4)

for all (t, j) ∈ domx, where ωM − ωm is the maximum
mismatch of the instantaneous frequency of two adjacent
oscillators. �

In view of item (i) of Theorem 1, item (ii) of Theorem 1
provides an insightful bound (4) illustrating the trend of
the continuous time evolution of the hybrid solutions to
our model, and the role of κ in speeding up their tran-
sient and reducing their asymptotic disagreement. Hence,
Theorem 1 implies that the oscillator phases uniformly
converge to any desired neighborhood of A by taking κ
sufficiently large, thus the practical nature of the result. A
useful outcome of the mild regularity conditions that we
require from σ is that defining σ to be discontinuous at the
origin, as in the staircase function represented in Fig. 2,
leads to a desirable sliding-like behavior of the solutions in
the attractor A. This sliding property induces interesting
advantages of the behavior of solutions. A first advantage
is that, even with non-uniform natural frequencies, we
prove uniform global KL asymptotic stability of A for a
large enough coupling gain κ, due to the well-known abil-
ity of sliding-mode mechanisms of dominating unknown
additive bounded disturbances acting on the dynamics.
A second advantage is that we can guarantee a finite-
time convergence. Finally, by taking κ sufficiently large,
we actually prove prescribed finite-time convergence (see
Song et al. (2017)). These properties are formalized in the
theorem below.

Theorem 2. If σ is discontinuous at the origin, then set A
in (3) is prescribed finite-flowing-time stable, i.e., for each
T > 0 there exists κ? > 0 such that for each κ ≥ κ?:
(i) there exists β ∈ KL such that all solutions x satisfy
|x(t, j)|A ≤ β(|x(0, 0)|A, t + j), ∀(t, j) ∈ domx;

(ii) all solutions x satisfy, x(t, j) ∈ A for all (t, j) ∈ domx
with t ≥ T . �

Simulations are provided to illustrate the theoretical guar-
antees and demonstrate the potential strength of hybrid
theoretical tools to overcome fundamental limitations of
continuous-time networked systems as the non-uniform
behavior typically found with classical Kuramoto models.

In a first set of simulations, to illustrate the uniform
asymptotic and finite-time synchronization property, we
consider a tree-like network of n = 20 heterogeneous
oscillators with time-varying natural frequency and we
initialize solutions far away from the synchronization set,
in a neighbourhood of one of the unstable equilibria of the
classical Kuramoto oscillator (Strogatz (2000)).

The phase evolution is reported 1 in Fig. 3, for different
selections of σ, and κ = 1. When σ is defined as the
quadratic or the sine function, practical synchronization
is achieved, as shown in Fig. 3. We note that using the
1 The simulations have been carried out using the Matlab toolbox
HyEQ (Sanfelice et al. (2013)).
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Fig. 1. Projection of the flow and jump sets on (θi, θj) for each value of qij (Mariano et al. (2021)).

Fig. 2. Examples of suitable functions σ satisfying, to-
gether with the sine function used in the classical
Kuramoto model.

sinusoidal σ, as in the classical Kuramoto oscillators, leads
to a slower convergence due to the non-uniform synchro-
nization property, as compared to the quadratic and the
staircase functions. On the other hand, the staircase func-
tion, which is discontinuous at 0, leads also to a finite-time
synchronization property, in agreement with Theorem 2.
In a second set of simulations, we consider n = 5 os-

cillators, κ = 1 and κ
n = 1 in (1), so that the coupling

gains are the same and ωi = 1, i ∈ {1, . . . , 5}. Simulation
results for an “all-to-all” network are provided in Fig.4
where we see that the phases generated by our model show
a richness of converging behaviors (asymptotic and finite
time convergence compared to the exponential one of the
classical Kuramoto model) for relatively large initial phase
mismatch (left column). For larger initial errors (right
column), our designed hybrid coupling induces uniform
synchronization, whereas slow transients are generated
by (1) (top row). Similar results have been obtained in
the case where the interconnection graph is a tree. Even
though our main results in Theorems 1 and 2 require tree-
like networks, Fig.4 shows that our solution may provide
desirable uniform synchronization also with more general
“all-to-all” networks.
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Abstract: We deal with evolutionary game-theoretic learning processes for population games
on networks with dynamically evolving communities. Specifically, we propose a novel framework
in which a deterministic, continuous-time replicator equation on a community network is coupled
with a closed migration process between the communities, in turn governed by an environmental
feedback mechanism resulting in co-evolutionary dynamics. Through a rigorous analysis of the
system of differential equations obtained, we characterize the equilibria of the coupled dynamical
system. Moreover, for a class of population games —matrix games— a Lyapunov argument is
used to establish an evolutionary folk theorem that guarantees convergence to the evolutionary
stable states of the game. Numerical simulations are provided to illustrate and corroborate our
theoretical findings.

Keywords: Game theory, evolutionary games, flows in graphs.

1. INTRODUCTION

The literature on evolutionary game theory usually relies
on the assumption that individuals interact on a homo-
geneous time-invariant all-to-all communication structure.
However, this assumption is quite simplistic in many real-
world scenarios Easley and Kleinberg (2010). To address
this limitation, in particular for the class of learning
mechanisms regulated by pairwise interactions and imita-
tion dynamics, some recent efforts toward incorporating
a mesoscopic network structure into learning protocols
have been made. In these frameworks, it is assumed that
the players are divided into communities that determine
their possible interactions with other players. For example,
in Hofbauer and Sandholm (2009); Sandholm (2010), com-
munities are introduced as fully mixed and isolated popu-
lations, where players do not interact across communities,
but the communities themselves are coupled through a
common payoff function. For such a model, global conver-
gence results have been established for several classes of
games. In Barreiro-Gomez et al. (2017), some convergence
results have been extended to populations in which the the
action played by an individual determines their community
and thus, ultimately, their pattern of interactions. In Como
et al. (2021), imitation dynamics on community networks
have been formalized, in which players belong to different
communities who interact on a network structure. Some
convergence results have been established, including global
convergence for potential games.

1 This work was partially supported by the Wallenberg AI, Au-
tonomous Systems and Software Program (WASP) funded by the
Knut and Alice Wallenberg Foundation.

In the aforementioned works, it is assumed that the com-
munities are fixed a priori Como et al. (2021); Hofbauer
and Sandholm (2009); Sandholm (2010) or determined by
the individuals’ actions Barreiro-Gomez et al. (2017). This
relies on an assumption of time-scale separation, in which
a dynamical co-evolution of the communities at the same
time-scale as the learning process is neglected.

In this work, we address this gap by proposing a novel dy-
namic coupling of two mechanisms. On the one hand, evo-
lutionary dynamics on community networks with closed
migration processes as in Kelly (2011).On the other, en-
vironmental feedback, which has previously been mod-
eled for evolutionary game frameworks without commu-
nity structure in Tilman et al. (2020). Here, we model a
scenario where individuals of a community can move to
other communities in response to environmental changes.
This means that we augment the system of ordinary differ-
ential equations (ODEs) that characterizes the replicator
equation on community networks from Como et al. (2021)
with a set of ODEs that describes the evolution of the
community densities.

Notation: The sets of real and non-negative real numbers
are denoted by R and R+, respectively. For finite sets A
and B, RA×B denotes the set of real matrices whose entries
are indexed by the elements of A × B. The transpose of
a matrix x is denoted by x⊤. The j-th column (row) of
matrix x is denoted by xj (xj′) and the ij-th element by
xij . The i-th element of a vector y is denoted by yi and
the 2-norm of the vector as ||y|| The vector of all ones is
denoted by 1 and the sign function is denoted by sgn. For
a non-negative matrix W in Rn×n the associated graph is
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defined as (N , EW ), with node set N := {1, 2, . . . , n} and
edge set EW := {(i, j) ∈ N ×N : Wij > 0}.

2. MODEL

We consider a continuum of individuals structured into
communities that interact with each other through in-
stantaneous, random, pairwise encounters with varying
strengths, both within and between the communities in
the population. In each pairwise encounter individuals use
an action from a finite and common action set, which,
together with the action of the opponent, results in a re-
ward. Evolutionary dynamics describe how the frequency
of actions change under the influence of the pairwise
encounters. Here, we consider a replicator equation on
community networks in which the frequency of actions is
assumed to be proportional to the expected reward and
performance of the actions in the population. The novel
aspect is that individuals can move freely between the
communities. The communities are connected by a dy-
namic flow network whose flow rates change in response to
the frequencies of actions in the communities and, possibly,
an exogenous process. Since the movement of individuals
changes the rate at with which pairwise encounters oc-
cur, a feedback process is established that describes a co-
evolutionary process of strategic interaction and migration
at a community and population level. In the following, the
formal definitions of the various concepts are provided.

2.1 Population game

Given a finite action set the population state y is a vector
in the unitary simplex over A defined as Y := {y ∈ RA

+ :

1⊤y = 1}. The elements yi of the population state y
denotes the fraction of players in the population that use
action i in A (i-players). A population state y in Y is
said to support action i in A if a non-zero fraction of the
population uses it. The set of Sy := {i ∈ A : yi > 0} is
called the support of y. Given a population state expected
rewards ri(y) are determined by the reward functions
ri : Y → R for i in A. A population game then refers
to the pair (Y, r).

2.2 Community network

Individuals are structured into a finite set H of commu-
nities. We refer to the proportion of the population in
community h in H as the community density and denote it
by ηh. The fraction of i-players in community h is denoted
by xih and make up the elements of the system state
matrix x in RA×H

+ . The columns of the system state matrix

are referred to as the community state vectors xh in RA
+

for h in H. Similar as before, the support of a community
state is Sxh

:= {i ∈ A : xih > 0} and ∪h∈HSxh
= Sy. The

density of the population is assumed to be constant and
given by

η1 = 1⊤x1 = 1⊤y = 1, (1)

which results in the set of admissible system states X =
{x ∈ RA×H : (1)}. The strength of interactions between
communities is determined by a constant non-negative
matrixW in RH×H

+ . Together with the fraction of i-players
this determines the rate xihWhkxjk ≥ 0, for i, j in A and

h, k inH, at which i-players in community hmeet j-players
in community k in a pairwise encounter. We refer to the
triplet (H,W,η) as a community network. Throughout the
extended abstract the following assumption is made.

Assumption 1. W is non-negative and irreducible with a
strictly positive diagonal. That is, the graph (H, EW ),
associated to the community network is connected and has
self-loops.

2.3 Evolutionary dynamics

Although the results that we will describe in section 3.1
can be generalized to a broader class of evolutionary imi-
tation dynamics, here we focus on the replicator equation
due to its prominence in evolutionary game theory Cress-
man et al. (2003); Cressman and Tao (2014) and control
applications of population games Quijano et al. (2017).
The replicator equation on a community network is a ma-
trix valued equation f(x) in RH×H

+ whose elements Como
et al. (2021)

fih(x) = ηh
∑
k∈H

xikWhkri(y)− xih

∑
j∈A

∑
k∈H

xjkWhkrj(y).

(2)
describe how the proportion of i-players in community
h changes under the influence of selection. We remark
that, if there is a community h in H such that ηh = 1,
then (2) reduces to the more familiar form of the classic
replicator equation Cressman and Tao (2014) given by

fi(x) = xi

(
ri(x)−

∑
j∈A xjrj(x)

)
for xi = Whhxih.

Assumption 2. Expected rewards are positive.

This assumption is born out of a technical necessity that
is not confining: because the restricted Nash equilibria
of (2) are invariant to the addition of a constant, negative
rewards can always be changed to positive ones without
changing the set of equilibrium points.

2.4 Dynamic flow process

We assume individuals of a community have an intrinsic
tendency for movement that is described by a constant
non-negative matrix Λ in RH×H

+ with elements λhk. Given
a system state x in X these intrinsic tendencies may
be amplified or reduced by a non-negative environmental
function. ϕ : X → RH×H

+ . The environmental response
function may also depend on a subset of community state
vectors or an exogenous variable. It may also be governed
by positive system dynamics. As in the closed migration
processes of (Kelly, 2011, Chapter 2), we assume scaling
is multiplicative such that the dynamic rate at which
individuals move from community h to community k is
λhkϕhk(x) in R+. The changes in community densities
induced by these movements are described by the dynamic
flow process

η̇h =
∑
k∈H

λkhϕkh(x)ηk − ηh
∑
k∈H

λhkϕhk(x). (3)

This preserves the population density (1) because the
system is closed. Moreover, non-negativity of the environ-
mental function ϕ and movement matrix Λ ensures the
solutions of (3) remain well-defined densities.
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This can, for example, model density-limiting effects,
which are an important consideration in ecological and
population models. Increased pressures on resources can
lower reproductive rates Cressman and Garay (2003)
and increase out-migration Isard (1960); Masanori et al.
(2015). The latter can, for example, be captured by con-
sidering a dynamic environmental response that is uniform
in the outflows of a community:

ϕ̇hk = (ϕhk −m)

(
1− ηh

κh

)
ϕhk, (4)

where m > 0 is a constant maximum environmental re-
sponse and κh > 0 the carrying capacity of community
h. Clearly, its solutions ϕh(t) of the above differential
equation exist in R+ as required for well-defined commu-
nity densities. Moreover, if a community is overcrowded
ηh > κh and out-migration increases. This example may
be generalized to account for a dependency of the carrying
capacity on the community state vector xh akin to density
games Novak et al. (2013).

When the dynamic movement rates are frequency depen-
dent, but action independent, the proportion of actions
in the outflows of a community are distributed according
to the corresponding community state vector. Thus, when
(2) is interconnected with (3), the closed-loop system state
dynamics read as

ẋih =
∑
k∈H

λkhϕkh(x)xik − xih

∑
k∈H

λhkϕh(x)

+ ηh
∑
k∈H

xikWhkri(y)− xih

∑
j∈A

∑
k∈H

xjkWhkrj(y). (5)

Definition 1. The combination of a population game, a
community network and an environmental function, de-
fine the population game on a community network with
dynamic densities as the tuple Γ = (Y, r,H,W,Λ,ϕ).

3. RESULTS

3.1 A dynamic system state-density balance

We next characterize the asymptotic relation between
the population state, the community state and dynamic
community densities of a connected community network.
For our first result, no further restrictions are imposed on
the size of the finite action set, or the structure of the
reward functions and environmental function.

Theorem 1. Consider a population game on a community
network with dynamic densities Γ that satisfies Assump-
tions 1-2. Let η(t) and x(t) be the solutions of the dynam-
ics (3) and (5), respectively. If lim

t→∞
x(t)1 = y∗, then y∗ is

a restricted Nash equilibrium and, for all h in H such that
lim inf
t→∞

ηh(t) > 0, it holds that

lim
t→∞

xih(t)

ηh(t)
= y∗i ∀i ∈ A. (6)

In the degenerate cases ηk(t) = 0, xik(t) = 0 for all i in A.

The proof is based on W being non-negative and irre-
ducible, together with the dynamic flow process being
closed and non-negative. Using this, it can be shown that
the ratio xih/ηh is constant and equal for all communities

if the population state y is at an equilibrium. By Assump-
tion 2, this must be a restricted Nash equilibrium. Details
can be found in Govaert et al. (2022).

Theorem 1 shows that the dynamic system state-density
balance in(6) is achieved even when the dynamic flow
process (3) is non-convergent, i.e. lim

t→∞
η(t) does not exist.

Otherwise, the following corollary is an immediate conse-
quence of Theorem 1.

Corollary 1.1. If the dynamic flow process (3) converges to
lim
t→∞

η(t) = η∗ and lim
t→∞

x(t)1 = y∗, then the system state

matrix converges to the equilibrium lim
t→∞

x(t) = y∗η∗⊤.

3.2 Evolutionary stability

Next, we focus on the relation between the population
state vector and evolutionarily stable states. For this
result, we restrict our attention to binary action sets and
linear rewards functions of the form

r(y) =

[
a b
c d

]
y a, b, c, d > 0, (7)

that satisfy Assumption 2. These rewards can also be
interpreted as the payoffs of a player in a two-by-two
symmetric matrix game played against the mixed strategy
y. Consider the following definition of an evolutionarily
stable state from Hofbauer and Sigmund (1998).

Definition 2. (Evolutionarily stable state). A population
state vector ŷ in Y is an evolutionarily stable state if
there exists δ > 0 such that ŷ · Ay > y · Ay, for all
y : 0 < ||y − ŷ|| < δ].

The following result shows the importance of evolutionar-
ily stable states also for the replicator equation on net-
works with dynamic communities when the underlying
interaction network is undirected. Its proof, omitted due
to space constraints, is based on a Lyapunov argument.

Theorem 2. Consider Γ that satisfies Assumption 1 and
additionallyW = W⊤. The action set is binary and reward
functions are linear and symmetric. Then,

(1) An evolutionarily stable state ŷ in Y is locally asymp-
totically stable.

(2) If an evolutionarily stable state ŷ exists in the interior
of Y then all interior trajectories converge to it.

The proof is based on a Lyapunov argument, where the

strict local Lyapunov function P (y) :=
∏

i∈Sŷ
yŷi

i is

combined with the assumption that W is connected and
symmetric. Details can be found in Govaert et al. (2022).

The combination of Theorems 1 and 2 characterizes the
asymptotic behavior at a population and community level
and shows the important role of evolutionarily stable
states. We now illustrate this with a brief case study
on carrying capacities that exhibit periodic behaviors un-
der the influence of geographically distributed seasonal
changes or cyclic socio-economic parameters. We illustrate
this for two communities with a sinusoidally varying car-
rying capacities Banks (1993):

κ1(t) = γ sin(t) + ρ, κ2(t) = γ sin(t+ π) + ρ, (8)

with 0 < γ < ρ to ensure they are positive. The phase shift
between the two communities represents a geographical
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Fig. 1. Numerical solutions of the dynamic flow process (3) and the closed-loop system (5) for two communities
with the dynamic environmental function (4) with sinusoidal varying carrying capacities (8). Notice in (b) that
the community densities oscillate periodically from t = 22, while the population state in (a) converges to an
equilibrium and a dynamic balance system state is achieved asymptotically. Parameters values are as follows.
Carrying capacity: γ = 0.25, ρ = 0.5. Pairwise rewards: a = 1, b = 7, c = 5, d = 6. Interaction matrix: W11 = 0.7,
W12 = W21 = W22 = 0.3. Movement matrix: λaa = λbb = 1, λba = 0.8, λab = 0.5. Initial conditions not shown in
the figure: ϕ12(0) = ϕ21(0) = 0.05.

difference in seasonal changes or socio-economic parame-
ters. The sinusoidally varying carrying capacities can be
combined with the dynamic environmental function (4).
A closed system of differential equations is then obtained
with the dynamic flow process (3) and the evolutionary
dynamic (5) with rewards (7). Even for just two communi-
ties a full analysis is challenging. However, with the theory
developed here, some critical insights at both a population
and community level can be obtained. As Theorem 2
predicts, the population state converges asymptotically to
the evolutionarily stable state indicated by the horizon-
tal line in Fig. 1a. The interesting behavior occurs at a
community level that shows persistent oscillations due to
the sinusoidally varying carrying capacities as in Fig. 1b.
The effect of Theorem 1 is then seen by the trajectories
that converge to each other in Fig. 1a: the proportion of
players in the communities converge asymptotically to the
product of the oscillating community densities and the
evolutionarily stable state.

4. CONCLUSION

In this work, we have proposed a novel framework for
evolutionary game dynamics on networks with dynamic
communities. Specifically, our framework couples a learn-
ing dynamics on a community network with closed migra-
tion processes and an environmental feedback, which co-
evolve at comparable time scales. Under some reasonable
assumptions on the structure of the networks and on the
reward functions, we have provided a characterization of
the equilibria of the dynamical system. Moreover, for ma-
trix games on undirected networks, we have established a
convergence result to the evolutionary stable states of the
system.

REFERENCES

Banks, R.B. (1993). Growth and diffusion phenomena:
Mathematical frameworks and applications, volume 14.
Springer Science & Business Media.

Barreiro-Gomez, J., Obando, G., and Quijano, N. (2017).
Distributed population dynamics: Optimization and
control applications. IEEE Trans. Syst., Man, Cybern.
Syst., 47(2), 304–314.

Como, G., Fagnani, F., and Zino, L. (2021). Imitation
dynamics in population games on community networks.
IEEE Trans. Control. Netw., 8(1), 65–76.

Cressman, R., Ansell, C., and Binmore, K. (2003). Evolu-
tionary dynamics and extensive form games, volume 5.
MIT Press.

Cressman, R. and Garay, J. (2003). Stability in n-species
coevolutionary systems. Theor. Popul. Biol., 64(4), 519–
533.

Cressman, R. and Tao, Y. (2014). The replicator equation
and other game dynamics. Proc. Natl. Acad. Sci.
U.S.A., 111(Supplement 3), 10810–10817.

Easley, D. and Kleinberg, J. (2010). Networks, crowds,
and markets: reasoning about a highly connected world.
Cambridge University Press.

Govaert, A., Zino, L., and Tegling, E. (2022). Population
games on dynamic community networks. IEEE Contr.
Syst. Lett., 6, 2695–2700.

Hofbauer, J. and Sandholm, W.H. (2009). Stable games
and their dynamics. J. Econ. Theory, 144(4), 1665 –
1693.e4.

Hofbauer, J. and Sigmund, K. (1998). Evolutionary Games
and Population Dynamics. Cambridge University Press.

Isard, W. (1960). Methods of regional analysis. MIT Press.
Kelly, F.P. (2011). Reversibility and Stochastic Networks.

Cambridge University Press.
Masanori, T., Wada, K., and Fukuda, I. (2015). Envi-

ronmentally driven migration in a social network game.
Scientific Reports, 5(12481).

Novak, S., Chatterjee, K., and Nowak, M.A. (2013). Den-
sity games. J. Theor. Biol., 334, 26–34.

Quijano, N., Ocampo-Martinez, C., Barreiro-Gomez, J.,
Obando, G., Pantoja, A., and Mojica-Nava, E. (2017).
The role of population games and evolutionary dynam-
ics in distributed control systems: The advantages of
evolutionary game theory. IEEE Contr. Syst. Mag.,
37(1), 70–97.

Sandholm, W.H. (2010). Population Games and Evolu-
tionary Dynamics. Cambridge University Press.

Tilman, A.R., Plotkin, J.B., and Akçay, E. (2020). Evo-
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Abstract: Recently, there has been a large interest in the theory of optimal transport and its
connections to the Schrödinger bridge problem. In this work we generalize some of these results
to multi-marginal optimal transport problems when the cost function decouples according to a
tree structure. In particular, the entropy regularized multi-marginal optimal transport problem
can be seen as a Schrödinger bridge problem on the same tree. Moreover, based on this, we extend
efficient algorithms for the bi-marginal problem to the multi-marginal setting where the cost
function decouples according to a tree structure. Such problems appear in several applications
of interest such as barycenter and tracking problems. A common approach for solving these
problems is by utilizing pairwise regularization. However, we show that the multi-marginal
regularization introduces less diffusion, which is favorable in many applications.

Keywords: Optimal transport, Schrödinger bridge, Graph signal processing, Multi-marginal
problems, Entropy regularization

1. MULTI-MARGINAL OPTIMAL TRANSPORT

An optimal transport problem is to find a transport plan
that minimizes the cost of moving mass from one distribu-
tion to another, see, e.g., Villani (2008). Historically this
problem has been important in economics and operations
research, but as a result of recent progress it has become
a popular tool in a wide range of fields such as signal pro-
cessing, computer vision, automatic control, and machine
learning (see, e.g., Elvander et al. (2020); Dominitz and
Tannenbaum (2010); Solomon et al. (2015); Chen et al.
(2016c); Adler et al. (2017)). An extension to the standard
optimal transport framework is multi-marginal optimal
transport, see, e.g., Pass (2015), which seeks a transport
plan between not only two, but several distributions.

In this extended abstract, which is based on Haasler
et al. (2021), we consider discrete multi-marginal optimal
transport problems. In this setting, the marginal distri-
butions are described by nonnegative vectors µj ∈ Rn+,
for j = 1, . . . , J , and we seek a nonnegative J-mode
mass transport tensor M ∈ Rn×n···×n+ that minimizes the
transportation cost between the marginals. In particular,
the element Mi1,...,iJ of M denotes the amount of trans-
ported mass associated with the tuple (i1, . . . , iJ), where
ij ∈ {1, . . . , n} describes the location on the j-th marginal,
and the tensor M is thus a transport plan between the
marginals µj ∈ Rn+, for j = 1, . . . , J , if its projections
satisfy Pj(M) = µj , for j = 1, . . . , J , where

? This work was supported by the Swedish Research Council (VR),
grant 2014-5870, SJTU-KTH cooperation grant and the NSF under
grant 1901599. This work was previously accepted to MTNS 2020.

Pj(M) =
∑

i1,...,ij−1,ij+1,...,iJ

Mi1,...,ij−1,ij ,ij+1,...,iJ .

The cost for transporting mass is described by the nonneg-
ative J-mode cost tensor C ∈ Rn×n···×n+ , where Ci1,...,iJ
assigns a cost to the tuple (i1, . . . , iJ). The total cost is
thus 〈C,M〉 =

∑
i1,...,iJ

Ci1,...,iJMi1,...,iJ , and the prob-
lem of finding an optimal transport plan M can therefore
be formulated as a linear program. However, in many
practical applications this linear program is impossible to
solve directly due to the large number of variables, nJ . In
Cuturi (2013) these computational limitations have been
alleviated for the bi-marginal setting by introducing an
entropy regularization. Following the same approach, we
formulate the entropy regularized multi-marginal optimal
transport problem (see also Benamou et al. (2015); Elvan-
der et al. (2020)) as

minimize
M∈Rn×···×n

+

〈C,M〉+ εH(M)

subject to Pj(M) = µj , for j ∈ Γ,
(1)

where ε > 0 is a regularization parameter, the normalized
entropy of M is defined as

H(M) :=
∑

i1,...,iJ

(Mi1,...,iJ log (Mi1,...,iJ )−Mi1,...,iJ + 1) ,

and Γ ⊂ {1, 2, . . . , J} is an index set. At this point, note
in particular that the latter means that not all marginal
projections of M need to be assigned, as in the Wasserstein
barycenter problem. It can be shown that the optimal
solution to (1) is of the form M = K�U, where � denotes
elementwise multiplication, K = exp(−C/ε) and U can be
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decomposed as

U = u1 ⊗ u2 ⊗ · · · ⊗ uJ (2)

with uj ∈ Rn given by

uj =

{
exp(λj/ε), if j ∈ Γ

1, else.

Here λj ∈ Rn is the optimal dual variable corresponding
to the constraint on the j-th marginal in the dual problem
of (1). For details the reader is referred to, e.g., Elvander
et al. (2020); Benamou et al. (2015).

The optimal U in (2) can be found by so-called Sinkhorn
iterations, which are given by iteratively updating uj
according to

uj ← uj � µj ./Pj(K�U), (3)

for all j ∈ Γ, where ./ denotes elementwise division.
In Benamou et al. (2015), this scheme was derived as
Bregman projections, and in Elvander et al. (2020) as a
block coordinate ascend in the dual. If an optimal solution
to (1) exists, i.e., if the linear program is feasible, then
the Sinkhorn iterations in (3) converge. The computational
bottleneck of the Sinkhorn iterations (3) is computing the
projections Pj(M), for j ∈ Γ, which in general scales
exponentially in J . In fact, even storing the tensor M
is a challenge as it consists of nJ elements. However, in
many cases of interest, structures in the cost tensors can
be exploited to make the computation of the projections
feasible, e.g., for computing Euler flows (see Benamou
et al. (2015)) and in tracking and information fusion
applications (see Elvander et al. (2020)).

2. MULTI-MARGINAL OPTIMAL TRANSPORT ON
A TREE

In this section we generalize the methods for solving
structured multi-marginal optimal transport problems in
Elvander et al. (2020) to the setting where the cost
tensor decouples according to a tree structure, that is,
when the marginals of the optimal transport problem are
associated with the nodes of a tree, and cost matrices are
defined on its edges. Such structures appear in various
applications of optimal transport. For instance, path trees
are often used in tracking and interpolation applications,
e.g., in Chen and Karlsson (2018); Solomon et al. (2015).
Similarly, star trees describe barycenter problems, which
occur for instance in information fusion applications (see,
e.g., Cuturi and Doucet (2014); Elvander et al. (2019);
Solomon et al. (2015)).

Definition 1. A graph T = (V, E), with vertices V and
edges E , is a tree if it is acyclic and connected. The vertices
with degree 1 are called leaves; the set of leaves is denoted
L. For a vertex j ∈ V, the set of neighbours Nj is defined
as the set of vertices, which have a common edge with j.

Let T = (V, E) be a tree. Consider the entropy regularized
multi-marginal optimal transport problem (1) where the
marginals correspond to the nodes of the tree, i.e., V =

{1, 2, . . . , J}. Assume that the cost tensor C ∈ RnJ

+
decouples as

Ci1,...,iJ =
∑

(j1,j2)∈E

C
(j1,j2)
ij1 ,ij2

, (4)

where C(j1,j2) ∈ Rn×n is a cost matrix representing the
cost of moving mass between marginals µj1 and µj2 , for

Given: Tree T = (V, E) with leaves L = {1, 2, . . . , |L|}.
Initial guess uj , for j ∈ L
for (j1, j2) ∈ E do

Initialize α(j1,j2) according to (5)
end for
Initialize j ∈ L
while Sinkhorn not converged do

uj ← uj � µj ./
⊙

k∈Nj
α(j,k)

for (j1, j2) ∈ E on the path from j to (j + 1
mod |L|) do

Update α(j1,j2) according to (5)
end for
j ← j + 1 mod |L|

end while
return uj for j ∈ L

Algorithm 1. Sinkhorn method for the multi-marginal optimal
transport problem on a tree.

(j1, j2) ∈ E . Note that the cost on edge (j1, j2) ∈ E can
be interchangeably expressed by C(j2,j1) without changing
the cost tensor C in (4) by letting C(j2,j1) = (C(j1,j2))T .

The following theorem describes how to compute the
projections of a tensor of the form K � U, where U =
u1 ⊗ · · · ⊗ uj and K decouples according to a tree, which
appear in the Sinkhorn iterations (3) for optimal transport
problems with tree-structured costs.

Theorem 1. Let K = exp(−C/ε) with C as in (4) for
the tree T = (V, E), and let U = u1 ⊗ u2 ⊗ · · · ⊗ uJ .
Define K(j1,j2) = exp(−C(j1,j2)/ε), for (j1, j2) ∈ E . Then
the projection on the j-th marginal of K�U is of the form

Pj(K�U) = uj �
⊙
k∈Nj

α(j,k).

The vectors α(j,k), for all ordered tuples (j, k) ∈ E , can
be computed recursively starting in the leaves of the tree
according to

α(j,k) = K(j,k)uk for k ∈ L

α(j,k) = K(j,k)

(
uk �

⊙
`∈Nk\{j}

α(k,`)

)
for k 6∈ L. (5)

The expressions for the projections in Theorem 1 can be
used to solve a multi-marginal optimal transport problem
on a tree T = (V, E) by a Sinkhorn method as detailed in
(3). Such a method is summarized in Algorithm 1, where
we have also used the observation that in each iteration
step some of the factors α(j1,j2) do not change. More
precisely, between two consecutive updates of uj1 and uj2
only the factors on all edges that lie on the path between
nodes j1 and j2 are changed and thus need to be updated.

It should be noted that we restrict ourselves to the case
where Γ = L, since otherwise one can always formulate a
multi-marginal optimal transport problem on a subtree (or
a set of subtrees), where the marginals are known exactly
on the set of leaves of the subtree, and which fully describes
the solution to the original problem (see Haasler et al.
(2021) for more details).

3. CONNECTIONS TO SCHRÖDINGER BRIDGES

Schrödinger (1931) studied the problem of determining the
most likely evolution of a particle cloud observed at two

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



time instances, where the particle dynamics have deviated
from the expected Brownian motion. This problem is
tightly connected to the classical bi-marginal optimal
transport problem, which has been extensively studied
in Chen et al. (2016b,a); Léonard (2014). In a discrete
setting, the Schrödinger bridge problem can be formulated
by modeling the evolutions of a number of particles as a
Markov chain (see Pavon and Ticozzi (2010); Georgiou and
Pavon (2015)). In Haasler et al. (2019) a similar problem
has been considered for hidden Markov chains. In this
work, we extend the framework to Markov processes on
arbitrary tree-structures, and show that its solution is
equivalent to the solution of a certain entropy regularized
multi-marginal optimal transport problem on the same
tree.

To this end, given a tree T = (V, E) we consider a
rooted, directed tree Tr(V, Er), rooted in a leaf r ∈ L.
The directions of the edges Er are uniqely specificed by the
condition that any node j ∈ V is reachable from the root r.
Moreover, this introduces a partial ordering on Tr(V, Er),
i.e., j1 < j2 if j1 is on the path from r to j2.

Consider a cloud of N particles and assume that each
particle evolves according to a Markov process. Denote
the states of the Markov process by X = {X1, X2, . . . , Xn}
and let the transition probability matrix on edge (j1, j2) ∈
Er be A(j1,j2) ∈ Rn×n+ . Let the vector µj describe the
particle distribution over the discrete state space X on
node j, for j = 1, . . . , J . In analogy to the optimal
transport framework we define the mass transport matrix

M (j1,j2), where element M
(j1,j2)
k` describes the number of

particles transitioning from state k to state ` on edge
(j1, j2). Given µj1 and A(j1,j2), the probability for the

event that a given mass transfer matrix M (j1,j2) describes
the underlying particle dynamics satisfies a large deviation
principle with rate function H( · |diag(µj1)A(j1,j2)), i..e.,

Pµj1
,A(j1,j2)(M (j1,j2)) ∼ e−H(M(j1,j2)|diag(µj)A(j1,j2)),

where H(P |Q) :=
∑
i,j (Pi,j log (Pij/Qij)− Pij +Qij) is

the normalized KL divergence between two matrices P and
Q. Thus, the discrete Schrödinger bridge problem in Pavon
and Ticozzi (2010) (see also Haasler et al. (2019)) can be
naturally extended to the tree structure as

minimize
M(j1,j2), (j1,j2)∈Er,

µj , j∈V\Γ

∑
(j1,j2)∈Er

H
(
M (j1,j2) |diag(µj1)A(j1,j2)

)
subject to M (j1,j2)1 = µj1 , (M (j1,j2))T1 = µj2 , (6)

for (j1, j2) ∈ Er.

It can be shown that under certain conditions the solu-
tion to the generalized Schrödinger bridge problem (6) is
equivalent to the solution of the entropy regularized multi-
marginal optimal transport problem (1) on the same tree.
In particular, if the cost matrices in (4) and the transition
probabilities for problem (6) are chosen such that

C(j1,j2) = −ε log(A(j1,j2)), for all (j1, j2) ∈ Er, (7)

then it holds for the optimizers of (1) and (6) that

P(j1,j2)(M) = M (j1,j2), for (j1, j2) ∈ Er,
where the pairwise projections are defined as

Pj1,j2(M) =
∑

i1,...,iJ\{ij1 ,ij2}

Mi1,...,iJ ,

and consequently that Pj(M) = µj for all j ∈ V.

4. PAIRWISE REGULARIZED OPTIMAL
TRANSPORT ON A TREE

Another natural way to define an optimal transport prob-
lem on the tree T is to minimize the sum of all bi-marginal
transport costs on the edges of T . In fact, barycenter
problems are typically formulated in this pairwise manner,
see, e.g., Cuturi and Doucet (2014); Elvander et al. (2019).
Although, in the bi-marginal case the entropy regularized
optimal transport problem is equivalent to the Schrödinger
bridge, we show that this equivalence does not extend to
the respective problems defined on trees.

Given the cost matrices C(j1,j2) ∈ Rn×n+ for (j1, j2) ∈
E , the pairwise entropy regularized optimal transport
problem on T is defined as

minimize
µj ,j∈V\Γ

∑
(j1,j2)∈E

T (j1,j2)
ε (µj1 , µj2), (8)

where

Tε(µ1, µ2) = minimize
M∈Rn×n

+

trace((C(j1,j2))TM) + εH(M)

subject to M1 = µ1, MT1 = µ2.

We note that the objective function of the generalized
Schrödinger bridge (6) can be written as∑
(j1,j2)∈Er

H
(
M (j1,j2) |A(j1,j2)

)
−
∑
j∈V\L

(deg(j)− 1)H(µj).

If relation (7) holds, the generalized Schrödinger bridge
and entropy regularized multi-marginal optimal transport
problem are equivalent, and can be written as

minimize
µj ,j∈V\Γ

∑
(j1,j2)∈E

T (j1,j2)
ε (µj1 , µj2)−

∑
j∈V\L

(deg(j)−1)H(µj).

Thus, the multi-marginal optimal transport problem pe-
nalizes not only the transport cost between the marginals,
but in addition favors marginal distributions with high
entropy. One can thus expect less smoothed out distribu-
tions when solving the multi-marginal optimal transport
problem, which is desirable in many applications, such as
the localization problems in Elvander et al. (2020) and
computer vision applications (e.g., the ones in Solomon
et al. (2015)). Note that this qualitative difference between
the pairwise and multi-marginal formulation has been pre-
viously observed, yet not fully explained, for a barycenter
optimal transport problem, i.e., a star graph in Elvander
et al. (2020). Moreover, empirical study suggests that the
multi-marginal problem is better conditioned compared
to the pairwise problem, which allows for smaller values
of the regularization parameter ε, while still yielding a
numerically stable algorithm.

5. EXAMPLE

In this section we compare the solutions to the entropy
regularized multi-marginal and pairwise optimal transport
problems on the tree T illustrated in Figure 1(a). The
marginals on the 15 nodes are all 50× 50 pixel image, and
the marginal images on the 8 leaves, colored in gray in
Figure 1(a), are known. Each edge on the tree is associated
with a cost function defined by the L2-distance between
any two pixels. Using this choice of cost function in the
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(a) Tree for the example in Sec-
tion 5.

(b) Solution using pairwise opti-
mal transport, ε = 2 · 10−3

(c) Solution using multi-marginal
optimal transport, ε = 2 · 10−3

(d) Solution using multi-marginal
optimal transport, ε = 4 · 10−4

Fig. 1. Estimated marginals of the pairwise (b) and multi-
marginal (c,d) optimal transport solutions on the tree
in (a).

corresponding optimal transport problems yields smooth
translations of power for the intermediate marginals.

We solve the pairwise entropy regularized optimal trans-
port problem (8) with regularization parameter ε = 2·10−3

on T . The solution can be seen in Figure 1(b). Compared
to the pairwise optimal transport estimate, the solution
to the entropy regularized multi-marginal optimal trans-
port problem (1) on the same tree T and with the same
regularization parameter ε is significantly sharper and less
smoothed out, see Figure 1(c). For the pairwise optimal
transport problem, the method diverges with a smaller
regularization parameter, e.g., ε = 10−3. In contrast, for
the multi-marginal formulation the regularization param-
eter can be decreased further, still yielding a numerically
stable algorithm. We have found that the method is still
stable for a regularization parameter of ε = 4 ·10−4, which
results in very clear estimates on the intermediate nodes.
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Abstract: The splitting algorithms of monotone operator theory find zeros of sums of relations.
This corresponds to solving series or parallel one-port electrical circuits, or the negative feedback
interconnection of two subsystems. One-port circuits with series and parallel interconnections,
or block diagrams with multiple forward and return paths, give rise to current-voltage relations
consisting of nested sums and inverses. In this extended abstract, we present new splitting
algorithms specially suited to these structures, for interconnections of monotone and anti-
monotone relations.

Keywords: Scaled Relative Graph, Nyquist, loop shaping, robustness

1. INTRODUCTION

The mathematical property of monotonicity originated in
the study of networks of nonlinear resistors (Duffin, 1946;
Zarantonello, 1960; Dolph, 1961; Minty, 1960, 1961a,b).
Monotonicity generalizes the concept of passivity from
linear circuit theory; loosely speaking, an element is mono-
tone if it is passive with respect to any possible reference
trajectory. Following the influential paper of Rockafellar
(1976), monotone operator theory has grown to become
a pillar of large scale optimization theory (Bauschke and
Combettes, 2011; Ryu and Yin, 2022; Parikh and Boyd,
2013; Bertsekas, 2011).

Central to this theory are the family of splitting algorithms.
These algorithms find zeros of sums of monotone oper-
ators, and allow computation to be performed separately
for each operator. Recent work by the authors has revisited
the study of electrical networks using modern splitting al-
gorithms (Chaffey and Sepulchre, 2021). The main idea is
that finding a zero of the sum of two operators is equivalent
to solving the port behavior of their parallel (or series)
interconnection. In turn, this is equivalent to solving the
behavior of the negative feedback interconnection of two
elements. This observation motivates the development of
splitting algorithms which match more general circuit ar-
chitectures. In Section 4, we describe an algorithm which
solves the behavior of arbitrary series/parallel one-port
circuits.

While splitting methods require each circuit element to be
monotone, similar ideas can be applied to mixed monotone
circuits, consisting of port interconnections of monotone
and anti-monotone elements. This significantly expands
the possible types of circuit behavior, allowing, for ex-
ample, relaxation oscillations (van der Pol, 1926) and

⋆ The research leading to these results has received funding from the
European Research Council under the Advanced ERC Grant Agree-
ment Switchlet n. 670645, and from the Cambridge Philosophical
Society.

neuronal excitability (FitzHugh, 1961). In (Das et al.,
2021), the authors have adapted Difference of Convex Pro-
gramming (Lipp and Boyd, 2016; Yuille and Rangarajan,
2003) to solve such behaviors. In Section 5, we describe
a new splitting algorithm which matches the mixed feed-
back structure of oscillators such as the van der Pol and
FitzHugh-Nagumo models.

While classical splitting methods deal only with sums, the
algorithms we describe here deal with both sums and in-
verses - the two operations which constitute physical port
interconnections. The algorithms described in this abstract
form the basis for a more general class of splitting algo-
rithms, which correspond to arbitrary interconnections of
physical systems.

2. MONOTONE AND ANTI-MONOTONE
RELATIONS

A Hilbert space H is a complete vector space equipped
with an inner product, ⟨⋅∣⋅⟩ ∶ H ×H → C, and an induced

norm ∥x∥ ∶=
√

⟨x∣x⟩. In this abstract, we will treat general
Hilbert spaces, although a common choice in practice is the
space of square-summable, discrete time signals on [0, T ],
denoted l2,T .

An operator on H, is a possibly multi-valued map R ∶H →

H. The identity operator, which maps u ∈ X to itself, is
denoted by I. The domain of an operator R is denoted
domR. The graph, or relation, of an operator, is the set
{u, y ∣ u ∈ domR,y ∈ R(u)} ⊆H×H. We use the notions of
an operator and its relation interchangeably, and denote
them in the same way.

The standard operations on functions can be extended to
relations. Let R and S be relations on an arbitrary Hilbert
space H. Then:

S−1 = {(y, u) ∣ y ∈ S(u)}

S +R = {(x, y + z) ∣ (x, y) ∈ S, (x, z) ∈ R}

SR = {(x, z) ∣ ∃ y s.t. (x, y) ∈ R, (y, z) ∈ S}.
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Note that S−1 always exists, but is not an inverse in the
usual sense. In particular, in general S−1S ≠ I.

Definition 1. A relation S ⊆H ×H is called monotone if

⟨u1 − u2∣y1 − y2⟩ ≥ 0

for any (u1, y1), (u2, y2) ∈ S. A monotone relation is called
maximal if it is not properly contained in any other
monotone relation.

Definition 2. A relation S ∶H →H is anti-monotone if −S
is monotone.

3. SPLITTING TWO-ELEMENT CIRCUITS

There is a large body of literature on splitting algorithms,
which solve problems of the form 0 ∈ M1(u) + M2(u),
where M1 and M2 are maximal monotone relations. There
is a direct analogy with electrical circuits: if M1 and M2

are resistances, their series interconnection is given by the
relation v =M1(i)+M2(i); if M1 and M2 are conductances,
their parallel interconnection is given by i = M1(v) +
M2(v). Given a current, the corresponding voltage across
a parallel interconnection can be found using a splitting
algorithm, by solving 0 ∈M1(v)+M2(v)−i. Here, we briefly
describe two splitting algorithms – the forward/backward
splitting, and the Douglas-Rachford splitting. For the
convergence properties of these algorithms, we refer the
reader to (Giselsson and Moursi, 2019; Bauschke and
Combettes, 2011; Ryu and Yin, 2022). Given an operator
S and a scaling factor α, the α-resolvent of S is defined to
be the operator

resαS ∶= (I + αS)−1.

If S is maximal monotone, res S is single-valued (Minty,
1961a).

3.1 Forward/backward splitting

The simplest splitting algorithm is the forward/backward
splitting (Passty, 1979; Gabay, 1983; Tseng, 1988). Sup-
pose M1 and resαM2 are single-valued. Then:

0 ∈ M1(x) +M2(x)

⇐⇒ 0 ∈ x − αM1(x) − (x + αM2(x))

⇐⇒ (I + αM2)x ∋ (I − αM1)x

⇐⇒ x = resαM2(I − αM1)x.

The fixed point iteration xj+1 = resαM2(x
j
− αM1(x

j
)) is

the forward/backward splitting algorithm.

3.2 Douglas-Rachford splitting

The reflected resolvent, or Cayley operator, is the operator

RαS ∶= 2resαS − I.

Given two operators M1 and M2, and a scaling factor α,
the Douglas-Rachford algorithm (Douglas and Rachford,
1956; Lions and Mercier, 1979) is the iteration

zk+1 = T (zk),

xk = resαM2(z
k
),

where T is given by

T =
1

2
(I +RαM1RαM2). (1)

4. SPLITTING N -ELEMENT CIRCUITS

If our circuit is composed of three elements, with one
series interconnection and one parallel interconnection
(Figure 1), it has the form M = M1 + (M2 +M3)

−1. A
naive approach to solving the behavior of this circuit is
to use a splitting algorithm such as the forward/backward
algorithm, with the resolvent step applied for M1 and the
forward step applied for (M2 +M3)

−1. Applying this for-
ward step amounts to solving v = (M2+M3)

−1
(i) for some

u, which may be rewritten as 0 ∈ (M2 +M3)(v) − i. This
can be solved by again applying the forward/backward
algorithm.

+

− i

v?

+

−

v M3

M1

M2

Fig. 1. Three elements with one series interconnection and
one parallel interconnection.

This naive procedure has poor complexity: for every for-
ward/backward step for M1 + (M2 + M3)

−1, an entire
fixed point iteration has to be computed for (an offset
version of) M2+M3. In (Chaffey and Sepulchre, 2021), we
propose an alternative procedure for n-element circuits.
Here, we sketch this procedure on the circuit of Figure 1.
Rather than apply a forward step for the relation (M2 +

M3)
−1, we simply apply a single step of the fixed point

iteration needed to compute this forward step, using the
forward/backward algorithm. Given v⋆, we want to solve
0 ∈ (M1 + (M2 +M3)

−1
)(i)− v⋆. Assume that M3, resα1M2

and resα2M1 are single-valued. We then have:

v⋆ ∈ v +M1(i) (2)

v ∈ (M2 +M3)
−1

(i), (3)

where v is the voltage over M2, illustrated in Figure 1.
Equation (2) gives

i + α2M1(i) ∋ i − α2v + α2v
⋆

i = (I + α2M1)
−1

(i − α2v + α2v
⋆
)

i = resα2M1(i − α2v + α2v
⋆
).

Equation (3) gives

i ∈ (M2 +M3)(v)

v + α1M2(v) ∋ v − α1M3(v) + α1i

v = (I + α1M2)
−1

(v − α1M3(v) + α1i)

v = resα1M2(v − α1M3(v) + α1i).

This shows that a fixed point of the iteration

vk+1 = resα1M2(v
k
− α1M3(v

k
) + α1i

k
)

ik+1 = resα2M1(i
k
− α2v

k+1
+ α2v

⋆
)

is a solution to our original problem 0 ∈ (M1 + (M2 +

M3)
−1

)(i) − v⋆.

5. SPLITTING THE DIFFERENCE

A mixture of positive and negative feedback is a ubiqui-
tous mechanism, in both biology and engineering, for the
generation of switches and oscillations (Sepulchre et al.,
2019; Sepulchre and Stan, 2005; Stan et al., 2007; Stan and
Sepulchre, 2007; Chua et al., 1987). Again adopting the
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analogy of electrical circuits, such feedback systems can be
thought of as the parallel interconnection of three elements
(Figure 2) - the forward path and the negative feedback
path, which we assume to be monotone, and the positive
feedback path, which we assume to be anti-monotone.
Such a structure encompasses systems such as the van
der Pol and FitzHugh-Nagumo oscillators. For example,
the van der Pol oscillator is given by A1(s) = (s2 + 1)/s,
A2(v) = µv3/3 and B(v) = µv (where s is the Laplace
variable) (Das et al., 2021).

+

−

i

v A1 A2 −B

Fig. 2. A parallel mixed monotone circuit, which is a
prototype structure for systems such as the van der
Pol and FitzHugh-Nagumo oscillators.

Given the mixed monotone structure of Figure 2, we can
find the steady state behavior of the system by solving a
zero-finding problem: 0 ∈ A1(v) +A2(v) −B(v) − i.

The authors have explored methods to solve these prob-
lems using an adaptation of Difference of Convex Program-
ming in (Das et al., 2021). The method involves iterating
the operator (A1 +A2)

−1B. Computing (A1 +A2)
−1 at ev-

ery iteration is an expensive operation; in this section, we
propose the mixed monotone Douglas-Rachford algorithm
(Algorithm 7), which replaces (A1 + A2)

−1 with a single
step of the Douglas-Rachford iteration needed to invert it.

For operators A1 and A2 and step size α, we define
Tα(A1,A2) to be the Douglas-Rachford operator:

Tα(A1,A2) =
1

2
(I +RαA1RαA2). (4)

Recall that RαS denotes the Cayley operator 2resαS − I.

Algorithm 1 Mixed-Monotone Douglas-Rachford

1: Data: Maximal monotone A1,A2. Monotone, single-
valued B. Initial value x1. Convergence tolerance ε > 0.

2: Define Aj1 by x↦ A1(x) − yj for all j.
3: j = 1
4: do
5: Solve

xj+1 = resαA2(zj)

yj+1 = B(xj+1)

zj+1 = Tα(A
j+1
1 ,A2a)(zj).

6: j = j + 1.
7: while ∣xj+1 − xj ∣ > ε

Note that a fixed point of this algorithm is a solution to
0 ∈ A1(x)+A2(x)−B(x): we know, by convergence of the
Douglas-Rachford algorithm, that x is a solution to 0 ∈

Aj1(x)+A2(x), which is equal to A1(x)+A2(x)−B(x) at a
fixed point. (Chaffey, 2022, Thm. 4.1) gives a convergence
condition for this algorithm. Figure 3 shows steady-state
solutions to the van der Pol oscillator computed with
Algorithm 7. For further details of the implementation,
the reader is referred to (Chaffey, 2022, Example 4.3).

2 4 6 8 10 12 14 16 18

−1

0

1

2

Time t

V
o
lt
a
g
e
v

Fig. 3. Steady-state solutions to the van der Pol oscillator
for µ = 0.0002 (blue), 1.5 (orange) and 10 (red).
Algorithmic parameters are a step size of α = 0.05,
convergence tolerance of ε = 0.01 and 5000 time steps.
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Combining the SOS and SONC cones - A
Hilbert’s 1888 Theorem analogue and

further separation results
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Abstract: Studying convex cones inside the cone of positive semidefinite (PSD) polynomials is
an important field of research in real algebraic geometry and polynomial optimization. In this
work, we combine two such well established cones, which are sums of squares (SOS) and sums
of nonnegative circuit polynomials (SONC) and consider PSD polynomials, that decompose
into an SOS and a SONC part. We call the resulting set the SOS+SONC cone. For this newly
established cone, we prove two separation results. The first one is an analogue to Hilbert’s 1888
Theorem for the SOS+SONC cone. The second one shows that whenever the SOS and SONC
cones are proper subsets of the PSD cone, they are also proper subsets of the SOS+SONC cone.

Keywords: sums of squares, sums of nonnegative circuit polynomials, Hilbert’s 1888 Theorem,
polynomial optimization

1. INTRODUCTION

Minimizing a given real, multivariate polynomial f ∈ R[x]
is the central challenge of polynomial optimization. The
importance of this topic can be seen in the variety of
applications in different fields such as optimal control,
mathematical finance and real-time decision making. It is
well known that polynomial optimization can equivalently
be viewed as the problem of deciding nonnegativity of
real polynomials. This equivalence is of central meaning
in real algebraic geometry since convex geometric tools
can be used to obtain a deeper understanding of the set of
nonnegative polynomials.

The relevance of a theoretical study of both problems is
also stressed by the fact that both polynomial optimization
and deciding nonnegativity of real polynomials are in gen-
eral NP-hard even for low dimensional cases. Hence, one
is often interested in solving easier problems instead, often
involving trade offs between feasibility and preciseness of
solutions. In this work we follow the real algebraic geo-
metric approach of taking suitable inner approximations
of the set of nonnegative polynomials.

A first inner approximation of the cone of nonnegative
polynomials are sums of squares (SOS), which have a
long history in Mathematics and go back to Hilbert’s
seminal work in Hilbert (1888). The SOS approach has
proven to be a powerful tool for solving a vast number
of optimization problems, see see e.g. Lasserre (2009) for
more details. However, it has its limitations especially in
high degree and high number of variables cases.

A second approximation which has gained a lot of interest
in recent years are sums of nonnegative circuit (SONC)
polynomials, which were first introduced by Iliman and
de Wolff (2016). The sparse structure of this class of
polynomials allows to solve large problems, where the SOS

approach has its difficulties. However, since the SONC
approach is relatively new, it is only fully developed for
special classes of polynomials, having e.g. simplex Newton
polytopes. Indeed, there are different types of conic pro-
gramming using SONC for polynomial optimization, see
e.g. Wang and Magron (2020) and Dressler et al. (2020).

Dressler (2018) pointed out that if it would be possible
to combine the two approaches and use the best of both
worlds, one would get a new approximation which is at
least as good as the single approaches themselves.

In terms of polynomial optimization, let f ∈ R[x] and
consider the global polynomial optimization problem f∗ =
infx∈Rn f(x) = sup{λ ∈ R : f − λ ≥ 0 on Rn}. Let SOS
and SONC denote the sets of SOS and SONC polynomials,
respectively. Then, lower bounds on f∗ can be achieved
via fSOS := sup{λ ∈ R : f − λ ∈ SOS} and fSONC :=
sup{λ ∈ R : f − λ ∈ SONC}. Taking the Minkowski sum
SOS + SONC leads to a third lower bound fSOS+SONC :=
fSOS+SONC := sup{λ ∈ R : f − λ ∈ SOS + SONC} which
satisfies fSOS, fSONC ≤ fSOS+SONC ≤ f∗.
In this work, we fully characterize the numbers of vari-
ables and degrees of polynomials for which the above’s
inequalities are strict. Therefore, we formally introduce
the cone of sums of squares and nonnegative polynomials
(SOS+SONC) and present explicit examples of polynomi-
als separating this cone from the SOS and SONC cones as
well as the cone of positive semidefinite polynomials.

2. PRELIMINARIES

2.1 Notations

Let N := {1, 2, 3, . . .} and N0 := N ∪ {0} be the sets of
positive and nonnegative integers, respectively and [m] :=
{1, . . . ,m} (m ∈ N). For n ∈ N let R[x] := R[x1, . . . , xn]
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be the polynomial ring over R in n variables. The integer
n ∈ N will be fixed throughout this work.

A polynomial f ∈ R[x] with all monomials having the
same degree k ∈ N is called homogeneous or a form. For
k ∈ N we denote by Hn,k the finite dimensional vector
space of n-variate, homogeneous polynomials of degree k.
For f ∈ R[x], we write supp(f) for the support and New(f)
for the Newton polytope of f , i.e. New(f) = conv(supp(f)),
where conv(S) is the convex hull of a set S. For an
arbitrary polytope ∆ ⊆ Rn, we denote its set of vertices
by V (∆). If ∆ = New(f) is the Newton polytope of a
polynomial f , we also write V (f) := V (New(f)). For
α ∈ Nn0 and f ∈ R[x], we denote by fα the coefficient
of f corresponding to xα, i.e. f =

∑
α∈Nn

0
fαxα and fα = 0

if α 6∈ supp(f).

2.2 Young’s Inequality

The following Theorem is essential for proofs in Section 3.

Young’s Inequality Let 1 < p, q <∞ be s.t. 1/p+1/q = 1.

Further, let a, b ∈ R be arbitrary. Then ab ≤ |a|p
p + |b|q

q .

Further, for a, b ≥ 0 equality holds if and only if ap = bq.

2.3 Positive Semidefinite (PSD) Polynomials

A polynomial f ∈ R[x] is positive semidefinite (PSD) if
f(x) ≥ 0 for all x ∈ Rn. Clearly, a PSD polynomial must
have even degree. Therefore, an even integer 2d ∈ 2N will
be fixed throughout this work.

We denote by

Pn,2d := {f ∈ Hn,2d : f ≥ 0 on Rn}
the set of PSD forms of degree 2d. It is well known that
Pn,2d is a closed, convex cone in the vector space Hn,2d.

2.4 Sum of Squares (SOS) Polynomials

A polynomial f ∈ R[x] is a sum of squares (SOS) if it
admits a decomposition of the form f =

∑s
i=1 f

2
i such

that s ∈ N, fi ∈ R[x] (i ∈ [s]). The set of SOS forms of
degree 2d is denoted by

Σn,2d :=

{
f =

s∑
i=1

f2i : fi ∈ R[x]≤d, s ∈ N

}
.

Similar as the PSD cone, Σn,2d forms a closed, convex cone
inside Pn,2d.

The following theorem characterizes precisely the cases of
(n, 2d) for which the PSD and SOS cones coincide. It goes
back to Hilbert’s work Hilbert (1888).

Hilbert 1888 It holds Σn,2d = Pn,2d if and only if n = 2
or 2d = 2 or (n, 2d) = (3, 4).

2.5 Sums of Nonnegative Circuit (SONC) Polynomials

A polynomial f =
∑m
i=1 cix

α(i) + bxβ ∈ R[x] where
m ∈ N, α(1), . . . , α(m), β ∈ Nn0 and c1, . . . , cm, b ∈ R is a
circuit polynomial if it satisfies the following conditions:

(C1) The lattice points α(1), . . . , α(m) are even, i.e.
α(1), . . . , α(m) ∈ (2N0)n and affinely independent.

(C2) The coefficients ci corresponding to the α(i) are
positive, i.e. ci > 0 for i = 1, . . . ,m.

(C3) The exponent β lies in the interior of the Newton
polytope of f .

The monomials cix
α(i) (i = 1, . . . ,m) are called vertex

monomials. In addition, if b 6= 0 the monomial bxβ is
called interior monomial. The set of circuit polynomials
supported on A ⊆ Nn0 is denoted by CircA ⊆ R[x].

A polynomial f ∈ R[x] is a sum of nonnegative circuit
polynomials (SONC) if it admits a decomposition of the
form f =

∑s
i=1 fi where s ∈ N and every fi is a

nonnegative circuit polynomial. We denote by

Cn,2d :=

{
f =

s∑
i=1

fi : fi ∈ CircAi
∩Pn,2d, Ai ⊆ Nn0

}
the set of SONC polynomials of degree at most 2d. Again,
Cn,2d is a closed, convex cone inside Pn,2d.

The following Theorem shows that Cn,2d is an inner
approximation of Pn,2d, which is independent of Σn,2d. It
is a combination of results in (Iliman and de Wolff, 2016,
Prop. 7.2) and (Dressler, 2018, Thm. 3.1.2)

Theorem The SONC cone Cn,2d satisfies:

(1.) Cn,2d ⊆ Σn,2d if and only if n = 2 or 2d = 2 or
(n, 2d) = (3, 4).

(2.) C2,2 = Σ2,2 and Σn,2 6⊆ Cn,2 for all n ≥ 3.
(3.) Σn,2d 6⊆ Cn,2d for all (n, 2d) with 2d ≥ 4.

2.6 The combined cone SOS+SONC of sums of squares
and nonnegative circuit polynomials

A polynomial f ∈ R[x] is said to be a sum of squares
and nonnegative circuit polynomials (SOS+SONC) if it
has a decomposition of the form f = g + h for some
f ∈ Σn,2d, g ∈ Cn,2d. Further, we denote by

(Σ + C)n,2d := Σn,2d + Cn,2d

the set of SOS+SONC forms in n variables of degree 2d.

3. SEPARATING THE PSD CONE FROM THE
SOS+SONC CONE - A SOS+SONC ANALOGUE TO

HILBERT’S 1888 THEOREM

As in Hilbert 1888 for the SOS case and the theorem
of Section 2.5 for the SONC case, it is of interest to
find separation results, which classify whenever a given
inner approximation of the PSD cone is proper or not.
Therefore, we show in Theorem 1 an analogue to Hilbert
1888 for the SOS+SONC case. The following statement
was already proven in a non constructive way in (Averkov,
2019, Corollary 2.17). As a contribution we present an
alternative proof by constructing appropriate polynomials
in the two basic cases ((n, 2d) ∈ {(3, 6), (4, 4)}) and scaling
them to higher dimensional and number of variables cases.

Theorem 1. It holds (Σ + C)n,2d = Pn,2d if and only if
n = 2 or 2d = 2 or (n, 2d) = (3, 4).

As a first step, we show that it suffices to consider the
two elementary cases of ternary sextics and quarternary
quartics, i.e. (n, 2d) ∈ {(3, 6), (4, 4)}.
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Lemma 2. If (Σ+C)3,6 ( P3,6 and (Σ+C)4,4 ( P4,4 then
(Σn,k+C)n,k ( Pn,k for all n ≥ 3, k ≥ 4 and (n, k) 6= (3, 4)
(k even).

Proof. We show equivalently: P3,6\(Σ + C)3,6 6= ∅ and
P4,4\(Σ + C)4,4 6= ∅ imply Pn,k\(Σ + C)n,k 6= ∅ for all
n ≥ 3, k ≥ 4 and (n, k) 6= (3, 4) where k is even.

Claim 1: f ∈ Pn,k\(Σ + C)n,k implies for all m ∈ N,
f ∈ Pn+m,k\(Σ + C)n+m,k.

The case m = 1 can be seen easily, since SOS and SONC
polynomials in Hn+1,k stay SOS and SONC, respectively,
after plugging in xn+1 = 0. The general case follows
inductively.

Claim 2: f ∈ Pn,k\(Σ + C)n,k implies for all ` ∈ N
x2`
1 f ∈ Pn,k+2`\(Σ + C)n,k+2`.

Consider ` = 1 and let f ∈ Pn,k\(Σ + C)n,k be arbitrary.
Assume that x2

1f ∈ (Σ + C)n,k+2, i.e. there is a decom-
position x2

1f = fSOS + fSONC with fSOS and fSONC being
SOS and SONC polynomials in Hn,k+2, respectively. Since
the left hand side vanishes at x1 = 0, the right hand side
must vanish at x1 = 0 as well. Since fSOS, fSONC are PSD,
we obtain fSOS(0, x2, . . . , xn) = 0 = fSONC(0, x2, . . . , xn).
Hence x1 | fSOS, fSONC, i.e. fSOS = x1 · f1, fSONC = x1 · f2
for some f1, f2 ∈ Hn,k+1.

Write fSOS =
∑s
i=1 g

2
i , fSONC =

∑t
j=1 hj , s, t ∈ N s.t. gi ∈

Hn,k/2+1 and the hj are nonnegative circuit polynomials.

Similary as above, PSDness of g2i and hj yields x1 | g2i , hj .
For the SOS part, we immediately obtain x1 | gi, i.e.
x2
1 | fSOS. Remains to show x2

1 | hj for all j. However,
this follows since all monomials of hj must be divisible by
x1, all vertex monomials of x1 are even lattice points and
the only interior monomial is a convex combination of the
vertex monomials. Hence we have x2

1 | fSOS, fSONC, which
yields that f = fSOS/x2

1 + fSONC/x2
1 would be a SOS+SONC

decomposition in Hn,k, a contradiction. This shows Claim
2 for ` = 1. The general case follows inductively.

Combining Claim 1 and Claim 2 shows the Lemma.

Next, we cover the two elementary cases where (n, 2d) ∈
{(3, 6), (4, 4)}. Therefore, we show that the two Robinson
forms from Robinson (1969) are indeed PSD but not
SOS+SONC.

Lemma 3. It holds

R1(x, y, z) =x6 + y6 + z6 −
(
x4y2 + x4z2 + y4x2 + y4z2

+z4x2 + z4y2
)

+ 3x2y2z2 ∈ P3,6\(Σ + C)3,6

and hence P3,6 6= (Σ + C)3,6.

Proof. Step 1: Assume that R1 ∈ (Σ + C)3,6 was
SOS+SONC. Choose an SOS polynomial fSOS ∈ Σ3,6 such
that R1−fSOS ∈ C3,6 is a SONC polynomial. Without loss
of generality we can assume that R1 − fSOS decomposes
into nonnegative circuit polynomials, which are not SOS.
Since R1 = fSOS+(R1−fSOS) is a decomposition into PSD
polynomials, New(fSOS), New(R1 − fSOS) ⊆ New(R1)
must hold (cf. (Reznick, 1978, Theorem 1)).

Step 2: By Hilbert 1888, we know that every PSD bivariate
form is SOS, i.e. P2,2d = Σ2,2d for all d ∈ N. Now consider

e.g. the monomial m = x4y2. Assume that the SONC part
R1 − fSOS contains a nonnegative circuit polynomial h
having m as interior monomial, i.e. h(4,2,0)′ � 0. But then,
since m is in the interior of New(h), the circuit polynomial
h must clearly be bivariate, i.e. h ∈ C2,6 ⊆ P2,6 =
Σ2,6. This contradicts our assumption that no nonnegative
circuit polynomial in R1 − fSOS is also SOS. Hence,
m cannot be an interior monomial of any nonnegative
circuit polynomials in the decomposition of R1 − fSOS,
which shows that (R1 − fSOS)(4,2,0)′ ≥ 0 and equivalently
(fSOS)(4,2,0)′ ≤ −1. Analogous argumentation shows

(fSOS)(4,2,0)′ , (fSOS)(4,0,2)′ , (fSOS)(2,4,0)′ ,

(fSOS)(2,0,4)′ , (fSOS)(0,4,2)′ , (fSOS)(0,2,4)′

}
≤ −1 (1)

This yields in particular x6, y6, z6 ∈ New(fSOS) and hence
New(fSOS) = New(R1).

Step 3: Write fSOS =
∑s
i=1 g

2
i s.t. gi ∈ H3,3, s ∈ N. Since

New(gi) ⊆ 1
2 New(fSOS) = 1

2 New(R1) = conv(x3, y3, z3),
all possible exponents of the gi’s are given by

α(1) = (3, 0, 0)′, α(2) = (2, 1, 0)′, α(3) = (2, 0, 1)′),

α(4) = (1, 2, 0)′, α(5) = (1, 1, 1)′, α(6) = (1, 0, 2)′,

α(7) = (0, 3, 0)′, α(8) = (0, 2, 1)′, α(9) = (0, 1, 2)2,

α(10) = (0, 0, 3)′

and we can write gi =
∑10
j=1 gijx

α(j) (i = 1, . . . , s), for
some gij ∈ R.

Step 4: By (1) and the decomposition of fSOS =
∑s
i=1 g

2
i ,

we know −1 ≥ (fSOS)(4,2,0)′ =
∑s
i=1 g

2
i,2 +

∑s
i=1 2gi,1gi,4.

Hence, using Young’s inequality we obtain

−1 ≥ (fSOS)(4,2,0)′ =
s∑
i=1

g2i,2 +
s∑
i=1

2gi,1gi,4

≥
s∑
i=1

g2i,2 −
s∑
i=1

2 |gi,1| · |gi,4|

≥
s∑
i=1

g2i,2 −
s∑
i=1

g2i,1 −
s∑
i=1

g2i,4

≥ −1 +
s∑
i=1

g2i,2 −
s∑
i=1

g2i,4,

(2)

where we used that (fSOS)(6,0,0)′ =
∑s
i=1 g

2
i,1 ≤ 1 must

hold. Rearranging (2) yields
∑s
i=1 g

2
i,2 ≤

∑s
i=1 g

2
i,4.

Analogous argumentation shows that e.g.

−1 ≥ (fSOS)(2,4,0) =
s∑
i=1

g2i,4 +
s∑
i=1

2gi,7gi,2

≥ · · · ≥ −1 +
s∑
i=1

g2i,4 −
s∑
i=1

g2i,2

and therefore
∑s
i=1 g

2
i,2 ≥

∑s
i=1 g

2
i,4. We finally obtain the

equality
∑s
i=1 g

2
i,2 =

∑s
i=1 g

2
i,4. Hence, equality must hold

everywhere in (2), which shows:

(III) (fSOS)′(6,0,0) =
∑s
i=1 g

2
i,1 = −1.

(IV) By Young’s Inequality: gi,1 6= 0 if and only if gi,4 6= 0
and in this case |gi,1| = |gi,4| (i ∈ [s]).

(V) sign(gi,1) = − sign(gi,4) (i ∈ [s]).
(VI) (fSOS)(4,2,0)′ = −1.
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Clearly, similar observations as in (III)-(V) can be made
for all pairs (gi,r, gi,s) s.t. (r, s) ∈ {(1, 4), (1, 6), (7, 2), (7, 9),
(10, 3), (10, 8)}. In addition, as in (VI), we obtain for the
other coefficients as in (1):

(fSOS)(4,2,0)′ = (fSOS)(4,0,2)′ = . . . = −1. (3)

Step 5: By (3), we have

(R1 − fSOS)(4,2,0)′ = (R1 − fSOS)(4,0,2)′ = . . . = 0.

Furthermore, (III) for all possible coefficients leads to

(R1 − fSOS)(6,0,0)′ = (R1 − fSOS)(0,6,0)′

=(R1 − fSOS)(0,0,6)′ = 0.

To sum up, we now have x6, y6, z6, x4y2, x4z2, x2y4,
x2z4, y4z2, y2z4 6∈ supp(R1 − fSOS). However, the form
R1 − fSOS is SONC and in particular PSD. Hence all
vertices in V (R1−fSOS) are even. Since New(R1−fSOS) ⊆
New(R1), the only possible lattice point left is x2y2z2.
Hence, New(R1 − fSOS) ⊆ conv(x2y2z2) = {x2y2z2} must
hold and R1−fSOS would be SOS, which is a contradiction.

For the quarternary quartics case, we can argue similarly.

Lemma 4. It holds P4,4 6= (Σ + C)4,4. More precisely, we
have

R2(x, y, z,w) = x2(x− w)2 + y2(y− w)2 + z2(z− w)2

+ 2xyz(x + y + z− 2w) ∈ P4,4\(Σ + C)4,4.

Proof. The proof follows an analogous argumentation as
in Lemma 3. By Hilbert 1888, we can without loss of
generality choose fSOS ∈ Σ4,4 s.t. R2 − fSOS ∈ C4,4

is SONC and does not contain any nonnegative circuit
polynomial in three variables in its decomposition. It can
be deduced that New(fSOS) = New(R2) must hold.

Further, using Young’s inequality for the coefficients of
x3w, y3w, z3w it can be seen that

x4, x2w2, y4, y2w2, z4, z2w2 6∈ supp(R2 − fSOS).

Hence, the only even exponents in supp(R2) left as possible
lattice points for R2−fSOS are x2y2, x2z2, y2z2. However,
this means that R2−fSOS is a PSD form in three variables
of degree four, which is SOS by Hilbert 1888. Hence, R2 is
SOS as well, which is a contradiction. For this reason, R2

cannot be SOS+SONC.

We are now able to prove Theorem 1.

Proof. [Theorem 1.] “⇐” is clear by Hilbert 1888.

“⇒”: The Robinson polynomials from Lemma 3 and
Lemma 4 are examples of polynomials in P3,6\(Σ + C)3,6
and P4,4\(Σ+C)4,4, respectively. Hence, the claim follows
directly from Lemma 2.

4. SEPARATING THE SOS+SONC CONE FROM
THE SOS AND SONC CONE

In this section, we present a theorem which shows that the
SOS+SONC cone is a proper cone extension of both the
SOS and the SONC cones for all (n, 2d) ≥ (3, 4), (n, 2d) 6=
(3, 4). This shows that for all nontrivial (n, 2d), the
SOS+SONC cone is a better inner approximation of the
PSD cone than the single SOS and SONC cones.

Theorem 5. For all (n, 2d) ≥ (3, 4), (n, 2d) 6= (3, 4) it holds

(Σ + C)n,2d 6⊆ (Σn,2d ∪ Cn,2d) .

Proof. Similarly as in Lemma 2 one can show that it
suffices to consider the cases (n, 2d) ∈ {(3, 6), (4, 4)}.
Hence, the claim follows by constructing explicit examples
for the two elementary cases. Indeed, we have e.g.

f1 =x4y2 + x2y4 + z6 − 3x2y2z2

+ 1/2 · (z3 + 2xyz + x2y)2 ∈ (Σ + C)3,6\(Σ ∪ C)3,6,

f2 =x2y2 + x2z2 + y2z2 + w4 − 4wxyz

+ (xy + xz + yz)2 + w4 ∈ (Σ + C)4,4\(Σ ∪ C)4,4.

5. CONCLUSION

Combining Theorem 1 and Theorem 5 we have shown that
for all non Hilbert cases (n, 2d) ≥ (3, 4), (n, 2d) 6= (3, 4),
it holds (Σn,2d ∪ Cn,2d) ( (Σ + C)n,2d ( Pn,2d.

We presented explicit examples R1, R2 and f1, f2 showing
the inequalities for the two basic cases and demonstrated
how two scale them to arbitrary cases. In terms of poly-
nomial optimization, this shows that for all mentioned
cases of n and 2d, there are PSD polynomial which can
be handled by the SOS+SONC cone but neither the SOS
nor the SONC cone themselves. On the other hand, there
are polynomials which are not classifiable as being PSD by
SOS+SONC. It remains to find an efficient way to actually
decide membership to the combined SOS+SONC cone.
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Abstract: This contribution is on the construction of structure-preserving, online-efficient
reduced models for a class of nonlinear partial differential equations on networks, which inherit a
port-Hamiltonian structure. The flow problem finds broad application, e.g., in the context of gas
distribution networks. We propose a snapshot-based reduction approach that consists of a mixed
variational Galerkin approximation combined with quadrature-type complexity reduction. Its
main feature is that certain compatibility conditions are assured during the training phase,
which make our approach structure-preserving. The resulting reduced models are locally mass
conservative and inherit an energy-bound and port-Hamiltonian structure. We demonstrate
the applicability and good stability properties of our approach using the example of the Euler
equations on networks.

Keywords: port-Hamiltonian systems; structure-preserving scheme; systems on graphs; model
reduction; Legendre transformation; network systems; Euler equations.

1. INTRODUCTION

Structure-preserving approximation is an active research
area. By preserving or mimicking relevant geometric struc-
tures such as, e.g., conservation laws, dissipative relations,
or symplecticities, unphysical solution behavior and nu-
merical instabilities can be avoided in many cases. The
model problem in this contribution describes nonlinear
flows on networks and has a port-Hamiltonian structure.
It finds, e.g., application in the context of gas network
systems or electric transmission lines. The network is as-
sumed to be described by a directed graph. Each edge
ω of the graph can be identified with an interval. Given
a strictly convex smooth function h : R2 → R and a
non-negative function r̃ : R2 → R, the edgewise states

¯
zω = [zω1 ; z

ω
2 ] : [0, T ]× ω → R2 are governed by
∂tz

ω
1 (t, x) = −∂x∇2h(

¯
zω(t, x)),

∂tz
ω
2 (t, x) = −∂x∇1h(

¯
zω(t, x))

− r̃(
¯
zω(t, x))∇2h(

¯
zω(t, x)),

(1)

whereby ∇ih(
¯
zω(t, x)) = ∂zih([z1; z2])|[z1;z2]=

¯
zω(t,x) for

i = 1, 2. The expressions M(
¯
z) =

∑
ω∈E

∫
ω
zω1 dx and

H̃(
¯
z) =

∑
ω∈E

∫
ω
h(
¯
zω)dx, with E the set of all edges, rep-

resent the total mass and the Hamiltonian of the system.
Fundamental properties of the hyperbolic model problem
are that, under appropriate coupling conditions on the
edgewise equations, conservation of mass and dissipation
of the Hamiltonian (energy dissipation) hold up to the
exchange with the boundary. Moreover, the convective

⋆ The support of the German Federal Ministry of Education and
Research (BMBF) via the project EiFer is acknowledged. Moreover,
we thank for the support of the DFG research training group 2126
on algorithmic optimization.

terms can be related to a certain skew symmetric geo-
metric structure.
Following the approach by Liljegren-Sailer and Marheineke
(2021), we aim for a structure-preserving approximation
procedure for the flow problem on network, which can be
used for the discretization by finite elements, as well as the
subsequent snapshot-based model reduction. The model
reduction consists in general of a projection-based step and
an additional complexity reduction of the nonlinearities
employing a quadrature-based approach in our case. In
this brief, we summarize and rephrase the results from
Liljegren-Sailer and Marheineke (2021) in the abstract
port-Hamiltonian setting.
For ease of presentation, we consider the case of a sin-
gle edge in the remaining sections, i.e., without loss of
generality the spatial domain Ω = [0, ℓ] with ℓ > 0. For
the generalization to the network case and the choice
of coupling-conditions, we refer to Liljegren-Sailer and
Marheineke (2020).

2. AN EXEMPLARY HIERARCHY OF MODELS

Flow models of different complexity are covered by the
problem (1), e.g., the following hierarchy used for the
modeling of gas distribution networks, cf., Mindt et al.
(2019).

• Isothermal Euler equations: The equations for density
ρ and velocity v for x ∈ Ω and t ≥ 0 read

∂tρ = −∂x(ρv)

∂t(ρv) = −∂x(ρv2 + p̂(ρ))− cf
|ρv|
ρ

ρv
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with pressure p(ρ) = RT ρ
1−RTαρ (constants RT > 0,

α < 0). To rewrite the system as in (1), we define

¯
z = [ρ; v], r̃(

¯
z) = cf

|v|
ρ and

h(
¯
z) = ρ

v2

2
+RTρ log

(
ρsc

1−RTαρ

ρ

)
.

• Simplified isothermal Euler equations: These equa-
tions result from the isothermal Euler equations by
neglecting the term ∂x(ρv

2). Reformulation (1) is
obtained for m = ρv, r̃(

¯
z) = cf

|m|
ρ and

h(
¯
z) =

1

2
m2 +

−1

RTα2
(log (1−RTαρ) +RTαρ) .

• Damped wave equation: A damped wave equation is
obtained for

h(
¯
z) = 1/2(z21 + z22), r̃(

¯
z) > 0 for all

¯
z.

The system is linear, when r̃ is chosen to be constant.
Note that in contrast to the isothermal Euler equations,
the simplified version inherits a Hamiltonian density which
is separable into h(

¯
z) = h1(z1)+h2(z2) with quadratic h2.

For the damped wave equation, the Hamiltonian density
is a fully quadratic function and

¯
z = ∇

¯
zh(

¯
z).

3. VARIATIONAL PRINCIPLE

Let the domain S = S1 × S2 ⊂ R2 of the Hamiltonian
density h be open and convex. Then the so-called partial
Legendre transformation g for a = [a1; a2] is given by

g(a) = sup
z2∈{z̄2:[a1;z̄2]∈S}

a2 · z2 − h([a1; z2]).

It inherits the smoothness and strict convexity w.r.t. the
second argument from h, cf., Rockafellar and Wets (1998).
A certain variable transformation is induced by the Legen-
dre transformation: Let for z ∈ S, a = [z1;∇2h(z)]. Then
it follows ∇1h(z) = −∇1g(a) and z2 = ∇2g(a), i.e., a2 7→
∇2g([z1; a2]) is the inverse function of z2 7→ ∇2h([z1; z2].
Thus, when

¯
z(t, x) = [z1(t, x); z2(t, x)] is a smooth func-

tion, for which (1) holds for t ≥ 0 and x ∈ Ω, the function

¯
a(t, x) = [a1(t, x); a2(t, x)] = [z1(t, x);∇2h(

¯
z(t, x))] fulfills

∂ta1(t, x) = −∂x∇2a2(t, x)),

∂t∇2g(a2(t, x)) = ∂x∇1g(
¯
a(t, x))− r(

¯
a(t, x))a2(t, x)

(2)

for a non-negative mapping r. The system can be closed by,
e.g., the initial conditions

¯
a(0, x) =

¯
a0(x) and boundary-

conditions −[∇1g(
¯
a(t, 0);∇1g(

¯
a(t, ℓ))] = u(t), t ≥ 0 for

given
¯
a0 : Ω → R2 and u : [0, T ] → R2.

Let the function spaces L2(Ω) and H1(Ω) denote the
Sobolev space of square integrable functions on Ω and
the Sobolev space with additionally square integrable weak
derivatives, respectively. The L2-scalar product is written
as ⟨·, ·⟩ and the boundary terms for b ∈ H1(Ω) are denoted
as b[0] and b[ℓ]. Accordingly, we define the boundary
operator T : H1(Ω) → R2 as Tb = −[b[0]; b[ℓ]]. For any

¯
a ∈ C1([0, T ], C1(Ω) × C1(Ω)) fulfilling (2) the variational
principle

⟨∂ta1(t), b1⟩ = −⟨∂x∇2a2(t)), b1⟩
⟨∂t∇2g(a2(t)), b2⟩ = −⟨∇1g(

¯
a(t)), ∂xb2⟩

− ⟨r(
¯
a(t))a2(t), b2⟩+ u(t) ·Tb2.

for b1 ∈ L2(Ω), b2 ∈ H1(Ω) holds, as one shows by
multiplying (2) with the test functions b1, b2 and using

using integration by parts in the second equation. Note
that here the solution is interpreted as a function in time
with values in a function space.

4. APPROXIMATION ANSATZ

As we showed in Liljegren-Sailer and Marheineke (2020),
a class of structure-preserving approximations is obtained
by Galerkin approximation with compatible spaces that
can be supplemented by a quadrature-type complexity
reduction. The latter allows for sparse approximations of
the nonlinearities and is required for reduced models to be
online-efficient.
Assumption 1. (Compatibility of spaces). Let V = Q ×
W ⊂ L2(Ω) × H1(Ω) be a finite dimensional subspace
fulfilling the compatibility conditions
A1) Q = {ξ : It exists ζ ∈ W with ∂xζ = ξ},
A2) {b2 ∈ H1(Ω) : ∂xb2 = 0} ⊂ W.
Assumption 2. (Compatibility of scalar product). Let the
bilinear form ⟨·, ·⟩∗ : L2(Ω)×L2(Ω) → R be such that the
following holds:

A1) For a constant C̃ ≥ 1 and ||b||∗ =
√

⟨b, b⟩∗, it holds
C̃

−1||b||∗ ≤ ||b|| ≤ C̃||b||∗ for all b ∈ Q ∪W.
A2) For any f ∈ C(Ω) with f ≥ 0 it holds ⟨f, 1⟩∗ ≥ 0.

The posed assumption assures that ⟨·, ·⟩∗ is a scalar prod-
uct on Q and W. Note that the L2-product is particularly
one possible choice, which results in a model without
complexity reduction.
For approximation spaces and bilinear products as in the
assumptions, our abstract approximation ansatz reads as
follows: Given

¯
a0 ∈ Q × W and u : [0, T ] → R2, find

¯
a = [a1; a2] ∈ C1([0, T ];Q×W) with

¯
a(0) =

¯
a0, and

⟨∂ta1(t), b1⟩ = −⟨∂x∇2a2(t)), b1⟩
⟨∂t∇2g(a2(t)), b2⟩∗ = −⟨∇1g(

¯
a(t)), ∂xb2⟩∗

− ⟨r(
¯
a(t))a2(t), b2⟩∗ + u(t) ·Tb2.

for b1 ∈ Q, b2 ∈ W.
The proposed approximations can be shown to be of
port-Hamiltonian form with the Hamiltonian defined as
H∗(

¯
a(t)) = ⟨∇2g(

¯
a(t))a2(t)− g(

¯
a(t)), 1⟩∗. Moreover, they

inherit energy dissipation and mass conservation up to the
exchange with the boundary,

d

dt
H∗(

¯
a(t)) = −⟨r(

¯
a(t)), a2(t)

2⟩∗ + u(t) ·Ta2(t)

≤ u(t) ·Ta2(t)
d

dt

∫
Ω

a1(t)dx = a2(t)[0] + a2(t)[ℓ].

5. APPLICATION

The presented approximation framework can be realized
by mixed finite elements but also can be used for the con-
struction of online-efficient reduced models. The numerical
results in this section focus on the reduction steps, i.e., the
model order- and complexity-reduction. We showcase the
improved performance when regarding the compatibility
conditions as opposed to using standard (non-compatible)
methods. We refer to Liljegren-Sailer and Marheineke
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Fig. 1. Topology of network with boundary nodes νi,
i = 1, ..., 6 (red circles).

(2021) for the algorithmic treatment of the compatibil-
ity conditions, the complete set of parameters and more
numerical results. The test case employs the isothermal
Euler equations in a regime relevant for gas distribution
networks and the topology visualized in Fig. 1. As starting
point for all reduction methods, a mixed finite element
discretization with a system dimension of N = 10 156 is
used.
We simulate the high dimensional system using the bound-
ary conditions for t ∈ [0, 5t⋆] (reference values marked by
stars, e.g., time t⋆ = 1[h]),
ρ(t, ν1) = (65 + u(t/t⋆)) ρ⋆, ρ(t, ν2) = (50 + u(t/t⋆)) ρ⋆,

ρ(t, ν4) = (60− u(t/t⋆)) ρ⋆, ρ(t, ν5) = 60 ρ⋆,

ρ(t, ν6) = 45 ρ⋆, Am(t, ν3) = −100 (Am)⋆,

at the six boundary nodes νi, i = 1, ..., 6 with the input
profile u = uA (training case) and u = uB (testing case),

uA(t) = 6 exp

(
−3

2
t

)
+ 4 cos

(π
2
t
)
+

3

2
sin (10π t)

uB(t) = 8t3 exp (−t)− 4 (t− 2) f(3t).

with f(t) = 1 − |(t mod 2)− 1|. As initial condition
the respective stationary solution for t = 0 is chosen.
Reduced models without and with complexity reduction
are obtained using snapshots from the training case. The
fidelity of the resulting models are compared in Fig. 2
and Fig. 3 for varying dimensions of in the model order-
and complexity-reduction. As is observed, our proposed
schemes clearly outperform the non-structure-preserving
conventional reduced models in the test case.
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Abstract: This extended abstract proposes a passivity-based approach using bearing and velocity
information for an angle-based formation control with a class of underlying triangulated Laman graphs.
The controller is designed using virtual couplings on the relative measurements related to the edges.
The different embedding of the graph is mapped by the measurement Jacobian, which is calculated
by the time-evolution of the measurement. Furthermore, to avoid unavailable distance measurements
in the control law, an estimator is designed based on the port-Hamiltonian theory using bearing and
velocity measurements. The stability analysis of the closed-loop system is provided and simulations are
performed to illustrate the effectiveness of the approach.

1. INTRODUCTION

Over the last three decades, formation control has attracted
extensive interest due to its potential applications in many
domains. Recently, the passivity-based port-Hamiltonian (pH)
approach has been used for the design of formation controllers,
such as Vos et al. (2014), Stacey and Mahony (2015), Xu and
Liang (2018). This approach not only allows for complex and
heterogenous agent dynamics but also enables the flexibility
and scalability of the network.

In terms of the sensing capability, using partial information of
the positions of agents requires fewer onboard sensors, which
reduces the cost of hardware and introduces fewer measurement
errors. Much research has been reported on this topic in recent
years, such as Anderson et al. (2008), Cao et al. (2011) for
distance measurement, Zhao et al. (2019), Trinh et al. (2018)
for bearing measurement, and Chen et al. (2020), Jing et al.
(2019) for angle measurement. In this extended abstract, we
study the case where the sensing capability of the agents is
based on bearing and relative velocity measurements, and an-
gles constrain the interaction topology of agents. Remarkably,
angle-based constraints are expressed by less information of
the agents compared with position-, distance- and bearing-
based approaches. Therefore, it is invariant to more group mo-
tions, such as translation, rotation, scaling and reflection, which
means the agents can perform these maneuvers while satisfying
angle-based constraints.

We consider a particular class of undirected, triangulated
Laman graphs GN(VN ,E ) introduced in Chen et al. (2017),
where the interaction topology is determined only by angles.
According to Jing et al. (2019), if a triangulated Laman frame-
work (GN ,q) is strongly nondegenerate, then it is globally angle
rigid. Therefore, the only realization of the framework with the
underlying graph GN is guaranteed. Since the topology of any
formation shape constrained by angles can be designed as an

underlying triangulated Laman graph, our proposed controller
is not restrictive on formation shape.

In this work, we adopt a passivity-based approach, where the
control objectives are achieved by virtual couplings where the
virtual springs determine the formation by shaping the potential
energy function of the network, while the virtual dampers
shape the transient response by injecting damping. Customarily,
controllers resulting from passivity-based approaches require
the agents to have complete information of the relative positions
even if the sensing capability and the interaction topology of
the agents are both only angles. To solve this problem, we
extend the passive adaptive compensator proposed for bearing
formation control in Stacey and Mahony (2015) to estimate the
unavailable distance information by using relative velocity.

Examples of recent literature on the angle-based formation
problem are Basiri et al. (2010) and Chen et al. (2020), where
an intuitive control law is proposed using only local bearing
information while proving stability via linearization. However,
a suitable Lyapunov function is not given for stability analysis
and only single integrator models are considered. In Jing et al.
(2019), a gradient-like control law is proposed for a single inte-
grator model using bearing and distance information. Although
only bearing and distance measurement are used to achieve the
formation stabilization, when considering the trajectory track-
ing for complex dynamics, the velocity measurement is also
needed. In contrast to the mentioned reference, our approach
can achieve the trajectory tracking for complex dynamics with-
out distance measurement.

The contributions of our approach are summarized as follows:

(i) Existing research only considers the single integrator case.
In this work, we propose a control law and and estimator
based on virtual couplings and pH theory for a double
integrator model. Due to the pH framework, this approach
is not only applicable to angle information but also for
other measurements, such as displacement, bearing, and
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Fig. 1. Triangulated Laman graph with M triangles

distance. Therefore, our approach gives a general frame-
work for the heterogeneous information of a multi-agent
system.

(ii) We use less information to achieve more formation ma-
neuvers. We not only consider the formation stabilization
but also several maneuvers, such as velocity tracking,
scale and orientation control. In particular, compared with
displacement-based, distance-based, bearing-based for-
mation, the angle-based formation can achieve more ma-
neuvers while satisfying the constraints. Moreover, since
a pH-based distance estimator is designed using bearing
and velocity measurements, our approach achieves these
maneuvers without using distance measurement.

The rest of the abstract is structured as follows: the problem
formulation is introduced in Section 2, the control architecture
is developed in Section 3, and the formation maneuvering
design is provided in Section 4.

2. PROBLEM FORMULATION

Consider a group of N agents. The dynamics of the agents are
given by double integrators on R2, which are expressed in pH
form as(

q̇n

ṗn

)
=

(
0 I2

−I2 0

)
∂Hn

∂qn
(pn)

∂Hn

∂ pn
(pn)

+

(
0
I2

)
Un,

Hn(pn) =
1

2mn
pT

n pn, Yn =
∂Hn

∂ pn
(pn), n ∈ {1,2, ...,N}

(1)

where qn = (qxn ,qyn)∈R2, pn = (pxn , pyn)∈R2, and mn denote
the position, momentum, and mass of agent n, respectively;
Un = (Uxn ,Uyn) ∈ R2 and Yn = (Yxn ,Yyn) ∈ R2 denote the in-
put and output, respectively; and Hn : R2 → R represents the
Hamiltonian of agent n.

We assume that each agent has access to bearing and relative
velocity information. For relative velocity information, each
agent is either able to estimate and communicate its own veloc-
ity or measure the relative velocity directly. We consider that
the group of agents is connected by an underlying triangulated
Laman graph GN(VN ,E ) with M triangles as shown in Fig.1.
We refer the reader to Chen et al. (2017) for specific definitions.
Note that the graph considered in this work is undirected and
the angle rigidity is ensured by Lemma 1, Jing et al. (2019).
Lemma 1. A triangulated Laman framework (GN ,q) is strongly
nondegenerate, i.e., the three edges of each triangle are not
collinear, only if (GN ,q) is globally angle rigid.

Note that the framework is composed of the graph GN and
the realization q, where angle rigid means that the formation
shape is uniquely determined up to translations, scalings, and

2

1

3

θ

ϕ

i

j

k

Fig. 2. Triangular formation

rotations. For more details about angle rigid, see Chen et al.
(2020) and Jing et al. (2019). In particular, a triangulated Laman
graph is constructed from a line graph with two nodes, every
new adding node is connected by two existing nodes which
are also connected. As shown in Fig. 1, the formation shape
is determined by the marked angles. Since every triangulated
Laman graph can be decomposed into several triangular graphs,
we first design the controller for a specific triangular graph and
then extend it to a general triangulated Laman graph.

3. FORMATION STABILIZATION

3.1 Controller for triangular formation

Consider the triangular case shown in Fig.2, where 1,2,3 are
agents and i, j,k are the the edges. Angle 1 and 2 are the
angles to be controlled. Then, the relative position, distance,
and bearing of the edge k are defined as

zk = q1 −q2, rk = ||zk||, sk =
zk

||zk||
,

respectively. Since the cosine function is monotone in the do-
main of the inner angle, i.e., [0,π], we use the cosine of the
angle to represent the angle measurement, which can be calcu-
lated via bearing measurement. In particular, for the angles θ

and φ , we have

cosθ = sT
k s j, cosφ = sT

i s j.

Now we consider the controller of agent 1. Since the moving of
agent 1 affects both θ and φ , the controller of the agent 1 consist
of two parts. One is to satisfy the constraint of the angle θ ,
the other is to satisfy the constraint of the angle φ . The control
aim is to design a controller to ensure the cosine of θ , given
by (sT

k s j), to converge to the desired value (sT
k s j)

∗. Hence, we
define the error as

(̃sT
k s j) := (sT

k s j)− (sT
k s j)

∗. (2)

It is necessary to assign a new potential energy related to the
angle to ensure that the system converges to the desired point,
i.e., the error converges to zero. To this end, we propose the
following Hamiltonian function

Hθ1 =
1
2

cθ1(̃sT
k s j)

2
, (3)

where cθ1 > 0 is a constant. Hence, the corresponding con-
troller with spring and damping term can be derived as

˙̃
(sT

k s j) = ωθ1, γθ1 =
∂Hθ1

∂ (̃sT
k s j)

+dθ1ωθ1, (4)

where ωθ1 denotes the input of the controller, dθ1 > 0 is a
positive constant. Note that γθ1 is the resulting virtual force in
the space of angle measurements. According to the pH theory
van der Schaft and Jeltsema (2014), we define the force and
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velocity as effort and flow, respectively. Thus, the power of the
port can be derived as

< γθ1|
d(sT

k s j)

dt
>= γ

T
θ1

d(sT
k s j)

dt
. (5)

Note that we only consider the relation between the agent 1 and
the angle θ . To transform the power from angle measurement
space to R2, we compute

< γθ1|
d(sT

k s j)

dt
>=< γθ1|Lθ1q̇1 >

=<−LT
sk

s jγθ1|q̇1 >+<−LT
s j

skγθ1|q̇1 >,

(6)

where Lsk =
1
rk
(I2 − sksk

T ) ∈ R2×2 and Ls j =
1
r j
(I2 − s js j

T ) ∈
R2×2. The effort of the port in (6) relies on the distance
information which is not measurable. In order to avoid distance
measurement, we use the relative velocity measurement to
estimate the unknown distance Duindam et al. (2009).

Note that the estimated distance is used, the distance term
in the angle Jacobian also needs to be replaced, accordingly.
Therefore, the estimated angle Jacobian is given by

L̂θ1 = sT
j L̂θsk + sT

k L̂θs j

= sT
j

1
r̂θk

(I2 − sksk
T )+ sT

k
1

r̂θ j
(I2 − s js j

T ),
(7)

where r̂θk is the estimate of the edge k using the measurement
of the angle θ , and r̂θ j is the estimate of the edge j using
the measurement of the angle θ . Correspondingly, L̂θsk , L̂θs j

are the estimated bearing Jacobians using the measurement of
θ . However, if L̂θ1 is used to replace Lθ1 in the right-hand
side of (6), the equation is not satisfied because the effort γθ1
corresponds to the real flow ( i.e., the time derivative of sT

k s j) in
the angle space. This causes a discrepancy in the power through
the virtual coupling due to the error between the estimated
distance and the real unknown distance.

Define the distance errors
r̄θk := r̂θk − rk, r̄θ j := r̂θ j − r j.

Then, the estimated effort in R2 is
−(L̂T

θsk
s j + L̂T

θs j
sk)γθ1 =−LT

sk
s jαθk −LT

s j
skαθ j, (8)

where αθk := rk
r̂θk

γθ1 is the estimated effort related to r̂θk and
αθ j := r j

r̂θ j
γθ1 is the estimated effort related to r̂θ j. Furthermore,

considering the ports in different spaces, we have
< L̂T

θ1γθ1|q̇1 >=<−LT
sk

s jαθk −LT
s j

skαθ j|q̇1 >

=< αθk|
d(sT

k s j)

dt
>+< αθ j|

d(sT
k s j)

dt
> .

(9)

Comparing (6) with (9), the discrepancy between the real effort
and the estimated effort can be derived as

βθk = αθk − γθ1 =− r̄k

r̂θk
γθ1,

βθ j = αθ j − γθ1 =−
r̄ j

r̂θ j
γθ1.

(10)

Hence, the power of the ports, with βθk, βθ j as the efforts, are

< βθk|− sT
j Lsk q̇1 >, < βθ j|− sT

k Ls j q̇1 > . (11)

To account for the power associated with the ports in distance
space, we define the corresponding Hamiltonian as

Hθk :=
1
2

cθk r̄2
θk, Hθ j :=

1
2

cθ j r̄2
θ j, (12)

where cθk,cθ j > 0 are constants. Then, the power of the ports
in distance space are given by

<
∂Hθk

∂ r̄θk
| ˙̄rθk >=< cθk r̄θk| ˙̄rθk >,

<
∂Hθ j

∂ r̄θ j
| ˙̄rθ j >=< cθ j r̄θ j| ˙̄rθ j > .

(13)

Since energy is coordinate free, the power in angle space and
distance space are the same. Therefore, comparing (11) and
(13), we have

< βθk|− sT
j Lsk q̇1 > = < cθk r̄θk| ˙̄rθk >

⇒ ˙̄rθk = −
γT

θ1
cθk r̂θk

(−sT
j Lsk q̇1).

(14)

Furthermore, the dynamics of the estimators are given by

˙̂rθk = ṙk + ˙̄rθk = sT
k żk −

γT
θ1

cθk r̂θk
(−sT

j Lsk q̇1). (15)

Similarly,

˙̂rθ j = ṙ j + ˙̄rθ j = sT
j ż j −

γT
θ1

cθ j r̂θ j
(−sT

k Ls j q̇1). (16)

Note that we only require the relative velocity and bearing
measurement in the above estimators, while the information of
distance measurement is not used.

The control law of the agent 1 for the angle θ is given by

Uθ1 =[
1

r̂θk
(I2 − sksk

T )T s j +
1

r̂θ j
(I2 − s js j

T )T sk]

× [cθ1(̃sT
k s j)+dθ1

˙̃
(sT

k s j)].

(17)

Now, we design the controller of the agent 1 to control the angle
φ . To this end, define the corresponding Hamiltonian as

Hφ1 :=
1
2

cφ1(̃sT
i s j)

2
, (18)

where cφ1 > 0 is a constant. The controller with spring and
damping term is given by

˙̃
(sT

i s j) = ωφ1, γφ1 =
∂Hφ1

∂ (̃sT
i s j)

+dφ1ωφ1, (19)

where ωφ1 denotes the input of the controller and dφ1 > 0 is a
constant. Considering the ports in different spaces, we have that

< αφ1|(−sT
i Ls j q̇1)>=< L̂T

φ1γφ1|q̇1 >,

L̂φ1 = sT
i L̂φsk = sT

i
1

r̂φk1
(I2 − sksk

T ),
(20)

where L̂φ1 is the estimated angle Jacobian mapping from posi-
tion of the agent 1 to the angle φ ; L̂φsk is the estimated bearing
Jacobian using the measurement of the angle φ ; and r̂φk1 is
the estimated distance of the edge k by the agent 1 using the
measurement of the angle φ . Furthermore, taking the same steps
as for θ , we have the following estimator

˙̂rφk1 = ṙk + ˙̄rφk1 = sT
k żk −

γT
φ1

cφk r̂φk1
(−sT

i Ls j q̇1), (21)

where cφk > 0 is a constant. Correspondingly, the control law
of the agent 1 for the angle φ is given by

Uφ1 =
1

r̂φk1
(I2 − sksk

T )T si[cφ1(̃sT
i s j)+dφ1

˙̃
(sT

i s j)]. (22)

Since the design process for agents 2 and 3 is similar to the
process for agent 1, we omit the details.

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



3.2 Extension to triangulated Laman graph

Assume that the topology is designed as a class of a triangulated
Laman graph GN(VN ,E ) with M triangles as shown in Fig.1. In
each triangle, the control law is designed as in Section 3.1. To
satisfy all the angle constraints, the general control law for the
whole group is sum of the control laws derived from all related
triangles. Therefore, the control law for each agent is the sum
of all the corresponding control laws introduced by the triangles
the agent forms. Moreover, the corresponding Hamiltonian and
control law are given as follows

H =
1
2
(m1q̇T

1 q̇1 +m2q̇T
2 q̇2 + ...+mN q̇T

N q̇N)

1
2
(cθ1 c̃osθ1

2
+ cφ1 c̃osφ1

2
+ cθ2 c̃osθ2

2
+ cφ2 c̃osφ2

2

+ ...+ cθM c̃osθM
2
+ cφM c̃osφM

2
)

+
1
2 ∑

ε∈E

cε r̄2
ε ,

(23)

U =
M

∑
m=1

∑
n∈Nm

(Uθmn +Uφmn)

=
M

∑
m=1

∑
n∈Nm

(L̂θmn(cθmnc̃osθn +dθmn
d(cosθm)

dt
)

+ L̂φmn(cφmnc̃osφm +dφmn
d(cosφm)

dt
)),

(24)

where Nm is the index set of agents forming the triangle m. To
ensure the stability of the closed-loop system, we first give the
following conjecture.
Conjecture 1. If any three agents n ∈ Nm forming the triangle
m are neither coincident nor collinear at t0 ∈ R≥0. Then, the
matrix [L̂θmn L̂φmn] for the triangle m is full column rank for
any t ≥ t0.

The main result for formation stabilization is given by the
following theorem.
Theorem 1. Consider a triangulated Laman graph Gn(Vn,E )
with with m triangles. Under Conjecture 1 and the proposed
control law (24), the group of agents converges to the desired
formation constrained by the angles.

4. FORMATION MANEUVERING

To complete a certain task, such as a group of agents move
an object together along a desired trajectory, formation stabi-
lization is not enough, it is necessary to maneuver the whole
formation. In this regard, we design controllers for scale and
direction control, and velocity tracking, respectively.

For scale and orientation control, without loss of generality, we
choose the edge k, connecting the reference agents 1 and 2, as
the reference edge. Assume the coordinates of the mentioned
agents are aligned and the desired displacement with pre-
specified scale and orientation can be described as z∗k = q∗1−q∗2.
Then, the corresponding Hamiltonian is given by

Hk =
1
2
||zk − z∗k ||2. (25)

Then, the control law is

u1 =−∂Hk

∂q1
−dzżk, u2 =−∂Hk

∂q2
+dzżk, (26)

where dz ∈ R+2×1 is a constant matrix.

For velocity tracking, we use the leader-follower strategy and
consider reference agents as the leaders, which know the de-
sired velocity v∗. Hence, the corresponding Hamiltonian is

Hv
i =

1
2mi

(pi − p∗)T (pi − p∗)− pT
i v∗,

where p∗ is the desired momentum. Furthermore, the control
law is

Ui =−drv∗−dv(vi − v∗), (27)

where dv ≥ εI2 > 0.

The main result of this work is given by the following theorem.
Theorem 2. Consider a group of agents modeled as in (1) and
connected by a triangulated Laman graph Gn(Vn,E ) with M
triangles. Under Conjecture 1, the desired formation shape is
achieved by the control law proposed in (24), while the desired
scale and orientation are achieved by the control law (26), and
the velocity tracking is achieved by the control law (27).
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Abstract: The synthesis of bandpass microwave filters is based on the use of equivalent circuit
models made of coupled resonators. These couplings are usually supposed to be independent
of the frequency. We present in this paper a circuit model including possibly frequency varying
couplings. After presenting some of its properties we consider the associated synthesis problem
and show how techniques such as Groebner basis computation and Schur analysis based
extraction techniques can be used to solve the latter exhaustively.

Keywords: Filter synthesis, Circuit synthesis, Structured realization, Microwave filters

1. INTRODUCTION

Microwave filters are usually synthesized using equivalent
circuit models. For band-pass filters circuits made of elec-
tromagnetically coupled resonators are considered. The
synthesis of such circuits when starting from a prescribed
scattering response, has been studied extensively Cameron
(1999); Cameron et al. (2007b, 2002); Amari (2000). In
particular, the relation between the coupling topology of
the circuit, that is the way each circuit is coupled to the
others, and its associated class of realizable transfer func-
tions is now well understood Amari (1999); Seyfert and
Bila (2007). It was shown that for a given coupling topol-
ogy several circuits with different circuital values, might
realize the same response. When the considered coupling
topology has the so-called non-redundant property the set
of equivalent circuits is finite and approaches based on the
use of Gröbner basis Cameron et al. (2005, 2007a) and
continuation techniques have been developed to solve this
structured realisation problem exhaustively (see software
Seyfert (2005)).

In waveguide filters, the electromagnetic couplings be-
tween resonators that are realised via irises or coupling
windows are usually supposed frequency independent and
modelled by an idealised electrical component called in-
verter. When the relative functioning frequency band of
the filter is increased, or the thickness of the coupling
irises widened, the frequency independence of the coupling
elements no longer holds and might lead to substantial
modelling errors. When the frequency dependency is mod-
elled as linear, it was recently advocated that the coupling
slope, when controllable, could serve as an extra design
parameter Amari et al. (2010); He et al. (2019); Szydlowski
et al. (2013).

In this work we will detail the underlying electrical synthe-
sis problem and characterize, for a given coupling topology
including certain frequency dependent elements, the set of

Fig. 1. Coupling structure: the inverter

scattering responses that can be achieved. Eventually the
problem of determining all electrical circuits with a given
coupling structure that realise a specified response will
be shown equivalent to a multivariate algebraic problem.
When the latter is zero dimensional we will show how a
combination of Schur analysis based methods and Groeb-
ner basis techniques from computer algebra allows for an
effective and exhaustive solution of the electrical synthesis
problem.

2. ELECTRICAL MODEL

2.1 Frequency dependent couplings

The classical coupling element used to model small aper-
tures in microwave filter design is the two port admittance
inverter, see Figure 1. It is entirely characterised by its cou-
pling coefficient K, and its admittance matrix is defined
by following input output relation between voltages and
currents at its ports: {

I1 = jKU2

I2 = jKU1
(1)

where we use the physicist’s notation for the complex
number j2 = −1. The inverter is an idealised coupling
element, which is introduced to model the effect of a small
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Fig. 2. Low pass equivalent circuit

aperture between coupling cavities. This complex valued
electrical elements are used within low-pass equivalent
circuits of filters that model, within a normalized pass-
band ω = [−1, 1] the scattering behavior of the filter by
means of coupled resonators, see Figure 2. If Sh(s = jω)
is the scattering matrix of the microwave filter and Sc the
one of its low-pass equivalent, then

Sh(s) ≈ Sc(as+ b),∀s ∈ j[−1, 1],

where the coefficient a, b are chosen such the frequency
interval [−1, 1] is mapped linearly to the actual high-
frequency passband of the filter [ω1, ω1]. For short the low-
pass equivalent circuit is a circuit with complex elements
that furnishes a good approximation of a real system, i.e.
the filter, within its functioning band.

As announced we introduce now a frequency variant in-
verter for which the admittance parameters writes,{

I1 = j|G|ωU1 + j(K +Gω)U2

I2 = j(K +Gω)U1 + j|G|ωU2.
(2)

It is easily verified that the admittance matrix of the
introduced frequency dependent inverter is positive real
and loss-less and of McMillan degree one. The sign of
the off diagonal frequency variant component G is used
to model alternatively inductive or (locally) capacitiv
coupling effects.

3. GENERAL LOW-PASS EQUIVALENT MODEL

We now consider low-pass circuits as represented on Fig.2,
where the couplings Mi,j between circuits can be either
frequency independent, that is as described by equation
(1), or frequency dependent in accordance with equation
(2). The input and output couplings MS,k and Mk,L are
supposed frequency independent. Kirchhoff’s law yields
following state space equations in descriptor form for this
kind of low-pass circuits,{

EV̇ = −jF.V +BUin

Iout = BtV
(3)

where E is a n × n positive definite matrix and F a
symmetric matrix of same size, while B is n×2. The 2×1
voltage vector Uin represents the voltages at both ports
of the circuit, while Iout represents the currents at the
same locations. Eventually the state vector V is defined as
V = jU where U(k) is the voltage in resonator k. There is
of course a direct link between the electrical components
of the circuit and the elements of matrix (E,F,B). If the
circuit i is coupled to the circuit j in a frequency dependent
manner described by the obviously defined parameters
Ki,j , Gi,j we have

Ei,j = Ej,i = Gi,j , Fi,j = Fj,i = Ki,j .

If they are coupled in a frequency independent way we
obviously have Ei,j = 0 and Fi,j = Fj,i = Ki,j . Eventually
if they aren’t coupled at all Ei,j = Fi,j = 0. As for the
diagonal terms we have,

Ei,i = Ci +
∑
k 6=i

|Gk,i|, Fi,i = Mi,i

where Ci is the capacitance of the ith resonator, and Mi,i

a susceptance that allows to tune its resonant frequency.
The first column of B is equal to the M ′S,ks, that is

B(k, 1) = MS,k and the second to the M ′L,ks that is

B(k, 2) = ML,k.

We will call circuital a realisation (E,F,B) corresponding
to system (3), with E and F symmetric and E invertible.

Proposition 1. We sum up some elementary properties of
these realisations. We call admittance the transfer function
of a circuital realisation.

• Let (E,F,B) be a circuital realisation, E,F,B all real
and E positive definite, then its admittance

Y = B(sE + jF )−1Bt = −jB(ωE + F )−1Bt

is a 2× 2 strictly proper, reciprocal, loss-less positive
real transfer function.

• If Y is a 2 × 2 strictly proper, reciprocal, loss-less
positive real transfer function there exists a circuital
realisation (E,F,B) to it, where E = Id and (F,B)
are real.

• Suppose (E,F,B) and (E′, F ′, B′) are two minimal
circuital realizations (possibly with complex entries)
of McMillan degree n with same admittance matrix
then there exists a non-singular n× n matrix P such
that,

E′ = P tEP, F ′ = P tFP, B′ = P tB.

4. COUPLING GRAPH AND TRANSMISSION ZEROS

The scattering matrix S of a circuit is defined as the Cayley
transform of its admittance matrix,

S = (I − Y )(I + Y )−1.

When Y is positive real and loss-less S is a 2 × 2 inner
matrix. The transmission zeros are defined as the zeros of
the rational function S1,2S2,1 that lie in the closed left-
half plan with the convention that zeros occurring on the
imaginary axis are counted with half their multiplicity (see
Carlin and Civalleri (1997)). Using the Belevitch form of
2 × 2 inner matrices it is easily seen that their number k
cannot exceed the McMillan degree n of S. If k is not
maximal we say that n − k transmission zeros are at
infinity. The synthesis of microwave filters usually starts
with the determination of an ”optimal” scattering re-
sponses, passing maximally the signal in the pass-band(s)
while rejecting it with a prescribed rejection level in the
stop bands. The computation of such responses is done
by solving quasi-convex Zolotarev problems involving the
filtering function S1,2/S1,1 of the scattering matrix Lunot
et al. (2008). For these problems the number of available
transmission zeros is crucial, as their presence allow to
obtain very selective responses with steep slopes in the
transition regions between pass and stop bands. We give
here a result relating the maximal number of transmission
zeros a circuit can achieve to the network structure of its
coupling scheme.
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Fig. 3. Coupling graph corresponding to a four resonators
filter with a ”quadruplet” coupling structure. The fre-
quency varying coupling is noted by an extra diagonal
ascending arrow between resonator 2 and 3.

Proposition 2. Shortest path rule: To every coupled
resonator circuit, we associate a coupling graph defined
as described: every resonator is represented by a node,
and two additional separate nodes are drawn to symbolize
the input and output. Edges of length one are drawn
between the input (resp. output) node and a resonator
k if the corresponding B(k, 1) (resp. B(k, 2)) coupling
elements is present in the circuit. Edges of length one are
drawn between resonators nodes k and l if a non frequency
dependent coupling F (k, l) (and E(k, l) = 0) is available.
Eventually an edge of length zero is drawn between res-
onator k and l if a frequency dependent couplings E(k, l)
(and F (k, l) 6= 0) is available in the circuit. Consider a
circuit with n resonators. Let l be the length of the shortest
path in the coupling graph between input and output, then
the scattering matrix of this circuit can maximally possess
n+ 1− l transmission zeros.

Figure (3) represents such a coupling graph for a quadru-
plet structure. The shortest path between input and out-
put is here 3, which indicates by the preceding proposition
that this coupling structure can accommodate maximally
4+1−3 = 2 transmission zeros. If an additional frequency
varying coupling were to be placed between resonator 1
and 2 the shortest path would have a length of 2 indicating
that maximally 3 transmission zeros can be produced by
such a structure. Eventually note that quadruplet with
independently adjustable transmission zeros are usually by
means of a frequency independent cross-coupling F (1, 3)
which is complicate to realize in practice and necessitate
the placement of a wire probe between resonator 1 and
3. The use of a frequency dependent coupling that can
be realized with thickened coupling irises appears here to
offer an interesting alternative option for the hardware
implementation of the filter.

5. CANONICAL FORM

We now come to some canonical realization of these
circuits.

Proposition 3. Suppose Y is a strictly proper admittance
matrix, reciprocal, positive real and loss-less of McMillan
degree n. Suppose in addition that Y1,1 and Y2,2 are
different from zeros. Let

Y =
∞∑
k=1

Gk
sk

be the formal development of Y at infinity where the G′ks
are the Markov parameters. The matrix Y admits a real
valued circuital realization (Id, F,B) where,

• B has only three non vanishing element B(1, 1),
B(n, 1), B(n, 2).
• The only possibly non-vanishing elements in F are its

diagonal, sub and sur-diagonal, as well as it last line
and last column

• If the first Markov parameter is diagonal, i.e the anti-
diagonal terms of G1 are zero, then B(n, 1) = 0.
If further k first Markov parameters are diagonal
(1 < k ≤ n− 1) then F (1 . . . k− 1, n) = F (n, 1 . . . k−
1) = 0

• Let S be the scattering matrix associated to Y then if
S has k finite transmission zeros then the first n−k−1
Markov parameters of Y are diagonal.

6. SYNTHESIS OF STRUCTURED REALIZATIONS

In order to tackle the problem of synthesizing a scattering
matrix with a circuit with a prescribed coupling topology
we first give an algebraic meaning to the word coupling
topology. A topology σ is a set of formal structured
matrices (E,F,B) populated with their specific non zero
elements. The parameter set X of a coupling topology is
the set of formal variables representing the variable entries
of E,F,B. For example the parameter set X associated to
the coupling topology shown on Figure (3) is

X ={B(1, 1), B(2, 4), F (1, 1), F (2, 2), F (3, 3), (4)

F (4, 4), F (1, 2), F (2, 3), F (3, 4), F (1, 4), E(2, 3)} (5)

while the diagonal of E is here considered as equal to the
identity matrix which corresponds to a classical normali-
sation.

We suppose that formally (as a polynomial in C[X])
det(E) 6= 0 , that is the set of singular E′s form a strict
sub-variety W of Cr, where r is the cardinality of X. To
every coupling topology σ we will associate a realization
map,

πσ : Cr\ W 7→
(
C2×2

)2n−1

x 7→
(
B
t
(x)E

−1
(x)B(x), B

t
(x)E

−1
(x)F (x)E

−1
B(x)

. . . B
t
(x)(E

−1
F )

2n−1
(x)E

−1
(x)B(x)

)
.

(6)

Adapting the algebraic framework detailed in Seyfert
(2019) we obtain following results.

Definition 1. For a topology σ = (E,F,B,X) with r =

card(X) we define V(σ) = πσ(Cr) to be its admissible set.
It is equivalent, up to the closure operation, to the set of
all possible admittances the topology can generate, when
its parameters range over Cr \W.

Definition 2. Let σ = (B,E, F,X) be a topology. As a
polynomial map, πσ has a Jacobian matrix. On an non-
empty open Zariski set of C[X] this Jacobian has constant
rank, which is often called its generic rank. We will say
that a topology is non-redundant, if the Jacobian of its
realisation map is generically full rank, that is of rank
r = card(X).

Solving our coupling matrix synthesis problem is about
inverting πσ on V(σ). We have following properties,

Proposition 4. Let σ = (B,E, F,X) be a coupling topol-
ogy, with r = card(X). We have,

• V(σ) is an irreducible algebraic variety.
• If σ is non-redundant, then the dimension of V(σ) as

an algebraic variety is r.
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• If σ is non-redundant there exists an integer Θ(σ)
such that all fibers of πσ are generically of cardinality
Θ(σ). More precisely there exists a non-empty Zariski
set U open in V(σ) such that ∀y ∈ U , card(π−1σ (y)) =
Θ(σ). U is dense in V(σ) in both topologies (Zariski
and euclidean). We call Θ(σ) the order of the topology
σ.
• If σ1 and σ2 are two non-redundant topologies with

parameter sets of the same cardinality, and if V(σ1) ⊂
V(σ2) then V(σ1) = V(σ2)

• If σ1 and σ2 are coupling topologies, and V(σ1) ∩
V(σ2) 6= V(σ1), then generically, on a non-empty
Zariski open set U of V(σ1), we have

∀y ∈ U , π−1σ2
(y) = ∅.

In the talk we will detail how to solve a typical synthesis
problem. Starting from a synthesized “optimal” frequency
response S with a given number of transmission zeros,
a canonical form (E0, F0, B0) is computed. Considering a
non-redundant coupling topology σ with same admissible
set as the computed canonical form (specialized to the
particular number of considered transmission zeros) we
set up an algebraic system of multivariate polynomial
equations based on the item of proposition (1) in order
to find all equivalent realizations with topology σ similar
(with same transfer function) to (E0, F0, B0). The system
is solved using Gröbner basis. For large systems we will
show that for particular coupling topologies a divide and
conquer strategy can be designed in order to split the
original structured realisation problem in several smaller
ones. This strategy uses Schur analysis to decompose the
function to be realised as a sequence of chained responses
of lower degree than the initial one. Details about these
procedures can be found in Zhang et al. (2021a,b).
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tion et le réglage de dispositifs micro-ondes. Habilitation
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Abstract: We present a data-driven predictive control scheme for the stabilization of unknown
LTI systems subject to process disturbances. The scheme uses Willems’ lemma for the prediction
of future system trajectories and can be set up using only a priori measured input-output data of
the disturbed system and an upper bound on its order. The main contribution is the introduction
of a novel constraint tightening, which purely based on data guarantees closed-loop constraint
satisfaction and recursive feasibility, even in the presence of process disturbances. Furthermore,
a pre-stabilizing controller can be integrated into the scheme which ensures applicability for
unstable systems.

Keywords: Model predictive control, data-driven control, robust control

1. INTRODUCTION

Recent research has focused on the idea of establishing
predictive control schemes without explicit model knowl-
edge using only a priori measured data sequences (Yang
and Li, 2015; Coulson et al., 2019, 2021; Berberich et al.,
2021). To this end, the above publications employWillems’
lemma (Willems et al., 2005) for the data-based prediction
of future system trajectories.
One of the major strengths of model predictive control
(MPC) is its capability of including state and input
constraints into the optimal control problem, and there-
fore, guaranteeing the satisfaction of these constraints in
closed-loop operation. In the data-driven setting –based
on Willems’ lemma– these closed-loop guarantees were
so far only achieved in Berberich et al. (2020a) by the
introduction of a proper constraint tightening which can
be parametrized using only measured data. However, the
aforementioned publication only considers additive output
measurement noise, whereas process disturbances, acting
directly on the states, were barely considered in the data-
driven MPC literature so far.
While process disturbances are considered in Huang et al.
(2021) and Umenberger (2021), knowledge of a priori
measured disturbances is assumed in both publications
which could be a rather restrictive assumption depending
⋆ This work was supported by Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under grant MU 3929/1-2 and
AL 316/12-2 - 279734922, under Germany’s Excellence Strategy -
EXC 2075 - 390740016, and under grant 468094890. We acknowl-
edge the support by the Stuttgart Center for Simulation Science
(SimTech). The authors thank the International Max Planck Re-
search School for Intelligent Systems (IMPRS-IS) for supporting
Julian Berberich.

on the application. Moreover, no closed-loop guarantees
were derived in both publications. Recently, a scheme
guaranteeing closed-loop stability and recursive feasibility
in the presence of process disturbances was introduced in
Liu et al. (2021), which, however, lacks of guarantees for
closed-loop constraint satisfaction.
The predictive control scheme introduced in the following
closes this gap by extending the constraint tightening
from Berberich et al. (2020a) to the case with process
disturbances. As a key advantage, the proposed approach
allows for the inclusion of a pre-stabilizing feedback, which
enables the usage of the proposed scheme even in the
case of unstable systems. Furthermore, a suitable input
constraint tightening is introduced in order to guarantee
closed-loop input constraint satisfaction while using the
pre-stabilizing controller.
In this extended abstract, after introducing the problem
setup in Section 2, we present the proposed data-based
MPC scheme and state its main properties (closed-loop
constraint satisfaction and practical exponential stability)
in Section 3. More details on the results presented, as well
as the associated proofs, can be found in Klöppelt et al.
(2022).
Notation: We denote the set of continuous, strictly increas-
ing functions α : R≥0 → R≥0 with α(0) = 0 by K and the
subset of unbounded functions in K as K∞.
For a sequence {zk}N−1

k=0 we define the Hankel matrix of
depth L as

HL(z) =


z0 z1 . . . zN−L
z1 z2 . . . zN−L+1

...
... . . . ...

zL−1 zL . . . zN−1

 ,
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and the stacked window from time instant a to b as
z[a,b] =

[
z⊤a · · · z⊤b

]⊤
.

2. PROBLEM SETUP

We consider the discrete-time LTI system
xk+1 = Axk +Buk + wk (1)

with the state xk ∈ Rn, the input uk ∈ Rm, and the
process disturbance wk ∈ Rn, where the pair (A,B)
is controllable. We assume that the state, input, and
disturbance are subject to constraints in the form of
hypercubes, i.e., the input constraint set is given by

U = {u ∈ Rm | ∥u∥∞ ≤ umax}, (2)
for some umax > 0, and analogously for the state and
disturbance constraint sets X and W. The control goal
is to stabilize the origin in the presence of the bounded
disturbance wk ∈ W for all k ≥ 0, while satisfying the
input and state constraints xk ∈ X and uk ∈ U for all
k ≥ 0. We assume that the system matrices A and B
are unknown, but that the system order n, as well as
the constraints umax, xmax, wmax are known. Hence, for
controller design, only the latter shall be used together
with measured input and state sequences. Note that the
following results also hold if only an upper bound on the
system order is known.
To this end, we a priori apply a persistently exciting (PE)
input sequence to the system and measure the resulting
state sequence, where a PE sequence is defined as follows.
Definition 1. A sequence {uk}N−1

k=0 , with uk ∈ Rm, is
persistently exciting of order L if rank (HL(u)) = mL.

Using the input-state data sequences we make use of
Willems’ fundamental lemma. This result states that in
the absence of disturbances (i.e., if wk = 0 for all k ≥ 0)
all system trajectories can be parametrized by the linear
combination of time shifts of a priori measured system
trajectories.
Lemma 1. (Willems et al. (2005)). Suppose the data se-
quence {uk, x̂k}N−1

k=0 is a trajectory of the system
x̂k+1 = Ax̂k +Buk (3)

and u is PE of order L + n. Then, {ūk, x̄k}L−1
k=0 is a

trajectory of system (3) if and only if there exists α ∈
RN−L+1 such that [

HL(u)
HL(x̂)

]
α =

[
ū
x̄

]
.

In the next section, we set up an MPC scheme which
uses Lemma 1 for the prediction of future trajectories, and
moreover, guarantees closed-loop constraint satisfaction.

3. DATA-DRIVEN PREDICTIVE CONTROL SCHEME

First, we assume that we have access to a state feedback
matrix K such that all eigenvalues of AK = A + BK lie
strictly inside the unit disc. In case of a stable system, this
feedback can be set to zero. In case of an unstable system,
such a control law can be computed purely from data, e.g.,
following the approaches in Berberich et al. (2020b); Van

Waarde et al. (2020). We use this feedback matrix to pre-
stabilize the system by using the input parametrization

uk = Kxk + νk (4)
as it is common, for example, in tube-based MPC (Chisci
et al., 2001).
To make use of Lemma 1 for the prediction of state
sequences, we consider the input νk of the pre-stabilized
system

xk+1 = AKxk +Bνk + wk, (5)
apply the PE input sequence {νdk}

N−1
k=0 of length N to

system (5), and measure the resulting state sequence
{xdk}Nk=0, where the superscript ”d” is used to denote the
fact that this is a priori collected data.
Assumption 1. The input sequence {νdk}

N−1
k=0 is persis-

tently exciting of order L+ n.

Assumption 1 can be easily enforced in practice by choos-
ing a rich enough input sequence to generate the data. It
is not restrictive in the sense that the set of signals which
are not PE has measure zero.
With these a priori generated data sequences,we are now in
the position to set up the optimal control problem (OCP)
at time t with the prediction horizon L
J∗
L(xt) = min

α(t),σ(t),
ū(t),x̄(t)

JL (ū(t), x̄(t), α(t), σ(t)) , (6a)

s.t.
[

ū(t)
x̄(t) + σ(t)

]
=

[
HL(ν

d)
HL+1(x

d)

]
α(t), (6b)

x̄0(t) = xt, (6c)
x̄L(t) = 0, (6d)
fxk (ū(t), x̄(t), α(t), σ(t)) ≤ xmax, (6e)
fuk (ū(t), x̄(t), α(t), σ(t)) ≤ umax, (6f)
∀k = 0, . . . , L− 1, (6g)

where (6b) is used as prediction for future state sequences
x̄(t) (compare Lemma 1), (6c) and (6d) are the initial
and terminal condition of the OCP. The terminal equality
constraint is used to prove exponential stability in Theo-
rem 1, similar to standard (model-based) MPC (Rawlings
et al., 2017). Further, (6e) and (6f) are suitable tightened
constraints ensuring recursive feasibility and closed-loop
constraint satisfaction.
We use the cost function

JL (ū(t), x̄(t), α(t), σ(t)) =
L−1∑
k=0

(
∥ūk(t)∥2R + ∥x̄k(t)∥2Q

)
+ λαwmax ∥α(t)∥22
+

λσ
wmax

∥σ(t)∥22 ,
(7)

with quadratic regularization on α(t), and σ(t) (compare
Berberich et al. (2021)). Using the slack variable σ (first
introduced in Coulson et al. (2019)) is common in data-
driven predictive control, in order to ensure feasibility of
(6b) even in the presence of disturbances. The state and
input constraint functions are given by
fxk (ū(t), x̄(t), α(t), σ(t)) = ∥x̄k(t)∥∞ + au,k ∥ū(t)∥1 + ac,k

+ aα,k ∥α(t)∥1 + aσ,k ∥σk(t)∥∞
(8)
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fuk (ū(t), x̄(t), α(t), σ(t)) = ∥ūk(t)∥∞ + bu,k ∥ū(t)∥1 + bc,k
+ bα,k ∥α(t)∥1 + bσ,k ∥σk(t)∥∞
+ ∥Kx̄k(t)∥∞ .

(9)

In the following, we describe how the various constants
appearing in (8), (9) are defined. This is done in a
similar fashion as in Berberich et al. (2020a), but suitably
extended in order to be able to account for process
disturbances and the additional pre-stabilizing feedback
in (4). In particular, a suitable input constraint tightening
resulting in (6f) and (9) was not present in Berberich et al.
(2020a). First, define the constants

cα,k := ρA,kd̄N−L + d̄N−L+k, (10)
cσ,k := ρA,k + 1, (11)

for k = 0, . . . , L − 1, where ρA,k ≥
∥∥AkK∥∥∞ and d̄k ≥

∥dk∥∞, with

dk :=
k−1∑
i=0

Ak−1−i
K wi. (12)

Moreover, note that ρA,k and d̄k can be computed based on
the available input-state data and the disturbance bound
wmax, following the approach of Wildhagen et al. (2022,
Section IV.B). Furthermore, we consider a controllabil-
ity constant Γ, which also can be computed from data
(Berberich et al., 2020a, Section V.A), and the constant
cpe =

∥∥∥H†
ux̂

∥∥∥
1
, with

Hux̂ =

[
HL

(
νd
)

H1

(
x̂d[0,N−L]

)] , (13)

where x̂d[0,N−L] denotes the a priori measured state se-
quence without process disturbances. We approximate
cpe ≈

∥∥H†
ux

∥∥
1
, whereHux is analogous to (13) but contains

disturbances in the measured state sequence. However, the
error between the real value and the approximation of cpe
is small for sufficiently small disturbance levels wmax, as
was confirmed by numerical simulations.
Using these system constants, as well as K̄ = ∥K∥∞,
we can now define the coefficients of the state constraint
tightening (8) as

au,k = 0, aα,k = cα,k, aσ,k = cσ,k, ac,k = d̄k, (14)
for k = 0, . . . , n− 1, and

au,k+n = au,k + aα,kcpe + aσ,kcped̄n,

aα,k+n = au,k+nΓcα,L−1 + cα,k+n,

aσ,k+n = au,k+nΓcσ,L−1 + cσ,k+n,

ac,k+n = d̄n + ac,k + aα,k
(
nxmax + nd̄n

)
+ aσ,k

(
d̄N−1cpe

(
nxmax + nd̄n

)
+ d̄n

)
.

(15)

for k = 0, . . . , L−n−1. Further, we define the coefficients
for the input constraint tightening (9) as
bu,k = 0, bα,k = K̄cα,k, bσ,k = K̄cσ,k, bc,k = K̄d̄k, (16)

for k = 0, . . . , n− 1, and
bu,k+n = bu,k + bα,kcpe + bσ,kcped̄n,

bα,k+n = bu,k+nΓcα,L−1 + K̄cα,k+n,

bσ,k+n = bu,k+nΓcσ,L−1 + K̄cσ,k+n,

bc,k+n = K̄d̄nbc,k + bα,k
(
nxmax + nd̄n

)
+ aσ,k

(
d̄N−1cpe

(
nxmax + nd̄n

)
+ d̄n

)
,

(17)

for k = 0, . . . , L−n−1. At this point it becomes clear why
in case of an unstable system a pre-stabilizing controller
(4) should be included into the control scheme, as in
case of eigenvalues of A lying on or outside the unit disc
the constants ρA,k and d̄k would (exponentially) diverge.
Thus, the coefficients (14)-(17) would diverge as well,
resulting in an infeasible OCP (6) due to (6e), (6f) even
for small prediction horizons L.
The strictly convex OCP (6) is now solved in an n-step
receding horizon manner, i.e., it is solved at time t with
the measured state xt, the first n optimal inputs ū∗[0,n−1](t)

are applied to system (1) via the input parametrization
(4), i.e., ut+k = Kxt+k + ū∗k(t) for k = 0, . . . , n − 1.
This procedure is then repeated at time t + jn for all
j ∈ N. Next, we state that for all states inside the region
of attraction, i.e., with J∗

L(xt) ≤ VROA, a sufficiently small
disturbance bound wmax can be found such that the MPC
scheme results in recursive feasibility, practical exponential
stability, and closed-loop constraint satisfaction, i.e., xt ∈
X and ut ∈ U for all t ≥ 0.
Theorem 1. Suppose that Assumption 1 holds. Then, for
any VROA > 0, there exist λα, λα, λσ, λσ > 0 such that
for all λα, λσ satisfying

λα ≤ λα ≤ λα, λσ ≤ λσ ≤ λσ, (18)
there exist w̄, c̄pe > 0 as well as a function β ∈ K∞, such
that for all wmax and cpe satisfying

wmax ≤ min

{
w̄,

c̄pe
cpe

}
, (19)

the following holds for the closed-loop of the n-step MPC
scheme:
(i) If J∗

L(xt) ≤ VROA for some t ≥ 0, then OCP (6) is
feasible at time t+ n.

(ii) For any initial condition satisfying J∗
T (x0) ≤ VROA it

holds that xt ∈ X and ut ∈ U for all t ≥ 0, and J∗
L(xt)

converges exponentially to J∗
L(xt) ≤ β(w̄).

Note that (ii) only shows exponential convergence of xt
to a neighborhood of x = 0, however, it is possible to
establish a suitable lower as well as an upper bound on
J∗
L(xt) (Berberich et al., 2021, Lemma 1), thus, resulting

in practical exponential stability. The proof of this theorem
as well as extensions to the case of output feedback can be
found in Klöppelt et al. (2022). For a detailed discussion
on the parameters λα, λσ, and cpe we refer to Berberich
et al. (2021).

4. CONCLUSION

In this extended abstract, we introduced a data-driven
predictive control scheme, capable of stabilizing the origin
even in the presence of process disturbances. To this end,
we proposed a state constraint tightening which can be
constructed using only system constants that can be esti-
mated purely from data. The presented MPC scheme in-
cludes a pre-stabilizing controller and an associated input
constraint tightening such that it can also cope with unsta-
ble systems. The introduced predictive controller guaran-
tees closed-loop recursive feasibility, practical exponential
stability, and constraint satisfaction.
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On Cameron-Liebler sets of k-spaces in
finite projective spaces (Part I)

Jan De Beule ∗

∗ Vrije Universiteit Brussel, Pleinlaan 2, B–1050 Brussel (e-mail:
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Abstract: Cameron-Liebler sets of lines in a finite 3-dimensional space PG(3, q) originate
from the study by Cameron and Liebler in 1982 of groups of collineations with equally many
orbits on the points and the lines of PG(3, q). These objects have some interesting equivalent
characterizations, and are examples of Boolean functions of degree one and completely regular
codes. In this talk, we focus on these objects from a geometric perspective, and report on
several existence and non-existence results, including a recent so-called modular equality for the
parameter of Cameron-Liebler sets of k-spaces in finite n-dimensional projective spaces.

Keywords: low degree Boolean functions, completely regular codes, irreducible groups,
Cameron-Liebler sets, extremal sets, strongly regular graphs.

1. INTRODUCTION

Let q = ph be a prime power, and denote the finite field
of order q as GF(q). The d-dimensional projective space
over GF(q) is the geometry consisting of all i-dimensional
subspaces of the d+1-dimensional vector space V (d+1, q)
over GF(q), 1 ≤ i ≤ d, and is denoted by PG(d, q). The
fundamental theorem of projective geometry states that all
isomorphisms of PG(d, q) are induced by the semi-linear
maps of the underlying vector space. The group of isomor-
phisms of PG(d, q) is also called the group of collineations.
Note that we call the i-dimensional subspaces of V (d +
1, q), 1 ≤ i ≤ d, the points, lines, planes, etc. of PG(d, q).

In Cameron and Liebler (1982), irreducible collineation
groups of PG(d, q), having equally many point orbits
as line orbits are studied. There are several ways to
characterize the line orbits of such a collineation group.
One way is geometric, using spreads of the projective
space. A k-spread of PG(d, q) is a set of k-dimensional
projective subspaces partitioning the point set of PG(d, q).
It is well known that a k-spread of PG(d, q) exists if and
only if k + 1 | d + 1. Hence e.g. PG(d, q) has line spreads
if and only if 2 | d + 1. In Cameron and Liebler (1982),
it is shown that the line orbits have constant intersection
with any spread, i.e. there exists a natural number x such
that for any line orbit O, |O ∩ S| = x for any line spread
S of PG(d, q). Such a line set O will be called a Cameron-
Liebler line class (CLLC) with parameter x.

It was conjectured in Cameron and Liebler (1982) that
such a group is line transitive or fixes a hyperplane and
acts transitively on the lines of the hyperplanes, or, dually,
fixes a point and acts transitively on the lines through the
fixed point. Clearly, the set of lines through a fixed point
p meets every spread in exactly one line. Dually, the set of
lines in a fixed plane π meets every spread in exactly one
line. Both line sets are CLLCs with parameter 1. They
are called trivial. If p 6∈ π, the union of the set of lines
through p and the set of lines in π meets every spread in

exactly 2 lines. Also this example is called a trivial CLLC.
Note that from the intersection property with spreads, it
follows that the complement of a CLLC with parameter
x in the line set, is a CLLC with parameter q2 + 1 − x.
The complement of a trivial CLLC will also be called a
trivial CLLC. The conjecture of Cameron and Liebler was
disproven by Drudge (1998) and by Bruen and Drudge
(1999). More precisely, in Bruen and Drudge (1999), the
authors constructed a CLLC in PG(3, q) with parameter

x = q2+1
2 for odd q. Since the work of Bruen and Drudge,

a lot of research has been done with as main objective
either to construct new non-trivial CLLCs, or to show that
CLLCs do not exist for particular values of the parameter
x.

Now we switch to the world of low degree Boolean func-
tions. The following theorem is well known.

Theorem 1. (Nisan and Szegedy (1994)). A Boolean de-
gree d function on the hypercube depends on at most d2d−1

coordinates.

In the last years, comparable results for low degree
Boolean functions on different domains have been ob-
tained. Let J(n, k) denote the Johnson graph, i.e. the
graph with vertex set all k-subsets of {1, . . . , n}, two
vertices being adjacent if and only if the corresponding
sets meet in exactly k−1 elements. The following theorem
is from Filmus (2016) and Meyerowitz (1992).

Theorem 2. Let n−k, k ≥ 2. A Boolean degree 1 function
on the Johnson graph J(n, k) depends on at most one
coordinate.

From this perspective, it is natural to consider the q-
analogue of the Johnson graph as domain. This is the
Grassmann graph Jq(n, k), the graph with vertex set all k-
dimensional subspaces of the vector space V (n, q), and two
vertices being adjacent if and only if their corresponding
subspaces meet in a (k − 1)-dimensional subspace of
V (n, q).
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The original conjecture of Cameron and Liebler is trans-
lated in the language of Boolean degree one functions on
Jq(n, k) as follows.

Conjecture 3. (Cameron, Liebler (1982)). Let n ≥ 4 and
k = 2. If f is a Boolean degree 1 function on the
Grassmann graph Jq(n, k), then f depends on at most one
point and one hyperplane.

Now we switch the viewpoint to coding theory. Let n ≥ 1
and A be a set of q symbols. The Hamming graph H(n, q)
is the graph with vertex set the set of words of length n
over A and two vertices being adjacent if and only if their
Hamming distance is 1. The Hamming graph H(n, 2) is
the hypercube. Clearly, a q-ary code of length n can be
considered as a subset of the vertex set of H(n, q). So it
is quite natural to translate properties of the code C into
graph theoretical properties. Conversely, it is natural to
define codes as substructures in graphs different from the
Hamming graph as well, replacing the Hamming distance
by the graph distance. Let C be a code in a regular graph
Γ with vertex set V . We follow the definition found in
e.g. Neumaier (1992). Let x be any vertex of Γ, then
d(x,C) = min{d(x, y)|y ∈ C}. The covering radius ρ =
max{d(x,C)|x ∈ Γ}, it is the minimal integer ρ such that
the spheres of radius ρ around the codewords of C cover
the vertices of Γ. For a code C, minimum distance d(C)
and covering radius ρ(C) are related by d(C) ≤ 2ρ(C)+1.
The code C is called perfect in case of equality, which is
equivalent with the property that the spheres with radius
ρ(C) around the codewords partition the vertex set V .

Completely regular codes have been introduced in Delsarte
(1973) as a generalization of perfect codes. Assume that
C is a code in a distance regular graph. Let Ci = {x ∈
Γ|d(x,C) = i}, then Ci 6= ∅ ⇐⇒ 0 ≤ i ≤ ρ(C), and
C0 = C. The sets Ci partition the vertex set of Γ. The
code C is called completely regular if every vertex x ∈ Ci
has a constant number of neighbors ai, bi, respectively ci
in Ci−1, Ci, respectively Ci+1. This is equivalent with the
partition of the vertex set of Γ into the components Ci
being equitable.

As it is natural to move from the hypercube to the Grass-
mann graph as domain for low degree Boolean functions,
it is equally natural to consider completely regular codes
in the Grassmann graph, and it is well known that com-
pletely regular codes of covering radius 1 are equivalent to
Cameron-Liebler line classes, see e.g. Filmus and Ihringer
(2019).

In this talk, we will briefly overview the different points
of view on CLLCs. Then we discuss the current state of
the art on the existence of non-trivial CLLCs in PG(3, q),
overview the non-existence results for CLLCs with a
given particular parameter x, discuss the generalization
of CLLCs to Cameron-Liebler sets of k-subspaces of the
projective and affine space, and present a recent modular
equality on the parameter of these generalizations.

2. KNOWN EXAMPLES AND A MODULAR
EQUALITY FOR CAMERON-LIEBLER LINE

CLASSES

The geometrical characterization of CLLCs, i.e. such
an object has constant intersection with any spread of

PG(3, q), is useful to generalize the notion of these objects
to higher dimension if spreads exist. For d-dimensional
projective spaces, this is only possible if 2 | d+1. However,
this restriction does not occur when dealing with affine
spaces.

Recall that a d-dimensional affine space over the finite
field GF(q) is the geometry consisting of all cosets of i-
dimensional subspaces of the vector space V (d, q), 0 ≤
i ≤ d − 1. This geometry is denoted by AG(d, q). It is
well known that spreads of k-dimensional subspaces always
exist in an affine space, it is sufficient to consider the set
of k-spaces in one parallel class. A Cameron-Liebler line
set in AG(3, q) is a set of lines meeting any line spread
in a constant number. This is not just a straightforward
generalization, as it can be shown that this definition is
one of the similar characterizations possible in an affine
context.

Now we are ready to overview known results for CLLCs in
three dimensions.

Non-trivial examples of Cameron-Liebler line classes are
rare. The first example of an infinite family was given

in Bruen and Drudge (1999) (q odd, x = q2+1
2 ). More

recently, examples with parameter x = q2−1
2 have been

discovered in Rodgers (2013) and are described as an
infinite family De Beule et al. (2016); Feng et al. (2015).
These examples require q ≡ 5 or 9 mod 12. Examples with

parameter x = (q+1)2

3 from Rodgers (2013) for q ≡ 2 mod
3 are described as an infinite family in Feng et al. (2021).
Non-isomorphic derivations of some of these examples with

parameter x = q2−1
2 are found in Cossidente and Pavese

(2019a) (q > 7 odd), and in Cossidente and Pavese (2019b)
(q ≡ 1 mod 4, q ≥ 9). Note that for some of these examples,
there exists a plane of PG(3, q) not containing any line,
and hence such examples live in AG(3, q). Hence, by
(D’haeseleer et al., 2020, Theorem 3.8), these examples are
also examples of non-trivial Cameron-Liebler line classes in
AG(3, q). As mentioned in the introduction, non-existence
results are of great interest as well, and one of the most
consequential non-existence conditions is the following
theorem.

Theorem 4. (Gavrilyuk and Metsch, 2014, Theorem 1.1)
Suppose that L is a Cameron-Liebler line class with
parameter x of PG(3, q). Then for every plane and every
point of PG(3, q),(

x

2

)
+m(m− x) ≡ 0 mod (q + 1), (1)

where m is the number of lines of L in the plane, respec-
tively through the point.

As a corollary of Theorem 4, the following theorem is given
in D’haeseleer et al. (2020)

Theorem 5. Suppose that L is a Cameron-Liebler line class
in AG(3, q) with parameter x. Then

x(x− 1) ≡ 0 mod 2(q + 1) . (2)

3. A MODULAR EQUALITY FOR
CAMERON-LIEBLER SETS OF K-SPACES

The main results we present in the talk, is the general-
ization of Theorem 4, respectively 5, to Cameron-Liebler
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line classes in projective spaces, respectively affine spaces
of dimension n ≥ 3 odd. This is joint work with Jonathan
Mannaert.

Recall the Gaussian binomial coefficient, for a ≤ b natural
numbers, [

b

a

]
q

=
(qb − 1) . . . (qb−a+1 − 1)

(qa − 1) . . . (q − 1)

which represents the number of (a − 1)-dimensional pro-
jective spaces in a projective space of dimension b− 1.

For the sake of completeness, we mention one alternative
definition of Cameron-Liebler sets of lines in PG(d, q) that
avoids the use of line spreads, which do not exist if d
is even. A Cameron-Liebler set of lines in PG(d, q) is a
set L of lines of which the characteristic vector χL is a
linear combination of characteristic vectors of the point-
line pencils in PG(d, q). In case d = 3, then the number

x =
|L|[
d
1

]
q

coincides with the parameter of L as defined in Section 1.
Therefore we use this number as definition of the parame-
ter of a Cameron-Liebler set of lines in PG(d, q) for d ≥ 3.
The parameter will be an integer if and only if d is odd.

The following lemma originates from Drudge (1998). It
turns out to be essential to prove the desired generalization
of Theorem 4. A short proof can e.g. be found in De Beule
et al. (2022).

Lemma 6. Let L be a Cameron-Liebler set of lines in
PG(d, q), d ≥ 3, and let π be any i-dimensional projective
subspace of PG(d, q), i ≥ 2. Then the set of lines of L
contained in π is a Cameron-Liebler set of lines in π, with
parameter xπ.

Secondly, a series of combinatorial lemmas are needed.
These are the following.

Lemma 7. (De Beule et al., 2022, Theorem 5.1 for k = 1
and t = 3) Suppose that L is a non-empty Cameron-
Liebler line class in PG(n, q), n ≥ 4 even, with parameter
x. Then

x = 1 +
C[

n−2
1

]
q

,

for some C ∈ N.

Lemma 8. (Blokhuis et al., 2019, Theorem 2.9) Suppose
that L is a Cameron- Liebler line class with parameter x
in PG(n, q), with n ≥ 3. If ` is an arbitrary line in PG(n, q)

then there are in total q2 q
n−2−1
q−1 (x− χ(`)) lines of L skew

to `. Here χ(`) equals one if ` ∈ L or zero otherwise.

Lemma 9. (Segre, 1961, Section 170) The number of j-
spaces disjoint to a fixed m-space in PG(n, q) is equal to

q(m+1)(j+1)

[
n−m
j + 1

]
q

.

The arguments to prove the following theorem, are of
combinatorial nature. The above Lemmas 6, 7, 8, and 9
enable a series of arguments that relate the parameter
of a Cameron-Liebler set of lines to the parameter of
the induced Cameron-Liebler line class in different 3-
dimensional projective spaces, the latter for which we can

use Theorem 4. The main result for the projective case is
the following theorem.

Theorem 10. (De Beule and Mannaert (2022)). Let L be
a Cameron-Liebler line class with parameter x in PG(n, q),
with n ≥ 7 odd. Then for any point p,

x(x− 1) + 2m(m− x) ≡ 0 mod (q + 1) ,

where m is the number of lines of L through p.

Lemma 6 can be reformulated for Cameron-Liebler line
sets in affine spaces, see e.g. De Beule et al. (2022).

Lemma 11. Suppose that L is a Cameron-Liebler set of
lines in AG(n, q), n >. Then for every i-dimensional
subspace π, with i > 1 the set of lines of L in π is a
Cameron-Liebler line set in π, with parameter xπ.

The generalization of Theorem 5 now becomes

Theorem 12. (De Beule and Mannaert (2022)). Let L be
a Cameron-Liebler line class in AG(n, q), n ≥ 3 odd, with
parameter x, then

x(x− 1) ≡ 0 mod 2(q + 1) .

We will illustrate how both Theorem 10 and 12 can be
used to reduce the admitted parameters for given n and q.
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Abstract: We study global finite-dimensional observer-based stabilization of a 1D heat equation
with a known globally Lipschitz semilinearity in the state variable. We consider Neumann
actuation and point measurement. Using dynamic extension and modal decomposition we derive
nonlinear ODEs for the modes of the state. We then design a finite-dimensional nonlinear
Luenberger observer, which takes into account the known semilinearity. The proposed controller
is based on this observer. Our Lypunov H1-stability analysis leads to LMIs, which are feasible
for a large enough observer dimension and small enough Lipschitz constant.

Keywords: Distributed parameter systems, nonlinear systems, observer-based control,
Lyapunov method.

1. INTRODUCTION

Observer-based control of parabolic PDEs is a challenging
problem with numerous applications, including chemical
reactors, flame propagation and viscous flow (Christofides
[2001]). Output-feedback controllers for PDEs have been
constructed by the modal decomposition approach (Cur-
tain [1982], Lasiecka and Triggiani [2000], Orlov et al.
[2004]), the backstepping method (Krstic and Smyshlyaev
[2008]) and the spatial decomposition approach (Fridman
and Blighovsky [2012], Kang and Fridman [2020]). Con-
structive finite-dimensional observer-based design for lin-
ear 1D parabolic PDEs was introduced in (Katz and Frid-
man [2020, 2021a]), via modal decomposition. The chal-
lenging problem of efficient finite-dimensional observer-
based design for semilinear parabolic PDEs remained
open.

State-feedback control of some semilinear PDEs was stud-
ied in (Vazquez and Krstic [2008]) using backstepping, in
(Karafyllis and Krstic [2019]) using small-gain theorem
and in (Karafyllis [2021]) via control Lyapunov functions.
Recently, modal-decomposition-based state-feedback was
proposed in (Katz and Fridman [2021b]) for global sta-
bilization of heat equation and in (Katz and Fridman
[2021a]) for regional stabilization of Kuramoto-Sivashinsky
equation. Finite-dimensional control based on linear ob-
servers was proposed in (Wu et al. [2016]) for semilin-
ear parabolic PDEs via modal decomposition. Linear ob-
servers should have high gains required to dominate the
nonlinearity, which leads to small delays that preserve
the stability (Lei and Khalil [2016], Najafi and Ekramian
[2021]).

For semilinear parabolic PDEs, efficient finite-dimensional
observer-based controller design remained an open chal-

⋆ Supported by Israel Science Foundation (grant no. 673/19) and by
C. and H. Manderman Chair at Tel Aviv University

lenging problems that we address in the present paper. We
consider global stabilization of a semilinear heat equation
under Neumann actuation and point measurement. The
semilinarity is assumed to be globally Lipschitz in the
state. Using dynamic extension and modal decomposition
we derive nonlinear ODEs for the modes of the state. We
then design a finite-dimensional nonlinear Luenberger ob-
server, which takes into account the known semilinearity.
The proposed controller is based on the nonlinear finite-
dimensional observer. The challenge in the Lyapunov-
based analysis is due to the coupling between the finite-
dimensional and infinite-dimensional parts of the closed-
loop system, introduced by both the semilinearity and
the estimation error. Our H1-stability analysis leads to
LMIs, which are feasible for a large enough observer di-
mension and small enough Lipschitz constant. The results
in this manuscript have been recently extended to finite-
dimensional observer-based stabilization of a semilinear
heat in the presence of large input delay in (Katz and
Fridman [2022]).

Preliminaries: L2(0, 1) is the space of Lebesgue measur-
able and square integrable functions f : [0, 1] → R with the

inner product ⟨f, g⟩ :=
∫ 1

0
f(x)g(x)dx and induced norm

∥f∥2 := ⟨f, f⟩. Hk(0, 1) is the Sobolev space of functions
f : [0, 1] → R having k square integrable weak derivatives,

with the norm ∥f∥2Hk :=
∑k
j=0

∥∥f (j)∥∥2. The Euclidean

norm on Rn is denoted by |·|. For P ∈ Rn×n, P > 0
means that P is symmetric and positive definite. The sub-
diagonal elements of a symmetric matrix will be denoted
by ∗.
Consider the Sturm-Liouville eigenvalue problem

ϕ′′ + λϕ = 0, x ∈ (0, 1) (1.1)

with boundary conditions

ϕ′(0) = ϕ′(1) = 0. (1.2)
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This problem induces a sequence of eigenvalues with cor-
responding eigenfunctions. The normalized eigenfunctions
form a complete orthonormal system in L2(0, 1). The
eigenvalues and corresponding eigenfunctions are given by

ϕ0(x) ≡ 1, ϕn(x) =
√
2 cos

(√
λnx

)
,

λn = n2π2, n ∈ Z+.
(1.3)

The following lemmas will be used:

Lemma 1.1. (Katz and Fridman [2020]) Let h
L2

=
∑∞
n=0 hnϕn.

Then h ∈ H2(0, 1) with h′(0) = h′(1) = 0 if and only if∑∞
n=1 λ

2
nh

2
n <∞. Moreover, ∥h′∥2 =

∑∞
n=1 λnh

2
n.

Lemma 1.2. (Sobolev’s inequality, Kang and Fridman
[2019]) Let h ∈ H1(0, 1). Then, for all Γ > 0,

maxx∈[0,1] |h(x)|
2 ≤ (1 + Γ) ∥h∥2 + Γ−1 ∥h′∥2.

2. FINITE-DIMENSIONAL OBSERVER-BASED
CONTROL OF A SEMILINEAR HEAT EQUATION

We consider stabilization of the semilinear 1D heat equa-
tion

zt(x, t) = zxx(x, t) + g (t, x, z(x, t)) , t ≥ 0 (2.1)

where x ∈ [0, 1] and z(x, t) ∈ R. We consider Neumann
actuation

zx(0, t) = 0, zx(1, t) = u(t) (2.2)

where u(t) is a control input to be designed. We further
assume point measurement given by

y(t) = z(x∗, t), x∗ ∈ [0, 1]. (2.3)

Note that x∗ = 0 or x∗ = 1 correspond to boundary
measurements. Here g : R3 → R is a locally Lipschitz
function which satisfies g(t, x, 0) ≡ 0 and

sup
z1 ̸=z2

|g(t, x, z1)− g(t, x, z2)|
|z1 − z2|

≤ σ, ∀ (t, x) ∈ R2 (2.4)

for some σ > 0, independent of (t, x) ∈ R2.

Let ψ(x) = − 2
π cos

(
π
2x

)
and note that it satisfies

ψ′′(x) = −µψ(x), µ =
π2

4
,

ψ′(0) = 0, ψ′(1) = 1, ∥ψ∥2 =
2

π2
.

(2.5)

Forthermore,

⟨ψ, ϕ0⟩ =
4

π2
, ⟨ψ, ϕn⟩ =

√
2(−1)n

λn − µ
, n ≥ 1. (2.6)

Similar to (Karafyllis [2021]), we introduce

w(x, t) = z(x, t)− ψ(x)u(t). (2.7)

We define further the new control input v(t) that satisfies
the following relations:

u̇(t) = −µu(t) + v(t), u(0) = 0, t ≥ 0.

Then we obtain the equivalent ODE-PDE system

u̇(t) = −µu(t) + v(t), t ≥ 0,
wt(x, t) = wxx(x, t) + g (t, x, w(x, t) + ψ(x)u(t))

−ψ(x)v(t),
wx(0, t) = wx(1, t) = 0

(2.8)

with measurement

y(t) = w(x∗, t) + ψ(x∗)u(t). (2.9)

We will treat further u(t) as an additional state variable.

We present the solution to (2.8) as

w(x, t) =
∞∑
n=0

wn(t)ϕn(x), wn(t) = ⟨w(·, t), ϕn⟩ , (2.10)

with {ϕn}∞n=0 defined in (1.3). By differentiating under the
integral sign, integrating by parts and using (1.1) and (1.2)
we obtain for t ≥ 0

ẇn(t) = −λnwn(t) + gn(t) + bnv(t),
wn(0) = ⟨w(·, 0), ϕn⟩ , (2.11)

where
gn(t) = ⟨g (t, ·, w(·, t) + ψ(·)u(t)) , ϕn⟩ ,

b0
(2.6)
=

4

π2
, bn =

(2.6)
=

(−1)n+14
√
2

π2 (4n2 − 1)
, n ≥ 1.

(2.12)

Note that given N ∈ Z+, (2.12) and the integral test for
series convergence imply

∞∑
n=N+1

λnb
2
n =

32

π2

∞∑
n=N+1

n2

(4n2 − 1)2
≤ 2ξN+1

π2
,

ξN+1 =

(
1 +

1

4(N + 1)2 − 1

)2
1

N
.

(2.13)

Let δ > 0 be a desired decay rate and let N0 ∈ Z+ satisfy

−λn + σ < −δ, n > N0. (2.14)

N0 is the number of modes in our controller, whereas
N ∈ Z+, N ≥ N0 is the observer dimension. We construct
a finite-dimensional observer of the form

ŵ(x, t) =
N∑
n=0

ŵn(t)ϕn(x) (2.15)

where {ŵn(t)}Nn=0 satisfy the nonlinear ODEs

˙̂wn(t) = −λnŵn(t) + ĝn(t) + bnv(t)
−ln [ŵ(x∗, t) + ψ(x∗)u(t)− y(t)] , 0 ≤ n ≤ N

(2.16)

with scalar observer gains {ln}Nn=0 and

ĝn(t) = ⟨g (t, ·, ŵ(·, t) + ψ(·)u(t)) , ϕn⟩ , 0 ≤ n ≤ N.
(2.17)

In particular, we approximate the projections of the semi-

linearity g(t, x, w(x, t) + ψ(x)u(t)) onto {ϕn}Nn=0 by the

projections of g(t, x, ŵ(x, t) + ψ(x)u(t)) onto {ϕn}Nn=0.

Assumption 1: The point x∗ ∈ [0, 1] satisfies

cn = ϕn(x∗) ̸= 0, 0 ≤ n ≤ N0. (2.18)

Note that Assumption 1 holds for the particular case of
boundary measurements x∗ = 0 or x∗ = 1.

Denote

Ã0 = diag {−µ,A0} , B̃0 = col {1, B0}
A0 = diag {−λn}N0

n=0 , B0 = col {bn}N0

n=0
C0 = [c0, . . . , cN0

] , C1 = [cN0+1, . . . , cN ] ,

(2.19)

Under Assumption 1, the pair (A0, C0) is observable by

the Hautus lemma. Let L0 = {ln}N0

n=0 ∈ RN0+1 satisfy the
Lyapunov inequality

Po(A0 − L0C0) + (A0 − L0C0)
TPo < −2δPo (2.20)

with 0 < Po ∈ R(N0+1)×(N0+1). We further choose the
remaining gains as ln = 0, N0 + 1 ≤ n ≤ N .

Similarly, by the Hautus lemma, the pair (Ã0, B̃0) is
controllable. Let K0 ∈ R1×(N0+2) satisfy

Pc(Ã0 − B̃0K0) + (Ã0 − B̃0K0)
TPc < −2δPc, (2.21)
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with 0 < Pc ∈ R(N0+2)×(N0+2). We propose the controller

v(t) = −K0ŵ
N0(t), ŵN0(t) = col {u(t), ŵn(t)}N0

n=0

(2.22)
which is based on the finite-dimensional observer (2.15).

For well-posedness of the closed-loop system (2.7), (2.16)
subject to the control law (2.22), consider the opera-
tor A : D(A) → L2(0, 1), A = −∂xx with D(A) ={
h ∈ H2(0, 1) | h′(0) = h′(1) = 0

}
. Let θ > 0 and Aθ =

A+ θI. −Aθ generates an analytic semigroup on L2(0, 1).

Moreover, there exists a unique positive root A
1
2

θ with

D
(
A

1
2

θ

)
= H1(0, 1). Let H = L2(0, 1)×RN+2 be a Hilbert

space with the norm ∥·∥2H := ∥·∥2 + |·|2. Introducing
ξ(t) = col {ξ1(t), ξ2(t)} , ξ1(t) = w(·, t), ξ2(t) = ŵN (t),
ŵN (t) = col {u(t), ŵ0(t), . . . , ŵN (t)}

(2.23)
the closed-loop system can be presented as

dξ

dt
(t) + diag {Aθ,B} ξ(t) =

[
f1(ξ)
f2(ξ)

]
,

D (B) = RN+2, Ba =
[
−Ã0 + B̃0K0 + L̃0[0 C0] L̃0C1

B1K0 −A1

]
a

f1(t, ξ) = θw(·, t) + g (t, ·, w(·, t) + ψ(·)u(t))
+ψ(·)K0ŵ

N0(t),

f2(t, ξ) = col
{
ĜN0(t) + L̃0w(x∗, t), Ĝ

N−N0(t)
}
,

ĜN0(t) = col {0, ĝn(t)}N0

n=0 ,

ĜN−N0(t) = col {ĝn(t)}Nn=N0+1 , L̃0 = col {0, ln}N0

n=0 ,

A1 = diag {−λn}Nn=N0+1 , B1 = col {bn}Nn=N0+1 .
(2.24)

It can be shown that given w(·, 0) ∈ H1(0, 1), the
system (2.24) has a unique classical solution satisfying
ξ ∈ C ([0,∞);H) ∩ C1 ((0,∞);H) and such that ξ(t) ∈
D (diag {Aθ,B}) = D (A) × RN+2 ∀t > 0. Details are
omitted due to space constraints (see (Katz and Fridman
[2022])).

Introduce the estimation error en(t) = wn(t)− ŵn(t), 0 ≤
n ≤ N0. Using the estimation error and {cn}Nn=0 in (2.19),
the innovation term in (2.16) can be presented as

ŵ(x∗, t) + ψ(x∗)u(t)− y(t) = ŵ(x∗, t)− w(x∗, t)

= −
N∑
n=0

cnen(t)− ζ(t), ζ(t) = w(0, t)−
N∑
n=0

wn(t)ϕn.

(2.25)
Let Γ > 0. By Lemmas 1.1 and 1.2 we have

ζ2(t) ≤
∞∑

n=N+1

κnw
2
n(t), κn = 1 + Γ + Γ−1λn. (2.26)

Taking into account (2.11), (2.16), (2.19) and (2.25), the
estimation error satisfies the following ODEs

ėn(t) = −λnen(t) + hn(t)

−ln
N∑
n=0

cnen(t)− lnζ(t), 0 ≤ n ≤ N0,

ėn(t) = −λnen(t) + hn(t), N0 + 1 ≤ n ≤ N.

(2.27)

where we define

hn(t) = gn(t)− ĝn(t), n ≥ 0. (2.28)

Recall (2.19) and denote

ŵN−N0(t) = col {ŵn(t)}Nn=N0+1 , e
N0(t) = col {en(t)}N0

n=0 ,

eN−N0(t) = col {en(t)}Nn=N0+1 , H
N0(t) = col {hn(t)}N0

n=0 ,

HN−N0(t) = col {hn(t)}Nn=N0+1 , Lζ = col
{
L̃0,−L0, 0, 0

}
,

X(t) = col
{
ŵN0(t), eN0(t), ŵN−N0(t), eN−N0(t)

}
,

Ĝ(t) = col
{
ĜN0(t), 0, ĜN−N0(t), 0

}
, KX = [K0, 0, 0, 0],

H(t) = col
{
0, HN0(t), 0, HN−N0(t)

}
.

(2.29)
Using (2.11), (2.16) - (2.19), (2.22), (2.25), (2.27) and
(2.29), the closed-loop system for t ≥ 0 is presented as

Ẋ(t) = FXX(t) + Lζζ(t) + Ĝ(t) +H(t),
ẇn(t) = −λnwn(t) + ĝn(t) + hn(t)

−bnKXX(t), n > N,

FX =

Ã0 − B̃0K0 L̃0C0 0 L̃0C1

0 A0 − L0C0 0 −L0C1

−B1K0 0 A1 0

0 0 0 A1

 . (2.30)

For H1-stability analysis of the closed-loop system (2.30)
we consider the Lyapunov function

V (t) = XT (t)PXX(t) +
∞∑

n=N+1

λnw
2
n(t) (2.31)

where 0 < PX ∈ R(2N+3)×(2N+3). Differentiating V (t)
along the solution to the closed-loop system (2.30) we have

V̇ + 2δV = 2XT (t)
[
PXFX + FTXPX + 2δPX

]
X(t)

+2XT (t)PXLζζ(t) + 2XT (t)PXĜ(t) + 2XT (t)PXH(t)

+2

∞∑
n=N+1

(
−λ2n + δλn

)
w2
n(t)

+2
∞∑

n=N+1

λnwn(t) [ĝn(t) + hn(t)− bNKXX(t)] .

(2.32)
Let α1 > 0, we compensate the series with {ĝn(t)}∞n=N+1
by using the Young inequality

2
∞∑

n=N+1

λnwn(t)ĝn(t) ≤
1

α1

∑
n=N+1

λ2nw
2
n(t)

−α1

∣∣∣Ĝ(t)∣∣∣2 + α1

∞∑
n=0

ĝ2n(t),

α1

∞∑
n=0

ĝ2n(t)
(2.4)

≤ 2α1σ
2XT (t)ΞXX(t)

ΞX
(2.5)
= diag

{
2

π2
, IN0+1, 0, IN−N0

, 0

}
.

(2.33)

Similarly, introducing α2 > 0 we have

2
∞∑

n=N+1

λnwn(t)hn(t) ≤
1

α2

∑
n=N+1

λ2nw
2
n(t)

−α2 |H(t)|2 + α2σ
2XT (t)ΞEX(t) + α2σ

2
∑

n=N+1

w2
n(t),

ΞE = diag {0, IN0 , 0, IN−N0} ∈ R(2N+3)×(2N+3).
(2.34)

We bound the last term in (2.32) by using Young’s
inequality with some α3 > 0:
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2
∞∑

n=N+1

λnwn(t) (−bnKXX(t))

(2.13)

≤ 1

α3

∞∑
n=N+1

λnw
2
n(t) +

2α3ξN+1

π2
|KXX(t)|2 .

(2.35)

Let ρn = κ−1
n

(
−λ2n + δλn + λn

2α3
+

λ2
n

2α2
+

λ2
n

2α2
+ α2σ

2

2

)
for

n ≥ N . Assuming that ρN+1 < 0, it can be seen that
ρn is monotonically decreasing. The latter follows from
monotonicity of λn. Then

∞∑
n=N+1

(
−λ2n + δλn +

λn
2α3

+
λ2n
2α1

+
λ2n
2α2

+
α2σ

2

2

)
w2
n(t)

=
∞∑

n=N+1

ρnκnw
2
n(t)

(2.26)

≤ ρN+1ζ
2(t).

(2.36)

Let η(t) = col
{
X(t), ζ(t), Ĝ(t), H(t)

}
. From (2.32)-(2.36)

we have V̇ + 2δV ≤ ηT (t)Ψ0η(t) ≤ 0, provided

Ψ0 =

[
ψ0 PXLζ

∗ 2ρN+1

PX PX

0 0

∗ diag {−α1I,−α2I}

]
< 0, ψ0 = PXFX

FTXPX + 2δPX +
2α3ξN+1

π2
KT
XKX + 2α1σ

2ΞX + α2σ
2ΞE

(2.37)
Summarizing, we arrive at

Theorem 2.1. Consider the system (2.8) with point mea-
surement (2.9) and control law (2.22). Assume that
g(t, x, z) is a locally Lipschitz function satisfying g(t, x, 0) ≡
0 and (2.4) for a given σ > 0. Let δ > 0, N0 ∈ N
satisfy (2.14) and N ∈ N satisfy N0 ≤ N . Let L0 and K0

be obtained using (2.20) and (2.21), respectively. Given
Γ > 0, let there exist 0 < P ∈ R(2N+3)×(2N+3) and
scalars α1, α2, α3 > 0 such that (2.37) holds. Then, given
w(·, 0) ∈ H1(0, 1), the classical solution u(t), w(x, t) of
(2.8) subject to the control law (2.22) and the observer

ŵ(x, t) defined by (2.15)-(2.17), satisfy u2(t)+∥w(·, t)∥2H1+

∥ŵ(·, t)∥2H1 ≤ De−2δt ∥w(·, 0)∥2H1 for t ≥ 0 and some
D ≥ 1. Moreover, (2.37) is always feasible for N large
enough and σ > 0 small enough.

3. CONCLUSIONS

We studied global boundary stabilization of a semilinear
heat equation under point measurement. Taking into ac-
cound the known globally Lipschitz semilinearity, we sug-
gested a finite-dimensional nonlinear observer-based con-
troller. Our H1-stability analysis leads to LMIs, which are
feasible for a large enough observer dimension and small
enough Lipschitz constant. Our method can be extended to
other semilinear PDEs. Numerical examples can be found
in the recent paper (Katz and Fridman [2022]), which
extends the results presented here to systems with large
input delays.
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Abstract: We consider deterministic mean field games in which the agents control their
acceleration and are constrained to remain in a region of Rn. We study relaxed equilibria in
the Lagrangian setting; they are described by a probability measure on trajectories. The main
results of the paper concern the existence of relaxed equilibria under suitable assumptions. The
fact that the optimal trajectories of the related optimal control problem solved by the agents
do not form a compact set brings a difficulty in the proof of existence. The proof also requires
closed graph properties of the map which associates to initial conditions the set of optimal
trajectories.

Keywords: Mean field games, double integrators, Lagrangian formulation, existence of
equilibria, closed graph properties
AMS: 91A13

1. INTRODUCTION

The theory of mean field games (MFGs for short) is more
and more investigated since the pioneering works Lasry
and Lions (2006a,b, 2007) of Lasry and Lions: it aims at
studying the asymptotic behaviour of differential games
(Nash equilibria) as the number of agents tends to infinity.
The dynamics of the agents can be either stochastic or
deterministic. Concerning the latter case, we refer to
Cardaliaguet (2010) for a detailed study of deterministic
MFGs in which the interactions between the agents are
modeled by a nonlocal regularizing operator acting on the
distribution of the states of the agents. They are described
by a system of PDEs coupling a continuity equation for the
density of the distribution of states (forward in time) and
a Hamilton-Jacobi (HJ) equation for the optimal value of a
representative agent (backward in time). If the interaction
cost depends locally on the density of the distribution
(hence is not regularizing), then, in the deterministic case,
the available theory mostly deals with so-called variational
MFGs, see Cardaliaguet et al. (2015).

? YA and NT were partially supported by the ANR (Agence Na-
tionale de la Recherche) through project ANR-16-CE40-0015-01.
YA was partially supported by the chair Finance and Sustainable
Development and FiME Lab (Institut Europlace de Finance). Part
of the research was completed while YA was on leave at INRIA-Paris
in the project Matherials. PM and CM were partially supported
by GNAMPA-INdAM and by the Fondazione CaRiPaRo Project
“Nonlinear Partial Differential Equations: Asymptotic Problems and
Mean-Field Games”.

The major part of the literature on deterministic mean
field games addresses situations when the dynamics of a
given agent is strongly controllable: for example, in crowd
motion models, this happens if the control of a given agent
is its velocity. Under the strong controllability assumption,
it is possible to study realistic models in which the agents
are constrained to remain in a given region K of the space
state, i.e. state constrained deterministic MFGs. An im-
portant difficulty in state constrained deterministic MFGs
is that nothing prevents the agents from concentrating on
the boundary ∂K of the state space; let us call m(t) the
distribution of states at time t. Even if m(0) is absolutely
continuous, there may exist some t > 0, such that m(t)
has a singular part supported on ∂K and the absolute
continuous part of m(t) with respect to Lebesgue measure
blows up near ∂K. This was first observed in some ap-
plications of MFGs to macroeconomics, see Achdou et al.
(2014, 2021). From the theoretical viewpoint, the main
issue is that, as we have already said, the distribution of
states is generally not absolutely continuous with respect
to Lebesgue measure; this makes it difficult to characterize
the state distribution by means of partial differential equa-
tions. These theoretical difficulties have been addressed in
Cannarsa and Capuani (2018): following ideas contained
in Benamou and Brenier (2000); Benamou and Carlier
(2015); Cardaliaguet et al. (2016), the authors of Cannarsa
and Capuani (2018) introduce a weak or relaxed notion
of equilibrium, which is defined in a Lagrangian setting
rather than with PDEs. Because there may be several
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optimal trajectories starting from a given point in the state
space, the solutions of the relaxed MFG are probability
measures defined on a set of admissible trajectories. Once
the existence of a relaxed equilibrium is ensured, it is then
possible to investigate the regularity of solutions and give a
meaning to the system of PDEs and the related boundary
conditions: this was done in Cannarsa et al. (2021).

On the other hand, if the agents control their acceleration
instead of their velocity, the strong controllability property
is lost. In Achdou et al. (2020), we have studied determin-
istic mean field games in the whole space Rn with finite
time horizon T in which the dynamics of a generic agent
is controlled by the acceleration. In traffic theory and also
in economics, the models may require that the positions
of the agents belong to a given compact subset Ω of Rn,
and state constrained mean field games with control on
the acceleration must be considered. In the present paper,
we wish to investigate some examples of such mean field
games and address the first step of the program followed
by the authors of Cannarsa and Capuani (2018) in the
strongly controllable case: we wish to prove the existence of
a relaxed mean field equilibrium in the Lagrangian setting
under suitable assumptions (see Definition 1 below).

The proof of existence of an equilibrium in the Lagrangian
setting involves Kakutani’s fixed point theorem, see Glicks-
berg (1952), applied to a multivalued map defined on
a convex and compact set of probability measures on a
suitable set of admissible trajectories (itself endowed with
the C1([0, T ];Rn)×C0([0, T ];Rn)-topology). Difficulties in
applying Kakutani’s fixed point theorem will arise from
the fact that all the optimal trajectories do not form a
compact subset of C1([0, T ];Rn) × C0([0, T ];Rn) (due to
the lack of strong controllability). This explains why we
shall need additional assumptions on the support of the
initial distribution of states, see hypothesis 3 below.

2. SETTING AND MAIN RESULTS

2.1 Setting and notation

Let Ω be a bounded domain of Rn with a boundary ∂Ω
of class C2. For x ∈ ∂Ω, let n(x) be the unitary vector
normal to ∂Ω pointing outward Ω. We will use the signed
distance to ∂Ω, d : Rn → R,

d(x) =

{
min
y∈∂Ω

|x− y|, if x /∈ Ω,

− min
y∈∂Ω

|x− y|, if x ∈ Ω.

Since ∂Ω is C2, the function d is C2 near ∂Ω. In particular,
for all x ∈ ∂Ω, ∇d(x) = n(x).

Given a time horizon T and a pair (x, v) ∈ Ω×Rn, we are
interested in mean field games in which the dynamics of
an agent is of the form:

ξ′(s) = η(s), s ∈ (0, T ),
η′(s) = α(s), s ∈ (0, T ),
ξ(0) = x,
η(0) = v.

(1)

The state space is Ξ = Ω × Rn. It is convenient to define
the set of admissible trajectories as follows:

Γ =

 (ξ, η) ∈ C1([0, T ];Rn)×AC([0, T ];Rn),
ξ′(s) = η(s), ∀s ∈ [0, T ],
(ξ(s), η(s)) ∈ Ξ,∀s ∈ [0, T ].

 . (2)

It is a metric space with the distance d((ξ, η), (ξ̃, η̃)) = ‖ξ−
ξ̃‖C1([0,T ];Rn).
For any (x, v) ∈ Ξ, set

Γ[x, v] = {(ξ, η) ∈ Γ : ξ(0) = x, η(0) = v}. (3)

Note that Γ[x, v] = ∅ if x ∈ ∂Ω and v points outward Ω.
This is the reason why we introduce Ξad as follows:

Ξad = {(x, v) : x ∈ Ω, v · n(x) ≤ 0 if x ∈ ∂Ω} ⊂ Ξ. (4)

Let P(Ξ) be the set of probability measures on Ξ.
Let C0

b (Ξ;R) denote the space of bounded and continuous
real valued functions defined on Ξ and let F,G : P(Ξ) →
C0
b (Ξ;R) be bounded and continuous maps (the continuity

is with respect to the narrow convergence in P(Ξ)). Let
L be a real valued, continuous and bounded from below
function defined on Ξ × [0, T ]. Let F [m] and G[m] de-
note the images by F and G of m ∈ P(Ξ). For what
follows, it is useful to introduce the positive constant M =
sup(x,v,s)∈Ξ×[0,T ] L−(x, v, s) + supm∈P(Ξ) ‖F [m]‖L∞(Ξ) +

supm∈P(Ξ) ‖G[m]‖L∞(Ξ). Let P(Γ) be the set of probability
measures on Γ.
For t ∈ [0, T ], the evaluation map et : Γ→ Ξ is defined by
et(ξ, η) = (ξ(t), η(t)) for all (ξ, η) ∈ Γ.
For any µ ∈ P(Γ), let the Borel probability measure mµ(t)
on Ξ be defined by mµ(t) = et]µ. It is possible to prove
that if µ ∈ P(Γ), then t 7→ mµ(t) is continuous from [0, T ]
to P(Ξ), for the narrow convergence in P(Ξ). Hence, for
all (ξ, η) ∈ Γ, t 7→ F [mµ(t)](ξ(t), η(t)) is continuous and
bounded by the constant M .

With µ ∈ P(Γ) and (ξ, η) ∈ Γ, we associate the cost

Jµ(ξ, η) =∫ T

0

(
F [mµ(s)](ξ(s), η(s)) + L(ξ(s), η(s), s) +

1

2

∣∣∣∣dηdt (s)

∣∣∣∣2
)

+G[mµ(T )](ξ(T ), η(T ))
(5)

Definition 1. Given m0 ∈ P(Ξ), let Pm0
(Γ) denote the set

of probability measures µ on Γ such that e0]µ = m0.
The probability measure µ ∈ Pm0(Γ) is a constrained
mean field game equilibrium associated with the initial
distribution m0 if

supp(µ) ⊂
⋃

(x,v)∈supp(m0)

Γµ,opt[x, v]. (6)

where
Γµ,opt[x, v] ={

(ξ, η) ∈ Γ[x, v] : Jµ(ξ, η) = min
(ξ̃,η̃)∈Γ[x,v]

Jµ(ξ̃, η̃)

}
,

2.2 Closed graph properties and bounds related to optimal
trajectories

In all what follows, L,F and G satisfy the assumptions
made in §2.1. An important step in the proof of existence of
constrained mean field game equilibria is the closed graph
property:

Proposition 1. Consider a closed subset Θ of Ξad. Given
µ ∈ P(Ξ), assume that for all sequences (xi, vi)i∈N such
that for all i ∈ N, (xi, vi) ∈ Θ and lim

i→+∞
(xi, vi) = (x, v) ∈

Θ, the following holds: if x ∈ ∂Ω, then
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(
(vi · ∇d(xi))+

)3
= o

(∣∣d(xi)
∣∣) , (7)

(note that (7) is meaningful for i large enough, because d
is C1 near ∂Ω); then the graph of the multivalued map

Γopt : Θ ⇒ Γ,

(x, v) 7→ Γµ,opt[x, v]

is closed, which means: for any sequence (yi, wi)i∈N such
that for all i ∈ N, (yi, wi) ∈ Θ with (yi, wi) → (y, w)
as i → ∞, consider a sequence (ξi, ηi)i∈N such that for
all i ∈ N, (ξi, ηi) ∈ Γopt[yi, wi]; if (ξi, ηi) tends to (ξ, η)
uniformly, then (ξ, η) ∈ Γµ,opt[y, w].

Definition 2. For numbers r and C, let us set

Kr = {(x, v) ∈ Ξ : |v| ≤ r}, (8)

ΓC =

(ξ, η) ∈ Γ :

∣∣∣∣∣∣
(ξ(t), η(t)) ∈ KC , ∀t ∈ [0, T ],∥∥∥∥dηdt

∥∥∥∥
L2(0,T ;Rn)

≤ C

 .(9)

The set ΓC is a compact subset of Γ.

Proposition 2. Given r > 0, let us define

Θr = Θ ∩Kr, (10)

where Kr is defined by (8) and Θ is a closed subset of Ξad

which satisfies the assumption in Proposition 1.
The value function

uµ(x, v) = inf
(ξ,η)∈Γ[x,v]

Jµ(ξ, η, η′) (11)

is continuous on Θr and there exists a positive number
C = C(r,M) independent of µ ∈ P(Ξ) such that if
(x, v) ∈ Θr, then Γµ,opt[x, v] ⊂ ΓC .

Hypothesis 3. There exists a positive number r such that
the initial distribution of states is a probability measure
m0 on Ξ supported in Θr, where Θr is a closed subset of
Ξad as in (10).

Let C = C(r,M) be the constant appearing in Proposi-
tion 2 (uniform w.r.t. µ), and ΓC be the compact subset of
Γ defined by (9); clearly, ΓC is a Radon metric space. From
Prokhorov theorem, see (Ambrosio et al., 2005, Theorem
5.1.3), the set P(ΓC) is compact for the narrow conver-
gence of measures.

As above, Pm0
(ΓC)) denotes the set of probability mea-

sures µ on ΓC such that e0]µ = m0.

Remark 1. Note that ΓC (endowed with the metric of the
C1 × C0-convergence of (ξ, η)) is a Polish space (because
it is compact). Using Kuratowski and Ryll-Nardzewski
theorem, Kuratowski and Ryll-Nardzewski (1965), it can
be proved that there exists a measurable selection j : Θr →
ΓC . Then j]m0 belongs to Pm0(ΓC). The set Pm0(ΓC) is
not empty.

Standard arguments from the calculus of variations yield
that for each µ ∈ Pm0(ΓC) and (x, v) ∈ Ξad, Γµ,opt[x, v] is
not empty. Moreover, from Proposition 2, Γµ,opt[x, v] ⊂ ΓC
for all (x, v) ∈ Θr.

Proposition 4. Under Hypothesis 3, let C = C(r,M) be
chosen as in Proposition 2.
Let a sequence of probability measures (µi)i∈N, µi ∈
Pm0

(ΓC), be narrowly convergent to µ ∈ P(ΓC). Let
(xi, vi)i∈N be a sequence with (xi, vi) ∈ Θr which converges
to (x, v). Consider a sequence (ξi, ηi)i∈N such that for all
i ∈ N, (ξi, ηi) ∈ Γµi,opt[xi, vi]. If (ξi, ηi)i∈N tends to (ξ, η)

uniformly, then (ξ, η) ∈ Γµ,opt[x, v]. In other words, the
multivalued map (x, v, µ) 7→ Γµ,opt[x, v] has closed graph.

2.3 Existence of a mean field game equilibrium

Theorem 5. Under the assumptions made on L, F and G
in §2.1 and Hypothesis 3, let C = C(r,M) be chosen as in
Proposition 2. There exists a constrained mean field game
equilibrium µ ∈ Pm0

(ΓC), see Definition 1. Moreover,
t 7→ et]µ ∈ C1/2([0, T ];P(KC)), (KC is defined in (8)
and P(KC) is endowed with the Kantorovitch-Rubinstein
distance).

The proof of Theorem 5 is inspired from that of Cannarsa
and Capuani in Cannarsa and Capuani (2018). It consists
of applying Kakutani’s fixed point theorem to the multi-
valued map E from Pm0

(ΓC) to Pm0
(ΓC) as follows: for

any µ ∈ Pm0
(ΓC),

E(µ) ={
µ̂ ∈ Pm0(ΓC) :

supp(µ̂(x,v)) ⊂ Γµ,opt[x, v] for m0-a-a (x, v) ∈ Ξ

}
,

where (µ̂(x,v))(x,v)∈Ξ is them0-almost everywhere uniquely
defined Borel measurable family of probability measures
which disintegrates µ̂. For that, a key step is Proposition
4.

Remark 2. In dimension one and for a running cost
quadratic in α, it is possible to obtain refined results
under a slightly stronger assumption on the running cost,
namely that it does not favor the trajectories which exit
the domain. In particular, the closed graph property can be
proved to hold on the whole set Ξad, and concerning mean
field games, no assumptions are needed on the support of
m0 by contrast with Theorem 5.

Definition 3. A pair (u,m), where u is a measurable
function defined on Ξ × [0, T ] and m ∈ C0([0, T ];P(Ξ)),
is called a mild solution of the mean field game, if there
exists a constrained mean fied game equilibrium µ for m0

(see Definition 1) such that:

i) m(t) = et]µ;
ii) ∀(x, v) ∈ Ξad, u(x, v, t) is given by

u(x, v, t) = inf
(ξ,η)∈Γ[x,v,t]

Jµ(t, ξ, η)

where Γ[x, v, t] is the set of admissible trajectories
starting from (x, v) at s = t and

Jµ(t, ξ, η) =∫ T

t

F [m(s)](ξ(s), η(s)) + L(ξ(s), η(s), s) +
1

2
|dη
ds

(s)|2

+G[m(T )](ξ(T ), η(T )).

Remark 3. It is tempting to say that a mild solution (u,m)
is a very weak solution of a boundary value problem related
to a system of PDEs posed in Ω × [0, T ], composed of a
Hamilton-Jacobi equation for finding the optimal strate-
gies, and of a Fokker-Planck equation for the evolution
of m. However, this system should be supplemented with
boundary conditions on ∂Ω × (0, T ). This aspect is par-
ticularly tricky because u blows up on some part of the
boundary.

A corollary of Theorem 5 is:
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Corollary 1. Under the assumptions of Theorem 5, there
exists a mild solution (u,m).

Moreover, m ∈ C 1
2 ([0, T ];P(KC)).

Remark 4. Under classical monotonicity assumptions for
F and G, see e.g. Cannarsa and Capuani (2018), the mild
solution is unique.
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II. Horizon fini et contrôle optimal. C. R. Math. Acad.
Sci. Paris, 343(10), 679–684.

Lasry, J.M. and Lions, P.L. (2007). Mean field games. Jpn.
J. Math., 2(1), 229–260.

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



Data-driven coarse-graining
of agent-based models through

stochastic differential equations ?

Asima Azmat ∗ Kaili Wang ∗∗ Felix Dietrich ∗∗

∗ Siemens AG, Munich, Germany.
∗∗ Technical University of Munich, Department of Informatics,

Munich, Germany (corr. e-mail: felix.dietrich@tum.de).

Abstract: Macroscopic, coarse descriptions of microscopic, agent-based dynamical systems are
useful for tasks such as optimization, bifurcation analysis, and control. Once suitable coarse
variables are defined, their dynamics can be either derived analytically or approximated in
a data-driven fashion. For many agent-based systems, this coarse-graining procedure requires
appropriate closure terms or stochastic elements on the macroscopic scale to summarize degrees
of freedom of the agents. In this contribution, we identify effective stochastic differential
equations (SDE) for coarse observables of agent-based simulations. These SDE then act as
surrogate models on the macroscopic scale. We approximate the drift and diffusivity functions
for these SDE through neural networks. Based on earlier work, the loss function is inspired
by the structure of established stochastic numerical integrators, in particular Euler-Maruyama
and Milstein schemes. We consider cases where the coarse collective observables are known
in advance, and where they must be found with data-driven methods. We demonstrate the
feasibility on data from an egress simulation of pedestrians in two-dimensional continuous space
(with the crowd simulation software Vadere).

Keywords: Stochastic system identification, Simulation of stochastic systems, Statistical data
analysis, Software for system identification, Machine learning for environmental applications

1. INTRODUCTION

Agent-based simulations provide accurate and detailed
insights into dynamical systems. However, the simulation
time and computational burden of these microscopic sim-
ulations often prohibit large-scale parameter studies or
overviews on coarser scales. These tasks can be done with
newly devised coarser models, but those often suffer from
low accuracy compared to the agent-based approach. As a
remedy, we aim to learn coarse models directly from the
agent-based data. We identify effective stochastic differen-
tial equations (SDE) for coarse observables of fine-grained
particle- or agent-based simulations. These SDE then pro-
vide coarse surrogate models of the fine scale dynamics.
The coarse variables in question for this contribution are
the infection states for a viral disease that is spreading
through a local population. The crowd simulation soft-
ware Vadere (www.vadere.org) is used for the agent-based
modelling and simulation. To learn the SDE, we approxi-
mate the drift and diffusivity functions of the effective SDE
through neural networks, which can be thought of as ef-
fective stochastic ResNets. The loss function is inspired by
the structure of established stochastic numerical integra-
tors (here, the Euler-Maruyama integrator; more intricate
Milstein or Runge-Kutta integrators are considered in our
paper, Dietrich et al. (2021)). The SDE approximations
can benefit from error analysis of these underlying nu-

? F.D. is funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – 468830823.

merical schemes. They also lend themselves naturally to
“physics-informed” gray-box identification when approx-
imate coarse models, such as mean field equations, are
available. The learning procedure we use does not require
long trajectories, works on scattered snapshot data, and
is designed to naturally handle different time steps per
snapshot.

In related work, residual networks (ResNets He et al.
(2016), but see also Rico-Mart́ınez et al. (1992)) success-
fully employ a forward-Euler integrator based approach to
create very deep architectures. This has inspired followup
work to include other integrator schemes for deterministic,
ordinary differential equations (ODE) such as symplectic
integrators Bertalan et al. (2019); Zhu et al. (2020). From
ResNets (He et al., 2016) and Neural ODEs (Chen et al.,
2018; Rico-Mart́ınez et al., 1992) to DeepONets (Lu et al.,
2021), the identification of dynamical systems from (dis-
crete) spatio-temporal data is a booming business because
it is now comparatively easy to program and train neural
networks. The time-honored SDE estimation techniques
for local drift and diffusivity can now be synthesized in a
(more or less global) surrogate model.

The software is available in the following repository:
https://gitlab.com/felix.dietrich/sde-identification.

2. MATHEMATICAL PROBLEM SETTING

In this section, we follow the setting from our recent
paper (Dietrich et al., 2021). We discuss the SDE
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dxt = f(xt)dt+ σ(xt)dWt, (1)

where f : Rn → Rn and σ : Rn → Rn×n are smooth,
possibly nonlinear functions; every σ(x) is positive and
bounded away from zero (and a positive-definite matrix
if n > 1), and Wt a Wiener process such that for t > s,
Wt −Ws ∼ N (0, t − s). We assume we have access to a

set of N snapshots D = {(x(k)1 , x
(k)
0 , h(k))}Nk=1, where x

(k)
0

are points scattered in the state space of (1) and the value

of x
(k)
1 results from the evolution of Eq. 1 under a small

time-step h(k) > 0, starting at x
(k)
0 . The snapshots are

samples from a distribution, x0 ∼ p0, and the transition
densities x1 ∼ p1(·|x0, h) are associated with (1) for a
given time-step h > 0, which in turn is chosen from some
distribution ph. The joint data-generating distribution is
therefore given by p(x0, x1, h) = p1(x1|x1, h)p0(x0)ph(h).
Alternatively, the data could be collected along a long
trajectory {xti} of (1) with sample frequency hi > 0, that
is, ti+1 = ti+hi. The problem is to identify the drift f and
diffusivity σ through two neural networks fθ : Rn → Rn

and σθ : Rn → Rn×n, parameterized by their weights θ,
only from the data in D. We assume the points in D are
sampled sufficiently densely in the region of interest.

2.1 Identification with the Euler-Maruyama scheme

We now formulate and rationalize the loss term that we
use to train the neural networks fθ and σθ. The Euler-
Maruyama scheme is a simple method to integrate Eq. 1
over a small time h > 0:

x1 = x0 + hf(x0) + σ(x0) δW0, (2)

where h > 0 is small and δW0 is a vector of n random
variables, all i.i.d. and normally distributed around zero
with variance h. The convergence of Eq. 2 for h → 0
has been studied at length; We refer to standard litera-
ture (Pavliotis, 2014). We can use this idea to construct
a loss function for training the networks σθ and fθ simul-
taneously. We initially restrict the discussion to the case
n = 1 for simplicity. Essentially, conditioned on x0 and h,
we can think of x1 as a point drawn from a multivariate
normal distribution

x1 ∼ N
(
x0 + hf(x0), hσ(x0)2

)
. (3)

In the training data set D, we only have access to triples

(x
(k)
0 , x

(k)
1 , h(k)), and not the drift f and diffusivity σ. To

approximate them, we define the probability density pθ of
the normal distribution Eq. 3 and then, given the neural
networks fθ and σθ, ask that the log-likelihood of the data
D under the assumption in equation Eq. 3 is high:

θ := argmax
θ̂
E
[
log pθ̂ (x1|x0, h)

]
≈

argmax
θ̂

1

N

N∑
k=1

log pθ̂

(
x
(k)
1

∣∣∣x(k)0 , h(k)
)
.

(4)

We can now formulate the loss function that will be
minimized to obtain the neural network weights θ. The
logarithm of the well-known probability density function
of the normal distribution, together with the mean and
variance from Eq. 3, yields the loss to minimize during
training,

L(θ|x0, x1, h) :=

(x1 − x0 − hfθ(x0))
2

hσθ(x0)2
+ log

∣∣∣hσθ (x0)
2
∣∣∣+ log(2π).

(5)

This formula can easily be generalized to higher dimen-
sions, and we use such generalizations for examples in more
than one dimension. Minimizing L in Eq. 5 over the data D
implies maximization of the log marginal likelihood Eq. 4
with the constant terms removed (as they do not influence
the minimization) (Pavliotis, 2014). Likelihood estimation
in combination with the normal distribution is used in
many variational and generative approaches (Goodfellow
et al., 2014; Kingma and Welling, 2014; Li et al., 2020;
Yildiz et al., 2018; Yang et al., 2021). Note that here, the
step size h(k) is defined per snapshot, so it is possible that
it has different values for every index k. This is especially
useful in simulations where the time step is determined as
part of the scheme, e.g. a Gillespie simulation.

3. COMPUTATIONAL EXPERIMENTS

We tested our implementation with examples in one di-
mension first, with drift f and diffusivity σ defined through
f(xt) = −2x3t −4xt+1.5, σ(xt) = 0.05xt+0.5. A compar-
ison between the learned and true functions is shown in
Fig. 1, along with densities obtained from sampling the
true and approximate SDE. We trained networks with
both Euler-Maruyama and Milstein loss functions, with
very comparable results—even the training and validation
curves were very similar. When increasing the dimension
from n = 1 to n = 20, approximation quality decreases
after n = 6.

Fig. 1. Approximation vs. true values of f and σ in the
first example.

In Fig. 2, we demonstrate that our approach can learn non-
diagonal diffusivity matrices. We sample initial points x0 ∈
[−.3, .3]3, randomly sample a lower-triagonal diffusivity
matrix Σ with positive eigenvalues, which we use as the
(constant) diffusivity σ(x) = Σ, and set the drift to be
f(x) = −x. The absolute error between original and (the
average over) identified matrix entries is smaller than 0.01,
and the standard deviation of the diffusivity values over
the entire data set is smaller than 0.003 for all elements of
the matrix. Note that the network σθ is still a nonlinear
function over the state space, not a constant. To ensure the
matrix has positive eigenvalues, we pass the real-valued
output of the neurons that encode the diagonal of the
matrix through a soft-plus activation function.
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Fig. 2. Lower-triangular (top row) and full symmetric, pos-
itive definite (bottom row) diffusivity matrix approxi-
mation. The panels show the averaged network output
over the uniformly sampled data inside the training
region, the true diffusivity matrices, the absolute error
between the results shown in the first and second
columns, and the deviation of the network matrix
output over the training region. The color range is
the same for all four plots.

3.1 Toy example: increasing dimension from 1D to 20D

We define f(x) = −(4x3 − 8x + 3)/2 and σ(x) = 5e −
2x + 0.5, where all operations are meant coordinate-wise
(e.g. x3 computes the third power of each individual
coordinate of the vector). Figure 3 (left) illustrates how
the training and validation losses change when increasing
n from 1 to 20. The loss (Eq. 5) is adapted to the changing
dimensionality by re-adding the constant term log(2π)n.
The increase in loss can be explained by the constant
number of points (N = 10, 000) we used: Increasing
the intrinsic dimension of the problem by sampling the
input data in the n-dimensional cube [−2, 2]n causes the
data sampling to get sparser and sparser. By increasing
the number of training data points linearly with the
dimension (while keeping the number of training iterations
per dimension constant), we can see that the training loss
is relatively small even for n = 12 (Fig. 3, right).

3.2 Coarse-graining an agent-based infection model

We now demonstrate that the SDE learning approach
can be used to effectively coarse-grain a crowd simulation
model. The crowd simulation was performed using the
software Vadere (www.vadere.org). Fig. 4 (left) shows our
test scenario. Agents are placed in a square box of 30m×
30m, and can infect neighbors in a radius of 1.5m with a
probability of 0.1% every simulated second. The other two
panels show scenarios that we are currently investigating:
a bottleneck scenario with dynamically changing crowd
positions, and a classroom with students moving in and
out of the room over the course of multiple days. Fig. 5
shows sample paths of the learned SDE compared to test
trajectories sampled with the simulation software.

4. CONCLUSIONS

Training neural networks with loss functions based on nu-
merical integrators such as Euler-Maruyama and Milstein
has several limitations. If the time step between many

Fig. 3. Normalized training and validation loss when
increasing the intrinsic dimension of the problem from
n = 1 to n = 20. The top panel shows results
when keeping the number of samples constant at
N = 10, 000, the bottom panel shows what happens
when increasing N = 10, 000×n, but training for the
same number of iterations per dimension (Epochs =
1000/n).

Fig. 4. Crowd scenarios simulated in Vadere. Left; A crowd
with 1000 agents is placed in a square that mimics
a concert setting. Center: 100 agents move through
a bottleneck towards a target. Right: a classroom
scenario with students moving in and out of the room
over the course of multiple days. For each scenario, we
perform 10,000 short simulation runs, and between 0
and 70% of the crowd is infected with an air-borne
disease that can spread to neighbors.

samples is too small, we cannot accurately identify the
drift, because the diffusivity term will dominate. This
could be mitigated by starting with small h, estimating
the diffusivity, and then estimating the drift with sub-
sampled trajectories. Even with infinite data the drift is
difficult to estimate, because the time step also has to
go to zero (Pavliotis, 2014). Conversely, if the time step
is too big, we cannot accurately identify the diffusivity.
If the dynamics of the coarse-grained observables include
rare events, then learning the corresponding SDE is a
challenge, because these events will not be present in a
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Fig. 5. Sample paths drawn from the learned SDE, com-
pared to measured data, in the concert scenario.

lot of snapshots, and hence not a lot of data is available
to learn them. Using a loss function based on Lévy noise
SDE integrators might provide a useful surrogate for SDEs
with rare-events.

There are many possible extensions and applications of
our work. An important task is to find explicit probability
density functions for integrators using other noise types,
such as Lévy or Poisson noise. Analyzing integrators based
on other types of calculus such as Heun’s (Burrage et al.,
2004) method may help impose more variegated types of
priors during training. Using an adjoint method (Liu et al.,
2020) can allow us to propagate the loss gradients back
through longer time series.

In terms of applications, many more particle- and agent-
based models can be coarse grained. For many of these,
it is important to find coarse variables, and latent space
techniques such as VAE-type architectures and Diffusion
Maps (Coifman and Lafon, 2006) will help to identify
them. These techniques can help to construct local SDE
models in the process of larger-scale simulations to guide
sampling and exploration. Another clear next step based
on numerical analysis is the identification of stochastic
partial differential equations (SPDEs).
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Abstract: In this note we study discrete-time dead-time compensation from the viewpoint of the
observer-based design procedure. We show that the discrete equivalent of the observer-predictor
architecture can be derived ab initio via classical state-feedback and observer arguments under mild
assumptions. The resulting observer is reduced order and we show that this choice is justifiable even if
corresponding state measurement channels are noisy.

Keywords: Time-delay systems, observer-based control, H2 filtering, reduced-order observers.

1. INTRODUCTION

Since its introduction by Otto J. M. Smith (1957), the notion of
delay compensation (or dead-time compensation, DTC) plays
an important role in the control of time-delay systems. The
use of DTC configurations makes it possible to reduce various
delay problems to their delay-free equivalents. Initially, the
idea was viewed as an ingenious transformation, simplifying
the stability analysis, see (Manitius and Olbrot, 1979; Artstein,
1982; Furukawa and Shimemura, 1983; Fiagbedzi and Pearson,
1990) among other results. Later on, DTC was shown to be an
intrinsic part of stabilizing and optimal H2 (Mirkin and Raskin,
2003), H1 (Meinsma and Zwart, 2000; Mirkin, 2003), and L1

(Mirkin, 2006) controllers in the single I/O delay case, as well
as in some multiple I/O delay settings (Meinsma and Mirkin,
2005; Mirkin et al., 2011).

Historically, the emphasis in the DTC research was laid on
continuous-time systems. A possible reason is that the delay
element is infinite dimensional in continuous time. Hence, the
reduction to a finite-dimensional delay-free case is particu-
larly appealing there. Discrete delays are finite dimensional
themselves, so the gain in compensating them is less appar-
ent. Moreover, discrete formulae are often bulkier, which is
especially hindering in optimization problems. Still, the finite-
dimensional nature of discrete delays offers an opportunity to
understand the rationale behind DTC via accessible means.

Our first goal in this note is to derive a discrete version
of the observer-predictor DTC architecture of (Furukawa and
Shimemura, 1983) via classical observer-based arguments,
from scratch. We show that this derivation involves only two
choices, which are justified. The first one is to keep deadbeat
modes of the plant, originated in the delay dynamics, untouched
in the state-feedback phase of the design. The second choice is
to use a reduced-order observer to estimate the state. This is
justified by the fact that the history of control inputs, which is
a part of the plant state in the delay case, can be expected to
be known accurately. We believe that the proposed derivation

? Supported by the Israel Science Foundation (grant no. 3177/21) and, in part,

by Sakranut Graydah at Politecnico di Milano.

offers a new insight into the well-studied observer-predictor
architecture.

The second, and most important, goal of this note is to demon-
strate that the reduced-order observer architecture is justified
in this case even if the control input itself is noisy. This con-
clusion may appear counterintuitive. Reduced-order observers
are known to be sensitive to measurement noise (Anderson
and Moore, 1989). This property was even used in (Krstic,
2009, Sec. 3.3) to justify the adoption of full-order alternatives
in continuous-time DTC. We study this issue by posing the
observer design problem as an H2 optimization under noisy
measurements. Although the problem is somewhat unorthodox,
we end up with its transparent analytic solution, which has
a reduced-order observer form regardless the noise intensity.
We are not aware of any other problem, where the steady-state
Kalman filter is of a reduced-order form under nonsingular
measurement noise. This way we show that the single-delay
DTC is a rare case where reduced-order observers can be vin-
dicated of their “original guilt.”

This is a conference version of (Mirkin and Zanutto, 2022), to
which a reader is referred for all proofs.

Notation By R, Z, and N we indicate the sets of real, inte-
ger, and natural (positive integer) numbers, respectively, and
Zi1::i2

´ fi 2 Z j i1 � i � i2g. The complex-conjugate
transpose of a matrix M is denoted by M 0 and its Frobenius

norm kMkF ´
p

tr.M 0M/. If a matrix M is square, spec.M/
stands for its spectrum, i.e. the (multi) set of all its eigenvalues.
By fagn we understand the multiset containing n copies of a.

We say that a discrete-time linear shift-invariant system G is
an H2 system if it is causal and its impulse response matrix is
square summable. If G 2 H2, then its H2-norm

kGk2 D
� 1

2�

Z �

��

kG.ej� /k2
F
d�

�1=2

;

where G.´/ is the transfer function of G. We use the compact
notation

�

A B

C D

�

´ D C C.´I � A/�1B

for transfer functions in terms of their state-space realizations.
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2. DTC VIA OBSERVER-BASED DESIGN

Consider an input-delay discrete system described by
�

xŒt C 1� D AxŒt� C BuŒt � ��

yŒt � D CxŒt� C DuŒt � ��
; (1)

where uŒt� 2 R
m is a control input, yŒt� 2 R

p is a measured
output, xŒt� 2 R

n is an internal signal, and � 2 N is a delay. We
assume hereafter that

A1: .A; B/ is stabilizable and .C; A/ is detectable,

which is necessary for stabilization. We also assume that

A2: .A; B/ has no unreachable modes at the origin,

which is required only to simplify the exposition, the results
remain qualitatively the same if this assumption is omitted.

The vector x is not a state of (1). Indeed, by the state we
understand a history accumulator, whose knowledge at any time
instant t D t0 is the only information about the past required to
calculate the behavior of the system for t > t0. It is readily seen
that the knowledge of xŒt0� in (1) should be complemented by
that of uŒt� for all t 2 Zt0��::t0�1. A state of (1) may then be
chosen as

x� Œt � ´

2

6

6

4

xŒt�
uŒt � ��

:::
uŒt � 1�

3

7

7

5

2 R
nCm� : (2)

With this choice, the measured subset of the state changes as
well, because the history of the control signal may be safely
assumed to be measurable. Hence, the measured variable is

y� Œt � ´

2

6

6

4

yŒt�
uŒt � ��

:::
uŒt � 1�

3

7

7

5

2 R
pCm� ; (3)

not just yŒt�. The state equation of (1) corresponding to the
choices above is

�

x� Œt C 1� D A� x� Œt � C B� uŒt�

y� Œt � D C�x� Œt �
(4)

where

�

A� B�

�

´

2

6

6

6

6

4

A B 0 � � � 0 0
0 0 I � � � 0 0
:::

:::
:::

: : :
:::

:::
0 0 0 � � � I 0
0 0 0 � � � 0 I

3

7

7

7

7

5

; C� ´

2

6

6

6

6

4

C D 0 � � � 0
0 I 0 � � � 0
0 0 I � � � 0
:::

:::
:::

: : :
:::

0 0 0 � � � I

3

7

7

7

7

5

Realization (4) inherits structural properties of the delay-free
version of (1), meaning that the augmentation procedure has no
redundancy.

Proposition 1. � 2 C is an unreachable mode of .A� ; B� / iff it
is an unreachable mode of .A; B/ and is an unobservable mode
of .C� ; A� / iff it is an unobservable mode of .C; A/.

Thus, A1 implies that we can design a stabilizing controller
for (4) under every � . We follow the observer-based design
procedure for that. Although (4) is a standard system, designing
state-feedback and observer gains without accounting for the
structure of its parameters would be a waste. The dimension of
(4) might be very high if the delay is large, which would lead to
numerical issues. So the trick is to exploit the structure of the
parameters of (4) to end up with calculations independent of � .

2.1 State feedback with partial pole placement

We start with discussing the design of the state-feedback gain
K� 2 R

m�.nCm�/ for (4). It is readily seen that

spec.A� / D spec.A/ [ f0gm� :

By Proposition 1, the m� deadbeat eigenvalues are reachable
via B� and can thus be freely moved by state feedback. But a
key question is whether we really need to move them. Eigen-
values at the origin are damped and have the fastest possi-
ble convergence. As such, having them is normally desirable.
Moving non-zero modes to the origin is regarded as expensive
and non-robust, for it might require high feedback gains. Yet
if such modes are already present in the open-loop system,
keeping them is both justified by performance considerations
and economical (e.g. they would be kept by the “expensive
control” LQR (Anderson and Moore, 1989, Sec. 6.2)). Thus,
it is justified to design K� that moves only elements of the
spectrum of A in spec.A� /.

The lemma below presents a possible approach to designing the
state-feedback gain with the required property.

Lemma 1. If there is a rank-n matrix M� 2 R
n�.nCm�/ such that

M� A� D AM� and M� B� D B, then K� D KM� renders

spec.A� C B� K� / D spec.A C BK/ [ f0gm�

for every K 2 R
m�n.

The formulation above appears somewhat peculiar. In principle,
partial pole assignment would only require the row space of M�

to match the left eigenspace of the movable part of spec.A� /.
Yet the structure of A� and B� facilitates an explicit construc-
tion of the required M� even in this restrictive form.

Lemma 2. The matrix

M� D
�

A� A��1B � � � AB B
�

satisfies the conditions of Lemma 1 iff A2 holds.

Thus, we need to choose a state-feedback gain K rendering
A C BK Schur, which is always possible by A1, and then use

K� D K
�

A� A��1B � � � AB B
�

:

Taking into account the structure of the state vector in (2), this
gain results in the control law

uŒt� D K� x� Œt � D K
�

A� xŒt� C

�
X

iD1

Ai�1BuŒt � i �
�

: (5)

The signal in the parentheses above is the prediction of xŒt C��.
As such, (5) is the discrete counterpart of the predictive control
law, like that in (Furukawa and Shimemura, 1983, Eqns. (25)
and (26)).

2.2 Reduced-order observer

Consider now the observer design for the case when the whole
x� is not measurable. Like in the state-feedback case, Propo-
sition 1 implies that a full-order observer can always be con-
structed for (4). But the structure of the parameters of (4) can
again be used to simplify the result. A key observation now is
that the last m� components of the measured signal in (3) coin-
cide with those of the state vector in (2). They are the history of
the control signal u generated by the controller. We may then
expect that no measurement noise corrupts these component of
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the state in many applications. Hence, the use of a reduced-
order observer is a natural choice for (4).

The specific form of reduced-order observer that we use is
not the one with a minimal order, because we do not reduce
measured parts of x from it. But this does not affect its de-
sign qualitatively. Repeating the derivation in (Friedland, 1986,
Sec. 7.5) for this choice, we end up with the observer of x in the
form

OxŒt C1� D A OxŒt�CBuŒt ����L.yŒt��C OxŒt��DuŒt ���/ (6)

whose Ox converges asymptotically to x, provided L 2 R
n�p is

such that A C LC is Schur (exists by A1).

2.3 Observer-based controller

Finally, combining (5) with (6) we end up with the observer-
based control law for (1) in the form

8

ˆ

<

ˆ

:

OxŒt C 1� D .A C LC / OxŒt� C .B C LD/uŒt � �� � LyŒt�

uŒt � D K
�

A� OxŒt� C

�
X

iD1

Ai�1BuŒt � i �
� (7)

which is the discrete counterpart of the observer-predictor con-
troller in (Furukawa and Shimemura, 1983, Eqns. (36)–(38)).
The control law (7) is stabilizing, with the closed-loop spectrum

spec.A C BK/ [ spec.A C LC / [ f0gm� ;

which follows by separation arguments as in (Friedland, 1986,
Sec. 8.3).

Remark 1. (multiple input delays). The arguments above can
be extended to processes of the form

xŒt C 1� D AxŒt� C

�
X

iD0

Bi uŒt � i �:

In the state-feedback part, we essentially only need to replace
the matrix M� in Lemma 2 with

M� D
�

A� NM� � � � NM2
NM1

�

;

where NMi D A�1 NMiC1 C A��1Bi for i 2 Z1::� with NM�C1 D 0,
and design K on the basis of the pair .A;

P�

iD0 A��i Bi /, rather
than .A; B/. Assumptions A1,2 should then be adapted to these
changes, of course. The observer part does not alter. O

3. NOISY MEASUREMENTS OF THE CONTROL INPUT

Although the assumption that u is measured perfectly can be
justified in many situations, we may think of applications where
this is not the case. For example, the control signal generated
by the controller may be transmitted to the plant by a noisy
communication channel. A way to formalize this is to assume
that the control signal applied to the plant is

uŒt� D ucŒt � C vuŒt �;

where uc is the (measured) output of the controller and vu is
some noise. In such situations delayed u’s in measured variable
(3) become delayed .u � vu/’s. And this alteration questions
the use of observer (6) in the studied context, because reduced-
order observers tend to be sensitive to measurement noise in
reduced channels, see (Anderson and Moore, 1989, Sec. 7.2).

Our goal in this section is to shed light on this issue. To this
end, we consider the system

8

<

:

xŒt C 1� D AxŒt� C BuŒt � �� C BwwŒt�

yxŒt � D CxŒt� C DuŒt � �� C DwwŒt�

yuŒt � D uŒt� � DvvŒt �

(8)

and study the reconstruction of its state x� , as in (2), from
measurements yx and yu. The signal w in the first two equations
of (8) can be thought of as comprising plant disturbances
and a measurement noise in the y-channel. Its introduction is
required to render the state reconstruction problem well posed.
The signal v, assumed to be independent of w, represents
measurement imperfections in the u-channel and is the main
focus below. It is convenient to use normalized w and v, so
matrices Bw , Dw , and Dv reflect intensities of physical signals
and their mutual relations (for parts of w), as well as design
considerations. In particular, vu D Dvv for a fictitious unit-
intensity v. Note that we consider only the measurement of uŒt�
rather than of the whole �-history of it as in (3). The reason
is that we do not impose any structure on a reconstructor in
the analysis below. In this case an explicit account for delayed
versions of yu would introduce redundancy, without affecting
the performance.

By the reconstruction of x� we understand the generation of
its estimate Ox� from the measurements .yx; yu/ in (8) by a
linear system (filter) F . The goal is to choose F so that the
reconstruction error x� � Ox� is small, in whatever sense. The
size of the error can be quantified in terms of the error system
Ge, which connects exogenous inputs, u, w, and v, with the
error. To construct Ge, introduce the transfer functions

�

Gxw Gxu

Gyw Gyu

�

´

2

4

A Bw B

I 0 0
C Dw D

3

5 ; W� ´

2

6

4

´�� I
:::

´�1I

3

7

5
: (9)

It is then readily verified that

x� D

�

Gxu´�� Gxw 0
W� 0 0

�

2

4

u
w
v

3

5

and
�

yx

yu

�

D

�

Gyu´�� Gyw 0
I 0 �Dv

�

2

4

u
w
v

3

5:

Hence, the error system

Ge D

�

Gxu´�� Gxw 0
W� 0 0

�

� F

�

Gyu´�� Gyw 0
I 0 �Dv

�

:

We consider the following requirements in the design of F :

(1) both Ge and F itself are stable,
(2) F is strictly causal,
(3) the error x� � Ox� is decoupled from u,
(4) the H2-norm kGek2 is minimized.

The first requirement should be evident, an unstable F cannot
be safely implemented in open loop and the norm of an unstable
error system is not well defined. The second and third require-
ments are motivated by the compatibility with the observer-
based design in Section 2. The observer there is strictly causal,
by construction, and the control signal does not affect the ob-
servation error. Moreover, the part of F acting on yu must be
strictly causal because the control signal uŒt� is only generated
at the time instance t . An additional motivation for the third
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requirement is that u has normally a different nature than dis-
turbances, so mixing them in the analysis of the reconstruction
performance is not justified. The fourth item is the standard
steady-state Kalman filtering objective. If w and v are unit-
variance white processes, then kGek

2
2 equals the steady-state

variance of the reconstruction error.

To solve this problem, we need to assume that

A3:

�

A � ´I Bw BDv

C Dw DDv

�

has full row rank for all j´j D 1.

This condition can always be warranted by a choice of Bw

and Dw . Together with the detectability of .C; A/, already
included into A1, assumption A3 guarantees (Saberi et al.,
2007, Thm. 4.79) that the discrete algebraic Riccati equation
(DARE)

Y D AYA0 C BwB 0

w C BDvD0

vB 0

� .BwD0

w C BDvD0

vD0 C AYC 0/R�1

� .DwB 0

w C DDvD0

vB 0 C C YA0/; (10)

where R ´ DwD0

w CDDvD0

vD0 CC YC 0, admits a stabilizing
solution Y D Y 0 � 0 such that R > 0 and A C LC is Schur,
where L ´ �.BwD0

w C BDvD0

vD0 C AYC 0/R�1.

The main res

Theorem 1. If A1,3 hold, then the strictly causal filter solving
the problem of H2-optimal reconstruction of the state x� of (8)
is

�

OxŒt C 1� D A OxŒt� C ByuŒt � �� � L OyŒt�

OuŒt � i � D yuŒt � i �; 8i 2 Z1::�

(11)

where OyŒt� ´ yxŒt � � C OxŒt� � DyuŒt � ��.

A remarkable outcome of Theorem 1 is that the optimal re-
construction of the �-history of the control input from noisy
measurements of u is still provided by the reduced-order ob-
server having the same structure as that in §2.2. This is not
an expectable result. Kalman filters may have a reduced-order
observer form in some situations. However, this normally hap-
pens when noise vanishes in certain measurement channels,
see (Friedland, 1986, Sec. 11.6). Our case is unusual, for the
reduced-order structure is maintained for any noise intensity
weight Dv. The latter still affects the optimal solution, via
influencing the DARE (10) and thus the observer gain L.

Remark 2. (causal Fx). Allowing the first component of F , that
generating x, to have a nonzero feedthrough part may change
the solution structure. It can be shown that in this case the
optimal filter is

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

xF Œt C 1� D AxF Œt � C ByuŒt � �� � L OyŒt�

OxŒt� D xF Œt � C YC 0R�1 OyŒt�

OuŒt � i � D yuŒt � i �; 8i 2 Z1::��1

OuŒt � �� D yuŒt � �� C DvD0

vD0R�1 OyŒt�

and the optimal cost attained by it is reduced by the quantity
tr.R�1.C Y 2C 0 C D.DvD0

v/2D0//. If D D 0 we still have the
reduced-order observer structure of the optimal strictly causal
filter in (11), bar a change in generating Ox. But if D ¤ 0,
the filter is no longer the reduced-order observer for the oldest
estimated element of u, which is uŒt � ��. O

4. CONCLUDING REMARKS

This note has studied discrete-time dead-time compensation
from the perspective of the orthodox observer-based controller

design. It has been shown that the discrete equivalent of the
observer-predictor architecture can be derived from scratch via
such arguments under mild assumptions. Specifically, only two
choices had to be made. First, the deadbeat modes of the plant
that originate in the delay element are not shifted by the state
feedback. Second, delayed control inputs, which are parts of
the state and measured directly, are excluded from the state
observer (hence, the use of a reduced-order observer). The
sensitivity of the last choice to measurement noise has also been
investigated via posing and solving an H2 filtering problem for
the studied delayed setup. Remarkably, the H2-optimal strictly
causal filter is always of the reduced-order observer form,
regardless the measurement noise intensity. This offers a solid
justification for the observer-predictor setup, showing that it is
not sensitive to measurement noise.
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Abstract: During the last years, Hamiltonian neural networks (HNN) have been introduced to
incorporate prior physical knowledge when learning dynamical systems. Hereby, the symplectic
system structure is preserved despite the data-driven modeling approach. However, preserving
symmetries requires additional attention. In this research, we enhance the HNN with a Lie
algebra framework to detect and embed symmetries in the neural network. This approach allows
to simultaneously learn the symmetry group action and the total energy of the system.
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1. INTRODUCTION

Modeling mechanical system dynamics has a long history,
many physical principles have been prescribed in detail
and from different perspectives, e.g. the Hamiltonian and
the Lagrangian viewpoint as well as the Newton-Euler
modeling approach. However, also data-based modeling
techniques have recently gained attention within this area.
Reasons might range from bypassing complex physical
modeling which requires domain-specific knowledge, e.g.
in novel materials, to finding reduced-order models of e.g.
multi-physics systems.

Mechanical systems are well-known to possess charac-
teristic properties, such as symplecticity of the Hamil-
tonian/Lagrangian flow, symmetries which lead to the
preservation of momentum maps, and energy-preservation
in the absence of external forcing. In physics-based mod-
eling, differential geometry allows to generate structure-
preserving models, e.g. variational integrators provide
discrete-time analogs to the original system structures.
In data-based modeling, standard methods such as neural
network approximations of vector fields or flows do not
preserve these structures. Physics-informed neural net-
works were introduced by Raissi et al. (2019), in which the
unknown parts of a PDE are learned by adding the expres-
sion of the PDE to the loss function and using automatic
differentiation properties. The SINDy approach, proposed
by Brunton et al. (2016) applies sparse regression to get
a symbolic representation of the system’s ODE based on
suitable basis functions, without focusing on mechanical
systems. However, Udrescu and Tegmark (2020) presented
an approach where deep learning is used to find symme-
tries in the data in order to reduce the exponentially large
search space of all possible basis functions.

? E. Dierkes acknowledges funding by the Deutsche Forschungsge-
meinschaft (DFG) Project number 281474342.

The learning of Hamiltonian systems is addressed in Zhong
et al. (2019). Within this work, the scalar valued Hamil-
tonian is learned by using neural networks to model the
typical components of the Hamiltonian separately, such as
the potential energy or the mass matrix. A more general
approach was proposed by Greydanus et al. (2019) and
named Hamiltonian Neural Networks (HNN), since the
Hamiltonian is learned such that the system’s symplec-
ticity and energy conservation are preserved by design.
Extending this approach, Dierkes and Flaßkamp (2021)
shows how to learn a symmetry-preserving Hamiltonian,
if the symmetry is known a priori.

Rather than learning the continuous Hamiltonian, Offen
and Ober-Blöbaum (2022) learn a Hamiltonian tailored to
symplectic integration schemes. In this way, discretization
errors in the integration step are eliminated and trajectory
observations instead of observations of the Hamiltonian
vector field can be used in the learning process. A similar
strategy can be employed on the Lagrangian side (see
Ober-Blöbaum and Offen, 2022).

Another approach to preserve symplectic structure when
learning dynamical systems is to learn the system’s Hamil-
tonian flow map by learning its generating function (cf.
Rath et al., 2021) or by using symplectic neural networks
(cf. Jin et al., 2020), where symplecticity is guaranteed
by the network architecture. Moreover, symmetries have
been embedded into learning vector fields using group
integration matrix kernels (GIM kernels) and Gaussian
Processes (cf. Ridderbusch et al., 2021). Lie algebra con-
volutional neural networks (cf. Dehmamy et al., 2021) can
automatically discover symmetries and preserve them by
using suitable localizations of the kernels present in CNNs
and making them group invariant.

In this article, we will learn the Hamiltonian of a system
and use a Lie algebra framework to detect and embed
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symmetries into a neural network that models the Hamil-
tonian of a dynamical system. For proposed Lie group
actions, such as the action of affine linear transformations,
our network automatically detects subgroups under which
the Hamiltonian function is invariant. This is achieved by
learning the Hamiltonian along with a spanning set of
generators of invariant vector fields and testing via a loss
function whether the derivatives of H along the invariant
vector fields vanish. Utilising Noether’s theorem, the two
ingredients, symmetries and symplectic structure, then
allow us to identify integrals of motions. We exemplify the
concept by the cart–pendulum example, for which we train
a symmetry-symplecticity-preserving neural network.

2. LEARNING DYNAMICS AND SYMMETRIES

Consider an orientable, Riemannian manifold Q with
phase space (M, ω) = (T ∗Q,ω), where T ∗Q denotes the
cotangent bundle and ω the canonical symplectic struc-
ture. Let X(M) denote the set of vector fields on M.

In the following, we develop a loss function to learn a
Hamiltonian H : M → R modelled as a neural network
based on observations (ż(k))Nk=1 of a Hamiltonian vector

field XH ∈ X(M) at positions (z(k))Nk=1 ⊂ M. If Q =

Rn, XH(q, p) = (∇pH(q, p),−∇qH(q, p))
>

in standard
(Darboux) coordinates z = (q, p) ∈M ∼= R2n.

Our loss function will guide the network towards a sym-
metric Hamiltonian function: given a symplectic action of
a Lie group G onM, the minimization procedure identifies
a subgroup of G which acts by symmetries. Once the
symmetries are known, conserved quantities can be derived
by Noether’s theorem. If, for instance, the Hamiltonian is
invariant under translations, i.e. the directional derivative
∇(w,0)H(q, p) =

∑n
j=1 w

j ∂H
∂qj (q, p) vanishes for a transla-

tion direction w ∈ Q = Rn and all (q, p) ∈M ∼= R2n, then
the quantity I(q, p) = w · p is conserved under motions.

The loss function ` consists of a dynamical part `dynamics

and a part related to symmetries `sym. We have

`dynamics =
N∑

k=1

‖ż(k) −XH(z(k))‖2TM,

which corresponds to HNN. In the following, we show how
to construct `sym to a given Lie group, whose actions are
possible symmetries.

2.1 Background on Lie-group actions

Let us briefly introduce Lie group actions and invariant
vector fields. For details we refer to the book by Marsden
and Ratiu (1999).

For a Lie group G, let g denote its Lie algebra and
exp: g → G the exponential map. Consider a symplectic
group action L : G→ Symp(M), g 7→ Lg. Here Symp(M)
denotes the group of symplectic diffeomorphisms. If Q =
Rn, as before, this means that Lg is required to preserve
the symplectic structure, i.e. DLT

g JDLg = J , where DLg

is the Jacobian matrix of Lg and J is the symplectic

structure matrix J =

(
0 −In
In 0

)
with the n-dimensional

identity matrix In. For v ∈ g the left invariant vector field
v̂ ∈ X(M) is defined by

v̂z =
d

dt

∣∣∣∣
t=0

Lexp (tv)(z) ∈ TzM, z ∈M.

These vector fields can be thought of as infinitesimal
actions of the Lie group G on M. Invariance of H can
be tested by computing directional derivatives of H in the
directions given by these vector fields.

Example 1. (Affine linear transformations). Let Q = Rn

and M = T ∗Q ∼= R2n with Darboux coordinates (q, p).
The group of affine transformations G = Aff(Q) on Q can
be represented as

G =

{(
A w
0 1

) ∣∣∣∣ A ∈ Gl(R, n), w ∈ Rn

}
,

where the group operation is matrix multiplication and
Gl(R, n) denotes the general linear group. Its Lie algebra
is

g =

{(
M w
0 0

) ∣∣∣∣ M ∈ Mat(R, n), w ∈ Rn

}
and exp: g → G is the matrix exponential. G acts on
M = T ∗Q as

L(A,w)(q, p) =
(
A−1(q − w), A>p

)
,

where g = (A,w) is a shorthand for

(
A w
0 1

)
. The action

is symplectic as it arises as the cotangent lifted action

of the action G → Diff(Q), (A,w) 7→ LQ
(A,w), with

LQ
(A,w)(q) = Aq+w. The invariant vector field v̂ = (̂M,w)

corresponding to the action L : G→ Symp(M) at (q, p) ∈
M is given as

v̂(q,p) = (̂M,w)(q,p) =
(
−Mq − w, M>p

)
.

Vector fields can be interpreted as derivations: if v̂ =

(̂M,w)(q,p) is applied to H : M → R we obtain the

directional derivative

v̂(q,p)(H) = (̂M,w)(q,p)(H) = ∇
(̂M,w)

H(q, p)

= (−Mq − w)>∇qH(q, p) + (M>p)>∇pH(q, p).

Example 2. (Translations). Restricting to translationsG ∼=
(Rn,+), we have v̂q,p = ŵq,p = (−w, 0) with ŵq,p(H) =
−w>∇qH(q, p).

2.2 Incorporation of symmetry into the loss function

Simultaneously to learningH, we aim to learn an orthonor-
mal basis v(1), . . . , v(K) of g spanning a subspace V ⊂ g
such that H is invariant under actions with elements g of
the subgroup exp(V ) ⊂ G.

LetMo ⊂M be open, pre-compact, and contain the parts
of interest of the phase space M. Let dvol be a volume
form on M. For k = 1, . . . ,K define

`(k)sym =
1

dvol(Mo)

∫
Mo

|v̂(k)(H)|2 dvol. (1)

Here v̂(k) denotes the invariant vector field to v. The
term `

(k)
sym measures how invariant H is under actions with

group elements of exp(tv(k)|t ∈ R). Equip g with an inner
product 〈·, ·〉 and norm ‖ · ‖. Given weights α(k), β(k) > 0
define
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`sym =
K∑

k=1

(
`(k)sym + α(k)|‖v(k)‖ − 1|2 + β(k)

k−1∑
s=1

〈v(k), v(s)〉
)
.

(2)

The last two terms of `sym measure the orthonormality

of the spanning set v(1), . . . , v(K) while the first term
measures how well infinitesimal actions by elements of
exp(V ) preserve H.

Example 3. If we look for a 1-dimensional subgroup of
G = (Rn,+), where G acts by translations on Q = Rn

(example 2), we have for a Lie algebra element v = w ∈ g

`sym =
1

dvol(Mo)

∫
Mo

∣∣∣∣∣∣
n∑

j=1

wj ∂H

∂qj
(q, p)

∣∣∣∣∣∣
2

dq dp,

where dq dp = dq1 . . . dqn dp1 . . . dpn.

2.3 Training and further remarks

The Hamiltonian H and the spanning set v(1), . . . , v(K)

can now be learned using the loss function ` = `dynamics +
`sym, where H is modelled as a neural network and

v(1), . . . , v(K) are additional parameters. Alternatively to
learning all at once, the training can be performed with a
low value for K first. (For K = 0 our method corresponds
to HNN.) Then K is increased and the training repeated
using the pre-trained network and v(1), . . . , v(K−1) as pri-
ors.

Remark 4. The integral in (1) can be approximated by av-
eraging the integrand over a few points in the phase space
M, randomly drawn in each epoch of the minimization
procedure.

Remark 5. Let µ : M→ g∗ be the momentum map of the
considered group action and 〈·, ·〉pair the dual pairing of the
Lie algebra g and its dual g∗. Provided that H accurately
describes the Hamiltonian of the system and exp(V ) its
symmetry group, then the components µ(j) = 〈µ, v(j)〉pair
of the momentum map are conserved quantities of the
system’s Hamiltonian motions. In case of example 2, the

conserved quantities are (q, p) 7→ w
(j)
1 p1 + . . . + w

(j)
n pn,

where v(j) = (w
(j)
1 , . . . , w

(j)
n ).

Remark 6. Our framework works without any changes for
general symplectic group actions, i.e. for actions which
are not cotangent lifted actions. Indeed, the Riemannian
symplectic manifold (M, ω) does not need to have the
structure of a cotangent bundle.

3. NUMERICAL RESULTS

The framework introduced in the previous section is now
applied to the example of a planar pendulum mounted on
a cart (cf. e.g. Bloch, 2003). Since the dynamics are trans-
lational invariant, i.e. independent of the cart’s position,
we restrict ourselves to learn the correct translation group.

The generalized coordinates are q = (s, ϕ), where s is the
position of the cart and ϕ is the angle to the upper vertical
of the pendulum. Since this system is well studied, we
can use the true Hamiltonian for, firstly, generating data

points and, secondly, evaluating the performance of our
data-based approach. It is given by

H(ϕ, ps, pϕ) =
ap2s + 2bpspϕ cosϕ+ cp2ϕ

2ac− b2 cos2 ϕ
−D cosϕ, (3)

with the constants a = ml2, b = ml, c = M + m and
D = −mgl, using l as the length and m as the mass of
the pendulum, M corresponds to the mass of the cart
and g = 9.81 to gravitation. For simplicity, all remaining
constants are set to one, i.e. m = l = M = 1.

To generate a data set, 1500 trajectories are generated
using random initial values with |s| < 5, |ϕ| < π, |ps| < 1
and |pϕ| < π. Each trajectory has a length of 3 s and
a sampling rate of 15 Hz. A fourth-order Runge–Kutta
scheme is applied with a low error tolerance of 1e−10 and
using the (exact) vector field induced by H (cf. Runge,
1895). To each sample of the resulting data set, Gaussian
noise with σ2 = 1e−2 is added.

The network architecture is similar to the proposed net-
work by Greydanus et al. (2019), which consists of 2 layers
with 512 neurons each, using tanh as an activation func-
tion. For the training, an Adam optimizer (proposed by
Kingma and Ba (2017)) and a reduce on plateau learning
rate scheduler (cf. Ayyadevara and Reddy, 2020) with an
initial learning rate of 1e−3, a reduction factor of 0.8 is
used. For the training of our proposed symmetry HNN
(SymHNN) we set K = 2 and in (2) the scaling factor β(k)

is set to 0.001 for all k. This allows the network to choose
v(1) = v(2) in case that the translational invariant only
exists in one direction.

For the numerical comparison a dense neural network
(DenseNN), without learning the Hamiltonian but di-
rectly learning the dynamics, and a HNN are trained.
For each model the same Runge–Kutta scheme, as
for data generation, is used to evaluate the perfor-
mance. The resulting trajectories for the states are shown
in Figure 1 for (randomly chosen) initial configura-
tion [q, p] = [3.89, 3.68,−0.95,−1.67]. The true Hamilto-
nian (3) is evaluated for the states of Figure 1 and shown in
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Fig. 1. Evaluated states of different (learned) models for
the cart-pendulum.
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Fig. 2. True Hamiltonian evaluated for the states shown
in Figure 1.

Figure 2. One can observe that the Hamiltonian is learned
as successfully with SymHNN as with HNN.

Since this example is known to be invariant in the posi-
tion s, the momentum ps is conserved, which leads to a
constant ps for each trajectory. In Figure 1 it can be seen
that the momentum for the DenseNN and the HNN are
not conserved, whereas the momentum for our proposed
SymHNN is preserved more effectively. To confirm this,

the values for `
(k)
sym are computed with the reference value

v = [1, 0] for all models. An improvement by a factor
of 10 is observed (DenseNN: 0.0125, HNN: 0.0196 and
SymHNN: 0.0012).

It should be highlighted that SymHNN learns correctly
to choose v(1) = v(2) = [0.990,−1.775e−05], since this
example only has one translational invariant in s-direction.
The learned v is close to the reference value of [1, 0].
However, since the integration in (1) is not performed

exactly and the symmetry losses `
(k)
sym are not precisely

zero, the conjugate momentum ps is not exactly but only
approximately conserved in Figure 1.

4. CONCLUSION

We propose a neural network approach for simultaneously
learning a system’s Hamiltonian and its symmetries based
on trajectory data. To preserve the symplectic structure
encoded in the data, the NN is trained to learn the
Hamiltonian, since the vector field can then be generated
via automatic differentiation (cf. Greydanus et al., 2019;
Dierkes and Flaßkamp, 2021). Extending this approach,
which as coined the HNN method, we simultaneously iden-
tify inherent symmetries. Since we focus on the Hamilto-
nian setting, according to Noether’s theorem, symmetries
present themselves in term of invariances. However, we
go another step forward and learn basis vectors of a Lie
algebra subspace. These define the Lie subgroup, which
belongs to actions (e.g. affine linear transformations) leav-
ing the Hamiltonian invariant. In other words, we identify
the integrals of motions such as the cart position in the
studied cart-pendulum example. Future work will address
the combination with symplectic discretization, e.g. via
symplectic partitioned Runge-Kutta schemes. A discrete-
time variant of this approach might directly learn modified
Hamiltonian and discerete-time symmetries (cf. Offen and
Ober-Blöbaum, 2022; Ober-Blöbaum and Offen, 2022).
Symmetry in Hamiltonian systems give rise to relative
equilibria, to which the learning framework can be ex-
tended in future.
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Abstract: We study time minimal control problem for quantum systems whose dynamics
are governed by the Bloch equation with interaction. The dynamics of the quantum systems
are analyzed as affine control systems on the Bloch ball using parametrizations of the density
matrix. The influence of Coulomb energies during a process of population transfer for a
quantum system with several energy levels is shown and time minimal trajectories are given.

Keywords: Optimal control, Quantum dots, Bloch models, Elliptic functions.

1. INTRODUCTION

In the last few decades control of quantum systems has
been widely studied from both theoretical and interdisci-
plinary points of view. Recently, there has been a growing
interest in optimal control of quantum systems because
of their applications to biology, physics, chemistry and
quantum computing. Also, studies on the manipulation
of quantum systems have given rise to several models
allowing the description of certain physical phenomena.
For example, the Landau-Zener and Lindblad equations
which describe the evolution of quantum systems inter-
acting with their environment are given in Morzhin et al.
(2021). Other applications include control of spin dynam-
ics by magnetic fields in nuclear magnetic resonance in
Ernst et al. (1987). We are interested in the time minimal
control problem for quantum systems at several energy
levels given by quantum dots and whose dynamics are
described by the Bloch equation with interaction, taking
Coulomb parameters into account.
The control of quantum systems and time minimum pop-
ulation transfer problem has attracted interest of many
authors. For example, in Sugny et al. (2007) the problem
of achieving the optimal synthesis of a dissipative quantum
system at two energy levels is treated. In Boscain et al.
(2006) the authors consider the time minimum population
transfer problem for a spin particle driven by a magnetic
field on the Bloch sphere where the population dynam-
ics are influenced by a parameter which depends on the
maximum amplitude of the control field and energy levels.
In Bonnard et al. (2009) and in Lapert et al. (2013) the
problem of time minimal control with dissipative terms,
and the damping effects which act on the dynamics of the
populations is studied. In Khaneja et al. (2001) the authors
deal with the problem of finding the time optimal control
of spin quantum systems to produce unit operators.

In this paper we are interested in the study of time minimal
control problem for quantum systems given by quantum
dots, which are nonlinear Bloch models with interaction.
We consider a Bloch model given by the complex matrix
differential equation:

ih̄ρ̇ = [H + V (ρ), ρ],

where state ρ is the density matrix, H is the Hamiltonian
and V (ρ) is the Coulomb interaction matrix depending
on Coulomb parameters. A parameterization of density
matrix ρ verifying physical properties, allows to write
the Bloch model as an affine control system with some
constraints. It is well-known that for a two-level system,
the parameterization of ρ is in bijection with the Bloch
vector, but for a system with three levels there exist
different geometries and the parametrization is not unique
(see Brning et al. (2012)). The influence of Coulomb
parameters on time minimal trajectories for two-level
systems is studied in Zibo et al. (2020).

Here we consider a four-level quantum system, to simplify
the study of the system a choice of block parameterization
of two-level systems is made. Then by a choice of the
energies of the free Hamiltonian of the system, we show
a symmetry in the dynamics of the system which evolves
on a sphere of R6. Also, we highlight the Coulomb inter-
action between two Bloch vectors. We apply Pontryagin’s
Maximum Principle to determine the minimum transfer
time trajectories from an initial to a final pur or mixed
states. We show that the trajectories of time minimal
control problem are expressed as elliptic functions. Many
authors (Brockett et al. (1993), D’Alessandro et al. (2001),
Jurdjevic (2001) and Yuan et al. (2007)) were interested
in elliptic functions and in more interesting cases, the
solutions are expressible in terms of elliptic functions. In El
Assoudi-Baikari et al. (2021) and (2016), it is shown that
the solutions are not always elliptic, this depends of some
geometrical parameters characterizing the state space.
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2. MAIN RESULTS

We present briefly the nonlinear Bloch model. Parametriza-
tion of the density matrix give an affine control system that
we will consider to study the transfer problem in minimal
time using Pontryagin’s Maximum Principle.

2.1 Nonlinear Bloch model

We present a nonlinear Bloch model that takes into
account Coulomb effects in a quantum system called
a quantum dot. In Bidgaray et al. (2014) a model of
quantum dots which contain N c energy levels in the
conduction band and Nv energy levels in the valence band
is provided. This modeling leads to a nonlinear Bloch type
equation whose nonlinear terms come from the Coulomb
interaction. This model is given by:

ih̄ρ̇ = [H + V (ρ), ρ]

where h̄ is constant of Planck, (we assume h̄ = 1), ρ is the
density matrix, that is Hermitian, positive semi-definite
and it has a trace equal to one. The state ρ represents
pure and mixed quantum states if trace(ρ2) ≤ 1.
The matrix H=H0 + HL is the total Hamiltonian, H0

is the free energy Hamiltonian in the quantum dot and
HL is the laser-quantum dot interaction Hamiltonian. H0

is a diagonal matrix whose coefficients are (Ec
i )i∈Ic and

(Ev
j )j∈Iv , real numbers representing the free energies of

electrons in the conduction band and the valence band,
respectively. The inter-band transition frequency of the
quantum dots is the energy Ekj = Ec

j − Ev
k . Moreover,

taking the Coulomb interaction into account modifies the
energy levels, for example by causing them to tend down-
wards, and Ekj = Ec

j − Ev
k − R

c−v
jkjk, where Rc−v

jkjk account
for the Coulomb interactions called Coulomb parameters
(see Bidgaray et al. (2014)).

HL =

(
0 E(t)M

E(t)M 0

)
, where E(t) is the electric field

and M the dipolar matrix.
The Coulomb interaction matrix V (ρ) is Hermitian, de-
pending on Coulomb parameters (see Bidgaray et al.
(2014) and Zibo (2021)).

2.2 Parametrization of a model with four energy levels.

In this section we consider the evolution of a quantum
dot with four energy levels described by the transitions
between the level 1 in the conduction band and the level 2
in the valence band and the transitions between the level
2 in the conduction band and level 1 in the valence band.
We consider a Hamiltonian matrix, density matrix and
Coulomb interaction matrix per block of two matrices.
Here we give a parametrization of this model as an affine
control system with two controls.

We choose the Hamiltonian of the form H =

(
H1 0
0 H2

)
,

with H1 =

(
Ec

1 ω1(t)
ω1(t) Ev

2

)
and H2 =

(
Ec

2 ω2(t)
ω2(t) Ev

1

)
,

where Ec
1, Ev

2 , Ec
2 and Ev

1 are the free energies for the
conduction and valence bands, and ωi(t), i ∈ {1, 2} are
real bounded valued controls.

ρ =

 ρc11 ρ
cv
12 0 0

ρvc21 ρ
v
22 0 0

0 0 ρc22 ρ
cv
21

0 0 ρvc12 ρ
v
11

 et V (ρ) =

 V c
11 V cv

12 0 0
V vc
21 V v

22 0 0
0 0 V c

22 V cv
21

0 0 V vc
12 V v

11

 .

We write

ρ =

(
ρ(x) 0

0 ρ(y)

)
, ρ(x) = 1

4

(
1 + x3 x1 − ix2
x1 + ix2 1− x3

)
.

where x = (x1, x2, x3)t, y = (x4, x5, x6)t are Bloch vectors.

In Zibo (2021), we give in detail the associated Coulomb
interaction matrix V (ρ), we calculate its coefficients using
the the properties of Coulomb parameters. We obtain:

V c
11 = 1

2 (c0 − c1)− 3
4 (c2 + c3)− c3

4 x3 + (1
2 (c0 − c1)− c2

4 )x6
V v
22 = 3

2 (c′1 − c′0) + 1
4 (c3 + c4) + c3

4 x3 + (1
2 (c′1 − c′0) + c4

4 )x6
V cv
12 = − 1

4 (c3x1 + c5x4) + i
4 (c3x2 + c5x5)

V c
22 = 1

2 (c0 − c1)− 3
4 (c3 + c4) + ( 1

2 (c0 − c1)− c4
4 )x3 − c3

4 x6
V v
11 = 3

2 (c′1 − c′0) + 1
4 (c3 + c2) + ( 1

2 (c′1 − c′0) + c2
4 )x3 + c3

4 x6
V cv
21 = − 1

4 (c3x4 + c5x1) + i
4 (c3x5 + c5x2).

where cj , c
′
j , for 0 ≤ j ≤ 5 are constant depending on the

Coulomb parameters.

Also, by identifying the matrices ρ̇ = ρ̇ (x, y) and the
bracket −i[H + V (ρ), ρ] we obtain following system that
highlights the interaction between the two blocks of ρ.

ẋ1 = a1x2 − cx3x5 + bx2x6,
˙x2 = −a1x1 + cx3x4 − bx1x6 − 2ω1x3,

ẋ3 = c(x1x5 − x2x4) + 2ω1x2,
ẋ4 = a2x5 − cx2x6 + bx3x5,
ẋ5 = −a2x4 + cx1x6 − bx3x4 − 2ω2x6,
ẋ6 = c(x2x4 − x1x5) + 2ω2x5,
with reel constants a1, a2, b, c given by Coulomb parame-
ters and the transition frequencies.

It is easy to verify that for any control functions ω1, ω2, we
have x1ẋ1 + x2ẋ2 + x3ẋ3 = 0 and x4ẋ4 + x5ẋ5 + x6ẋ6 = 0
which implies

∑6
j=1 xj ẋj = 0. Hence for x(0) = (0, 0, 1)t

and y(0) = (0, 0, 1)t, one has that ‖x(t)‖2 = ‖x(0)‖2 = 1
and ‖y(t)‖2 = ‖y(0)‖2 = 1, and then x(t), y(t) ∈ S2 ⊂ R3.

Set z =

(
x
y

)
, clearly ‖z(t)‖2 = ‖z(0)‖2 = 2. So z(t)

belongs to the sphere of radius
√

2 in R6.
Notice that x(t) and y(t) do not independently evolve,
there is an interaction between these two Bloch vectors.

2.3 Symmetry and interaction in the dynamics

We choose the free HamiltonianH0 = diag(Ec
1, E

v
2 , E

c
2, E

v
1 )

such that the two energy differences Ec
1−Ev

2 and Ec
2−Ev

1
being equal and then we get that a1 = a2 = a. In this
case the following proposition shows a symmetry in the
dynamics of the Bloch vectors x(t) and y(t) and that the
linear part of the above system corresponds to a two-
level system for each Bloch vector x(t) and y(t) and the
nonlinear part representing the Coulomb interaction, is a
vector product of the two vectors x(t) and y(t). Set
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A =

(
0 a 0
−a 0 0
0 0 0

)
, B =

(
0 0 0
0 0 −1
0 1 0

)
and C =

(
c 0 0
0 c 0
0 0 b

)
.

Set u1(t) = 2ω1(t) and u2(t) = 2ω2(t) and assume |ui| ≤ 1.

Proposition 1 The dynamic of this quantum system with
four energy levels, when a1 = a2 = a, is given by

(Σ) ż =

(
A+ u1B 0

0 A+ u2B

)
z +

(
x ∧ Cy
y ∧ Cx

)
.

2.4 Time minimal trajectories

We present some basic notions of the optimal control
problem (see for more details Pontryagin et al. (1962) and
Boscain et al. (2004)). Consider an affine control system
with m control functions ż = F (z) +

∑m
i=1 uiGi(z), where

z ∈ Rn and F,G1, ..., Gm are smooth vector fields and con-
trol functions u = (u1, ..., um)t are bounded measurable
functions, with values in a domain U ⊂ Rm. An optimal
control problem consists to find a trajectory z(·) associ-
ated with a control u(·), solution of this system verifying
z(0) = z0 and z(T ) = z1 and minimizing a functional cost

C(u) =
∫ T

0
L(z(t), u(t))dt, where L : Rn × Rm −→ R is

a criterion function. The pair (z(·), u(·)) is called optimal.
If L(z(t), u(t)) = 1, then C(u) = T and we have a time
minimal control problem.

We apply Pontryagin’s Maximum Principle (PMP ) which
is a generalization of the Hamiltonian formulation of
the classical calculus of variations and it gives necessary
conditions that a trajectory must satisfy in order to
minimize a functional cost. The Hamiltonian function
associated to the system with the cost C(u) = T is defined
as follows for all (z, p, u) ∈ T ∗Rn × U , where p(t) is a row
vector (the adjoint vector), and p0 a constant, p0 ≤ 0.

H(z, p, u) = p(t)(F (z(t)) +
∑m

i=1 uiGi(z(t))) + p0

Pontryagin’s Maximum Principle says that if a pair
(z(·), u(·)) is optimal, then there exists a non zero abso-
lutely continuous function p(·) : [0, T ] −→ T ∗z(t)R

n, and a

constant p0 ≤ 0, such that for almost all t ∈ [0, T ] we have

ż(t) = ∂H
∂p (z(t), p(t), u(t)), ṗ(t) = −∂H

∂z (z(t), p(t), u(t))

and H(z, p, u) = maxv∈U {H(z, p, v)}.
The maximization condition of (PMP ) can be written as
maxv∈U {H(z, p, v)} = maxv∈U {

∑m
i=1 viΦi},

where the functions Φi = pGi(z) are called switching
functions. If the controls are bounded, optimal controls
are given by bang-bang controls as follows:
if Φi(t) > 0 (resp. Φi(t) < 0) for t ∈]t1, t2[⊂ [0, T ], then
the optimal control is bang ui(t) = 1, (resp. ui(t) = −1).
If Φi is zero over an interval [t1, t2], we say that z(·) is a
singular extremal trajectory.

For our system (Σ), we write the adjoint vector by bloc
p(s) = (P1(s),P2(s)), with P t

i (s) ∈ R3 for i = 1, 2 and
then H(z, p, u) = p0 + pż = p0 + P1ẋ+ P2ẏ =
p0 + P1((A+u1B)x+x∧Cy) + P2((A+u2B)y+ y∧Cx).

Proposition 2 The dynamic of the adjoint equation of
(Σ) is given by

Ṗ t
1 = (A+ u1B)P t

1 + (P t
1 ∧ Cy)− C(P t

2 ∧ y) and

Ṗ t
2 = (A+ u2B)P t

2 + (P t
2 ∧ Cx)− C(P t

1 ∧ x).

The proof of this proposition uses the following lemma.

Lemma For all x, y ∈ R3 and for any row vector q ∈ R3,
and for all (3, 3) matrix D with real coefficients one has

1. x ∧ y =

(
0 y3 −y2
−y3 0 y1
y2 −y1 0

)
x, for y = (y1, y2, y3)t.

2. ∂
∂xq(x ∧ y) = −(qt ∧ y)t.

3. ∂
∂xq(Dx ∧ y) = −(qt ∧ y)tD = −(Dqt ∧ y)t.

The (PMP ) maximization condition gives switching func-
tions Φ1 = P1Bx and Φ2 = P2By. Note that each switch-
ing function corresponds to a two-level system. Also, if
Φi(t) > 0 then ui = 1 and if Φi(t) < 0 then ui = −1.

(Σ) is an affine system with two controls that evolves on

the sphere of R6 with radius
√

2. Despite the fact that the
Bloch vectors x and y play the same role in the dynamics
of (Σ), it is difficult to make an optimal study, since z ∈ R6

and there is an interaction between x and y which appears
in the vector product. Here we consider a particular case
to simplify the study of System (Σ). We choose the density
matrix ρ(x, y) such that x = y and u1 = u2 = u. Then the
two sub-systems of (Σ) for each Bloch vector follows the
same dynamic

(Σ′) ẋ = (A+ uB)x+ x ∧ Cx
which represents a system with a Coulomb interaction
(when b 6= c) and which evolves on the sphere S2 of R3.
Hamiltonian function is given by

H(x, p, u) = p0 + pẋ = p0 + p(A+ uB)x+ p(x ∧ Cx).

The switching function is Φ = pBx and the adjoint
dynamic associated with (Σ′) is given by

ṗt = (A+ uB)pt + (pt ∧ Cx)− C(pt ∧ x),

Note that in this case if in addition b = c , then we obtain
the same dynamic obtained for the two-level system, and
for the state x(t) and for the adjoint vector we have

ẋ = (A+uB)x and ṗt = (A+uB)pt. But in practice and
by definition of the Coulomb parameters, the constants b
and c are not necessarily equal.

Theorem For (Σ′) ẋ = (A + uB)x + x ∧ Cx, when
b 6= c, the coordinate functions xi(t), 1 ≤ i ≤ 3, of
the optimal trajectories x(t) associated with u = ±1 are
elliptic functions.

Proof of Theorem We have for a constant control
u = 1, ẋ3(t) = x2(t) and ẋ1(t) = ax2 + (b − c)x2x3.
We deduce that ẋ1(t) = aẋ3(t) + (b − c)ẋ3x3 and hence
x1(t) = ax3(t) + 1

2 (b− c)x23 + k, with k = −a− 1
2 (b− c),

(for x(0) = (0 0 1)t). So, ẍ3 = ẋ2 = −ax1−(b−c)x1x3−x3.
We express x1 as a function of x3 and we obtain
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ẍ3 = αx33 + βx23 + γx3 − ak,
with α = − 1

2 (b− c)2, β = − 3
2a(b− c) and γ = −a2 − 1−

(b−c)(a+ 1
2 (b−c))). It’s clear that α 6= 0 and β 6= 0, when

b 6= c and a 6= 0. It is well-known (see Siegel (1962)) that if
(α, β) 6= (0, 0) then the solutions of this 2-order differential
equation, are elliptic and in particular if (γ, ak) = (0, 0)
then the solutions of ẍ3 = αx33 + βx23 when α 6= 0 are
Jacobi elliptic functions.
Notice that k = 0 if 2a = c−b and then γ = −(a2 +1) 6= 0
and β = 3

4 (b− c)2 and ẍ3 = αx33 + βx23 + γx3. Recall that

Weierstrass elliptic functions are solutions of v̈ = 4v3 +
g2v

2 + g3v, for specific known constants g2 and g3.
For the constant control u = −1, we find the same co-
efficients α, β, k and ẍ3 = αx33 + βx23 + γ̃x3 − ak, with
γ̃ = −a2 + 1− (b− c)(a+ 1

2 (b− c)) = −a2 + 1 + (b− c)k.

In this case if k = 0, (2a = c−b) then γ̃ vanishes for a2 = 1
and in this case x3 is a Jacobi elliptic function.
We deduce that for u = ±1, x3 is elliptic and therefore x2
is elliptic since the derivative of an elliptic function is also
elliptic, and x1 is elliptic since the product and the sum of
elliptic functions are elliptic. This proves the theorem.

Recall that for the two-level quantum system, which cor-
responds to (Σ) when b = c, we have found in Zibo et al.
(2020) that the coordinate functions xi(t) for 1 ≤ i ≤ 3,
of the optimal trajectories x(t) associated with u = ±1
are trigonometric functions. We can find this result using
the above 2-order differential equations with α = β = 0,
γ = −(a2 + 1), k = −a and γ̃ = −a2 + 1.

3. CONCLUSION

This work shows that the geometric study of time minimal
control for a two-level quantum system whose dynamic
is given by a bilinear control system, which interested
many authors, is more simpler than the study of a system
with four energy levels. This is due to the presence of
several Coulomb physical parameters characterizing the
quantum dots and adding nonlinear terms which represent
the interaction between energy levels.
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Abstract: We analyse the turnpike properties for a general, linear-quadratic (LQ) optimal
control problem. We assume that the system under consideration is governed by an infinite-
dimensional differential equation with a generator A of a strongly continuous semi-group. The
objective function is the sum of a control cost and a tracking term for an observation of the
state.
The novelty of the results is twofold. Firstly, it obtains positive turnpike results for systems
that are (partially) uncontrollable. Secondly, it provides turnpike results for optimal averaged
control associated to a family of problems that depend on a random parameter, which is
the first turnpike type result that extends the averaged controllability approach to optimal
control problems. In both cases, the results do not require assumptions on stabilizability and
detectability, which are most commonly used in the study of turnpike phenomena.
Examples supporting the theoretical findings will be presented as well.

Keywords: turnpike phenomenon, LQ optimal control problem, infinite-time admissibility,
controllability Gramian, observability Gramian.

1. INTRODUCTION

The turnpike property refers to the tendency of optimal
controls and trajectories to remain nearly stationary most
of the time. It occurs in many optimal control problems
associated with a time-evolution system and objective
functionals of integral type with a tracking term. It can
be interpreted as the property of the optimal control
system that the influence of the initial state decays rapidly
with time and the same holds for the terminal state
backwards in time. This allows a time-dependent control
problem to be reduced, at least approximately on the
largest part of the time interval, to the corresponding
stationary one. Such a simplification is of great interest,
both from an application and computational point of
view. The term ’turnpike’ was coined by economists more
than half a century ago and introduced in the context of
finite-dimensional, discrete-time optimal control problems.
However, it remained out of focus of the mathematical and
control community for several decades.
? This work was supported by Deutsche Forschungsgemeinschaft
(DFG) in the Collaborative Research Centre CRC/Transregio 154,
Mathematical Modelling, Simulation and Optimization Using the
Example of Gas Networks, Projects C03 and C05, Projektnummer
239904186.
The research was done while the second author was visiting Chair of
Dynamics, Control and Numerics (Alexander von Humboldt Pro-
fessorship) at Friedrich-Alexander-Universität Erlangen-Nürnberg,
with the support of the DAAD (Research Stays for University
Academics and Scientists, 2021 programme) and Alexander von
Humboldt-Professorship.

Rigorous analysis of the turnpike property started to de-
velop recently in the context of mean field games and
model predictive controls (e.g. Cardaliaguet et al. (2012)).
A large theory on the topic related to the calculus of vari-
ations and optimal control problems has been developed
independently by A. Zaslavski in a series of works (cf.
Zaslavski (2015) and the references therein). Since then,
numerous results have been published in this area, both in
finite and infinite dimensional context, as well as for time-
discrete and time-continuous systems. The notion has been
applied in various contexts: shape design problems, resid-
ual neural networks, heat conduction etc. For a detailed
introduction we refer an interested reader to some recent,
extensive surveys on the topic given in Faulwasser and
Grüne (2021); Gershovski and Zuazua (2022).

Most of the results on this topic require the system to
be both stabilizable and detectable. In order to obtain the
corresponding turnpike properties, the authors analyse the
optimality system and explore stabilization properties of
the corresponding Riccati operator by using sophisticated
functional analysis tools.

Recently, we proposed a new approach based on an esti-
mate for optimal controls that holds in general, without
any restrictions on the operators and data that enter
the problem (Gugat and Lazar (2021)). One obtains the
measure and the integral turnpike property as a direct
consequence of the estimate, just by assuming infinite-time
admissibility of the control and the observation operator.
The results are obtained for systems of both determinis-
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tic and stochastic nature. However, the question of the
exponential turnpike property, which is stronger than the
obtained ones, remained open.

2. PROBLEM SETTING AND THE MAIN RESULT

We consider the control system

x′(t) +Ax(t) = Bu(t)

x(0) = x0,
(1)

whose dynamics is governed by an unbounded operator A
on a Hilbert space X. Here u ∈ L2

loc([0,∞);U) denotes
the control function, U is a Hilbert space, B is a bounded
control operator from L(U,X), and x0 ∈ H denotes the
initial state.

We consider the optimal control problem

min
u
JT (u) = min

u

1

2

∫ T

0

(
|u(t)− ud|2U + |Cx(t)− zd|2Z

)
dt

+ pd · y(T ),
(2)

in which the minimization is taken over the space
L2
loc([0,∞);U). Here C is an observation operator from

L(X,Z), with Z being a Hilbert space, x is the state
determined by control u, i.e. it is the solution to (1), ud
and zd stand for a time independent desirable control and
observation, respectively, while pd ∈ X determines a linear
regularization of the final state.

Using classical convex optimization techniques (e.g. Pey-
pouquet (2015)), the problem (2) is well posed and admits
the unique solution given by the formula

uT = −B∗pT + ud,

where pT is obtained by solving the corresponding opti-
mality system

x′T (t) +AxT (t) = −B(B∗pT (t)− ud)

xT (0) = x0

−p′T (t) +A∗pT (t) = C∗(CxT (t)− zd)

pT (T ) = pd.

We also consider the corresponding stationary problem

min
u∈U

Js(u) = min

{
1

2

(
|u− ud|2U + |Cx− zd|2Z

)
|Ax = Bu

}
.

(3)
Assuming that the stationary state equation Ax = Bu is
well posed, the problem (3) admits the unique solution
given by

ū = −B∗p̄+ ud,

where p̄ satisfies the corresponding stationary optimality
system

Ax̄ = −B(B∗p̄− ud) A∗p̄ = C∗(Cx̄− zd),

while x̄ is the optimal stationary state.

Our examples are motivated by the following result ((Gu-
gat and Lazar, 2021, Theorem 2.1)).

Theorem 1. The difference of solutions to optimal control
problems (2) and (3), together with the difference of the
corresponding optimal states, satisfies the estimate

‖uT − ū‖2L2(0,T ;U) + ‖C(xT − x̄)‖2L2(0,T ;Z)

≤ 2
(
QT (x0 − x̄) · (x0 − x̄) + ΛT (pd − p̄) · (pd − p̄)

)
,

where QT is the observability Grammian for the pair
(A,C), while ΛT stands for the controllability Grammian
corresponding to the pair (A,B).

From the last result the basic turnpike properties follow
dirrectly ((Gugat and Lazar, 2021, Theorems 2.2-2.3)).

Integral turnpike. The time averages of optimal controls
and observations converge strongly:

1

T

∫ T

0

uT −−−−−→
T→∞

ū strongly in U,

1

T

∫ T

0

CxT −−−−−→
T→∞

Cx̄ strongly in Z,

(4)

with the convergence rate of O(1/
√
T ).

Measure turnpike. For every ε > 0 there exists a
constant Cε > 0 such that

µ
{
t ∈ [0, T ]

∣∣ |uT − ū|2 + |C(xT − x̄)|2 ≥ ε
}
< Cε. (5)

Convergence of the (normalized) minimal values.
1

T
min JT −−−−−→

T→∞
min Js, (6)

with the convergence rate of order 1/
√
T .

The same kind of results also hold in the stochastic case,
i.e. when the dynamics, control and observation operator
depend on a random parameter. However, the optimal con-
trol is assumed to be parameter independent, which leads
to the notion of the optimal averaged control. The turn-
pike properties (4)-(6) are preserved, with the observation
terms being replaced by their averaged values with respect
to the parameter, assuming the control and observation
operator are infinite-time admissible for almost every value
of the random parameter.
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Abstract: Motivated by the advantages of structure-preserving integration for applications
ranging from molecular dynamics to astrodynamics, geometric integration has been brought
into optimal control in the past two decades. Advantages over conventional methods have been
shown in biomechanics, robotics, automotive applications, and space mission design. The implicit
midpoint method, that is a member of the class of symplectic (partitioned) Runge-Kutta methods
but also possess a variational derivation and thus is symmetry-preserving, is widely used due to
its many favorable properties. In particular, efficient computations can be achieved by coarse
discretizations of state and control signals, since structure preservation does not have to be
ensured by small step sizes, as it is the case in conventional methods. Then, specific input
parametrizations become an issue when implementing optimized signals in control architectures.
We show numerical studies for piecewise linear control signals used in energy optimal control
problems.

Keywords: Energy Optimal Control, Structure-Preserving Integration, Implicit Midpoint
Method, Input Parametrization, Direct Methods for Optimal Control

1. INTRODUCTION

In the context of structure-preserving (optimal) control
the (symplectic) implicit midpoint rule is a popular choice
(Ober-Blöbaum et al. (2011), Nair (2012), Leyendecker et al.
(2010), Kotyczka and Thoma (2021)) due to its simplicity
and many favorable properties (see Section 2). When using
the associated Runge-Kutta method to discretize an energy
optimal control problem (OCP) in combination with a
piecewise linear input parametrization, i.e. a first-order
hold (FOH) input signal, undesired oscillatory effects can
occur in the computed optimal input trajectory. This
extended abstract aims at explaining the origins of the effect
and goes into detail on how it can be damped or eliminated.
We demonstrate our findings in numerical experiments
based on an orbit transition for the Kepler problem.
Notation: We define [v1, . . . , vr] = (v

⊺

1, . . . , v
⊺

r)
⊺

as the
vertical concatenation of the vectors vi, i = 1, . . . , r.

2. MOTIVATING THE IMPLICIT MIDPOINT
METHOD

The implicit Runge-Kutta method known as implicit mid-
point method (IMP) (with the Butcher Tableau coefficients
(A,b, c) = ( 1

2
,1, 1

2
)) has the following properties. It is of

second order, has s = 1 stages, is A-stable, symmetric
and symplectic. A special feature is that the implicit
stage equation can be eliminated for any nonlinear system
dynamics. This results in the implicit difference equation

xk+1 = xk + hf (tk+ 1
2
,
xk+1 + xk

2
) , tk+ 1

2
∶= (k + 1

2
)h,

where h is the step size. Then, for a full discretization
of the OCP, the IMP requires just as many optimization
variables (OVs) as an explicit Runge-Kutta method.

The A-stability of the method allows larger step sizes where
explicit methods would become numerically unstable. By
this, the size of the optimization problem can be kept small.
This typically results in shorter optimization times. The
before-mentioned properties are particularly suitable for
real-time optimal control schemes, like model predictive
control, or if a solution on a coarse time grid is required as
a warmstart to an OCP on a finer time grid.

3. MOTIVATING FIRST-ORDER HOLD CONTROL

When solving an OCP for a non-autonomous continuous
time (CT) system ẋ(t) = f(t, x(t), u(t)), x ∈ Rn, u ∈ Rm

via a direct method one needs to use a discrete time
(DT) approximation of the CT dynamics. When using a
s-stage Runge-Kutta method the time dependent parts of
the vector field f(t, x(t), u(t)) are evaluated at s points
to compute the next state. This requires the knowledge of
u(t) over the whole prediction horizon. Since the infinite-
dimensional CT OCP needs to be approximated by a finite-
dimensional optimization problem, the number of variables
that parametrize the input has to be limited. The most
common approach is to define the input to be constant
on the time interval between two time instances. Then,
for N time instances there are at most N − 1 inputs or
(N − 1) ⋅m variables that parametrize the input trajectory.
This easy-to-implement approach is known as zero-order
hold (ZOH) and it comes with some drawbacks. The ZOH
approach
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a) implicitly assumes that the input of the plant system,
that is to be controlled, can jump between two values,

b) can lead to a large overshoot / peak in the states
when applied to the plants (Herrmann-Wicklmayr
et al. (2022)),

c) and thus would require a very fine time grid to capture
this behavior.

These points mean that for a sufficiently large step size
and/or jump height the behavior of the DT model and
the CT plant might differ significantly. Consequently, the
computed costs do not predict the true costs sufficiently
accurate, the tracking performance might be poor, and
unpredicted damaging of systems components might occur.

One now could argue that the above-mentioned problems
can be circumvented by linearly connecting the computed
inputs of the ZOH OCP. However, this would mean that
the input trajectory implicitly assumed within the OCP,
uOCP(t) = uk = const., t ∈ [tk; tk+1) ∶= Tk, and the actually
applied input trajectory

uplant(t) = uk +
uk+1 − uk

tk+1 − tk
(t − tk), t ∈ Tk

differ (unless uk+1 = uk). The CT trajectory error is

e∆u,CT(k) = ∫
tk+1

tk
∣uplant(t) − uOCP(t)∣dt =

hk

2
∣uk+1 − uk ∣

and it grows linearly with the step size hk = tk+1 − tk and
with the input difference. It only vanishes for hk → 0 and/or
∣uk+1 − uk ∣→ 0. The DT input trajectory error is

e∆u,DT(k)=
s

∑
i=1
∣uplant(tk,i) − uOCP(tk,i)∣=

s

∑
i=1

ci ∣uk+1 − uk ∣ ,

with tk,i = tk+cihk. The error is only guaranteed to be zero
if ∑

s
i=1 ci = 0. However, that is solely fulfilled by the first-

order explicit Euler method. In summary, this implies that a
linear interpolation only avoids imposing additional errors,
if the explicit Euler method is used for the discretization.

For these reasons, the next logical step is to directly consider
a FOH input trajectory within the OCP, i.e.

ũ(t) = uk +
uk+1 − uk

tk+1 − tk
(t − tk), t ∈ Tk

defined on a not necessarily equidistant time grid t0, . . . , tN
and via the nodes u0, . . . , uN . This approach comes at the
negligible cost ofmmore OVs, representing the input at the
final time instance, and possibly an m-dimensional equality
constraint, expressing the initial condition of the input,
and a slightly more involved implementation. Although not
necessary, it might be useful to constrain the inputs rate
of change in additional inequality constraints.

4. OPTIMAL INPUT TRAJECTORIES WITH
ARBITRARY LARGE OSCILLATIONS

Consider the CT OCP

min
u(⋅)

J (u(⋅)) = ∫
T

0
ℓ(t)dt

s.t. ẋ(t) = f(t, x(t), u(t)), x(0) = x0,

x(t) ∈ X ∀ t ∈ [0;T ], x(T ) = xT ,

(PCT)

with the running cost ℓ(t) ∶= u(t)
⊺

Ru(t) and the state
constraint set X. W.l.o.g. we assume that R = Im. This
is justified since with any positive definite matrix and

its decomposition R̂ = B
⊺

B (B is invertible) we can write

û
⊺

R̂û = (Bû)
⊺

Bû = u
⊺

Imu with u = Bû.

Let φ (x0,0, t, u∣[0;t]) = x(t) be the flow of the CT sys-

tem starting at x(0) under the control u∣[0;t] that is,
in general, not available in closed form. Then, with

φ̃ (x0,0, k, u∣[0;tk]) = xk we denote a DT approximation of

the flow that depends on the chosen Runge-Kutta method.
We apply the same method to the cost functional and
obtain the approximation

J̃ =
N−1
∑
k=0

s

∑
i=1

bihℓ(tk + cih) =
s

∑
i=1

bi
N−1
∑
k=0

hu
⊺

k,iuk,i

with uk,i = u(tk + cih). Using the IMP and defining uk,1 as
uk+ 1

2
= ũ(tk +

1
2
h) we obtain the DT OCP

min
U

J̃(U) = h
N−1
∑
k=0

u
⊺

k+ 1
2
uk+ 1

2

s.t. xk+1 = φ̃IMP (xk, k, k + 1, ũ∣Tk) , x0 = x
0,

xk ∈ X ∀ k ∈ N1,N−1, xN = x
T ,

ũ(t) = uk +
uk+1−uk

h
(t − tk), t ∈ Tk

(PIMP)

with U = [u0, u1, . . . , uN ].

Remark. As h → 0, the solution of PIMP does not
necessarily converge to the one of PCT. This is caused
by the non-coercivity of the discretized cost summands

u
⊺

k+ 1
2
uk+ 1

2
= 1

4
(uk+1 + uk)

⊺

(uk+1 + uk)

as pointed out in Campos et al. (2015). This is due to the
combination of the chosen Runge-Kutta scheme and input
parametrization.

Proposition 4.1. Assume that U∗ is a local optimal
solution to PIMP and results in the cost J̃∗ = J̃ (U∗). Then,
for every optimal solution U∗, there exist infinitely many
optimal solutions Ǔ∗(A), A ∈ Rm that result in the same

cost J̃∗ = J̃ (Ǔ∗(A)) , i ∈ N.
Proof. We define ũ∗(⋅) to be the optimal trajectory fully
determined by U∗. Now ũ∗(⋅) is additively perturbed by

∆u(t,A) = A(−1)k (1 − 2
h
(t − tk)) , t ∈ Tk

resulting in ud(t,A) = ũ∗(t) + ∆u(t,A). The function
ud(t,A) is piecewise linear by construction and has the
property that ud(tk+ 1

2
,A) = ũ∗(tk+ 1

2
) ∀k ∈ N0,N , ∀A ∈ Rm.

Equivalently, one can say that with ud
k = u

∗
k +A(−1)

k the
equality

ud
k+1 + u

d
k = u

∗
k+1 +A(−1)

k+1
+ u∗k +A(−1)

k
= u∗k+1 + u

∗
k (2)

holds. Then, Ud = U∗ + [A,−A, . . . ,A ⋅ (−1)N ] and the
resulting state sequences Xd = [xd

0, . . . , x
d
N ] are the same

for U∗ and Ud, i.e. Xd = X∗. Hence, Zd = [Ud,X∗] is a
feasible solution to the nonlinear program (NLP) detailed
out below.

Next, we show the optimality of the solution. We assume
that xk ∈ X can be expressed via an inequality and define

ck = c(xk, xk+1, uk, uk+1)

= xk+1 − xk − hf (tk+ 1
2
, xk+1+xk

2
, uk+1+uk

2
)

for all k ∈ N0,N−1, representing the continuity constraint
of the states. Then, with Z = [U,X] the function h̷(Z)
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and vector λ represents all equality constraints (continu-
ity constraints & initial/terminal constraint) and their
corresponding Lagrange multipliers, the function g(Z)
and vector µ all inequality constraints (state constraints)
and their corresponding Lagrange multipliers in the NLP
derived from PIMP.

Then, PIMP can be written as a nonlinear optimization
problem or NLP of the form

min J̃(Z) s.t. h̷(Z) = 0, g(Z) ≤ 0

with Z = [U,X]. Since U∗ was an optimal solution to PIMP

the DT dynamics output an optimal state sequence X∗

and we know that there exist Lagrange multipliers λ∗, µ∗

such that the triple (Z∗, λ∗, µ∗) satisfies all Karush-Kuhn-
Tucker (KKT) conditions.

Based on the definition of uk+ 1
2
and the chosen input

parametrization we can rewrite the cost functional as

J̃(Z) = J̃(U) =
h

4

N−1
∑
k=0

u
⊺

k+1uk+1 + 2u
⊺

k+1uk + u
⊺

kuk.

Then the Lagrangian of the NLP is

L(Z,λ,µ) = J̃(Z) + λ
⊺

h̷(Z) + µ
⊺

g(Z).

With the placeholder (∗) ∶= (tk+ 1
2
, x̄k+1+x̄k

2
, ūk+1+ūk

2
), it

follows that
∇xk

ck∣(∗) = −I −
h
2
∇xk

f ∣(∗) , ∇uk
ck∣(∗) = −

h
2
∇uk

f ∣(∗) ,

∇xk+1
ck∣(∗) = I −

h
2
∇xk+1

f ∣(∗) ,

(3)
for all k ∈ N0,N−1 and k ∈ N0,N , respectively. In the same
manner we obtain

∇uk
J̃(Z)∣

Z̄
= h (ūk +

1
2
(ūk−1 + ūk+1)) ∀ k ∈ N1,N−1,

∇u0 J̃(Z)∣
Z̄
=
1

2
h ⋅ (ū1 + ū0),

∇uN
J̃(Z)∣

Z̄
=
1

2
h ⋅ (ūN + ūN−1).

(4)
With a slightly more compact notation, the Lagrange
condition is

∇ZL(Z
∗, λ∗, µ∗) = ∇Z J̃(Z

∗
)+∇Z h̷(Z

∗
)λ∗+∇Zg(Z

∗
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∇Zg(X∗)

µ∗
!
= 0.

We refrain from explicitly writing down the primal feasibil-
ity, dual feasibility and complementary slackness conditions
(remaining KKT conditions). Now set the dynamically
feasible choice of OVs Z̄ = Zd = [Ud,X∗]. From (2) and the
definition of f we can conclude that (3) and (4) evaluated at
(tk+ 1

2
, x∗k, x

∗
k+1, u

d
k, u

d
k+1) or (tk+ 1

2
, x∗k, x

∗
k+1, u

∗
k, u

∗
k+1) yield

the same results and it follows

∇ZY (Z
∗) = ∇ZY (Z

d
) , Y = {J̃ , h̷, g}.

Hence, if the Lagrange condition is fulfilled for (Z∗, λ∗, µ∗),
then it is fulfilled for (Zd, λd, µd) = ([Ud,X∗], λ∗, µ∗).
The same holds true for the remaining KKT conditions.
Moreover, all previous arguments are valid for any A ∈ Rm

and Ǔ∗(A) = Ud.

Next, among all the possible input trajectories
ũ☆(t) = ũ∗(t) + ∆u(t,A), A ∈ Rm, where ũ∗(t) is any
known (locally) optimal solution toPIMP, we determine the

one optimizing the actual cost J☆ = ∫
T
0 (ũ

☆(t))
⊺

ũ☆(t)dt

from PCT. The choice of the parameterA neither affects the
cost nor the state trajectory (in PIMP). We now determine
A such that J☆ is minimized. First we compute the cost

J☆ = ∫
T

0
(ũ☆)

⊺

ũ☆ dt

= ∫

T

0
(ũ∗)

⊺

ũ∗ + 2 (u∗)
⊺

∆u +∆u
⊺

∆udt

= . . . =
h

3

⎛

⎝
N ⋅A

⊺

A +
N−1
∑
k=0
(−1)kA

⊺

(u∗k − u
∗
k+1)
⎞

⎠
+ J∗.

Finding the extremum of J☆ yields the optimal parameter
choice

∂J☆

∂A
(A☆)

!
= 0 ⇔ A☆ = −

1

2N

N−1
∑
k=0
(−1)k (u∗k − u

∗
k+1) . (5)

This resolves the ambiguity of the DT OCP based on the
IMP by adding a post-processing step.

Besides this post-processing ansatz, there are (at least) two
approaches on how to prevent the oscillatory behavior:
a) Directly use the analytical solution of the cost functional.
Consider the piecewise linear function z(t) ∈ Rm that is
defined as ũ(t) in PIMP. Then we can easily compute the
integral

J = ∫
T

0
z(t)

⊺

z(t)dt =
h

3

N−1
∑
k=0

z
⊺

k+1zk+1 + z
⊺

kzk+1 + z
⊺

kzk.

b) Use an integrator that evaluates the input trajectory
ũ(t) at multiple points tk,i ∶= tk+cih, i = 1, . . . , s and weighs
these points with (optimally) non-vanishing coefficients
bi > 0:

J̃(U) =
N−1
∑
k=0

s

∑
i=1

bihℓ(tk+cih) =
s

∑
i=1

bi
N−1
∑
k=0

hu
⊺

k,iuk,i =∶
s

∑
i=1

biJ̃u,i

(6)
with uk,i ∶= u(tk + cih). At least one of the points should
be sufficiently far away from the midpoint and have a
sufficiently large weight, i.e. there exists at least one
coefficient pair (bi, ci) that satisfies ∣ci −

1
2
∣ ⋅ ∣bi∣ >∆MP > 0.

A priori it is not clear what sufficiently far and large means,
i.e. how large ∆MP has to be. Assuming the inequality is
satisfied, arbitrary large oscillations in the input trajectory
would be captured and, in conclusion, be damped or
eliminated as a consequence of the optimization process.

As an example, consider the generic second order Runge-
Kutta method with the Butcher tableau

c A

b
=̂

0 0 0 0
1 1 0 0
1
2

α1 α2 0

δMP δMP 1 − 2δMP

=̂ BTEMPδ

with δMP ∈ [0;
1
2
] and α1 + α2 =

1
2
. We set α2 = 0 which

results in α1 =
1
2
. For δMP = 0 we obtain the explicit

midpoint method (EMP). Otherwise for i = 1,2 we have
∣ci −

1
2
∣ ⋅ ∣bi∣ =

1
2
δMP. Using the parameter δMP, this allows

us to control how much the method, which we call EMPδ,
deviates from the EMP. We replace the cost computation
in PIMP with (6) and with the coefficients of BTEMPδ . We
denote the resulting OCP as PIMP,EMPδ .
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5. NUMERICAL RESULTS

For our numerical investigation we use the Kepler problem
dynamics (in Hamilton formulation)

ẋ =
d

dt
[r, θ, pr, pθ] = [

pr

m
, pθ

mr2
, 1

mr3
p2θ −

γmM
r2
+ ur, uθ]

with parameters k = γmM = 1 ⋅ 103 and m = 1. An
energy-optimal (in the sense of PCT) transition from one

circular orbit xs(r, θs) = [rs, θs,0,mr2s
√

k
mr3s
] to another

one should be finished in T = 3 s. We set the initial
state condition to x0 = xs(5,0), the terminal one to
xT = xs(6, θ

T ) with θT ∈ R, i.e. θT is unconstrained.
We discretize the CT OCP by using the IMP for both
dynamics and running cost. If additionally an FOH input
parametrization is assumed, we obtain a problem of the
type PIMP.

We solve the corresponding NLP for multiple numbers of
shooting nodes and compare the resulting input trajectory
with a reference solution uref = [ur,ref , uθ, ref] (obtained
from solving a DT OCP using the classical RK4 scheme
and a step size h = 10−3 s). The difference of the trajectories
is evaluated at the nodes, i.e. ek = uk − uref(tk), and the
mean square error (MSE) is computed. The results are
shown in Fig. 1. No systematic change in the MSE with
increasing N , i.e. decreasing h, can be observed. This is
plausible since, as it was shown in Section 4, all oscillation
amplitudes are – in theory – equally likely. The obtained
solution highly depends on the chosen hyperparameters
of the solver and numerical noise. This behavior is not
observed in general.

Fig. 1. The OCP PIMP is solved for different number of
shooting nodes, resulting in different step sizes h = T

N
that range from 0.05 s to 0.06 s.

Next, we show the effect of post-processing the previously
found solutions by computing A☆ and adding ud(t,A☆) to
them. This results in Fig. 2. The errors are in the same
order and a trend – the error decreases as N increases –
can be observed.

Fig. 2. The solution used to generate Fig. 1 were post-
processed by adding ∆u(t,A☆), where A☆ is com-
puted as shown in (5). The y-axis is non-logarithmic.

Our next investigation concerns the effect of using
PIMP,EMPδ with different parameters δMP, i.e. a different

(generic) Runge-Kutta method with the Butcher tableau

BTEMPδ was used to integrate the running costs. We choose
N = 60 shooting nodes which corresponds to one of the
worst solutions of Fig. 1. The results are shown in Fig. 3.
Even a small weight b1 = b2 = δMP ≥ 4 ⋅ 10

−4 on the cost
parts J̃u,i, see (6), results in a MSE smaller than 10−4

for both inputs ur, uθ. It is clearly visible that the larger
the deviation δMP becomes, the smaller the MSE of the
inputs. This confirms the intuition that the sensitivity of
the solution is a result of the EMP/IMP, rather than the
chosen hyperparameters of the solver.

Fig. 3. MSEs when solving the PIMP,EMPδ for various δMP.

6. CONCLUSION

In this extended abstract we showed that the popular
choice of the implicit midpoint method (in the context
of energy optimal control) can lead to undesired and
unpredictable numerical effects in the form of arbitrarily
large oscillations. Thereby one possible effect of the non-
coercivity, as described in Campos et al. (2015), was
presented. We then demonstrate how the oscillations can
be damped or eliminated a) by post-processing the OCP
solution and b) by removing the non-coercivity property.
We conjecture that similar effects for other types of
problems, e.g. discretizing holonomic constraints (Johnson
and Murphey (2009)), result from applying the IMP.
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1. INTRODUCTION

The problem of decoding a general linear code has recently
gained immense interest due to its cryptographic applica-
tions. McEliece, in [11], proposed a public-key encryption
scheme whose security is based on the hardness of decoding
a general linear code over the Hamming metric. Currently,
this cryptosystem stands as one of the most promising
candidates for post-quantum cryptography [6]. However,
McEliece’s cryptosystem comes with one drawback of hav-
ing large key sizes. This has encouraged many researchers
to look for an alternative way to create code-based cryp-
tosystems. One such way is to change the underlying
metric, such as to rank metric or Lee metric.

In this work, we study the hardness of decoding a general
linear code over the Lee metric. We first show that the
Lee metric syndrome decoding problem (L-SDP) is NP-
complete, which follows a similar proof as in the case of
the Hamming metric. Next, we discuss the computational
hardness of solving the L-SDP problem for a random
instance case. In particular, we discuss all the recently
developed decoding algorithms and compare their perfor-
mance. We further provide some new ideas to improve the
existing algorithms and develop new algorithms for L-SDP.

2. PRELIMINARIES

In this section, we present some preliminaries about the
Lee metric and linear codes over an integer residue ring.
Throughout this section, let m,n be positive integers.

Definition 1. (1) For x ∈ Z/mZ, the Lee weight of x is
given by

wtL (x) := min{x, |m− x|}.
⋆ Corresponding author.

(2) For a vector x = (x1, x2, . . . , xn) ∈ (Z/mZ)n, the Lee
weight of x is given by

wtL (x) :=
n∑

i=1

wtL (xi) .

Definition 2. A linear code C of length n over Z/mZ is a
Z/mZ-submodule of (Z/mZ)n.

Let m = ps11 ps22 · · · psℓℓ be the prime factorization of
m. Then, by Chinese remainder theorem, we know that
Z/mZ ∼= (Z/ps11 Z)× (Z/ps22 Z)× · · ·× (Z/psℓℓ Z). Moreover,
C ∼= C1×C2×· · ·×Cℓ, where Ci is a linear code over Z/psii Z
for each i = 1, . . . , ℓ. Hence, we may restrict our study to
m = ps, for some prime p and integer s.

Definition 3. Let C be a linear code of length n over
Z/psZ. Then,

(1) The type of C is the partition λ = (λ1, . . . , λK) such
that

C ∼= (Z/pλ1Z)× (Z/pλ2Z)× · · · × (Z/pλKZ),
with λ1 ≥ λ2 ≥ . . . ≥ λK ≥ 0. The type λ can also
be denoted by (sk1 , (s−1)k2 , . . . , 1ks), where ki is the
multiplicity of the part of size s− i+ 1 in λ.

(2) The number of parts K of λ is called the rank of C.
(3) A generator matrix of C is a matrix G over Z/psZ

such that its rows generate C.
(4) A parity-check matrix of C is a matrix H over Z/psZ

such that its nullspace is C.
(5) An information set is a subset I of {1, 2, . . . , n}

having minimal size such that

|{cI : c ∈ C}| = |C|,
where cI is a vector with entries from c that are
indexed in I.
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For a code C of rankK, it is easy to see that the cardinality
of an information set is K.

3. LEE SYNDROME DECODING PROBLEM

Let n,m, k be positive integers with k ≤ n. Then the
syndrome decoding problem over the Lee metric is defined
as follows.

Problem 1. (Lee syndrome decoding problem (L-SDP)).
Given a parity-check matrix H ∈ (Z/mZ)(n−k)×n, a
syndrome s ∈ (Z/mZ)n−k and a positive integer t, find
e ∈ (Z/mZ)n such that wtL (e) ≤ t and eH⊤ = s.

In [14, Proposition 2], it is proved that L-SDP is NP-
complete, by reducing the 3-dimensional matching (3DM)
problem to SDP. The proof is very similar to the proof of
NP-completeness of SDP for the Hamming metric binary
codes [4] and non-binary codes [1].

4. LEE INFORMATION SET DECODING
ALGORITHMS

Many of the information set decoding (ISD) algorithms
over the Hamming metric have been adapted to the Lee
metric. In this section, we discuss some these adaptations.

Two-blocks algorithm It is an adaptation of Stern’s
Hamming ISD algorithm [12] for the Lee metric codes over
the ring Z/psZ. This algorithm also generalizes the Lee-
Brickell’s and Prange’s ISD algorithms.

The idea of Stern’s algorithm is to partition the chosen
information set I into two sets X and Y containing v1 and
v2 errors, respectively. Moreover, it is assumed that there
exists a zero-window Z of size z outside of the information
set where no errors happen. For a complete description of
the algorithm, see [14, Algorithm 1].

s-blocks algorithm In this algorithm, we use the struc-
ture of the ring Z/psZ. For a linear code C over Z/psZ
of length n and type (sk1 , . . . , 1ks), a parity-check matrix
can be written in the following systematic form (up to
permutation of columns):

H =


A1,1 A1,2 · · · A1,s Idn−K

pA2,1 pA2,2 · · · pIdks 0ks×(n−K)

p2A3,1 p2A3,2 · · · 0ks−1×ks 0ks−1×(n−K)

...
...

...
...

ps−1As,1 ps−1Idk2 · · · 0k2×ks 0k2×(n−K)


Using this structure, we split the error vector into s + 1
parts, i.e., e = (e1, . . . , es+1) with ei ∈ (Z/psZ)ki for
1 ≤ i ≤ s and es+1 ∈ (Z/psZ)n−K . Next, we assume
a fixed weight distribution on the s + 1 parts of the
error vector, and find the error vector satisfying all the
s equations obtained using the systematic form.

Partial Gaussian elimination algorithms In this class of
algorithms, the method of partial Gaussian elimination
is used to reduce the original SDP into a smaller SDP
instance. The smaller SDP instance is then solved using
different approaches:

• Wagner’s approach: The main idea of Wagner’s ap-
proach [13], which has been applied to the syndrome

decoding problem in [7], on a levels, is to partition the
error vector into 2a sub-vectors and to store them
in a list together with their corresponding partial
syndromes. After this, on each level, the lists are
merged until a list of the solutions to the smaller SDP
is obtained. Lastly, we go through this list to look for
the solution to the original SDP.

• Representations technique approach: This technique
was introduced in [10, 3], where we allow the sub-
vectors of the error vector to overlap; this is called
the subset sum representation technique. Due to the
overlaps, the technique to merge two lists changes in
this case.

• Mixed approach (BJMM): In this approach, we allow
both the above stated techniques. On the base level,
we use the Wagner’s approach and on the other levels
we use the representation technique. This method for
the Hamming metric was proposed in [3], also known
as BJMM algorithm.

Following is the list of all the Lee metric ISD algorithms
proposed so far:

• Lee-Brickell’s algorithm and Stern’s algorithm were
adapted for codes over Z/4Z in [8].

• Stern’s algorithm was generalized for codes over
Z/psZ in [14], named as two-block algorithm.

• Furthermore, in [14], ISD algorithms based on new
approaches, such as Wagner’s algorithm, BJMM al-
gorithm, and representation technique based algo-
rithms, were adapted for codes over Z/psZ.

• In [5], the classical and quantum ISD algorithms
based on Wagner’s approach were presented for codes
over finite fields, thus restricting to Z/pZ.

• s-blocks algorithm, based on the structure of the ring
Z/psZ, was proposed in [14].

• Another algorithm based on the ring structure of
Z/psZ was proposed in [9], which splits the decoding
problem over Z/psZ into two successive decoding
problems: the first one over Z/pjZ and the second
one over Z/ps−jZ for some fixed j ∈ {1, 2, . . . , s− 1}.

Other techniques In the following, we present some
ideas that may be used to either construct new decoding
algorithms or speed-up ISD algorithms.

• Scalar multiplication: Recently in [2], the effect of
scalar multiplication was studied for a random vector
of a constant Lee weight. The results suggest that,
using a suitable scalar a ∈ Z/psZ, the decoding
of syndrome as can be faster than the original s
itself. This idea is specific for Lee metric, as in
the Hamming metric case, scalar multiplication is a
weight preserving map.

• Lattice-based techniques: Coding theory has strong
resemblance with the lattice theory. In particular,
the Lee metric can be seen as the metric induced
by ℓ1-norm. Due to this resemblance, new decoding
techniques can be developed by adapting the lattice-
reduction based algorithms from the ℓ2-norm to the
Lee metric.

Complexity In order to decode a code of length n
over Z/qZ, the average-case time complexity of an ISD
algorithm is given by
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q(e(R,q)+o(1))n,

where R is the rate of the code, and the exponent e(R, q)
depends on the ISD algorithm. In Figure 1, we compare
the asymptotic complexity of some ISD algorithms at
different rates R by optimizing the internal parameters of
each algorithm. From the comparison, we observe that the
complexity of BJMM algorithm at level 2 is significantly
lower than the other algorithms.
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q
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Fig. 1. Comparison of the asymptotic complexity of dif-
ferent Lee metric ISD algorithms for half-distance
decoding of a free code over Z/72Z that achieves the
Gilbert-Varshamov bound.
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On Cameron-Liebler sets of k-spaces in
finite projective spaces (Part II)

Jonathan Mannaert ∗

∗Vrije Universiteit Brussel, Pleinlaan 2, B–1050 Brussel (e-mail:
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Abstract: Cameron-Liebler sets of lines in a finite 3-dimensional space PG(3, q) originate
from the study by Cameron and Liebler in 1982 of groups of collineations with equally many
orbits on the points and the lines of PG(3, q). These objects have some interesting equivalent
characterizations, and are examples of Boolean functions of degree one. In this talk, we focus
on these objects and their generalisation from a geometric perspective, and report on several
existence and non-existence results, including a lower bound on the existence of the parameter
x (besides trivial examples).

Keywords: low degree Boolean functions, irreducible groups, Cameron-Liebler sets, extremal
sets, strongly regular graphs.

1. INTRODUCTION

In Cameron and Liebler (1982) tried to classify specific
orbits of subgroups of PGL(4, q) that admit the same
number of orbits on lines then on points. In this study it
was observed that these orbits on the lines satisfy diverse
conditions. These line classes later obtained the name of
Cameron-Liebler line classes in PG(3, q). These objects
are in fact broader concepts then the original obits, yet
they are nevertheless usefull in the classification of the
subgroups. Each Cameron-Liebler line class L has a certain
parameter x, for which holds that |L| = x(q2 +q+1). This
integer x also denotes the intersection size of L with line
spreads in PG(3, q).
Since a classification of these orbits or line classes would
aid their research question, this classification was briefly
conducted in Cameron and Liebler (1982). Here they
classified all Cameron-Liebler line classes of parameter
x ∈ {0, 1, 2, q2 − 1, q2, q2 + 1}. They also conjectured that
the only line classes of this form that exist are: (1) the
empty set, (2) all lines through a point, (3) all lines in
a plane, (4) all lines through in a plane π or all lines
through a point p 6∈ π and (4) the complements of the
previous examples. These examples are also known as the
trivial examples. The conjecture was later disproven in
Drudge (1999) who gave a first example of a non-trivial
Cameron-Liebler line class in PG(3, 3) of parameter x = 5.
This example was later generalized to an infinite famely
in PG(n, q) for n odd in A. Bruen and Drudge (1999)

Now we switch the viewpoint to coding theory. Let n ≥ 1
and A be a set of q symbols. The Hamming graph H(n, q)
is the graph with vertex set the set of words of length n
over A and two vertices being adjacent if and only if their
Hamming distance is 1. The Hamming graph H(n, 2) is
the hypercube. Clearly, a q-ary code of length n can be
considered as a subset of the vertex set of H(n, q). So it
is quite natural to translate properties of the code C into
graph theoretical properties. Conversely, it is natural to

define codes as substructures in graphs different from the
Hamming graph as well, replacing the Hamming distance
by the graph distance. Let C be a code in a regular graph
Γ with vertex set V . We follow the definition found in
e.g. Neumaier (1992). Let x be any vertex of Γ, then
d(x,C) = min{d(x, y)|y ∈ C}. The covering radius ρ =
max{d(x,C)|x ∈ Γ}, it is the minimal integer ρ such that
the spheres of radius ρ around the codewords of C cover
the vertices of Γ. For a code C, minimum distance d(C)
and covering radius ρ(C) are related by d(C) ≤ 2ρ(C)+1.
The code C is called perfect in case of equality, which is
equivalent with the property that the spheres with radius
ρ(C) around the codewords partition the vertex set V .

Completely regular codes have been introduced in Delsarte
(1973) as a generalization of perfect codes. Assume that
C is a code in a distance regular graph. Let Ci = {x ∈
Γ|d(x,C) = i}, then Ci 6= ∅ ⇐⇒ 0 ≤ i ≤ ρ(C), and
C0 = C. The sets Ci partition the vertex set of Γ. The
code C is called completely regular if every vertex x ∈ Ci
has a constant number of neighbors ai, bi, respectively ci
in Ci−1, Ci, respectively Ci+1. This is equivalent with the
partition of the vertex set of Γ into the components Ci
being equitable.

In I.Mogilnykh (2022) a very nice connection is made
between complete regular codes and Cameron-Liebler line
classes. In order to understand this connection, we require
the definition of a t-desing. In general a t-(v, k, λ) desing,
or t-design for short, is a set of points and blocks with v
points, each block contains k points and through every t
points there are λ blocks. It is discussed that Cameron-
Liebler line classes L in PG(n, q) are in fact special
completly regular codes where the points of PG(n, q) and
the lines of L do not admit to the blocks of a t-desing. It
can be shown that these codes have covering radius 1.
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2. A GENERALISATION TO N -DIMENSIONAL
PROJECTIVE SPACES

Let q = ph be a prime power, and denote the finite field
of order q as GF(q). The n-dimensional projective space
over GF(q) is the geometry consisting of all i-dimensional
subspaces of the n+1-dimensional vector space V (n+1, q)
over GF(q), 1 ≤ i ≤ d, and is denoted by PG(n, q). The
fundamental theorem of projective geometry states that all
isomorphisms of PG(n, q) are induced by the semi-linear
maps of the underlying vector space. Note that we call
the i-dimensional subspaces of V (n+ 1, q), 1 ≤ i ≤ n, the
points, lines, planes, etc. of PG(n, q). In general we define
the set of i-spaces in PG(n, q) by Πi.
The concepts of Cameron-Liebler line classes have been
generalized to PG(n, q), see Blokhuis et al. (2018) and
Rodgers et al. (2018). In order to do so, we will need the
concept of a characteristic vector of a set of k-spaces S.
This 0, 1 valued vector of size |Πk| has a one on a certain
position if and only if the corrsponding k-spaces lies inside
S. Using this vector, we can define Cameron-Liebler sets
of k-spaces.

2.1 Definition

Suppose that Pn is the point-(k-space) incidence matrix of
PG(n, q). This matrix is the 0, 1 values matrix where the
rows correspond with the points and the columns with the
k- dimensional subspaces of PG(n, q). A certain position
(p,K) has value one if and only if p ∈ K. Using this matrix,
a Cameron-Liebler set of k-spaces in PG(n, q) is a set of
k-spaces such that the characteristic vector is contained in
Im(PTn ).
We say that the Cameron-Liebler set of k-spaces L has
parameter x, if and only if

|L| = x

[
n

k

]
q

.

Recall the Gaussian binomial coefficient, for a ≤ b be
natural numbers,[

b

a

]
q

=
(qb − 1) . . . (qb−a+1 − 1)

(qa − 1) . . . (q − 1)

which represents the number of (a − 1)-dimensional pro-
jective spaces in a projective space of dimension b−1. This

definition automatically implies that 0 ≤ x ≤ qn+1−1
qk+1−1 .

2.2 Connection with Boolean functions

Another way to formalize the definition of these Cameron-
Liebler sets of k-spaces is by using Boolean degree 1
functions. A Boolean degree 1 function f on the k-spaces of
PG(n, q), is a boolean function that is a linear combination
of boolean functions of point-pencils, i.e. sets of k-spaces
through a fixed point. In particular, this means that

f =
∑

p∈PG(n,q)

cpx
+
p ,

Here cp are constants and x+p corresponds to the boolean
function of the set [p]k := {K ∈ Πk | p ∈ K}. Conse-
quently, we have that if χp is the characteristic vector

of [p]k then x+p (K) = χp(K). Cameron-Liebler sets of k-
spaces and Boolean degree 1 functions are in fact equiv-
alent statements. This implies that every result of one
can be transformed to the the other. Yet studying these
objects in both ways can yield powerfull results. For more
information we refer to Filmus and Ihringer (2019).

2.3 Other properties and examples

Besides this definition other equivalent versions are also
known. The following Theorem will list some of those,
here a k-spread S denotes a set of k-spaces that partition
the point in PG(n, q). In particular, it is know that these
spreads exist if and only if (k + 1) | (n+ 1).

Theorem 1. (Blokhuis et al., 2018, Theorem 2.2) Let L be
a non-empty set of k-spaces in PG(n, q), n ≥ 2k + 1, with
characteristic vector χL, and x so that |L| = x

[
n
k

]
q
. Then

the following properties are equivalent.

(1) χL ∈ Im(PTn ) = (ker(Pn))⊥, with Pn the point-(k-
space) incidence matrix of PG(n, q).

(2) For every k-space K, the number of elements of L
disjoint fromK is equal to (x−χL(K))

[
n−k−1

k

]
q
qk

2+k.

(3) If k + 1 | n + 1, i.e. if and only if PG(n, q) has k-
spreads, then |L ∩ S| = x for any k-spread S.

It is also clear that this theorem induces that if (k +
1) | (n + 1) , then x is in fact a positive integer. This
condition only holds for this particular case. Because as
we will see in the next example, for (k + 1) - (n + 1) we
always find non-integer parameters.

Fact 2. The trivial examples of Cameron-Liebler line
classes in PG(3, q) are easily generalized to sets of k-spaces
in PG(n, q). In particular, using Theorem 1, we can obtain
the following examples.

(1) The empty set is a Cameron-Liebler set of k-spaces
of parameter x = 0.

(2) A point-pencil is an example of parameter x = 1.
(3) The set of k-spaces inside a hyperplane is an example

of parameter x = qn−k−1
qk+1−1 .

(4) The disjoint union of examples (2) and (3) is a
Cameron-Liebler set of k-spaces of parameter x =
qn−k−1
qk+1−1 + 1.

(5) Complements of these examples are also Cameron-

Liebler sets of k-spaces of parameter qn+1−1
qk+1−1 − x.

As previously noted, it can be seen that examples (3), (4)
and (5) have a parameter that is only an integer if and
only if (k + 1) | (n+ 1).

3. NON-EXISTENCE RESULTS

In this section we consider some known non-existence re-
sults and classifications. We combine the results that were
obtained for Boolean degree 1 functions and Cameron-
Liebler sets directly. The following theorem follows (par-
tially) immediately from Theorem 1.

Theorem 3. (Blokhuis et al., 2018, Theorem 4.3) There do
not exist Cameron-Liebler k-sets in PG(n, q) of parameter
x ∈]0, 1[ and if n ≥ 3k + 2, then there are no Cameron-
Liebler sets of k spaces with parameter x ∈]1, 2[.
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In order to prove that x 6∈]0, 1[, we can simply consider
Theorem 1 (2) and obtain that for these values the number
of skew k-spaces of L to a fixed k-space K is a negative
number. This is a contradiction. A second classification
results makes use from some Erdös-Ko-Rado results and
is as follows.

Theorem 4. (Blokhuis et al., 2018, Theorem 4.1) Let L be
a Cameron-Liebler set of k-spaces with parameter x = 1
in PG(n, q), n ≥ 2k + 1. Then L consists out of all the
k-spaces through a fixed point or n = 2k + 1 and L is the
set of all the k-spaces in a hyperplane of PG(2k + 1, q).

Besides these rather small classifications, there also exist
stronger non-existence conditions. These are in fact the
results which we want to improve.

Theorem 5. (Blokhuis et al., 2018, Theorem 4.9) There
are no Cameron-Liebler sets of k-spaces in PG(n, q), with
n ≥ 3k + 2 (and q ≥ 3), of parameter x if

2 ≤ x ≤ 1
8
√

2
q

n
2−

k2

4 −
3k
4 −

3
2 (q − 1)

k2

4 −
k
4+

1
2

√
q2 + q + 1.

Note that this upper bound has size roughly q
n
2−k.

Fact 6. The condition that q ≥ 3 is in brackets because
this was in the original theorem, but it has been proven
in Filmus and Ihringer (2019) that for q ≤ 3 all Cameron-
Liebler sets of k-spaces are trivial examples.

Theorem 7. (Ihringer, 2020, Theorem 7) Let n ≥ 2k + 1
and suppose that L is a Cameron-Liebler set of k-spaces in

PG(n, q) of parameter x. If 16x ≤ min{q n−k−l+2
3 , q

n−2k−r
3 },

where n + 1 = m(k + 1) − r with 0 ≤ r < k + 1 and
ql−1−1
q−1 < x ≤ ql−1

q−1 , then x ≤ 2 and L is trivial.

This bound would in the best case scenario have size
roughly min{q n−k+1

3 , q
n−2k

3 } = q
n−2k

3 .
In general no theorem of these above excludes the other,
because both have different strengths in different cases of
(n, k).

4. NEW RESULTS

This is joint wok with Jan De Beule and Leo Storme. In
order to soften the notation, we will denote [π]k as the
set of k-spaces in PG(n, q) that are contained in the i-
dimensional subspace π, i > 0. Similarly, [p]p denotes the
set of k-spaces containing the point p.

4.1 Induces Cameron-Liebler sets

The main idea for this improved lower bound on x comes
from Boolean degree 1 functions, see Filmus and Ihringer
(2019), and the thesis of Drudge, see Drudge (1998). Both
describe a version of the following theorem. In Filmus and
Ihringer (2019) it is described more subtly, while in Drudge
(1998) it is only denoted for lines.

Theorem 8. (Folklore). Consider a Cameron-Liebler sets
of k-spaces L in PG(n, q), with n ≥ 2k + 1, and let π
be a subspace of dimension i ≥ k+ 1. Then L∩ [π]k is also
a Cameron-Liebler set of k-spaces in π.

Proof. We will show this using Boolean functions. Sup-
pose that χL is a Boolean degree 1 function, then we have,
with a similar notation as above, that

χL =
∑

p∈PG(n,q)\π

cpx
+
p +

∑
p∈π

cpx
+
p .

The restriction of χL to π is cleary
∑
p∈π cpx

+
p .

The main idea, using this theorem, is to consider the
Cameron-Liebler sets of k-spaces that are induced in sub-
spaces and try to translate classification results using this
connection. However, we should be very carefull because
Theorem 8 does not give a connection between the param-
eter of L and the parameter of the induced set. This will
be our focus now.

4.2 Connecting the parameter with parameters of induced
sets

The main result of this section is the following lemma.

Lemma 9. (De Beule et al., 2022, Lemma 4.1) Suppose
that L is a Cameron-Liebler set of k-spaces in PG(n, q) of
parameter x. Then for every t, such that 2k+1 ≤ t ≤ n−1
and n ≥ 2k + 2, and an arbitrary k-space K in PG(n, q),

x =

(∑
K∈πi

xπi −
[
n−k
t−k
]
q
χL(K)

)
[
n−k−1
t−k−1

]
q

+ χL(K) , (1)

where χL(K) is the value of the characteristic vector of L
at position K, xπi

the parameter of the Cameron-Liebler
k-set induced in πi, and where the sum runs over all t-
spaces πi through K.

Proof. The proof is based on a counting argument, where
we count the pairs (K ′, π), with K ′ ∈ L a k-dimensional
subspace inside π skew to K, and π a t-dimensional
subspace containing both K and K ′. Important to know
is that the number of skew k-spaces to K is denoted in
Theorem 1 (2) and since L restricted to every t-space π
also induces a Cameron-Liebler set of k-space of a certain
parameter xπ a similar number of skew k-spaces can be
found depending on xπ.

4.3 Using Classification results in smaller subspaces

The strength of Lemma 9 is the fact that t can be chosen
freely within the possible range. This implies that we
can use some non-existence conditions while playing with
this dimension t. In general we have that if we choose
K ∈ L 6= ∅ that all xπi 6= 0, since all induced sets are not
empty. In addition, we also have, due to Theorem 3 that
xπi ≥ 1. Now we will make use of the following theorem,
which is a generalisation of a result from Drudge Drudge
(1998) who proved this for lines.

Theorem 10. (De Beule et al., 2022, Theorem 3.4) Let
n ≥ 2k + 1. Suppose that L is a Cameron-Liebler set of
k-spaces in PG(n, q), such that there exists an i-space π,
with i ≥ k + 1, and such that L ∩ [π]k consists of the set
of k-spaces through a point p ∈ π. Then L is the set of
k-spaces through this same point p.

An important consequence of this theorem is the following.
Let t > 2k+1 and suppose that there exist a xπi = 1, then
from Theorem 4 we obtain that the induced Cameron-
Liebler set is a point-pencil. Consequently, using Theorem
10 we have that L is a point-pencil. So if we pose the
restriction that L is not a point-pencil, we can say that
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every xπi
6= 1.

Finaly, if t ≥ 3k + 2, we also obtain, by Theorem 3 that
xπi ≥ 2.
Filling in these bounds in Lemma 9, we obtain that

x ≥

[
n−k
t−k
]
q[

n−k−1
t−k−1

]
q

+ 1 =

[
n−k
2k+2

]
q[

n−k−1
2k+1

]
q

+ 1 =
qn−k − 1

q2k+2 − 1
+ 1,

where in the last two formulas, we let t = 3k + 2.

Fact 11. The reason why t = 3k + 2 is due to the fact
that this value gives the best lower bound. Filling in
t > 3k + 2 would only increase the nominator of the
previous equation.

This results in the following theorem.

Theorem 12. (De Beule et al., 2022, Theorem 6.2) Suppose
that n ≥ 3k + 3 and k ≥ 1. Let L be a Cameron-Liebler
set of k-spaces of parameter x in PG(n, q) such that L is
not a point-pencil, nor the empty set. Then it holds that

x ≥ qn−k − 1

q2k+2 − 1
+ 1.

4.4 A direct improvement

Theorem 12 was stated in De Beule et al. (2022) but can
be improved using Theorem 5. Due to Fact 6, this follows
for every q and t ≥ 3k+ 2. Filling in this better bound for
every xπi , we obtain that

xπi ≥ C(t, k, q),

with C(t, k, q) = 1
8√2
q

t
2−

k2

4 −
3k
4 −

3
2 (q−1)

k2

4 −
k
4+

1
2

√
q2 + q + 1.

Again we choose t = 3k + 2. This results in the following
Theorem.

Theorem 13. Suppose that n ≥ 3k + 3 and k ≥ 1. Let L
be a Cameron-Liebler set of k-spaces of parameter x in
PG(n, q) such that L is not a point-pencil, nor the empty
set. Then it holds that

x ≥ C(k, q)

(
qn−k − 1

q2k+2 − 1

)
+ 1,

for C(k, q) = 1
8√2
q

3k
4 −

k2

4 −
1
2 (q−1)

k2

4 −
k
4+

1
2

√
q2 + q + 1−1.

This lower bound is roughly of size qn−
3k
2 −

1
2 , which is

a direct improvement of Theorem 5 and Theorem 7 if
n ≥ 3k + 2, so for all possible values of (n, k).
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Abstract: For a fixed number of n + 1 (n ≥ 1) variables and even degree 2d (d ≥ 1),
the SOS cone Σn+1,2d of all real forms representable as finite sums of squares (SOS) of half
degree d real forms is included in the PSD cone of all positive semidefinite (PSD) real forms
Pn+1,2d. Hilbert (1888) states that both cones coincide if and only if n + 1 = 2, d = 1 or
(n + 1, 2d) = (3, 4). In this talk, we discuss necessary or sufficient conditions to extend local
positive semidefiniteness of real quadratic forms along projective varieties generated by s (s ≥ 0)
real quadratic forms. Those conditions allow us to construct an explicit filtration of intermediate
cones Σn+1,2d = C0 ⊆ C1 ⊆ . . . ⊆ Cs−1 ⊆ Cs = Pn+1,2d (between the SOS and PSD cone)
along the Veronese variety. Indeed, the latter is known to be a projective variety finitely induced
by real quadratic forms. We analyze this filtration for proper inclusions. In fact, after applying
an inductive argument, it suffices to investigate the situation for a truncated subfiltration of
the former. A result of Blekherman et al. (2016) on projective varieties of minimal degree
permits us to handle the inclusion C0 ⊆ C1. Generalizing this observation, we are able to
show Σn+1,2d = C0 = . . . = Cn. Finally, we lay out the situation in the basic non Hilbert
case of quaternary quartics by identify exactly two strictly separating intermediate cones in the
particular filtration of Σ4,4 and P4,4 via considerations of real forms based on techniques due to
Robinson (1969) and Choi and Lam (1977a,b). This is a work in progress with Salma Kuhlmann
and Charu Goel.

Keywords: Real quadratic forms, projective varieties generated by real quadratic forms,
positive semidefinite forms, sums of squares, intermediate cones, varieties of minimal degree

1. INTRODUCTION

For n ≥ 0, let R[X] be the polynomial ring in n + 1
variables with coefficients in R. If all monomials appearing
in f ∈ R[X] are of the same total degree d (d ≥ 1), then
f is a (real) form (of total degree d). The set of all real
forms of total degree d in R[X] is Fn+1,d. In particular,
f ∈ Fn+1,2 is a (real) quadratic form. Moreover, if for
f ∈ Fn+1,2d there exist some t ≥ 1 and g1, . . . , gt ∈ Fn+1,d

such that f =
t∑
i=1

g2i , then f is a sum of squares (SOS).

The cone of all SOS forms in Fn+1,2d is Σn+1,2d. Moreover,
f ∈ Fn+1,2d is locally positive semidefinite on W ⊆ Rn+1

if f(x) ≥ 0 holds for all x ∈ W . In this case we write
f |

W
≥ 0, respectively, f ≥ 0 for W = Rn+1. In the

latter case, f is (globally) positive semidefinite (PSD). The
cone of all PSD forms in Fn+1,2d is Pn+1,2d. It is clear
that Σn+1,2d ⊆ Pn+1,2d always holds true and, especially,
Σ1,2d = P1,2d in the univariate case (see Marshall (2008)).
However, the situation is more evolved in the multivariate
cases. Hence, from now on we assume n ≥ 1.

Theorem 1. (Hilbert (1888)) Let n and d be positive
integers. Then Σn+1,2d = Pn+1,2d if and only if n+ 1 = 2
or d = 1 or (n+ 1, 2d) = (3, 4).

All cases in which the SOS and PSD cone coincide are
called Hilbert cases, whereas all others are refered to as

non Hilbert cases. The two simplest non Hilbert cases (3, 6)
and (4, 4) are the basic non Hilbert cases.

Let (n + 1, 2d) from now on denote a non Hilbert case
and {m0(X), . . . ,mk(X)} be an ordered monomial basis
of Fn+1,d with k := dim(Fn+1,d) − 1. For l ∈ {n, k}, let
Pl be the l-dimensional projective space of the complex
numbers and the set of all real points of W is denoted by
W (R) for any W ⊆ Pl. Implicitly x ∈ Rl+1 is assumed
for any [x] ∈ W (R). A form f ∈ Fl+1,2d is locally positive
semidefinite on W (R) ⊆ Pn(R) if f(x0, . . . , xl) ≥ 0 holds
for any [x0 : . . . : xl] ∈ W (R) and we write f |

W (R)) ≥ 0.
This is a well defined expression due to the homogeneity
of f in even degree. In particular, the cone of all forms in
Fl+1,2d which are locally positive semidefinite on Pn(R) is
the former PSD cone Pl+1,2d.
In a Gram matrix approach (see Choi et al. (1995), Powers
and Wörmann (1998)), we consider the isomorphism

Q : Symk+1(R)→Fk+1,2

A 7→ qA,

where qA(Z0, . . . , Zk) := (Z0 . . . Zk)A(Z0 . . . Zk)t, and the
surjective linear Gram map

G : Symk+1(R)→Fn+1,2d

A 7→ fA,
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where fA(X) := (m0(X) . . .mk(X))A(m0(X) . . .mk(X))t

for the indeterminantes X = (X0, . . . , Xn), over the R-
vector space Symk+1(R) of real symmetric (k+1)×(k+1)
matrices. Then a generic Af ∈ G−1(f) for any f ∈ Fn+1,2d

can be fixed. In fact, any A ∈ G−1(f) is a Gram matrix
associated to f and for any such, qA := Q(A) ∈ Fk+1,2 is
a (real) quadratic form associated to f .

Proposition 2. A form f ∈ Fn+1,2d is SOS if and only if
there exists a real quadratic form associated to f which is
locally positive semidefinite on Pk(R).

Under the consideration of the (projective) Veronese em-
bedding

V : Pn→ Pk

[x] 7→ [m0(x) : . . . : mk(x)]

and its image the (projective) Veronese variety V (Pn), the
PSD forms in Fn+1,2d can be characterized.

Proposition 3. A form f ∈ Fn+1,2d is PSD if and only if
there exists a real quadratic form associated to f which is
locally positive semidefinite on V (Pn)(R).

2. THE MAIN QUESTIONS

The previous two propositions reveal that the question of
whether or not a given PSD form is SOS is equivalent
to asking whether or not a given locally on V (Pn)(R)
positive semidefinite real quadratic form can be extended
to a real quadratic form locally positive semidefinite on
Pk(R) over the set of real points of the Veronese variety.
Indeed, the latter is a projective variety finitely generated
by real quadratic forms of a specific structure imposed by
the Gram map (see Plaumann (2020)). More precisely, the
projective variety V (Pn) is induced by

S := {q(Z0, . . . , Zk) := ZiZj − ZsZt | LE(mi) + LE(mj)

= LE(ms) + LE(mt)} ⊆ R[Z0, . . . , Zk],

where LE denotes the (leading) exponent of the indicated
monomial. In general, the following question has to be
answered.

Question 1. Let W0 ⊆ W1 be projective varieties finitely
induced by real quadratic forms with non-empty sets of
real points. Assume that a real quadratic form q is locally
positive semidefinite on W0(R). When exactly does there
exist a real quadratic form q0 vanishing on W0(R) such
that q + q0 is locally positive semidefinite on W1(R)?

Under the assumption of W0 being an irreducible projec-
tive variety with Zariski dense set of real points W0(R) and
W1 being the projective space Pk, Blekherman et al. (2016)
give an answer to the above question. They establish
that any real quadratic form q which is locally positive
semidefinite on W0(R) is already SOS in the respective
real homogeneous coordinate ring if and only if W0 is a
projective variety of minimal degree, i.e. a nondegenerate
(not contained in any hyperplane of Pk) irreducible pro-
jective variety with deg(W0) = 1+codim(W0). This result
provides an alternative proof of Hilbert’s 1888 Theorem
by setting W0 to be the Veronese variety and observing it
being a projective variety of minimal degree exactly in the
Hilbert cases.

Any subset S ′ of S naturally induces a supvariety W of
the Veronese variety, which is consequently again finitely
induced by real quadratic forms of the specific structure
imposed by the Gram map. The kernel of the Gram map
can be described via the set of real points of the Veronese
variety. Indeed, the set Q(G−1(f)) of all quadratic forms
associated to f ∈ Fn+1,2d is completely determined by

G−1(f) = {A ∈ Symk+1(R) | qA = qAf
on V (Pn)(R)}.

Hence, given a quadratic form locally positive semidefinite
on W (R), we can ask under exactly what conditions
this form extends to a quadratic form locally positive
semidefinite on Pk(R) over the set of real points of the
Veronese variety. Set

CW := {f ∈ Fn+1,2d | ∃A ∈ G−1(f) : qA|W (R) ≥ 0}
= {f ∈ Fn+1,2d | ∃A ∈ G−1(f) : qA|W (R) ≥ 0

∧ qA = qAf
on V (Pn)(R)}.

Then by Proposition 2 and Proposition 3, it is clear that
CW is an intermediate cone of the SOS and PSD cone. We
especially investigate the inclusions in

Σn+1,2d ⊆ CW ⊆ Pn+1,2d

for strictness. Indeed, at least one of these inclusions has
to be strict because (n + 1, 2d) is assumed to be a non
Hilbert case. The following question has to be answered.

Question 2. Let W0 ⊆ W1 ⊆ W2 be projective varieties
finitely induced by real quadratic forms with non-empty
sets of real points. Assume that a real quadratic form q is
locally positive semidefinite on W1(R). When exactly does
there exist a real quadratic form q0 vanishing on W0(R)
such that q+ q0 is locally positive semidefinite on W2(R)?

3. A FILTRATION OF INTERMEDIATE CONES

We algorithmically construct a particular S ′ ⊆ S with a
fixed numeration S ′ = {p1, . . . , ps} (s := #S ′) such that
the zero set of S ′ is the Veronese Variety and

V (Pn) = Ws (Ws−1 ( . . . (W1 (W0 = Pk

for Wi := V(p1, . . . , pi) (i ∈ {1, . . . , s}) and W0 := Pk.
This leads to a corresponding strict filtration of sets of
real points

V (Pn)(R) = Ws(R) ( . . . (W0(R) = Pk(R).

Setting Ci := CWi
we thus obtain a filtration of interme-

diate cones of the SOS and PSD cone, namely

Σn+1,2d = C0 ⊆ C1 ⊆ . . . ⊆ Cs−1 ⊆ Cs = Pn+1,2d (1)

(see Goel (2020)). Since (n + 1, 2d) is a non Hilbert case
by choice, at least one inclusion in (1) has to be strict.
An answer to Question 2 in particularly provides a tool
for identifying all strict inclusions in (1). Yet, it is not
compulsory to investigate each inclusion in (1).

In the explicit construction of S ′, we determine

s = #S ′ =
n∑

m=1

2(k(m)−m)− (k(m− 1) + 1)

with

k : Z≥0→Z≥0

m 7→
(
m+ d

m

)
− 1.
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Setting τ := 2(k(n) − n) − (k(n − 1) + 1), we are able to
identify the filtration of the last s− τ + 1 cones

Cτ ⊆ . . . ⊆ Cs = Pn+1,2d (2)

with the (n, 2d) case. This ensures the elimination of
one variable in an inductive argument. Repeating that
consideration, we at last arrive in the base case (2, 2d).
This is a Hilbert case and therefore fully understood. It
thus remains to investigate the situation of the first τ + 1
cones

Σn+1,2d = C0 ⊆ . . . ⊆ Cτ . (3)

Indeed, putting (2) and (3) together recovers the initial
filtration (1).

In (3), an immediate application of the main result from
Blekherman et al. (2016) allows us to conclude that the
SOS cone always coincides with C1. Furthermore, a slight
variation of this result ensures Σn+1,2d = Ci for any
i ∈ {1, . . . , n}. Thus,

Σn+1,2d = C0 = . . . = Cn. (4)

After that, for inclusions of the type Ci ⊆ Ci+1 with
i ∈ {n, . . . , τ − 1}, the situation is more evolved and other
methods have to be applied.

For example, in the basic non Hilbert case (4, 4), exactly
two strictly separating intermediate cone in (3) are iden-
tifiable. Indeed, the famous Robinson form

R(X0, X1, X2, X3) :=X2
0 (X0 −X3)2 +X2

1 (X1 −X3)2

+X2
2 (X2 −X3)2 + 2X0X1X2(X0 +X1 +X2 − 2X3)

and the Choi-Lam form

W (X0, X1, X2, X3) :=X2
0X

2
1 +X2

0X
2
2 +X2

1X
2
2 +X4

3

−4X0X1X2X3

both certify the proper containment Σ4,4 ( P4,4 (see
Robinson (1969) and Choi and Lam (1977a,b)). In par-
ticular, the Robinson form was alongside the Motzkin
form (see Motzkin (1967)) one of the first forms found
separating the SOS and PSD cone in a basic non Hilbert
case. Both were firstly mentioned roughly nine decades
after Hilbert’s original abstract proof from 1888 in the late
1960’s. The Choi-Lam form followed in 1977.
Now, a deeper reaching investigation of the Robinson form,
the Choi-Lam form and a variation of the Choi-Lam form
under permuation of variables reveals

C3 ( C4 ( C5 ( C6 (5)

in the basic non Hilbert case of quaternary quartics.
Furthermore,

Σ4,4 = C0 = C1 = C2 = C3

by (4) and C6 ⊆ . . . ⊆ C10 = P4,4 corresponds to (2) and
with that to the (3, 4) case by our inductive argument. The
ternary quartics describe a Hilbert case and, consequently,
the latter subfiltration collapses to

C6 = . . . = C10 = P4,4.

Putting it all together, we thus fully understand the
situation in the basic non Hilbert case of quaternary
quartics.
In particular, we strengthen Hilbert’s original observation
from 1888 in the quaternary quartics case by testifying the
existence of two distinct strictly separating intermediate
cones between the SOS and the PSD cone.
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Abstract: This paper concerns an optimal control problem on the space of probability measures
over a compact Riemannian manifold. The motivation behind it is to model certain situations
where the central planner of a deterministic controlled system has only a probabilistic knowledge
of the initial condition. The lack of information here is very specific. In particular, we show that
the value function verifies a dynamic programming principle and we prove that it is the unique
viscosity solution to a suitable Hamilton Jacobi Bellman equation. The notion of viscosity is
defined using test functions that are directionally differentiable in the the space of probability
measures.

Keywords: Optimal Control, Viscosity solutions, Hamilton Jacobi Bellman equation,
Wasserstein spaces, Multi-agent systems.

1. INTRODUCTION

The study of optimal control problems and viscosity theory
in the space of probability measures has been an active
area of research in the mathematical community in the
last years, in particular because of its potential real-world
applications in the modeling of multi-agent systems. The
potential applications include crowd dynamics modeling,
opinion formation process modeling, herd analysis, so-
cial network analysis, autonomous multi-vehicle naviga-
tion and the modeling of uncertainties on the initial state
of a deterministic controlled system.
At the individual level, the behavior of each agent is
dictated not only by local interactions but also by the
non local interactions that depend on the distribution of
all agents. When the number of agents is assumed to be
very large, the complexity of the system grows extremely
fast. A suitable way to modelize this problem is through
a macroscopic approach, where the discrete collection of
agents is replaced by a spatial density that evolves in
time. If we assume further that the total number of agents
remains constant at all times during the evolution of the
system, then one can normalize the density of the agents
and assume that its total mass is equal to 1.
Hence, the evolution of the multi-agent system, seen as
normalized spatial density in a given base space X (typi-
cally the Euclidean space or a Riemannian manifold), is
described by a curve t 7→ µt ∈ P(X), where P(X) is
the space of Borel probability measures over X, and µt

represents the spatial density of the multi-agent system at
a given time t ≥ 0. The conservation of the mass along the
trajectory t 7→ µt is described by the following continuity

equation
∂tµt + div(vtµt) = 0,

where vt(.) is a time-dependent Borel vector field, and the
equation is understood in the sense of distributions.
In this paper, we take the base space X = M to be
a compact Riemannian manifold without boundary. We
propose to study a simple model of multi-agent systems,
where the non local interactions between the agents are
not considered. This problem can be interpreted as a
deterministic control system with imperfect information
on the initial condition, i.e. the initial condition is not
known precisely by the controller, but they only know that
the initial condition follows a probability distribution µ0 ∈
P(M). More precisely, consider the following controlled
equation: {

Ẏ (t) = f(Y (t), u(t)), t ∈ [t0, T ],

Y (t0) = x0, u(t) ∈ U,
(1)

where f : M × U → TM is the dynamics, assumed to be
Lipschitz with respect to the first variable and continuous
with respect to the second variable, x0 ∈M and t0 ∈ [0, T ].
The set U is the set of admissible control values which is
assumed to be a compact subset of some metric space. the
control function u(.) ∈ U is a Borel measurable function
u : [t0, T ] → U . The main feature of this problem is that
the initial position x0 is not perfectly known, but rather
distributed along the probability measure µ0. Notice that,
since f(., u(t)) is Lipschitz continuous and bounded, the
evolution curve of the uncertainty, t 7→ µt starting from
µ0, is the unique solution to the equation{

∂tµt + div(f(., u(t))µt) = 0, t ∈ (t0, T ),

µt0 = µ0,
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in the distributional sense. The measures µt are obtained
by the pushforward of µ0 by the flow at time t of the
controlled equation (1).
The controller aims at minimizing the following final cost:

L(µ) =

∫
l(y)dµ(y),

where l : M → R is a Lipschitz function. An immediate
consequence of this assumption is that the function L :
P(M) → R inherits the Lipschitz property from l as
well. The quantity L(µT ) represents the expectation of the
deterministic final cost with respect to the measure µT .

To this optimal control problem, we associate the following
value function:

ϑ(t0, µ0) = inf
u(.)∈U

L(µT ).

The first main goal of this paper is to study the properties
and the regularity of the value function. In particular we
will show that the value function is Lipschitz continuous
with respect to both variables and that it verifies the
dynamic programming principle. The second goal of the
paper is to prove that value function can be characterized
as the unique viscosity solution of a suitable Hamilton
Jacobi Bellman equation (HJB in short) of the form{

∂tv +H(µ,Dµv) = 0, (t, µ) ∈ [0, T )× P2(M),

v(T, µ) = L(µ),

in the space of probability measures P(M). We aim at
transposing the viscosity theory techniques that are used
in the classical theory (Crandall et al. (1992)) to the space
of Borel probability measures P2(M). In particular, we
define a suitable notion of viscosity using a class of real
valued functions that admit directional derivatives at all
points µ ∈ P(M). We then prove a local comparison prin-
ciple between any bounded upper semicontinuous subsolu-
tion and any lower semicontinuous supersolution. Finally,
we prove that the value function is the unique viscosity
solution to the above HJB equation by using the dynamic
programming principle verified by the value function.
This paper is expository. All the results asserted in here
are proven in Jean et al. (2022). The paper is structured
as follows. In Section 2, we recall some classical notions of
optimal transport theory and the geometry of the space
of probability measures. In Section 3, we formulate the
Mayer problem in the space of probability measures and
we give the main properties of the value functions. Section
4 is devoted to the study of a suitable HJB equation that
characterizes the value function. In particular, we define
the Hamiltonian we are going to work with, then we define
a notion of viscosity using a class of test functions that
are directionally differentiable, we show the comparison
principle and we show that the value function is the unique
viscosity of the HJB equation.

2. PRELIMINARIES

In this section, we recall some facts about optimal trans-
port and the geometry of Wasserstein spaces. Let (M, ⟨., .⟩)
be a finite dimensional, compact and connected Rieman-
nian manifold without boundary. We denote by | . | the
associated norm on the tangent bundle TM , and by d(., .)
its Riemannian distance onM . The metric space (M,d), is
a complete, separable and compact space and its topology

is equivalent to the topology of the differentiable manifold
M . The tangent bundle TM is itself a complete and
separable Riemannian manifold when endowed with the
Sasaki metric (Sasaki (1962)). We denote by dTM (., .) the
Riemannian distance on TM associated with the Sasaki
metric.

2.1 The Wasserstein space P2(M)

We denote by P(M) the set of Borel probability measures
over M and P2(M) the set of Borel probability measures
with bounded second moments:

P2(M) := {µ ∈ P(M) :

∫
d2(x, x0)dµ(x) <∞, ∀x0 ∈M}

Actually, since M is compact, we have P2(M) = P(M)
but we will keep using the notation P2(M). Recall that for
any two topological spaces X and Y , any Borel probability
measure µ on X and any Borel function g : X → Y , the
pushforward measure g♯µ on Y is defined by

g♯µ(A) = µ(g−1(A)) ∀A ⊂ Y, a Borel set,

or equivalently, for all h : Y → R, a Borel measurable and
bounded function, we have:∫

h dg♯µ =

∫
h ◦ g dµ.

We define the Wasserstein distanceW2(., .) over P2(M) by

W2(µ, ν) :=

√
inf

{ ∫
d2(x, y)dγ(x, y)

}
,

where the infimum is taken over all Borel probability
measures of M ×M that have marginals µ and ν, i.e. for
all A,B, Borel sets of M , we have

γ(A×M) = µ(A) and γ(M ×B) = ν(B).

The metric space (P2(M),W2) is complete and separable.
Furthermore, it is a geodesic space, i.e. any two points of
P2(M) can be joined by at least one geodesic. We recall
that a curve α : [0, 1] → P2 is a geodesic if

W2(αt, αs) ≤|t− s|W2(α0, α1), ∀t, s ∈ [0, 1].

2.2 The tangent space Tµ(P2(M))

In this subsection, we will adopt a purely metric perspec-
tive to define the tangent space of (P2(M),W2) at a given
point µ. First, Let P(TM) be the set of Borel probabil-
ity measures over TM . Since (TM, dTM ) is a complete
geodesic space, we can define the Wasserstein space over
TM as the set of all η ∈ P(TM) such that∫

d2TM

(
(x, v), (x0, v0)

)
dη(x, v) <∞,

for all (x0, v0) ∈ TM . We denote it by P2(M). We endow
it with the usual Wasserstein distance for any η, γ ∈
P2(TM):

W2(γ, η) :=

√
inf

{ ∫
d2TM (x, y)dβ(x, y)

}
,

the infinimum is taken over all admissible plans β with
marginals γ and η. We are now able to define the tangent
space at a point µ ∈ P2(M).

Definition 1. (Tangent space). Let µ ∈ P2(M). The tan-
gent space Tµ(P2(M)) ⊂ P2(TM), is the set of plans
γ ∈ P2(TM) such that πM ♯γ = µ, where πM : TM → M
is the canonical projection onto M .
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The tangent space at a point µ has a geometric meaning.
In fact, it encodes all the information about geodesics
emanating from µ as we describe hereafter.
Let exp : TM → M be the exponential map of (M, ⟨., .⟩).
The exponential expµ(γ) of a plan γ ∈ Tµ(P2(M)) is
defined by

expµ(γ) := exp ♯γ ∈ P2(M).

We define the map exp−1
µ : P2(M) → Tµ(P2(M)) by

exp−1
µ (ν) := { γ ∈ Tµ(P2(M)) : expµ(γ) = ν and∫

|v|2 dγ(x, v) = (dW (µ, ν))2 },

or in other words, the set of plans γ ∈ P2(TM) such
that (πM , exp)♯γ is an optimal plan from µ to ν and∫
|v|2 dγ(x, v) = (dW (µ, ν))2. We introduce the following

notation

∆t(x, v) = (x, tv), ∀t ∈ R, (x, v) ∈ TM.

Remark 2. The map exp−1
µ is not really an inverse map

to expµ since only optimal plans in the inverse image of ν
are considered. While this might seem confusing, the map
exp−1

µ is defined this way so that for all γ ∈ exp−1
µ (ν),

the curve t→ exp(∆t)♯γ is a geodesic connecting µ and ν,
see the theorem below.

Theorem 3. (Gigli, 2011, Theorem 1.11) Let µ, ν ∈
P2(M). A curve (µt) : [0, 1] → P2(M) is a geodesic
connecting µ to ν if and only if there exists a plan γ ∈
exp−1

µ (ν) such that

µt := exp ◦∆t♯γ, ∀ t ∈ [0, 1]. (2)

The plan γ is uniquely identified by the geodesic. More-
over, for any t ∈ (0, 1) there exists a unique optimal plan
from µ to µt. Finally, if there exist two different geodesics
connecting µ to ν, they do not intersect in intermediate
times (i.e. on (0, 1)).

Introducing the following rescaling of a plan:

t � γ = ∆t♯γ, ∀t ∈ R, γ ∈ P2(TM),

equation (2) can be rewritten in a more elegant way as

µt = exp ◦∆t♯γ = expµ(t � γ), ∀t ∈ [0, 1].

With the characterization of geodesics in Theorem 3,
notice that for any µ ∈ P2(M), all plans γ ∈ Tµ(P2(M))
that produce geodesics, i.e. such that

t 7→ expµ(t � γ), (3)

is a geodesic defined in some right neighborhood of 0, say
[0, ε], can be seen as initial velocities of these geodesics.
We mention that not all curves of this form are necessarily
geodesics but all geodesics are of this form.
Moreover, using this characterization of geodesics, we can
define a class of real valued functions f : P2(M) → R
that are directionally differentiable along all geodesics. In
particular, the squared Wasserstein distance function

µ 7→W 2(µ, σ),

with σ ∈ P2(M) fixed, is directionally differentiable along
all geodesics. In fact, a much more general result holds: the
squared Wasserstein distance is directionally differentiable
along all curves of the form (3) even though they are not
geodesics. For more details on this, we refer to Gigli (2011).
We will only give the following result for the squared
Wasserstein distance, which we will need in order to define
test functions for viscosity notion in Section 4.

Theorem 4. (Gigli, 2011, Theorem 4.2) Let µ, σ ∈ P2(M),
and g :M → TM be a squared integrable vector field with
respect to µ. Let γ = g♯µ ∈ Tµ(P2(M)) and t 7→ expµ(t�γ)
be a curve starting from µ, not necessarily a geodesic. Then
it holds
d

dt

∣∣∣
t=0

W 2
2 (expµ(t � γ), σ)

2 = −2 sup

∫
⟨g(x), v⟩dζ(x, v),

where the supremum is taken over all ζ ∈ exp−1
µ (σ). We

denote it by

DµW
2
2 (., σ) � (g♯µ) :=

d

dt

∣∣∣
t=0

W 2
2 (expµ(t � γ), σ)

2,

and is understood as the differential ofW 2
2 (., σ) along g♯µ.

3. OPTIMAL CONTROL PROBLEM IN P2(M)

Let T > 0 and U be a compact subset of a metric space.
Consider the dynamics, defined for T > t0 ≥ 0 and
x0 ∈M , as{

Ẏ (t) = f(Y (t), u(t)), t ∈ [t0, T ],

Y (t0) = x0, u(t) ∈ U,
(4)

where f : M × U → TM satisfies the following assump-
tions:

(H)


f :M × U → TM is continuous and Lipschitz

continuous with respect to the state, i.e.

∃k > 0 : dTM (f(x, u), f(y, u)) ≤ k d(x, y),

∀u ∈ U, (x, y) ∈M ×M.

(H)co : for all x ∈M , the set

f(x, U) := {f(x, u) : u ∈ U} is convex.

We define the set of open-loop controls by

U := {u : [0, T ] → U : u(.) is measurable}.
The control problem aims at minimizing the final cost∫

l(Y t0,x0,u
T ) dµ0(x0),

over all trajectories that are solutions of the dynamics
(4) with the initial condition x0 ∈ M , distributed along
the measure µ0 ∈ P2(M). We consider the following
assumption:

(Hl) l :M → R is Lipschitz continuous with constant

Lip(l).

When µ0 is equal to the Dirac mass δx0
, the resulting

system corresponds to the classical case without uncertain-
ties on the initial condition. This problem is thoroughly
studied in the literature. When µ0 is any probability
measure of P2(M), it is better to see this problem as
an optimal control problem defined on the space of Borel
probability measures P2(M). First we rewrite the final cost
the following way∫

l(Y t0,x0,u
T ) dµ0(x0) =

∫
l(y) dY t0,.,.u

T ♯µ0 (y),

and we minimize this cost over the set of trajectories
t 7→ µt0,µ0,u

T of the space P2(M) that verify
µt0,µ0,u
t = Y t0,.,u

t ♯µ0, t ∈ [t0, T ], and x 7→ Y t0,x,u
t

is the flow of (4),

µt0 = µ0.

Since x 7→ Y t0,x,u
t ∈ M and µ0 ∈ P2(M), then t 7→

Y t0,.,u
t ♯µ0 ∈ P2(M) for all t ∈ [t0, T ]. It is a known
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fact, Ambrosio et al. (2008); Bernard (2008), that each
trajectory t 7→ µµ0,u

t is the unique solution to the following
continuity equation{

∂tµ
t0,µ0,u
t + div(f(., u(t))µt0,µ0,u

t ) = 0, t ∈ (t0, T )

µµ0,u
t0 = µ0.

(5)
In the distributional sense. Hence the optimal control
problem can be rewritten in the following way:

min
u(.)∈U

∫
l(y)dµt0,µ0,u

T (y) = L(µt0,µ0,u
T ),

such that

{
∂tµ

t0,µ0,u
t + div(f(., u(t))µt0,µ0,u

t ) = 0,

µµ0,u
t0 = µ0, t ∈ (t0, T ).

(6)
The associated value function to the above optimal control
problem is defined as

ϑ(t0, µ0) := inf
u(.)∈U

∫
l(y) dµt0,µ0,u

T (y) = L(µt0,µ0,u
T ).

Under hypotheses (H), (Hl) and (H)co, we have the
following two properties of the value function.

Proposition 5. (Jean et al. (2022)). Assume (H), (Hl) and
(H)co. Then, the value function ϑ is Lipschitz continuous
on [0, T ]× P2(M). In particular, ϑ is bounded.

Theorem 6. (Jean et al. (2022)). Let µ ∈ P2(M), t ∈
[0, T ] and h ∈ [t, T − t]. Then it holds

ϑ(t, µ) = inf
u∈U

ϑ(t+ h, µt,µ,u
t+h ).

4. HJB EQUATION IN P2(M)

The Hamiltonian we will work with has the following
expression:

H(µ,Dµv) = inf
u∈U

Dµv �
(
f(., u)♯µ

)
, (7)

with v : R × P2(M) → R is a real valued function that
admits directional derivatives along the time variable and
the measure variable. The function v represents a test
function that has the following form:

∀(t, µ) ∈ [0, T )× P2(M), v(t, µ) = ψ(t) + aW 2
2 (µ, σ),

with a ∈ R and σ ∈ P2(M) fixed and ψ : [0, T ) → R
is a continuously differentiable function, µ 7→ W 2

2 (µ, σ) is
directionally differentiable in the sense of Theorem 4. We
consider the following Hamilton Jacobi Bellman equation:{

∂tv +H(µ,Dµv) = 0, (t, µ) ∈ [0, T )× P2(M),

v(T, µ) = L(µ).
(8)

Next, we define the test functions that we are going to use
to define the notion of viscosity solutions.

Definition 7. (Test functions).
Let T EST 1 be the set defined as:

T EST 1 := {(t, µ) → ψ(t) + a( (dW (µ, σ))2 ) :

a ∈ R+, σ ∈ P2(M)},
where ψ : [0, T ) → R is a C1 function.
We set T EST 2 = −T EST 1 := {−ϕ : ϕ ∈ T EST 1}.
Definition 8. (Viscosity solutions).

• We say that a function v : [0, T ) × P2(M) → R
satisfies the inequality

∂tv +H(µ,Dµv) ≥ 0,

at (t, µ) ∈ [0, T ) × P2(M) in the viscosity sense if v
is upper semicontinuous and for all T EST 1 functions
ϕ : [0, T ) × P2(M) → R such that v − ϕ attains a
maximum at (t, µ), we have

∂tϕ+H(µ,Dµϕ) ≥ 0.

A function v satisfying ∂tv + H(µ,Dµv) ≥ 0 on
[0, T ) × P2(M) in the viscosity sense is called a
viscosity subsolution of (8).

• Similarly, we say that a function v : [0, T )×P2(M) →
R satisfies the inequality

∂tv +H(µ,Dµv) ≤ 0,

at (t, µ) ∈ [0, T ) × P2(M) in the viscosity sense if v
is lower semicontinuous and for all T EST 2 functions
ϕ : [0, T ) × P2(M) → R such that v − ϕ attains a
minimum at (t, µ), then

∂tϕ+H(µ,Dµϕ) ≤ 0.

A function v satisfying ∂tv + H(µ,Dµv) ≤ 0 on
[0, T ) × P2(M) in the viscosity sense is called a
viscosity supersolution of (8).

• We say that a continuous function v : [0, T ] ×
P2(M) → R is a viscosity solution of (8) if it is both
a supersolution and a subsolution on [0, T )× P2(M)
and verifies

v(T, µ) = L(µ).

Theorem 9. (Jean et al. (2022)). Assume (H) and (Hl).
Let u, v : [0, T ]×P2(M) → R be respectively bounded up-
per semicontinuous subsolution and lower semicontinuous
supersolution on [0, T ]× P2(M). Then it holds:

sup
[0,T ]×P2(M)

(v − w)+ ≤ sup
{T}×P2(M)

(v − w)+,

where (a)+ = max(a, 0).

Theorem 10. (Jean et al. (2022)). Assume (H), (Hl) and
(Hco). Then the value function ϑ is the unique continuous
viscosity solution to (8).
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Abstract: Differential algebra-based theory and software have been widely used to study the
a priori structural identifiability of nonlinear systems. This technique however fails to provide
definitive answers for complex reaction networks which involve several reactions and species.
In this work, for reaction systems following mass action kinetics, using the theory of reaction
extents, we show that identifiability can be ascertained by determining the rank of a matrix.
Further, we show that for systems involving most bi-molecular reactions, the parameters are
guaranteed to be identifiable, if R (where R = number of independent reactions) species that
satisfy a rank condition are measured.
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1. INTRODUCTION

It is important to identify reliable and accurate models of
reaction systems for use in model-based analysis tasks such
as simulation, control, and optimisation. In practice, the
identification of models is an iterative process involving:
(i) experimental data generation using carefully planned
experiments, and (ii) fitting a proposed model (or a set of
proposed models) to generated data (van Riel, 2006). It is
important to investigate whether the unknown parameters
can be uniquely estimated from observed data before
investing resources, time and effort in performing actual
experiments (Chis et al., 2011).

A priori structural identifiability addresses the issue of
whether it is possible to recover the unknown parameters
uniquely from a proposed model structure from error-free
data (Ljung and Glad, 1994). The problem of structural
rate identifiability in reaction systems involves determin-
ing the actual parameters appearing in the kinetic rate
laws. This has been studied in the larger context of param-
eter identifiability of ODE models and different methods
based on the Taylor series, generating functions, differen-
tial algebra, implicit function theorem, etc. have been pro-
posed in the existing literature and have been compared
by Chis et al. (2011). Differential algebra-based methods
involve two steps. In the first step, a set of differential
polynomials called the characteristics set that relates the
inputs, outputs, and their derivatives is derived. This is
followed by testing for the injectivity of the coefficient
maps of the differential polynomials. A user-friendly soft-
ware tool, DAISY (Differential Algebra for Identifiability
of SYstems) (Bellu et al., 2007; Saccomani et al., 2003) to

check identifiability in a specific class of nonlinear systems
that contain polynomial or rational functions has been
developed. Systems described by non-rational functions
can be approximated by rational functions and we have
shown that the differential-algebraic methods can provide
a partial answer to the question of structural identifia-
bility (Jain et al., 2019). Although the algorithms are
guaranteed to converge, the worst-case time complexity
is very large. Hence, methods based on DAISY may fail to
provide a definitive result in reasonable time (Saccomani
et al., 2010; Varghese et al., 2018). Moreover, the methods
do not exploit the underlying structure of the system, e.g.,
reaction networks which is the focus of this work.

In the previous work, we applied the theory of reaction
variants and in-variants (Amrhein et al., 2010) to simplify
the problem of determining structural rate identifiability
in reaction systems 1 (Varghese et al., 2018). For a class
of reaction systems, an appropriate extent of reaction was
used to develop an alternate, but equivalent state-space
model with significantly lower dimensions. The advantages
of the method were demonstrated in situations where the
use of conventional methods and software e.g., DAISY
failed. This was also extended to the situation when
the number of participating reactions is more than the
number of independent reactions, and hence applicable to
complex reaction networks which involve a large number
of reactions and species.

In this work, for reaction systems following mass-action
kinetics, we show that the characteristic set is readily

1 In the interest of brevity, we refer to structural rate identifiability
as parameter identifiability or simply identifiability
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obtained by solving a set of linear equations alone. Iden-
tifiability can be ascertained by determining the rank of a
matrix. Further, we show that for systems involving most
bimolecular reactions, the parameters are guaranteed to be
identifiable, if R (R = number of independent reactions)
species that satisfy a rank condition are measured. This
is significant because in many cases, this is possible by
inspection alone. Hence, the need to perform computer al-
gebra (or symbolic computation) required for differential-
algebra methods and software such as DAISY can be
avoided.

2. PRELIMINARIES

2.1 Differential Algebra approach to identifiability

Consider a nonlinear system:

ẋ(t) = f(x,u,p), x(0) = x0,

y = g(x,u,p)
(1)

where x(t) ∈ R
S is the state vector, u ∈ R

υ is the input
vector, y ∈ R

m is the output vector, and p ∈ R
p is the

parameter vector. It is assumed that f(·) : RS → R
S and

g(·) : RS → R
m are Lipschitz continuous with respect to x,

and u. When the nonlinear functions in Eq. (1) are rational
or polynomial, identifiability of the parameters can be
determined as follows. A set of m differential polynomials
in terms of input variables u, output variables y, deriva-
tives of inputs, outputs and parameters p are determined
and denoted as input-output relations or characteristic
set of the system (1). This set of input-output relations
is determined from (1) using the Ritt’s pseudo–division
algorithm (Ritt, 1950; Saccomani et al., 2003). Let h(p)
denote the vector of coefficients in the input output map.
Then, we can check the injectivity of the coefficients map
h(p) of the m differential polynomials for determining a
priori parameter identifiability by evaluating h(p) for an
arbitrary p∗. The Büchberger algorithm is usually em-
ployed to obtain the Gröbner basis for this set of equations
h(p) = h(p∗). Depending on the nature of solutions of
h(p) = h(p∗), we can classify the system as follows.

Definition 1. (Globally Identifiable). The model (1) is
globally identifiable from the input-output data if and only
if for any arbitrary p∗, h(p) = h(p∗) has a unique solution
p = p∗.
Definition 2. (Locally Identifiable). If there exists mul-
tiple but finite number of distinct solutions for h(p) =
h(p∗) then the model (1) is locally identifiable.
Definition 3. (Unidentifiable). If there are infinite num-
ber of solutions for h(p) = h(p∗) then the model (1) is
unidentifiable.

2.2 Models of Reaction Systems

We consider an isothermal constant volume (V0) batch
reaction system with S species and R reactions. N is the
R × S-dimensional stoichiometric matrix and r(c(t), θ)
is the R-dimensional vector of reaction rates, and θ is
the p-dimensional vector of parameters. A reaction rate
is typically a nonlinear function of the concentrations c
and the parameter vector θ. The independent reactions
can be defined as follows (Bhatt, 2011):

Definition 4. (Independent reactions). R reactions are
said to be independent if (i) the rows of N (stoichiome-
tries) are linearly independent, i.e., rank (N) = R, and (ii)
there exists some finite time interval for which the reaction
rate profiles r(t) are linearly independent, i.e., βTr(t) = 0
⇔ β = 0R.

Without loss of generality, we assume that the reactions
are independent. The mole balance equations for this
system can be written as:

ṅ(t) = V0N
Tr(c(t), θ), n(0) = n0

c(t) =
n(t)

V0

(2)

where n and c are the S-dimensional vectors of the number
of moles, and concentrations, respectively. Without loss of
generality, it is assumed that the initial concentrations (c0)
are known. The model (2) can be written in terms of the
concentrations as follows:

ċ(t) = NTr(c(t), θ), c(0) = c0 (3)

In practice, only a subset of concentrations are measured.
Let c be partitioned as: cT = [cT

m cT

u], where cm and cu
denote the measured and unmeasured species concentra-
tion respectively. Then, the above model can be expressed
in conventional state space form as follows

ċ(t) = NTr(c(t), θ)

cm = [Im 0] c
(4)

Definition 5. (Reaction variant, and invariant). Any set
of R linearly independent variables that evolves with
time and depends on reaction rates constitutes a reaction
variant set. Any set of (S − R) linearly independent
variables that do not change with time constitutes a
reaction invariant set. A linear transformation of the
concentrations in (4) can be defined as follows:

[

x
r

x
iv

]

=

[

NT†

QT

]

(c− c0) (5)

where x
r

is the R−dimensional vector of the extents
of reaction, and x

iv
is (S − R)−dimensional vector of

invariant states. The invariant states do not change with
time. ’†’ denotes the Moore-Penrose pseudo–inverse of the
matrix. Q is an S × S − R-dimensional matrix such that
NQ = 0. The concentrations can be related to the extents
of reaction as follows:

c(t) = NTx
r
+ c0 (6)

Typically, not all species are measured. Given a subset of
measurements, under certain conditions, the reaction ex-
tents and unmeasured concentrations can be reconstructed
using the following proposition.

Proposition 6. Let the matrix N, and the initial condi-
tions c0 be known and, without loss of generality, let N
and c be partitioned as: N = [Nm Nu] and cT = [cT

m cT

u].
Furthermore, let cm(t) be measured without errors. If
(i) rank (Nm) = R, then the unmeasured concentrations
cu(t) can be reconstructed from the available cm(t) in two
steps as follows: (i) computation of the extents of reaction,
x

r
(t) = (NT

m)†(cm(t)−c0,m), and (ii) reconstruction of the
unmeasured concentrations cu(t): cu(t) = NT

uxr
(t) + c0,u

(See Proof in (Bhatt, 2011))

Thus, the system can be defined in terms of a lower
dimensional state space, viz., the R-dimensional space of
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reaction variants or extents as follows:

ẋ
r
= r(x,θ), x

r
(0) = 0,

ẋ
iv
= 0, x

iv
(0) = 0,

cm = NT

mx
r
+ c0,m

(7)

Models (4) and (7) can be expressed in terms of the stan-
dard state-space equation form (1). Table 1 summarizes
the two representations in the standard state-space form.
Table 1 shows that the measurement function g(·) is a

Table 1. State space representations of batch
reaction systems

Standard
form

Model (4) Model (7)

Concentration domain Extent domain

x c xr

y cm cm

f NTr r

g
[

Im 0
]

c NT

mxr + c0,m

Number of states S R

linear function of the states.

3. IDENTIFIABILITY ANALYSIS OF REACTION
NETWORKS

In this section, we demonstrate how the use of reaction
variants or extents allows us to readily generate the
characteristic set that significantly reduces the effort in
deciding parameter identifiability in reaction systems.

In contrast to the conventional representation of re-
action systems in the concentration domain, the same
system is represented by a lower-dimensional subspace
(R−dimensional) in the extent domain. Hence, the rep-
resentation in terms of the extent reduces the complex-
ity of the reaction system models when the differential-
algebraic approach is applied to the model in the ex-
tent domain. Further, in the DAISY-based techniques,
the Ritt’s pseudo-division algorithm has to be applied to
obtain the characteristic set of equations using symbolic
computational techniques. In the extend-based approach,
the characteristic equations can be obtained by solving a
set of linear equations. This indeed reduces the compu-
tational efforts. These observations can be generalized as
follows.

Proposition 7. (Varghese et al., 2018) Consider a reac-
tion system with S species and R independent reactions.
The reaction system can be represented by either the
model (4) or the model (7). Let y = cm be the m-
dimensional vector of the measured concentrations with
m ≥ R. Let N and c be partitioned as: N = [Nm Nu] and
cT = [cT

m cT

u]. If rank (Nm) = R, then the characteristic
set can be given by the following equations:

(NT
m)†ẏ = r(y,θ, c0) (8)

Proposition 7 is used to determine the characteristic set
without performing the Ritt’s algorithm. for parameter
identifiability in reaction systems. The result has been
extended to systems with dependent reactions Varghese
et al. (2018).

3.1 Mass action kinetics

A reaction is said to follow mass action kinetics if the rate
law can be expressed as follows:

r =

S
∏

i=1

kfc
|νi|

i −

S
∏

j=1

kbc
|νj |

j (9)

where νi and νj are the stoichiometric coefficients of the
ith reactant and jth product in the reaction, and kf and kb
are the forward and backward reaction constants. Consider
a reaction system with S species and R independent
reactions occurring in a constant volume batch reactor (for
ease of exposition) which can be described by S differential
equations:

ċ(t) = NTr(c(t), θ), c(0) = c0 (10)

where the rate laws follow mass action kinetics and θ ∈ R
p

is a vector of parameters to be determined. It is assumed
that R species are measured such that conditions of
proposition 7 are satisfied. From Proposition 7, we have

ċm = f(θ, cm) (11)

where cm is the vector of measured concentrations.
Clearly, the right hand side is a polynomial function of
cm and linear function of parameters θ. We collect the

different monomials of the form ci11 ci22 . . . c
iSm

Sm

and examine
the first row of f as follows:

f(θ, cm)1 =
[

(ci11 . . . c
iSm

Sm

) . . . (cl11 . . . c
lSm

Sm

)
]









∑

αmiθi
...

∑

αliθi









(12)
Let A1 be defined as follows:








∑

αmiθi
...

∑

αliθi









=







αi1 αi2 . . . αip

...
...

...
...

αl1 αm2 . . . αlp







︸ ︷︷ ︸

A1







θ1
...
θp






= A1







θ1
...
θp







(13)

For every row of fi, i = 1, . . . , R, we collect the matrices
Ai and form a matrix

h =







A1

...
AR







Let us assume that in addition to measuring the concen-
trations c1, . . . , cSm

at times t1, t2, . . . , tN , the derivatives
are also available at these times. Hence, we can form the
following set of equations:









ċ(t1)
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.
.
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2 . . . c

l
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hθ

(14)
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Proposition 8. In reaction systems with mass action ki-
netics, the parameters are generically identifiable if matrix
h in (14) is full rank, i.e., rank (h) = p.

Proof In the interest of brevity, only an outline is pre-
sented. Clearly, Eq. (14) is a set of linear equations in θ and
over-determined, i.e., there are more equations than un-
knowns. The data matrix, i.e., the matrix of concentrations
(or rather monomials) is of full column rank with high
probability. Hence, if h is full rank (i.e., p), there exists
a unique solution to the above equations, and parameters
are identifiable.

Consider an isothermal and constant density reaction sys-
tem having S species and R independent reactions. Let
this reaction network consist only of uni- or bimolecular
reactions alone, i.e., reactions with a maximum of two
reactants and two products. The general form of the ith
reaction in such a network is given by:

Ri : R1i + R2i ↔ P1i + P2i
The rate of this ith reaction can be expressed in mass
action kinetics as

ri = kf,ic
αi

R1,ic
βi

R2,i − kb,ic
γi

P1,ic
θi
P2,i (15)

Given this class of systems, we can show that the above
system is identifiable if R measurements satisfying a rank
condition are chosen.

Theorem 9. Consider a uni-/bi-molecular reaction sys-
tem with S species and R independent reactions. Let y =
cm be the R-dimensional vector of the measured concen-
trations. Let N and c be partitioned as: N = [Nm Nu]

and c = [cm cu]
T
. If rank (Nm) = R, r(y;p; c0)= 0,

and each reaction rate follows mass-action kinetics, then,
the reaction system is globally identifiable. Alternatively,
this result can be interpreted in the following manner.
To guarantee parameter identifiability of uni-/bi-molecular
reaction networks with mass-action kinetics, the minimum
number of measurements for identifiability are R.

Proof In the interest of brevity, only an outline is pre-
sented. From Proposition 6, we have

ẋr,i = ri(xr,θ)

(N−T
m )iẏ = r(N−T

m (y − cm,0),θ)

ri = kf,ic
αi

i c
βi

R2,i − kb,ic
γi

P1,ic
θi
P2,i

(16)

We note that as all reactions are independent, kfi and kbi
will only appear in the characteristic differential equation
for the ith reaction. Hence, the identifiability of each set
of kfi and kbi can be judged on the basis of whether or
not the coefficients of the variables of a single equation in
the characteristic set are alone globally identifiable or not.
In the event all the species in a reaction are measured, we
directly know that the coefficients are kfi and kbi , whose
the Grobner basis will also simply be kfi and kbi , making
them globally(uniquely) identifiable. A situation where all
species in a reaction are unmeasured will not arise as this
will violate our initial condition for measurement that
rank(Nm)=R. As the number of unmeasured species in
any reaction in the network might vary, we still need to
consider the following remaining cases:
(a) Three of the four species in a reaction are measured
(b) Two of the four species in a reaction are measured

(c) Only one species in a reaction is measured.
By analyzing each of these cases and following algebraic
manipulations and simplifications, it is shown that the
parameters in the ith reaction. Hence, the entire system is
identifiable if R independent measurements are chosen.

4. CONCLUSIONS

In this work, we showed that identifiability in reaction
systems following mass action kinetics can be ascertained
by examining the rank of a matrix thus obviating the need
to determine the characteristic set using the differential
algebraic methods. Furthermore, in order to guarantee
parameter identifiability of uni-/bi-molecular reaction net-
works with mass-action kinetics, the minimum number of
concentration measurements required for identifiability is
R. This result can be used for designing experiments for
kinetic model identification.
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Abstract: We develop a new algorithm named TTRISK to solve high-dimensional risk-
averse optimization problems governed by differential equations (ODEs and/or PDEs) under
uncertainty. As an example, we focus on the so-called Conditional Value at Risk (CVaR), but
the approach is equally applicable to other coherent risk measures. Both the full and reduced
space formulations are considered. The algorithm is based on low rank tensor approximations of
random fields discretized using stochastic collocation. To avoid non-smoothness of the objective
function underpinning the CVaR, we propose an adaptive strategy to select the width parameter
of the smoothed CVaR to balance the smoothing and tensor approximation errors. Moreover,
unbiased Monte Carlo CVaR estimate can be computed by using the smoothed CVaR as a
control variate. To accelerate the computations, we introduce an efficient preconditioner for the
KKT system in the full space formulation.The numerical experiments demonstrate that the
proposed method enables accurate CVaR optimization constrained by large-scale discretized
systems. In particular, the first example consists of an elliptic PDE with random coefficients as
constraints. The second example is motivated by a realistic application to devise a lockdown
plan for United Kingdom under COVID-19. The results indicate that the risk-averse framework
is feasible with the tensor approximations under tens of random variables.
This is an extended abstract for a talk based on https://arxiv.org/abs/2111.05180

Keywords: risk measures, tensor decompositions, function approximations, reduced space,
preconditioning
MSC: 93E20, 65D15, 15A69

The control or design optimization problems constrained
by stochastic systems must produce controls or optimal de-
signs which are resilient to the uncertainty due to stochas-
ticity. To tackle this, risk-averse optimization frameworks
targeting engineering applications were created. This talk
will introduce a new algorithm TTRISK which uses a
Tensor Train (TT) decomposition to solve risk averse op-
timization problems constrained by differential equations
(ODEs and/or PDEs).
Let (Ω,A,P) be a complete probability space. Let U, Y be
real reflexive Banach spaces, and let Z be a real Banach
space. Here Y denotes the deterministic state space, U
is the space of optimization variables (control or designs
etc.) and Z is the differential equation residual space. Let
Uad ⊆ U be a closed convex subset and let c : Y × Uad ×
Ω → Z denote, e.g., a PDE in a weak form, then consider

⋆ HA and AO are partially supported by NSF grants DMS-2110263,
DMS-1913004 and the Air Force Office of Scientific Research un-
der Award NO: FA9550-19-1-0036. SD is thankful for the support
from Engineering and Physical Sciences Research Council (EPSRC)
New Investigator Award EP/T031255/1 and New Horizons grant
EP/V04771X/1.

the equality constraint
c(y, u;ω) = 0, in Z, a.a. ω ∈ Ω

where a.a. indicates “almost all” with respect to a proba-
bility measure P.
For practical computations we make the finite dimen-
sional noise assumption on the equality constraint (Kouri
and Surowiec (2016)). More precisely, the constraint
c(y, u;ω) = 0 is represented by a finite random vec-
tor ξ : Ω → Ξ, where Ξ := ξ(Ω) ⊂ Rd with d ∈
N. This allows us to redefine the probability space to
(Ξ,Σ, ρ), where Σ = ξ(A) is the σ-algebra of regions,
and ρ(ξ) is the continuous probability density function
such that E[X] =

∫
Ξ
X(ξ)ρ(ξ)dξ. The random variable

X(ξ) can be considered as a function of the random
vector ξ = (ξ(1), . . . , ξ(d)), belonging to the Hilbert space
F = {X(ξ) : ∥X∥ <∞}, equipped with the inner product
⟨X,Y ⟩ =

∫
Ξ
X(ξ)Y (ξ)ρ(ξ)dξ and the Euclidean norm

∥X∥ =
√
⟨X,X⟩.

Now we consider optimization problems of the form
min
u∈Uad

R[J (y, u; ξ)] + αP(u) (1)
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subject to c(y, u; ξ) = 0, where u ∈ Uad is the deterministic
control and y ∈ Y is the state, P is the cost of the control,
α ≥ 0 is the regularization parameter, J is the uncertain
variable objective function and R is the risk-measure
functional which maps random variables to extended real
numbers.
We assume that R is based on expectation, i.e.,

R[X] = inf
t∈T

Rt[X], where Rt[X] := E[f(X, t)], (2)

f : R × RN → R and T ⊆ RN , with N ∈ N, is a closed
convex set. A typical example of a risk measure R is the
conditional value-at-risk (CVaRβ), where f in (2) is given
by

f(X, t) = t+ (1− β)−1(X − t)+, (3)
with T = R, β ∈ (0, 1) is the confidence level and (x)+ =
max{x, 0}. CVaRβ is also known as expected shortfall.
It’s origin lies in financial mathematics (Rockafellar and
Uryasev (2000)), but owing to Kouri and Surowiec (2016),
it is now being widely used in engineering applications.
Our work in particular, focuses on minimization problems
(1) with R given by CVaRβ but it can be extended to
other coherent risk measures, such as buffered probability
of exceedence (BPOE), of type (2).
Notice that, since risk measures, such as CVaRβ , focus
on the upper tail events, the traditional sampling tech-
niques to solve these stochastic PDE-constrained opti-
mization problems are often computationally expensive.
More precisely, CVaRβ captures the cost associated with
rare events, but it requires more samples in order to be
accurately approximated, which leads to many differential
equation solves. Moreover, the presence of the non-smooth
function (·)+ in CVaRβ poses several challenges, includ-
ing, nondifferentiable cost functional, wasted Monte Carlo
samples outside of the support of (·)+ = max{·, 0}, or
slowly converging polynomial and other function approxi-
mation methods.
To tackle nonsmoothness in CVaRβ , Kouri and Surowiec
(2016) has proposed a smoothing of (·)+ which requires
solving a sequence of smoothed optimization problems
using Newton-based methods. The smoothing approach
is aimed at approximating a non-differentiable function
(·)+ in CVaRβ by a smooth function gε : R → R, which
depends on some ε > 0. In particular, we consider the
following C∞-smoothing function

gε(x) = ε log(1 + exp(x/ε)). (4)
Thus, the optimization problem for smooth CVaRεβ is
given by

min
(u,t)∈Uad×R

Rε
t,β [J (y, u; ξ)] + αP(u)

subject to
c(y, u; ξ) = 0, in Z, a.a. ξ ∈ Ξ,

(5)

where

Rε
t,β [J (y, u; ξ)] := t+

1

1− β
E[gε(J (y, u; ξ)− t)]. (6)

We consider two formulations of (5). The first one is the
reduced-space approach where we remove the equality con-
straint c(y, u;ω) = 0 via a control to solution map u 7→ y.
The second case is the full space approach, where we
directly tackle the full problem (5) using the Lagrangian

formulation. The latter formulation appears to be new in
the context of risk-averse optimization. Numerical exper-
iments demonstrate that the full formulation converges
more reliably for extreme parameters, e.g. large β and
small α.
To introduce the reduced-space formulation, we assume
that c(y, u; ξ) = 0 is uniquely solvable, i.e., for each u ∈
Uad there exists a unique solution mapping y(u; ·) : Ξ → Y
for almost all ξ ∈ Ξ. Moreover, we can approximate the
exact expectation in (6) by a quadrature with some N
points, EN [f ] ≈ E[f ]. The resulting optimization problem
(5) only depends on u and is given by

min
(u,t)∈Uad×R

{
JN (u, t) := Rε

t,β,N [j(u; ξ)] + αP(u)
}
, (7)

where j(u; ξ) := J (y(u; ξ), u; ξ), and

Rε
t,β,N [j(u; ξ)] := t+

1

(1− β)
EN [gε(j(u; ξ)− t)].

Computing first and second derivatives of JN (u, t), which
exist in the classical sense for ε > 0, we can formulate the
Newton method.
In the full-space formulation, we introduce a Lagrange
multiplier p ∈ Z∗, and a Lagrangian

LN (y, u, p, t) = t+ (1− β)−1EN [gε(J (y, u, ξ)− t)]

+ αP(u) + EN ⟨p, c(y, u, ξ)⟩, (8)
which is again differentiable for ε > 0, so we can find a
KKT point using the Newton method.
The dimension d of the random vector ξ can be arbitrarily
high. For instance, ξ may be a tuple of tens of model
tuning parameters, or it can be a vector of coefficients
of a Karhunen-Loeve (KL) approximation of an infinite-
dimensional continuous random field. In this case expecta-
tions as in (6) become high-dimensional integrals. Instead
of a direct Monte Carlo average (which may converge
too slowly), we introduce a high-order quadrature rule
(e.g. Gauss-Legendre) with nξ ∈ N points in each of
the components ξ(1), . . . , ξ(d) independently. For this, we
assume that each ξ(k) has a probability density function
ρ(k)(ξ(k)), and that the space of functions f(ξ) ∈ F is
isomorphic to a Cartesian product of spaces of univariate
functions, F = F (1)⊗· · ·⊗F (d), where F (k) = {f (k)(ξ(k)) :
∥f (k)∥ < ∞}, ∥f (k)∥ =

√
⟨f (k), f (k)⟩, ⟨f (k), g(k)⟩ =∫

R f
(k)(ξ(k))g(k)(ξ(k))ρ(k)(ξ(k))dξ(k), k = 1, . . . , d. How-

ever, the exponential total number of quadrature points
in all variables ndξ becomes intractable even for moderate
dimensions.
To tackle this curse of dimensionality, we build on tensor
decomposition methods, which emerged in the past two
decades (Hackbusch (2012)) as an efficient approxima-
tion of multi-index arrays, in particular when those con-
tain expansion coefficients of high-dimensional functions
(Gorodetsky et al. (2019)).

Definition. A square-integrable function f(ξ) is said
to be approximated by a (functional) TT decomposition
(Gorodetsky et al. (2019)) with a relative approximation
error ϵ if there exist univariate functions F (k)(·) : ξ(k) ∈
R → Rrk−1×rk , k = 1, . . . , d, such that
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f̃(ξ) :=

r0,...,rd∑
s0,...,sd=1

F (1)
s0,s1(ξ

(1))F (2)
s1,s2(ξ

(2)) · · ·F (d)
sd−1,sd

(ξ(d)),

(9)
where the subscripts sk−1, sk denote elements of a matrix,
and ∥f − f̃∥ = ϵ∥f∥. The factors F (k) are called TT cores,
and their image dimensions r0, . . . , rd ∈ N are called TT
ranks.
Without loss of generality we can let r0 = rd = 1,
but the other TT ranks r1, . . . , rd−1 can vary depend-
ing on the approximation error. The simplest example
is a bi-variate truncated Fourier series f̃(ξ(1), ξ(2)) =∑r
s=−r fs(ξ

(1)) exp(isξ(2)).

From (9), we notice that the expectation of f̃ factorizes
into univariate integrations,

EN [f ] = E[f̃ ] =
r0,...,rd∑
s0,...,sd=1

(EF (1)
s0,s1)(EF

(2)
s1,s2) · · · (EF

(d)
sd−1,sd

).

For practical computations with (9) we introduce univari-
ate bases {ℓi(ξ(k))}

nξ

i=1, and the multivariate basis con-
structed from a Cartesian product,

Li1,...,id(ξ) := ℓi1(ξ
(1)) · · · ℓid(ξ(d)).

Now we can collect the expansion coefficients of f̃ into a
tensor F ∈ Rnξ×···×nξ ,

f̃(ξ) =

nξ∑
i1,...,id=1

F(i1, . . . , id)Li1,...,id(ξ). (10)

Similarly, TT cores in (9) can be written using three-
dimensional tensors F(k) ∈ Rrk−1×nξ×rk ,

F (k)
sk−1,sk

(ξ(k)) =

nξ∑
i=1

F(k)(sk−1, i, sk)ℓi(ξ
(k)), (11)

k = 1, . . . , d. The original (discrete) TT decomposition
(Oseledets and Tyrtyshnikov (2010)) was introduced to de-
compose a high-dimensional tensor like F into a product of
smaller tensors like F(k). Note that F contains ndξ elements,
whereas storing F(1), . . . ,F(d) needs only

∑
k rk−1nξrk el-

ements. For brevity we can define the maximal TT rank
r := maxk rk, which gives us a linear storage complexity
of the TT decomposition, O(dnξr

2).
In practice, TT cores are computed by solving an ap-
proximation or optimization problem in an alternat-
ing direction-type iteration. For example, the TT-Cross
method by Oseledets and Tyrtyshnikov (2010) can ap-
proximate potentially any function f̃(ξ) ≈ f(ξ), using
O(dnξr

2) samples from the function f(ξ) and O(dnξr
3)

further floating point operations. Similarly, linear algebra
on functions can be recast to linear algebra on their TT
cores with a linear complexity in the dimension.
However, irregular functions, such as the (·)+ function
in (3), may lack an efficient TT decomposition. This is
another reason for switching to the smoothed CVaR for-
mulation, since smooth functions do admit convergent TT
approximation. Nevertheless, this convergence can still be
slow, and for practically feasible smoothness parameters,
the solution of the smoothed problem can be biased. To
obtain an unbiased, asymptotically exact solution, we pro-
pose a version of Multilevel Monte Carlo methods (Giles

(2015)), namely, we use a smoothed solution as a control
variate.
The TTRISK algorithm is a combination of the Newton
method for (7) or (8) with TT approximations (9) for the
computation of expectations (with optional Monte Carlo
correction), and an adaptive selection of ε which is driven
to zero geometrically as the iteration converges.
The numerical experiments demonstrate that the stochas-
tic risk-averse control problem can be solved with a cost
that depends at most polynomially on the dimension.
This allows us to solve realistic risk-averse PDE and ODE
control problems with up to 20 random variables.
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Abstract: Extended Dynamic Mode Decomposition, embedded in the Koopman framework, is
a widely-applied technique to predict the evolution of an observable along the flow of a dynamical
(control) system. However, despite its popularity, the error analysis for control systems is still
fragmentary. Here, we provide a complete and rigorous analysis of the approximation error for
control systems. To this end, the approximation error is split up according to its two sources of
error: the finite dictionary size (projection) and the finite amount of i.i.d. data used to generate
the surrogate model (estimation). Then, invoking—among others—finite-elements techniques
and the Chebyshev inequality, probabilistic error bounds are derived. Finally, we demonstrate
the applicability of the novel error bounds in optimal control with state and control constraints.

Keywords: data-based control, eDMD, error bound, finite-data, Koopman, state constraints

While optimal and predictive control based on models
derived from first principles are nowadays well established,
data-driven controller design is becoming increasingly pop-
ular. A particularly successful technique to construct data-
driven surrogate models is based on the extended Dynamic
Mode Decomposition (eDMD), see Mezić (2005); Rowley
et al. (2009) and the recent survey Brunton et al. (2021). A
key advantage is the potential embedding of eDMD in the
Koopman framework (Koopman, 1931) such that it has a
sound theretical foundation.

This extended abstract, which is mainly a summary of
the major findings presented in full detail in Schaller
et al. (2022), provides a complete error analysis for the
bilinear surrogate models resulting for nonlinear control-
affine systems. To this end, the (overall) approximation
error is split up into its two sources, i.e., projection and
estimation. The projection error results from using a dic-
tionary D(L) consisting of only finitely many entries—
the so-called observables ψ1, . . . , ψN . The estimation er-
ror results from only taking finitely many data points
x1, . . . , xm in account while constructing the surrogate
model on the subspace V = span{{ψj}Nj=1}. Here, the
dictionary includes linear finite elements on a triangulation
of the domain of interest. In conclusion and to the best of
the authors’ knowledge, this is the first rigorous finite-
data error estimate for the eDMD-based prediction for

⋆ F. Philipp was funded by the Carl Zeiss Foundation within the
project DeepTurb—Deep Learning in und von Turbulenz. K. Worth-
mann gratefully acknowledges funding by the German Research
Foundation (DFG; grant WO 2056/6-1, project number 406141926).

nonlinear control systems taking into account both sources
of errors, i.e., the projection and the estimation error.

1. BILINEAR SURROGATE MODEL

The Koopman framework provides the theoretical founda-
tion for data-driven approximation techniques like eDMD,
see (Mauroy et al., 2020, Chapters 1 and 8): Using the
Koopman operator semi-group (Kt)t≥0 or—equivalently—
the Koopman generator L, so-called observables φ (real- or
complex-valued L2-functions of the state, e.g., represent-
ing a coordinate function, a state constraint or another
quantity of interest) can be propagated forward in time
via

Ktφ = K0φ+ L
∫ t

0

Ksφds. (1)

The propagated observable Ktφ can be evaluated for some
state x0 instead of first calculating the solution x(t;x0) of
the underlying Ordinary Differential Equation (ODE) and
then evaluating the observable as depicted in Figure 1.

The convergence of (K̃t)t≥0, i.e., the eDMD-based surro-
gate model of an autonomous dynamical system, to the
Koopman semi-group (Kt)t≥0 in the infinite-data limit,
i.e., for N and m tending to infinity, was shown in Korda
and Mezić (2018b). However, error estimates for the esti-
mation step explicitly depending on the dictionary size N
and the amount of data points m for the ODE case were
only recently established in (Zhang and Zuazua, 2021)
and (Nüske et al., 2021) assuming identically and indepen-
dently distributed (i.i.d.) data. While the former reference
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Fig. 1. Schematic sketch of the Koopman framework.

also covers the projection error in a rigorous manner, the
latter one extends the analysis of the estimation error to
stochastic differential equations and ergodic sampling.

We consider dynamics governed by the nonlinear control-
affine differential equation

ẋ(t) = g0(x(t)) +
∑nc

i=1
gi(x(t))ui(t) (2)

with initial condition x(0) = x0 and locally Lipschitz-
continuous vector fields g0, g1, . . . , gnc : Rnx → Rnx .
Further, we impose the control constraints u(t) ∈ U for
some compact, convex, and nonempty set U ⊂ Rnc and
define the set of admissible control functions by

UT (x0) ≜

{
u : [0, T ] → Rnc

∣∣∣∣∣ u measurable
∃!x( · ;x0, u)
u(t) ∈ U, t ∈ [0, T ]

}
, (3)

where x(t;x0, u) denotes the unique solution at time t ≥ 0.
In the following, we assume that UT (x0) is nonempty
whenever the set of initial values X ⊂ Rnx is suitably
chosen.

In order to predict control systems by means of the Koop-
man framework, Proctor et al. (2016) as well as Korda
and Mezić (2018a) proposed to augment the state by the
control variable and, then, to generate a linear surrogate
model depending on the extended state by using eDMD,
see (Mauroy et al., 2020, Chapter 1) for details. In this
work, however, we use the bilinear approach, exploiting
the control-affine structure of (2) as suggested, e.g., in
Williams et al. (2016); Surana (2016), see also (Mauroy
et al., 2020, Section 4), for which estimation error bounds
were first derived in Nüske et al. (2021). The advantages
of this approach are twofold. First, one can observe a
superior performance when considering bilinear systems
where the control is coupled to the state. Second, as the
state dimension is not augmented, the data-requirements
are less demanding.

We briefly describe the bilinear approach for surrogate
modeling of control systems. In this case, for a given
control u ∈ L∞(0, T ;U), the generator inherits the control-
affine structure, i.e.,

Lu(t) = L0 +

nc∑
i=1

ui(t)
(
Lei − L0

)
, (4)

with Lei , i = 0, . . . , nc, being the Koopman generator
for the autonomous system with constant control ū =
ei, where e0 := 0 and ej denotes the j-th standard
basis vector, see, e.g., Peitz et al. (2020). Thus, the time
evolution of an observable function φ ∈ L2(X) along the
flow of the control system (2) can be predicted via the
bilinear system

ż(t;u) = Lu(t)z(t;u), z(0;u) = φ. (5)

This propagated observable function can, then, be evalu-
ated for an initial state x0 ∈ X to evaluate the observable
along a particular trajectory, i.e.,

z(t;u)(x0) = φ(x(t;x0, u)),

cf. Figure 1 for an illustration.

Each of the individual generators Lei , i ∈ {0, . . . , nc}
can be approximated by means of eDMD. The orthogonal
projection onto V and the Galerkin projection of the
Koopman generator are denoted by PV and LeiV := PVLei|V,
respectively. Along the lines of Klus et al. (2020), we have
the representation LeiV = C−1A with C,A ∈ RN×N given
by

Ci,j = ⟨ψi, ψj⟩L2(X) and Ai,j = ⟨ψi,Leiψj⟩L2(X).

Consider i.i.d. data points x1, . . . , xm ∈ X and the matrices

Ψ(X) :=

((
ψ1(x1)

:
ψN (x1)

)∣∣∣∣ . . . ∣∣∣∣( ψ1(xm)
:

ψN (xm)

))
LeiΨ(X) :=

((
(Leiψ1)(x1)

:
(LeiψN )(x1)

)∣∣∣∣ . . . ∣∣∣∣( (Leiψ1)(xm)
:

(LeiψN )(xm)

))
.

Then, defining C̃m, Ãm ∈ RN×N by

C̃m = 1
mΨ(X)Ψ(X)⊤ and Ãm = 1

mΨ(X)LeiΨ(X)⊤,

an empirical, i.e., purely data-based estimator for the
Galerkin projection LV is given by L̃m = C̃−1

m Ãm. Hence,
the projection of (4) onto the finite dictionary V is given
by

LuV(t) := L0
V +

nc∑
i=1

ui(t)
(
LeiV − L0

V
)
. (6)

In conclusion, the propagation of observable functions
φ ∈ L2(X) projected onto the dictionary V is given by

żV(t;u) = LuV(t)zV(t;u), z(0;u) = PVφ. (7)

The corresponding approximation by means of eDMD
using m data points is defined analogously via

L̃um(t) := L̃0
m +

nc∑
i=1

ui(t)
(
L̃eim − L̃0

m

)
, (8)

where for i = 1, . . . , nc, L̃eim are eDMD-based approxi-
mations of LeiV . The corresponding data-based surrogate
prediction dynamics read

˙̃zm(t;u) = L̃um(t)z̃m(t;u) z̃m(0;u) = PVφ. (9)

2. UNIFORM FINITE-DATA ERROR BOUND

In this section, we present error bounds when using a
dictionary V consisting of finite elements, i.e., ψi, i =
1, . . . , N , are the usual piecewise linear hat functions
defined on a regular uniform triangulation of the compact
set X with meshsize ∆x > 0 (e.g., the maximal incircle
diameter of the cells) and nodes x̂j ⊂ X, j = 1, . . . , N
such that for i, j ∈ {1, . . . , N}, ψi(x̂j) = 1 if i = j and
zero otherwise.

We now state the main theorem considering the approxi-
mation error.

Theorem 1. Let a probabilistic tolerance ε > 0 and confi-
dence level 1− δ ∈ (0, 1) be given. Then, for an observable
φ ∈ C2(X,R), X ⊂ Rn compact and time T > 0, there exist
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constants cdict, cdata such that the probabilistic bound on
the approximation error

P (∥φ(x(t;x0, u))− z̃m(t;u)(x0)∥ ≤ ε) ≥ 1− δ

holds for all x0 ∈ X, u ∈ UT (x0) and all t ∈ [0, T ]
provided that {x(t;x0, u) : t ∈ [0, T ]} ⊂ X for the bilinear
surrogate model (9) if the mesh size ∆x of the finite-
elements observables and the number of i.i.d. data points
satisfy the data-requirement conditions

∆x ≤ cdictε, m ≥ cdata
1

ε2δ

(
1

∆xd

)2
(10)

Sketch of the proof. The proof follows the same argu-
mentation as (Schaller et al., 2022, Proof of Theorem 5).
The main idea is sketched in Figure 2: One first fixes a
(small enough) finite element mesh size ∆x, and hence
the dictionary, such that the projection error is small
enough. This can be done using standard finite element
estimates. Then, having fixed the dictionary size, using
the Chebyshev inequality, one chooses a (high enough)
number of data points such that also the estimation error
on this dictionary is small enough. Due to the randomness
in the data points, this can only be obtained with a given
desired confidence, leading to the probabilistic estimate in
the statement.

approximation error:
φ(x(t; ·, u)) − z̃m(t;u)

z(t;u) − z̃m(t;u)

Koopman

z(t;u) − z̃V(t;u)

projection error

zV(t;u) − z̃m(t;u)

estimation error

deterministic: O (∆x) probabilistic: O
(

1
∆x2dm

)finite elements Chebyshev

Fig. 2. Splitting of full error into projection and estimation
error.

3. UNIFORM ERROR BOUNDS IN OPTIMAL
CONTROL

We consider the Optimal Control Problem

Minimizeu∈UT (x0)

∫ T

0

ℓ(x(t;x0, u)) + ∥u(t)∥22 dt (OCP)

subject to the initial condition x(0) = x0, the control affine
system dynamics (2), and the state constraints

hj(x(t;x0, u)) ≤ 0 ∀ j ∈ {1, 2, . . . , p}. (11)

The key challenge is to properly predict the perfor-
mance index of (OCP) and satisfaction of the state con-
straints (11). Both quantities are evaluated along the state
dynamcis (2), i.e., the stage cost ℓ and the constraint
functions hj , j = 1, 2, . . . , p. Instead of propagating the
state dynamics and then evaluating these observables, we
employ the derived eDMD-based surrogate model to ob-
tain the equality

(Ktuφ)(x0) = φ(x(t;x0, u)) ∀ t ∈ [0, T ] (12)

for the observables φ = hj , j ∈ {1, . . . , p}, and φ =
ℓ. Then, suitably applying Theorem 1 yields the error
bounds, see (Schaller et al., 2022, Proposition 7).

Proposition 2. Suppose that ℓ, hi ∈ C2(X,R), i ∈
{1, 2, . . . , p}, hold. Then, for every probabilistic tolerance
ε > 0 and every confidence level 1−δ ∈ (0, 1), every initial
value x0 ∈ X such that x(t;x0, u) ∈ X for the solution
of (2) contained in X,

1) the probabilistic performance bound

P
(
∥ℓ(x(t;x0, u))− ℓ̃m(t;x0, u)∥ ≤ ε

)
≥ 1− δ

2) and the probabilistic state-constraint satisfaction,
i.e.,

P(hi(x(t, x0;u)) ≤ 0) ≥ 1− δ,

is satisfied provided that h̃i,m(t;x0, u) ≤ −ε holds,

where ℓ̃1,m, h̃i,m, i ∈ {1, 2, . . . , p}, are predicted along
the bilinear surrogate dynamics (9) with initial states

ℓ̃1,m(0;x0, u) = PVℓ1, h̃i,m(0;x0, u) = PVhi if the require-
ments (10) for dictionary and data are met.

The result of Proposition 2 is two-fold. The first state-
ment 1) yields a bound on the stage cost. This can be
utilized to estimate the degree of suboptimality of the
surrogate OCP’s optimal control in view of the original
problem. The second statement 2) allows us to deduce a
chance constraint satisfaction of the original problem, pro-
vided we satisfy tightened constraints along the surrogate
model.

4. SUMMARY AND OUTLOOK

We provided a complete and an rigorous analysis of the
approximation error for eDMD-based prediction of control
systems in the Koopman framework. To this end, we split
the error into its two sources of error, a projection error
vanishing in the dictionary size and an estimation error
decreasing in the number of data points. Last, we applied
the error bound to particular observables in optimal con-
trol, namely the stage cost and the constraint functions,
to derive probabilistic error bounds on the performance
index and the satisfaction of state constraints.

In future work, we want to apply the derived results,
cf. Proposition 2, within data-driven predictive control.
In particular, we aim at showing recursive feasibility and
deriving suboptimality estimates in data-based predictive
control.
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Abstract: In this extended abstract we show, on the one dimensional (1D) heat equation exam-
ple, how Boundary Controlled Irreversible Port Hamiltonian Systems (BC-IPHS) formulations
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1. INTRODUCTION

Boundary controlled port Hamiltonian formulations [4,
2] have shown to be very useful for the analysis and
control of distributed parameter systems described by
skew symmetric differential operators. For this class of
systems, an efficient control design technique has been
established using control by interconnection, structural
invariants and energy shaping [5]. These formulations have
been recently extended to irreversible systems [6], i.e.
systems for which the thermal domain plays a central role,
as it is the case for the heat equation or for reaction-
diffusion systems. Boundary Controlled Irreversible Port
Hamiltonian Systems (BC-IPHS) formulations allow to
encompass the two laws of Thermodynamics, conservation
of the total energy and irreversible entropy creation. In this
extended abstract we show on the one dimensional (1D)
heat equation example how these fundamental properties
can be used for control design purpose.

2. BOUNDARY CONTROLLED IPHS
FORMULATION OF THE HEAT EQUATION:

Alternatively to the classical formulation of the heat
equation defined on a one dimensional spatial domain,
with ζ ∈ [0, L],

cv∂tT = ∂ζ (k∂ζT ) , (1)

where T = T (ζ, t) is the temperature, cv the heat capaci-
tance of the medium and k the heat conduction coefficient,
one can use the entropy density s = s(ζ, t) as state
variable. Using the expression of the entropy flux qs = q

T

? This work has received funding from the ANR IMPACTS project
under the reference code ANR-21-CE48-0018, EIPHI Graduate
School contract ANR-17-EURE-0002 and also by ANID projects
FONDECYT 1191544 and BASAL FB0008..

with q = −k∂ζT and Gibbs relation du = Tds, (1) can be
written

∂ts = −∂ζqs −
(qs
T

)
∂ζT, (2)

that leads after integration by parts, according to [6], to
the BC-IPHS

∂ts =rs∂ζes + ∂ζ (rses)

u = WBes =

[
−qs|L
−qs|0

]
,

y = WCes =

[
T |L
−T |0

] (3)

with 1 rs = γs{S|H}, γs = k
T 2 , es = δsH = T and

WB =

[
−1 0
0 −1

]
, WC =

[
1 0
0 −1

]
The total energy and total entropy are given by H =∫ L

0
u(ζ, t)dζ and S =

∫ L
0
s(ζ, t)dζ respectively, such that

δsH = ∂su = T and δsS = 1. The BC-IPHS (3) expresses
explicitly the first and second laws of Thermodynamics.
Indeed, the term rs∂ζes = γs{S|H}2 ≥ 0 describes the
density of entropy produced by the heat flux and the term
∂ζ (rses) = −∂ζqs describes the entropy diffusion, so the
total entropy and total energy balance are

Ṡ =

∫ L

0

∂tsdζ =

∫ L

0

γs{S|H}2dζ︸ ︷︷ ︸
≥0

+ [1 −1]u (4)

and

Ḣ =

∫ L

0

es∂tsdζ =

∫ L

0

(esrs∂ζ (es) + δsH∂ζ (rses)) dζ

= (esrses)|L0 = y>u (5)

1 Defining the pseudo bracket

{Z|W} =δsZ∂ζ (δsW)

for some smooth functionals Z and W.
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which shows that the BC-IPHS (3) is conservative and
satisfies the first and second laws of Thermodynamics.
From the isotropic assumption (i.e. k constant) the heat
equation admits as equilibrium profiles [3] T ∗ ∈ T∗ where

T∗ = {T = mζ + b, ζ ∈ [0, L], (m, b) ∈ R}
is the space of temperature equilibrium profiles satisfying
∂ζ (k∂ζT

∗) = 0.

3. BOUNDARY CONTROL BY INTERCONNECTION

In this section we consider control by interconnection, i.e.
the system is interconnected at the boundary of its spatial
domain to a dynamic controller in a power preserving way
as in Figure 1.

Heat equation

Infinite-dimensional IPHS

Controller

Finite-dimensional IPHS

C : Invariant

y

ucyc

uu′

−

Fig. 1. CbI of the heat equation

Inspired by the classical Control by Interconnection method
the dynamic controller is looked for under the non linear
formulation

ẋc = Gc(xc,uc)uc, yc = G>c (xc,uc)ec, (6)

where ec = ∂xc
Hc and Hc a smooth function of xc. This

interconnection leads to the coupled PDE-ODE system[
∂ts
ẋc

]
︸ ︷︷ ︸
ẋcl

=

[
rs∂ζ(·) + ∂ζ(rs·) 0
Gc(xc,uc)WC 0

]
︸ ︷︷ ︸

Jcl

[
es
ec

]
︸︷︷︸
ecl

u′ =
[
WB G>c (xc,uc)

]︸ ︷︷ ︸
WBcl

ecl

(7)

where ecl ∈ Ecl denotes the vector of co-states of the
closed-loop system.

Definition 1. [7, 5] Consider the boundary control system
of Figure 1 with u′ = 0. A function C : L2([0, L],R) ×
R → R is a system’s invariant if Ċ = 0 along the closed
loop trajectories. C is a structural invariant if Ċ = 0 along
the closed loop trajectories for any ecl.

In this study we consider the following assumption.

Assumption 1. The function C(s, xc) is of the form

C(s, xc) = Γxc +

∫ L

0

f(s(ζ))dζ = κ (8)

where κ is a constant and f(s) ∈ H1([0, L],R) is a
continuous function.

Proposition 1. Consider the BC system of Figure 1 with
u′ = 0. Then (8) is a closed loop invariant if

〈Jclε, ecl〉 =0 (9)[
WB G>c (xc,uc)

]
ε =0 (10)

where

ε =

[
εs
εc

]
=

[
δsC
∂xc

C

]
=

[
∂sf(s)

Γ

]
(11)

In the case of the heat equation Proposition 1 leads to
Proposition 2.

Proposition 2. The function C satisfies Proposition 1 if
f(s) = αu(s) + c1 where c1 is a function that does not
depend on s. The state of the control system (6) is then
given by the state feedback

xc = −α
Γ

∫ L

0

u(s)dζ + k̄/Γ = −α
Γ
H(s) + k̄/Γ (12)

with k̄ =

(
k +

L∫
0

c1dζ

)
and the controller energy function

is

Hc =
Γ

α
xc + kc = −H(s) + k′ (13)

where k′ = k̄
α + kc, with kc a constant. In accordance

with the first principle of Thermodynamics the closed loop
energy function is then constant and equal to k′.

4. ENTROPY ASSIGNMENT

In the previous section we have shown that control by
interconnection with a dynamic controller of the form (6)
with xc satisfying (12) allows to preserve the closed loop
energy function satisfying the first principle of Thermody-
namics. In the case of the heat equation, the only physical
domain that is considered is the thermal domain. In this
case the internal energy is then preserved and one can use
the irreversible entropy creation for control design, leading
to Proposition 3.

Proposition 3. The boundary controller (6) with

G>c =
α

Γ

([
−km∗

T |L
−km∗

T |0

]
+

1

cv
Φ(xc)

[
T (T − T ∗)|L
−T (T − T ∗)|0

])
(14)

where Φ(xc) = Φ(xc)
> ≥ 0, exponentially stabilizes (3) to

the desired equilibrium profile T ∗.

In Proposition 3 a classical Lyapunov function of the form

V(T, T ∗) =

∫ L

0

1

2
(T − T ∗)2

dζ. (15)

is used to design the dynamic controller (6). One can show
that

V̇ = −(σ + y>ΞΦΞ>y) < 0, (16)

with Ξ = 1
cv

[
(T − T ∗)|L 0

0 (T − T ∗)|0

]
, Φ > 0, ∀T 6= T ∗

and V̇ = 0 when T = T ∗. The choice of Φ allows to shape
the irreversible entropy creation in the direction of the
desired equilibrium.

5. SIMULATIONS

We consider a copper bar of length L = 0.1m and cross-
sectional area of 10−4m2. Copper material properties can
be found in [1]. We choose the following constitutive
relation for the temperature T (ζ, t) = C0e

s(ζ,t)/cv , where
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C0 is a constant such that the initial temperature profile
is

T0 = T (ζ, 0) = 303.15◦K, ∀ζ ∈ [0, 0.1]

Similarly, the desired temperature equilibrium profile is
defined by the slope m∗ = 150◦K/m and bias b∗ =
313.15◦K, i.e.,

T ∗ = 150ζ + 313.15, ζ ∈ [0, 0.1]

We choose Φ(xc) in Proposition 3 as

Φ(xc) = cv

[
a|xc|+φ∗

T 2|L 0

0 a|xc|+φ∗

T 2|0

]
> 0 (17)

where a > 0 and φ∗ > 0 are constant, leading to the
following control law

u =− Γ

α
G>c (xc) =

km∗

T |L −
T−T∗

T

∣∣∣
L

(a |xc|+ φ∗)

km∗

T |0 + T−T∗

T

∣∣∣
0

(a |xc|+ φ∗)

 (18)

or equivalently by using (12) with α = −1, Γ = 1 and
k̄ = −H0

u =

km∗

T |L −
T−T∗

T

∣∣∣
L

(
a
∣∣∣∫ L0 (u(ζ, t)− u0)dζ

∣∣∣+ φ∗
)

km∗

T |0 + T−T∗

T

∣∣∣
0

(
a
∣∣∣∫ L0 (u(ζ, t)− u0)dζ

∣∣∣+ φ∗
)

(19)

The closed loop performances are shown in Figure 2 and
Figure 3.

Fig. 2. Response with φ∗ = 2 and a = 0.3. Left: Absolute
error |T − T ∗|.

Fig. 3. Response with φ∗ = 2 and a = 0.3. Temperature
trajectories.

We can see that using (19) the closed loop system is
exponentially stable and reaches the desired equilibrium
profile. The controller parameters can be used to modify
the closed loop performances.

6. CONCLUSION

In this extended abstract we have shown how BC-IPHS
formulations can be used for control design in the case
of the heat equation. The main advantage of using such
formulation is the physical interpretation of the closed
loop system, and the design of an appropriate Lyapunov
function for control design. Even if the considered case is
rather simple as it corresponds to a fully actuated heat
equation, it paves the way to more complex scenarios
where the control is applied to only one boundary, the
other being subject to a reflective condition, or unstable
heat equation with distributed source terms. It should also
allow to derive alternative Lyapunov functions leading to
other control design with lower control efforts.
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Abstract: The moment-sum-of-squares (moment-sos) hierarchy is one of the most celebrated
and widely applied methods for approximating the minimum of an n-variate polynomial over
a feasible region defined by polynomial (in)equalities. A key feature of the hierarchy is that it
can be formulated as a semidefinite program of size polynomial in the number of variables
n. Although this suggests that it may therefore be computed in polynomial time, this is
not necessarily the case. Indeed, as O’Donnell [9] and later Raghavendra & Weitz [12] show,
there exist examples where the sos-representations used in the hierarchy have exponential bit-
complexity. We study the computational complexity of the sos-hierarchy, complementing and
expanding upon earlier work of Raghavendra & Weitz [12]. In particular, we establish algebraic
and geometric conditions under which polynomial-time computation is possible. As this work is
still ongoing, our results should be treated as preliminary.

Keywords: polynomial optimization; sum-of-squares hierarchy; computational complexity.

1. INTRODUCTION

Consider the polynomial optimization problem:

fmin := min f(x)

s.t. gi(x) ≥ 0 (1 ≤ i ≤ m),

hj(x) = 0 (1 ≤ j ≤ ℓ),

x ∈ Rn,

(POP)

where f, gi, hj ∈ R[x] are given n-variate polynomials. The
feasible region of (POP) is a basic semialgebraic set, which
we denote by:

S(g,h) := {x ∈ Rn : gi(x) ≥ 0, hj(x) = 0}.
Problems of the form (POP) are generally hard and non-
convex. They naturally capture several classical combi-
natorial problems, and have applications in finance, en-
ergy optimization, machine learning, optimal control and
quantum computing. As they are often intractable, several
techniques have been proposed to approximate them. Per-
haps the most well-known and studied among these tech-
niques is the so-called moment-sum-of-squares (moment-
sos) hierarchy, due to Lasserre [5] and Parillo [10]. The
main idea behind the hierarchy is that one can certify
the nonnegativity of a polynomial p ∈ R[x] on S(g,h)
by representing it as a weighted sum of squares:

p(x) =
m∑
i=0

gi(x)σi(x) +
ℓ∑

j=1

hj(x)pj(x), (1)

where σi ∈ Σ[x] are sums of squares, pj ∈ R[x] and we set
g0(x) = 1 for convenience. We say that a representation (1)
is of degree t if deg(giσi) ≤ t and deg(hjpj) ≤ t for all i, j.
For t ∈ N, one then obtains a lower bound sos(f)t ≤ fmin

on the minimum of f by:

sos(f)t := sup
λ∈R

{
λ :

f − λ has a represen-
tation (1) of degree 2t

}
. (SOS)

Under a minor assumption on S(g,h) (see Definition 1
below), the bounds sos(f)t converge to fmin as t → ∞.
The rate of this convergence has been the subject of some
study, see, e.g., [1], [6], [7], [8], [13], [14].

For fixed level t, the lower bound sos(f)t may be computed
by solving a semidefinite program (SDP) involving matri-
ces of size polynomial in n. It is often claimed that one may
therefore (approximately) compute sos(f)t in polynomial
time, for instance by applying the ellipsoid algorithm. As
was noted by O’Donnell [9] and later by Raghavendra &
Weitz [12], this is not necessarily the case. Indeed, polyno-
mial runtime of the ellipsoid algorithm is only guaranteed
when the feasible region of the SDP contains an inner ball
which is not too small, and is contained in an outer ball
which is not too large. Informally, this means that it is
possible to choose the coefficients of the multipliers σi, pj
in the representation (1) so that their bit-complexity is
polynomial in n. We call such a representation compact.

We will consider below sets S(g,h) with the following mi-
nor algebraic boundedness condition. It is slightly stronger
than the usual Archimedean condition, but it is more
convenient to work with for our purposes.

Definition 1. We say that (POP) is explicitly bounded if
there exists a constant R > 0 such that:

g1(x) = R− ∥x∥22.

Roughly speaking, if we accept small additive errors in the
solution, the condition above guarantees the existence of
the inner ball (see [12]).
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The remaining question, then, is whether an outer ball
always exists. O’Donnell [9] shows that in fact, it does not;
he constructs an example where every representation (1)
of f(x) − sos(f)2 necessarily involves multipliers σi, hj

whose coefficients are doubly-exponentially large in n.
Raghavendra & Weitz [12] subsequently show that it is
possible to construct such an example even when the
equalities h include the boolean constraints xi − x2

i = 0,
negatively answering a question posed by O’Donnell. On
the positive side, they show conditions under which exis-
tence of a compact representation (1) is guaranteed. These
conditions are met for the reformulation of several well-
known combinatorial problems as a (POP), as well as
for optimization over the unit hypersphere. In order for
their result to make sense, we must make the natural
assumption that the coefficients of the objective function
f and the polynomials gi, hj defining the feasible region
S(g,h) of (POP) have polynomial bit-complexity.

Assumption 1. Throughout, we assume that the coeffi-
cients of the polynomials f, gi, hj in (POP) have polyno-
mial bitsize in n and their degree is independent of n.

Theorem 2. (Main positive result of [12], paraphrased). Let
S(g,h) be a semialgebraic set and let t ∈ N be fixed.
Suppose that the following conditions are satisfied:

(1) The set S(g,h) is explicitly bounded: g1(x) = R −∑n
i=1 x

2
i for some R ≤ 2poly(n)

(2) For any p ∈ R[x]t with p(x) = 0 for all x ∈ S(g,h),
there are p1, p2, . . . , pℓ ∈ R[x] such that:

p(x) =
ℓ∑

j=1

pj(x)hj(x),

and deg(pjhj) = O(t).
(3) Let µ be the uniform probability measure on S(g,h).

The moment matrix M(µ)t defined by:(
M(µ)t

)
α,β

:=

∫
S(g,h)

xα+βdµ(x) (α, β ∈ Nn
t )

has smallest non-zero eigenvalue ≥ 2−poly(n).
(4) There exists an η ≥ 2−poly(n) such that gi(x) ≥ η for

all x ∈ S(g,h) and 1 ≤ i ≤ m.

Then the program (SOS) has an (approximately) optimum
solution involving only multipliers σi, pj whose coefficients

are at most 2poly(n).

1.1 Our contributions

The main goal of this paper is to carefully map under what
circumstances computation of the bound sos(f)t and the
corresponding representation (SOS) is guaranteed to be
possible in polynomial time.

Our first contribution is the following theorem.

Theorem 3. Let S(g,h) be a semialgebraic set and let
t ∈ N be fixed. Suppose that the following conditions are
satisfied:

(1) The set S(g,h) is explicitly bounded: g1(x) = R −∑n
i=1 x

2
i for some R ≤ 2poly(n)

(2) For any p ∈ R[x]2t with p(x) = 0 for all x ∈ S(g,h),
there are p1, p2, . . . , pℓ ∈ R[x] such that:

p(x) =
ℓ∑

j=1

pj(x)hj(x),

and deg(pjhj) ≤ 2t.

(3) There exists a constant C ̸= 0 with |C| ≤ 2poly(n)

such that the moments of the uniform probability
measure µ supported on S(g,h) satisfy:

m(µ)α :=

∫
S(g,h)

xαdµ(x) ∈ 1
C · N

for each α ∈ Nn
2t.

Then for fixed t ∈ N and ε ≥ 2−poly(n), the bound
sos(f)t may be computed in polynomial time in n up to
an additive error of at most ε.

Theorem 3 differs from the result of Raghavendra & Weitz
in two ways: First, as we see in Section 2, it applies to
several natural settings where Theorem 2 may not be
applied, such as optimization over the unit ball and the
standard simplex. Second, its statement is stronger in the
sense that it guarantees polynomial-time computation of
the bound sos(f)t, whereas Theorem 2 only guarantees
existence of a compact representation (1).

Our second contribution is an alternative, geometric condi-
tion on the feasible region S(g,h) of (POP) which guaran-
tees polynomial-time computation of sos(f)t in the special
case where the formulation does not contain any equality
constraints.

Theorem 4. Let S(g) ⊆ Rn be a full-dimensional, semial-
gebraic set defined only by inequalities. Assume that the
following two conditions are satisfied:

(1) S(g) is explicitly bounded with constant R ≤ 2poly(n),
i.e., g1(x) = R−

∑n
i=1 x

2
i .

(2) S(g) contains a hypercube of size r ≥ 2−poly(n), i.e.,
[−r, r]n + z ⊆ S(g) for some z ∈ Rn.

Then for fixed t ∈ N and ε ≥ 2−poly(n), the bound
sos(f)t may be computed in polynomial time in n up to
an additive error of at most ε.

A natural motivation for the assumptions of Theorem 4
is that without them, the ellipsoid method would not be
guaranteed to find a feasible point in S(g) in polynomial
time, even if it were a convex set. As we see below in
Proposition 8, it is possible to choose the constraints gi
such that second condition of Theorem 4 is not satisfied.
Interestingly, the resulting semialgebraic set S(g) does not
satisfy the conditions of Theorem 2 or Theorem 3, either.

Finally, we make explicit the connection between compu-
tational aspects of the primal formulation (SOS) of the
sos-hierarchy, and its dual formulation (MOM) in terms of
moments (see below). This connection is implicitly present
in the proof of Theorem 2 in [12].

Theorem 5. Let S(g,h) be a semialgebraic set and sup-
pose that the conditions of Theorem 3 or Theorem 4
are satisfied. Then one may (approximately) compute the
bound sos(f)t in time polynomial in n, using either its
primal formulation (SOS) or its dual formulation (MOM).
In particular, there then exists a sum-of-squares repre-
sentation (1) proving nonnegativity of f − sos(f)t + ε on
S(g,h) with low bit-complexity.
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2. SOME REMARKS AND APPLICATIONS

Here, we give some small examples that illustrate the
advantages and limitations of our results with respect to
previous work.

Example 6. The unit ball Bn ⊆ Rn and the standard
simplex ∆n ⊆ Rn are semialgebraic sets, defined by:

Bn = {x ∈ Rn : 1− ∥x∥22 ≥ 0},
∆n = {x ∈ Rn : xi ≥ 0, 1−

∑n
i=1 xi ≥ 0}.

It is straightforward to see that they both satisfy the
conditions of Theorem 4. They do not, however, satisfy
the third condition of Theorem 2.

Remark 7. In general, our Theorem 3 and Theorem 4 are
better equipped to deal with non-discrete semialgebraic
sets S(g,h) than Theorem 2. The fourth condition of
Theorem 2, which demands in particular that gi(x) > 0
for each x ∈ S(g,h), is generally quite hard to satisfy. For
instance, the unit sphere Sn−1 = {x ∈ Rn : ∥x∥22 = 1}
satisfies this condition (as it is defined without using
any inequalities), but it no longer does so after adding
a linear constraint such as x1 ≥ 0. On the other hand, our
Theorem 3 still applies.

The next proposition shows that the second condition
of Theorem 4 is not superfluous, via a simple repeated-
squaring argument.

Proposition 8. There exists a full-dimensional semialge-
braic set S(g), defined only by polynomial inequalities
g = (g1, g2, . . . , gm) whose coefficients have bit complexity
polynomial in n, which does not contain a (translated)
cube [−r, r]n for r ≥ 2−poly(n).

Proof. Let S(g) be the set defined by the system of
inequalities:

xi ≥ 0 (1 ≤ i ≤ n),

xi − x2
i+1 ≤ 0 (1 ≤ i ≤ n− 1),

xn ≤ 1/2.

Set r := 2−2n . Then [0, r]n ⊆ S(g) and so S(g) is full-
dimensional. But from the inequalities it follows that 0 ≤
x1 ≤ r for any x ∈ S(g), meaning S(g) cannot contain a
(translated) cube of size 2−poly(n).

It is instructive to note that the set S(g) of Proposition 8
does not satisfy the conditions of Theorem 2 and Theo-
rem 3. Indeed, we may easily compute the moments for
the uniform probability measure µ on S(g) and observe
that:∫

S(g)

x2
1dµ(x) =

∫
S(g)

x2
1dx

/∫
S(g)

1dx ≤ 2−2n

In particular, the smallest nonzero eigenvalue of the mo-
ment matrix M(µ)t is at most 2−2n for any t ≥ 1.

3. OUTLINE OF THE PROOFS

It will be convenient to work with the dual formulation
of (SOS), which reads (see, e.g., [2]):

mom(f)t := inf L(f)

s.t. L(1) = 1,

L(gip
2) ≥ 0, (gip

2 ∈ R[x]2t)
L(hjx

α) = 0, (hjx
α ∈ R[x]2t)

L ∈ R[x]∗2t.

(MOM)

Under the assumption of explicit boundedness, these for-
mulations are actually equivalent.

Theorem 9. ([4]). If (POP) is explicitly bounded, we have
strong duality between the primal and dual formulations
(SOS) and (MOM) of the moment-sos hierarchy. That is,
we then have:

sos(f)t = mom(f)t ∀t ∈ N.

As we alluded to in the introduction, explicit bounded-
ness of S(g,h) also gives a bound on the feasible region
of (MOM).

Lemma 10. (see, e.g., [11]). Assume that S(g,h) is explic-
itly bounded for some R > 0. Let L ∈ R[x]∗2t be a feasible
solution to (MOM). Then |L(xα)| ≤ R|α| for all α ∈ Nn

2t.

There is a natural relation between the dual formula-
tion (MOM) and moments of measures supported on
S(g,h), which clarifies the assumptions made in Theo-
rem 2 and Theorem 3. For a measure µ supported on
S(g,h), the moment of degree α ∈ Nn is defined by:

m(µ)α :=

∫
S(g,h)

xαdµ(x).

For t ∈ N, the (truncated) moment matrix M(µ)t of order
t for µ is then given by:(

M(µ)t
)
α,β

= m(µ)α+β . (2)

Consider the linear functional Lµ ∈ R[x]∗2t defined by:

Lµ(p) :=

∫
S(g,h)

p(x)dµ(x) (p ∈ R[x]2t).

For any constraint gi and p ∈ R[x] with deg(gip
2) ≤ 2t,

we have:

Lµ(gip
2) = p⊤M(giµ)tp =

∫
S(g,h)

p2(x)gi(x)dµ(x) ≥ 0,

where p denotes the vector of coefficients of p ∈ R[x]t in
the monomial basis. Here the (α, β)-entry of the localizing
matrix M(giµ)t is defined as

∫
S(g,h)

gi(x)x
α+βdµ(x). In

particular, for each i the matrix M(giµ)t is positive
semidefinite. Furthermore, for any constraint hj and α ∈
Nn with deg(xαhj) ≤ 2t, we have:

Lµ(hjx
α) =

∫
S(g,h)

hj(x)x
αdµ(x) = 0.

If µ is a probability measure, we get Lµ(1) = 1, and it
follows that Lµ is a feasible solution to (MOM).

Remark 11. The upshot is that in order to show that the
feasible region of (MOM) contains an inner ball, it is
enough to exhibit a probability measure µ on S(g,h) with:

(1) The smallest non-zero eigenvalue of M(giµ)t is at
least 2−poly(n) for each i = 0, 1, . . . ,m;

(2) For any p ∈ R[x]t with M(µ)tp = 0, we have that

p(x) =
∑ℓ

j=1 hj(x)pj(x), where deg(hjpj) ≤ 2t.

One may then use a fairly standard result on SDP com-
plexity to conclude polynomial-time (approximate) com-
putability of mom(f)t, see for instance Theorem 1.1 in [3].
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3.1 Proof sketch for Theorem 3

Our proof uses similar ideas to that of Theorem 2 in [12].
Let µ be the uniform probability measure on S(g,h). We
show µ satisfies the properties (1) and (2) in Remark 11.
For (1), note that the third condition of Theorem 3 tells
us that C ·M(µ)t is an integer matrix for some C ̸= 0,
|C| ≤ 2poly(n). The eigenvalues of integer matrices can be
controlled in terms of their largest entry. By Lemma 10,
we have an upper bound on the entries of C ·M(µ)t,
and this allows us to show that the smallest nonzero
eigenvalue of M(µ)t is at least 2− poly(n). The entries of
the matricesM(giµ)t are linear combinations of the entries
of M(µ)t, involving the coefficients of the constraints gi.
As these coefficients have polynomial bit-complexity, a
similar argument allows us to lower bound the smallest
nonzero eigenvalue of each M(giµ)t. For (2), note that
this is implied immediately by the second condition in
Theorem 3.

3.2 Proof sketch for Theorem 4

Let µ be the normalized Lebesgue measure on S(g). If
S(g) contains a (translated) hypercube [−r, r]n + z of size
r ≥ 2poly(n), µ trivially satisfies condition (2) in Remark 11
(as M(µ)tp = 0 =⇒ p = 0). To see that it also satisfies
condition (1), we proceed as follows:

• Show that we may assume w.l.o.g. that z = 0, using
the fact that ∥z∥22 ≤ R ≤ 2poly(n) as S(g) is explicitly
bounded.

• Use known formulas (c.f. [2]) for the moments of
the hypercube to show that there exists a C ̸= 0,
|C| ≤ 2poly(n) such that C ·M(µ′)t is integer, where
µ′ is the restriction of µ to [−r, r]n.

• Conclude that the smallest eigenvalue of M(giµ
′)t is

at least 2− poly(n) for each i.
• Finally, use the fact that [−r, r]n ⊆ S(g) to conclude
that M(giµ)t ⪰ M(giµ

′)t for all i, finishing the proof.

3.3 Proof sketch for Theorem 5

In our proofs of Theorem 3 and Theorem 4, we show
that the dual formulation (MOM) of the sos-hierarchy
may be (approximately) solved in polynomial time using
(e.g.) the ellipsoid algorithm. This does not immediately
imply that the same is true for the primal formulation
(SOS). By considering the pairing between primal feasible
solutions (i.e., representations of the form (1)) and the
dual feasible solution Lµ used in our proofs, we show
that the feasible region of the primal formulation is also
bounded. This pairing also plays an important role in the
proof of Theorem 2 in [12]. Indeed, for any representation
f(x) =

∑
i gi(x)σi(x) +

∑
j hj(x)pj(x), we have:

Lµ(
∑
i

giσi +
∑
j

hjpj) = Lµ(f) ≤ 2poly(n).

This allows us to bound Lµ(giσi), which in turn allows
us to bound the size of the coefficients of σi. To bound
the coefficients of the pj one uses the second condition of
Theorem 3.
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On the complexity of Schmüdgen’s Positivstellensatz.
Journal of Complexity, 20(4):529–543, 2004.

[14] Lucas Slot and Monique Laurent. Sum-of-squares hi-
erarchies for binary polynomial optimization. In Mo-
hit Singh and David P. Williamson, editors, Integer
Programming and Combinatorial Optimization, pages
43–57, Cham, 2021. Springer International Publishing.

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



Future Control Community Papers on Algorithmic

Trading Should Pay More Attention to Backtesting

B. Ross Barmish

Robust Trading Solutions, LLC
Boxford, MA 01921

email: bob.barmish@gmail.com

Abstract: The takeoff point for this work is the emerging body of literature which addresses
algorithmic trading in the framework of feedback control systems. In this setting, the buying and
selling of equities period is governed by the action of a controller, using past history, to determine
the time-varying investment level. Almost all of the papers to date begin with a underlying
mathematical model structure for the stock-price dynamics and “theoretical” performance is
studied. In many cases, the parameters of the price model are not assumed to be known in
advance; they are estimated over time from the realized price path. In the literature, we also
see many variations on this theme. For example, the investment-level controller may have no
explicit reliance on an assumed price model and instead are updated by performance variable
data such as account market value or gains and losses over time. Subsequently, the authors of
papers along these lines demonstrate the performance of their trading algorithms using various
criteria. Given this context, we draw attention to use of the word “should” in the title. This is
intentional because this short paper is an opinion piece; it does not contain new results. Instead,
arguments are given that the control community will be well served if future papers devote
greater attention to backtesting and standardization of benchmark data sets. It is argued that
this will enable the results of one researcher to more easily replicated and compared against those
of another and, in turn, this will increase the impact of control-theoretic papers on researchers
and practitioners outside the control field. While it is true that a number of the control-inspired
papers to date already include some backtest results, the use of widely varying data sets makes
evaluation of worthiness of their “controller recipes” difficult or impossible.

Keywords: financial engineering, algorithmic stock trading, stochastic systems, backtesting

1. INTRODUCTION

The basic idea of viewing stock trading in a control-
theoretic setting goes back about fifty years to the finance
community where optimal control concepts were brought
into play in a portfolio optimization context; e.g., see [1]
and [2]. Over the last two decades, we see a number of
papers bringing many other aspects of modern control
theory to the fore. Among the earliest of these, [3] and [4],
appear in 2001 and 2002. In the ensuing twenty years, a
large number of papers along these lines have followed.
To keep the length of this exposition within page-limit
requirement, we refer the reader to papers [5] and [6]
and their bibliographies where this literature is broadly
surveyed covering the period up until 2016. Beyond 2016,
we see a number of new ideas being introduced into
this line of research. To mention just a few examples,
in [7], [8] and [9], various generalizations of the so-called
SLS method are studied, in [10], the use of modulated
controllers aimed at drawdown reduction are introduced,
in [11], approaches to trading in a model-predictive control
context are studied and in [12], trend following from
an H∞ tracking point of view is investigated.

1.1 The Basic Setup for Control-Inspired Stock Trading

The feedback control approach to stock trading is easily
understood in terms of the closed-loop feedback configura-

tion given in Figure 1. Although this setup is not explicitly
given in all of the cited literature above, it is central to
almost all control-inspired research on stock trading which
one can imagine.

Figure 1: Feedback Loop Involving Trader and Broker

The paradigm associated with the block diagram in the
figure is central to the study of a wide variety of feedback
control laws which can be used to modify the time-varying
investment level. In some papers, a model for future stock
prices plays an important role and in other cases no stock
price model is used at all and trading signals are generated
based on other considerations such as the market value of
the account or gains and losses over time.
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1.2 This Author’s Opinion of Existing Research

When looking at the existing results over the last twenty
years coming from the control community, in many papers,
including those of this author, there is inadequate atten-
tion being paid to “meaningful” backtesting. Too much of
center stage is occupied by theoretical issues and backtest
simulations which are given are of often of questionable
worth. In many cases when such simulations are included,
the data set is often “nonstandard” or covers too short a
time duration which does not include both bull and bear
markets. Simply put, it is felt that many of the backtest
simulations conducted by the control field researchers are
insufficient to determine whether the trading scheme being
espoused will be efficacious. To illustrate the case being
made in this paper, we ask the following question: Based
on highly successful backtests for Tesla and Apple stock
over the year 2021, can any meaningful conclusions be
made about the excellence of the trading algorithm being
used? Of course not. In the finance literature, the issue of
“data snooping” often arises in connection with a belief
that a given investment-level control algorithm is being
made to look “better than deserved.” In the control field,
care is required to avoid cherry picking data (choice of
equities, time period, etc.) and “twiddling” with param-
eters such as feedback gains entering into the simulation.
As suggested in the sequel, the control field should adopt
standard benchmark data sets and rules for algorithm
parameter initialization and adjustment so that backtest
results reported in the literature are repeatableand new
algorithms are more easily evaluated.

2. STANDARDIZATION OF BACKTESTING

The view of this author is that the control field would be
well served if papers included a credible backtest which
is not easily subject to challenge. In this regard, prior to
dealing with a diversified portfolio of stocks, a simulation
should be carried out using some well-known benchmark
such as the Dow Jones Industrial Average (DJIA) or the
Standard and Poor’s (S&P) 500. In addition, a sufficiently
long multi-year time window should be used which in-
cludes both bull and bear markets. Finally, the perfor-
mance of the algorithm over sub-windows should be also
be considered. This is important because “ride quality” is
very important to many traders. It does not suffice to claim
that an algorithm leads to a great end result if the market
value of the account undergoes large roller coaster devi-
ations along the way. One excellent example illustrating
high-quality backtesting is reference [13]. Trades are trig-
gered based on the stock price crossing a prescribed multi-
day moving average. In lieu of making the case for the
“excellence” of their results based on mathematical theory
on how moving averages behave, the authors provide a
backtest using historical data for the DJIA covering nearly
ninety years. This shifts the debate away from the quality
of the mathematical justification to real-world implications
such as the longstanding theory that markets are efficient
and that “abnormal” rates of return, when risk-adjusted,
cannot be consistently obtained.

3. FUTURE CONTROL COMMUNITY PAPERS

It is suggested that in our future papers, after the intro-
duction and a literature review, the author provides the

investment-level controller recipe and a simple backtest
with as little supporting mathematical detail as possible.
While it is true that some mathematical formulae will be
needed to describe the controller, the theorems, proofs
and price modelling can be relegated to a later section
of the paper such as an appendix. Accompanying this
recipe, perhaps some authors can include emphasis on the
intuitive appeal of their algorithms. Then, leave it to fellow
researchers to decide whether the backtest is “sufficiently
impressive” to merit careful study the supporting theory.
This author’s opinion, controversial as it may be, is sum-
marized as follows: It does not suffice to provide excellent
theory with weak supporting backtests. However, it does
suffice to provide excellent backtests with weak supporting
theory.

Per discussion above, as in reference [13] where the Dow
Jones Industrial Average is used, the view of this author, as
previously mentioned, is that the chosen data set should be
standard and well known to almost any possible trader. To
this end, as discussed below, one very good possibility for
use would be the time series for daily S&P 500 prices over
a long time period. The associated Exchange Traded Fund
(ETF), having ticker SPY, can be readily downloaded from
Yahoo Finance. Given the high liquidity of this ETF, it is
reasonable to assume in simulations that trading can be
carried out with minimal friction. We also emphasize the
words “long time period” above. Many types of behavior
such as bull markets, bear markets and corrections should
be covered.

3.1 Other Backtest Considerations

Many papers in the control literature pay little or no
attention to important issues such as margin requirements
and associated leverage allowed by the broker, slippage
associated with the bid-ask spread and attainability of
specified orders such as “market on close.” When conduct-
ing backtest simulations, since one of our main objectives is
to determine if promising control algorithms perform well
when subjected to these practical market considerations,
attention to these issues in simulation is important.

4. ON EVALUATION OF BACKTEST RESULTS

After a backtest simulation is performed, the following
question arises: How do we evaluate the quality of the
results? For example, if one has a 200% one-year return
on some mining stock but a loss of 50% after the first six
months, is this considered a good result? Some traders
would be perfectly comfortable with this type of roller
coaster ride but others, particularly those who are risk-
averse, would not. To avoid controversy whether this result
is good or bad, the suggestion in this paper is to use the
method of many mutual funds to display results. That
is, one begins a simulation with a fictitious $10,000 and
simply provides a plot of the evolution of market value over
time. For this hypothetical scenario, the 50% dip and 200%
rise above will be immediately visible in the plot and each
individual can judge the performance based on his or her
individual utility function. While it is perfectly acceptable
to report on various features of the plot such as annual
returns, and highs and lows, no claims of “optimality” are
appropriate. Each “examiner” of the market value plot
has all the information required to make an individual
judgment; see the example below for additional details.
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5. EXAMPLE: TWENTY YEARS OF THE S&P 500

To make the ideas above more concrete, we imagine a
control community researcher who develops a “secret”
trading algorithm and conducts a 20-year backtest using
price data for SPY, the ETF tracking the S&P 500.
Trading begins mid-February of 1998 with the market
value of the account initialized at $10,000. On day k,
the trading algorithm processes the past history and
determines investment level I(k). Assuming short selling
and use of leverage is disallowed, using V (k) to denote
the associated 5000+ market values of the account, the
condition 0 ≤ I(k) ≤ V (k) must be satisfied. In addition,
we assume that all transactions occur at the daily closing
price and, for pedagogical simplicity, we neglect the small
dividends which are “cast off” by the stocks comprising
the index.

5.1 Evaluation: A Picture is Worth a Thousand Words

For the scenario above, in Figure 1, the black market-
value plot represents the benchmark. A buy-and-hold
trader sees wildly gyrating returns but ends up with
about a 35% twenty-year return. On the other hand,
the red plot, representing the returns on the trader’s
algorithm only ends up with about a 17.5% gain for the
same period. Given these two plots, there is no need
for the control researcher to provide an “opinion” which
market-value plot is preferred; the two plots speaks for
themselves. A risk-averse investor who finds the large
intermediate drawdowns on the S&P 500 intolerable may
give the overall market-value plot a low performance
rating. The slow steady rise of the red market value
associated with the algorithm only leads to a return of
about 17.5% but the ride quality may result in a much
higher performance rating by many more conservative
traders who are unwilling to ride out a storm.
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Figure 1: Growth of $10,000: Strategy Versus Benchmark

6. CONCLUSION
In this paper, it was argued that future research on
algorithmic trading in the control community should pay
much more attention to backtesting and use a benchmark
which is simple, widely understood and covers a suitably
long time period. It is the opinion of this author that the
market-value plot is typically much more informative and
insightful than the lengthy statistical analyses found in
many papers coming from the finance community. A final
point to mention is the following view held by the author:

A trading algorithm which cannot be theoretically justified
in a theorem-proof context, should not be disqualified
from being seriously studied in a backtesting context.
A backtest which is sufficiently compelling can be very
important even if the trading algorithm recipe appears
to be ad hoc. This includes controller recipes which may
involve heuristics or use of ideas from areas such as
machine learning or neural networks; e.g., see [14].

REFERENCES

[1] R. C. Merton, Lifetime Portfolio Selection Under
Uncertainty: The Continuous Time Case, Review of
Economics and Statistics,vol. 51, pp. 247-257, 1969.

[2] P. A. Samuelson, Lifetime Portfolio Selection By Dy-
namic Stochastic Programming, Review of Economics
and Statistics,vol. 51, pp. 239-246, 1969.

[3] Q. Zhang, “Stock Trading: An Optimal Selling Rule,”
SIAM Journal of Control Optimization, vol. 40, pp.
64–87, 2001.

[4] N. G. Dokuchaev and A. V. Savkin, ”A Bounded Risk
Strategy for a Market with Non-Observable Param-
eters,” Insurance: Mathematical Economics, vol. 30,
no. 2, pp. 243–254, 2002.

[5] B. R. Barmish, J. A. Primbs, S. and S. Warnick,
“On the Basics for Simulation of Feedback-Based
Stock Trading Strategies,” Proceedings of the IEEE
Conference on Decision and Control, pp. 7181-7186,
Florence, Italy, 2013.

[6] B. R. Barmish and J. A. Primbs, “On a New
Paradigm for Stock Trading Via a Model-Free Feed-
back Controller,” IEEE Transactions on Automatic
Control, AC-61, pp. 662-676, 2016.

[7] M. H. Baumann, “On Stock Trading Via Feedback
Control When Underlying Stock Returns Are Discon-
tinuous,” IEEE Transactions on Automatic Control,
AC-62, pp. 2987–2992, 2017.

[8] S. Malekpour, J. A. Primbs and B. R. Barmish,
“A Generalization of Simultaneous Long–Short Stock
Trading to PI Controllers,” IEEE, Transactions on
Automatic Control, AC-63, pp. 3531-3536, 2018

[9] J. D. O’Brien, M. Burke and K. Burke, “A Gener-
alized Framework for Simultaneous Long-Short Feed-
back Trading,” IEEE Transaction on Automatic Con-
trol, AC-66, pp. 2652-2653, 2021.

[10] C. H. Hsieh and B. R. Barmish, “On Drawdown-
Modulated Feedback in Stock Trading,” Proceedings
of the IFAC World Congress, pp. 952-958, Toulouse,
France, 2017.

[11] V. Dombrovskii, T. Obyedko and M. Samorodova,
“Model Predictive Control of Constrained Markovian
Jump Nonlinear Stochastic Systems and Portfolio
Optimization Under Market Frictions” Automatica,
vol. 87, pp. 61-68, 2018.

[12] G. Maroni, S. Formentin, and F. Previdi, “A Robust
Design Strategy for Stock Trading via Feedback Con-
trol,” Proceedings of the European Control Confer-
ence, pp. 447–452, Naples, Italy, 2019.

[13] W. Brock, J. Lakonishok, and B. LeBaron, “Simple
Technical Trading Rules and the Stochastic Prop-
erties of Stock Returns,” The Journal of Finance,
vol. 47, pp. 1731-1764, 1992.

[14] P. D. McNelis, Neural Networks in Finance: Gaining
Predictive Edge in the Market, Academic Press, 2005.

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



Loop Shaping with
Scaled Relative Graphs

Thomas Chaffey ∗ Fulvio Forni ∗ Rodolphe Sepulchre ∗

∗ University of Cambridge, Department of Engineering, Trumpington
Street, Cambridge CB2 1PZ, {tlc37, ff286, rs771}@cam.ac.uk.

Abstract: The Scaled Relative Graph (SRG) is a generalization of the Nyquist diagram that
may be plotted for nonlinear operators, and allows nonlinear robustness margins to be defined
graphically. This abstract explores techniques for shaping the SRG of an operator in order to
maximize these robustness margins.

Keywords: Scaled Relative Graph, Nyquist, loop shaping, robustness

1. INTRODUCTION

Loop shaping is one of the earliest methods of controller
design, originating in the work of Nyquist, Bode, Nichols
and Horowitz on feedback amplifiers (Bode, 1960). The
basic principle of loop shaping is to tune a system’s closed
loop performance by adjusting the open loop frequency
response. Robustness is captured by the distance of the
Nyquist diagram from the point −1; closed loop perfor-
mance is captured by the sensitivity and related transfer
functions. Loop shaping is still widely used in industry
today – the graphical nature of the tool gives a clear
view of the design tradeoffs between performance and
robustness. Even in the age of modern optimal and robust
control, loop shaping remains a core tool for the control
engineer. The idea of enlarging stability margins eventu-
ally led to the Zames’ formulation of H∞ control (Zames,
1981), and some of the most successful methods of robust
control combine H∞ control with classical loop shaping
ideas (Vinnicombe, 2000; McFarlane and Glover, 1992).

The Scaled Relative Graph (SRG) is a graphical repre-
sentation of a nonlinear operator, recently introduced in
the theory of optimization by Ryu et al. (2021). The SRG
allows simple, intuitive proofs of convergence for optimiza-
tion algorithms, and allows optimal convergence rates to
be visualized as distances on a plot. The authors have
recently connected the SRG to classical control theory,
showing that it generalizes the Nyquist diagram of an
LTI transfer function (Chaffey et al., 2021). A range of
incremental stability results, including the Nyquist and
circle criteria, small gain and passivity theorems and se-
cant condition, can be interpreted as guaranteeing the
separation of the SRGs of two systems in feedback, and
this interpretation has led to new conditions for incre-
mental stability (Chaffey, 2022). The distance between the
two SRGs is an incremental disc margin, the reciprocal of
which bounds the incremental gain of the closed loop. The

⋆ The research leading to these results has received funding from the
European Research Council under the Advanced ERC Grant Agree-
ment Switchlet n. 670645, and from the Cambridge Philosophical
Society.

SRG makes the design intuition afforded by the Nyquist
diagram available for nonlinear systems.

This abstract describes ongoing research into the use of
SRGs for loop shaping nonlinear feedback systems. It
has long been observed that introducing nonlinearity can
overcome fundamental limitations of LTI control – for
example, the describing function of the Clegg integrator
has a phase lag of only 38○, rather than the usual 90○ of
a linear integrator (Clegg, 1958). This motivates a better
understanding of how nonlinearities may be used to shape
the performance of a feedback system.

2. REVIEW OF SCALED RELATIVE GRAPHS

We begin this extended abstract with a brief review of the
theory of SRGs.

2.1 Signal Spaces

We describe systems using operators, possibly multi-
valued, on a Hilbert space. A Hilbert space H is a vector
space equipped with an inner product, ⟨⋅∣⋅⟩ ∶ H ×H → C,

and the induced norm ∥x∥ ∶=
√

⟨x∣x⟩.
We will pay particular attention to the Lebesgue space
L2. Given F ∈ {R,C}, Ln

2 (F) is defined as the set of signals
u ∶ R≥0 → Fn such that

∥u∥ ∶= (∫
∞

0
u(t)ū(t)dt)

1
2

<∞,
where ū(t) denotes the conjugate transpose of u(t). The
inner product of u, y ∈ Ln

2 (F) is defined by

⟨u∣y⟩ ∶= ∫
∞

0
u(t)ȳ(t)dt .

The Fourier transform of u ∈ Ln
2 (F) is defined as

û(jω) ∶= ∫
∞

0
e−jωtu(t)dt .

We omit the dimension and field when they are immaterial
or clear from context.

2.2 Relations

An operator, or system, on a space H, is a possibly multi-
valued map R ∶H →H. The identity operator, which maps
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u ∈ H to itself, is denoted by I. The graph, or relation, of
an operator, is the set {u, y ∣ u ∈ domR,y ∈ R(u)} ⊆ H ×
H. We use the notions of an operator and its relation
interchangeably, and denote them in the same way.

The usual operations on functions can be extended to
relations. Let R and S be relations on an arbitrary Hilbert
space. Then:

S−1 = {(y, u) ∣ y ∈ S(u)}
S +R = {(x, y + z) ∣ (x, y) ∈ S, (x, z) ∈ R}
SR = {(x, z) ∣ ∃ y s.t. (x, y) ∈ R, (y, z) ∈ S}.

Note that S−1 always exists, but is not an inverse in the
usual sense. In particular, it is in general not the case
that S−1S = I. The relational inverse plays a fundamental
role in the techniques described in this abstract. Rather
than directly shape the performance of a negative feedback
interconnection, we will shape the performance of its
inverse relation – a parallel interconnection.

These operations will also be used on sets of operators,
with the meaning that the operations are applied elemen-
twise to the sets (under the implicit assumption that the
operators have compatible domains and codomains).

2.3 Scaled Relative Graphs

We define SRGs in the same way as Ryu et al. (2021), with
the minor modification of allowing complex valued inner
products.

Let H be a Hilbert space. The angle between u, y ∈ H is
defined as

∠(u, y) ∶= acos
Re ⟨u∣y⟩
∥u∥∥y∥ .

Let R ∶ H → H be an operator. Given u1, u2 ∈ U ⊆ H,
u1 ≠ u2, define the set of complex numbers zR(u1, u2) by

zR(u1, u2) ∶={
∥y1 − y2∥
∥u1 − u2∥

e±j∠(u1−u2,y1−y2)

∣ y1 ∈ R(u1), y2 ∈ R(u2)}.

If u1 = u2 and there are corresponding outputs y1 ≠ y2,
then zR(u1, u2) is defined to be {∞}. If R is single valued
at u1, zR(u1, u1) is the empty set.

The Scaled Relative Graph (SRG) of R over U ⊆H is then
given by

SRGU(R) ∶= ⋃
u1,u2∈U

zR(u1, u2).

If U = H, we write SRG (R) ∶= SRGH(R). The SRG of
a class of operators is defined to be the union of their
individual SRGs. Some examples of SRGs are shown in
Figure 1, (a), (b) and (c).

2.4 Interconnections

The power of SRGs lies in the elegant interconnection
theory of Ryu et al. (2021). Given the SRGs of two
systems, the SRG of their interconnection can be bounded
using simple graphical rules. Given two systems R and S,
and subject to mild conditions, we have:

SRG (αR) = SRG (Rα) = αSRG (R)
SRG (R + S) ⊆ SRG (R) + SRG (S)

SRG (RS) ⊆ SRG (R)SRG (S)
SRG (R−1) = SRG (R)−1.

For the precise meanings of these operations, and the
requisite conditions on the systems R and S, we refer the
reader to (Ryu et al., 2021).

2.5 SRGs of systems

The SRGs of LTI transfer functions are closely related to
the Nyquist diagram, and the SRGs of static nonlinear-
ities are closely related to the incremental circle. These
connections are explored in detail in (Chaffey et al., 2021;
Pates, 2021); below we recall the two main results. The
h-convex hull is the regular convex hull with straight lines
replaced by arcs with centre on the real axis – for a precise
treatment, we refer the reader to (Huang et al., 2020).

Theorem 1. Let g ∶ L2(C) → L2(C) be linear and time
invariant, with transfer function G(s). Then SRG (g) ∩
CIm≥0 is the h-convex hull of Nyquist (G) ∩CIm≥0.

Theorem 2. Suppose S ∶ L2 → L2 is the operator given
by a SISO static nonlinearity s ∶ R → R, such that for all
u1, u2 ∈ R, yi ∈ s(ui),

µ(u1 − u2)2 ≤ (y1 − y2)(u1 − u2) ≤ λ(u1 − u2)2. (1)

Then the SRG of S is contained within the disc centred at
(µ + λ)/2 with radius (µ − λ)/2.

Theorems 1 and 2, and the SRG interconnection rules,
allow us to construct bounding SRGs for arbitrary inter-
connections of LTI and static nonlinear components. A
simple example is illustrated in Figure 1.

× ⊆
111

Im Im Im

Re Re Re

1
s+1

SRG(1/(s +1)) SRG(sat)
(a) (b) (c)

(d)

Fig. 1. Bounding SRG for the composition of a first order
lag and saturation.

3. INCREMENTAL ROBUSTNESS AND
SENSITIVITY

3.1 Stability and incremental gain

Given the negative feedback interconnection of Figure 2,
incremental stability is guaranteed by the separation of the
SRGs of P −1 and −C, and the distance between them is
an incremental robustness margin, the reciprocal of which
bounds the incremental gain of the feedback system. This
is formalized in (Chaffey et al., 2021, Thm. 2); we recall
the result here.
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Fig. 2. Negative feedback control structure.

Let H be a class of operators. By H̄, we will denote a
class of operators such that H ⊆ H̄ and SRG (H̄) satisfies
the chord property: if z1, z2 ∈ SRG (H̄), then ϑz1 + (1 −
ϑ)z2 ∈ SRG (H̄) for all ϑ ∈ [0,1].
Theorem 3. Consider the feedback interconnection shown
in Figure 2 between any pair of operators C ∈ C and P ∈ P,
where C and P are classes of operators on L2 with finite
incremental gain. If, for all τ ∈ (0,1],

SRG (C)−1 ∩ −τ SRG (P̄) = ∅,
then the incremental L2 gain from r to u is bounded by
1/rm, where rm is the shortest distance between SRG (C−1)
and −SRG (P̄).

Im

Re

rτ SRG(C−1)
SRG(−τP)

Fig. 3. Illustration of Theorem 3.

3.2 The sensitivity SRG

The operator (I + PC)−1 maps r to e in the feedback
system of Figure 2, and the operator (I−PC(−I))−1 maps
n to y. These two operators have the same SRG, which we
denote by S – the sensitivity SRG.

Definition 4. The peak incremental sensitivity is the max-
imum incremental gain of the operator (I + PC)−1.

The peak incremental sensitivity is equal to the maximum
modulus of S. The following theorem gives the peak
incremental sensitivity an interpretation as a robustness
margin.

Theorem 5. Let sm be the shortest distance between
SRG (PC) and the point −1. Then the peak incremental
sensitivity is equal to 1/sm.

4. LOOP SHAPING

We demonstrate SRG loop shaping with two simple design
examples for the control structure shown in Figure 2.

4.1 Shaping for stability and robustness

As first design example, we show how to use SRGs to
ensure incremental stability of a closed loop system. Unlike
traditional loop shaping, where the return ratio L = PC is
modified, we graphically shape the inverse of the feedback
system, (P +C−1), to improve the robustness of the closed
loop. The use of SRGs makes the design close to classical
Nyquist analysis, despite the nonlinearity of P .

Consider the system in Figure 4. C represents the con-
troller, to be designed. Suppose that the process consists

r
P̄C

−

y
n

N

Fig. 4. Example control system. P̄ = 1/(s(s + 1)), N is
a nonlinear operator and C is the controller, to be
designed. r is the reference input, n represents sensor
noise.

of P̄ with LTI dynamics 1/(s(s + 1)), and a nonlinear
operator N , whose SRG is known to be bounded in the
region illustrated in Figure 1 (c). We denote CP̄ by L.
The controller C is to be designed to stabilize the system
and decrease the incremental gain.

To ensure stability, we require the SRGs of L−1 = (CP̄ )−1
and −N to be separated, for all scalings ofN between 0 and
1 (following Theorem 3). With C0 = 1, the closed loop is
unstable, as shown in Figure 5 (a). Shifting L−1 to the left,
by designing C to give L−1 = s(s+1)+1, gives a stabilizing
control. The controller reads C1 = s(s + 1)/(1 + s(s + 1)).

Im

Re
1SRG(−N )

SRG(s(s +1)) SRG(s(s +1)+1)
1

7/8

Im

Re
1

SRG(s(s +1)+1)

SRG(s +1)

1

(a) (b)

Fig. 5. (a) SRGs of −N , P̄ −1 and (P̄C1)−1. (b) SRGs of
(P̄C1)−1, (P̄C2)−1 and a scaled and rotated nonlin-
earity, showing the improved robustness with C2.

To improve robustness and reduce the incremental gain of
the system, the separation of SRG (L−1) and SRG (−N)
must be increased (again, following Theorem 3). For ex-
ample, setting L−1 = s + 1 (C2 = s) gives good separation,
and an incremental gain bound from r to u of 8/7 ≈ 1.14.
As the incremental gain of N is bounded by 1 (the max-
imum modulus of its SRG), this value also bounds the
incremental gain from r to y. The increased separation of
the SRGs makes the system robust to uncertainties in the
nonlinearity N , as illustrated in Figure 5 (b).

4.2 Shaping for performance

We now focus on graphical methods for improving perfor-
mance, and explore how the sensitivity SRG can be shaped
over particular sets of signals. We consider a new system,
again of the form of Figure 2, with C = 1/(ks+1), where k
is a scalar to be designed, and P is a unit saturation. The
SRGs of C and P are shown in Figure 1 (a) and (b).

Tracking performance and noise rejection are both char-
acterized by the sensitivity SRG. Suppose that we would
like this SRG to have a low modulus (corresponding to
incremental gain) for signals with a bandwidth of ω0 = 10
rad/s and a maximum amplitude of 2. The aim is to limit
the maximum amplification of (I +PC)−1 over this range
of signals.

A heuristic method is to maximize the distance between
SRG (PC) and −1 over the frequency range [−ω0, ω0]
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and amplitude range [−2,2], following Theorem 5. This
corresponds to maximizing the minimum incremental gain
of the inverse of the sensitivity operator over this range of
signals.

SRG (PC) is bounded by the Minkowski product of
SRG (P ) and SRG (C). Plotting the SRG of the saturation
P over the amplitude range [−2,2] gives the half-disc
shown in Figure 6 (b). The SRG of C over [−ω0, ω0] is
described by

( 1

1 + k2ω2
, j

−kω
1 + k2ω2

)

for ω ∈ [−ω0, ω0]. As a first design, we can set k so that the
bandlimited SRG of C is half the circle (Figure 6 (a)) – this
is achieved by setting k = 0.01. This gives the bound on
SRG (PC) shown in Figure 6 (c). The minimum distance

to the point −1 is sm =
√

3.
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Fig. 6. Left: SRG of 1/(ks+1) over signals with bandwidth
[−1/k,1/k]. Right: SRG of saturation over signals
with maximum amplitude 2.

This method is, however, only a heuristic. The saturation
introduces higher harmonics, so the assumption that sig-
nals have a bounded spectrum is invalidated when the
loop is closed. However, given the lowpass properties of
the system, the approximation is reasonable. The higher
order harmonics of the output of the saturation have low
magnitude, and the unit lag has a lowpass behavior. The
stability of the closed loop guarantees that these high
frequencies are indeed attenuated by the feedback system.
This assumption is similar to the lowpass assumption of
describing function analysis Slotine and Li (1991). The
method here differs from describing function analysis, how-
ever, in that arbitrary differences of bandlimited inputs are
considered, not just pure sinusoids.

5. OTHER TYPES OF SYSTEMS

A significant advantage of the SRG is being able to
place disparate system types on an equal footing. Like
continuous time LTI systems, finite dimensional linear
operators described by matrices lend themselves well to
shaping. Pates (2021) has shown that the SRG of a
matrix is equal to the numerical range of a closely related,
transformed matrix. In the case of normal matrices, the
SRG is the h-convex hull of the spectrum (Huang et al.,
2020). These results pave the way for shaping a matrix’s
SRG by matrix multiplication and addition.

In cases where the analytic SRG is not available, the
SRG can be sampled over the signals of interest, and loop
shaping methods can then be applied using the sampled
SRG. For example, Figure 7 shows a sampled SRG of the
potassium conductance of the Hodgkin-Huxley model of a
neuron (Hodgkin and Huxley, 1952).
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Abstract: A constant dimension subspace code can be viewed geometrically as a subset of the
Grassmann variety defined over a finite field.
There exist few algebraic constructions for constant dimension subspace codes. A major
technique is the ’lifting technique’ of a rank metric code with a good distance. For rank metric
codes exist several good algebraic constructions. First and for most one should mention the
technique of constructing Gabidulin codes which can be seen as the image of a linear space
of linearized functions under an evaluation map. The technique of constructing Gabidulin
codes naturally generalizes the construction of AG-codes such as Reed-Solomon codes and more
general geometric Goppa codes.
In this talk we present a new idea on how one can construct excellent subspace codes by
evaluating points on a rational curve in the Grassmannian.
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1. INTRODUCTION TO SUBSPACE CODES

Constant dimensional subspace codes appeared probably
first in the seminal paper by Kötter and Kschischang
(2008) on random network coding.

From a mathematical point of view we can view a constant
dimensional subspace code simply as a subset of the finite
Grassmann variety Grass(k,Fn

q ) defined over some finite
field Fq.

One has a natural distance function on the Grassmannian.
For this assume U ,V ⊆ Fn

q are two subspaces. Then one
defines their distance through:

dS(U ,V) := dim(U + V)− dim(U ∩ V). (1)

Once the distance for code elements is defined one gets a
natural notion of distance for a subspace code by simply
defining it as the minimal distance between two elements.

As in the classical theory of linear block codes it is a major
design problem to come up with algebraic construction
of constant dimension subspace codes whose distance is
optimal or near optimal.

A survey on the construction of constant dimensional
subspace codes is given in Horlemann-Trautmann and
Rosenthal (2018).

As in the classical literature on coding theory one defines
the distance dist(C) of a code C as the minimal distance of
two different code elements. The goal is once more the
construction of subspace codes with large distance and
many code elements.

? Research supported by Swiss National Science Foundation under
grant no. 188430

2. SOME KNOWN ALGEBRAIC CONSTRUCTIONS
OF CONSTANT DIMENSION SUBSPACE CODES

Different from the theory of linear block codes there
exist relatively few algebraic constructions of constant
dimension subspace codes.

A major idea was already introduced by Kötter and
Kschischang (2008) who showed that good rank metric
codes give raise to good subspace codes by embedding
the rank metric code into the ’thick open cell’ of the
Grassmann variety. The distance of the subspace code
is then bounded by the distance of the underlying rank
metric code.

In terms of matrices this lifting construction can be seen
in the following way: Let

{Mi ∈ Matk×m | i = 1, . . . , N}

be a rank metric code defined over some finite field Fq

and having N elements and minimum distance δ. Then
the subspace code{

rowspaceFq
[IkMi] ∈ Grass(k,Fk+m

q ) | i = 1, . . . , N
}

has also N elements and distance 2δ as one readily verifies.

Another major idea is to study group actions on the
Grassmannian and to consider the orbit under this group
actions. This then leads to the concept of ’Orbit codes’
Trautmann et al. (2010) and the concept of ’cyclic orbit
codes’ Trautmann et al. (2013).

Beyond above construction techniques there exist several
constructions techniques using geometric and combinato-
rial designs. The interested reader will find a survey in
Horlemann-Trautmann and Rosenthal (2018).
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It would certainly be desirable to have also construction
techniques for constant dimension subspace codes which
are based on some algebraic evaluation technique as this
is done very successfully for Algebraic Geometric Goppa
codes.

In this talk we will show how the associated Hermann
Martin curve to a linear system (or a convolutional code)
can be used to construct subspace codes via evaluation
in some possible extension field. In the next section we
will describe this technique. To our knowledge no similar
constructions of subspace codes using evaluation maps is
known.

3. THE ASSOCIATED HERMANN-MARTIN CURVE
TO A LINEAR SYSTEM

It was an important contribution of Martin and Hermann
(1978) that every linear system defines in a natural way a
curve of genus zero in a Grassmann variety. One often calls
the resulting curve the Hermann-Martin curve induced
by the linear system. To make this concept a little more
precise let K be an arbitrary field and consider a k × m
transfer function G(s).

Definition 1. Let G(s) be a k × m transfer function and
consider the map

h : K −→ Grass(k,Kk+m), s 7→ rowspaceK[Ik G(s)]. (2)

Then h is called the Hermann-Martin map associated to
the transfer function G(s).

As this map is a rational map all the poles are removable.
In order to see this in term of matrices consider a minimal
left coprime factorization of the transfer function G(s) =
D−1(s)N(s). Then h is equivalently described through:

h : K −→ Grass(k,Kp+m), s 7→ rowspaceK[D(s) N(s)].(3)

Note also that by the properties of a minimal left coprime
factorization one has that rowspaceK[D(α) N(α)] has full
row rank for all elements α in the algebraic closure of K
and the map can even be extended to the whole projective
line P1

K.

The identification by Martin and Hermann (1978) goes
actually further as the McMillan degree of the transfer
function corresponds to the degree of the Hermann-Martin
curve and the observability indices of the linear system
correspond to the Grothendick indices of an associated
bundle over the projective line. (The pull back of the tau-
tological bundle using the Hermann-Martin map). In the
convolutional codes literature the observabilities indices
are also often referred to as the Forney indices Forney,
Jr. (1975) of the convolutional code and the concepts also
naturally translate here.

The interested reader will find more material on these
intriguing connections in Rosenthal (2005) and material
on convolutional codes can be found in the recent survey
article Lieb et al. (2021).

In the next section we will show how it is possible to
construct excellent subspace codes startinng from a linear
system (or convolutional code) and using evaluation of the
the Hermann-Martin map.

4. A CONSTRUCTION OF SUBSPACE CODES
USING THE HERMANN MARTIN MAP

In the sequel assume that the base field is the finite field
Fq. If G(s) is a transfer function having the left coprime
factorization G(s) = D−1(s)N(s) then we know from
systems theory that rowspaceK[D(α) N(α)] has full row
rank for all elements α in any extension field of Fq.

Based on this observation one can define a subspace code
through:

{rowspaceK[D(α) N(α)] | α ∈ K} , (4)

where K = Fqk is a finite extension field of Fq.

Of course note that the resulting subspace code is a
subspace code in the Grassmannian Grass(k,Kn) defined
over the extension field. It is also not clear how good the
codes can be if one does such an evaluation.

In the sequel we will show how one can overcome the
difficulties with the extension field and how it is possible
to come up with excellent constant dimension subspace
codes.

For simplicity we will consider only one input, one output
transfer functions

G(s) :=
n(s)

d(s)
∈ Fq(s).

Here n(s), d(s) are simply elements of the polynomial ring
Fq[s].

In order to present our main result we first have to make
a definition:

Definition 2. A rational function n(s)
d(s) ∈ Fq(s) is called

a permuation rational function over the extension field
K = Fqk if the map

ϕ : K −→ K, s 7→ n(s)

d(s)
(5)

describes a permutation of the extension field K.

Note that if the denominator polynomial d(s) is a constant
then a permutation rational function is simply a permuta-
tion polynomial for K = Fqk this remark also shows that
permutation rational functions are plentiful.

As it is well known one can identify elements of the
extension field K = Fqk with the Fq algebra Fq[M ] where
M is a k × k matrix defined over Fq whose characteristic
polynomial is irreducible.

A main result which hopefully justifies the outlined con-
struction technique is then:

Theorem 3. Assume n(s)
d(s) ∈ Fq(s) is a permutation rational

function over some extension field K = Fqk which is
also non-proper, i.e. numerator degree is larger than the
denominator degree. Identify elements of K with elements
of the Fq algebra Fq[M ]. Then the evaluation map:

P1
K −→ Grass(k,K2k), α 7→ rowspaceK[d(α)n(α)]

defines a so called spread code. In particular this is a
subspace code having maximal possible distance 2k and
the number of elements is qk + 1, the maximal possible
cardinality.
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Spread codes are somehow optimal subspace codes. The
proof of the theorem follows from the way spread codes
were constructed in Manganiello et al. (2008).

It will be a matter of future research to investigate if other
evaluation maps can lead to subspace codes with optimal
or near optimal distance.

Here one should in particular also look at the evalua-
tion map based on multidimensional convolutional codes
Weiner (1998).
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Abstract: Recently, a number of Lyapunov matrix-based necessary and sufficient stability tests
which require a finite set of operations to be verified were presented for linear time-invariant
time delay systems, see Egorov et al. (2017), Gomez et al. (2019) and Bajodek et al. (2022).
Motivated by those works, in this contribution we revisit the early paper Medvedeva & Zhabko
(2015) and develop the idea to construct a necessary and sufficient finite stability test for a
single-delay system as well. The approach relies on a simple piecewise linear approximation of
the arguments of Lyapunov–Krasovskii functionals based on the Lyapunov matrix, and shows
its competitiveness at least in case of small delays.
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The Lyapunov–Krasovskii functionals with prescribed
derivative based on the so-called Lyapunov matrix are
known to deliver the necessary and sufficient stability
conditions for linear time-invariant time delay systems
(Kharitonov & Zhabko, 2003). However, verification of
their positive definiteness required for the stability test is
challenging. Recently, a number of finite necessary and suf-
ficient tests where such verification is reduced to positive
definiteness analysis of a certain block matrix based on the
Lyapunov matrix values have been appeared. In Egorov
et al. (2017); Egorov & Mondié (2014); Gomez et al.
(2019), this was achieved by approximating the functionals
arguments by specific piecewise continuous functions based
on the fundamental matrix of the system. The approach of
Bajodek et al. (2022) employs a different type of approxi-
mation based on Legendre polynomials. The benefit of the
first approach is that the resulting block matrix has very
nice structure. Indeed, it consists solely of the Lyapunov
matrix values at different points of the delay interval even
for systems with multiple delays. In the second approach,
the Lyapunov matrix-based integrals are involved in the
matrix. However, its dimension is much smaller, which is
a significant advantage.

It is important to note that both approaches rely on the
key ideas of early works (Medvedeva & Zhabko, 2013,
2015) which made the construction of finite necessary and
sufficient Lyapunov matrix-based stability tests possible.
Those ideas include introducing a specific set of functions
satisfying the condition ‖ϕ(θ)‖ 6 ‖ϕ(0)‖ for θ ∈ [−h, 0]
in context of positive definiteness test; showing that the
approximation error (i.e. the difference between the exact
and the approximated functionals) tends towards zero
when the discretization is refined; estimating the exact

? The work was supported by the Russian President Program for
promotion of young researchers, Project MK-2301.2022.1.1.

functional on the solution from the mentioned set in case of
instability. The numerical scheme proposed in Medvedeva
& Zhabko (2013, 2015) employed simply piecewise linear
or piecewise cubic approximations of the functionals ar-
guments. Here, being motivated by Egorov et al. (2017);
Gomez et al. (2019) and Bajodek et al. (2022), we give
a new perspective on the piecewise linear approximation
scheme of Medvedeva & Zhabko (2015). The goal is to
find a compromise between the resulting block matrix di-
mension and its simplicity as well as whole computational
performance of the approach.

Note that our approach is different from those of Gu (1997)
where the functionals kernels rather than arguments are
approximated by piecewise linear matrix functions.

Notation: Assume that initial functions belong to the
space PC

(
[−h, 0],Rn

)
of piecewise continuous Rn-valued

functions defined on [−h, 0] which is supplied with the
norm ‖ϕ‖h = supθ∈[−h,0] ‖ϕ(θ)‖; C2

(
[−h, 0],Rn

)
stands

for the space of twice continuously differentiable vector
functions; <(s) denotes the real part of a complex value s;
λmin(W ) is the smallest eigenvalue of a matrixW ; notation
k = n1, n2, where n1, n2 ∈ Z, n1 < n2, means that k
is an integer between n1 and n2; d·e denotes the ceiling
function; vec(X) means a vectorization of the matrix X;
A⊗B stands for the Kronecker product, namely,

A⊗B def
=


b11A b21A . . . bn1A
b12A b22A . . . bn2A

...
...

. . .
...

b1nA b2nA . . . bnnA

 ,

where B =
{
bij
}n
i,j=1

.

In this work, we analyze the exponential stability of a
linear time delay system of the form

ẋ(t) = A0x(t) +A1x(t− h), t > 0. (1)
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Here, A0, A1 are constant n × n matrices, and h > 0
is a constant delay. Given a positive definite matrix W,
consider a functional with the derivative prescribed along
the solutions of system (1) as

dv0(xt)

dt
= −xT (t)Wx(t), t > 0.

This functional is given by (Huang, 1989)

v0(ϕ) = ϕT (0)U(0)ϕ(0) + 2ϕT (0)

∫ 0

−h
UT (h+ θ)A1ϕ(θ)dθ

+

∫ 0

−h

∫ 0

−h
ϕT (θ1)AT1 U(θ1 − θ2)A1ϕ(θ2)dθ2dθ1.

Here, U(τ), τ ∈ [−h, h], is called the Lyapunov matrix
of system (1) associated with W. This matrix can be
computed as a matrix exponential provided that the so-
called Lyapunov condition holds, see Kharitonov (2013)
for the details. Now, introduce the set

S =
{
ϕ ∈ C2([−h, 0],Rn)

∣∣∣ ‖ϕ‖h = ‖ϕ(0)‖ = 1,

‖ϕ(l)‖h 6 Kl, l = 1, 2
}
,

where K = ‖A0‖+‖A1‖, and ϕ(l) means the l-th derivative
of ϕ. It is shown in Medvedeva & Zhabko (2013, 2015) that
system (1) is exponentially stable, if and only if there exist
functional v0 and a constant µ > 0 such that

v0(ϕ) > µ‖ϕ(0)‖2, ϕ ∈ S.
In other words, positive definiteness of the functional may
be assessed on the set S only for the stability test of system
(1). Moreover, if system (1) is unstable, then there exists
a function ϕ ∈ S such that

v0(ϕ) 6 −a0
def
= −λmin(W )/(4α̂),

where α̂ is such that <(s) 6 α̂ with s being an eigenvalue
of an unstable system (1). In particular, α̂ = K may be
taken as a rough bound. The last-mentioned claim can
be found in the implicit form in Alexandrova & Zhabko
(2019).

Below, we revisit a piecewise linear discretization scheme
of a function ϕ in functional v0 proposed in Medvedeva
& Zhabko (2015). First, discretize an interval [−h, 0] with
the points θj = −j∆, j = 0, N, and consider a piecewise
linear approximation of a function ϕ given by

ϕ(s+ θj) = lN (s+ θj) + ηN (s+ θj), s ∈ [−∆, 0], (2)

j = 0, N − 1, where

lN (s+ θj) = ϕ(θj)
(

1 +
s

∆

)
− ϕ(θj+1)

s

∆
. (3)

Here, lN (θ) and ηN (θ), θ ∈ [−h, 0], stand for the approx-
imation itself and the approximation error, respectively.
Now, we substitute the approximation (2)–(3) into the
functional v0(ϕ) and arrive at the expression

v0(ϕ) = v0(lN ) + ΨN .

It turns out that the approximated functional v0(lN )
represents a quadratic form with respect to the vector

ϕ̂ =


ϕ(0)
ϕ(θ1)

...
ϕ(θN )

 .

That is,

v0(lN ) = ϕ̂TLN ϕ̂,

where LN =
{
Lij
}N
i,j=0

consists of the blocks Lij of

dimensions n × n. Further, the piecewise linear approxi-
mation error admits a bound of the form

‖ηN (s+ θj)‖ 6
1

2
K2(−s)(s+ ∆), s ∈ [−∆, 0],

for all j = 0, N − 1. Hence, we derive that

|ΨN | 6 δN
def
=

c1
N2

+
c2
N4

,

where

c1 =
1

6
K2h3(M1 + hM2), c2 =

1

144
M2K

4h6,

M1 = max
θ∈[0,h]

‖UT (θ)A1‖, M2 = max
θ∈[−h,h]

‖AT1 U(θ)A1‖.

Clearly, the term ΨN approaches zero when the value of
N tends to infinity. Following Gomez et al. (2019) and
Bajodek et al. (2022), we introduce the next lemma which
plays a key role in the presentation of the result in the
form a finite criterion.

Lemma 1. Given ε > 0, if

N >

√
c1 +

√
c21 + 4εc2
2ε

,

then |ΨN | 6 ε.

Finally, defining the value

N? =


√
c1 +

√
c21 + 4a0c2
2a0

 ,
we are ready present the following stability criterion.

Theorem 2. System (1) is exponentially stable, if and only
if the Lyapunov condition holds and

min
‖ζ0‖=1,

‖ζj‖61, j=1,N?

ζTLN?ζ > 0. (4)

Here, ζ =
(
ζT0 , ζ

T
1 , . . . , ζ

T
N?

)T ∈ Rn(N?+1).

Note that instead of (4) positive semi-definiteness of ma-
trix LN?+1 may be verified. Below, we present expressions
for the blocks Lij of the matrix LN for completeness:

L00 = U(0) + 2

∫ 0

−∆

UT (s+N∆)
(

1 +
s

∆

)
dsA1

+AT1

∫ 0

−∆

∫ 0

−∆

(
1 +

s1

∆

)(
1 +

s2

∆

)
× U(s1 − s2)ds2ds1A1,

Lk,k+l = AT1

∫ 0

−∆

∫ 0

−∆

{[(
1 +

s1

∆

)(
1 +

s2

∆

)
+
s1s2

∆2

]
× U(s1 − s2 + l∆) +

(
1 +

s1

∆

)(
−s2

∆

)
× U(s1 − s2 + (l − 1)∆) +

(
−s1

∆

)(
1 +

s2

∆

)
× U(s1 − s2 + (l + 1)∆)

}
ds2ds1A1,

LNN = AT1

∫ 0

−∆

∫ 0

−∆

s1s2

∆2
U(s1 − s2)ds2ds1A1,
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L0k =

∫ 0

−∆

[
UT (s+ (N − k)∆)

(
1 +

s

∆

)
+ UT (s+ (N − k + 1)∆)

(
− s

∆

)]
dsA1

+AT1

∫ 0

−∆

∫ 0

−∆

(
1 +

s1

∆

)
×
[(

1 +
s2

∆

)
U(s1 − s2 + k∆)

+
(
−s2

∆

)
U(s1 − s2 + (k − 1)∆)

]
ds2ds1A1,

L0N =

∫ 0

−∆

UT (s+ ∆)
(
− s

∆

)
dsA1

+AT1

∫ 0

−∆

∫ 0

−∆

(
1 +

s1

∆

)(
−s2

∆

)
× U(s1 − s2 + (N − 1)∆)ds2ds1A1,

LkN = AT1

∫ 0

−∆

∫ 0

−∆

[(
1 +

s1

∆

)
× U(s1 − s2 + (N − k − 1)∆) +

(
−s1

∆

)
× U(s1 − s2 + (N − k)∆)

] (
−s2

∆

)
ds2ds1A1.

Here, k = 1, N − 1, l = 0, N − k − 1, and Ljk = Lkj T for
other indices.

Despite the fact that the matrix LN is determined by
the integrals of the Lyapunov matrix, multiplied possibly
by polynomials, we claim that all those integrals may
be computed explicitly in a vectorized form, without
performing the operation of integration in fact, provided
that det(L) 6= 0, where

L =

(
I ⊗A0 I ⊗A1

−AT1 ⊗ I −AT0 ⊗ I

)
.

For instance, the terms

Jl =

∫ 0

−∆

U(s+ l∆)ds, l = 1, N,

may be computed from(
al

a?N−l+1

)
= L−1

(
u(l∆)− u((l − 1)∆)

u?((N − l)∆)− u?((N − l + 1)∆)

)
,

where

u(τ) = vec(U(τ)), u?(τ) = vec(UT (τ)),

al = vec(Jl), a?l = vec(JTl ), l = 1, N.

This fact allows us to improve computational performance
of the approach significantly, comparing to the experi-
ments made in Medvedeva & Zhabko (2015).

Finally, we suggest to use our approach in a combination
with the necessary stability conditions of Egorov & Mondié
(2014), since the values U(k∆), k = 0, N, involved in
their matrix are calculated during the computation of LN
anyway.
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Abstract: Signature methods represent a non-parametric way for extracting characteristic
features from time series data which is essential in machine learning tasks. This explains why
these techniques become more and more popular in econometrics and mathematical finance.
Indeed, signature based approaches allow for data-driven and thus more robust model selection
mechanisms, while first principles like no arbitrage can still be easily guaranteed.
Here we focus on financial models whose dynamics are described by linear functions of the (time-
extended) signature of a primary underlying process, which can range from a (market-inferred)
Brownian motion to a general multidimensional tractable stochastic process. The framework is
universal in the sense that any classical model can be approximated arbitrarily well and that
the model characteristics can be learned from all sources of available data by simple methods. In
view of option pricing and calibration, key quantities that need to be computed in these models
are the expected value or Fourier Laplace transform of the signature of the primary underlying
process. Surprisingly this can be achieved via techniques from affine and polynomial processes.
These formulas can then be used in the calibration procedure to option prices, while calibration
to time series data just reduces to a simple regression.

Keywords: signature methods, calibration of financial models, Monte Carlo methods, linear
infinite dimensional systems, affine and polynomial processes
MSC (2010) Classification: 91B70, 62P05, 65C20.

1. INTRODUCTION

In the past few years data driven models have successfully
entered the area of stochastic modeling and mathematical
finance. The paradigm of calibrating a few well inter-
pretable parameters has changed to learning the model’s
characteristics as a whole, thereby exploiting all avail-
able sources of data. Thus highly parametric and over-
parametrized models methods have gained more and more
importance. On the one hand side this has opened the door
to robust and more data-driven model selection mecha-
nisms, while on the other hand model classes still have
to be chosen in a way to guarantee first principles from
finance like “no arbitrage”. Relying on different universal
approximation theorems then leads to different well-suited
universal classes of dynamic processes that can serve both
purposes.

One class of such financial models are so-called neural
stochastic differential equations (SDEs) which are defined
as Itô-diffusions where the drift and the volatility function
are parameterized via neural networks (see e.g. Gierja-
towicz et al. (2020); Cuchiero et al. (2020); Cohen et al.

? The authors gratefully acknowledge financial support through
grant Y 1235 of the FWF START-program.

(2021)). Another class of models, considered in Perez-
Arribas et al. (2020) and inspiring the current work, are
so-called Sig-SDEs. These are again Itô-diffusions, how-
ever in this case the characteristics are linear functions of
the signature (more precisely introduced below) of some
driving Brownian motion and time.

We consider here a related approach, where the asset
price model itself is parameterized as a linear function
of the signature of a primary underlying process. This
underlying process can either be a classical driving signal,
e.g. a Brownian motion, but also a more general tractable
stochastic model describing well observable quantities.

Before going into the details of the current model frame-
work, let us first explain the mathematical significance of
signature, a notion which goes back to Chen (1977, 1957)
and plays a particular important role in the context of
rough path theory initiated by Lyons (1998). Indeed, the
signature of an Rd-valued path serves as linear regression
basis for continuous path functionals, since

• it is point-separating, as long as the path contains
one strictly monotone component (which can always
be achieved by adding time), as it then uniquely
determines the underlying path;
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• linear functions on the signature form an algebra that
contains 1. More precisely, every polynomial on the
signature may be realized as a linear function via the
so-called shuffle product.

The Stone-Weierstrass theorem therefore yields a universal
approximation theorem (UAT), telling that continuous
(with respect to a certain variation distance) path func-
tionals on compact sets can be uniformly approximated by
a linear function of the time extended signature. There-
fore signature-based methods provide a non-parametric
way to extract characteristic features (linearly) from time
series data, which is essential in machine learning tasks
in finance. This explains why these techniques become
more and more popular in econometrics and mathematical
finance, see e.g., Buehler et al. (2020); Perez-Arribas et al.
(2020); Lyons et al. (2020); Ni et al. (2021); Bayer et al.
(2021); Akyildirim et al. (2022) and the references therein.

We consider here signature-based methods with the goal
to provide a data-driven, universal, tractable and easy to
calibrate model for a set of traded assets S = (S1, . . . , Sm).
To achieve this the main ingredient is a primary under-

lying process (X̂t)t≥0 = (t,X1
t , . . . , X

d
t )t≥0 with d ≤ m,

where X is a continuous Itô-semimartingale. We suppose

here that time-series data of X̂ is available and that its
signature denoted by X̂ serves a linear regression basis for
S.

2. NOTATION AND PRELIMINARIES ON
SIGNATURE

We shall now introduce the most essential concepts in
order to rigorously define signature in the current context.
In particular, we shall use the following notation:

• The signature takes values in the extended tensor
algebra T ((Rd)) given by

T ((Rd)) := {(a0, . . . , an, . . .) |n ≥ 0, an ∈ (Rd)⊗n}.
Elements of T ((Rd)) are denoted in bold face, e.g.
a = (a0, a1, . . . , an, . . .).
• Let I = (i1, . . . , in) be a multi-index with entries in
{1, . . . , d} and denote by eI = ei1 ⊗· · ·⊗ein the basis
elements of (Rd)⊗n .

• We write 〈eI ,a〉 to extract the Ith component from
an. More generally we often write u(x) = 〈u,x〉 if∑

I |uIxI | < ∞ and call this linear maps in x (on
their domain of convergence).

The coordinate signature indexed by a multi-index I =

(i1, . . . , in) of an Rd-valued semimartingale X̂ is defined
via iterated Stratonovic integrals (denoted by ◦)

〈eI , X̂T 〉 :=

∫
0<t1<···<tn<T

◦dX̂i1
t1 · · · ◦ dX̂

in
tn .

Hence, X̂T = 1 +
∑∞

n=1

∑
|I|=n〈eI , X̂T 〉eI ∈ T ((Rd)).

3. THE MODEL AND ITS PROPERTIES

Let us now describe the precise modeling framework.
The traded assets (S1, . . . , Sm) are modeled via Sn(`) =
(S1

n(`), . . . , Sm
n (`)) where

Sj
n(`j)t := `(Xt) = `j0 +

∑
0<|I|≤n

`jI〈eI , X̂t〉, (Sig-model)

with

• X̂ the signature of X̂,
• n ∈ N is the degree of truncation,
• `j0, `

j
I ∈ R are the deterministic coefficients of the

linear map ` to be found from data.

For notational simplicity we shall in the sequel set m = 1.

Note that since it is possible to express (Sig-model) also
in terms of stochastic integrals, the class of Sig-SDEs
considered in Perez-Arribas et al. (2020) can be embedded
in our framework by choosing a one-dimensional Brownian
motion as primary underlying process.

The attractiveness of this model class described by
(Sig-model) arises from several important features that we
summarize in the sequel:

Universality: Any classical model driven by Brownian
motion can be arbitrarily well approximated. This is
again a consequence of the Stone-Weierstrass theorem
because the solution map of a stochastic differential
equation is a continuous (with respect to a certain
variation distance) map of the signature of the driving
signal.

No arbitrage: The model can also be expressed in terms
of stochastic integrals with respect to local martingales,
from which conditions for no-arbitrage can be easily
deduced.

Tractable option pricing formulas: By relying on the
above UAT and in turn on approximations via so-

called sig-payoffs of the form 〈eJ , ŜT (`)〉 (see also Lyons
et al. (2020)), (approximate) option pricing reduces to

the computation of the expected signature of X̂. Thus
the question is for which primary underlying processes

EQ[X̂T ] can be easily computed. This is the case for
highly generic processes of the form

dX̂t = b(X̂t)dt+

√
a(X̂t)dBt, (1)

where b and a are linear maps. Indeed, as shown in
Cuchiero et al. (2022) these processes can be seen as
projections of extended tensor algebra valued affine and
polynomial process (see Duffie et al. (2003); Cuchiero
et al. (2012)), which implies that the expected signature
can be computed by solving a linear ODE. This ODE is

usually infinite dimensional, but if X̂ is itself a polyno-
mial process it becomes finite dimensional. Analogously
we can rely on affine technology, i.e. solving (infinite
dimensional) Riccati equations to obtain the Fourier-

Laplace transform of the marginals of X̂.
Note that similarly to polynomial approximations the

approximation of vanilla call and put option via sig-
payoffs is not straightforward. Nevertheless sig-payoffs
can be used for variance reduction techniques and are
interesting in their own right as certain path dependent
options like Asian forwards fall into this class.

Calibration to time series data: The tractability of
the model class becomes particularly clear in view of
calibration tasks. Indeed, when the goal is to calibrate
to times series data of market prices (SM

ti )Ni=1, this task
reduces to a simple linear regression.
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Fig. 1. Out of sample comparison between trajectories gen-
erated from a Black-Scholes model and the calibrated
Sig-model.

Calibration to options: When calibrating to the mar-
ket’s volatility surface, we exploit the linearity of the

model by precomputing Monte-Carlo samples of X̂ and
then performing a standard optimizations to find the
parameters of the linear map `. By initializing the
parameters of ` appropriately this optimization task
actually becomes a convex problem, which makes it
particularly tractable. On simulated and real market
data (S&P 500 index) we show that a full calibration
to the volatility surface, in particular when using time
dependent parameters, is highly accurate and very fast.

Note that our calibration method differs from the
approach proposed in Perez Arribas (2020) since we do
not rely on sig-payoffs as a good approximation of vanilla
call and put option via sig-payoffs uniformly over the
range of possible models can hardly be achieved.

Subsequently we shall illustrate some of these model
features in more detail.

3.1 Calibration to time series data

With regard to calibration to time-series data, the goal
is to match N market prices (SM

t1 , . . . , S
M
tN ). Due to our

assumption that time series data of the primary underlying

process X̂t1 , . . . , X̂tN (e.g. market inferred Brownian mo-
tion) is available, we can compute the path of its signature

X̂. This then serves as linear regression basis to find ` by
matching the prices, i.e.

argmin`

N∑
i=1

`0 +
∑

0≤|I|≤n

`I〈eI , X̂ti〉 − SM
ti

2

Since the dimension of ` is typically high, introducing a
regularization (Lasso, Ridge) is necessary. In the Figure 3.1
below we illustrate by means of a 4 dimensional Black-
Scholes market how well out-of-sample trajectories can be
learned. There we us as primary underlying process time
extended (market inferred) Brownian motion up to order
5 and regress on its signature.

3.2 Calibration to option data

When calibrating to option data the goal is to match
N option prices (π1, . . . , πN ) corresponding to European
payoffs Fi(STi) for i = 1, . . . , N . Typically we calibrate to
call and put options with different strikes and maturities,

Fig. 2. Comparison of the market volatility surface (left)
and the calibrated Sig-model volatility surface (right).

whose prices are expressed in terms of implied volatility.
To achieve this we start by computing M Monte-Carlo

samples of X̂j
T1
, . . . , X̂j

TN
for j = 1, . . .M (under a pricing

measure Q). The calibration can then be formalized via

argmin`

N∑
i=1

wi

 1

M

M∑
j=1

Fi(`(X̂j
Ti

))− πi

2

,

where wi are weights, e.g. vega-weights known to match
implied volatility well. The advantages of the Sig-model
class is that all Monte-Carlo samples can be easily pre-
computed and re-used, so that the calibration reduces to a
simple optimization task without any Monte-Carlo simula-
tion in an optimization step. A further nice feature is that

for parameters ` such that 1
M

∑M
j=1 Fi(`(X̂j

Ti
)) ≥ πi the

optimization is convex for convex payoffs. This means that
for starting values in this range and small learning rates in
appropriate gradient descent methods the algorithms are
likely to converge to the true minimum.

In Figure 3.2 we illustrate the calibration to an S&P
500 volatility surface (from 17-03-21) by using as primary
underlying process a two dimensional time extended Brow-
nian motion. We consider here an extension of the model
with time-dependent parameters and achieve a nearly
perfect fit. Indeed, with 13 parameters per maturity the
absolute error is in the range of 0 to 15 basis points.

3.3 Pricing of sig-payoffs

The tractability of the model is also crucial when it comes
to pricing, in particular of path-dependent options. Indeed,
sig-payoffs, like Asian forwards, can be priced via the
following formula. For generic payoffs these sig-payoffs
can be used in an approximate manner, e.g. similarly as
in Ackerer and Filipović (2020) for standard polynomial
processes, or as control variates to reduce the variance in
Monte-Carlo pricing.

Theorem 1. The price of a sig-payoff 〈eJ , ŜT(`)〉 can be
expressed as

EQ[〈eJ , ŜT (`)〉] = 〈e(J, `),EQ[X̂T ]〉
=

∑
I

pI(J, `)〈eI ,EQ[X̂T ]〉,

where pI(J, `) are polynomials in the coefficients of `.
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As already stated above to compute EQ[X̂T ], an affine and
polynomial process point view works for generic primary

processes X̂ of form (1) (see Cuchiero et al. (2022) for
details).
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Duffie, D., Filipović, D., and Schachermayer, W. (2003).
Affine processes and applications in finance. Annals of
Applied Probability, 13, 984–1053.

Gierjatowicz, P., Sabate-Vidales, M., Siska, D., Szpruch,
L., and Zuric, Z. (2020). Robust pricing and hedging
via neural SDEs. Available at SSRN 3646241.

Lyons, T.J. (1998). Differential equations driven by rough
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Abstract: The problem of decoding a random-like linear block code is recognized as one of
the most important mathematical problems that apparently will remain hard even with the
availability of solvers based on quantum computers. This motivates an increasing interest in
code-based cryptography as a solution for the design of post-quantum cryptographic primitives.
However, while several robust and efficient code-based systems exist for asymmetric encryption
and key exchange, mostly stemming from the McEliece and Niederreiter original cryptosystems,
devising robust and efficient code-based signature schemes is a far more challenging task. This
work provides an overview of past and current approaches to the problem of designing secure and
practical code-based signature schemes following two main directions: adapting the McEliece
and Niederreiter schemes to the digital signature setting following the classical hash-and-sign
approach or deriving digital signatures from code-based identification schemes through suitable
transformations.

Keywords: Code-based cryptography, decoding problem, digital signatures, identification
schemes, post-quantum cryptography.

1. INTRODUCTION

Digital signatures traditionally rely on cryptographic trap-
doors, that is, functions whose solution is easy to compute
for those who own some secret, known as private key, while
requiring the solution of some computationally hard prob-
lem for all the others. A public key is then derived from the
private key through some sort of one-way function, such
that it can be publicly distributed without revealing the
private key. In the case of digital signatures, the private
key of a user allows computing their digital signature of a
message, while the associated public key allows verifying
the signature or, equivalently, ascertaining the signer’s
identity and the message integrity.

Cryptographic trapdoors used in widespread digital sig-
nature schemes rely on the hardness of either factor-
ing large semiprime numbers or computing discrete log-
arithms. These classical hard problems have withstood
cryptanalysis for about fifty years, and have enabled very
fast digital signature schemes with compact signatures.
However, quantum algorithms like Shor’s algorithm (Shor,
1997) make the same problems solvable in polynomial time
with a quantum computer, which motivates the search for
alternative, quantum-resistant solutions (Moody, 2021).

The most established solutions for constructing quantum-
resistant cryptographic trapdoors are those relying on
lattice-based problems, code-based problems, multivariate
polynomial problems, isogenies between elliptic curves and
others (Chen et al., 2016). Differently from problems based
on lattices, which have already been exploited for con-
structing both efficient asymmetric encryption and digital
signature schemes, problems based on coding are more
challenging to be exploited as a basis for digital signature

schemes. This work provides a critical overview of current
solutions for post-quantum digital signatures based on
codes, focusing on challenging aspects and describing the
most promising avenues for the development of efficient
code-based digital signature schemes.

2. HARDNESS OF THE DECODING PROBLEM

The main hard problem derived from coding theory is
the so-called decoding problem, that is, the problem of
finding the nearest vector (or codeword) belonging to a k-
dimensional subspace (named code) C ⊂ Fn

q starting from
any vector x ∈ Fn

q . Any k×n matrix G over Fq forming a
basis for C is called generator matrix for the code C, while
any (n − k) × n matrix H over Fq forming a basis for its
dual C⊥ is called a parity-check matrix for C, such that
C is the kernel of H. The parity-check matrix H divides
the space Fn

q into qn−k cosets, that is, any vector x ∈ Fn
q

belongs to the coset represented by H · xT , also known as
the syndrome of x through H. Since any codeword belongs
to the coset corresponding to the all-zero syndrome, the
aforementioned decoding problem can also be formulated
in terms of syndrome, that is, finding the smallest weight
vector e belonging to the same coset of x. In such a case,
due to the code linearity, x − e has an all-zero syndrome
and thus belongs to the code, actually being the decoded
codeword. This alternative formulation of the decoding
problem is known as syndrome decoding problem.

If we consider the Hamming metric, that is, we define
syndrome decoding as finding the vector with the smallest
Hamming weight in a coset, then the problem has been
proved to be NP-complete for random codes (Berlekamp
et al., 1978; Barg, 1994). A number of algorithms have
been developed over years for solving such a problem
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(Prange, 1962; Dumer, 1989; Lee and Brickell, 1988; Leon,
1988; Stern, 1988; Becker et al., 2012; May et al., 2011;
Bernstein et al., 2011), all characterized by exponential
complexity, although with progressively decreasing expo-
nential factors.

3. DIGITAL SIGNATURES BASED ON
HASH-AND-SIGN

The first and traditional approach to code-based cryptog-
raphy is the one introduced by McEliece in 1978 (McEliece,
1978), according to which the cleartext message is encoded
into a codeword of a public code, and then corrupted with
a number of intentional errors below the error correction
capability of the public code. The trapdoor is constructed
by providing the receiver with a secret representation of
the public code which enables decoding through efficient
algorithms, while the corresponding public representation
of the same codes forces the use of algorithms for general
decoding of random codes, which are characterized by
exponential complexity. An alternative formulation of the
same approach has been introduced by Niederreiter in 1986
(Niederreiter, 1986), and exploits syndromes in the place
of noisy codewords.

While these approaches based on decoding work very
well for asymmetric encryption, leading to robust and
efficient public-key cryptosystems, their conversion into
digital signature schemes is more challenging. In fact,
differently from some asymmetric cryptosystems like RSA,
these cryptosystems cannot be easily converted into hash-
and-sign digital signature schemes. In fact, opposed to
RSA, these cyptosystems have a domain and an image of
the encryption function that do not coincide, which makes
them difficult to be “reversed” for obtaining a hash-and-
sign scheme. In fact, it is very unlikely that a random
cleartext message, or its hash digest, coincides with a
syndrome that is correctable through the secret code, or
with a codeword of the same code affected by a limited
number of errors.

Thus, some workaround needs to be used for making
signatures of random messages or their digests easy to
generate in the traditional code-based setting, and this
normally undermines the primitive security. A well-known
proposal in this sense has been made by Courtois, Finiasz,
and Sendrier (Courtois et al., 2001), but it has been
found exposed to some vulnerabilities that require the
adoption of very costly solutions from the point of view
of signature generation time and size of public keys. The
use of codes characterized by sparse representations, which
is a promising avenue for achieving public-key encryption
schemes derived from McEliece with compact keys, has
also been attempted to build signature schemes relying on
the hardness of decoding (Baldi et al., 2013), but with
little fortune (Phesso and Tillich, 2016).

A more recent approach is that of exploiting large-weight
error vectors, instead of small-weight ones, which are also
difficult to find through decoding, especially over non-
binary fields. The scheme proposed in (Debris-Alazard
et al., 2019), named Wave, exploits this fact, and uses
codes in the (U |U + V ) form to enable aided versions
of general decoding algorithms for signature generation.
This provides a step further with respect to CFS, by

achieving a public key size growing as λ2, where λ is the
security level in bits. However, a public key with size in
the order of 4 megabytes is required for achieving 128
bits of classical security, which is rather large. Moreover,
generating signatures requires the execution of a modified
version of Prange’s general decoding algorithm (Prange,
1962), with a complexity in the order of λ3, thus resulting
in a slow signature generation. Another scheme relying
on the hardness of decoding of large-weight vectors has
been recently introduced in (Baldi et al., 2022), with the
main advantage of a fast signature generation, thanks to
the possibility of generating signatures without requiring
the execution of a decoding algorithm. However, secure
instances have still been studied only for one-time use, and
further investigations are needed to address the multiple-
time use case.

All the above schemes rely on some hidden code structure,
which certainly represents a delicate point and can turn
into a vulnerability if the structure of the secret code is
not adequately hidden. Such a hidden code structure is no
longer required in code-based signature schemes derived
from identification schemes, as described next.

4. DIGITAL SIGNATURES FROM IDENTIFICATION
SCHEMES

An alternative approach to design digital signature schemes
is the one stemming from code-based identification schemes.
Classical identification protocols based on zero-knowledge
proofs allow one party (the prover) to demonstrate to
another party (the verifier) knowledge about a secret,
without revealing the secret itself, and work as follows.

(1) The prover, owning the secret, commits to some
random data that is sent to the verifier.

(2) The verifier receives the random data and generates
a corresponding challenge for the prover.

(3) The prover generates a response to the challenge,
without revealing anything concerning the secret.

A zero knowledge identification protocol of this type can
be converted into a digital signature scheme through the
Fiat-Shamir approach (Fiat and Shamir, 1986), according
to which the challenge is obtained through a deterministic
function applied to the message, besides committed data,
and the transcript of the protocol provides the signature.
The rationale of the Fiat-Shamir approach is that of
replacing the prover’s choices with the output of a hash-
based algorithm, thus making the protocol no longer
interactive and suitable for digital signatures. The verifier,
owning the public key, can then use it to verify that the
transcript is actually consistent with the message, thus
validating the signature.

The first code-based identification scheme has been pro-
posed by Stern in 1994 (Stern, 1994); several variants
have subsequently appeared in the following years (e.g.,
(Véron, 1997; Gaborit and Girault, 2007; Cayrel et al.,
2011; El Yousfi Alaoui et al., 2013)). The main advantage
of these schemes is that they use public random-like codes
without any hidden structure, which eliminates an impor-
tant source of potential vulnerabilities. Hence, security is
based on a pure, random instance of some (usually NP-
hard) problem. These schemes are also characterized by
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very compact public keys, which is another important
advantage.

However, for many years, digital signature schemes derived
from identification protocols have been considered not
practical, because of their normally large signatures. In
fact, these schemes are characterized by a usually high
soundness error, which implies that an adversary can
cheat on a single execution of the protocol with non-
trivial probability, for example 1/2 or 2/3. This requires
iterating the protocol for a significant number of times in
order for the adversary to experience a sufficiently small
overall cheating probability (say, not greater than 2−λ).
As a consequence, the transcript of the protocol becomes
rather long, which translates into a significant size of
generated signatures, in the order of tens or even hundreds
of kilobytes.

However, some recent works have described how to apply
several optimizations on top of an identification scheme,
in order to reduce the signature size (Gueron et al., 2022;
Bettaieb et al., 2021; Bidoux et al., 2022; Becker et al.,
2020; Barenghi et al., 2021; Feneuil et al., 2021). These
techniques can be thought of as a clever rewriting of the
straight identification protocol, with no impact on the
underlying security assumptions. Some of them consist,
for instance, in extracting randomness from a so-called
seed tree, or emulating an imaginary multiparty compu-
tation phase. Techniques of this kind have been shown
to have a great potential in reducing the signature size.
For this reason, zero knowledge identification schemes are
currently deemed as one of the most promising strategies
to achieve secure and efficient code-based signatures. An-
other promising avenue to achieve compact public keys
and reduced communication costs in zero-knowledge iden-
tification schemes based on codes is that of restricting
the entries of the searched vector within a subset of the
underlying finite field (Baldi et al., 2020).

In this context, but under the setting of lattice-based prob-
lems, an important advance is represented by the Schnorr-
Lyubashevsky approach (Lyubashevsky, 2012), which in-
deed allows deriving compact digital signatures from iden-
tification schemes. Some attempts have been made for
translating such an approach in the code-based setting
(Persichetti, 2018), but the resulting schemes have been
successfully exposed to cryptanalysis based on statistical
approaches (Aragon et al., 2021).

4.1 Identification schemes based on code equivalence

In 2020, a new code-based zero knowledge identification
scheme named LESS has been proposed (Biasse et al.,
2020). Differently from classical code-based identification
schemes, it comes as a three pass protocol in which the
soundness error can be arbitrarily reduced by using multi-
ple key pairs. These characteristics are intrinsically due to
the fact that the scheme is constructed upon the somehow
unorthodox code equivalence problem (which can be de-
scribed as a transitive code-based group action). In a nut-
shell, the problem reads as follows: given two linear codes,
find an isometry which maps one code into the other.
Notably, determining whether two codes are equivalent is a
standard problem in coding theory and, as such, has been
studied for decades. Despite the fact that code-equivalence

is not NP-hard (unless the polynomial hierarchy collapses),
there exist instances (e.g., monomial equivalences or per-
mutations of self-dual codes) for which no efficient solver
is known. Interestingly, for such instances, the currently
known best attack (Beullens, 2020) reduces to the problem
of decoding a linear code, which is instead NP-complete,
as already said. The original LESS parameters have been
broken in (Beullens, 2020), but in a subsequent paper new
and secure instances have been recommended (Barenghi
et al., 2021), together with several optimizations to make
signatures more compact.
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1. PORT-HAMILTONIAN DAE SYSTEMS

Differential-algebraic equation (DAE) system models are
ubiquitous in physical systems modeling. In particular,
the algebraic constraints often arise from interconnection
of subsystems. Port-based modeling of complex engineer-
ing systems leads to a broad, but specific, class of DAE
systems, called port-Hamiltonian DAE systems. Analy-
sis, simulation, and control of such systems can benefit
from a closer study of the structural properties of port-
Hamiltonian DAE systems.

From a port-based modeling perspective Van der Schaft
(2013, 2017); Van der Schaft, Jeltsema (2014), the alge-
braic constraints in port-Hamiltonian systems are primar-
ily reflected in the Dirac structure of the system. However,
as was argued before, e.g. in Beattie et al. (2017, 2019);
Mehrmann et al. (2018), and more explicitly in Barbero-
Linan et al. (2019); Van der Schaft, Maschke (2018, 2020);
Gernandt et al. (2021), algebraic constraints may also
arise by replacing the Hamiltonian function in the defi-
nition of port-Hamiltonian systems by a Lagrangian sub-
space (more general than the graph of the gradient of the
Hamiltonian function). The present contribution aims at
taking a closer look at the representations and properties
of such generalized port-Hamiltonian DAE systems. For
simplicity of exposition we will concentrate on linear port-
Hamiltonian DAE systems without energy dissipation and
without inputs and outputs. The remaining (autonomous)
port-Hamiltonian DAE systems are fully described by two
geometric structures, namely a Lagrangian subspace and
a Dirac structure.

Recall the definitions of such structures. A Dirac structure
on an n-dimensional linear state space X is specified by a
subspace D ⊂ X × X ∗, which is a maximal subspace on
which the symmetric canonical bilinear form on X × X ∗
represented by the 2n× 2n matrix

[
0 I
I 0

]
(1)

is zero. It follows that the dimension of any Dirac structure
D is equal to dimX = n, and that there exist n×n matrices
K and L such that

D = ker [K L] = im

[
L>

K>

]
⊂ X ×X ∗, KL>+LK> = 0,

(2)
while conversely any such pair (K,L) defines a Dirac
structure D. Note that the property KL> + LK> = 0
is a generalized skew-symmetry property, and reflects the
fact that e>f = 0 for any (f, e) ∈ D, expressing power
conservation.

Analogously, a Lagrangian subspace is a maximal subspace
on which the skew-symmetric canonical symplectic form
on X × X ∗ represented by the 2n× 2n matrix[

0 I
−I 0

]
(3)

is zero. The dimension of any Lagrangian subspace L is
equal to dimX = n, and for any L there exist n × n
matrices P and S such that

L = ker
[
−S> P>

]
= im

[
P
S

]
⊂ X × X ∗, S>P = P>S,

(4)
while conversely any such pair (P, S) defines a Lagrangian
subspace L. The Lagrangian subspace corresponding to a
quadratic Hamiltonian function H(x) = 1

2x
>Qx, Q = Q>,

is defined by P = I, S = Q.

The port-Hamiltonian DAE system corresponding to a
pair (D,L) of a Dirac structure and Lagrangian subspace
is defined by the composition of D and L (over the shared
variables e ∈ X ∗) , that is

D ◦ L = {(f, x) ∈ X × X | there exists e ∈ X ∗ such that

(f, e) ∈ D, (e, x) ∈ L}
(5)
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This defines the port-Hamiltonian dynamics

(−ẋ, e) ∈ D ◦ L (6)

(Note that strictly speaking −ẋ = f is an element of
the tangent space of X at x ∈ X , which however can be
identified with X .) Coordinate representations of the port-
Hamiltonian dynamics (6) can be obtained as follows.

1.1 The x-representation

The composition D◦L ⊂ X×X can be explicitly computed
as follows. First consider the ’intersection’ of D and L,
given by the kernel of[

K L 0
0 −P> S>

]
(7)

Consider a maximal annihilator [M N ] of

[
L
−P>

]
, that is

ker [M N ] = im

[
L
−P>

]
(8)

and thus in particular ML − NP> = 0. Premultiply
the ’intersection’ with this maximal annihilator, so as to
obtain

[M N ]

[
K L 0
0 −P> S>

]
=

[
MK 0 NS>

]
(9)

Then D ◦ L ⊂ X × X is given as

D ◦ L = ker
[
MK NS>.

]
(10)

Thus the resulting DAE system (in the original state
variables x for X ) is the port-Hamiltonian DAE system

MKẋ = NS>x, where ML = NP>. (11)

Remark 1.1. If P is invertible, then also M is invertible
(and conversely). In this case we may take M = I and N
such that

ker [I N ] = im

[
L
−P>

]
, (12)

implying L = NP>. Thus N = LP−> and the DAE
system takes the form

Kẋ = LP−>S>x = L
(
SP−1

)>
x = LSP−1x, (13)

where the last equality follows from S>P = P>S. This
is exactly the form of a port-Hamiltonian DAE system
in case of a general Dirac subspace, and a Lagrangian
subspace which is given as the graph of the symmetric
matrix Q = SP−1. If additionally K is invertible then we
obtain the Poisson formulation of Hamiltonian dynamics

ẋ =
(
K−1L

) (
SP−1

)
x, (14)

where the skew-symmetric matrix J := K−1L defines a
Poisson structure.

Remark 1.2. If instead we assume L to be invertible, then
N is invertible, and thus we can take N = I. In this case
the equations become

MKẋ = S>x, ML = P>.

Substituting M = P>L−1 we obtain the port-Hamiltonian
DAE

P>L−1Kẋ = S>x (15)

where
(
L−1K

)>
= −L−1K. If additionally P is invertible,

this may be rewritten as(
L−1K

)
ẋ =

(
SP−1

)
x, (16)

which is the standard symplectic formulation of Hamilto-
nian dynamics in case the skew-symmetric matrix L−1K
is invertible.

1.2 The z-representation

Another way to obtain a DAE representation of the
defining pair (D,L) is to consider a parametrization of the
Lagrangian subspace [

x
e

]
=

[
P
S

]
z (17)

with z ∈ Z, where Z is an n-dimensional parametrization
space. As detailed in Van der Schaft, Maschke (2018) this
yields the port-Hamiltonian DAE system

KPż = LSz (18)

Note that singularity of the matrix KP (and thus the
appearance of algebraic constraints) may originate from
two different sources: singularity of K (corresponding to
Dirac algebraic constraints), as well as singularity of P
(Lagrange algebraic constraints).

The Hamiltonian of the port-Hamiltonian DAE system
(18) is given as

Hz(z) =
1

2
z>S>Pz, (19)

and indeed d
dtH

z(z) = z>S>P ż = 0 by the property

e>f = 0 for any (f, e) ∈ D. In case P is invertible the
Hamiltonian Hx of the x-representation is

Hx(x) =
1

2
x>SP−1x (20)

Substituting x = Pz we immediately observe the following
equality with Hz:

Hx(x) =
1

2
x>SP−1x =

1

2
z>P>SP−1Pz = Hz(z). (21)

Alternatively, starting from the x-representation we can
define in case S is invertible the co-energy (Legendre
transform)

Hx
c (e) =

1

2
e>PS−1e, (22)

for which Hx
c (e) = Hz(z) for e = Sz.

Note that the state vector x of the x-representation (11)
is in general (especially if P is singular) different from
the state vector of the z-representation (18); although of
equal dimension. In the presentation and in the forthcom-
ing paper Mehrmann, van der Schaft (2022) the precise
notion of equivalence of these two representations will be
discussed. Furthermore, we aim to address the structural
properties of port-Hamiltonian DAE systems, including
index analysis.

2. WHEN IS A DAE SYSTEM A
PORT-HAMILTONIAN DAE SYSTEM: A
GENERALIZED LYAPUNOV EQUATION

Next we study the question when a general DAE system
Σ ⊂ X × X given as Eẋ = Ax, x ∈ X , is actually a
port-Hamiltonian system; i.e., when does there exist a
Dirac structure D ⊂ X × X ∗ and a Lagrangian subspace
L ⊂ X × X ∗ such that Σ = D ◦ L. First we identify two
necessary conditions for the existence of (D,L).
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Proposition 2.1. Consider Σ ⊂ X × X represented by
Ef + Ax = 0 and the Lagrangian subspace L ⊂ X × X ∗
represented by P, S. Then necessary conditions for the
existence of a subspace D such that Σ = D ◦ L are

(i) kerS> ⊂ kerA

(ii)A−1 (imE) ⊂ imP
(23)

Next step will be to develop a Lyapunov equation (in
terms of the unknown pair (P, S) defining a Lagrange
subspace). This is aimed at further generalizing the theory
of Lyapunov equations for DAE systems developed in e.g.
Stykel (2002); Reis et al. (2015).
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Abstract: We consider reachability properties of families of parameter-dependent linear
systems, where the inputs are restricted to be independent of the parameter. If for every family of
parameter-dependent target states and every neighborhood of it there is an input such that the
zero state can be steered simultaneously into the given neighborhood the parameter-dependent
system is called ensemble reachable. Recently, a lot of effort has been spent on the derivation
of necessary and sufficient conditions for ensemble reachability. Here we tackle the subsequent
question how to determine a suitable input if the target family and the neighborhood is given. We
present two methods for discrete-time linear systems which are based on complex approximation
theory. We will also point out that one of the polynomial techniques can also be applied to certain
continuous-time systems.

Keywords: parameter-dependent systems, polynomial approximation, ensemble reachability,
infinite-dimensional systems, approximation
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1. EXTENDED ABSTRACT

Controlling ensembles of systems is motivated by a wide
range of engineering applications. In robotics and sys-
tems engineering there has recently been much interest
in studying motion control problems for spatio-temporal
systems and infinite platoons of vehicles, cf. Bamieh et al.
(2002), where control actions and measurements take place
in a spatially distributed way. Also problems arising in
quantum control (NMR spectroscopy) and the control of
flocks falls into the area of ensemble control, cf. (Brockett,
2012, Section 2.4).

1.1 Problem Statement

In this work we investigate families of parameter-dependent
linear control systems. First, we treat the discrete-time
case, i.e. we consider

xt+1(θ) = A(θ)xt(θ) + b(θ)ut, (1)

where the matrices A(θ) ∈ Cn×n and the vectors b(θ) ∈ Cn
are assumed to depend continuously on the parameter
θ ∈ P which is varying over a nonempty compact set
P ⊂ C with empty interior. To make things not too
technical, we assume that P ⊂ R is a compact interval. To
express these assumptions we will shortly write (A, b) ∈
Cn,n(P)×Cn(P) in the following. We emphasize that the
input u does not dependent on the parameter. Since we
are interested in reachability properties we set the initial
condition to zero, i.e. x0(θ) = 0 for every θ ∈ P. For T > 0
and u = (u0, ..., uT−1) ∈ C1×T , let ϕ(T, u)(θ) denote the
solution to (1), i.e.

? Research supported by the ERC project CHRiSHarMa DLV-
682402.

ϕ(T, u)(θ) =
T−1∑
τ=0

A(θ)T−1−τ b(θ)uτ . (2)

In ensemble control, the key point is that the input u has
to be independent of the system parameter θ ∈ P and a
central question is the following reachability property: A
pair (A,B) is called uniformly ensemble reachable if for
any state f ∈ Cn(P) and for any ε > 0 the are T > 0 and
u ∈ C1×T such that
‖ϕ(T, u)− f‖∞ = sup

θ∈P
‖ϕ(T, u)(θ)− f(θ)‖ < ε. (3)

Note that, it is an immediate consequence of the assump-
tion that the input has to be independent of the parameter
that exact reachability (i.e. ε = 0) is never possible.

The focus of this paper is to provide methods to compute
suitable inputs for uniformly ensemble reachable pairs
(A, b). That is, given a family of terminal states f ∈ Cn(P)
and a neighborhood Bε(f) = {g ∈ Cn(P) | ‖f − g‖∞ <
ε} ⊂ Cn(P) find T > 0 and an open-loop control u ∈ C1×T

such that ϕ(T, u) ∈ Bε(f).

1.2 Known criteria for uniform ensemble reachability

In this section we recall relevant known results that pre-
pare the ground to derive constructive methods for the
computation of suitable inputs. We start with two neces-
sary conditions, cf. (Dirr and Schönlein, 2021, Thm. 3): If
the pair (A, b) is uniformly ensemble reachable, then

(N1) the pair (A(θ), b(θ)) is reachable for every θ ∈ P.
(N2) for any pair of distinct parameters θ, θ′ ∈ P, the

spectra of A(θ) and A(θ′) are disjoint:
σ(A(θ)) ∩ σ(A(θ′)) = ∅.
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For single-input linear systems the following conditions are
sufficient for uniform ensemble reachability, cf. (Dirr and
Schönlein, 2021, Thm. 4 & Cor. 1).
Theorem 1. Let P be a compact interval. A pair (A, b) is
uniformly ensemble reachable if it satisfies (N1) and (N2)
and one of the following sufficiency conditions:

(S1) The characteristic polynomials of A(θ) take the form
zn − (an−1z

n−1 + · · ·+ a1z + a0(θ))

for some an−1, ..., a1 ∈ C and a0 ∈ C(P).
(S2) A(θ) has simple eigenvalues for each θ ∈ P.

We note that due to the condition (N2) the function a0

in (S2) is necessarily injective. Thus, a0 : P → a0(P) is
one-to-one and onto and so a0(P) defines a Jordan arc.
In certain cases, like the controlled harmonic oscillator, it
happens that the sufficiency conditions (S1) and (S2) are
satisfied at the same time. Also, if P is compact interval,
it is shown in (Dirr and Schönlein, 2021, Thm. 3) that the
conditions (S2) holds necessarily for an open and dense
subset of P.

For discrete-time single input systems the solution can also
be written as

ϕ(T, u)(θ) =
T−1∑
τ=0

uτ
(
A(θ)

)T−1−τ
b(θ)

=
(
uT−1I + · · ·+ u0A(θ)T−1

)
b(θ).

Using the polynomial
p(z) =uT−1 + uT−2 z + · · ·+ u1 z

T−2 + u0 z
T−1

and it follows that (A, b) is uniformly ensemble reachable
if and only if for every f ∈ Cn(P) and for every ε > 0
there is a polynomial p such that

‖p(A)b− f‖∞ < ε.

Thus, the construction of suitable inputs is equivalent to
the construction of a suitable polynomial. In this work,
for given f ∈ Cn(P) and ε > 0, we will present sufficient
conditions and methods for the construction of suitable
inputs u = (u0, ..., uT−1) ∈ C1×T . Since the inputs will
be given in terms of the coefficients of an appropriate
polynomial, it is required to determine the degree and
the coefficients of the polynomial. Indeed, the degree of
the polynomial determines the number of inputs that are
required and the coefficients specify the input values.

2. APPROXIMATION THEORY

This section contains results from classical approximation
theory that are used in the construction methods in
Section 3. We start with the results due to Weierstrass.
Recall that, given a function f : [a, b] → R the nth
Bernstein polynomials is given by

Bf,n(x) :=
n∑
k=0

(
n

k

)
f(a+ k

n (b− a))
(
x−a
b−a

)k (
b−x
b−a

)n−k
.

The following version of the classical Weierstrass Approx-
imation Theorem has been shown by Gzyl and Palacios
(1997).

Theorem 2. (Weierstrass first theorem).
Let f : [a, b] → R satisfy a Lipschitz condition. Then, for
n ≥ 3 the sequence of Bernstein polynomials satisfies

‖f −Bf,n‖∞ ≤
(

4Mf +
(b− a)Lf

2

) √
log n√
n

.

Associated with a continuous function f : ∂D→ C we con-
sider the trigonometric polynomials due to Fejér, defined
as

Ff,n(z) :=
n∑

k=−n

n+ 1− |k|
n+ 1

f̂(k) zk,

where

f̂(k) :=
1

2π

∫ π

−π
f(eis)e−iks ds

denotes the kth Fourier coefficient of f . Similar to Gzyl
and Palacios (1997) the following version of the trigono-
metric Weierstrass Approximation Theorem can be shown,
cf. Natanson (1964).

Theorem 3. (Bernstein).
Suppose that f : ∂D → C satisfies a Lipschitz condition.
Then, the sequence of trigonometric polynomials (Ff,n)n∈N
converges uniformly to f and satisfies

sup
z∈∂D

|f(z)− Ff,n(z)| ≤ 2
√

2πLf ·
lnn

n
,

where Lf > 0 denotes the Lipschitz constant.

Moreover we make use of

Theorem 4. (Runge’s little Theorem (1885)).
Let K be a compact subset in C such that C \ K is
connected. If there is an open set Ω containing K such
that f is holomorphic on Ω, then for every ε > 0 there is
polynomial p such that

sup
z∈K
|f(z)− p(z)| < ε.

For Runge’s little Theorem there are constructive proce-
dures illustrated in the literature, cf. e.g. Remmert (1998).
However, to the best of the authors knowledge, an explicit
representation of the degree and the coefficients of the
Runge polynomial in terms of the function f and ε > 0
was previously not available and is presented in Schönlein
(2021).

3. COMPUTATIONAL METHODS FOR
DISCRETE-TIME SYSTEMS

We take the sufficient conditions provided in Theorem 1 as
a starting point and we provide for each case a constructive
procedure to compute a suitable input for a given target
function f and a given neighborhood Bε(f) of it. To this
end, we will need the following notations. For g : Ω ⊂ C→
C we define

Mg := max
z∈Ω
|g(z)|.

Also we say that g satisfies a Lipschitz condition, i.e. there
exists a Lg > 0 such that

|g(z1)− g(z2)| ≤ Lg |z1 − z2|
for all z1, z2 ∈ Ω. We use Lip(Ω) to denote the set of
functions that satisfy a Lipschitz condition.
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3.1 Method S1

The first method is based on sufficient condition (S1). Let
f ∈ Cn(P) and ε > 0 be given. A suitable input is obtained
by carrying out the following basic steps (details for step
(A2) will be given below):

(A1) Compute the Jordan arc
a0(P) = {a0(θ)| θ ∈ P} ⊂ C.

(A2) Compute the polynomials p1, ..., pn such that
sup

z∈a0(P)

|pk(z)− fk(a−1
0 (z))| < ε

for all k = 1, ..., n.
(A3) Set g(z) := zn − (an−1z

n−1 + · · ·+ a1z) and define

p(z) :=
n∑
k=1

pk
(
g(z)

)
zk−1. (4)

It remains to provide how to get the polynomials in
step (A2). We distinguish the cases that a0(P) is real or
complex. Also we will assume that

fk ◦ a−1
0 ∈ Lip(a0(P))

for all k = 1, ..., n. The polynomials are determined via the
constructive proofs to the approximation results stated in
Section 2. More precisely:

(a1) If a0(P) = [a, b] ⊂ R, then according to Theorem 2 we
take pk, k = 1, ..., n as the Bernstein polynomials to
the component functions fk ◦a−1

0 of degree nk, where
the degree nk ∈ N is chosen such that
√

2
(

4Mfk◦a−1
0

+ (b−a)
2 Lfk◦a−1

0

)√ log nk
nk

≤ ε.

(a2) If a0(P) ⊂ ∂D = {z ∈ C | |z| = 1}, we first extend the
functions fk ◦ a−1

0 to ∂D by defining

fk(z) := wk,1 + (wk,2 − wk,1)
z − zk,1
zk,2 − zk,1

for all z ∈ ∂D \ a0(P), where wk,1 and wk,2 are the
values of fk at the end-points zk,1 and zk,2 of a0(P),
respectively and take pk = Ffk◦a−1

0 ,nk
with nk such

that (
2
√

2πLfk◦a−1
0

lnnk
nk

)
≤ ε.

Sufficient conditions such that Method S1 works are pre-
sented in the following result.

Theorem 5. Suppose (A, b) satisfies (N1), (N2) and (S1).
Let ε > 0 and suppose that f ∈ Cn(P) is such that
fk ◦ a−1

0 ∈ Lip(a0(P)) for all k = 1, ..., n and assume that
the Jordan arc a0(P) lies either on the real line or on the
unit circle. Let

p(z) = p0 + · · ·+ pkz
k

be the polynomial of degree k defined by (4). Then, at time
T − 1 = k ≥ 3 with inputs

u = (u0, ..., uT−1) = (pk, ..., p0)

one has
‖ϕ(T, u)− f‖∞ < ε.

The construction yields that the degree of the polynomial
defined in (4) is given by

max
k=1,...,n

nk(k − 1)n.

3.2 Method S2

The second method is based on the sufficient condi-
tion (S2). Let f ∈ Cn(P) and ε > 0 be given. After
applying a change of coordinates T (θ) we consider the pair

T (θ)−1A(θ)T (θ) =

a1(θ)
. . .

an(θ)


T (θ)−1b(θ) =

1
...
1

 ,

where a1, ..., an denote the distinct eigenvalue Jordan arcs.
Let f̃(θ) = T (θ)−1f(θ) and let ‖ · ‖M be a matrix norm
that is submultiplicative to ‖ · ‖ and set

‖T‖M,∞ := sup
θ∈P
‖T (θ)‖M .

A suitable input is obtained by carrying out the following
basic steps (details for steps (B2) and (B3) will be given
below):

(B1) Compute the Jordan arcs
ak(P) = {ak(θ), | θ ∈ P} ⊂ C, k = 1, ..., n

and set a(P) = ∪k=1,...,nak(P).
(B2) Compute the polynomials p1, ..., pn such that

sup
z∈ak(P)

|pk(z)− f̃k(a−1
k (z))| < ε

3‖T‖M,∞

for all k = 1, ..., n.
(B3) Let αk,l := supθ∈P |pk(al(θ))| and define hk : a(P)→

C by

hk(z) =

{
1 if z ∈ ak(P)

0 if z ∈ a(P) \ ak(P)

for k = 1, ..., n. Compute via Runge’s little Theorem
the polynomials q1, ..., qn such that

sup
z∈a(P)

|qk(z)− hk(z))| < ε

3‖T‖M,∞
∑n
l=1 αk,l

for all k = 1, ..., n.
(B4) Set

p(z) =
n∑
k=1

pk(z)qk(z). (5)

The polynomials in step (B2) are obtained as follows.
Again we distinguish the cases that the Jordan arcs are
real or complex and assume that

f̃k ◦ a−1
k ∈ Lip(ak(P)).

(b1) If ak(P) = [a, b] ⊂ R take pk as the Bernstein poly-
nomials corresponding to the component functions
f̃k ◦ a−1

k of degree nk, where the degree nk ∈ N is
chosen such that
√

2
(

4Mf̃k◦a−1
k

+ (b−a)
2 Lf̃k◦a−1

k

)√
lognk

nk
≤ ε

3‖T‖M,∞
.

(b2) Let ak(P) ⊂ ∂D = {z ∈ C | |z| = 1}. Then, first
extend the functions f̃k ◦ a−1

k to ∂D by defining

f̃k(z) := wk,1 + (wk,2 − wk,1)
z − zk,1
zk,2 − zk,1

for all z ∈ ∂D \ a0(P), where wk,1 and wk,2 are the
values of f̃k at the end-points zk,1 and zk,2 of a0(P),
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respectively and take pk = Ff̃k◦a−1
0 ,nk

with nk such
that (

2
√

2πLf̃k◦a−1
0

lnnk
nk

)
≤ ε

3‖T‖M,∞
.

The next result states sufficient conditions so that Method S2
yields an appropriate input sequence.

Theorem 6. Assume that (A, b) satisfies (N1), (N2) and
(S2). Let ε > 0 and suppose that f ∈ Cn(P) is such that
f̃k ◦ a−1

k ∈ Lip(ak(P)) for all k = 1, ..., n and assume that
the Jordan arcs ak(P) are either on the real line or on the
unit circle. Let

p(z) = p0 + · · ·+ pkz
k

be the polynomial of degree k defined by (5). Then, at time
T − 1 = k ≥ 3 with inputs

u = (u0, ..., uT−1) = (pk, ..., p0)

one has
‖ϕ(T, u)− f‖∞ < ε.

We close this section by noting that there are two ways
how the Methods S1 and S2 can be extended to arbitrary
Jordan arcs in the complex plane. First, using techniques
from numerical conformal mapping theory together with
approximation results due to Walsh, cf. Walsh (1965),
Schönlein (2021). A second approach is to apply a mixture
of open-loop and feedback control inputs of the form

u(t) + k(θ)xt(θ).

This ansatz yields the possibility to enforce the sufficiency
conditions (S1) or (S2). Indeed, due to the necessary
condition (N1), the eigenvalues can be placed so that all
Jordan arcs are on the real line or on the unit circle. For
details we refer to Schönlein (2022).

4. CONTINUOUS-TIME SINGLE-INPUT SYSTEMS

In this section we sketch how the Method S2 can be also
be applied to continuous-time single input systems

∂x

∂t
(t, θ) = A(θ)x(t, θ) + b(θ)u(t) (6)

that satisfy the conditions (N1), (N2) and (S2). Let T (θ)
denote the change of coordinates as in Section 3.2. Then,
for u ∈ L1([0, T ],Cm) the solution to (6) can be written
as

ϕ(T, u)(θ) =

∫ T

0

e(T−τ)A(θ)b(θ)u(τ) dτ

= T (θ)



∫ T

0

u(τ)e(T−τ)a1(θ) dτ

...∫ T

0

u(τ)e(T−τ)an(θ) dτ


Note also that for continuous-time systems the time T >
0 can chosen arbitrarily, cf. (Dirr and Schönlein, 2021,
Section 1). Thus, let T > 0 be fixed. We divide [0, T ]
into K ∈ N intervals Il, l = 0, ...,K − 1 of length
τ > 0 so that the mappings θ 7→ eτ ak(θ) are injective

for all k = 1, ..., n. Then, we take piecewise constant input
functions u : [0, T ]→ C given by

u|Il(t) := ul ∈ C (7)
for some complex numbers u0, ..., uK−1. The kth compo-
nent of the solution is then

ϕk(T, u)(θ) =

(
eτa(θ)−1

τa(θ)

) K∑
l=0

τuK−l e
lτa(θ)

Furthermore, it holds

lim
τ→0

eτz −1

τz
= 1 for all z ∈ C \ {0}.

So, for any ε > 0 there is a τ∗ > 0 so that for any
τ ∈ (0, τ∗) we have∣∣∣∣eτak(θ)−1

τak(θ)
− 1

∣∣∣∣ < ε
2 (8)

for any ak(θ) 6= 0, k = 1, ..., n. Let K∗ :=
⌊
T
τ∗

⌋
, where

bxc = max{z ∈ Z : z ≤ x}. Thus, in terms of the
polynomial

p(z) :=
K∑
l=0

uK−l z
l (9)

the kth component of the solution satisfies∣∣∣τp(eτak(θ))− ϕk(1, u)(θ)
∣∣∣ < ε

2 (10)

for all τ ∈ (0, τ∗) and all k = 1, ..., n. The significance
of (10) is that it is independent of the input values
u0, ..., uK−1. Thus, to compute suitable inputs values one
can follow the steps of Method S2. For a detailed exposi-
tion we refer to Schönlein (2021).
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Abstract: We study internal stability in the context of diffusively-coupled control architecture, common
in multi-agent systems (e.g. the celebrated consensus protocol). We derive a condition under which the
system can be stabilized by no controller from that class. The condition says effectively that diffusively-
coupled controllers cannot stabilize agents that share common unstable dynamics, directions included.
This class always contains a group of homogeneous unstable agents, like integrators. We argue that
the underlying reason is intrinsic cancellations of unstable agent dynamics by such controllers, even
static ones, where directional properties play a key role. The intrinsic lack of internal stability explains
the notorious behavior of some distributed control protocols when affected by measurement noise or
exogenous disturbances.

Keywords: Multi-agent systems, structural properties, stability.

1. INTRODUCTION

A multi-agent system (MAS) is a collection of independent
systems (agents) coupled via pursuit of a common goal. In
large-scale MASs the information exchange between agents is
normally limited to a subset of the agents, known as neighbors.
Control laws using only information from neighboring agents
are called distributed.

This work studies a class of distributed control laws, where
only relative measurements are exchanged between neighbors.
In other words, each agent has access only to the difference
between its output and that of each of its neighbours. Relative
sensing appears frequently in MAS tasks where absolute mea-
surement are hard to obtain, such as space and aerial explo-
ration and sensor localization, see (Smith and Hadaegh, 2005;
Khan et al., 2009; Zelazo and Mesbahi, 2011b) and the ref-
erences therein. Distributed control laws generated by relative
information are called diffusive, and systems controlled by such
laws are called diffusively coupled. Diffusive coupling appear
naturally in consensus and synchronization problems (Olfati-
Saber et al., 2007; Wieland et al., 2011), making them common
in the MAS literature. However, diffusively-coupled systems
behave poorly when affected by disturbances and noise. Mea-
surement noise rapidly deteriorates performance (Zelazo and
Mesbahi, 2011a, §III.A), and even dynamic controllers can
hardly attenuate disturbances (Ding, 2015). To illustrate some
of these traits, consider a simple example.

1.1 Motivating example

Reaching agreement between autonomous agents is a funda-
mental building block in multi-agent coordination (Ren and
Beard, 2008). In its simplest form, it concerns a group of
★ Supported by the Israel Science Foundation (grants no. 2000/17 and 2285
/20).

(a) states of the agents (b) control signals

Fig. 1. Consensus protocol for agents perturbed at C = C3
integrator agents described by ¤G8 (C) = D8 (C), which need to
synchronize their states G8 in a distributed manner. Namely, it is
required to attain

lim
C→∞

(
G8 (C) − G 9 (C)

)
= 0, ∀8, 9 . (1)

by an appropriate choice of control signals D8 with access only
to a states of neighboring agents, denoted by the set N8 . This
problem can be solved by the celebrated consensus protocol
(Olfati-Saber et al., 2007), which is a diffusive state-feedback

D8 (C) = −
∑
9∈N8

(
G8 (C) − G 9 (C)

)
. (2)

If certain conditions on the communication topology hold, then
the control law (2) drives the agents to agreement exponentially
fast (Mesbahi and Egerstedt, 2010, Ch. 3).

This is no longer the case if the agent dynamics are affected
also by exogenous inputs,

¤G8 (C) = D8 (C) + 38 (C) (3)
for some independent and unmeasurable load disturbances 38 .
Fig. 1 demonstrates what happens with a group of 4 agents
controlled by (2) when a unit step disturbance appears at one of
them at some time instance C = C3 . For C < C3 , when the system
is undisturbed, the states converge exponentially to the average
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of their initial conditions and the control signals go to zero.
However, for C > C3 the states G8 disagree and diverge, whereas
the control signals D8 reach non-zero steady-state values.

The apparent instability of the whole system, manifested in
the unboundedness of the states, can be explained by the well-
known fact that the consensus protocol has a closed-loop eigen-
values at the origin (Olfati-Saber et al., 2007). Nevertheless,
the boundedness of the control signals under such conditions is
intriguing. The situation when some signal in the closed-loop
system are bounded, whereas some other are not, may indicate
unstable pole-zero cancellations in the feedback loop (Zhou
et al., 1996, Ch. 5.3). However, controller (2) is static and thus
has no zeros.

Still, the behavior like that in Fig. 1 prompts a deeper inspection
of the internal stability property, which is the stability of all
possible input/output relations in the system, see (Zhou et al.,
1996; Skogestad and Postlethwaite, 2005). To the best of our
knowledge, the instability phenomenon above was never ex-
plicitly connected with the lack of internal stability or unstable
cancellations 1 . This is the starting point of the current study.

1.2 Contribution

In this note we show that the diffusive-coupling distributed con-
trol architecture for MASs is intrinsically internally unstable
for many common agents configurations. Specifically, we prove
that this is the case whenever all agents share common unstable
dynamics (directions included for MIMO agents). This, for ex-
ample, always happens in the group of homogeneous unstable
agents, like integrator agents in (3).

We also explain the mechanism for the shown internal insta-
bility. It is indeed caused by unstable cancellations in the cas-
cade of the block-diagonal aggregate plant and the diffusively
coupled controller. Interesting is that these cancellations are
caused not by controller zeros, but rather by an intrinsic spatial
deficiency of the diffusive coupling configuration. They are thus
independent of particular dynamics in processing relative mea-
surements, only agents dynamics matter. It is worth mentioning
that this instability mechanism is unrelated to the decentralized
fixed modes (Wang and Davison, 1973).

The internal instability in the form of canceled plant poles
explains then observed problems associated with the load dis-
turbance response in some MAS applications.

Notations We extensively use standard notation from alge-
braic graph theory (Godsil and Royle, 2001). An undirected
graph G = (V, E) consists of a finite vertex set V and edges
E ⊂ V × V. Denote by � the (oriented) incidence matrix of
G, defined component-wise by [� (G)]8 9 = 1, when 8 is the
head of edge 9 , [� (G)]8 9 = −1 when 8 is the tail of edge 9 ,
and 0 otherwise. The matrix ! B ��> is the combinatorial
Laplacian matrix of G. Note that 1 ∈ ker �>, thus ! has an
eigenvalue at the origin with 1 as its eigenvector.

The sets of real and complex numbers are denoted by ℝ and
ℂ respectively, while the notations ℂ0 and ℂ̄0 denote the open
and closed right half complex plane, respectively. The complex-
conjugate transpose of a matrix " is denoted by ">. The
1 Reminiscent reasoning has been mentioned in a formation control problem
solved by a diffusive controller in (Fax and Murray, 2004, Sec. III.B), where
the a cancelled mode was interpreted as unobservability of absolute motion.

𝑃1(𝑠)
𝑃2(𝑠)

. . .

𝑃𝜈 (𝑠)

𝐾𝑒1 (𝑠)
𝐾𝑒2 (𝑠)

. . .

𝐾𝑒𝑞 (𝑠)

𝐸𝑇 ⊗ 𝐼𝑚 𝐸 ⊗ 𝐼𝑝

𝑣1

𝑒1

𝑣2

𝑒2

Fig. 2. Block diagram of the closed-loop

notation diag{"8} stands for a block-diagonal matrix with
diagonal elements "8 . The image (range) and kernel (null)
spaces of a matrix " are notated Im" and ker" , respectively.
Given two matrices (vectors) " and # , " ⊗ # denotes their
Kronecker product. By �a , or simply �, we denote the a × a
identity matrix, by 1a , or simply 1, the a dimensional all-ones
vector. The notation spec� refers to the set of eigenvalues if
� is a matrix, or the set of poles if � (B) is a proper transfer
function. By �∞ we denote the space of functions holomorphic
and bounded in ℂ0.

2. PROBLEM FORMULATION

Consider a continuous-time agents %8 , each with < inputs and
? outputs. Their aggregate dynamics are denoted as % B
diag{%8}, 8 = 1, . . . , a. The interconnection topology of all
agents is described by a graph G with a nodes and @ edges.
Agent 8 and agent 9 are neighbors in the sense described in
Section 1 if they are incident to the same edge. A dynamic
controller,  4 B diag{ 4, 9 }, 9 = 1, . . . , @, acts on the relative
measurements on the edges. We assume hereafter that all %8 and
 48 are linear time invariant (LTI), finite dimensional 2 , and that
their transfer functions are proper.

A general diffusively-coupled architecture can be presented as
the interconnection shown in Fig. 2, where the coupling matrix
is the incidence matrix of G. This representation is common in
passivity-based analysis (Arcak, 2007), and sometimes called
the canonical cooperative control structure (Sharf and Zelazo,
2017), (Bullo, 2022, Ch. 9). An equivalent representation can
be made using the Laplacian matrix (Bullo, 2022, Ch. 8).

Note that the coupling matrices can be attached to either the
plant or the controller, resulting in two distinct problems. One
of them considers edge controllers stabilizing diagonal node
dynamics (Bürger and De Persis, 2015), while the other a
diagonal controller stabilizing the edge dynamics (Zelazo and
Mesbahi, 2011a). In this note we consider the former, which
includes controller

 B (� ⊗ �<) 4 (�> ⊗ �?) (4)
connected with a diagonal plant, as shown in Fig. 2, where {1
and {2 are arbitrary and bounded exogenous signals.

We say that the system in Fig. 2 is internally stable if all
four closed-loop transfer functions connecting the exogenous
signals {1 and {2 with the internal signals 41 and 42 are stable,
i.e. belong to �∞. The question studied in this note is under

2 The arguments below could be extended to infinite-dimensional systems, but
the involved technicalities are beyond the scope of this note.
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what conditions on the dynamics of the agents %8 there are edge
controllers  4 9

internally stabilizing this system.

3. THE MAIN RESULT

The main result of this note provides a condition for the
interconnection in Fig. 2 to be internally unstable irrespective
of the choice of dynamics of  4. As mentioned, the underlying
reason is cancellations between poles of % and the controller  .
It is well documented that poles cancelled in a cascade between
a plant and controller are not truly cancelled (Anderson and
Gevers, 1981). They may not appear in one I/O relation, but will
still appear in a different one. For SISO systems cancellations
are simple to spot and understand, they happen if and only
if one system has a pole and the other a zero at the same
location. When generalizing this to MIMO, poles and zeros
have directional properties, see (Skogestad and Postlethwaite,
2005, §4.6.1) and (Mirkin, 2019, §3.4.2). Thus, directions, and
not just locations, have to be considered.
Definition 1. Let � be an LTI system with < inputs and ?
outputs and (�, �, �, �) be its state space realization with
realization poles at _8 ∈ ℂ. The input direction of every _8 is

pdiri (�, _8) B �> ker( [_8 � − �]>) ⊆ ℂ<

and its output direction is
pdiro (�, _8) B � ker(_8 � − �) ⊆ ℂ? .

Pole directions span subspaces of either the input or output
space. If _8 is a hidden, i.e. uncontrollable or unobservable,
mode of the realization (�, �, �, �), then both pdiri (�, _8) =
{0} and pdiro (�, _8) = {0}, which follows by PBH arguments.
In the SISO case, pdiri (�, _8) = pdiro (�, _8) = ℂ whenever
_8 is also a pole of the transfer function � (B), i.e. every pole is
excited by every input.

Cancelled poles correspond to unobservable (uncontrollable)
modes in either  % or % (Zhou et al., 1996, Thm. 5.7). The
following Lemma provides conditions on pole directions of
the agents in the diagram in Fig. 2 under which parts of the
dynamics of agents are canceled by the controller  .
Lemma 2. Let % and  be as described in Section 2 and _ be a
common pole of all agents %8 .

i) If
a⋂
8=1

pdiro (%8 , _) ≠ {0},

then _ is an unobservable mode of  %.
ii) If

a⋂
8=1

pdiri (%8 , _) ≠ {0},

then _ is an uncontrollable mode of % .

The cancellation of _ in Lemma 2 is independent of the con-
troller dynamics. In MIMO systems poles of the plant can be
canceled not by zeros of the controller, but rather by a normal
rank deficiency of the latter. This is exactly what happens in
the diffusively-coupled interconnection in Fig. 2. Namely, the
intrinsic singularity of the incidence matrix, present in every
diffusive controller, might cancel plant poles. A formal condi-
tion for that is stated in Lemma 2.

Since cancelled poles remain poles of at least one closed-
loop transfer function (Anderson and Gevers, 1981), the above
Lemma immediately implies the main result.

Theorem 3. Let %8 , 8 = 1, . . . , a, be LTI finite-dimensional
agents with proper transfer functions. If _ ∈ ℂ̄0 is a pole of
each one of them such that

a⋂
9=1

pdiri (% 9 , _) ≠ {0} (5a)

or
a⋂
9=1

pdiro (% 9 , _) ≠ {0}, (5b)

then the interconnection shown in Fig. 2 is internally unstable
irrespective of the choice of  4. Moreover, if this _ is not a
zero of  4, then condition (5a) implies that _ is the pole of the
closed-loop transfer function from {2 to 41, while condition (5b)
implies that _ is the pole of the closed-loop transfer function
from {1 to 42.

Theorem 3 asserts that that any common dynamics, determined
by poles and corresponding directions, are cancelled by the
diffusive coupling. This has an interesting immediate corollary.
If the agents are homogeneous they share their entire dynamics,
both stable and unstable, thus the diffusive structure can be
thought of as cancelling an entire agent. This not only proves
the unobservability of the mode at the origin claimed in (Fax
and Murray, 2004), but proves that every pole loses multiplicity
in the cascade.

This may have ramifications not only about the stability of the
system, but also of its maximal attainable performance. For
example, it explains the observation reported in (Li et al., 2010),
where the disturbance rejection performance measure of the
entire system is upper bounded by that of a single, uncontrolled
agent. It also generalizes the observation from (Zelazo and
Mesbahi, 2011a), where it was shown that for integrator agents
there is always an unobservable mode parallel to span 1. Since
this direction is in the null space of the incidence matrix, noise
or disturbances effecting this mode cannot be attenuated by a
diffusive controller. Similarly, this cancellation explains why
the cooperative disturbance rejection scheme of (Ding, 2015)
cannot reject load disturbances, but only synchronize to it.

4. CONCLUDING REMARKS

We presented necessary conditions for internal stabilizability of
diffusively-coupled LTI systems. In particular, we have shown
that, for finite-dimensional agents, common dynamics are can-
celled by the diffusive controller. The final conclusion is that
in numerous multi-agent problems, one cannot simultaneously
achieve a cooperative objective and guarantee internal stability
using only relative measurements. Extending these results to
time-varying graphs and more general systems are subject to
current research.
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Abstract: Recently, port-Hamiltonian (pH) representations have been developed for multi-
phase flow models, such as the Two-Fluid Model and the zero-slip Drift Flux Model (DFM),
with non-quadratic Hamiltonian functionals, by eliminating constraints and writing a partial
differential-algebraic system as a system with (only) partial differential equations. However,
the existing multi-phase modelling framework is not modular enough since mathematical
computations have to be performed again for even a small change, say a different governing
equation of state, in the model description. Furthermore, a pH representation of the general
DFM still does not exist, and the complicated, non-linear models may not always be amenable
to the pH model formulation as per the current state-of-the-art. To this end, we make efforts
towards developing a general pH descriptor formalism for non-linear multi-phase flow dynamics.

Keywords: port-Hamiltonian, descriptor realization, multi-phase, Drift Flux Model, non-linear

1. INTRODUCTION

Port-Hamiltonian (pH) representations for fluid flow mod-
els have been developed in de Wilde (2015); Bansal et al.
(2021a); Bansal (2020); Bansal et al. (2021b). In the scope
of two-phase flow models, the pH formulation of the Two-
Fluid Model (TFM) and the special zero-slip case of the
Drift Flux Model (DFM) have recently been developed; see
Bansal et al. (2021a,b). However, as mentioned in Bansal
et al. (2021a), for the general DFM, for e.g., the DFM
with the Zuber-Findlay slip conditions, there have been
technical challenges in obtaining a pH formalism.

In Bansal et al. (2021a,b), the pH formulation of multi-
phase flow models has been obtained by eliminating
constraints and writing a system of partial differential-
algebraic equations (PDAEs) as a system with (only)
partial differential equations (PDEs). As a consequence,
the exisiting pH-based multi-phase modelling framework
is not modular enough since mathematical computations
have to be performed again for even a small change in the
model description. In order to have a modular modelling
framework, it is best to resort to pH descriptor realiza-
tions. Quite some work has been done in the area of pH
descriptor formalism; see Beattie et al. (2018); Mehrmann
and Morandin (2019); Mehrmann and Unger (2022) for
instance, but the field is still in the initial stages of the-
oretical development, in particular for partial differential
algebraic systems with non-quadratic Hamiltonian func-
tionals, which is a representative feature of multi-phase
flow dynamical models of interest. Furthermore, despite
the developments, for complex physical systems in general,
re-formulating the (nonlinear, coupled) PDAEs into a pH
structure is very cumbersome and almost unrealizable.
Moreover, based on some theoretical observations; see Sec-

tions 2.1 and 2.2, it seems that there is a scope of having
a more generalized pH descriptor realization.

In addition, one of the key hindrances in obtaining a
pH formulation of a model written in terms of (non-
conservative) state variables could be due to the use of
the standard L2 inner product; see Matignon and Helie
(2013), wherein the authors have shown that the formal
skew-adjointness of an operator holds if it is defined with
respect to a weighted inner product. It is, hence, tempting
to check if the operators, which are not formally skew-
adjoint with respect to the L2 inner product, can be shown
to be formally skew-adjoint with respect to a weighted one.

The main contributions of this paper are: (i) we showcase
the limitations of the state-of-the-art pH descriptor model
formulations, (ii) we propose a (general) novel pH descrip-
tor formalism based on the notion of the weighted inner
product, which requires solving homogeneous Sylvester
equations, and test it on a simplified model problem.

The outline of the rest of this paper is as follows: In Section
2.1 and Section 2.2, we highlight the possible issues with
the current state-of-the-art pH (descriptor) formalisms. In
Section 2.3, we propose a new methodology to develop
pH descriptor realizations of linear or non-linear problems.
Section 3 deals with conclusions and future works.

2. TOWARDS A GENERAL PORT-HAMILTONIAN
DESCRIPTOR REALIZATION

2.1 One possible methodology

We first recall definition of pH descriptor systems from
Mehrmann and Unger (2022), which is a slight generaliza-
tion of the one by Mehrmann and Morandin (2019).
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Definition 1. A pH descriptor system is a system of
differential(-algebraic) equations of the form

E(t,x)ẋ+r(t,x) =A(t,x)z(t,x)+B(t,x)u,

y = B(t,x)
T
V(t,x)

T
z(t,x),

with state x(t) ∈ Rn, input u(t) ∈ Rm, output y(t) ∈
Rm, the flow matrix E(t,x) ∈ Rl×n, time-flow function
r(t,x) ∈ Rl, effort function z(t,x) ∈ Rk, structure-
dissipation matrix A ∈ Rl×k with VA = J−R, structure
matrix J = −JT, dissipation matrix R = RT ≥ 0, port
matrix B(t,x) ∈ Rl×m, projection-type matrix V(t,x) ∈
Rk×l, and the gradient of the Hamiltonian H satisfies
∂xH = ETVTz, and ∂tH = zTVr pointwise.

Remark 2. If V = I and z(t,x) ∈ Rl, then Definition 1
reduces to the one in Mehrmann and Morandin (2019).

For simplicity, in the example that follows, we will neglect
dissipative effects. To point out the issues with the state-of-
the-art descriptor formalism, let us consider a special form
of the two-phase flow model as in Bansal et al. (2021a):

∂tmg = −∂ξ(mgv),

∂tmℓ = −∂ξ(mℓv),

∂tv = −∂ξ

(v2
2

)
− 1

mg +mℓ
∂ξp,

0 =
mg

ρg
+

mℓ

ρℓ
− 1, (volume conservation),

0 = p− ρ2gu
′
g(ρg), (E.O.S. for gas phase),

0 = p− ρ2ℓu
′
ℓ(ρℓ), (E.O.S. for liquid phase),

(1)

where mg := αgρg, mℓ := αℓρℓ, αℓ and αg, resp., denote
liquid and gas void fraction, ρℓ and ρg refer to the density
of the liquid and the gas phase, resp., v is the common fluid
velocity, p is the common pressure, ξ ∈ Ω denotes spatial
domain, ug and uℓ, resp., represent the internal energy of
the gaseous and liquid phase, and u′

i with i = {g, ℓ} denote
the partial derivative of the internal energy associated to
the i-th phase w.r.t. the fluid density of the i-th phase.

The Hamiltonian functional for the above conservative
zero-slip DFM can be expressed as:

H=

∫
Ω

(
mgug(ρg)+mℓuℓ(ρℓ)+

1

2
mgv

2
g +

1

2
mℓv

2
ℓ

)
dΩ. (2)

Remark 3. Consider that algebraic constraints in (1) are
eliminated and that we have three PDEs and as many
number of unknowns. The model in this form admits a
pH realization; see Bansal et al. (2021a). Hence, this
simplified set up is a good model problem to check the
potential of existing pH descriptor realizations and the need
for generalization, if any. The vectors/matrices/operators,
in accordance with Definition 1, are as follows:

z =

(
δmgH
δmℓ

H
δvH

)
, x =

(
mg

mℓ

v

)
, E =

(
1 0 0
0 1 0
0 0 1

)
,

A =


0 0 −∂ξ(

mg

mg +mℓ
·)

0 0 −∂ξ(
mℓ

mg +mℓ
·)

− mg

mg +mℓ
∂ξ − mℓ

mg +mℓ
∂ξ 0

 .

We consider the mapping V = E. We notice that VA =: J
is skew-adjoint under periodic boundary conditions. We
also have ETVT z = [δmgH, δmℓ

H, δvH]T = δxH.

Now consider that, unlike Remark 3, we do not eliminate
constraints and x = [mg,mℓ, v, ρg, ρℓ, p]

T . The variational
derivatives are:

δmg
H =

v2

2
+ ug(ρg), δmℓ

H =
v2

2
+ uℓ(ρℓ),

δvH = (mg +mℓ)v, δρg
H = mg

∂ug

∂ρg
= mgu

′
g,

δρℓ
H = mℓ

∂uℓ

∂ρℓ
= mℓu

′
ℓ, δpH = 0, and

(3)

z =



δmgH
δmℓ

H
δvH
δρg

H
δρℓ

H
mg

ρg
+

mℓ

ρℓ
− 1

p− ρ2gu
′
g(ρg)

p− ρ2ℓu
′
ℓ(ρℓ)


,x =


mg

mℓ

v
ρg
ρℓ
p

 ,E =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

As per Definition 1. we should have

ETVT z = [δmg
H, δmℓ

H, δvH, δρg
H, δρℓ

H, 0]T = δxH.

However, any choice of V ∈ R8×6 along with other
matrices will not be able to ensure ETVT z = δxH.
We believe that a generalization to Definition 1 is hence
possible. The aforementioned possibility of generalization
holds irrespective of the structure of the operator A.

Remark 4. The aforementioned issue will exist even if we
choose a different state vector, say x = [αg, αℓ, v, ρg, ρℓ, p].

Remark 5. We have observed that single-phase flow models
can be cast in a pH descriptor form in line with Def. 1.

2.2 Another possible methodology

In order to explain more challenges, we next consider a
simple setting in the scope of single-phase flow models.
The model is governed by the following set of equations:

∂tρ+ ∂ξ(ρv) = 0,

∂t(ρv) + ∂ξ(ρv
2 + p) = 0,

ρ = g(p) = p/c2,

(4)

where ξ denotes the spatial domain, and c represents the
speed of sound in the fluid medium. The Hamiltonian H:

H(ρ, v, p) =

∫
Ω

1

2
ρv2+ρU(ρ)dΩ, where dU =

p

ρ2
dρ. (5)

Two possible realizations (under the same choice of state
coordinate vector x := [ρ, v, p]T ) are as follows:

(
1 0 0
0 1 0
0 0 0

)
︸ ︷︷ ︸

E

(
∂tρ
∂tv
∂tp

)
=

(
0 −1 0
−1 0 0
0 0 1

)
∂ξ︸ ︷︷ ︸

J


δH
δρ
δH
δv
δH
δp

−

 0
0

p

ρ
g

′
(p)


︸ ︷︷ ︸

B

.

1 0 0
0 1 0
1 0 −g′


︸ ︷︷ ︸

F

(
∂tρ
∂tv
∂tp

)
=

(
0 −1 0
−1 0 0
0 0 0

)
∂ξ︸ ︷︷ ︸

J̃


δH
δρ
δH
δv
δH
δp

 ; g′ = 1/c2.

In view of above realizations, general representation reads:

Eẋ = JδxH−B, where E is singular. (6)
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or,
Fẋ = J̃δxH, where F is invertible. (7)

Building on (7), under choice of states: x := [ρ, v, p]T , we
have: Fẋ = JδxH = P1∂ξδxH, which can be rewritten as:

Fẋ = P1
∂

∂ξ
(
δH
δx

). (8)

The time-derivative of the Hamiltonian functional reads:

d

dt
H =

δH
δx

T

ẋ =
δH
δx

T(
F−1P1

∂

∂ξ

)δH
δx

. (9)

The above equation can also be written as:

d

dt
H = ẋT δH

δx
=

δH
δx

T(
F−1P1∂ξ

)T δH
δx

.

Using the above two representations, the time derivative
of the Hamiltonian functional can be written as:

d

dt
H =

1

2

δH
δx

T (
F−1P1

∂

∂ξ
+ (F−1P1∂ξ)

T
)

︸ ︷︷ ︸
O

δH
δx

.

Analysis of the operator,O, will dictate if we have the right
properties of the matrices and the operators. F−1P1∂ξ +

(F−1P1∂ξ)
T
= 0 will enforce skew-adjointness and ensure

that dH
dt = 0 for a conservative system. We can write:

F−1P1∂ξ+(F−1P1∂ξ)
T
= F−1P1∂ξ+(P1∂ξ)

TF−T . (10)

The transpose of P1∂ξ is: (P1∂ξ)
T = −P1

T∂ξ. A partial
derivative acting on F−T is known to be evaluated as:

∂ξoF
−T = ∂ξF

−T + F−T∂ξ. (11)

Using (11), the right-hand-side of (10) simplifies to:

F−1P1∂ξ −P1
T
(
∂ξF

−T + F−T∂ξ

)
. (12)

Since F does not vary spatially, using (10) and (12), we
have:

F−1P1∂ξ + (P1∂ξ)
TF−T =

(
F−1P1 − P1

TF−T
)
∂ξ.

(13)

For the representation given by (8) and ρ = p
c2 (i.e.,

g′ = 1
c2 ), the term

(
F−1P1 −P1

TF−T
)
turns out to be:

(
F−1P1 −P1

TF−T
)
=

0 0 0
0 0 c2

0 −c2 0

 . (14)

We would have wished to have the term at the right-hand-
side of (14) to be zero. However, this is not the case. This
hints that we need to introduce extra degrees of freedom,
say through a weighting matrix, to ensure that we obtain
a (pH) model formulation that has the right properties.

2.3 Proposed methodology

In Sections 2.1 and 2.2, we have seen that there exists a
possibility to generalize existing pH model representations.
We now propose a novel pH formalism; see Theorem 6.

Theorem 6. A mathematical model expressed in the form:
Eẋ = (J − R)z, where the inverse of the (known) ma-
trix/operator E might not necessarily exist, possesses a
pH structure if the gradient of the Hamiltonian satisfies
∂xH = Nz, the weighting matrix W is decomposed as
W = E⋆ME with ⋆ denoting the adjoint, the equation(

N⋆E⋆MJ+ J⋆MEN
)
= 0 (15)

holds, and
(
N⋆E⋆MR + R⋆MEN

)
is (formally) self-

adjoint and positive semi-definite (PSD) for the matrix
differential operator setting. Furthermore, if we ignore
resistive effects, the operators E,M,J,N should obey the

relation:
(
N⋆E⋆MJ + J⋆MEN

)
= 0. If we define Ñ =

EN, then (15), which can be written as:(
Ñ⋆MJ+ J⋆MÑ

)
= 0, (16)

should hold. Here, E and J are known quantities, and
N and M are unknowns or degrees of freedom. For the
conservative case, we could, in principle, make any choice
for N (or M) and find the (other) unknown M (or N) by
solving (16). Inherently, the choice for N (or M) should be
such that the solutions to (16) exist. We could also assume

that Ñ⋆M = MÑ = M̂. Under this assumption, the model
admits a pH structure if the following two relations hold:

M̂J+ J⋆M̂ = 0, Ñ⋆M−MÑ = 0. (17)

Proof. For the proof, we verify the conditions under
which the rate of change of Hamiltonian, i.e., dH

dt , along
the solutions of the mathematical model is less than or
equal to zero. To this end, we compute

dH
dt

=
(∂H
∂x

)⋆
Wẋ = ẋ⋆W

(∂H
∂x

)
=

1

2

((∂H
∂x

)⋆
Wẋ+ ẋ⋆W

(∂H
∂x

))
=

1

2

(
zT
(
N⋆E⋆MJ+ J⋆MEN

)
z−

zT
(
N⋆E⋆MR+R⋆MEN

)
z
)
.

The dissipation inequality is satisfied (only) if the first
term in the last equality equals zero, i.e., (15) holds, and

the second term in the last equality, i.e.,
(
N⋆E⋆MR +

R⋆MEN
)
is (formally) self-adjoint and PSD.

Remark 7. It can be shown that if W = E⋆ME = I
(identity matrix), EE⋆M = I, and N = E⋆, where E,
in Theorem 6, under restrictions on the dimension of the
variable z, carries the same meaning as in Definition 1,
then Theorem 6 reduces to the definition in Mehrmann and
Morandin (2019). Furthermore, if N, E, and J in Theorem
6, are resp. equivalent to E⋆V⋆, E, and A (in absence
of resistive effects) in Definition 1, W = E⋆ME = I,
EE⋆M = I, then Theorem 6, with no restriction on z,
reduces to the definition in Mehrmann and Unger (2022).

Remark 8. The boundary effects have been ignored in the
new formulation, but can be easily taken into account.

The first equation in (17) is an operator (homogeneous)
Lyapunov/Riccati equation for a known J. The sec-
ond equation in (17) represents a homogeneous operator
Sylvester equation for an unknown M, and is similar to
an operator T-Riccati equation for an unknown Ñ. To the
best of our knowledge, no work exists in the scope of ob-
taining numerical solutions to the operator T-Riccati equa-
tions. However, it is worth mentioning that only recently
some works as in Benner et al. (2022); Benner and Palitta
(2020) have started to address the question pertaining to
numerical solutions of (a general class of) matrix T-Riccati
equations. As far as research on numerical solutions, exis-
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tence, etc., of operator Riccati/Lyapunov/Sylvester equa-
tions is concerned, quite some work has been done, for e.g.,
see Curtain and Pritchard (1976).

In the sequel, we only consider the setting where one is
interested in (non-linear) descriptor realizations of conser-
vative physical system discussed in Section 2.2. Using the
principles discussed earlier in Section 2.2 and Section 2.3,
the rate of change of Hamiltonian H along the solutions
of the model should be zero. Mathematically, this means:(∂H

∂x

)T(
WF−1P1∂ξ +

(
F−1P1∂ξ

)T
W
)∂H
∂x

= 0, (18)

where F and P1 carry the meaning as introduced in
Section 2.2. For (18) to hold, we should have:

WF−1P1∂ξ +
(
F−1P1∂ξ

)T
W = 0. (19)

The above equation can be rewritten as shown next:

WF−1P1∂ξ +
(
P1∂ξ

)T
F−TW = 0,

WF−1P1∂ξ −P1
T∂ξ ◦ (F−TW) = 0,

(20)

where â ◦ b̂ denotes the action of â on b̂. Assuming that F
and P1 are not spatially varying, (20) reduces to

WF−1P1 −P1
TF−TW = 0, (21)

which, for an unknown W, is a homogeneous Sylvester
equation. It is not trivial to solve such an equation using
MATLAB or other tools since they return W = 0. In
order to obtain a non-zero solution, although non-unique,
we next briefly discuss the solution methodology.

Remark 9. If E = I (identity matrix), N = I, and J is a
(formally) skew-adjoint matrix differential operator, then
(16) or (17) reduce to (21) for the representation (8).

Homogeneous Sylvester Equation Consider a simplified
form of the term appearing on the left-hand-side of (21):

G(W) = WÃ− ÃTW, (22)

where Ã, in the sequel, denotes Ã = F−1P1. Next, we
form the unknown W in the following way:

Weigenfn = abT ; a, b ∈ Rn, (23)

where n stands for the dimension of the (square) ma-
trix/operator (say J), a and b are eigenvectors associated

to the matrix ÃT ; i.e., ÃTa = λa; ÃT b = µb or bT Ã =
µbT . Next, Weigenfn applied to Ã yields:

WeigenfnÃ = abT Ã = aµbT = µWeigenfn, (24)

and ÃT applied to Weigenfn yields:

ÃTWeigenfn = ÃTabT = λabT = λWeigenfn. (25)

As a consequence, (22) can be written as:

G(Weigenfn) = (λ+ µ)Weigenfn. (26)

It can be said that if both Weigenfn and WT
eigenfn are

solutions to the homogeneous Sylvester equation, then
Weigenfn +WT

eigenfn is also its solution.

Using the above methodology, the weighting matrixW can
be obtained for the problem considered in Section 2.2. As
an example, for c = 316, we can compute the eigenvectors
associated to P1

TF−T and, subsequently, compute several
possible values of W using (23). One possible solution is:

W =

[
0.5 0.5 0
−0.5 −0.5 0
0 0 0

]
. (27)

3. CONCLUSION AND FUTURE WORKS

This work attempted to develop a more general port-
Hamiltonian (pH) descriptor framework for multi-phase
fluid dynamical (and non-linear physical) systems. It is
worth mentioning that although we have a methodology
to obtain the weighting matrix W, the matrix W is not
invertible. The future work(s) will deal with computing an
invertible W, and with the identification of more condi-
tions on different matrices/operators involved (e.g., J,R)
such that numerical solutions to the resulting operator
equations exist. We eventually aim to develop a (condi-
tional) pH descriptor framework for the general case of
the Drift Flux Model for which the state-of-the-art pH
formalism (Definition 1) seems unsuitable.
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Abstract: In this effort, a novel operator theoretic framework is developed for data-driven
solution of optimal control problems. The developed methods focus on the use of trajectories
(i.e., time-series) as the fundamental unit of data for the resolution of optimal control problems
in dynamical systems. Trajectory information in the dynamical systems is embedded in a
reproducing kernel Hilbert space (RKHS) through what are called occupation kernels. The
occupation kernels are tied to the dynamics of the system through the densely defined
Liouville operator. The pairing of Liouville operators and occupation kernels allows for lifting
of nonlinear finite-dimensional optimal control problems into the space of infinite-dimensional
linear programs over RKHSs.

Keywords: optimal control, operator theoretic methods in systems theory, nonlinear systems
and control

1. INTRODUCTION

Numerical solutions of optimal control problems are ob-
tained by using Pontryagin’s maximum principle Pontrya-
gin et al. (1962) to convert the optimal control problem
into a two-point boundary value problem von Stryk and
Bulirsch (1992); Betts (1998) or a nonlinear programming
problem Hargraves and Paris (1987); Huntington (2007);
Fahroo and Ross (2008); Rao et al. (2010); Darby et al.
(2011); Garg et al. (2011). While there is a rich history of
literature on the topic of numerical optimal control, the
computational efficiency of numerical optimal control is
limited by that of nonlinear programming, where solutions
of large problems can be computationally prohibitive and
the solutions, when available, are typically only locally
optimal.

Based on the seminal work of Lasserre Lasserre (2010) on
moments and positive polynomials, occupation measure
approaches that convert a nonlinear optimal control prob-
lem into an infinite dimensional linear program that can
be efficiently solved using sum of squares based convex
programming methods were developed in results such as
Lasserre et al. (2008); Majumdar et al. (2014); Claeys et al.
(2016); Zhao et al. (2017).

? This research was supported by the Air Force Office of Scientific
Research (AFOSR) under contract numbers FA9550-20-1-0127 and
FA9550-21-1-0134, and the National Science Foundation (NSF) un-
der awards 2027976 and 2027999. Any opinions, findings and conclu-
sions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the sponsoring
agencies.

While computationally efficient, techniques that utilize
occupation measures are typically only applicable to sys-
tems where the functions that describe the dynamics, the
cost functions, and the constraint sets are polynomials.
The techniques developed in this paper also convert fi-
nite dimensional nonlinear optimal control problems into
infinite dimensional linear programs, but utilize a repro-
ducing kernel Hilbert space framework. An advantage of
framing the infinite dimensional linear program within the
reproducing kernel Hilbert space framework is that the
developed tools are applicable to optimal control problems
with a broader range of cost functions and constraining
sets. Principally, the advantage is realized by exchanging
the moment problem for occupation measures with the
more flexible approximation abilities of reproducing kernel
Hilbert spaces.

2. REPRODUCING KERNEL HILBERT SPACES

Definition 1. A real-valued reproducing kernel Hilbert
space (RKHS), H, over a set X ⊂ Rn is a Hilbert space
of functions f : X 7→ R such that for every x ∈ X, the
evaluation functional Exf := f(x) is bounded.

By the Reisz representation theorem, for each x ∈ X
there is a corresponding function kx ∈ H such that
〈f, kx〉H = f(x), where 〈f, g〉H denotes the inner product.
For each RKHS, there is a uniquely identified kernel
function, K(x, y) := 〈ky, kx〉H , such that for any finite
collection of points, {xi}Mi=1, the corresponding Gram
matrix, (K(xi, xj))

M
i,j=1, is positive semi-definite.
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The importance of RKHSs lies in their ability to per-
form as function approximators. In particular, just as the
collection of polynomials is dense inside of the space of
continuous functions over compact subsets of Rn, universal
RKHSs are those spaces that are also dense in the space
of continuous functions over compact subsets of Rn. More-
over, the following lemma demonstrates that it is sufficient
to consider linear combinations of the kernel functions
themselves for function approximation when the kernel
is in a universal RKHS (See (Steinwart and Christmann,
2008, Theorem 4.21)).

Lemma 1. Consider the subset S := {K(·, y) : y ∈ X} of a
RKHS H over a set X with kernel K. Then spanS is dense
in H with respect to the Hilbert space norm. Moreover, if
K is continuous, then spanS is dense in H with respect
to the uniform norm over restrictions to compact subsets
of X.

3. PROBLEM FORMULATION

Let H(Y ) be a real-valued RKHS of continuous functions
over the set Y . Let X and D be compact subsets of Rn, U
a compact subset of Rm, Σ := [0, T ]×X, and S = Σ×U .
Throughout the rest of this manuscript the RKHSs H (X),
H (D) and H (Σ) denote the RKHSs obtained through the
functions in H (S) where the inputs have been projected to
X, D, and Σ, respectively. Let f : [0, T ]×Rn ×Rm → Rn
be a locally Lipschitz function and consider the dynamical
system

ẋ = f(t, x, u), x(0) = x0 ∈ Rn. (1)

A state of the dynamical system corresponding to the
initial condition x0 and controller u : [0, T ] 7→ Rm will
be written as φf (t;x0, u).

For a fixed T , the optimal control problem is formulated
as the need to minimize the cost

J(x(·), u(·)) =

∫ T

0

h(t, x(t), u(t))dt+ F (x(T )), (2)

for functions h ∈ H(S) and F ∈ H(D), over the set of
differentiable functions x : [0, T ] → Rn and continuous
functions u[0, T ] → Rm subject to the constraints (1).
For ease of exposition, the formulation considered here
is more restrictive than strictly necessary. The methods
developed in the following can be extended to include
measurable control signals and absolutely continuous state
trajectories.

In the following, occupation kernels and Liouville opera-
tors, first introduced in Rosenfeld et al. (2020) are utilized
to lift the nonlinear optimal control problem into the space
of infinite-dimensional linear programs.

4. OCCUPATION KERNELS AND THE COST
FUNCTIONAL

Whenever (t, x(t), u(t)) ∈ S for all t ∈ [0, T ], the functional

g 7→
∫ T

0
g(t, x(t), u(t))dt, that maps from H(S) to R, is

linear and bounded. Indeed, given the kernel function KS

corresponding to H(S), it can be seen that∣∣∣∣∣
∫ T

0

g(t,x(t),u(t))dt

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ T

0

〈g,KS(·,(t,x(t),u(t)))〉H(S)dt

∣∣∣∣∣

≤ T‖g‖H(S) sup
[0,T ]

√
KS((t,x(t),u(t)),(t,x(t),u(t)))

≤ T‖g‖H(S)sup
y∈S

√
KS(y,y).

As such, by the Reisz representation theorem,
there exists a function Γx(·),u(·) ∈ H(S) such that∫ T

0
g(t, x(t), u(t))dt = 〈g,Γx(·),u(·)〉H(S). The function

Γx(·),u(·) is the occupation kernel corresponding to the
signals x(·) and u(·). Note that at this juncture, the signals
x(·) and u(·) are independent, i.e., x(·) is not necessarily a
trajectory of the dynamical system (1) in response to u(·).
The occupation kernel itself may be expressed as

Γx(·),u(·)(y) =

∫ T

0

KS(y, (t, x(t), u(t)))dt.

Moreover,

‖Γx(·),u(·)‖2H(S)=

T∫
0

T∫
0

K((τ,x(τ),u(τ)),(t,x(t),u(t)))dτdt,

(3)
and when K(x, y) = Φ(‖x−y‖2) is a radial basis function,
such as the Wendland RBF or the Gaussian RBF, (3) may
be bounded as ‖Γx(·),u(·)‖2H(S) ≤ T

2Φ(0).

Using the occupation kernels and the reproducing property
〈F,KD(·, y)〉HD = F (y) of the kernel function KD ∈ HD

corresponding to the RKHS H(D), the cost functional in
(2) can be expressed as

J(x(·), u(·)) = 〈h,Γx(·),u(·)〉H(S) + 〈F,KD(·, x(T ))〉H(D).
(4)

Note that the cost functional is linear with respect to the
kernels Γx(·),u(·) and KD. If the dynamical system that
constrains x(·) to be a solution in response to u(·) can
also be expressed as a linear constraint on the space of
kernels, the optimal control problem can be posed as a
linear program in the infinite dimensional kernel space.

5. SYSTEM DYNAMICS AND THE TOTAL
DERIVATIVE OPERATOR

In the following, a formulation of the dynamics in terms
of total derivative operators is developed to construct the
aforementioned linear constraint.

Definition 2. Define the total derivative operator with
symbol f denoted by Af : D(Af ) → H(S) as

[Afg](t, x, u) := ∂
∂tg(t, x) + f(t, x, u) · ∇xg(t, x) where the

domain D(Af ) is defined cannonically as

D(Af ) = {g ∈ H(Σ) : Afg ∈ H(S)}. (5)

The total derivative operator is seldom a compact opera-
tor. As such, to analyze the relationship between the total
derivative operator and the occupation kernels, the theory
of densely defined operators is leveraged.

Definition 3. (Densely Defined Operator). Given a set
D(A) ⊂ H, a linear operator A : D(A) → H is said to
be densely defined when D(A) is dense in H.

Differentiation is a canonical example of a densely defined
operator. The following example, while not posed over a
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RKHS, demonstrates this property of differentiation over
the Hilbert space L2[0, 1].

Example 1. Let A = d
dt and suppose that the Hilbert space

in question is L2[0, 1]. Since the derivative of any polyno-
mial is again a polynomial and polynomials are dense in
L2[0, 1], D(A) := {p : p is a polynomial over [0, 1]} is a
dense domain for A. It is also clear that D(A) cannot be
extended to all of L2[0, 1] as f(t) =

√
t is in L2[0, 1] and

d
dtf(t) = 1

2
√
t

is not.

The relationship between the total derivative operator and
the occupation kernels is expressed through the adjoint
of the total derivative operator, and for the development
to be cogent, the adjoint needs to be densely defined.
Since adjoints of closed operators over a Hilbert space are
densely defined (Pedersen, 2012, Chapter 5), closedness of
the total derivative operator is analyzed in the following.

Definition 4. Let A be an operator over H. A is said to be
closed, if whenever {gm}∞m=1 ⊂ A, gn → f and Agn → h
according to the Hilbert space norm, then f ∈ D(A) and
Af = h.

The following theorem establishes a connection between
the total derivative operator and signals x(·) and u(·)
whenever x(·) is a solution of (1) under u(·). For brevity
of notation, let Γx0,u,f denote the occupation kernel
Γφf (·,x0,u(·)),u(·).

Theorem 1. The operator Af introduced in Definition 2
is closed. Moreover, for an admissible trajectory t 7→
(t, x(t), u(t)), with initial condition x0, and that resides
within a compact set for all t ∈ [0, T ], the function Γx0,u,f

is in the domain of the adjoint of Af .

Proof. Suppose that {gm}∞m=0 ⊂ D(Af ) ⊂ H(Σ) such
that gm → g ∈ H(Σ) and Afgm → q ∈ H(S). Since
the differentiability of the functions in H is inherited from
the kernel function (see (Steinwart and Christmann, 2008,
Corollary 4.36)), the function ∂

∂xi
g is well defined for each

g ∈ H(Σ) (but ∂
∂xi

g is not necessarily a function in H(Σ)).

However, for any fixed t and x the mapping p 7→ ∂
∂xi

p(t, x)

is a continuous linear functional over H(Σ). By (Steinwart
and Christmann, 2008, Corollary 4.36),∣∣∣∣ ∂∂xi gm(t, x)− ∂

∂xi
g(t, x)

∣∣∣∣ =

∣∣∣∣ ∂∂xi (gm(t, x)− g(t, x))

∣∣∣∣ ≤
‖gm − g‖H(Σ)

√
∂i∂i+nKΣ(((t, x)), ((t, x))).

Hence, ∂
∂xi

gm(t, x) → ∂
∂xi

g(t, x) for each x ∈ X and

i = 1, . . . , n. Hence, ∂
∂tgm(t, x) + f(t, x, u) · ∇xgm(t, x) →

∂
∂tg(t, x)+f(t, x, u) ·∇xg(t, x) as f(t, x, u) is constant with
respect to m. Thus, h = Ag and g ∈ D(Af ), and Af is
closed with the domain given in Definition 2.

To demonstrate that Γx0,u,f is in the domain of A∗f , note
that ∣∣∣∣∣

∫ T

0

∂

∂t
g(t, x(t)) + f(t, x(t), u(t))∇xg(t, x(t))dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ T

0

ġ(t, x(t))dt

∣∣∣∣∣ = |g(T, x(T ))− g(0, x(0))|

=
∣∣〈g,KΣ(·, (T, x(T )))−KΣ(·, (0, x(0)))〉H(Σ)

∣∣

≤ ‖g‖H(Σ)‖KΣ(·, (T, x(T )))−KΣ(·, (0, x(0)))‖H(Σ).

Finally, given bounds on T and ‖x(t)‖2, a bound on
‖KΣ(·, (T, x(T ))) − KΣ(·, (0, x(0)))‖H(Σ) may be estab-
lished. Thus, the functional over D(Af ) given as g 7→
〈Afg,Γx0,u,f 〉 is bounded when t 7→ (t, x(t), u(t)) is a tra-
jectory of the system. It follows that the function Γx0,u,f

is in the domain of the adjoint of the operator Af . That
is,

〈Afg,Γx0,u,f 〉H(S) = 〈g,A∗fΓx0,u,f 〉H(Σ) =

g(T, x(T ))− g(0, x(0)) (6)

for all g ∈ D(Af ).

Through consideration of (6) for an admissible trajectory
satisfying the hypothesis of Theorem 1, g ∈ D(Af ) and
setting gT (x) ≡ g(T, x) ∈ H(D), it can be observed that

〈g,KΣ(·, (0, x0))〉H(Σ) = g(0, x(0))

= −〈g,A∗fΓx0,u,f 〉+ g(T, x(T ))

= 〈−Afg,Γx0,u,f 〉H(S) + 〈gT ,KD(·, x(T ))〉H(D)

= 〈(−Afg, gT ), (Γx0,u,f ,KD(·, x(T )))〉H(S)×H(D).

Letting Lf : D(Af ) → H(S) × H(D) denote the
linear mapping Lfg = (−Afg, gT ), it follows that
〈g,L∗f (Γx0,u,f ,KD(·, x(T )))〉H(Σ) = 〈g,KΣ(·, (0, x0))〉H(Σ)

for all g ∈ H(Σ). Hence, the linear constraint

L∗f (Γx(·),u(·),KD(·, x(T ))) = KΣ(·, (0, x0)) (7)

serves as a necessary condition for x(·) to be a trajectory
of (1) in response to the control signal u(·).

6. A REFORMULATION OF THE OPTIMAL
CONTROL PROBLEM

Using (4) and (7), the optimal control problem is expressed
as an infinite dimensional linear program P given by

min
Γx(·),u(·),KD(·,x(T ))

〈(Γx(·),u(·),KD(·,x(T ))),(h,F )〉H(S)×H(D)

subject to: L∗f (Γx(·),u(·),KD(·,x(T ))) = KΣ(·,(0,x0)).

To solve P , finite-dimensional representation of the deci-
sion variables Γx(·),u(·) and KD(·, x(T )) is required. The
representation is cogent under the following assumptions.

Assumption 1. Af is densely defined on H(Σ) together
with a countable basis for D(Af ), given as {σm}∞m=1 ⊂
D(Af ). Furthermore, for all s ∈ S, the kernel functions
satisfy KS(·, s) ∈ D(Af ).

Under Assumption 1, the optimal control problem can
be expressed as the need to find the optimal real valued
weights {wi}MS

i=1 and {vi}MD
i=1 that provide approximations

for Γx(·),u(·) and KD(·, x(T )) as

Γx(·),u(·)(·) ≈
MS∑
i=1

wiKS(·, si) (8)

KD(·, x(T )) ≈
MD∑
i=1

viKD(·, di), (9)

where {si}MS
i=1 ⊂ S is a collection of center in S, and

{di}MD
i=1 ⊂ D is a collection of centers in D. The objective

function of P can then be evaluated as
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〈(Γx(·),u(·),KD(·, x(T ))), (h, F )〉H(S)×H(D) ≈〈(
MS∑
i=1

wiKS(·, si),
MD∑
i=1

viKD(·, di)

)
, (h, F )

〉
H(S)×H(D)

=

MS∑
i=1

wi 〈KS(·, si), h〉H(s) +

MD∑
i=1

vi 〈KD(·, di), F 〉H(D)

=

MS∑
i=1

wih(si) +

MD∑
i=1

viF (di). (10)

Similarly, the constraint in P is satisfied provided
〈Lfg, (Γx(·),u(·),KD(·, x(T )))〉H(S)×H(D) = g(0, x0) for
all g ∈ D(Af ), which in turn, is satisfied provided
〈Lfσm, (Γx(·),u(·),KD(·, x(T )))〉H(S)×H(D) = σm(0, x0) for
all m = 1, · · · ,∞. Selecting a finite set of basis functions
{σ1, . . . , σMb

}, the constraint of P can thus be approxi-
mated using Mb linear constraints of the form

MD∑
i=1

viσm(T, di)−
MS∑
i=1

wiAfσm(si) = σm(0, x0), (11)

for m = 1, · · · ,Mb. The optimal control problem thus
admits the finite-rank representation

Pf : min
{wi}

MS
i=1

,{vi}
MD
i=1

MS∑
i=1

wih(si) +

MD∑
i=1

viF (di)

subject to:

MD∑
i=1

viσm(T, di)−
MS∑
i=1

wiAfσm(si)=σm(0, x0),

for m = 1, · · · ,Mb. To ensure that the optimization
problem is bounded, (3) may be employed as ‖Γx0,u,f‖2 ≤
T 2Φ(0), when KS is the Gaussian or Wendland RBF,
and ‖K(·, x(T ))‖2 ≤ supy∈DK(y, y). Alternatively, Φ(0)
may be replaced by an appropriate supremum bound.
Depending on the selection of the kernel, a theoretically
achievable approximation of Γx0,u,f and KD(·, x(T )) can
be justified based on the density (or fill distance) of the
centers within their respective parent sets.

7. CONCLUSION

In this abstract, the concepts of occupation kernels and
total derivative operators are utilized to lift a nonlinear
optimal control problem into a linear infinite-dimensional
optimal control problem over functions in a RKHS. A
finite-rank representation of the infinite-dimensional prob-
lem is obtained using kernel functions of the RKHSs and
a countable basis for the domain of the total derivative
operator. The authors plan to include an expanded in-
troduction that places this work in the context of other
lifting techniques such as occupation measures, provide
a procedure to extract the optimal value function from
a solution of Pf , and add a few example problems that
demonstrate the utility of the developed methods.
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Nonlinear optimal control via occupation measures and LMI-
relaxations. SIAM J. Control Optim., 47(4), 1643–1666.

Lasserre, J.B. (2010). Moments, Positive Polynomials and Their
Applications. Imperial College Press.

Majumdar, A., Vasudevan, R., Tobenkin, M.M., and Tedrake, R.
(2014). Convex optimization of nonlinear feedback controllers via
occupation measures. Int. J. Robot. Res., 33(9), 1209–1230.

Pedersen, G.K. (2012). Analysis now, volume 118. Springer Science
& Business Media.

Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., and
Mishchenko, E.F. (1962). The mathematical theory of optimal
processes. Interscience, New York.

Rao, A.V., Benson, D.A., Darby, C.L., Patterson, M.A., Francolin,
C., and Huntington, G.T. (2010). Algorithm 902: GPOPS, a
MATLAB software for solving multiple-phase optimal control
problems using the Gauss pseudospectral method. ACM Trans.
Math. Softw., 37(2), 1–39.

Rosenfeld, J., Russo, B., Kamalapurkar, R., and Johnson, T. (2020).
The occupation kernel method for nonlinear system identification.
arXiv:1909.11792. Submitted to SIAM Journal on Control and
Optimization.

Steinwart, I. and Christmann, A. (2008). Support vector machines.
Information Science and Statistics. Springer, New York.

von Stryk, O. and Bulirsch, R. (1992). Direct and indirect methods
for trajectory optimization. Ann. Oper. Res., 37(1), 357–373.

Zhao, P., Mohan, S., and Vasudevan, R. (2017). Control synthesis
for nonlinear optimal control via convex relaxations. In Proc. Am.
Control Conf., 2654–2661.

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



Dirac structure for spatial multidimensional
port-Hamiltonian Systems

Nathanael Skrepek ∗

∗ Department of Mathematics and Science, University of Wuppertal,
Germany, (e-mail: skrepek@uni-wuppertal.de)
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1. INTRODUCTION

We regard the spatial multidimensional port-Hamiltonian
systems and associate Dirac structures with theses sys-
tems. The Dirac structures that we investigate differ
mainly in the boundary spaces. We will mainly focus on
the linear port-Hamiltonian systems that were introduced
in Skrepek (2021). However, we can also cover systems
with a non quadratic Hamiltonians. In particular we asso-
ciate a Dirac structure to systems of the form

∂

∂t
x(t, ζ) =

n∑
i=1

∂

∂ζi

[
0 Li

LH
i 0

]
δH(x(t, ζ))

δx
+ P0

δH(x(t, ζ))

δx

x(0, ζ) = x0(ζ),

where Li are matrices, P0 is a skew-adjoint matrix, LH
i

denotes the Hermitian transposed (complex conjugated
transposed) matrix of Li, H is the Hamiltonian, t ≥ 0
and ζ ∈ Ω ⊆ Rn. Additionally, we will consider boundary
ports later.

Dirac structures are one of the key elements in port-
Hamiltonian modeling. They unify the description of com-
plex interactions in physical systems. For further back-
ground see e.g. van der Schaft and Maschke (2002); Le Gor-
rec et al. (2005).

In Macchelli et al. (2004) they already introduced Dirac
(Stokes-Dirac) structures for such systems, but they as-
sume all functions to be smooth. Nevertheless they use
the L2 inner product as a dual pairing for the effort and
flow space, which leads to an incomplete pairing. How-
ever, if you work with a complete L2 space, the difficulty
arises when you have to deal with trace operators. Also
in Brugnoli et al. (2019) they regarded the Mindlin plate
and showed that there is a Dirac structure associated to
this system, but they refer to Macchelli et al. (2004) for
the justification, which as already pointed out only deals
with smooth function spaces.

The codomain of the trace operators will be called bound-
ary space. One choice is L2(∂Ω) as boundary space, which
seems very natural but has disadvantages when it comes
to solution theory. On the other hand we can consider the
boundary spaces that were introduced in Skrepek (2021),
which establish a quasi Gelfand triple with L2(∂Ω) as pivot

space. A quasi Gelfand triple is also a concept that was
introduced in Skrepek (2021), which generalizes Gelfand
triples (rigged Hilbert spaces). We will show for both
choices of boundary spaces that there is Dirac structure
associated to the system.

2. PRELIMINARY

Our general assumption is that Ω ⊆ Rn is open and has a
bounded Lipschitz boundary (Ω itself can be unbounded).
Moreover, K denotes the scalar field, which can be either
R or C. We want to point out that the following is also
possible with boundary operators that act only on a part
of ∂Ω. However, for simplicity we reduce ourselves to
boundary operators that act on the entire boundary. For
an extensive treatment of this section see Skrepek (2021).

Definition 2.1. Let L = (Li)
n
i=1, where Li ∈ Km1×m2 .

Then we define

L∂ :=
n∑

i=1

∂iLi and LH
∂ := (LH)∂ =

n∑
i=1

∂iL
H
i

as operators from D′(Ω)m2 to D′(Ω)m1 and from D′(Ω)m1

to D′(Ω)m2 , respectively (differential operators on the
space of distributions). Furthermore, we define the space

H(L∂ ,Ω) :=
{
f ∈ L2(Ω,Km2)

∣∣L∂f ∈ L2(Ω,Km1)
}
.

This space is endowed with the inner product

⟨f, g⟩H(L∂ ,Ω) := ⟨f, g⟩L2(Ω,Km2 ) + ⟨L∂f, L∂g⟩L2(Ω,Km1 ).

We denote the outward pointing normed normal vector on
∂Ω by ν and its i-th component by νi. Moreover, we define

Lν :=
n∑

i=1

νiLi :


L2(∂Ω,Km2) → L2(∂Ω,Km1),

f 7→
n∑

i=1

νiLif,

and LH
ν := (LH)ν .

We can and will regard L∂ as an unbounded operator on
L2(Ω) with domain H(L∂ ,Ω).

For these differential operators exists an integration by
parts formula, which is essentially a consequence of the
generalized Stokes theorem. Since this integration by parts
formula plays an important role for the Dirac structures
we will introduce, these Dirac structure are also called
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Stokes-Dirac structures. We will first formulate the result
for smooth functions. For a proof see (Skrepek, 2021,
Lemma 3.8)

Lemma 2.2. For f ∈ C∞(Rn) and g ∈ C∞(Rn) we have

⟨L∂f, g⟩L2(Ω) + ⟨f, LH
∂ g⟩L2(Ω) = ⟨Lνf, g⟩L2(∂Ω).

Clearly, we can easily extend this result by continuity to
f ∈ H1(Ω) and g ∈ H1(Ω). However, we can even extend
this result to f ∈ H(L∂ ,Ω) and g ∈ H(LH

∂ ,Ω).

In order to do this we have to introduce new boundary
spaces. First of all, since the inner product ⟨Lνf, g⟩L2(∂Ω)

does only depend on the part of g which is in L2π(∂Ω) :=
ranLν we can add the orthogonal projection PL from
L2(∂Ω) onto L2π(∂Ω) to g. Hence, we have

⟨L∂f, g⟩L2(Ω) + ⟨f, LH
∂ g⟩L2(Ω) = ⟨Lνf, PLg⟩L2(∂Ω).

To be more precise there is actually a trace operator
involved in the L2(∂Ω)-inner product. We will denote the
composition of this trace operator with PL by πL. We will
endow ranπL with the range norm

∥ϕ∥ran := inf
{
∥g∥H(LH

∂
,Ω)

∣∣∣πLg = ϕ, g ∈ C(Rn)
}

and denote the completion of this space (w.r.t. ∥·∥ran) by
VL. There exists a continuous extension of πL to H(LH

∂ ,Ω)
denoted by π̄L. This extension is surjective. Moreover, we
can also continuously extend Lν to a surjective mapping
from H(L∂ ,Ω) to V ′

L denoted by L̄ν . Hence, we obtain

Corollary 2.3. For f ∈ H(L∂ ,Ω) and g ∈ H(LH
∂ ,Ω) we have

⟨L∂f, g⟩L2(Ω) + ⟨f, LH
∂ g⟩L2(Ω) = ⟨L̄νf, π̄Lg⟩V′

L
,VL

.

We say that L̄νf is an element of L2(∂Ω), if there is an
hf ∈ L2(∂Ω) such that

⟨hf , πLg⟩L2(∂Ω) = ⟨L̄νf, πLg⟩V′
L
,VL

∀ g ∈ C∞(Rn).

Accordingly, we say π̄Lg is in L2(∂Ω), if there is an hg ∈
L2(∂Ω) such that

⟨Lνf, hg⟩L2(∂Ω) = ⟨Lνf, π̄Lg⟩V′
L
,VL

∀ f ∈ C∞(Rn).

3. PORT-HAMILTONIAN SYSTEMS

We regard port-Hamiltonian systems of the form

∂

∂t
x(t, ζ) =

n∑
i=1

∂

∂ζi

[
0 Li

LH
i 0

]
δH(x(t, ζ))

δx

+ P0
δH(x(t, ζ))

δx

u(t, ξ) = [0 Lν ]
δH(x(t, ξ))

δx

y(t, ξ) = [πL 0]
δH(x(t, ξ))

δx
x(0, ζ) = x0(ζ),

(1)

where t ∈ R+, ζ ∈ Ω, ξ ∈ ∂Ω and δH(x)
δx denotes the

variational derivative of the Hamiltonian H. The functions
u and y are the boundary ports. We will regarding the
state function x : R+ × Ω → Km as x : R+ → L2(Ω;Km)
by setting x(t) = x(t, ·). This convention allows us to
rewrite (1) as

ẋ =

([
0 L∂

LH
∂ 0

]
+ P0

)
δH(x)

δx
,

u =
[
0 L̄ν

] δH(x)

δx
,

y = [π̄L 0]
δH(x)

δx
,

x(0) = x0.

(2)

We regard this system in L2(Ω). In particular we say −ẋ

is the inner flow variable, δH(x)
δx is the inner effort, u is the

boundary flow and y is the boundary effort.

The following example will show that Maxwell’s equations
fit the previous system.

Example 3.1. Let us regard the matrices

L1 =

[
0 0 0
0 0 −1
0 1 0

]
, L2 =

[
0 0 1
0 0 0
−1 0 0

]
, and L3 =

[
0 −1 0
1 0 0
0 0 0

]
.

We can easily see that LH
i = −Li. Furthermore, the

corresponding differential operator is

L∂ =

[
0 −∂3 ∂2
∂3 0 −∂1
−∂2 ∂1 0

]
= rot = −LH

∂ .

The corresponding operator Lν that acts on L2(∂Ω) can
be written as a vector cross product

Lνf =

[
0 −ν3 ν2
ν3 0 −ν1
−ν2 ν1 0

][
f1
f2
f3

]
= ν × f.

It can be calculated that the projection PL on ranLν is
given by

PLg = (ν × g)× ν.

Hence, πLg = (ν × g
∣∣
∂Ω

)× ν.

Inserting the identities of the previous example into (2)
gives a version of Maxwell’s equations.

4. DIRAC STRUCTURES

We will regard the inner flow space Fin := L2(Ω), the inner
effort space Ein := L2(Ω). For the boundary flow space F∂

we will either use L2π(∂Ω), V ′
L, or {0}. Accordingly we will

use for the boundary effort space E∂ either L2π(∂Ω), V ′
L,

or {0}. Clearly, we choose F∂ and E∂ always such that
F ′

∂ = E∂ . We set flow space F := Fin×F∂ and effort space
E := Ein × E∂ .
Note that F , E is a dual pair, its dual pairing is given,
depending on the spaces F∂ and E∂ , by

⟨·, ·⟩L2(Ω) + ⟨·, ·⟩L2(∂Ω),

⟨·, ·⟩L2(Ω) + ⟨·, ·⟩V′
L
,VL

,

or ⟨·, ·⟩L2(Ω).

Definition 4.1. Let F , E be Banach spaces and ⟨·, ·⟩F,E a
dual pairing for these spaces. Then we define the canonical
symmetric pairing

⟪[ fe ],
[
f̂
ê

]
⟫ := ⟨f, ê⟩F,E + ⟨e, f̂⟩E,F ,

where ⟨e, f̂⟩E,F := ⟨f̂ , e⟩F,E . We will denote orthogonality
with respect to ⟪·, ·⟫ by ⊥⟪,⟫.
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If F = E is a Hilbert space, then the dual pairing ⟨·, ·⟩F,E
is given by the inner product ⟨·, ·⟩F .
Definition 4.2. Let F , E be a dual pair. Then D ⊆ F × E
is a Dirac structure, if D⊥⟪,⟫ = D.

The space F × E is called the bond space.

Theorem 4.3. Let F∂ = E∂ = {0}. We will ignore the
second component of F and E as F ∼= Fin and E ∼= Ein.
Then

D :=

{[
f
e

]
∈ F × E

∣∣∣∣ f = −
[
0 L∂

LH
∂ 0

]
e, [π̄L 0] e = 0

}
is a Dirac structure.

We can also replace the condition [π̄L 0] e = 0 in the
previous theorem by

[
0 L̄ν

]
e = 0.

Proof. By Corollary 2.3, it is not hard to see that J :=[
0 L∂

LH
∂ 0

]
with the boundary condition [π̄L 0] e = 0 is skew-

adjoint. Hence, for
[
f̂
ê

]
∈ D⊥⟪,⟫ the equation

⟪[−Je
e ],

[
f̂
ê

]
⟫ = ⟨−Je, ê⟩L2(Ω) + ⟨e, f̂⟩L2(Ω) = 0

implies f̂ = −Jê.

On the other by the skew-adjointness of J it follows
immediately that [−Je

e ] ⊥⟪,⟫
[−Jê

ê

]
. □

Theorem 4.4. Let F∂ = E∂ = L2π(∂Ω). Then

D1 :=

{[
f
f∂
e
e∂

]
∈ F × E

∣∣∣∣ f = −
[
0 L∂

LH
∂ 0

]
︸ ︷︷ ︸

=:J

e,

[
f∂
e∂

]
=

[
0 L̄ν

π̄L 0

]
e

}
is a Dirac structure.

Recall the canonical symmetric pairing is given by

⟪
[

f
f∂
e
e∂

]
,

[
f̂

f̂∂
ê
ê∂

]
⟫ := ⟨f, ê⟩L2(Ω) + ⟨e, f̂⟩L2(Ω)

+ ⟨f∂ , ê∂⟩L2(∂Ω) + ⟨e∂ , f̂∂⟩L2(∂Ω).

Proof. It can be easily shown by Corollary 2.3 that D1 ⊆
D⊥⟪,⟫

1 .

Let

[
f̂

f̂∂
ê
ê∂

]
∈ D⊥⟪,⟫

1 . Then we have for any

[
f
f∂
e
e∂

]
∈ D1:

0 = ⟪
[

f
f∂
e
e∂

]
,

[
f̂

f̂∂
ê
ê∂

]
⟫.

We choose e ∈ C∞
c (Ω), which implies that

[−Je
0
e
0

]
∈ D1

and

0 = ⟪
[−Je

0
e
0

]
,

[
f̂

f̂∂
ê
ê∂

]
⟫ = ⟨−Je, ê⟩+ ⟨e, f̂⟩.

This gives

⟨Je, ê⟩ = ⟨e, f̂⟩ for all e ∈ C∞
c (Ω),

and by distributional definition of J we conclude f̂ = −Jê.
Note that according to the dimensions of the Li we can

split e into

[
e1
e2

]
and accordingly we can split ê. This gives

⟨−Je, ê⟩L2(Ω) + ⟨e,−Jê⟩L2(Ω)

= −⟨L∂e2, ê1⟩L2(Ω) − ⟨LH
∂ e1, ê2⟩L2(Ω)

− ⟨e1, L∂ ê2⟩L2(Ω) − ⟨e2, LH
∂ ê1⟩L2(Ω)

= −⟨L̄νe2, π̄Lê1⟩V′
L
,VL

− ⟨π̄Le1, L̄ν ê2⟩VL,V′
L
.

Hence, for e ∈ dom J ∩{g | π̄Lg1, L̄νg2 ∈ L2π(∂Ω)} arbitrary
we have

0 = ⟪
[ −Je

L̄νe2
e

π̄Le1

]
,

[
−Jê

f̂∂
ê
ê∂

]
⟫

= −⟨L̄νe2, π̄Lê1⟩V′
L
,VL

− ⟨π̄Le1, L̄ν ê2⟩VL,V′
L

+ ⟨L̄νe2, ê∂⟩L2(∂Ω) + ⟨π̄Le1, f̂∂⟩L2(∂Ω).

Choose e1 ∈ ker π̄L and e2 ∈ C∞(Rn) arbitrary, then

0 = ⟨L̄νe2, ê∂⟩L2(∂Ω) − ⟨L̄νe2, π̄Lê1⟩V′
L
,VL

,

which implies ê∂ = π̄Lê1. Analogously, we can show that

f̂∂ = L̄ν ê2, which implies

[
f̂

f̂∂
ê
ê∂

]
∈ D1 and therefore

D⊥⟪,⟫
1 ⊆ D1. □

Theorem 4.5. Let F∂ = V ′
L and E∂ = VL. Then

D2 :=

{[
f
f∂
e
e∂

]
∈ F × E

∣∣∣∣ f = −
[
0 L∂

LH
∂ 0

]
︸ ︷︷ ︸

=:J

e,

[
f∂
e∂

]
=

[
0 L̄ν

π̄L 0

]
e

}
is a Dirac structure.

The proof is a copy of the proof of Theorem 4.4. Only in
the last step (for ê∂ = π̄Lê1) we have to use the surjectivity
of L̄ν .

Note that the Dirac structures D1 from Theorem 4.4 and
D2 from Theorem 4.5 are almost the same. In particular,
we even have D1 ⊊ D2 (n > 1) and D1 is dense in D2. The
reason why it is possible that nevertheless both are Dirac
structures is because they are in different bond spaces.

For the initial boundary control systems the bond space of
D1 is in some sense not suitable as the boundary operators
do not map surjectively into L2π(∂Ω) (only densely). This
is problematic for solution theory. On the other hand the
bond space of D2 does not have this problem. And indeed
it is possible to develop solution theory for this bond space,
see Skrepek (2021).

5. CONCLUSION

One crucial tool to show that the defined sets are indeed
Dirac structures were the boundary spaces VL and V ′

L.
These spaces helped us to make sure that all calculations
are meaningful, even if we did not know whether the traces
are L2(∂Ω).

Moreover, with this general approach we have shown that
there are Dirac structures for the wave equation, Maxwell’s
equations, and the Mindlin plate.
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Abstract: We propose a distributed nonparametric algorithm for solving measure-valued
optimization problems with additive objectives. Such problems arise in several contexts in
stochastic learning and control including Langevin sampling from an unnormalized prior, mean
field neural network learning and Wasserstein gradient flows. The proposed algorithm comprises
a two-layer alternating direction method of multipliers (ADMM). The outer-layer ADMM
generalizes the Euclidean consensus ADMM to the Wasserstein consensus ADMM, and to its
entropy-regularized version Sinkhorn consensus ADMM. The inner-layer ADMM turns out to
be a specific instance of the standard Euclidean ADMM. The overall algorithm realizes operator
splitting for gradient flows in the manifold of probability measures.

Keywords: Distributed algorithm, Wasserstein gradient flow, optimal transport.

1. INTRODUCTION

We consider measure-valued optimization problems of the
form

arg inf
µ∈P2(Rd)

F1(µ) + F2(µ) + . . .+ Fn(µ) (1)

for some finite integer n > 1, where P2(Rd) denotes the
space of Borel probability measures over Rd with finite
second moments. We suppose that the functionals Fi :
P2(Rd) 7→ R are convex for all i ∈ [n]. If the optimization
in (1) is instead over P2,ac(Rd), defined as the subset of
P2(Rd) such that its elements are absolutely continuous
w.r.t. the Lebesgue measure, then we can rewrite 1 (1) as

arg inf
ρ

F1(ρ) + F2(ρ) + . . .+ Fn(ρ) (2)

where the decision variable ρ is a joint PDF over Rd with
finite second moment.

Problems of the form (1) and (2) arise in several contexts
in statistics, machine learning, and control theory. This in-
cludes sampling from an unnormalized prior via Langevin
Monte Carlo (see e.g., Stramer and Tweedie (1999a,b);
Jarner and Hansen (2000); Roberts and Stramer (2002);
Vempala and Wibisono (2019)), policy optimization in
reinforcement learning (see e.g., Zhang et al. (2018); Chu
et al. (2019); Zhang et al. (2020)), stochastic prediction
(see e.g., Jordan et al. (1998); Ambrosio et al. (2005);
Caluya and Halder (2019b,a)) and estimation (see e.g.,
Halder and Georgiou (2017, 2018, 2019)), density con-
trol (see e.g., Caluya and Halder (2021a,b)), mean field
analysis of neural supervised (see e.g., Chizat and Bach

⋆ This work is partially supported by NSF grants 1923278, 2112755.
1 with slight abuse of notation in the sense (2) uses the same symbols
Fi as in (1) for the additive functionals.

(2018); Mei et al. (2018); Rotskoff and Vanden-Eijnden
(2018); Sirignano and Spiliopoulos (2020)) and unsuper-
vised learning (see e.g., Domingo-Enrich et al. (2020)).

Let F := F1 + . . .+ Fn. There is a natural connection be-
tween problems of the form (1) and that of the Wasserstein
gradient flow

∂µ

∂t
= −∇W2F (µ) := ∇ ·

(
µ
δF

δµ

)
, (3)

where ∇ denotes the d dimensional Euclidean gradient,
and δ

δµ denotes the functional derivative w.r.t. µ. The

operator ∇W2 in (3) denotes the gradient w.r.t. the 2-
Wasserstein metric W2 between a pair of probability
measures µx, µy ∈ P2

(
Rd
)
, defined as

W2 (µx, µy) :=

(
inf

π∈Π(µx,µy)

∫
R2d

c (x,y) dπ(x,y)

) 1
2

, (4)

where Π (µx, µy) is the set of joint probability measures or
couplings over the product space R2d, having x marginal
µx, and y marginal µy. We use the ground cost c (x,y) :=
∥x−y∥22, the squared Euclidean distance in Rd. It is well-
known (Villani, 2003, Ch. 7) that W2 defines a metric
on P2

(
Rd
)
. For notational ease, we henceforth drop the

subscript from W2, and simply use W . The minimizer πopt

in (4) is referred to as the optimal transportation plan, and
if µ ∈ P2,ac(Rd), then πopt is supported on the graph of
the optimal transport map T opt pushing µx to µy.

The connection between (1) and (3) is that the minimizer
of (1) may be realized as the stationary solution of (3).
Conversely, if one is interested in the (possibly transient)
solution of a PDE of the form (3), then it might be possible
to compute the same by performing discrete time-stepping
realizing gradient descent for (1).
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In recent years, several algorithms have been proposed
for solving measure-valued optimization problems, see e.g.,
Benamou et al. (2016); Peyré (2015); Carlier et al. (2017);
Carrillo et al. (2021); Mokrov et al. (2021); Alvarez-Melis
et al. (2021). In this work, we explore the possibility of
leveraging the additive structure of the objective in (1) for
distributed nonparametric computation.

2. MAIN IDEA

We relabel the argument of the functional Fi in (1) as µi

for all i ∈ [n], and then impose the consensus constraint
µ1 = µ2 = . . . = µn. Denoting

Pn+1
2 (Rd) := P2(Rd)× . . .× P2(Rd)︸ ︷︷ ︸

n+1 times

,

we then rewrite (1) as

arg inf
(µ1,...,µn,ζ)∈Pn+1

2
(Rd)

F1(µ1) + F2(µ2) + . . .+ Fn(µn) (5a)

subject to µi = ζ for all i ∈ [n]. (5b)

Akin to the standard (Euclidean) augmented Lagrangian,
we define the Wasserstein augmented Lagrangian

Lα(µ1, . . . , µn, ζ, ν1, . . . , νn) :=
n∑

i=1

{
Fi(µi) +

α

2
W 2 (µi, ζ) +

∫
Rd

νi(θ) (dµi − dζ)

}
(6)

where νi(θ), i ∈ [n], are the Lagrange multipliers for the
constraints in (5b), and α > 0 is a regularization constant.

Motivated by the Euclidean alternating direction method
of multipliers (ADMM), we set up the recursions

µk+1
i = arg inf

µi∈P2(Rd)

Lα

(
µ1, . . . , µn, ζ

k, νk1 , . . . , ν
k
n

)
(7a)

ζk+1 = arg inf
ζ∈P2(Rd)

Lα

(
µk+1
1 , . . . , µk+1

n , ζ, νk1 , . . . , ν
k
n

)
(7b)

νk+1
i = νki + α

(
µk+1
i − ζk+1

)
(7c)

where i ∈ [n], and the recursion index k ∈ N0 (the set of
whole numbers {0, 1, 2, . . .}). We view (7a)-(7b) as primal
updates, and (7c) as dual ascent.

Let νksum(θ) :=
n∑

i=1

νki (θ), k ∈ N0. Substituting (6) in (7),

dropping the terms independent of the decision variable
in the respective arg inf, and re-scaling, the recursions (7)
simplify to

µk+1
i = arg inf

µi∈P2(Rd)

1

2
W 2
(
µi, ζ

k
)
+

1

α

{
Fi(µi) +

∫
Rd

νki (θ)dµi

}
= proxW

1
α

(
Fi(·)+

∫
νk
i
d(·)
) (ζk) , (8a)

ζk+1 = arg inf
ζ∈P2(Rd)

n∑
i=1

{
1

2
W 2
(
µk+1
i , ζ

)
−

1

α

∫
Rd

νki (θ)dζ

}
= arg inf

ζ∈P2(Rd)

{( n∑
i=1

W 2
(
µk+1
i , ζ

))
−

2

α

∫
Rd

νksum(θ)dζ

}
,

(8b)

νk+1
i = νki + α

(
µk+1
i − ζk+1

)
, (8c)

wherein we use the notation proxWG(·)(ζ) to denote the

Wasserstein proximal operator of the functional G(·),
acting on ζ ∈ P2

(
Rd
)
, given by

proxWG(·)(ζ) := arg inf
µ∈P2(Rd)

1

2
W 2 (µ, ζ) +G(µ). (9)

We can view (9) as a generalization of the finite dimen-
sional Euclidean proximal operator

prox∥·∥2
g (z) := arg inf

x∈Rd

1

2
∥x− z∥22 + g(x). (10)

We refer to (8) as the Wasserstein consensus ADMM
– the notion generalizes its finite dimensional Euclidean
counterpart in the sense (8a)-(8b) are analogues of the
so-called x and z updates, respectively; see e.g., (Parikh
and Boyd, 2014, Ch. 5.2.1). However, important difference
arises in (8b) compared to its Euclidean counterpart
due to the sum of squares of Wasserstein distances. In
the Euclidean case, the corresponding z update can be
analytically performed in terms of the arithmetic mean
of the x updates. While (8b) does involve a generalized
mean of the updates from (8a), we now have Wasserstein
barycentric proximal of a linear functional. In other words,
(8b) amounts to computing the Wasserstein barycenter of

n measures {µk+1
1 , . . . , µk+1

n } with a linear regularization
involving νksum.

The proximal updates (8a) are closely related to the
Wasserstein gradient flows generated by the respective
(scaled) free energy functionals

Φi(µi) := Fi(µi) +

∫
Rd

νki dµi, µi ∈ P2(Rd), i ∈ [n].

Under mild assumptions on Φi, as 1/α ↓ 0, the sequence
{µk

i (α)}k∈N0
generated by the proximal updates (8a) con-

verge to the measure-valued solution trajectory µ̃i(t, ·),
t ∈ [0,∞), generated by the initial value problems (IVPs)

∂µ̃i

∂t
= −∇WΦi (µ̃i) , µ̃i(t = 0, ·) = µ̃0

i (·), i ∈ [n]. (11)

Thus, in a rather generic setting, performing the proximal
updates (8a) in parallel across the index i ∈ [n], amounts
to performing distributed time updates for the approxi-
mate transient solutions of the IVPs (11).

Important examples of Fi include
∫
V (θ)dµi(θ) (poten-

tial energy for some suitable advection potential V ),
β−1

∫
logµi(θ)dµi(θ) (internal energy with the “inverse

temperature” parameter β > 0),
∫
R2d U(θ,σ)dµi(θ)dµi(σ)

(interaction energy for some symmetric positive definite
interaction potential U).

To numerically realize the recursions (8), we consider a se-
quence of discrete probability distributions {µk

1 , . . . ,µ
k
n, ζ

k}
indexed by k ∈ N0 where each distribution is a probability
vector of length N × 1, representative of the respective
probability values at N samples. Thus, for each fixed
k ∈ N0, the tuple(
µk

1 , . . . ,µ
k
n, ζ

k
)
∈ ∆N−1 × . . .×∆N−1︸ ︷︷ ︸

n+1 times

=:
(
∆N−1

)n+1
.

Likewise, for each fixed k ∈ N0, the Lagrange multipliers(
νk
1 , . . . ,ν

k
n

)
∈ RnN , and νk

sum =
n∑

i=1

νk
i ∈ RN .

Given probability vectors ξ,η ∈ ∆N−1, let ΠN (ξ,η) :=
{M ∈ RN×N | M ≥ 0 (elementwise),M1 = ξ,M⊤1 =
η}. Also, let C ∈ RN×N denote the squared Euclidean
distance matrix for the sampled data {θr}r∈[N ] in Rd, i.e.,
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the entries of the matrix C are C(i, j) := ∥θi − θj∥22 for
all i, j ∈ [N ].

For each i ∈ [n] and k ∈ N0, we write the discrete version
of (8) as

µk+1
i = proxW1

α (Fi(µi)+⟨νk
i
,µi⟩)

(
ζk
)

= arg inf
µi∈∆N−1

{
min

M∈ΠN (µi,ζk)

1

2
⟨C,M⟩+

1

α

(
Fi(µi) + ⟨νk

i ,µi⟩
)}

,

(12a)

ζk+1 = arg inf
ζ∈∆N−1

{ n∑
i=1

min
Mi∈ΠN

(
µk+1

i
,ζ
)12 ⟨C,Mi⟩

−
2

α
⟨νk

sum, ζ⟩
}
,

(12b)

νk+1
i = νk

i + α
(
µk+1

i − ζk+1
)
, (12c)

wherein (12a)-(12b) used the discrete version of the
squared Wasserstein distance.

Replacing the squared Wasserstein distance in (8) by the
entropy a.k.a. Sinkhorn regularized squared Wasserstein
distance, modify the recursions (12) as

µk+1
i = proxWε

1
α (Fi(µi)+⟨νk

i
,µi⟩)

(
ζk
)

= arg inf
µi∈∆N−1

{
min

M∈ΠN (µi,ζk)

〈
1

2
C + ε logM ,M

〉
+

1

α

(
Fi(µi) + ⟨νk

i ,µi⟩
)}

, (13a)

ζk+1 = arg inf
ζ∈∆N−1

{( n∑
i=1

min
Mi∈ΠN(µk+1

i
,ζ)

〈
1

2
C + ε logMi,Mi

〉)

− 2

α
⟨νk

sum, ζ⟩
}
, (13b)

νk+1
i = νk

i + α
(
µk+1

i − ζk+1
)
, (13c)

where ε > 0 is a regularization parameter. In the
remaining, we summarize novel results that enable us to
numerically perform the recursions (13).

3. RESULTS

3.1 The µ Update

The Sinkhorn regularized recursion (13a) allows us to
get semi-analytical handle on the nested minimization via
strong duality. Specifically, consider the convex functions
Fi, Gi : ∆

N−1 7→ R for all i ∈ [n] where Gi(µi) := Fi(µi)+
⟨νk

i ,µi⟩, and denote the Legendre-Fenchel conjugate of Gi

as G∗
i . Following (Karlsson and Ringh, 2017, Lemma 3.5),

(Caluya and Halder, 2019a, Sec. III), the Lagrange dual
problem associated with (13a) is(

λopt
0i ,λopt

1i

)
= argmax

λ0i,λ1i∈RN

{
⟨λ0i, ζk⟩ −G∗

i (−λ1i)

− αε

(
exp

(
λ⊤
0i

αε

)
exp

(
−

C

2ε

)
exp

(
λ1i

αε

))}
, i ∈ [n]. (14)

Using (14), the proximal updates in (13a) can then be
recovered from the following proposition.

Proposition 1. ((Karlsson and Ringh, 2017, Lemma 3.5),
(Caluya and Halder, 2019a, Theorem 1)) Given α, ε > 0,
the squared Euclidean distance matrix C ∈ RN×N , and
the probability vector ζk ∈ ∆N−1, k ∈ N0. Let 0 denote

the N × 1 vector of zeros. For i ∈ [n], the vectors

λopt
0i ,λopt

1i ∈ RN in (14) solve the system

exp

(
λopt
0i

αε

)
⊙
(
exp

(
−

C

2ε

)
exp

(
λopt
1i

αε

))
= ζk, (15a)

0 ∈ ∂
λ
opt
1i

G∗
i

(
−λopt

1i

)
−exp

(
λopt
1i

αε

)
⊙
(
exp

(
−
C⊤

2ε

)
exp

(
λopt
0i

αε

))
.

(15b)

The proximal update µk+1
i in (13a) is given by

µk+1
i = exp

(
λopt
1i

αε

)
⊙
(
exp

(
−
C⊤

2ε

)
exp

(
λopt
0i

αε

))
. (16)

We point out an important special case: if Fi(µi) =
β−1⟨logµi,µi⟩ where β > 0, then Proposition 1 reduces
exactly to (Caluya and Halder, 2019a, Theorem 1) allowing
further simplification of (15b). Then, (15) can be solved
via certain cone-preserving block coordinate iteration pro-
posed in (Caluya and Halder, 2019a, Sec. III.B,C) that
is provably contractive. This makes the proximal update
(16) semi-analytical in the sense the pair

(
λopt
0i ,λopt

1i

)
needs to be numerically computed by performing the block
coordinate iteration while “freezing” the index k ∈ N0.
With the converged pair

(
λopt
0i ,λopt

1i

)
, the evaluation (16)

is analytical for each k ∈ N0.

In our context, another case of interest is when Fi and
hence Gi, is linear in µi. The following result shows that
the proximal update µk+1

i in this case can be computed
analytically, obviating the zero order hold sub-iterations
mentioned above.

Theorem 1. Given a ∈ RN \ {0}, let Φ(µ) := ⟨a,µ⟩ for
µ ∈ ∆N−1. Let C ∈ RN×N be the squared Euclidean
distance matrix, and for ε > 0, let Γ := exp (−C/2ε). For
any ζ ∈ ∆N−1, α > 0, we have

proxWε
1
α
Φ
(ζ) =exp

(
−

1

αε
a

)
⊙
(
Γ⊤
(
ζ⊘
(
Γ exp

(
−

1

αε
a

))))
. (17)

3.2 The ζ Update

The update (13b) can be seen as a problem of com-
puting the Sinkhorn regularized Wasserstein barycenter
with an extra linear regularization. Let W 2

ε,µi
(ζ) :=

min
Mi∈ΠN (µi,ζ)

〈
1
2C + ε logMi,Mi

〉
, ε > 0, for given µi ∈

∆N−1 for all i ∈ [n], and for a given squared Euclidean
distance matrix C ∈ RN×N . Let the superscript ∗ denote
the Legendre-Fenchel conjugate. Following (Cuturi and
Peyré, 2016, Sec. 4.1), some calculations show that the
dual problem corresponding to (13b) becomes(

uopt
1 , . . . ,uopt

n

)
= argmin

(u1,...,un)∈RnN

n∑
i=1

(
W 2

ε,µk+1
i

)∗
(ui)

subject to

n∑
i=1

ui =
2

α
νk
sum. (18)

Consequently, the update (13b) can be performed by first
solving the problem (18), and then invoking the primal-

dual relation ζopt = ∇ui

(
W 2

ε,µi

)∗ (
uopt
i

)
∈ ∆N−1 ∀i ∈ [n],

at the minimizer of (18). It turns out that (18) leads to
an inner layer Euclidean ADMM whose structure allows
efficient distributed computation.
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The results summarized above lead to an overall algo-
rithm realizing operator splitting for gradient flows in
the manifold of probability measures, which solve (1) via
distributed computation. Numerical experiments (not re-
ported herein due to page constraints) on several test prob-
lems of the form (1) reveal that the proposed framework
has good computational performance.
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On Scale Fragilities in Localized Consensus
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Abstract: We consider the prototypical networked control problem of distributed consensus
in networks of agents with integrator dynamics of order two or higher (n ≥ 2). We assume
all feedback to be localized in the sense that each agent has a bounded number of neighbors
and consider a scaling of the network through the addition of agents. We show that standard
consensus algorithms that rely on relative state feedback and fixed gains can be subject to scale
fragilities, meaning that stability is lost as the network grows. For high-order agents (n ≥ 3),
we prove that no consensus algorithm is what we term scalably stable. That is, while a given
algorithm may allow a small network to converge, it causes instability if the network grows
beyond a certain finite size. This holds in families of network graphs whose algebraic connectivity,
that is, the smallest non-zero Laplacian eigenvalue, is decreasing towards zero in network size
(equivalently, non-expanding graphs). For second-order consensus (n = 2), we prove that the
same scale fragility applies to classes of directed graphs that have a complex Laplacian eigenvalue
approaching the origin (e.g. directed ring graphs). We derive algebraic conditions for the affected
graphs, and discuss how the consensus algorithm can be modified to retrieve scalable stability.

Keywords: Distributed control, large-scale systems, robustness, algebraic graph theory. AMS
Subject classification: 93A14, 93A15.

1. INTRODUCTION

Characterizing the dynamic behaviors of networked or
multi-agent systems has been an active research area for
many years. In particular, since the works by Fax and
Murray (2004), Olfati-Saber and Murray (2004), and Jad-
babaie et al. (2003), the prototypical sub-problem of dis-
tributed consensus has been the subject of significant
research efforts. While the particular modeling aspects
vary, the consensus objective is to coordinate agents in
a network to a common state of agreement. Engineering
applications range from distributed computing and sensing
to power grid synchronization and coordination of vehicles.

In this work, we consider a consensus algorithm of order n,
where each agent i ∈ {1, 2, . . . , N} in a network is modeled
as an nth order integrator, and the control input is a
weighted sum of relative feedback terms with respect to
the agent’s neighbors. That is,

d

dt
x

(0)
i (t) = x

(1)
i (t)

...

d

dt
x

(n−2)
i (t) = x

(n−1)
i (t)

d

dt
x

(n−1)
i (t) = ui(t),

(1)

with the state x
(0)
i (t) = xi(t) ∈ R, and

? This work was partially supported by the Wallenberg AI, Au-
tonomous Systems and Software Program (WASP) funded by the
Knut and Alice Wallenberg Foundation and the Swedish Research
Council through grant 2019-00691.

ui = −
n−1∑
k=0

ak
∑
j∈Ni

wij(x
(k)
i − x(k)

j ), (2)

where the ak > 0 are fixed gains and wij are edge weights
in the network graph. For n = 1 this reduces to the familiar
first-order, or information, consensus algorithm. For n = 2,
we obtain second-order consensus, which is often used to
model formation control in multi-vehicle networks. The
problem for n ≥ 3, to which several results in this work
pertain, has also received significant attention, see e.g. Ren
et al. (2007); Rezaee and Abdollahi (2015); Zuo et al.
(2018). This can be viewed as an important theoretical
generalization of the first- and second-order algorithms,
but also has practical relevance. For example, position,
velocity, as well as acceleration feedback play a role in
flocking behaviors, resulting in a model where n = 3 Ren
et al. (2007).

Existing literature has typically focused on deriving condi-
tions for convergence of a given set of agents to consensus,
and how such conditions depend on various properties of
the network. We take a different perspective and focus on
the scalability of given consensus algorithm (2) to ever
larger networks. In other words, we assume that inter-
actions between agents are fixed (i.e., pre-designed) and
localized, and grow the network through the addition of
more and more agents. Formally, we model the consensus
algorithm over a family of network graphs {GN}N→∞ with
a common upper bound on nodal degrees.

We show that consensus of order n ≥ 2 is subject to a
scale fragility in certain graph families. This implies that
stability (and thereby convergence to consensus) is lost if
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the network grows beyond some finite size. For n ≥ 3, our
result is particularly clear-cut: the consensus algorithm (2)
lacks what we term scalable stability in any family of
graphs whose algebraic connectivity decreases towards
zero in network size N . This is true in any non-expanding
graph family, meaning all bounded-degree graphs where
connections are, in a sense, localized.

For second-order consensus (n = 2), the scale fragility
applies to particular classes of directed graphs with a
complex Laplacian eigenvalue that approaches the origin
as N increases. This includes, for example, directed ring
graphs. The particular result for ring graphs has previously
been reported in Cantos et al. (2016); Herman (2016), but
our work provides a generalization. The result implies that
ring-shaped vehicular formations that, e.g, use adaptive
cruise control modeled as in Gunter et al. (2021), are at
risk of becoming unstable.

The key results summarized in this extended abstract are
presented in detail in Tegling et al. (2022) with preliminary
versions appearing in Tegling et al. (2019a,b) .

2. NOTATION AND PROBLEM SETUP

Consider a network modeled by the graph GN = {VN , EN}
with N = |VN | nodes. The set EN ⊂ VN × VN contains
the edges, each of which has an associated nonnegative
weight wij . The graph GN , which in general will be a
directed graph, is a member of a sequence, or family, of
graphs {GN}N→∞. We remark that GN need not be a
subgraph of GN+1. The graph Laplacian L of GN is defined
as follows:

[L]ij =


−wij if j 6= i and j ∈ Ni∑

k∈Ni
wik if j = i

0 otherwise,

(3)

where Ni defines the neighborhood of node i ∈ VN , that is,
the set of nodes j such that (i, j) ∈ EN . Denote by λl (or
λl(GN ) where explicitness is needed) with l = 1, . . . , N the
eigenvalues of L. Zero is a simple eigenvalue of L if and
only if the graph has a connected spanning tree, which
we assume henceforth. Remaining eigenvalues are in the
complex right half plane (RHP), and numbered so that
0 = λ1 < Re{λ2} ≤ . . . ≤ Re{λN}.
Defining the system state ξ = [x(0), x(1), . . . , x(n−1)]T ∈ RNn

and making use of L, we can write the system’s closed-loop
dynamics (1)–(2) as

d

dt
ξ =


0 IN 0 · · · 0

0 0 IN · · ·
...

0 0 0
. . .

...
0 0 0 · · · IN
−a0L −a1L −a2L · · · −an−1L


︸ ︷︷ ︸

A

ξ. (4)

3. RESULTS

We first state a number of important assumptions that
underlie our analysis:

Assumption 1. (Finite gains). The controller gains are fi-
nite, that is, ak ≤ amax <∞ for all k = 0, 1, . . . , n.
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Fig. 1. Critical network size N̄ for an nth order con-
sensus algorithm. The graph is an undirected path
graph where each node is connected to its q nearest
neighbors. Increasing the neighborhood size q here
increases N̄ faster than linearly (we also derive the
exact scaling).

Assumption 2. (Fixed gains). The gains ak for all k =
0, 1, . . . , n do not change if the underlying graph changes.
That is, the gains are fixed with respect to the graph
family {GN}N→∞. In particular, they are independent
of N .

We will impose the following assumptions on the network
graph:

Assumption 3. (Bounded neighborhoods). All nodes in the
graph family {GN}N→∞ have a neighborhood of size at
most q, where q is fixed and independent of N . That is,

|Ni| ≤ q ∀i ∈ VN . (5)

Assumption 4. (Finite weights). The edge weights in each
GN are finite, that is, wij ≤ wmax <∞ for all (i, j) ∈ EN ,
where wmax is fixed and independent of N .

Assumptions 3–4 imply that we consider networks with
bounded nodal degrees.

3.1 Scalable stability in high-order consensus

The network of agents is said to be achieving consensus if

x
(k)
i → x

(k)
j for all i, j ∈ VN , all k = 0, 1, . . . , n − 1, and

for any initial state. It is known that the algorithm (2)
achieves consensus if the eigenvalues of the system ma-
trix A defined in (4) are in the left half plane, apart from
exactly n zero eigenvalues that are associated with the
drift of the network average Ren et al. (2007). We focus
on a scenario where these conditions may hold for small
network sizes N , but where one or more eigenvalues leaves
the left half plane and causes instability as the network
grows beyond some network size N̄ . In these cases, we say
the control algorithm lacks scalable stability.

Definition 1. (Scalable stability). A consensus control de-
sign is scalably stable if the resulting closed-loop system
achieves consensus over any graph in the family {GN}N→∞
of finite size N .

We are now ready to summarize our main results. First,
we prove that high order (n ≥ 3) consensus is subject to a
scale fragility.

Theorem 3.1. If n ≥ 3, no control on the form (2) subject
to Assumptions 1–2, is scalably stable in graph families
where the sequence Re{λ2(GN )} → 0 as N →∞.
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Fig. 2. Illustration of the condition in Theorem 3.2. The
example trajectory shows λ2 of a directed ring graph.

The proof relies on the Routh-Hurwitz criteria for poly-
nomials with complex-valued coefficients. It is found
in Tegling et al. (2022).

Theorem 3.1 implies that high-order consensus does not
scale in graph families where the algebraic connectivity is
decreasing in network size. This applies to all bounded-
degree graph families except expander graphs (see Sec-
tion 3.2). Instability will occur at the smallest size N
for which the Routh-Hurwitz criteria are violated, and at
least one eigenvalue crosses to the RHP. We will denote
this critical network size N̄ . In Figure 1 we display N̄ for
n = 3, 4, 5 in an unweighted path graph.

Remark 1. In high-order leader-follower consensus, scal-
able stability is never attained in undirected bounded-
degree graph families. This is because the smallest
eigenvalue of the grounded graph Laplacian λ̄1(GN ) ≤

q
N−1wmax → 0. This also implies that consensus over any

expander graph family (where λ2 remains large, despite
bounded nodal degrees) is fragile towards grounding, i.e.,
towards one agent becoming a leader, since λ̄1(GN ) �
λ2(GN ).

Second-order consensus lacks scalable stability in certain
families of directed graphs with complex eigenvalues:

Theorem 3.2. If n ≥ 2, no control on the form (2), subject
to Assumptions 1–2, is scalably stable in graph families
where, for a fixed index l̄ < N ,

(1) Re{λl̄(GN )} → 0 as N →∞, and
(2) for each N and at least one l ∈ {2, 3, ..., l̄} it holds

arg{λl(GN )} > ψ, where ψ ∈ (0, π/2) is a constant
angle independent of N .

A particular graph family where Theorem 3.2 applies is
directed ring graphs (a ring graph that is not undirected)
with uniform edge weights. This was already observed
in Cantos et al. (2016); Herman (2016). We show that
it extends to toric lattices and their fuzzes. More gener-
ally, however, it is an open graph-theoretical challenge 1

to characterize graph families that have complex-valued
eigenvalues and can be affected by the scale fragility we
describe.

3.2 An algebraic condition for non-expanding graphs

In Theorem 3.1, we showed that high-order consensus lacks
stable scalability in any graph family that has an algebraic
connectivity that decreases towards zero as the network
1 One we hope to discuss with experts at MTNS 2022!

grows. This is true in any undirected graph family that is
not an expander family. Expander families are defined by
an isoperimetric constant that is lower bounded. We do not
include the formal definition, which is combinatoric, here,
but refer the reader to, e.g., Chung (1997). Intuitively, a
large isoperimetric constant implies that every part of the
graph is well interconnected with every other – the graph
has no “bottleneck”. Instead, we propose a novel algebraic
condition for undirected graphs that have a bottleneck and
are therefore not expander graphs.

For this purpose, partition a graph’s vertex set into three
disjoint sets X0, X1, X2 so that X0 ∪ X1 ∪ X2 = V
and |X0| = N0,|X1| = N1, |X2| = N2. Each node in X0 is
connected to at least one node in both X1 and X2, but
no edges connect X1 and X2 directly. See also Fig. 3. In
other words, X0 is the boundary set of both X1 and X2.
This partitioning is always possible, unless the graph is
complete (note that X0, X1, X2 need not be connected
subgraphs).

By re-numbering the nodes, the graph Laplacian becomes

L =

 L1 L10 0N1×N2

LT
10 L0 LT

03
0N2×N1

L30 L2

 . (6)

If N0 can be made small in relation to both N1 and N2, we
say that the graph has a bottleneck. The following lemma
shows that if the bottleneck remains as the network grows,
then {λ2(GN )} → 0.

X0
<latexit sha1_base64="ZgEbmjD+rrj1O+/bYbT8QVAtLJw=">AAAB/3icbVDLSsNAFL2prxpfVZduBkvBVUlKiy4LblxWtA9oQ5lMJ+3QySTMTIQSuvAD3OonuBO3fopf4G84TbOorQcGDufcy7lz/JgzpR3n2ypsbe/s7hX37YPDo+OT0ulZR0WJJLRNIh7Jno8V5UzQtmaa014sKQ59Trv+9Hbhd5+oVCwSj3oWUy/EY8ECRrA20kNv6AxLZafqZECbxM1JGXK0hqWfwSgiSUiFJhwr1XedWHsplpoRTuf2IFE0xmSKx7RvqMAhVV6anTpHFaOMUBBJ84RGmbq6keJQqVnom8kQ64la9xbif14/0cGNlzIRJ5oKsgwKEo50hBb/RiMmKdF8ZggmkplbEZlgiYk27diV1RgVZCm2acZd72GTdGpVt15t3NfLzVreUREu4BKuwIVraMIdtKANBMbwAq/wZj1b79aH9bkcLVj5zjn8gfX1C4/nlhQ=</latexit>

X1
<latexit sha1_base64="2tf4mCrdc4QjdBw1zQrAM4Y1RKc=">AAAB/3icbVDLSsNAFL2prxpfVZduBkvBVUlKiy4LblxWtA9oQ5lMJ+3QySTMTIQSuvAD3OonuBO3fopf4G84TbOorQcGDufcy7lz/JgzpR3n2ypsbe/s7hX37YPDo+OT0ulZR0WJJLRNIh7Jno8V5UzQtmaa014sKQ59Trv+9Hbhd5+oVCwSj3oWUy/EY8ECRrA20kNv6A5LZafqZECbxM1JGXK0hqWfwSgiSUiFJhwr1XedWHsplpoRTuf2IFE0xmSKx7RvqMAhVV6anTpHFaOMUBBJ84RGmbq6keJQqVnom8kQ64la9xbif14/0cGNlzIRJ5oKsgwKEo50hBb/RiMmKdF8ZggmkplbEZlgiYk27diV1RgVZCm2acZd72GTdGpVt15t3NfLzVreUREu4BKuwIVraMIdtKANBMbwAq/wZj1b79aH9bkcLVj5zjn8gfX1C5GAlhU=</latexit>

X2
<latexit sha1_base64="3noF3S0DhS/mBk40j9qZA5TjN8o=">AAAB/3icbVDLSsNAFL2prxpfVZduBkvBVUlKiy4LblxWtA9oQ5lMJ+3QySTMTIQSuvAD3OonuBO3fopf4G84TbOorQcGDufcy7lz/JgzpR3n2ypsbe/s7hX37YPDo+OT0ulZR0WJJLRNIh7Jno8V5UzQtmaa014sKQ59Trv+9Hbhd5+oVCwSj3oWUy/EY8ECRrA20kNvWBuWyk7VyYA2iZuTMuRoDUs/g1FEkpAKTThWqu86sfZSLDUjnM7tQaJojMkUj2nfUIFDqrw0O3WOKkYZoSCS5gmNMnV1I8WhUrPQN5Mh1hO17i3E/7x+ooMbL2UiTjQVZBkUJBzpCC3+jUZMUqL5zBBMJDO3IjLBEhNt2rErqzEqyFJs04y73sMm6dSqbr3auK+Xm7W8oyJcwCVcgQvX0IQ7aEEbCIzhBV7hzXq23q0P63M5WrDynXP4A+vrF5MZlhY=</latexit>

|X2| = N2
<latexit sha1_base64="vXvpYGw0rebX01qjnI9e93fE/bE=">AAACBXicbVDLSgMxFM34rOOr6tJNsBRclZlS0Y1QcONKKtiHtMOQSTNtaJIZkoxQpl37AW71E9yJW7/DL/A3TKezqK0HAodz7uXcnCBmVGnH+bbW1jc2t7YLO/bu3v7BYfHouKWiRGLSxBGLZCdAijAqSFNTzUgnlgTxgJF2MLqZ+e0nIhWNxIMex8TjaCBoSDHSRnqcdPzq5PrOr/rFklNxMsBV4uakBHI0/OJPrx/hhBOhMUNKdV0n1l6KpKaYkandSxSJER6hAekaKhAnykuzg6ewbJQ+DCNpntAwUxc3UsSVGvPATHKkh2rZm4n/ed1Eh1deSkWcaCLwPChMGNQRnP0e9qkkWLOxIQhLam6FeIgkwtp0ZJcXY1SYpdimGXe5h1XSqlbcWuXivlaqO3lHBXAKzsA5cMElqINb0ABNgAEHL+AVvFnP1rv1YX3OR9esfOcE/IH19QvOyphk</latexit>

|X1| = N1
<latexit sha1_base64="EkFngg6h3DRps8SKxAEP2FnZWmc=">AAACBXicbVDLSgMxFM3UVx1fVZdugqXgqsxIRTdCwY0rqWAf0g5DJs20oUlmSDJCmXbtB7jVT3Anbv0Ov8DfMJ3OorYeCBzOuZdzc4KYUaUd59sqrK1vbG4Vt+2d3b39g9LhUUtFicSkiSMWyU6AFGFUkKammpFOLAniASPtYHQz89tPRCoaiQc9jonH0UDQkGKkjfQ46fju5PrOd/1S2ak6GeAqcXNSBjkafumn149wwonQmCGluq4Tay9FUlPMyNTuJYrECI/QgHQNFYgT5aXZwVNYMUofhpE0T2iYqYsbKeJKjXlgJjnSQ7XszcT/vG6iwysvpSJONBF4HhQmDOoIzn4P+1QSrNnYEIQlNbdCPEQSYW06siuLMSrMUmzTjLvcwyppnVfdWvXivlauO3lHRXACTsEZcMElqINb0ABNgAEHL+AVvFnP1rv1YX3ORwtWvnMM/sD6+gXLk5hi</latexit>

|X0| = N0
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Fig. 3. Illustration for Lemma 3.3.

Lemma 3.3. Let {GN}N→∞ be an undirected graph family
subject to Assumptions 3–4. If every graph GN in the
family can be partitioned as outlined above in such a
way that N0/N1 → 0 and N0/N2 → 0 as N → ∞, then
{λ2(GN )} → 0 as N →∞.

The proof relies on the Rayleigh-Ritz theorem and the
assumption on bounded nodal degrees.

Remark 2. The specific scaling of λ2(GN ) in N is known
for several classes of graphs. For example, for planar
graphs, λ2(GN ) ≤ 8qwmax

N .

Example 1. To illustrate Theorem 3.1, we consider a third-
order consensus algorithm:

x
(3)
i = −

∑
j∈Ni

[0.5(xi − xj) + (ẋi − ẋj) + (ẍi − ẍj)] ,

over the 34-node graph depicted in Figure 4a with unit
edge weights. Here, λ2(G34) = 0.536 and the system
achieves consensus. Adding a 35th node along with 4
connecting edges gives λ2(G35) = 0.493 and the system
becomes unstable, see Fig. 4c. 2

2 This particular value for λ2(G35) depends on the placement of
the 35th node. Other placements can allow the critial N̄ > 35, but
instability occurs eventually.
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(a) Network graph
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Fig. 4. Simulation of 3rd order consensus over graph depicted in (a) subject to random initial accelerations. In (b) the
network’s 34 agents converge to an equilibrium. In (c) a 35th node has been added, indicated by red color in the
graph. This addition leads to instability. The plots (b) and (c) show position trajectories relative to Agent no. 1.

4. DISCUSSION

The scale fragilities we describe here can in principle be
attributed to two model features. First, the relative state
feedback upon which the consensus algorithm is based. It
is known that a restriction to relative feedback imposes
performance and design limitations; an issue that was
recently analyzed formally in Jensen and Bamieh (2022).
In our work, we discuss how scalability can be retrieved if
the controller has access to absolute feedback.

Second, the locality property, that is, bounded nodal
neighborhoods, is key for our results. A natural question
is therefore how nodal neighborhoods would need to scale
to alleviate the scale fragility. Interestingly, we can prove
that it can suffice to grow neighborhoods as q ∼ N2/3.
We note that this only holds for leaderless consensus;
leader-follower consensus still requires neighborhoods pro-
portional to N .

We remark that, in order to be able to discuss a given
controller’s scalability in a network of increasing size, the
assumption that it be fixed is necessary. That is, the
controller cannot be re-tuned as the network grows. By
re-tuning the consensus algorithm (2), either by changing
the gains ak, weights wij , or by relaxing the locality
assumption, scalable stability can be retrieved. Such a
re-tuning requires knowledge of global properties of the
system. Still, the design of controller re-tuning protocols
is an interesting direction for future research.

ACKNOWLEDGEMENTS

Collaboration and helpful discussions with Henrik Sand-
berg, Bassam Bamieh, Maria Seron, and Rick Middleton
are gratefully acknowledged.

REFERENCES

Cantos, C., Veerman, J., and Hammond, D. (2016). Signal
velocity in oscillator arrays. Eur. Phys. J. Spec., 225(6),
1115–1126.

Chung, F. (1997). Spectral Graph Theory. Providence, RI.
Fax, J.A. and Murray, R.M. (2004). Information flow and

cooperative control of vehicle formations. IEEE Trans.
Autom. Control, 49(9), 1465–1476.

Gunter, G., Gloudemans, D., Stern, R.E., McQuade, S.,
Bhadani, R., Bunting, M., Delle Monache, M.L., Ly-
secky, R., Seibold, B., Sprinkle, J., Piccoli, B., and Work,

D.B. (2021). Are commercially implemented adaptive
cruise control systems string stable? IEEE Trans. Intell.
Transp. Syst., 22(11), 6992–7003.

Herman, I. (2016). Scaling in vehicle platoons. Phd
thesis, Czech Technical University in Prague. URL
https://support.dce.felk.cvut.cz/mediawiki/
images/d/d1/Diz\_2017\_herman\_ivo.pdf.

Jadbabaie, A., Lin, J., and Morse, A.S. (2003). Coordi-
nation of groups of mobile autonomous agents using
nearest neighbor rules. IEEE Trans. Autom. Control,
48(6), 988–1001.

Jensen, E. and Bamieh, B. (2022). On structured-closed-
loop versus structured-controller design: the case of
relative measurement feedback.

Olfati-Saber, R. and Murray, R.M. (2004). Consensus
problems in networks of agents with switching topology
and time-delays. IEEE Trans. Autom. Control, 49(9),
1520–1533.

Ren, W., Moore, K.L., and Chen, Y. (2007). High-order
and model reference consensus algorithms in cooperative
control of multi-vehicle systems. J. Dyn. Syst. Meas.
Control, 129(5), 678–688.

Rezaee, H. and Abdollahi, F. (2015). Average consensus
over high-order multiagent systems. IEEE Trans. Au-
tom. Control, 60(11), 3047–3052.

Tegling, E., Bamieh, B., and Sandberg, H. (2022). Scale
fragilities in localized consensus dynamics. arXiv
preprint arXiv:2203.11708.

Tegling, E., Bamieh, B., and Sandberg, H. (2019a). Lo-
calized high-order consensus destabilizes large-scale net-
works. In American Control Conf. (ACC), 760–765.

Tegling, E., Middleton, R.H., and Seron, M.M. (2019b).
Scalability and fragility in bounded-degree consensus
networks. In 8th IFAC Workshop on Distributed Es-
timation and Control in Networked Systems (NecSys).

Zuo, Z., Tian, B., Defoort, M., and Ding, Z. (2018). Fixed-
time consensus tracking for multi-agent systems with
high-order integrator dynamics. IEEE Trans. Autom.
Control, 63(2), 563–570.

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



Optimal control of parabolic equations – a
spectral calculus based approach ?

Martin Lazar ∗ Luka Grubǐsić ∗∗ Ivica Nakić ∗∗
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1. INTRODUCTION

We consider a sequence of optimal control problems asso-
ciated to the heat equation with rapidly oscillating coef-
ficients. The cost functional to be minimised is quadratic
and comprises the norm of a control and the distance of
the system trajectory from the desired evolution profile.
The constraint is imposed on the final state at time T > 0
that should be steered within a prescribed distance to a
given target.

The control enters the system through the initial con-
dition, and we deal with an inverse problem (of initial
source identification) from the optimal control viewpoint.
Initial control problems for parabolic equations are less
investigated than distributed or boundary ones. A reason
for that is due to the strong dissipativity of parabolic equa-
tions, which make the inverse problem numerically very
challenging. The problem has been tackled by different
approaches Fabre et al. (1995); Meidner and Vexler (2007);
Li et al. (2014); Casas et al. (2015). In order to successfully
address these difficulties we apply a recently developed
approach, based on the spectral calculus for self-adjoint
operators and a geometrical representation of the problem
(Grubǐsić et al. (2021)). In the paper the authors first
obtained a closed-form expression for the control solution
as a function of the self-adjoint operator governing the
dynamics of the system. The numerical computations were
achieved by exploring efficient rational Krylov approxima-
? The research was done while the first author was visiting Chair of
Dynamics, Control and Numerics (Alexander von Humboldt Pro-
fessorship) at Friedrich-Alexander-Universität Erlangen-Nürnberg,
with the support of the DAAD (Research Stays for University
Academics and Scientists, 2021 programme) and Alexander von
Humboldt-Professorship.

tion techniques for resolvents from Berljafa and Güttel
(2017), by which one constructs a rational approximant
of the aforementioned function of the operator.

2. PROBLEM FORMULATION AND THE SOLUTION
FORMULA

Let A be a self–adjoint operator bounded below on an
infinite dimensional Hilbert space H. For u ∈ H we
consider the Cauchy problem

y′(t) +Ay(t) = 0, t > 0,

y(0) = u.

By (St)t≥0 we denote the semigroup generated by −A.

The optimal control problem Given ε, T > 0 and y∗ ∈
H we introduce the constrained minimisation problem

min
u∈H

{
J(u) :

∥∥∥STu− y∗∥∥∥ ≤ ε} (1)

where

J(u) =
α

2
‖u‖2 +

1

2

∫ T

0

β(t)
∥∥∥Stu− w(t)

∥∥∥2dt, (2)

α > 0 and β ∈ L∞((0, T ); [0,∞)) are weights of the cost,
and w ∈ L2((0, T );H) is the target trajectory. �

By using classical convex optimization techniques (e.g.
(Peypouquet, 2015, Section 3.6)) one can show that the
problem is well posed and admits the unique solution that
we denote by û.

If the solution of the unconstrained problem

ũ = min
u∈H
{J(u)}

drives the system to the ε ball around the target, then the
solutions of the two problems coincide and the original
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problem can be relaxed by considering the unconstrained
one, which is easier to handle. This case we exclude from
further analysis.

If the problem can not be relaxed to the corresponding
unconstrained one, then the optimal final state lies on the
boundary of the target ball (Lazar et al., 2017, Proposition
2.1). In such a way one can associate a Lagrange functional
to the problem and obtain the formula for the solution.
The formula was first obtained in Lazar et al. (2017) and
subsequently further developed and elaborated in details
in Grubǐsić et al. (2021).

Theorem 1. The optimal initial state is given by

û = (µεS2T + Ψ)−1(µεST y
∗ + ψ), (3)

where

Ψ = α Id +

∫ T

0

β(t)S2tdt, ψ =

∫ T

0

β(t)Stw(t)dt,

and µε ≥ 0 is the unique solution of

Φ(µ) = ε (4)

if ε < ‖ỹ − y∗‖ = ‖Ψ−1STψ − y∗‖, and zero otherwise.
Here Φ: [0,∞)→ [0,∞) is the function defined by

Φ(µ) = ‖y∗ − (µS2T + Ψ)−1(µS2T y
∗ + STψ)‖. (5)

�

Formula (3) is almost explicit, up to the scalar µε which
corresponds to the optimal Lagrange multiplier.

3. NUMERICAL IMPLEMENTATION OF THE
SOLUTION OF THE OPTIMAL CONTROL

PROBLEM

In the numerical implementation we first devise a method
for solving the equation (4). Hereby we explore efficient
Krylov subspace techniques that allow us to approximate
a (generalised) exponential functions of an operator ap-
pearing in the equation (5) by a series of linear problems.

The approximation is obtained by using the award winning
rkfit algorithm from Berljafa and Güttel (2017). This is
a rational Krylov function fitting algorithm which has also
been implemented in Matlab within the Rational Krylov
Toolbox.

The algorithm approximates a function of an operator by
a rational function r, hereby using the equality

(v, Stv)− (v, r(A)v) =

∫ κ

−∞

(
etλ − r(λ)

)
d(E(λ)v, v), (6)

where E(·) denotes the spectral measure of the self-adjoint
operator A (Kato (1995)).

In the next step the rational function r is rewritten in a
partial fractions form

r(z) = r0 +
r1

z − ζ1
+ · · · rd

z − ζd
.

This provides application of a function of the operator A
of the form

St ≈ r0I +
d∑
i=1

ri(A− ζi)−1,

where ζi, i = 1, . . . , d, belong to the resolvent set of A.

Once the above approximations are provided, one can
use any root finding algorithm based only on function
evaluation to robustly approximate the root of (4).

The optimal control is then obtained by solving the linear
equation (3). Note that the expressions entering it are of
the same form as those appearing in the equation for the
optimal Lagrange multiplier (4).

The efficiency of the procedure was confirmed by numer-
ical examples, including several constrained optimization
problems in 1D and 2D, with variable and non-smooth
coefficients and acting on irregular domains. ALso the
sensitivity analysis of the solution was provided.
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1. OUTLINE

We consider power grid models consisting of loads and
generators which are interconnected by transmission lines.
Here we follow the port-Hamiltonian (pH) modeling ap-
proach to power grids which was developed in Fiaz et al.
(2012); Fiaz et al. (2013); van der Schaft and Stegink
(2016).

As a new aspect we consider distributed models for the
transmission lines based on the telegrapher’s equations.
Although this model has been studied in Jacob and Zwart
(2012a), to the best of our knowledge no interconnection
of several transmission lines has been studied yet. Hence
as a first contribution, we formulate the interconnected
system of transmission lines and loads as a boundary
control system and study the exponential stability of the
semigroups. Second, we study the corresponding finite-
dimensional port-Hamiltonian systems which are obtained
after a spatial discretization of the transmission lines and
add further port-Hamiltonian power generator models

2. PORT-HAMILTONIAN OPERATOR CLASS

The distributed transmission line on the spatial interval
[0, ℓ] can be modeled by the telegraphers equations

C(ξ) ∂
∂tV (t, ξ) = − ∂

∂ξ I(t, ξ)−G(ξ)V (t, ξ),

L(ξ) ∂
∂tI(t, ξ) = − ∂

∂ξV (t, ξ)−R(ξ)I(t, ξ), (1)

V (0, ξ) = V 0(ξ), I(0, ξ) = I0(ξ)

where I : [0, ℓ] → Rd is the current and V : [0, ℓ] → Rd is
the voltage across the transmission line. We allow values
in Rd for some d ≥ 1 to include three phase models of
transmission lines as well. Furthermore, C(ξ) ≥ c0 and
L(ξ) ≥ l0 for all ξ ∈ [0, ℓ] and some c0, l0 > 0, R(ξ) ≥ 0
and G(ξ) ≥ 0.

This motivates the following modifications and generaliza-
tions of the pH model:

(M1) We consider an arbitrary Hilbert space X with scalar
product ⟨·, ·⟩ and define on X×X the block operator

A =

[
−G D
D −R

]
where D : X ⊃ domD → X is closed, densely defined
and skew-symmetric, i.e. D ⊆ −D∗. Furthermore, we
assume that G,R are bounded and fulfill ⟨Rx, x⟩ ≥ 0
and ⟨Gx, x⟩ ≥ 0 for all x ∈ X;

(M2) H : X×X → X×X is bounded and fulfills ⟨Hx, x⟩ ≥
m∥x∥2;

(M3) Instead of specifying the domain of A in terms of
the boundary flow and boundary effort f∂ and e∂ ,
we assume that the symmetric operator iD has a so
called boundary triplet {X ,Γ0,Γ1}, see e.g. Behrndt
et al. (2020).

Assuming (M1)-(M3), we consider the following boundary
control system

ẋ(t) =

[
−G D∗

D∗ −R

]
Hx, Γ0Hx(t) = u(t), Γ1Hx(t) = y(t)

(2)

where the mappings Γ0,Γ1 : dom(A∗H) → X are given by
a boundary triplet. Such systems were studied in a more
general context in Malinen and Staffans (2006, 2007) and
we demonstrate how their results can be applied to derive
a power-balance equation for classical solutions x of (2)

⟨Hx(t), x(t)⟩ − ⟨Hx(0), x(0)⟩

≤ 2

∫ t

0

Re⟨u(τ), y(τ)⟩dτ −
〈[

R 0
0 G

]
Hx(t),Hx(t)

〉
.
(3)

The power balance equation (3) implies that the con-
sidered boundary control systems are impedance passive
system in the sense of Staffans (2002). For general systems
which can be decomposed into a skew-adjoint and a dissi-
pating part, and with bounded control operators a power
balance equation for mild solutions was given in Philipp
et al. (2021), see also Egger et al. (2018) for power balance
equations for weak solutions.

Furthermore, we show that the operator

A :=

[
−G D∗

D∗ −R

]
|ker(Γ0H) =

[
−G −D∗

D −R

]
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generates an exponentially stable semigroup if R is uni-
formly positive, i.e. there exists r0 > 0 such that

⟨Rx, x⟩ ≥ r0∥x∥2, for all x ∈ X

together with either the surjectivity of D∗, or compact
resolvent assumptions which are typically fulfilled in many
transport network examples or beam networks. Note that
if G is uniformly positive as well, then the exponential
stability trivially follows from the well-known Lyapunov
inequality.

The exponential stability and stabilizability for pH sys-
tems is well studied, see e.g. Villegas (2007); Villegas
et al. (2009); Augner and Jacob (2014); Ramirez et al.
(2014); Augner (2020); Trostorff and Waurick (2022) and
in particular (Jacob and Zwart, 2012b, Chapter 9). But
in these works the characterizations are mostly in terms
of conditions on the boundary values of the Hamiltonian.
Furthermore, there are some recent results Skrepek (2021)
on stability of multi-dimensional pH systems. In partic-
ular, there are results on the strong and semi-uniform
stability, see also Kurula and Zwart (2015) for a treatment
of multi-dimensional pH systems.

3. NETWORK OF TRANSMISSION LINES

We consider a network of transmission lines described by
a graph G = (V,E). Then for each line e ∈ E with
spatial domain [0, ℓe] for some ℓe > 0, we consider in
Xe × Xe = L2([0, ℓe],Rd) × L2([0, ℓe],Rd) the following
system

Ae =

[
−Ge −D∗

e
−D∗

e −Re

]
, He(ξ) =

[
Ce(ξ)

−1 0
0 Le(ξ)

−1

]
,

He(ξ)xe(t, ξ) =

(
Ve(t, ξ)
Ie(t, ξ)

)
and show that a boundary triplet is given

Γe
0(xe) :=

[
Ve(0)
Ve(ℓe)

]
,Γe

1(x) :=

[
iIe(0)

−iIe(ℓe)

]
.

If we consider now the operators based on establishing
continuity of Γe

0 at every vertex v ∈ V , then this leads to
the node-type boundary triplet

ΓV
0 ((xe)e∈E) = (V (v))v∈V ,

ΓV
1 ((xe)e∈E) =

{
i

∑
e∼v,(e,k)∼v

sgn(e, v)Ie(kℓe)
}
v∈V

,

where the sum is taken over all edges e which are adjacent
to v and k = 0, 1. Hence the voltage controlled boundary
control system is given by

ẋ = AH, u(t) = ΓV
0 x, y(t) = ΓV

1 x

where

x = (xe)e∈E , A := ⊕e∈EAe,

H := ⊕e∈E

[
Ce(ξ)

−1 0
0 Le(ξ)

−1

]
this can be viewed as having a voltage input at every node.

Our results will then be applied to show stability and the
power balance equation for this interconnected system.
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The first case deals with a network in which contact is only direct from one node to another,
while the second treats a network with all contacts equal to one. The result shown for this
scenario remains true by continuity for all those networks sufficiently close in parameter space.
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1. INTRODUCTION

In recent years, there has been an increased focus on math-
ematical models that can be used to simulate, analyse and
prevent the evolution of epidemic infections and identify
parameters that can define patterns of behaviour. The
classical deterministic SIR epidemic model, as first pre-
sented in the pioneering work Kermack and McKendrick
(1927), is a compartmental model consisting of a nonlinear
system of three coupled differential equations describing
the evolution of the fractions of susceptible, infected, and
recovered individuals in a fully mixed closed population.
The main feature of this model is the existence of a phase
transition described in terms of a scalar parameter, known
as the reproduction number, whose value can determine
two fundamentally different behaviours of the epidemics.
Specifically, if the reproduction number does not exceed
1, then the fraction of the infected individuals remains
monotonically decreasing in time, and thus preventing
an epidemic outbreak. In contrast, if the reproduction
number exceeds the unitary threshold, then the fraction
of infected individuals is initially increasing until reaching
a peak, after which it starts to decrease monotonically
and vanishes asymptotically in the large time limit. Most
compartmental models of disease propagation, such as in
Hethcote (2000), assume that populations are fully mixed,
meaning that an infected individual is equally likely to
spread the infection to any other member of the pop-
ulation. However, this assumption is unrealistic, as one
infected individual is not equally likely to infect all others
because in the real world each individual has contact with
only a small fraction of the total population. In order
to better describe a disease spread, several studies have
considered topological properties of various networks and
studied their effects on the epidemic processes taking place
on these Newman (2002). Through the study of network
SIR models, the topology of the graph has proved to be
a determinant feature for the dynamics of the system, as
in Mei et al. (2017) where a new threshold condition for

epidemic behaviour is proposed in terms of network char-
acteristics, initial conditions and infection parameters. It
has been shown how a weighted average of the population
of infected people is able to capture all the information on
epidemic evolution, where the weights depend on network
properties.
However, in individual nodes the dynamics may present
different phenomena and our contribution concerns pre-
cisely the investigation of such scenarios. We will focus on
two specific networks, in the first case there is a direct
contact only from one node to another, while in the sec-
ond case we will consider a particular network where the
contact matrix has all entries equal to one.

2. NETWORK SIR MODEL

In this section, we introduce the network SIR model.
Let us consider a weighted graph G = (V, E , A) with
finite set of nodes V = {1, 2, . . . , n}, set of directed links
E ⊆ V × V, and a matrix A in Rn×n

+ , whose entries
embody the strength of both the infection and the contact
frequency of members of subpopulation i with members
of subpopulation j. For given recovery rate γ > 0, the
network SIR epidemic model on a graph G = (V, E , A) is
the dynamical system

ẋi = −xi
n∑

j=1

aijyj

ẏi = xi

n∑
j=1

aijyj − γyi

żi = γyi

(1)

for i = 1, . . . , n, where xi, yi, and zi represent respec-
tively the fractions of susceptible, infected, and recovered
individuals in population i. Notice that (1) can be more
compactly rewritten in its vectorial form{

ẋ = −diag(x)Ay

ẏ = diag(x)Ay − γy (2)
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This model has been studied in Mei et al. (2017) and
Nowzari et al. (2016). In particular, they show that if
y(0) > 0n, and x(0) ≥ 0n, then t 7→ x(t) and t 7→ y(t)
are strictly positive for all t ≥ 0. The strictly positivity
of the solutions will be useful in the following theorem.
It has also been proven that all solutions converge to an
equilibrium point of the form (x∗, 0, z∗) ∈ R3n

+ such that
x∗ + z∗ = 1 and that the locally asymptotically stable
equilibrium points are those such that

λmax(diag (x∗)A) < γ

where λmax is the dominant eigenvalue of the nonnegative
matrix diag (x∗)A, which coincides with its spectral ra-
dius thanks to the Perron-Frobenius Theorem. Under the
assumption of strong connectivity of the graph G, (Mei
et al., 2017, Theorem 7) shows that the quantity

R(t) = λmax(diag (x(t))A)/γ

is decreasing along solutions and it plays a role similar to
the one played by the reproduction number in the scalar
SIR model. Specifically, if R(0) ≤ 1 then the weighted
average of the infected v(0)′y(t) will be monotonically
decreasing to 0 as t grows large, where v(t) stands for
the corresponding left-eigenvector of λmax of the matrix
diag (x(t))A. On the other hand, if R(0) > 1, then
the weighted average v(0)′y(t) will be initially increasing
(epidemic outbreak) and there exists some τ > 0 such
that R(τ) ≤ 1 and the weighted average v(τ)′y(t) will be
decreasing to 0 for t in the interval [τ,+∞). It is therefore
possible to find a parallelism with the scalar case.

However, several simulations show how the dynamical
behaviour at individual nodes can exhibit atypical phe-
nomena compared to the unimodal or monotonically de-
creasing behaviour of the scalar case. We will investigate
these phenomena, trying to determine which conditions
are sufficient for them to occur and which are necessary to
have a behaviour similar to the classical SIR case at each
node. For this analysis from now on, we will focus on the
case of a network consisting of two nodes.

3. TWO-NODES NETWORK

In this section, we will deal with the case of a network
composed of two nodes in two different scenarios: in the
first case, the contact only occurs directly from the second
node to the other and not vice versa, while in the second
one, we will consider an homogeneous network in which
the contact matrix has all entries equal to 1.

3.1 One node cannot be infected by the other one

Consider the SIR model (1) in the case of a network
composed of only two nodes, with the following infec-
tion/weight matrix

A =

[
a11 a12
0 a22

]
(3)

In this scenario, the second node is isolated from the
first in the sense that the individuals of the second node
cannot be infected due to contacts with individuals of
the first node. On the other hand, in the first node, the
infection process occurs both due to infection within the
node, and to infection received through contact with the
second node. As the second node is unaffected by contact

with the first, its dynamics is equivalent to scalar SIR
dynamics. Therefore, if a22x2(0) > γ, then t 7→ y2(t) is
initially monotonically increasing, it shows an epidemic
outbreak and then it becomes exponentially decreasing to
0. We assume for simplicity of notation z(0) = 0, but the
results can be extended to the general case without loss of
generality.

Let t2 denote the time at which the peak of the second
node occurs. We can derive t2 from Harko et al. (2014),
by using the fact that z2(0) = 0 and x2(t2) = γ/a22.
Specifically,

t2 =

∫ γ
a22x2(0)

1

ds

s(−a22 − γlog(s) + a22x2(0)s)
(4)

while the infected at the second node peak will be

y2(t2) =
γ

a22
ln

(
γ

a22x2(0)

)
− γ

a22x2(0)
+ 1. (5)

Let us analyse the dynamics of the first node in this
scenario.

Theorem 1. Consider the SIR model (1) in the case of
a network composed of only two nodes with matrix (3).
Suppose (xi(0), yi(0), zi(0)) for i = 1, 2 as initial condition
such that the following relations hold:

a11x1(0)y1(0) + a12x1(0)y2(0)− γy1(0) < 0 (6)

(a22x2(0)− γ)y2(0) > 0 (7)

(x1(0)− γy1(0)t2)a12y2(t2) > γy1(0) (8)

where t2 is the time instant at which the infected curve of
the second node has the infection peak. Then,

a) ẏ1(0) < 0 and ẏ2(0) > 0

b) ∃t∗ ≤ t2 such that ẏ1(t∗) > 0.

Proof. The first statement is obvious from the relations
in (6)-(7). Let us now assume by contradiction that the
statement b) is false. This would mean that for t ∈ [0, t2],

ẏ1(t) ≤ 0 ⇒ y1(t) ≤ y1(0) (9)

From fundamental theorem of integral calculus, we can
observe that

x1(t2) = x1(0) +

∫ t2

0

ẋ1(s)ds (10)

Since for all t ∈ [0, t2],

ẏ1(t) = x1(t)(a11y1(t) + a12y2(t))− γy1(t) (11)

= −ẋ1(t)− γy1(t) ≤ 0, (12)

then ẋ1(t) ≥ −γy1(t) ≥ −γy1(0). Therefore

x1(t2) ≥ x1(0)−
∫ t2

0

γy1(s)ds ≥ x1(0)− γy1(0)t2. (13)

We can state that

ẏ1(t2) = x1(t2)(a11y1(t2) + a12y2(t2))− γy1(t2) (14)

> x1(t2)a12y2(t2))− γy1(t2) (15)

≥ (x1(0)− γy1(0)t2)a12y2(t2)− γy1(t2) (16)

≥ γy1(0)− γy1(t2) ≥ 0 (17)

where the first inequality follows from the strict positivity
of y(t), while the last one is true for (9). This is an absurd
and therefore there must be a time instant t∗ ≤ t2 such
that the first derivative of y1 becomes positive.

�
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Fig. 1. Values of initial condition of the first node x1(0) as
a12 varies, with the other parameters fixed.

Remark 1. Note that the theorem hypothesis of initial
decreasing trend of y1 and the validity of the relation
(8) are not incompatible. In fact, if we decide to set the
parameters γ = 0.9, a22 = 1, a11 = 0.1 and the initial
condition of the second node x2(0) = 0.99, we find that
when a12 varies, the values of x1(0) that are admissible by
the theorem are those shown in the Figure (1).

Remark 2. The theorem shows how an atypical behaviour
can occur in this particular scenario. The curve of infected
in the first node, instead of decreasing as it would if it were
isolated, causes an outbreak of the epidemic with a second
peak of infection (the first one is in initial condition) and
then returns to decrease.

Let us now study a sufficient condition for this phe-
nomenon not to occur.

Theorem 2. Consider the SIR model (1) in the case of
a network composed of only two nodes with matrix (3).
Suppose (xi(0), yi(0), zi(0)) for i = 1, 2 as initial condition
such that x2(0) < (a12+γ)/(a12+a22). Then, the following
statements hold:

a) Define the set

Ω = {(x1, y1, x2, y2) ∈ [0, 1]4 : ẏ1 < 0} (18)

then Ω is an invariant set for the dynamics,
b) For any initial condition such that (x1(0), y1(0), y2(0)) /∈

Ω, there exists an instant t∗ > 0:

(x1(t), y1(t), x2(t), y2(t)) /∈ Ω ∀t < t∗ (19)

(x1(t), y1(t), x2(t), y2(t)) ∈ Ω ∀t > t∗ (20)

Proof. Regarding statement 3), consider initial condi-
tions such that (x1(0), y1(0), x2(0), y2(0)) ∈ Ω and let
(xi(t), yi(t)) be the corresponding solutions in node i.
We want to prove that (x1(t), y1(t), x2(t), y2(t)) ∈ Ω ∀t,
i.e. if the first node has initial condition that make its
curve of infected decreasing, then this curve will remain
decreasing ∀t ≥ 0. Suppose that exist an instant t∗ > 0
such that

(x1(t∗), y1(t∗), x2(t∗), y2(t∗)) ∈ δΩ, (21)

where δΩ = {(x1, y1, x2, y2) ∈ [0, 1]4 : ẏ1 = 0} and
(x1(t), y1(t), x2(t), y2(t)) ∈ Ω ∀t < t∗.
Let us consider the first derivative of ẏ1 with respect to
time t.

ÿ1 = ẋ1(a11y1 + a12y2) + x1(a11ẏ1 + a12ẏ2)− γẏ1 (22)

Notice that, necessarly, y1(t∗) > 0 and ẏ1(t∗) = 0. We can
observe that at t∗

ÿ1(t∗) = ẋ1(a11y1 + a12y2) + a12x1ẏ2 (23)

= −x1(a11y1 + a12y2)2 + a12x1(a22x2 − γ)y2 (24)

If a22x2(t∗) < γ, then this quantity is negative.
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Fig. 2. Simulations of the network SIR model. The scenario
on the left is under the assumptions of Theorem 1 and
y1 has a second peak of infection, while the one on the
right meets the Theorem 2’ assumptions and no multi-
modal behaviour occurs.

Otherwise, y2 is still increasing and we have

ÿ1(t∗) = −x1(a11y1 + a12y2)2 + a12x1(a22x2 − γ)y2

< x1y2(−a212y2 + a12a22x2 − a12γ)

< a12x1y2(−a12y2(0) + a22x2(0)− γ) < 0

where the first inequality holds because a12y2(t) ≤
a11y1(t) + a12y2(t) for all t, while the second one follows
from the monotonically decreasing trend of x2 and the still
increasing behaviour of y2. The final inequality is a direct
consequence of the relation on the initial condition.
Hence, ÿ1(t∗) < 0 and, by continuity, we can state that
ÿ1 < 0 in a neighborhood (t∗− ε, t∗]. Since ẏ1 is decreasing
and, by construction, ẏ1 < 0 for t < t∗, it is not possible
that ẏ1(t∗) = 0 and this proves the statement a).

For statement b), having shown the previous point, we
only have to prove that exists an instant t∗ such that
(x1(t∗), y1(t∗), x2(t∗), y2(t∗)) ∈ Ω. If this was not the case,
then it would be ẏ1(t) > 0∀t and y1(t) would not tend to
0. Therefore z1(t) would blow up which is impossible for
the first statement.

�

In Figure 2, we compare the different behaviours of the
infected curves in the two cases considered in the previous
theorems.

3.2 Homogeneous network with A = β11′

Let us now analyse a network in which the contact-
infection matrix A = β11′, where β is the explicit in-
fection rate and with no distinction between individuals
belonging to the same or different populations. We will
focus on a particular scenario in which one node has an
initial small fraction of infected, while the other one is
initially totally susceptible. Also in this case, we find some
initial conditions that ensure the occurrence of an atypical
behaviour. The result shown is valid by continuity for all
those sufficiently close in parameter space.

Theorem 3. Consider the network SIR model (1), com-
plete contact graph with A = 11′, and unitary infection
and recovery rates β = γ = 1. Let the initial condition

x1(0) = 1− ε , y1(0) = ε , x2(0) = 1 , y2(0) = 0 ,

for some 0 < ε < ε, where

ε = min{ε ∈ [0, 1] : ε =
1− ε
2− ε

(
1− ln(2− ε)

)
} .

Then, the fraction of infected in the first population y1
changes monotonicity exactly twice along the solution.
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Proof. The dynamics is given by

ẋi = −2xiy , ẏi = 2xiy − yi , i = 1, 2 ,

where

x = (x1 + x2)/2 , y = (y1 + y2)/2 ,

are the mean aggregate variables. Notice that

ẋ = −2x y , ẏ = (2x− 1)y ,

so that by scalar theory the quantity x+y− 1
2 lnx remains

constant along solutions, i.e. ∀t ≥ 0,

x(t) + y(t)− 1

2
lnx(t) = x(0) + y(0)− 1

2
lnx(0) . (25)

On the other hand, whenever x2 > 0, we have

˙(
x1
x2

)
=
ẋ1x2 − x1ẋ2

x22
= 0

so the ratio x1/x2 remains constant along solutions, i.e.,

xi(t)x(0) = xi(0)x(t) , ∀t ≥ 0 , i = 1, 2 . (26)

Observe that

ẏ1(0) = 2x1(0)y(0)− y1(0) = −ε2 < 0 ,

whereas

ẏ(0) = (2x(0)− 1)y(0) = (1− ε)ε/2 > 0 .

Let t∗ > 0 be the aggregate peak time, i.e., the time such
that

x(t∗) = 1/2, ẏ(t∗) = 0 .

It follows from (25) that

y(t∗) = x(0) + y(0)− 1

2
lnx(0)− x(t∗) +

1

2
lnx(t∗) (27)

=
1

2

(
1− ln(2− ε)

)
, (28)

while (26) implies that

x1(t∗) =
x1(0)x(t∗)

x(0)
=

1− ε
2− ε

. (29)

Now, assume by contradiction that

ẏ1(t) ≤ 0 , ∀t ≥ 0 . (30)

In particular, this would in particular imply that

0 ≥ ẏ1(t∗) = 2x1(t∗)y(t∗)− y1(t∗)

=
1− ε
2− ε

(
1− ln(2− ε)

)
− y1(t∗)

≥ 1− ε
2− ε

(
1− ln(2− ε)

)
− y1(0)

So we would obtain that

y1(0) = ε ≥ 1− ε
2− ε

(
1− ln(2− ε)

)
Therefore necessarily ε ≥ ε, thus violating the assumption.
It then follows that there exists at least a time t such
that ẏ1(t) > 0. The claim then follows, since ẏ1(0) < 0
and limt→+∞ y1(t) = 0. We have shown that the infected
curve in the first node y1 changes monotonicity at least
twice along the solution.

�

Based on the previous theorem and standard continuity
arguments we can prove the following result.

Proposition 1. There exist values ε > 0, β < 1 < β, and
γ < 1 < γ, and an open subset of nonnegative matrices

M ⊆ R2×2 containing 11′ such that the network SIR
model with n = 2 subpopulations, contact graph with
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Fig. 3. Simulation of the SIR model on an homogeneous
network where the second node is initially totally
susceptible.

weight matrix A ∈ M, infection rate β ∈ (β, β), recovery
rate γ ∈ (γ, γ) with any initial condition such that

0 < yi(0) = 1− xi(0) < ε , i = 1, 2 ,

has solution such that the faction of infected in the first
population y1(t) is a multi-modal function of t.

In Figure 3, we can observe the occurrence of this atypical
behaviour also in this scenario: the curve of the infected
in the first node is initially decreasing, then it becomes
increasing to a peak of infection, and then decreasing to
0. We have considered a population characterized by a
small initial fraction of infected people, such as to cause
an exponential decrease to 0, using the scalar SIR model
theory. However, if this first population meets a totally
healthy one, it begins to infect it and then suffers a return
wave of infection with a second peak (the first one was in
its initial condition).

4. CONCLUSION

In this work, we analyse the behaviour of the network SIR
model at each node in some particular cases and define
sufficient conditions for the occurrence of an atypical
phenomenon, compared to the classical SIR theory results.
This phenomenon consists of the appearance of multi-
modal dynamical behaviours at a single node and it has
been shown in different scenarios of a two-nodes network.
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Towards Funnel MPC for nonlinear systems
with relative degree two ⋆
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Abstract: Funnel MPC, a novel Model Predictive Control (MPC) scheme, allows guaranteed
output tracking of smooth reference signals with prescribed error bounds for nonlinear multi-
input multi-output systems. To this end, the stage cost resembles the high-gain idea of funnel
control. Without imposing additional output constraints or terminal conditions, the Funnel
MPC scheme is initially and recursively feasible for systems with relative degree one and stable
internal dynamics. Using an additional funnel for the derivative as a penalty term in the stage
cost, these results can be also extended to single-input single-output systems with relative degree
two.

Keywords: model predictive control, funnel control, output tracking, nonlinear systems

1. INTRODUCTION

Model Predictive Control (MPC) is a widely-used control
technique for linear and nonlinear systems and has seen
various applications, see e.g. Qin and Badgwell (2003). Key
reasons for its success are its applicability to multi-input
multi-output nonlinear systems and its ability to directly
take control and state constraints into account. To this
end, a finite-horizon Optimal Control Problem (OCP) is
solved before the prediction horizon is shifted forward in
time and the procedure is repeated ad infinitum, see e.g.
Grüne and Pannek (2017) and Coron et al. (2020).
Recursive feasibility is essential for successfully applying
MPC. This means, solvability of the OCP at a particular
time instant has to automatically imply solvability of the
OCP at the successor time instant. In order to achieve
this, often, suitably designed terminal conditions (cost and
constraints) are incorporated in the OCP to be solved at
each time instant, see Rawlings et al. (2017). However,
such (artificially introduced) terminal conditions increase
the computational burden of solving the OCP and compli-
cate the task of finding an initially-feasible solution. As a
consequence, the domain of the MPC feedback controller
might become significantly smaller, see e.g. Chen et al.
(2003); González and Odloak (2009). This technique be-
comes considerably more involved in the presence of time-
varying state constraints, see e.g. Manrique et al. (2014).
To overcome these restrictions, Funnel MPC (FMPC) was
proposed in Berger et al. (2020). This allows output track-
ing such that the tracking error evolves in a pre-specified,
potentially time-varying performance funnel. A “funnel-
like” stage cost, which penalizes the tracking error and
becomes infinite when approaching the funnel boundary,
is used. By incorporating output constraints in the OCP
and using properties of the system class in consideration,
⋆ D. Dennstädt gratefully thanks the Technische Universität Ilme-
nau and the Free State of Thuringia for their financial support as
part of the Thüringer Graduiertenförderung.

initial and recursive feasibility are shown – without im-
posing additional terminal conditions and independent of
the length of the prediction horizon. The novel stage cost
used in FMPC is inspired by funnel control, a model-
free output-error feedback controller first proposed in Ilch-
mann et al. (2002). The funnel controller is an adaptive
controller which allows output tracking within a prescribed
performance funnel for a fairly large class of systems solely
invoking structural assumptions, i.e. stable internal dy-
namics, known relative degree, and a sign-definite high-
frequency gain matrix.
It is shown in Berger et al. (2021) that such funnel-inspired
stage cost automatically ensure initial and recursive feasi-
bility for a class of nonlinear systems with relative degree
one and, in a certain sense, input-to-state stable internal
dynamics. Since the requirement of a sign-definite gain
matrix is omitted, the system class is larger than the one
the original funnel controller is applicable to. Moreover,
adding (artificial) output constraints to the OCP, as used
in Berger et al. (2020), is superfluous. In numerical sim-
ulations, FMPC shows superior performance compared to
both MPC with quadratic stage cost and funnel control.
Utilizing so-called feasibility constraints in the OCP and
restricting the class of admissible funnel functions, the
findings in Berger et al. (2021) are generalized to systems
with arbitrary relative degree in Berger and Dennstädt
(2022). We show that for single-input single-output sys-
tems with relative degree two the addition of such con-
straints to the Optimal Control Problem is not necessary.
However, while previous results allow for an arbitrary
short prediction horizon, a sufficiently long horizon – de-
pending on the funnel – is necessary.

2. SYSTEM CLASS AND CONTROL OBJECTIVE

We consider control affine single-input single-output sys-
tems
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ẋ(t) = f(x(t)) + g(x(t))u(t), x(t0) = x0,

y(t) = h(x(t)),
(1)

with t0 ∈ R≥0, x0 ∈ Rn, functions f ∈ C2(Rn,Rn),
g ∈ C2(Rn,Rn), h ∈ C3(Rn,R) and a control function
u ∈ L∞

loc(R≥0,R). The system (1) has a solution in the
sense of Carathéodory, that is an absolutely continuous
function x : [t0, ω) → Rn, ω > t0, with x(t0) = x0 which
satisfies the ODE in (1) for almost all t ∈ [t0, ω).
We recall the notion of relative degree for system (1). As-
suming that f, g, h are sufficiently smooth, the Lie deriva-
tive of h along f is defined by (Lfh) (x) := h′(x)f(x).
Lie derivatives of higher order are recursively defined
by Lkfh := Lf (L

k−1
f h), for k ∈ N, with L0

fh = h. Then
system (1) is said to have (global and strict) relative
degree r ∈ N, if ∀ k ∈ {1, . . . , r − 1} ∀x ∈ Rn :

(LgL
k−1
f h)(x) = 0 and (LgL

r−1
f h)(x) ̸= 0.

If (1) has relative degree r, then, under the additional as-
sumptions provided in (Byrnes and Isidori, 1991, Cor. 5.6),
there exists a diffeomorphic coordinate transformation
Φ:Rn→ Rn,Φ(x(t)) = (y(t), ẏ(t), . . . , y(r−1)(t), η(t)) (2)

which puts the system into Byrnes-Isidori form
y(r−1)(t) = p

(
y(t), ẏ(t), . . . , y(r−1)(t), η(t)

)
+ γ
(
y(t), ẏ(t), . . . , y(r−1)(t), η(t)

)
u(t), (3a)

η̇(t) = q
(
y(t), ẏ(t), . . . , y(r−1)(t), η(t)

)
, (3b)

where p ∈ C0(Rn,R), q ∈ C0(Rn,Rn−r), γ ∈ C0(Rn,R)
and (y(t0), ẏ(t0), . . . , y(r−1)(t0), η(t0)) = Φ(x0). Further-
more, we require the following bounded-input, bounded-
state (BIBS) condition on the internal dynamics (3b):

∀ c0 > 0 ∃ c1 > 0 ∀ t0 ≥ 0 ∀ η0 ∈ Rn−r

∀ ζ ∈ L∞
loc([t

0,∞),Rrm) :
∥∥η0∥∥ + ∥ζ∥∞ ≤ c0

=⇒
∥∥η(·; t0, η0, ζ)∥∥∞ ≤ c1, (4)

where η(·; t0, η0, ζ) : [t0,∞) → Rn−r denotes the unique
global solution of (3b) when (y, . . . , y(r−1)) is substituted
by ζ. The maximal solution η(·; t0, η0, ζ) can indeed be ex-
tended to a global solution due to the BIBS condition (4).
Throughout this note we will assume that the system (1)
has relative degree r = 2 and that there exists a diffeomor-
phism Φ as in (2) which puts the system into the Byrnes-
Isidori form (3).
The objective is to design a control strategy which allows
the output tracking of given reference trajectories yref ∈
W 2,∞(R≥0,R) within pre-specified error bounds. To be
precise, the tracking error t 7→ e(t) := y(t) − yref(t)
and its derivative ė(t) shall evolve within the prescribed
performance funnels

Fψi := { (t, e) ∈ R≥0 × R | ∥e∥ < ψi(t)} , i = 0, 1,

see also Figure 1. These funnels are determined by the
choice of the functions ψ0, ψ1 belonging to

G0 :=

{
ψ ∈W 2,∞(R≥0,R)

∣∣∣∣ inft≥0
ψ(t) > 0

}
.

Note that the funnel ψi is uniformly bounded away from
zero; i.e. there exists a boundary λ > 0 with ψi(t) > λ
for all t ≥ 0. Thus, perfect or asymptotic tracking is not
our control objective. However, λ can be chosen arbitrarily
small.

t

•

λ

(0, e(0)) ψ0(t)

Fig. 1. Error evolution in a funnel Fψ0
with boundary ψ0.

If the error e evolves within the funnel Fψ0
for some

ψ0 ∈ G0, then the derivative ė has to satisfy at some point
t ≥ 0

ė(t) ≤ ψ̇0(t) or ė(t) ≥ −ψ̇0(t).

Thus, the derivative funnel must be large enough for the
error e to follow the funnel boundary ψ0 and we therefore
assume that ψ = (ψ0, ψ1) is an element of
G1:=

{
(ψ0, ψ1)∈G0×G0

∣∣∣∃ ε >0∀ t ≥ 0 : ψ1(t)≥ε− ψ̇0(t)
}
.

Typically, the specific application dictates constraints on
the tracking error and thus indicates suitable choices for ψ.

3. FUNNEL MPC

In order to extend the results from Berger et al. (2021) to
systems of the form (1) with relative degree two, we define,
for yref ∈W 2,∞(R≥0,R), t ≥ 0, and ζ = (ζ0, ζ1) ∈ R2,

ei(t, ζ) := ζi − y
(i)
ref(t) for i = 0, 1.

We propose, for ψ = (ψ0, ψ1) ∈ G1 and the design
parameter λu ≥ 0, the new stage cost function
ℓ : R≥0 × R2 × R → R ∪ {∞},

(t, ζ, u)7→


1∑
i=0

1
1−∥ei(t,ζ)∥2/ψi(t)2

+λu∥u∥2,
∥ei(t, ζ)∦=ψi(t)
for i = 0, 1

∞, else.
(5)

By setting ζ = (y(t), ẏ(t)), the terms 1
1−∥ei(t,ζ)∥2/ψi(t)2

penalize the distance of the tracking error e(t) = y(t) −
yref(t) and its derivative ė(t) to their respective funnel
boundaries ψi(t). The parameter λu allows to adjust
a suitable trade off between tracking performance and
required control effort. The stage cost ℓ is motivated by the
design of the funnel controller in Hackl et al. (2013) which
also introduces an additional funnel for the derivative in
order to generalize the results from Ilchmann et al. (2002)
to systems with relative degree two.
Based on the stage cost (5), we define the Funnel MPC
(FMPC) algorithm as follows.
Algorithm 1. (FMPC).
Given: System (1), reference signal yref ∈W 2,∞(R≥0,R),
funnel function ψ = (ψ0, ψ1) ∈ G1, stage cost function ℓ as
in (5), M > 0, t0 ∈ R≥0, and x0 ∈ Rn with

Φ(x0)∈Dt0 :=
{
(ζ, η)∈R2×Rn−2

∣∣∣∣∥ei(t0, ζ)∥< ψi(t0)
for i = 0, 1

}
,

where Φ is the diffeomorphism from (2).
Set the time shift δ > 0, the prediction horizon T > δ and
initialize the current time t̂ := t0.
Steps:
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(a) Obtain a measurement of the state x = Φ−1(y, ẏ, η) at
time t̂ and set x̂ := x(t̂).

(b) Compute a solution u⋆ ∈ L∞([t̂, t̂ + T ],R) of the
Optimal Control Problem (OCP)

minimize
u∈L∞([t̂,t̂+T ],R)

∫ t̂+T

t̂

ℓ
(
t, (y(t), ẏ(t)), u(t)

)
dt

subject to (1), x(t̂) = x̂,

∥u(t)∥ ≤M for t ∈ [t̂, t̂+ T ]

(6)

(c) Apply the feedback law
µ : [t̂, t̂+ δ)× Rn → R, µ(t, x̂) = u⋆(t) (7)

to system (1). Increase t̂ by δ and go to Step (a).

In practical application there usually is a limitationM > 0
on the maximal control that can be applied to the sys-
tem 1. The constraint ∥u(t)∥ ≤M in the OCP (6) ensures
that the control signal meets this bound.
The following theorem shows that for systems with relative
degree two the Funnel MPC Algorithm 1 is, given a
sufficiently long prediction horizon T > 0 and large enough
control constraint M > 0, initially and recursively feasible
and that it guarantees the evolution of the tracking error e
and its derivative ė within their respective performance
funnels Fψi . Due to space limitations, we omit the proof.
Theorem 2. Consider system (3) with strict relative de-
gree r = 2 and assume that there exists a diffeomor-
phism Φ : Rn → Rn such that the coordination trans-
formation in (2) puts the system (1) in the Byrnes-Isidori
form (3) satisfying (4). Let ψ = (ψ0, ψ1) ∈ G1, yref ∈
W 2,∞(R≥0,R), t0 ∈ R≥0, δ > 0, and B ⊂ Dt0 a compact
set. Then there exist T > δ and M > 0 such that the
FMPC Algorithm 1 is initially and recursively feasible for
every Φ(x0) ∈ B, i.e. at time t̂ = t0 and at each successor
time t̂ ∈ t0+δN the OCP (6) has a solution. In particular,
the closed-loop system consisting of (1) and the FMPC
feedback (7) has a global solution x : [t0,∞) → Rn and
the corresponding input is given by

uFMPC(t) = µ(t, x(t̂)), t ∈ [t̂, t̂+ δ), t̂ ∈ t0 + δN0.

Furthermore, each global solution x with corresponding
input uFMPC satisfies:
(i) ∀ t ≥ t0 : |uFMPC(t)| ≤M .
(ii) ∀ t ≥ t0 :

∣∣e(i)(t)∣∣ < ψi(t) for i = 0, 1; in particular
the error e = y − yref evolves within the funnel Fψ0

and ė within Fψ1 .

4. SIMULATION

To demonstrate the application of the FMPC Algorithm 1,
we consider the example of a mass-spring system mounted
on a car from Seifried and Blajer (2013). The mass m2

moves on a ramp inclined by the angle ϑ ∈ [0, π2 ) and
mounted on a car with mass m1 by a spring-damper sys-
tem, see Figure 2. It is possible to control the force F = u
acting on the car. The system is described by the equations[
m1 +m2 m2 cos(ϑ)
m2 cos(ϑ) m2

](
z̈(t)
s̈(t)

)
+

(
0

ks(t) + dṡ(t)

)
=

(
u(t)
0

)
,

(8)
where z(t) is the horizontal position of the car and s(t) the
relative position of the mass on the ramp at time t. The

F

y

a=const

s

Fig. 2. Mass-on-car system.

physical constants k > 0 and d > 0 are the coefficients of
the spring and damper, resp. The horizontal position of
the mass on the ramp is the output y of the system, i.e.

y(t) = z(t) + s(t) cos(ϑ). (9)
We choose the parameters m1 = 4, m2 = 1, k = 2, d = 1,
ϑ = π

4 and initial values z(0) = s(0) = ż(0) = ṡ(0) = 0 for
the simulation. The objective is tracking of the reference
signal yref : t 7→ cos(t) so that the error t 7→ e(t) := y(t)−
yref(t) satisfies |e(t)| ≤ ψ0(t) and |ė(t)| ≤ ψ1(t) for all t ≥ 0
with ψ0(t) = 3 e−2t+0.1 and ψ1(t) = 6e−t + 0.1. One can
easily verify that ψ = (ψ0, ψ1) ∈ G1 and that the initial
errors lie within their respective funnel boundaries. The
system (8) with output (9) has relative degree r = 2 for
the given parameters. We compare the FMPC Algorithm 1
with stage cost (5) to the FMPC scheme from Berger et al.
(2021) which uses the stage cost function ℓ̃ : R≥0 × R2 ×
R → R ∪ {∞} with

ℓ̃(t, ζ, u)=

{
1

1−∥e0(t,ζ)∥2/ψ0(t)2
+ λu ∥u∥2, ∥e0(t, ζ)∥ ̸=ψ0(t)

∞, else.
(10)

Contrary to the stage cost function (5), the function ℓ̃
penalizes only the distance of the tracking error e(t) =
y(t) − yref(t) to the funnel boundary ψ0 but not deriva-
tive ė(t) = ẏ(t)−ẏref(t) to the boundary ψ1. For the FMPC
Algorithm 1 the prediction horizon T = 0.6 and time shift
δ = 0.04. Due to discretisation, only step functions with
constant step length 0.04 are considered for the OCP (6).
We further choose for both stage cost functions the pa-
rameter λu = 5 · 10−3 and allow a maximal control value
of M = 30. All simulations are performed on the time
interval [0, 7] with the MATLAB routine ode45 and are
depicted in Figure 3. Figure 3a shows the tracking error
of the two different FMPC schemes evolving within the
funnel boundaries given by ψ0, while Figure 3b displays the
derivative of the error within the boundaries given by ψ1

The respective control signals generated by the controllers
is displayed in Figure 3c.
It is evident that both control schemes achieve the tracking
of the reference signal within the performance boundaries
given by ψ0. While the FMPC Algorithm 1 with stage cost
function (5) also ensures that the derivative of the tracking
error evolves within funnel given by ψ1, FMPC scheme
with stage cost function ℓ̃ as in (10) fails to do that and
thus does not achieve the overall control objective. This
is not surprising since the function ℓ̃ does not penalize
the distance of error’s derivative to the funnel boundary.
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(a) Funnel given by ψ0 and tracking error e
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Fig. 3. Simulation of system (8) with output (9) under
FMPC Algorithm 1 and FMPC from Berger et al.
(2021)

Moreover, the FMPC Algorithm 1 with stage cost function
(5) exhibits a smaller range of employed control values as
the FMPC scheme from Berger et al. (2021).

5. CONCLUSION

In this note we outline a conceptual framework to extend
the FMPC scheme proposed in Berger et al. (2021),
which solves the problem of tracking a reference signal
within a prescribed performance funnel, to systems with
relative degree two. By exploiting concepts from funnel
control and using a “funnel-like” stage cost, feasibility
is achieved without the need for additional terminal or
explicit output constraints while also being restricted to
(a priori) bounded control values. In particular, additional

output constraints in the OCP of FMPC as considered
in Berger et al. (2020) and Berger and Dennstädt (2022)
are not required to infer the feasibility results. However,
contrary to previous results the prediction horizon has
to be sufficiently long in order to guarantee recursive
feasibility of the Funnel MPC algorithm. Extending these
results to multi-input multi-output systems and systems
with arbitrary relative degree r > 2 is subject of future
work.
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Abstract: A class of nonlinear, stochastic staticization control problems (including minimiza-
tion problems with smooth, convex, coercive payoffs) driven by diffusion dynamics with con-
stant diffusion coefficient is considered. The nonlinearities are addressed through staticization-
based duality. The second-order Hamilton-Jacobi partial differential equations (HJ PDEs) are
converted into associated control problems with higher-dimensional states. In these problems,
one component of the state propagates by deterministic, nonlinear dynamics, while the other
component is a scaled Brownian motion. These components interact only through a bilinear
terminal cost. This structure will be exploited to generate an efficient solution approach.

Keywords: dynamic programming, Hamilton-Jacobi, partial differential equations, stochastic
control, staticization.

1. INTRODUCTION

The results herein can be equivalently viewed as results
regarding Hamilton-Jacobi partial differential equations
(HJ PDEs), or as results regarding the optimal control
of systems with dynamics defined by stochastic differential
equations (SDEs). The second-order Hamilton-Jacobi par-
tial differential equations (HJ PDEs) are converted into as-
sociated control problems with higher-dimensional states.
In contrast to the original problems, in these associated
problems, one component of the state propagates by deter-
ministic, nonlinear dynamics, while the other component
is a scaled Brownian motion. These components interact
only through a bilinear terminal cost. This structure will
be exploited to generate an efficient solution approach.
It will be shown that numerical solutions of many non-
linear second-order HJ PDE problems may be obtained
through numerical solutions of nonlinear first-order HJ
PDE problems, along with associated finite-dimensional
sets of differential Riccati equations (DREs). In more gen-
eral cases, solution of steady-state second-order HJB PDEs
in potentially much lower dimension may be required.

Consider the HJ PDE

0 = Wt + stat
v∈Rk

{
fT (x, v)Wx + L(x, v)

}
+ 1

2 tr[AWxx], (1)

for (t, x) ∈ (0, T )×Rn, where specific assumptions on the
problem data appear further below. The “stat” operator
is briefly discussed in Section 2.2, but it is useful to note
here that in the case of a convex, coercive, C1 argument,
it is equivalent to the minimization operator, and hence
the results herein typically subsume HJ PDEs of the form
? Research partially supported by AFOSR and NSF.

0 = Wt + min
v∈Rk

{
fT (x, v)Wx + L(x, v)

}
+ 1

2 tr[AWxx].

Consider the following class of quadratic terminal costs.
Let M2n denote the set of matrices Π̄ such that

Π̄
.
=

(
M̄ −M̄
−M̄ M̄

)
,

where M̄ is symmetric and nonsingular, and let

W (T, x) = ψ(x; z, π̄, Π̄, γ̄)

.
= 1

2

(
x
z

)T
Π̄

(
x
z

)
+ π̄T

(
x
z

)
+ γ̄,

(2)

where Π̄ ∈M2n, z ∈ Rn, π̄ ∈ R2n, γ̄ ∈ R are parameters.

It is well-known that for purposes of numerical solution,
nonlinear stochastic control problems are typically con-
verted into the second-order HJ PDE problems such as (1)
with associated terminal data, and further, the dimension
of the space over which these PDEs are defined is that
of the state process of the control problem. Of course,
realistic control problems typically have relatively high
dimensional state processes, leading to PDEs over high di-
mensional spaces. The solution of such HJ PDE problems
has long been hampered by the curse-of-dimensionality,
which refers to the fact that with classical algorithms, the
computational cost grows exponentially fast as a function
of space dimension, and we note that this has limited the
solvability of such problems by classical methods to state-
space dimensions on the order of three to five, c.f. Falcone
and Ferretti (2014). More recently, max-plus based curse-
of-dimensionality-free methods (in addition to other no-
table new approaches) have demonstrated computational
tractability for certain classes of problems in significantly
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higher space dimension, and this approach have been
quite effective in the case of first-order HJ PDEs [Akian,
Gaubert and Lakhoua (2008); Dower (2018); Gaubert et
al (2011); McEneaney (2006); Qu (2014)].

2. PRELIMINARIES

2.1 Problem Class and Recollection of Results

We consider a nonlinear stochastic control problem with
SDE dynamics and initial state are given by

dξ(t) = f(ξ(t), ṽ(t)) dt+ ā dB(t), ξ(s) = x ∈ Rn, (3)

where the underlying probability space is denoted as
(Ω,F∞, P ) with Ω denoting the sample space, F∞ denot-
ing the σ-algebra and P denoting the probability measure.
Also, B(t) denotes an n-dimensional Brownian motion
adapted to filtration Ft. Assumptions on f will be indi-
cated further below. We suppose the controls take values
in V = Rk. Fix T ∈ (0,∞), and for s ∈ [0, T ], let

Vs,T
.
= {ṽ : [s, T ]× Ω→ Rk|ṽ is F·-adapted, right-contin.

and such that E
∫ T
s
|ṽ(t)|m dt <∞ ∀m ∈ IN },

‖ṽ‖ = ‖ṽ‖Vs,T
.
= max
m≤M̆

[
E
T

∫
s
|ṽ(t)|m dt

]1/m
,

where M̆
.
= 8q̆ and q̆ will be specified in Assumption (A.1).

The payoff will be given by

J(s, x, ṽ; z, Π̄, π̄, γ̄, T )
.
= E

{ T

∫
s
L(ξ(t), ṽ(t)) dt+ ψ(ξ(T ); z)

}
where ψ is as indicated in (2), π̄ ∈ R2n, γ̄ ∈ R and z ∈ Rn.
In the more general case, one takes a terminal cost form

Ψ(x) = Ψ(x; z)
.
= stat
z∈Rn

{
1
2

(
x
z

)T
Π̄

(
x
z

)
+ a(z)

}
, (4)

with some specified function, a(·), where the definition of
operator stat follows in Section 2.2. The terminal cost in
(4) is a “stat-quad” representation [Dower and McEneaney
(2020); McEneaney and Dower (2018)], of a general class
of terminal costs that may be represented as such. We
will consider only the terminal cost form (2) here. For
(s, x) ∈ [0, T ]× Rn, the value function is given by

W̄ (s, x; z, Π̄, π̄, γ̄, T )
.
= stat
ṽ∈Vs,T

J(s, x, ṽ; z, Π̄, π̄, γ̄, T ), (5)

where π̄ = 0 here, but will be generalized below.

We will proceed through several steps. The first step is to
obtain the equivalence between the value function and the
solution of the associated HJ PDE problem. This equiv-
alence is standard in the optimization and game cases,
and less so in staticization cases that are not equivalent
to these. We recall a result in the staticization case where
the stationary value is given by (3)–(5). Specifically, letting
X0

.
= (0, T )×Rn, X̄0

.
= (0, T ]×Rn, z ∈ Rn, π̄ ∈ R2n, γ̄ ∈ R

and Π̄ ∈M2n, consider

0 = Wt + stat
v∈Rk

{
f(x, v)TWx + L(x, v)

}
+ 1

2 tr[AWxx] (6)

.
= Wt +H0(x,Wx) +Q0(x,Wx) + 1

2 tr[AWxx], (7)

(s, x) ∈ X0,

W (T, x; z, Π̄, γ̄) = ψ(x; z, π̄, Π̄, γ̄), x ∈ Rn, (8)

where A = āāT , Q0 is a quadratic function of its argu-
ments, and the non-quadratic components of the Hamilto-
nian are isolated within H0.

We make the following assumptions.

Assume that for z ∈ Rn, there exists W =
W (·, ·; z) ∈ C1,4(X0) ∩ Cp(X̄0) satisfying (7)–(8)
(where Cp denotes the space of continuous func-
tions with at most quadratic growth), and that
there exists C̄0 < ∞ and q̆ ∈ IN such that
|Wx(s, x)| ≤ C̄0(1+ |x|2q̆) and |Wxx(s, x)| ≤ C̄0(1+
|x|2q̆) for all (s, x) ∈ X̄0. Assume M̄ is positive
definite, symmetric; f, L ∈ C3(Rn ×Rk); ∃C̄1 <∞
such that for all x, v ∈ Rn |fx(x, v)|, |fv(x, v)| ≤
C̄1, |fxx(x, v)|, |fxv(x, v)|, |fvv(x, v)| ≤ C̄1 and
|Lxx(x, v)|, |Lxv(x, v)|, |Lvv(x, v)|,≤ C̄1. Assume
that for each z ∈ Rn, there exists v∗ ∈ C(X̄0)
that is globally Lipschitz in x, and is such that
v∗(t, x) ∈ argstatv∈Rk{f(x, v)TWx(t, x) + L(x, v)}
for all (t, x) ∈ X0.

(A.1)

Theorem 1. Assume (A.1). Then W = W̄ on Z̄, and v∗

is a stationary control yielding payoff W̄ . Further, with
ξ̄∗ denoting the trajectory generated by v∗, and letting
ṽ∗(t)

.
= v∗(t, ξ̄∗(t)) for all t, ṽ∗ is continuous with respect

to t.

The proof of Theorem 1 may be found in McEneaney,
Dower and Wang (2021). All results to follow are obtained
under (A.1).

2.2 Staticization and Stat-Quad Duality

Let V denote a Banach space over either the real or
complex field, and suppose U is a [real or complex]
normed vector space with A ⊆ U , and suppose G :
A → F . Let argstatu∈AG(u)

.
= argstat{G(u) |u ∈ A},

statsu∈AG(u)
.
=
{
G(ū)

∣∣ ū ∈ argstat{G(u) |u ∈ A}
}

and
statu∈AG(u)

.
= a be defined as in, for example, [McE-

neaney, Dower and Wang (2021); McEneaney and Zhao
(2019); McEneaney and Dower (2018)].

Analogous to semiconvex duality, we have the following
“stat-quad” duality (McEneaney and Dower, 2018, Th.
4). In the nondegenerate case, it is closely related to
the Legendre-Fenchel transform. Let φ denote a generic
function in Cj(Rn;R) with j ≥ 2 such that there exists
c̄2 < ∞ such that |φuu(u)| ≤ c̄2 for all u ∈ Rn. We let
ψ0(u,w)

.
= m̄

2 |u−w|
2 for all u,w ∈ Rn, where m̄ ∈ R\{0}.

Lemma 2. Suppose |m̄| > c̄2. We have

φ(u) = stat
w∈Rn

[a(w) + ψ0(u,w)] ∀u ∈ Rn, (9)

a(w) = stat
u∈Rn

[φ(u)− ψ0(u,w)] ∀w ∈ Rn. (10)

Further, there exists unique u∗ ∈ Cj−1(Rn;Rn) such that

a(w) = φ(u∗(w))− ψ0(u∗(w), w), ∀w ∈ Rn, (11)

aw(w) = m̄(u∗(w)− w) = φu(u∗(w)) ∀w ∈ Rn, (12)

where a ∈ Cj(Rn;R). Suppose |m̄| ∈ [2c̄,∞). Then, for
each u ∈ Rn, there exists unique argstat w∗(u). Further,
w∗ ∈ Cj−1(Rn;Rn), and one has

φ(u) = a(w∗(u)) + ψ0(u,w∗(u)), w∗ = (u∗)−1.

Remark 3. For simplicity here, we are assuming that the
condition |m̄| ∈ (c̄2,∞) is satisfied, as it provides a simple
sufficient condition. However, one should note that implies
convexity or concavity, while stat-quad duality is employed
so that we may cover a wider class of cases.
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3. A STATICIZATION-BASED REPRESENTATION
OF THE NONLINEARITIES

For x, p, α, β ∈ Rn, let

Q(x, p, α, β)
.
= c1

2 |x− α|
2 + c2

2 |p− β|
2, (13)

where c1, c2 ∈ R. We make the following assumption,
which will be sufficient to guarantee existence of all the
relevant duality objects to follow.

We assume that H0 ∈ Cm̂(R2n) with m̂ ≥ 4, and
that the second derivatives of H0 are uniformly
bounded.

(A.2)

As an aid in developing results further below, we recall the
following from McEneaney, Dower and Wang (2021).

Lemma 4. Let |c1|, |c2| be sufficiently large. Then,

H0(x, p) = stat
(α,β)∈R2n

[
G0(α, β)+Q(x, p, α, β)

]
.

G0(α, β) = stat
(x,p)∈R2n

[
H0(x, p)−Q(x, p, α, β)

]
,

argstat
(x,p)∈R2n

[
H0(x, p)−Q(x, p, α, β)

]
is single-valued,

argstat
(α,β)∈R2n

[
G0(α, β)+Q(x, p, α, β)

]
is single-valued,

and G0 ∈ Cm̂(R2n) with bounded second derivatives.

Now, we let the coefficients in Q0 be specifically given by

Q0(x, p) = 1
2

(
x
p

)T
D

(
x
p

)
+ dT

(
x
p

)
= 1

2

(
x
p

)T(
D1,1 D1,2

D2,1 D2,2

)(
x
p

)
+

(
d1

d2

)T (
x
p

)
,

where D is symmetric. Note that for |c2| sufficiently large,

G0(α, β) +Q0(x, p) +Q(x, p, α, β) (14)

= stat
v∈Rn

{
[D1,2x+ d2 − c2β + v]T p+H1(x, α, β, v)

}
,

where

H1(x, α, β, v)
.
= G0(α, β) + 1

2x
TD1,1x+ c1

2 |x− α|
2

+ c2
2 |β|

2 + dT1 x+ 1
2v
TΓv,

Γ
.
= −(c2In +D2,2)−1.

Consider the following stationarity control problem. Let
the dynamics be given by

dξ(t) = f ′(ξ(t), β̄(t), ṽ(t)) dt+ ā dB(t)
.
= (D1,2ξ(t) + d2 − c2β̄(t) + ṽ(t)) dt+ ā dB(t) (15)

where ṽ, β̄ ∈ Vs,T . Let the payoff and stationary value be

J ′(s, x, ṽ, ᾱ, β̄; z, T )
.
= E

{∫ T

s

H1(ξ(t), α̃∗(t), β̄(t), ṽ(t)) dt

+ ψ(ξ(T ); z)
}
,

W ′(s, x; z, T )
.
= stat

(ṽ,ᾱ,β̄)∈Vs,T×[Os,T ]2
J ′(s, x, ṽ, ᾱ, β̄; z, T ),

(16)

Os,T
.
= {ν : [s, T ]× Ω→ Rk | ν is F·-adapted, contin.

w.r.t. time, and s.t. E
∫ T
s
|ν(t)|2 dt <∞}.

Also consider the iterated form of W ′ given by

Ŵ ′(s, x; z, T )
.
= stat

(ᾱ,β̄)∈[Os,T ]2
stat
ṽ∈Vs,T

J ′(s, x, ṽ, ᾱ, β̄; z, T ).

(17)

Theorem 5. Let |c1|, |c2| be sufficiently large. For each z ∈
Rn, value function W ′ is identical to the value function,
W̄ (given in (5)). Further, there exists unique (α∗, β∗, v∗)
such that

[α∗, β∗, v∗](t, x) ∈ argstat
(α,β,v)∈R3n

{
[f ′(x, β, v)]T W̄x(t, x)

+H1(x, α, β, v)
}
,

and [α∗, β∗, v∗](t, ξ(t)) is a staticizing control. Lastly, for

each z ∈ Rn, value function Ŵ ′ is identical to value
function W̄ .

4. SEPARATION

We now change the point of view to that of a control
problem with state variables being both π and x. We will
see that although in this case the dynamics are not purely
deterministic, the nonlinear deterministic component and
the linear stochastic component are separated in a very
useful way, where in particular, the only interaction is
through a bilinear terminal cost term. First, note that
the inner staticization of (17) is a set of linear-quadratic
Gaussian control problems, indexed by the ᾱ, β̄. Consider
the dynamics

˙̂
Π(t) = −F̄1(Π̂(t)) (18)
.
= −

{
Π̂(t)K2Π̂(t) +KT

3 Π̂(t) + Π̂(t)K3 +K1

}
,

˙̂π(t) = −F̄2(Π̂(t), π̂(t), ᾱ(t), β̄(t)) (19)
.
= −

{
Π̂(t)K2π̂(t) + Π̂(t)Î1,1V 2(t) +K3π̂(t) + V 1(t)

}
,

˙̂γ(t) = −F̄3(Π̂(t), π̂(t), ᾱ(t), β̄(t))
.
= −

{
G0(ᾱ(t), β̄(t)) + c1

2 |ᾱ(t)|2 + c2
2 |β̄(t)|2 (20)

+ 1
2 π̂(t)TK2π̂(t)+ (V 2(t))T π̂(t) + 1

2 tr(K4Π̂(t)K5)
}
,

with terminal conditions, following from (2), given by

Π̂(T ) = Π̄
.
=

(
M̄ −M̄
−M̄ M̄

)
,

π̂(T ) = π̄
.
= 0, γ̂(T ) = γ̄, where

K1
.
=

(
k1 0
0 0

)
, K2

.
=

(
k2 0
0 0

)
, K3

.
=

(
DT

1,2 0
0 0

)
,

K4
.
= (A 0) , K5

.
=

(
In
0

)
, Î1,1 .

=

(
In 0
0 0

)
,

V 1(t)
.
=

(
d1 − c1ᾱ(t)

0

)
, V 2(t)

.
=

(
d2 − c2β̄(t)

0

)
,

k1
.
= c1In +D1,1 and k2

.
= c2In +D2,2.

Let (Ω̂, F̂∞, P̂ ) denote a probability space, and let B̂ with

B̂(ŝ) = 0 a.s., be a Brownian motion on (Ω̂, F̂∞, P̂ ),

adapted to filtration F̂·. Finally, let

V̂ŝ,t̂
.
=
{
v̂ : [ŝ,∞)× Ω̂→ Rk|v̂ is F̂·-adapted, rt.-contin.,

s.t. v̂(r) = 0 a.s. ∀r > t̂, E
∫ t̂
ŝ
|v̂(t)|m dt <∞ ∀m ∈ IN

}
.

(21)

For ŝ ∈ [0, t̂), consider the dynamics

π̇(r) = F̄2(Π(r), π(r), ¯̂α(r),
¯̂
β(r)), π(ŝ) = π̄, (22)

γ̇(r) = F̄3(Π(r), π(r), ¯̂α(r),
¯̂
β(r)), γ(ŝ) = γ̄, (23)

ξ(r) = x+ āB̂(r), (24)
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where (¯̂α,
¯̂
β) ∈ V̂2

ŝ,t̂
. We also let ¯̄µ

.
= (¯̂α,

¯̂
β). Define the

decomposition of π into ρ, q ∈ Rn, by (ρT , qT )
.
= πT .

Letting y
.
= (xT , zT )T , consider

Ĵ(ŝ, (π̄, x), ¯̄µ; z, Π̄, t̂)
.
= E

{
πT (t̂)

(
ξ(t̂)
z

)
+ γ(t̂)

}
= E

{
yTπ(t̂)+

(
āB̂(t̂)

)T
ρ(t̂) +

∫ t̂

ŝ

F̄3(Π(r), π(r), ¯̄µ(r)) dr
}

+ γ̄, (25)

Ŵ (ŝ, (π̄, x); z, Π̄, t̂)
.
= stat

¯̄µ∈V̂2
ŝ,t̂

Ĵ(ŝ, (π̄, x), ¯̄µ; z, Π̄, t̂). (26)

One should note that the only direct interaction between
the nonlinear dynamics of π and the diffusion process is
through the bilinear term in the terminal cost.

In order to map the results of Theorem 1 to the the case
of HJ PDE problem (27)–(28) below and control problem
(22)–(26), we make the following definitions. Let

¯̄x
.
=

(
π̄
x

)
=

(
ρ̄
q̄
x

)
, ¯̄ξ(·) .

=

(
π(·)
ξ(·)

)
=

(
ρ(·)
q(·)
ξ(·)

)
,

¯̄f(Π̄, ¯̄ξ, ¯̄µ)
.
=

(
F̄2(Π̄, π, ¯̄µ)

0

)
, ¯̄A

.
= (0n×2n, āIn)T ,

¯̄L(Π̄, ¯̄ξ, ¯̄µ)
.
= F̄3(Π̄, π, ¯̄µ), ¯̄ψ( ¯̄ξ; z, Π̄, γ̄)

.
= ψ(ξ; z, Π̄, γ̄).

We implicitly invoke trivial congruences such as that
between (0, t̂)×R2n×Rn and (0, t̂)×R3n without further
mention, and let X 2

0,t̂

.
= (0, t̂) × R2n, X̄ 2

0,t̂

.
= [0, t̂] × R2n,

X 3
0,t̂

.
= (0, t̂)× R3n and X̄ 3

0,t̂

.
= [0, t̂]× R3n.

We also consider the HJ PDE problem

0 = Wŝ + stat
µ̄∈R2n

{
WT

¯̄x
¯̄f(Π(t̂− ŝ), ¯̄x, µ̄) + ¯̄L(Π(t̂− ŝ), ¯̄x, µ̄)

}
+ 1

2 tr[AWxx], (ŝ, ¯̄x) ∈ (0, t̂)× R3n, (27)

W (t̂, ¯̄x; γ̄) = yTπ + γ̄, ¯̄x ∈ R2n, (28)

where Π satisfies Π̇ = F̄1(Π). We make the following
assumptions, which are similar to their analogues in (A.1).

Fix z ∈ Rn, Π̄ ∈ R2n×2n, γ̄ ∈ R and t̂ ∈
(0, T ). Assume there exists a solution, (ŝ, π̄, x) 7→
W (ŝ, π̄, x; z, Π̄, γ̄, t̂), of (27)–(28) in C1,4(X 3

0,t̂
) ∩

Cp(X̄ 3
0,t̂

), such that there exist c̄3, C̄0 < ∞
and q̂ ∈ IN such that |Wxxxx(ŝ, ¯̄x)| ≤ c̄3,
|W¯̄x(ŝ, ¯̄x)| ≤ C̄0(1 + |¯̄x|2q̂) and |W¯̄x¯̄x(ŝ, ¯̄x)| ≤
C̄0(1 + |¯̄x|2q̂), for all (ŝ, ¯̄x) ∈ X̄ 3

0,t̂
. Assume

¯̄f, ¯̄L ∈ C3(R2n×2n × R3n × R2n); ∃C̄1 <
∞ such that for all (Π̄, ¯̄x, µ̄) ∈ R2n×2n ×
R3n × R2n, | ¯̄f ¯̄x(Π̄, ¯̄x, µ̄)|, | ¯̄f µ̄(Π̄, ¯̄x, µ̄)| ≤ C̄1,

| ¯̄f ¯̄x¯̄x(Π̄, ¯̄x, µ̄)|, | ¯̄f ¯̄xµ̄(Π̄, ¯̄x, µ̄)|, | ¯̄f µ̄µ̄(Π̄, ¯̄x, µ̄)| ≤ C̄1

and | ¯̄L¯̄x¯̄x(Π̄, ¯̄x, µ̄)|, | ¯̄L¯̄xµ̄(Π̄, ¯̄x, µ̄)|, | ¯̄Lµ̄µ̄(Π̄, ¯̄x, µ̄)|,≤
C̄1. There exists µ̄∗ ∈ C(X̄ 3

0,t̂
) that is

globally Lipschitz in ¯̄x, and is such that

µ̄∗(r, ¯̄x) ∈ argstatµ̄∈R2n{ ¯̄f(Π(r), ¯̄x, µ̄)TW¯̄x(r, ¯̄x) +
¯̄L(Π(r), ¯̄x, µ̄)} for all (r, ¯̄x) ∈ X̄ 3

0,t̂
.

(A.3)

Theorem 6. W = Ŵ on [ŝ, t̂]×R3n, and µ̄∗ is a staticizing

feedback control yielding payoff Ŵ . Further, with v̂∗(r)
.
=

µ̄∗(r, ξ̄∗(r)) for all r ∈ [ŝ, t̂], v̂∗ is a.s. continuous.

Fix z ∈ Rn, Π̄ ∈ R2n×2n, γ̄ ∈ R and t̂ ∈ (0, T ), and let

Ŵ f (t̂, (π, x); z, Π̄, γ̄)
.
= Ḡ(0, x, z, t̂; Π̄)

+ Ŵ (0, (π, x); z, Π̄, γ̄, t̂) ∀ (t̂, (π, x)) ∈ X̄ 3
0,T .

Theorem 7. Let T ∈ (0,∞), z ∈ Rn, Π̄ ∈ R2n×2n, γ̄ ∈ R.
Then, for all (s, (π, x)) ∈ X̄ 3

0,T ,

Ŵ f (T − s, (π, x); z, Π̄, γ̄) = W̄ (s, x; z, Π̄, π, γ̄, T ),

where the latter is defined in (5).

Remark 8. Note that HJ PDE problem (27)–(28) is equiv-
alently

0 = Wŝ + 1
2 tr[AWxx] + stat

µ̄∈R2n

{
WT
π F̄2(Π(t̂− ŝ), π, µ̄)

+ F̄3(Π(t̂− ŝ), π, µ̄)
}
, (ŝ, π, x) ∈ (0, t̂)× R3n, (29)

W (t̂, π, x; z, γ̄) = yTπ + γ̄, (π, x) ∈ R3n. (30)

Note that x does not appear inside the stat operation in
(29). Alternatively, note that the stochastic component
of control problem (22)–(26) interacts with the nonlin-
ear component of the problem only through a bilinear
expression in the terminal cost. This structure is greatly
simplified over that of the original problem, and this will
be exploited in the generation of efficient solutions.
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Abstract: We extend the classical discrete-time bounded real lemma to the general case of
systems that need not be controllable or observable, and its relationship to the related discrete-
time optimal control problem. In the talk accompanying this extended abstract, we will further
discuss the analogies in discrete time to the recent continuous time development of an assumption
free theory of linear passive and non-expansive systems that draws on the behavioral framework
of Jan Willems and collaborators.
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1. INTRODUCTION

We present a new version of the discrete-time bounded real
lemma (see Theorem 4). This new version addresses out-
standing assumptions in existing literature, as discussed
following that theorem statement.

1.1 Notation

A small amount of notation is in order for this work.
Firstly, we let R denote the real numbers. We let R[z]
denote the polynomials in the indeterminate z, and R(z)
denote the rational functions in the indeterminate z.
We denote matrices with entries in the real numbers
as Rm×n, and equivalently for matrices with polynomial
entries (Rm×n[z]) and entries in the rational functions
(Rm×n(z)). If M is a real- or complex-valued matrix, then
MT denotes its transpose and M∗ denotes its Hermitian
transpose, while for a matrix of rational functions M(z),
M∼(z) = (M( 1z ))

T . Finally, a matrix M ∈ Rm×m is called

non-negative definite if it is symmetric (i.e.,M = MT ) and
zTMz ≥ 0 for all real vectors z ∈ Rm, and positive definite
if, in addition, zTMz = 0 implies z = 0.

1.2 Background

This work concerns discrete-time dissipativity of linear
time-invariant systems, defined as follows:

Definition 1. (Discrete-time dissipative system). We con-
sider the discrete-time state-space system

Σ := {x(k+1) = Ax(k) +Bu(k) and

y(k) = Cx(k) +Du(k), for k = 0, 1, 2, . . . };
where A,B,C,D are appropriately dimensioned real-
valued matrices, and we let d denote the dimension of the
state x. We refer to the solutions (u,y,x) of this equation
as trajectories of the system. We define the supply rate

s(u,y) := uTu− yTy,

and we say that the system Σ is dissipative with respect
to the supply rate s if there exists a function M : Rd → R
such that

−
N∑
i=0

s(u,y)(i) ≤ M(x0)

for all N ≥ 0 and all trajectories (u,y,x) of the system
Σ with x(0) = x0. We then define the available storage
Sa(x0) as the least such function M , i.e.,

Sa(x0) := sup
(u,y,x)∈Σ,N≥0,x(0)=x0

−
N∑
i=0

s(u,y)(i).

This represents the discrete-time analogy to the definition
of continuous-time dissipativity of Willems (1972a,b). The
definition extends in a natural way to other supply func-
tions. Such dissipative systems as outlined in the above
definition correspond to the systems under consideration
in the famous discrete-time bounded real lemma. The pur-
pose of this extended abstract is to present a new version
of the discrete-time bounded real lemma that completely
characterises the conditions under which a system satisfies
the dissipativity condition as defined above, in the absence
of any assumptions whatsoever.

Firstly, we define a discrete bounded real function (here-
after denoted DBR):

Definition 2. (DBR). Let G ∈ Rm×n(z). G is DBR if (i) G
is analytic throughout the exterior of the unit circle; and
(ii) I − G(z)∗G(z) ≥ 0 for all complex numbers z whose
magnitude is strictly greater than one.

Secondly, we define the observability matrix for the system
Σ:

O :=


C
CA
...

CAd−1

 , (1)

whose columns are linearly independent if and only if the
system Σ is observable in the usual sense of the word.

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



We also recall a recent result on discrete-time spectral
factors that will be useful in characterising the available
storage. This result, from Baggio and Ferrante (2016),
provides a relatively recent discrete-time version of the
long-standing result in continuous-time by Youla (1961).

Lemma 3. Let H ∈ Rn×n(z) and let maxλ∈C(rank(H(λ)))
= r. Further, suppose that H(λ) is non-negative definite
for all λ on the unit circle, with the exception of poles ofH.
Then there exists a rational matrix Z ∈ Rr×n(z) such that
(i) H = Z∼Z; (ii) Z is analytic throughout the exterior of
the unit circle; (iii) the rows of Z(λ) are independent for
all λ outside of the unit circle; and (iv) limλ→∞ Z(λ) exists
and its rows are independent. If Z satisfies conditions (i)—
(iv), then we call Z a discrete-time spectral factor of H,
and if H has no poles on the unit circle then Z has no
poles on the unit circle.

2. THEOREM STATEMENT

The new version of the discrete-time bounded real lemma,
whose proof is the subject of a journal paper in prepara-
tion, is then as follows:

Theorem 4. Let Σ be as in Definition 1 and let O be as in
equation (1). The following statements are equivalent

(1) Σ is dissipative with respect to the supply rate s =
uTu− yTy, in accordance with Definition 1.

(2) Let G(z) = D + C(zI − A)−1B and let U ∈ Rn×n[z]
and V ∈ Rn×d[z] be left coprime polynomial matrices
that satisfy U(z)BTOT = V (z)( 1z I − AT )OT (such
matrices will always exist). The following three con-
ditions all hold:
(a) G is DBR, in accordance with Definition 2
(b) If z is a complex-valued vector, λ is a complex

number whose modulus is greater than or equal
to one, and zTO[λI −A B] = 0, then zTO = 0.

(c) If b ∈ Rn[z] satisfies bT (UU∼ − (V CT +
UDT )(V CT + UDT )∼) = 0, then there ex-
ists a polynomial vector X ∈ Rd[z] such that
(bT (V CT + UDT ))(z)C = X(z)T (zI −A);

(3) There exists a real-valued non-negative definite ma-
trix P such that the block matrix[

P −ATPA− CTC −CTD −ATPB
−DTC −BTPA I −DTD −BTPB

]
(2)

is non-negative definite.
(4) There exists a real-valued non-negative matrix P−,

and real-valued matrices L and W such that the
following three conditions all hold:

(a)

[
P− −ATP−A− CTC −CTD −ATP−B
−DTC −BTP−A I −DTD −BTP−B

]
=

[
LT

WT

]
[L W ] ;

(b) with the notation Z(z) = W + L(zI − A)−1B,
then Z is a discrete-time spectral factor of I −
G∼G in accordance with Definition 3;

(c) if z is a real-valued vector satisfying Oz = 0, then
P−z = 0.

Moreover, if the above conditions hold, then Sa(x0) =
xT
0 P−x0 for all x0 ∈ Rd, where P− is as in condition 4, and

if P is a non-negative definite matrix satisfying condition
3, then P ≥ P−.

Together these conditions form a complete characterisa-
tion of the dissipativity of a general linear discrete-time
system with respect to the supply rate s, the existence of
non-negative definite solutions to the matrix inequality in
condition 3, a characterisation of the spectral factorisation
of the function I − G∼G, and a characterisation of the
available storage whenever the system is dissipative. The
equivalence of conditions 2–4 are analogous to results
in the context of discrete-time positive-real systems by
Branford and Hughes (2020). That paper did not consider
the connection to dissipativity and the associated optimal
control problem, and we note that a similar connection can
also be made in the setting of discrete-time positive-real
systems relating to dissipativity with respect to the supply
rate sp(u,y) = uTy. Specifically, conditions (1)–(3) in
Branford and Hughes (2020, Theorem 5) are equivalent to
the system in Definition 1 being dissipative with respect
to the supply rate sp, and the available storage in this case

takes the form Sa(x0) =
1
2

(
xT
0 P̃−x0

)
where (i) P̃− is as

in Branford and Hughes (2020, Theorem 5, condition 3);
and (ii) if z is a real-valued vector satisfying Oz = 0, then

P̃−z = 0.

The key distinction of the preceding theorem from existing
results in the literature is the absence of any a-priori
restrictions on the eigenvalues of the A matrix or the
controllability or observability of the system. The con-
sequence in terms of the second set of conditions in the
theorem statement is that the familiar condition that G(z)
must be a discrete-time bounded real function (see, e.g.,
Vaidyanathan, 1985) must be augmented with two further
conditions.

The first of these additional conditions, condition 2b, is
equivalent to the requirement that the system be behav-
iorally stabilizable. In other words, for any given real k0,
any past input-output trajectory (u(k),k(k)), k < k0,
can be concatenated with a future trajectory (ũ(k), ỹ(k)),
k ≥ k0 with the property that ũ(k) → 0 and ỹ(k) → 0 as
k → ∞. Note that this is not the same as state stabiliz-
ability, e.g., if D satisfies I − DTD ≥ 0 and B = C = 0
then the system is in fact dissipative for any given matrix
A (indeed, P = 0 then satisfies condition 2 of Theorem 4).

Condition 2c is a coupling condition between lossless
trajectories of the system (i.e., trajectories for which, were
they returned to the same state at k = N as their initial

state at k = 0, would satisfy
∑N

i=0 s(u,y)(i) = 0), and
trajectories for which u(k) = 0 for all k. This condition
can be tested by first computing the left syzygy of UU∼−
(V CT + UDT )(V CT + UDT )∼ (i.e., a polynomial matrix
H(z) with as many rows as the minimum dimension of the
left kernel of (UU∼ − (V CT + UDT )(V CT + UDT )∼)(λ)
over all complex values of λ, and for which the rows of
H(λ) are always in this left kernel and are independent
for all complex values of λ). Such a polynomial matrix can
be obtained using standard symbolic algebra software. We
note here that UU∼− (V CT +UDT )(V CT +UDT )∼ may
be the ratio of a polynomial matrix and the monomial
zp for some integer p, whereby in order to compute
the left syzygy using standard techniques for polynomial
matrices it may be necessary to multiply this matrix by
the monomial zp to obtain a polynomial matrix whose
left syzygy will be identical to that of UU∼ − (V CT +
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UDT )(V CT + UDT )∼. Next, compute the polynomial
matrix H(V CT +UDT )C, which we shall denote K. Then,
expand K(z) in terms of z: K(z) = K0+K1z+K2z

2+ · · · .
Condition 2c is then equivalent to requiring K0 +K1A +
K2A

2 + · · · = 0.

It is appropriate to recognise other notable contributions
to generalise the applicability of the discrete-time bounded
real lemma. For example, the paper by de Souza and
Xie (1992), in which the assumption of controllability is
removed, but the a-priori assumption is made that the
eigenvalues of A are all strictly within the unit circle
and, moreover, that I −DTD − BTPB > 0. In addition,
Xiao and Hill (1999) present a necessary and sufficient
condition for a transfer function G(z) = D + C(zI −
A)−1B to be DBR in the absence of controllability and
observability assumptions that involves the matrix in (2)
and the controllability matrix

C =
[
B AB · · · Ad−1B

]
. (3)

A simple example serves to illustrate the improvement
in the version of the discrete-time bounded real lemma
presented here. Consider a system Σ with A = 0, B =
0, C = 1 andD = 1. ThenD+C(zI−A)−1B = 1 which is a
discrete bounded real function. But I−DTD−BTPB = 0,
so if I −DTD −BTPB = WTW then we require W = 0.
But this implies that −1 = −CTD −ATPB = LTW = 0,
a contradiction. Note also that in this case there does
not exist a P ≥ 0 such that I − DTD − BTPB is non-
singular. Hence, this case is not considered in the version
of the discrete-time bounded real lemma presented in
de Souza and Xie (1992). Moreover, the system satisfies
the necessary and sufficient conditions outlined in Xiao
and Hill (1999, Lemma 8) involving the matrix in (2) and
the controllability matrix in equation (3), yet the system is
not dissipative. It can further be verified using the method
outlined in the previous paragraph that condition 2c does
not hold for this example. In contrast, it can be shown
that the system Σ with A = 0, B = 1, C = 0 and D = 1
does satisfy condition 2 and is in fact dissipative.

Finally, we note that Definition 1 and the results presented
thereafter are specific to systems for which the difference
equation stated in that definition is only required to hold
for non-negative k. This implies that the initial state x(0)
can be arbitratily specified. For the system Σ considered in
the previous paragraph, in the case that A = 0, B = 0, C =
1 and D = 1, then if the difference equation in Definition
1 is instead required to hold for all k including negative
values it follows that y(k) = u(k) for all k, whereupon

−
∑N

i=0 s(u,y)(i) is bounded above by zero. In contrast,
when the difference equation only holds for non-negative

k, then −
∑N

i=0 s(u,y)(i) can be made arbitrarily large for
any given x(0) ̸= 0 by picking an initial input u(0) with
the same sign as x(0) and a sufficiently large magnitude.
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Abstract: We investigate the ability of Model Predictive Control (MPC) to generate human-
like movements during interaction with mid-air user interfaces, i.e., pointing in virtual or
augmented reality, using a state-of-the-art biomechanical model. The model is partly a black
box implemented in the MuJoCo physics engine, requiring either gradient-free optimization
algorithms or gradient approximation. This makes it even more important to choose the
objective function or the MPC horizon length wisely. We introduce three objective functions
suggested in the literature and identify optimal cost weights such that the simulated trajectories
best match real ones obtained from motion capturing, i.e., we tackle an inverse optimal control
problem. For the best performing objective function, we then analyze the effects of the horizon
length and of the cost weights. This model-based approach enables the analysis of interaction
techniques, e.g., in terms of ergonomics and effort, without the need for extensive user studies.

Keywords: Human Computer Interaction, Modeling of human performance, Model Predictive
Control, Work in real and virtual environments
AMS subject classifications: 68U20, 68U07, 90C90

1. INTRODUCTION

Recent achievements in virtual and augmented reality have
brought up a variety of new interaction methods, ranging
from typing in mid-air to complex manipulation of virtual
objects. Naturally, such interaction techniques include a
number of parameters (offsets, rotations, gains, etc.) that
have a significant impact on the resulting interaction
experience. As a result, careful tuning of these parameters
is critical. Typically, this fine-tuning requires multiple
user studies and therefore takes a considerable amount
of time. These user studies could be partially replaced
by simulations, where movement is calculated by solving
Optimal Control Problems (OCPs).

This optimal control approach differs from traditional
approaches in the field of Human Computer Interaction
(HCI), which are rather evidence-based and focus on
summary statistics such as Fitts’ Law (Fitts, 1954) and
phenomena like bell-shaped velocity profiles and correc-
tive submovements. In contrast, we make use of recent
models and methods from the fields of Control Theory
and Optimal Feedback Control (OFC), which allows us
to analyze the continuous development of any quantity
of interest (e.g., end-effector position or muscle activa-
tions) (Müller et al., 2017). Building on such a control-
theoretic forward simulation of interactive movement, we
are able to identify optimal weights of a suitable objective
function, i.e., solve an inverse optimal control problem (Al-
brecht, 2013). We thus have two layers of optimization:
The inner layer calculates optimal movement trajectories
w.r.t. a given objective function. The outer layer computes
optimal weights of the objective function such that the

simulated trajectories best match real ones obtained from
motion capture. Combining this rigorous mathematical
framework with an efficient implementation of a state-of-
the-art biomechanical model has the potential to simulate
and predict human mid-air trajectories during interaction
– as we show in this work by applying Model Predictive
Control (MPC) to a model of mid-air pointing.

2. MODELING

We consider a discrete-time MPC framework 1 , i.e., we
consider the following optimal control problem

min
u(·)∈UN

N−1∑
n=0

ℓ(x(n),u(n))

s.t. x(n+ 1) = f(x(n),u(n)) ∀n ∈ {0, ..., N − 1},
x(0) = x̊

(1)

on a receding horizon of length N ∈ N, only applying the
first part of the optimal control sequence, u∗(0), in every
MPC step. In the remainder of this section, we explain and
motivate all variables appearing in (1).

2.1 System Dynamics

The components of the system dynamics f in (1) are
illustrated in Figure 1. In addition to the “Interaction
Technique” block, f encodes the human upper extremity
body dynamics, which is split in the two blocks “Muscle
Model” and “MuJoCo”.

To simulate movement of the human body we use the
fast physics simulation software MuJoCo (Todorov et al.,

1 For more details on nonlinear MPC see Grüne and Pannek (2017).
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2012). In our previous work (Fischer et al., 2021), we
have derived a MuJoCo model from a state-of-the-art
OpenSim (Seth et al., 2018) model of the upper extrem-
ity (Saul et al., 2014). This musculoskeletal model includes
a shoulder, an elbow, and a wrist, with 7 independent
joints, i.e., degrees of freedom (DOFs) (3 in the shoulder,
2 in the elbow, 2 in the wrist), and 13 coupled joints.
To generate arm movements, MuJoCo applies torque at
each independent joint. Since humans are not capable
of producing torque instantaneously, we incorporate the
following second-order muscle model.

Given a normalized control signal u ∈ U := [−1, 1]7

from the MPC block in Figure 1, we model basic muscle
properties such as activation delays for each independent
joint i = 1, ..., 7 via the second-order dynamics[

σi(k + 1)
∆σi(k + 1)

]
= A ·

[
σi(k)
∆σi(k)

]
+B · ui, (2a)

σi(0) = σ̊i, ∆σi(0) = ∆σ̊i, k ∈ {0, ...,K − 1}, (2b)

with

A =

[
1 ∆t

−∆t
(teta)

1−∆t te+ta
teta

]
, B =

[
0
∆t
teta

]
, (3)

which yields the activation vector σ ∈ [−1, 1]7 and its
approximate derivative ∆σ ∈ R7. Here, K ∈ N denotes
the number of steps, ∆t = 2 ms is the sampling time,
and te = 30 ms and ta = 40 ms are the excitation and
activation time constants, respectively, as in Van der Helm
and Rozendaal (2000).

The biomechanical simulation in MuJoCo (cf. Figure 1)
takes these activations σ as input and yields new joint
angles q ∈ R7 and velocities v ∈ R7 as well as the position
of the fingertip y ∈ R3. The subsequent Interaction Tech-
nique block maps the fingertip y to the virtual cursor po-
sition p ∈ R3. The mapping can be a simple translation by
an offset ω ∈ R3, i.e., p = y+ω, as in the “Virtual Cursor”
case that we consider, cf. Section 3. More generally, it could
represent a dynamic system with its own internal state,
e.g., for pointer acceleration techniques (Müller, 2017).

In summary, the state vector x consists of the joint
angles q and velocities v, the activations σ and their
approximate derivatives ∆σ, and the cursor position p:

x = (q,v,σ,∆σ,p)
⊤
. (4)

The initial state is denoted by x̊.

As humans are known to change control behavior not
continuously but only intermittently (Gawthrop et al.,
2011), the control signal u is assumed to only change
every 40 ms, while both MuJoCo and the Muscle Model
update every 2 ms. Thus, evaluating f(x(n),u(n)) in (1)
involves K = 20 forward steps of the muscle model (2) and
the MuJoCo simulation starting from x(n), in which the
control signal u = u(n) is kept constant.

2.2 Objective Functions

In the following, we introduce three different stage costs ℓ
that were proposed in HCI and movement science to
explain human behavior (Berret et al., 2011). Unless stated
otherwise, ∥·∥ denotes the Euclidean norm.

Distance and Control Cost (DC) A first approach is to
penalize the remaining distance from the cursor to the tar-

MPC Muscle Model MuJoCo

q,v

Interaction Technique

σu

yp

Fig. 1. High-level view on the closed feedback loop.

get and adding quadratic control costs as regularization,
i.e.,

ℓ(x,u) = ∥p− p̄∥+ r1 ∥u∥2 , (5)

where p̄ ∈ R3 is the target center and r1 ≥ 0 can be
interpreted as a weight for the trade-off between accuracy
and effort. This was used in several works studying human
movement, cf. Diedrichsen et al. (2010).

Joint Acceleration (JAC) The second approach is a
simple extension of (5), where in addition high joint
accelerations a = v̇ are penalized:

ℓ(x,u) = ∥p− p̄∥+ r1 ∥u∥2 + r2 ∥a∥2 , (6)

where r1, r2 ≥ 0 are weights. Since we cannot obtain
joint accelerations a directly from MuJoCo, we use central
differences of the velocities v (one-sided differences on the
boundaries) to approximate them. From a biomechanical
perspective, high joint acceleration leads to greater wear
of the joints and should thus be avoided. Using inverse
control, it could be shown that this cost term plays an
important role in human movements (Berret et al., 2011).

Commanded Torque Change (CTC) As a third vari-
ant, we consider the commanded torque change cost
from Nakano et al. (1999). In our case, CTC is directly
proportional to ∆σ. Therefore, the stage cost reads

ℓ(x,u) = ∥p− p̄∥+ r1 ∥u∥2 + r2 ∥∆σ∥2 , (7)

where r1, r2 ≥ 0 are weight parameters.

2.3 Numerical Solution

To solve OCP (1), we use direct single shooting to obtain
a nonlinear program, which is solved with L-BFGS-B
implemented in scipy 2 . Since gradient information is not
available in closed-form due to partly blackbox dynamics,
we approximate the gradients via central finite differences.

3. USER STUDY

We are interested in how well our model, with one of
the stage costs (5)-(7), can synthesize human movement
given different interaction techniques. To this end, we
conducted a small user study with 6 participants (Mean
Age=28.8, SD=6.6, 4 Male, all right-handed) from our
local university campus. Participants wore a head mounted
display 3 and a full-body suit to track their movements at
240Hz 4 . An LED marker was placed at the fingertip of
the index finger to generate the virtual cursor position.
Our experimental design involved two factors: interaction
technique (Virtual Cursor vs. Virtual Pad) and specific

2 https://scipy.org/
3 HTC Vive Pro, https://vive.com/de/product/vive-pro/
4 Phasespace X2E, https://phasespace.com/x2e-motion-capture/
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setting (identity vs. ergonomic). Both factors were varied
within subjects. The task was based on the discrete Fitts’
Law paradigm, following the ISO 9241-9 standard: 13
virtual targets with a diameter of 5 cm were placed on
a circle of 30 cm diameter, 50 cm in front of the right
shoulder of the participant. Participants were instructed
to move the cursor as fast as possible, only using their
shoulder and arm. Each participant performed the com-
plete ISO task consisting of 13 different targets 5 times
per condition. After some preprocessing, where reaction
times were removed as our model cannot account for them,
we further removed 158 trials due to irregularities such as
early starts or exceptionally long trials, leaving a total of
1402 movements, which we use in the following evaluation.

4. MODEL EVALUATION

In this section, we perform a pairwise comparison between
simulated cursor trajectories to real user data. The sim-
ulated cursor trajectories, which we denote by psim, are
obtained by iteratively solving the OCP (1) on a receding
horizon. This procedure is continued until the movement
duration matches that of the user.

4.1 Quantitative Comparison of Cost Functions

To evaluate how well the simulated movement matches
empirically observed user behavior, for each stage cost, we
first perform a parameter optimization of r1, r2 for each
user and condition separately, as follows. We choose five
randomly selected trials per user and condition, and for
each trial calculate the root mean squared error (RMSE)

RMSE(psim,preal)
2 =

1

M

M−1∑
n=0

∥psim(n)− preal(n)∥2 . (8)

Here, preal(n) ∈ R3 is the cursor position of the user at
time step n ∈ N, and M ∈ N is the number of time steps
of the considered trial. We then use the CMAES (Hansen,
2016) to find cost weights that minimize the total RMSE
between simulation and user position trajectories. 5 The
identified cost weights are then used in the pairwise
comparison of all 1402 movement trajectories.

To illustrate variability in human movement, we include
both signal-dependent and constant control noise in the
MPC closed-loop trajectory. That is, in every MPC step,
after solving the OCP (1) (with no noise involved), we
replace u∗(0) by a normally distributed random variable

α(u∗(0)) ∼ N (u∗(0), 0.1032 ·u∗(0)
2
+0.1852), as suggested

by van Beers et al. (2004). This illustrates a planned
movement that, upon execution, is perturbed.

A box plot containing the RMSEs of all trials for each
considered cost function is shown in Figure 2 (percentage
of outliers: DC: 4.09%; CTC: 8.03%; JAC: 5.88%). Adding
an additional cost term to the DC costs (5), as we have
done for both the JAC (6) and the CTC costs (7), results
in a significant (****, i.e., p ≤ 10−4) improvement of the
RMSEs while also reducing variance. One has to keep
in mind that both (6) and (7) introduce an additional
weight parameter r2, i.e., the observed better fit was to be

5 To avoid the even more expensive gradient estimation at this point,
we use the gradient-free evolutionary algorithm CMAES.

DC JAC CTC
0.0

0.1

0.2

0.3

RM
SE

 (m
)

****
****

Fig. 2. Box plot for the RMSE on cursor position of all
movements for the three considered cost functions.

expected. However, by far the best fit is obtained by joint
acceleration costs (6), which we focus on in the following.

4.2 Effect of the MPC Horizon

Black box models like the one in our case suffer from
the lack of efficiently available gradient information, re-
sulting in considerably long optimization times. One way
to handle extensive computation time is to reduce the
MPC horizon. While this effectively reduces the num-
ber of control variables in each subproblem, the result-
ing MPC solution may further deviate from the (theo-
retic) optimal closed-loop trajectory for the infinite time-
horizon problem (Grüne and Pannek, 2017). Therefore,
the MPC horizon should be chosen carefully. To determine
a suitable horizon length, we investigate our model with
costs (6) and optimal cost weights r1, r2 from Section 4.1
by running a qualitative comparison for MPC horizons
N = 2, 4, 6, ..., 20 on a representative trial of a single user.
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Fig. 3. Projected cursor position profiles of one trial for
varying MPC horizon N , using JAC.

The resulting projected cursor trajectories 6 for the dif-
ferent MPC horizons are shown in Figure 3. As expected,
a too short MPC horizon of N = 2 (80 ms) or N = 4
(160 ms) is not sufficient to reach the target. For N = 6
(200 ms), the controller manages to identify a control
sequence that reaches the target, however, the simulation
6 We orthogonally project the 3D trajectories onto the direct path
between initial position and target.
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clearly deviates from the user behavior (red line). For
horizons starting from N = 8 (320 ms), trajectories hardly
differ and visually match the user trajectory quite well.

4.3 Cost Function Sensitivity Analysis

To get insight in the individual effect of each cost
weight r1, r2 in (6), we performed a numerical sensitivity
analysis. For several combinations of the control weight
r1 and the joint acceleration weight r2, we simulated all
trials of a single participant in a single condition (61 in
total) 7 and calculated the average RMSE between the
corresponding simulation and user cursor position trajec-
tories, analogous to (8).

Figure 4 shows an almost convex surface, indicating a local
minimum close to (r1, r2) = (0.01, 0.0001). This clearly
shows that both too high control costs and too low joint
acceleration costs result in large RMSE values. However,
it is also visible that removing control costs completely,
i.e., setting r1 = 0, leads to a (slight) increase in RMSE
values. This reflects that moving the human body does
require some muscle control effort.
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Fig. 4. Average RMSE for one representative participant
and condition for different cost weights of JAC.

5. CONCLUSION

In this work, we demonstrated the application of Model
Predictive Control to the HCI problem of evaluating inter-
action techniques through simulation. From the three con-
sidered cost functions, the combination of distance, control
and joint acceleration cost showed the most promising
results in terms of matching human pointing behavior.
Our analysis of the MPC horizon showed that for the
considered pointing task, a horizon of at least 320 ms
(or ≈ 60% of the total movement duration) is required to
reliably reach the target. The subsequent sensitivity anal-
ysis brought novel insights in the choice of cost weights,
showing a clear valley towards a (local) minimum, sug-
gesting that large control costs should be avoided. With
this work, we have established a sound basis for evaluating
interaction techniques through simulation and have thus
taken a first step towards being able to partially replace
user studies in the future.
7 We exemplarily chose participant U1 and the Virtual Cursor
identity, i.e., the fingertip corresponds to the cursor position.
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Abstract: We study the optimal landing problem for aerial vehicles under (1) a fixed landing
time horizon or (2) the minimum time horizon. Both problems can be framed into solving
the corresponding two-point boundary value problems. However, solving the boundary value
problem in numerics is challenging, primarily due to the lack of good initial conditions. We
present a space-marching scheme combined with machine learning techniques to provide good
initial conditions for the boundary value problem solver. The algorithm greatly improves the
solver’s performance by increasing the success rate and reducing the computation time.

Keywords: optimal control, deep neural networks, Pontryagin minimum principle, quadrotors,
landing problem

1. INTRODUCTION

The optimal landing problem concerns optimally control-
ling the aerial vehicles to land on the target position.
Due to the high dimensionality of the state space and
nonlinearity of the dynamics, solving the optimal landing
problem has been a numerically challenging task for a
long time. There has been a lot of work (Hu and Mishra,
2017; Zhu et al., 2019) focusing on solving the optimal
landing problem. However, the exsiting methods still have
some limitations such as simplified model, sub-optimal
trajectory, reliance on good initial guesses, and long com-
putation time.

In recent years, deep neural networks (DNN) have been
widely used to solve challenging optimal control problems.
For example, Zhu et al. (2019) use DNNs to learn the opti-
mal action to improve the efficiency for the fuel-optimum
lunar landing problem. Nakamura-Zimmerer et al. (2021)
propose to learn the value function via DNN adaptively
and predict the optimal feedback control.

This paper proposes a new numerical method enhanced
by DNNs to solve the optimal landing problems and tackle
the aforementioned difficulties. We will take the quadrotor
unmanned aerial vehicles (UAVs) as an example to demon-
strate our methodology. Quadrotor UAVs have received
widespread attention in recent years due to their wide
range of application scenarios. Our considered problem
deals with the full quadrotor dynamic model and aims
to achieve an optimal landing path with minimum time
and control effort. We use the Pontryagin minimum prin-
ciple to transform the original optimal landing problem
into a two-point boundary value problem (TPBVP). One
critical difficulty of TPBVP-based algorithms is to find
good initial guesses. To overcome this difficulty, we design

a DNN-based algorithm to provide an initial guess of
the optimal landing time and a space-marching scheme
to provide an initial guess of the control. Compared to
the baseline methods, the proposed algorithm obtains the
optimal landing trajectory with a much higher success rate
and less computation time.

2. FORMULATION OF THE OPTIMAL CONTROL
PROBLEM

We consider a deterministic system defined by the follow-
ing ordinary differential equation{

ẋ(t) = f(x(t),u(t)), t ∈ [0, tf ]

x0 = x0, g(x(tf )) = 0.
(1)

where x(t) ∈ Rn indicates the states, u(t) ∈ U ⊂ Rm

represents the controls with U being the admissible set of
the controls, f : Rn×U 7→ Rn and g : Rn 7→ Rk are smooth
functions describing the dynamics and terminal condition.
We call {x,u, tf} a feasible path if (1) is satisfied and use
P to denote the set of all feasible paths. The performance
function is defined by

J [x,u, tf ] =

∫ tf

0

L(x(t),u(t))dt, (2)

where L : Rn × U 7→ R+ is the nonnegative running cost.

We will consider two different but closely related problems.
In the first problem, tf is a given positive constant and we
aim to minimize the performance function over all feasible
paths with a fixed terminal time tf :

min
(x,u):{x,u,tf}∈P

J [x,u, tf ]. (3)

We call this problem a fixed terminal time problem. An-
other problem is called free terminal time problem, where
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we aim to minimize the performance function over all
feasible paths:

min
{x,u,tf}∈P

J [x,u, tf ]. (4)

2.1 Pontryagin’s Minimum Principle

Pontryagin’s minimum principle (PMP) derives the nec-
essary conditions for optimality, which converts the op-
timal control problems (3) or (4) to two-point boundary
value problems (TPBVPs). In this paper, we assume the
solutions of the TPBVP are optimal. Then one can solve
the TPBVPs to obtain the solution to the original control
problem. To state the PMP, we introduce the costate
variable λ ∈ Rn and define the Hamiltonian function

H(x,λ,u) = L(x,u) + λ · f(x,u). (5)

The PMP reduces the fixed terminal time problem (3) to
a system of 2n equations in the form of a TPBVP{

ẋ(t) = ∂TλH(x(t),λ(t),u∗(t)),

λ̇(t) = ∂TxH(x(t),λ(t),u∗(t)),
(6)

with the boundary conditions given by the original bound-
ary conditions augmented with the transversality condi-
tions: {

g(x(tf )) = 0,

A∇g(x(tf )) = λ(tf ).
(7)

Here A ∈ Rn×k is a matrix multiplier. The optimal control
u∗(t) should satisfy the minimization of the Hamiltonian
at each t:

u∗(t) = arg min
u∈U

H(x,λ,u). (8)

Equations (6), (7) and (8) together complete the PMP for
the fixed terminal time problem (3). For the free terminal
time problem (4), besides (6), (7) and (8), we need the
following condition to determinate the optimal terminal
time tf :

H(x(tf ),λ(tf ),u∗(tf )) = 0. (9)

2.2 Optiaml landing problem

The dynamics of the quadrotor UAV is modeled as follows
ṗ = RT (η)vb

v̇b = −wb × vb −R(η)g +
1

m
fu

η̇ = K(η)wb

ẇb = −J−1wb × Jwb + J−1τu,

(10)

where p = (x, y, z)T is the inertial position in the earth
frame and vb = (vx, vy, vz) is the inertial velocity of
the quadrotor in the body frame. η = (φ, θ, ψ) is the
attitude of the quadrotor in the earth frame defined by the
Euler angles: roll(φ), pitch(θ) and yaw(ψ). wb = (p, q, r)T

denotes the angular velocity in the body frame. fu =
(0, 0, T )T and τu = (τx, τy, τz)T are the total thrust and
body torques from four rotors, which are forces applied by
the control variables to adjust the quadrotor’s dynamics.
The constants m and g = (0, 0, g)T denote the mass and
the gravity vector, respectively. R(η) ∈ SO(3) and K(η)
are given matrix functions denoting the direction cosine
matrix and attitude kinematic matrix. J denotes the
constant inertia matrix. We let x = (pT ,vTb ,η

T ,wT
b )T ∈

R12 so that x denotes the state variable of our optimal

landing problem. Meanwhile, we denote the control as
u = (T, τx, τy, τz)T . Then we have fu = Au and τu = Bu
with A and B are two constant matrices.

We aim to solve the quadrotor landing problem with
minimum time and control effort under the dynamics
described above. That is, to find the optimal controls to
steer the UAVs from some initial states x0 ∈ S0 to a given
target xtf ∈ Stf satisfying g(xtf ) = 0. For the landing
problem, Stf has the form {xtf | p(tf ) = v(tf ) = w(tf ) =
0;φ(tf ) = θ(tf ) = 0}. The running cost L is defined as

L(x,u) = 1 + (u− ud)TQu(u− ud),

where ud = (mg, 0, 0, 0) represents the reference control
that balances with gravity and Qu = diag(1, 1, 1, 1) repre-
sents the weight matrix characterizing the cost of deviating
from the reference control. Then the description of the
optimal landing problem is complete. With the aforemen-
tioned Pontryagin’s minimum principle, we can transform
both optimal landing problems with fixed terminal time
and free terminal time to the corresponding TPBVPs.

3. MACHINE LEARNING ENHANCED METHOD
FOR SOLVING OPTIMAL LANDING PROBLEM

This section presents our machine learning enhanced algo-
rithm for solving the optimal landing problem, accompa-
nied by the numerical results on the optimal landing prob-
lem of the quadrotor UAVs. The same system parameters
as in Madani and Benallegue (2006) are used in this paper:
the mass m = 2kg, the gravity g = 9.81m/s2, the moment
of of inertia Jx = Jy = Jz/2 = 1.2416kg ·m2. We specify
the domain of initial state as S0 = {x, y ∈ [−10, 10], z ∈
[5, 100], vx, vy, vz ∈ [−0.5, 0.5], θ, φ ∈ [−π/4, π/4], ψ ∈
[−π, π];w = 0}. We always uniformly sample 100 initial
positions x0 from S0 to estimate the success rate and
average computation time of the algorithm. Throughout
the paper, we will use the BVP solver in Kierzenka and
Shampine (2001) to solve the TPBVP. Figure 1 presents
an example of the optimal landing path of the quadrotor
UAV from the starting position x0 to the origin.

Fig. 1. An example of the optimal trajectory for the
landing problem

3.1 Use Solution to the fixed terminal time as initial guess

Although we have the PMP (6)–(9) characterizing the
solution of the optimal landing problem with free terminal
time, we observe that the associated TPBVP is numer-
ically challenging to solve. The main reason is the lack
of a good initial guess for tf and the paths of x(t),λ(t).
Without any prior knowledge, the simplest choice is to
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initialize tf with a reasonable scalar and x(t),λ(t) with
constant zero. However, the BVP solver hardly converges
under this choice. Table 1 reports its success rate with
a few different initial guesses of tf . We can see that,
with zero initialization of the path, the success rate of
solving free terminal time TPBVP is always extremely low,
regardless of the initial guess of tf .

Table 1. Solving TPBVP corresponding to
the free terminal time problems with zero

initialization

initial guess t̃∗f 4 8 12 16 20 24

success rate 3% 4% 0% 0% 1% 1%

Table 1 suggests that the initial guess of x(t) and λ(t)
plays an important role in the convergence of the BVP
solver when solving the free terminal time problem. To
address this issue, we notice that the solution of the free
terminal time problem is also the solution of a correspond-
ing fixed terminal time problem if the fixed terminal time
tf equals the optimal terminal time t∗f . In other words,
if we have a reasonable guess of t∗f , the solution of the
fixed terminal time problem can provide us a good initial
guess to the free terminal time problem. Moreover, the
fixed terminal time problem is easier to solve with many
efficient techniques, such as marching methods introduced
in the next subsection. Therefore, we can first guess a
value of the optimal terminal time t̃∗f and solve the fixed

terminal time problem with tf = t̃∗f . Then we use its
solution as the initial guess to solve the free terminal
time problem. This approach can be viewed as a warm
start method for solving the optimization problem. The
corresponding algorithm is summarized in Algorithm 1,
in which we again use zero to initialize the paths. The
corresponding numerical results are presented in Figure
2. In Figure 2, the label “free” means the success rate of
the free terminal time problem while the label “fix/free”
means the success rate of problems that the fix terminal
time problem has been solved while the corresponding free
terminal time problem failed. Because we will not solve the
free terminal time problem when the fixed terminal time
problem fails, the success rate of the free terminal time
problem is always lower than the success rate of the fixed
terminal time problem. Comparing Figure 2 with Table 1,
we can see that warming start with the solution to the fixed
terminal time problem significantly improves the success
rate, although the rate is still not high enough for practical
applications.

Algorithm 1 Warm start with fixed terminal time solu-
tion
1: Input: The initial state x0; the guess value of the

optimal terminal time t̃∗f .

2: Solve the fixed time problem with tf = t̃∗f using zero
initialization.

3: Solve the free time problem by using the solution of
the corresponding fixed time problem as initial guess.

4: Output: The solution of the free time problem.

Fig. 2. Sucess rate of Algoriuthm 1: warm start with fixed
terminal time solution.

3.2 Space-marching for solving the fixed terminal time
problem

To further improve the success rate of solving the TPBVP
corresponding to the fixed terminal time problem, we
propose a space-marching method (Murio, 2002) tailored
to the optimal landing problem. Its intuition is as follows.
Solving the fixed time problem is still difficult since the
initial state x0 is far away from the terminal set Stf . We
can solve a simpler fixed time problem in which the initial
state is closer to the terminal state, while the solution
is not far from the original fixed time problem. After the
simpler fixed time problem is solved, we can use its solution
as the initial guess to solve the original harder one. To
present this method in a more general and systematic way,
we say xend is a terminal state if there exists u ∈ U such
that for any tf ≥ 0, the path

x(t) ≡ xend, u(t) ≡ u, 0 ≤ t ≤ tf
is the optimal path for the fixed-time problem with tf as
terminal time and x0 = xend. We always assume such
a terminal state exists for the optimal landing problem.
In this paper, we choose the origin point (of the 12-
dimensional state space) as the terminal state. Then we
evenly select K points in the line segment from xend to
x0, and denote them as {x1

0,x
2
0, · · · ,xK

0 } according to
their increasing distances to xend (xK

0 = x0). In each
marching step, we solve the fixed time problem with the
initial state xk

0 by using the solution obtained from the

fixed time problem with the initial state xk−1
0 as the initial

guess. The process repeats until k = K. This algorithm
is called warm start with fixed terminal time solution
through space-marching, as summarized in Algorithm 2.

Fig. 3. Success rate and computation time of Algorithm 2:
warm start with fix terminal time solution through
space-marching with different K.
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Algorithm 2 Warm start with fixed terminal time solu-
tion through space-marching

1: Input: The initial state x0; the guess value of the
optimal terminal time t̃∗f ; the marching number K.

2: Evenly select K points in the line segment from xend

to x0, and denotes them as {x1
0,x

2
0, · · · ,xK

0 }.
3: Set the initial guess xaug as the zero initial guess.
4: for k = 1, 2, · · · ,K do
5: Solve the fixed terminal time problem with initial

state xk
0 by using the initial guess xaug.

6: replace the initial guess xaug with the solution.
7: end for

Solving the free time problem with xaug as the initial
guess of the path and t̃∗f as the initial guess of terminal
time.

8: Output: The solution of the free terminal time prob-
lem with initial state x0.

Figure 3 shows the success rate and computation time of
Algorithm 2 with different choices of the initial guess t̃∗f
and K. We can see that most fixed terminal time problems
can be solved with a high success rate if the predicted
terminal time t̃∗f is not too small and the marching
number K is large enough. However, the free terminal
time problem may not be solved successfully if the guessed
terminal time is not close enough to the real terminal time.
To further improve the success rate of the free terminal
time problem, we need a more accurate prediction of the
optimal terminal time.

3.3 Predict the Optimal Terminal Time

Now we consider empowering Algorithm 2 by predicting
the optimal terminal time as a function of the initial
state x0 through a linear model or a neural network. To
do so, we first prepare a dataset for supervised learning.
We randomly select 300 initial positions x0 and use
Algorithm 3 with K = 60, t̃∗f = 24 to collect 300 optimal

landing paths. We select 100 positions (uniformly in time)
on each optimal landing path and store the corresponding
optimal landing time to obtain the training data. We have
30000 pairs of starting positions and optimal ending times
for training in total. We then use them to optimize a linear
model and a neural network model (3 three hidden layers
and 64 neurons in each layer) based on the objective being
the squared difference between the predicted t̃∗f and the
truth optimal terminal time. Then, when we need to solve
a free terminal time problem with a new initial state x0, we
first use the linear model or the neural network to predict
the optimal terminal time t̃∗f associated with x0 and use
Algorithm 2 to solve the free terminal time problem.

The success rates of using a linear model or a neural
network to predict the optimal terminal time with different
space-marching numbers are presented in Figure 4. Com-
paring the results with those using the guessed constant
optimal terminal time independent of the initial state in
Figure 3, we can see that both the linear model and neural
network model achieves much higher success rates. Using
a neural network attains higher success rates and takes
less computation time because it can more accurately
predict the optimal terminal time. With the help of neural
networks and the space-marching with K = 60, we achieve

a 99% successful rate and the average computational time
is about 17 seconds, which performs the best among the
methods considered in this paper.

Fig. 4. NN prediction of tf as the input to Algorithm 2 vs.
Linear prediction of tf as the input to Algorithm 2.

4. SUMMARY AND DISCUSSION

In this paper, we propose a machine learning enhanced
method to solve the optimal control problem of quadrotor
landing. To solve the free terminal TPBVP, we first solve
a fixed terminal time TPBVP and then use its solution as
an initial guess. The initial guess for the optimal landing
time is predicted by a neural network that is trained in
advance. A space-marching method is proposed to improve
the efficiency of solving the fixed terminal time problem.
We demonstrate the effectiveness of the proposed method
through a series of experiments.

When solving the optimal landing problem, we have ob-
served that directly learning the mapping from states to
controls or value functions with a DNN and using its
prediction as an initial guess for the TPBVP leads to di-
vergence. Improving the stability of neural network-based
control is an important future direction of research.
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Abstract: We consider mobile robots described through unicycle dynamics equipped with
range sensors and cameras, one in the front and one in the back providing measurements of the
distance and misalignment to a target. We derive locally asymptotically stabilizing control laws
driving the robot to the target position and orientation. The local control laws are combined
into a hybrid global stabilizer, switching between control laws relying on the measurements
from the front and rear sensors. Using Lyapunov arguments in the local setting as well as in
the hybrid systems formulation, we prove global asymptotic stability of the target set for the
hybrid closed-loop system. The results are illustrated on numerical examples.

1. INTRODUCTION & MOTIVATION

Driving a robot described through unicycle dynamics
to a target set with a particular fixed final orientation
is a difficult task due to nonholonomic constraints. In
particular, the origin of the unicycle dynamics cannot be
globally asymptotically stabilized through a static state
feedback Brockett (1983). Indeed unicycle dynamics do
not satisfy the so-called Brockett conditions. Control laws
guaranteeing convergence to the origin, thus imply the
necessity to combine the controller designs with reference
tracking or path following approaches or to rely on discon-
tinuous feedback laws instead. We refer to Tzafestas (2013)
as a general reference for mobile robots and control.

In this work, we follow the second path, i.e., we consider
discontinuous feedback laws. While Lipschitz-continuous
feedback laws guarantee some intrinsic robustness proper-
ties with respect to stability and with respect to existence
and uniqueness of solutions, well-posedness and robustness
is more difficult to achieve with discontinuous feedback
laws (Sontag (1999)). To define a globally asymptotically
stabilizing feedback we use a hybrid systems formalism
and borrow results from hybrid Lyapunov theory (Goebel
et al. (2012)). We define locally stabilizing control laws and
orchestrate them through a switching mechanism to obtain
global results. The local controller design is motivated
through the results and derivations in Aicardi et al. (1995),
whereas the global design and the setup are motivated and
derived differently.

We consider mobile robots, which in Cartesian coordi-
nates are described through the dynamics

ẋ =

 ṗ1
ṗ2
ϕ̇

 = f(x, u) =

[
u1 cos(ϕ)
u1 sin(ϕ)

u2

]
, (1)

where p = [p1 p2]
T ∈ R2 captures the unicycle position in

the plane, ϕ ∈ R captures its orientation and the input u =
[u1 u2]

T ∈ R2 captures the velocity and angular velocity.

⋆ P. Braun and L. Zaccarian are supported in part by the Agence
Nationale de la Recherche (ANR) via grant “Hybrid And Networked
Dynamical sYstems” (HANDY), number ANR-18-CE40-0010.
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Fig. 1. The robot is equipped with range sensors and cameras (a
front and a rear camera) with overlapping fields of view, pro-
viding measurements (r, αF, βF) and (r, αR, βR), respectively.
Each measurement is only available when the target is in the
camera’s field of view αi ∈ [−π

2
− δ, π

2
+ δ], i ∈ {F,R}.

We assume that the mobile robot is equipped with various
sensors, including a range sensor, measuring the distance
r ∈ R≥0 to the target position, and two cameras (a front
and a rear camera). The cameras provide measurements
of the misalignment of the heading of the robot in terms
of angles αF and αR corresponding to measurements
from the front and the rear camera. In addition, the
cameras provide measurements of the angles βF and βR,
as represented in Figure 1. By combining αi and βi,
i ∈ {F,R}, the mismatch of the robot orientation and
the target orientation is defined. The setting is visualized
in Figure 1, where it is apparent that, the field of view of
both front and rear cameras are as follows

αF, αR ∈ [−π
2 − δ, π

2 + δ], (2)

where δ ∈ (0, π
2 ) induces some overlap and ensures that the

combined fields of view are covering an area of 360◦. While
in certain configurations only one camera is available
(left and right cases in Figure 1), in some configurations
the target is in the field of view of both cameras. This
motivates the use of a hybrid controller, which switches
between measurements from the two cameras and makes
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use of different error dynamics describing the mismatch of
the robot and the target position and orientation.

2. ROBOT DYNAMICS

In this section we derive dynamics in local coordinates
defined as zi = [ri βi αi]

T , i ∈ {R,F}. The relation
between the mobile robot in Cartesian coordinates and
the local coordinates related to the sensor measurements,
is described through the coordinate transformations[

p1
p2
ϕ

]
=

[
r cos(αR − βR)
r sin(αR − βR)

−βR

]
,

[
p1
p2
ϕ

]
=

[
r cos(αF−βF−π)
r sin(αF−βF−π)

−βF

]
(3)

where F and R again correspond to the front and rear
cameras. The coordinate transformations (3) follow from
trigonometric arguments applied to the variables defined
and illustrated through Figure 2.

p1

p2

θ

Φ

βR
αR

p1

p2

θ

Φ
βF

αF

Fig. 2. Coordinate transformation from global Cartesian coordi-
nates to local coordinates depending on the robot orientation.

The local coordinates are defined on the domain

zi ∈ Z := R≥0 × R× [−π
2 − δ, π

2 + δ], i ∈ {F,R}, (4)

for δ ∈ (0, π
2 ), where the third component of zi evolves in

a bounded set as defined in (2). Whenever the target is in
the field of view of both cameras (see the middle sketch in
Figure 1), by simple geometric considerations we obtain

αF = αR − π sign(αR), βF = βR,

αR = αF − π sign(αF), βR = βF.
(5)

Moreover, again due to the fact that δ > 0 by assumption,
for r ̸= 0, i.e., |p| ̸= 0, we can equivalently represent the
robot through Cartesian coordinates x or through at least
one of the local coordinates zi, i ∈ {F,R}.

As a next step, we derive from (1) and (3) the dynamics
in the local coordinates

żR = fR(zR, v) and żF = fF(zF, v), (6)

with a transformed input v ∈ R2.

Lemma 1. Whenever r ̸= 0, the dynamics (1) can be
equivalently represented through (6) where

fR(zR, v)=

[
v1r cos(αR)

−v2
−v1 sin(αR)− v2

]
, fF(zF, v)=

[ −v1r cos(αF)
−v2

v1 sin(αF)− v2

]
(7)

with transformed input v1r = u1 and v2 = u2. ⌟

Proof. We start with a derivation of fR. Let r ̸= 0 for the
remainder of the proof and define the angle θ = αR − βR.

Proceeding as in (Nešić et al., 2011, eq. (41)), we provide

an alternative expression of the Jacobian ∂p
∂p = I. In

particular, using the definition of θ as well as (3), the
matrix can be rewritten as

∂p

∂p
=

[
∂r
∂p1

cos(θ) ∂r
∂p2

cos(θ)
∂r
∂p1

sin(θ) ∂r
∂p2

sin(θ)

]
+r

[
− sin(θ) ∂θ

∂p1
− sin(θ) ∂θ

∂p2

cos(θ) ∂θ
∂p1

cos(θ) ∂θ
∂p2

]

=

[
cos(θ)
sin(θ)

] [
∂r
∂p1

∂r
∂p2

]
+ r

[
− sin(θ)
cos(θ)

] [
∂θ
∂p1

∂θ
∂p2

]
=

[
cos(θ)
sin(θ)

]
∂r

∂p
+ r

[
− sin(θ)
cos(θ)

]
∂θ

∂p
.

With the definition J =
[
0 −1
1 0

]
and the observations that

p

r
=

[
cos(θ)
sin(θ)

]
and Jp = r

[
− sin(θ)
cos(θ)

]
, (8)

for r ̸= 0, the calculations above can be further simplified
and summarized as

I =
∂p

∂p
=

∂

∂p

(
r

[
cos(θ)
sin(θ)

])
=

1

r
p
∂r

∂p
+ Jp

∂θ

∂p
. (9)

Note that pTJp = 0 follows from the definition of J . Hence,
left-multiplying (9) by pT gives

pT = 1
rp

T p ∂r
∂p + pTJp∂θ

∂p = r2

r
∂r
∂p = r ∂r

∂p .

Similarly, the following equations hold

(Jp)T I = 1
rp

TJT p ∂r
∂p + pT p∂θ

∂p = r2 ∂θ
∂p ,

which leads to the partial derivatives
∂r
∂p = 1

rp
T and ∂θ

∂p = 1
r2 (Jp)

T . (10)

With these calculations, the definition of the function fB
follows from (1):

ṙ = ∂r
∂p ṗ = 1

rp
T ṗ = 1

r [r cos(θ) r sin(θ)]
[
u1 cos(ϕ)
u2 sin(ϕ)

]
= u1[cos(θ) cos(ϕ)− sin(θ) sin(ϕ)] = v1r cos(ϕ− θ)

= v1r cos(−βR − αR + βR) = v1r cos(αR)

θ̇ = ∂θ
∂p ṗ = 1

r2 p
TJT ṗ = 1

r2 [r cos(θ) r sin(θ)]
[

u1 sin(ϕ)
−u1 cos(ϕ)

]
= u1(cos(θ) sin(ϕ)− sin(θ) cos(ϕ)) = v1 sin(ϕ− θ)αR)

= −v1 sin(αR)

β̇R = −ϕ̇ = −v2

α̇R = β̇R + θ̇ = −v2 − v1 sin(αR).

Observe that for fF we need to consider the relation
αR = αF−π and thus the representation fF follows. 2

While Lemma 1 excludes the case r = 0, note that the
functions fR and fF are well-defined for r = 0.

3. LOCAL CONTROLLER DESIGN

In this section, we derive control laws locally asymptot-
ically stabilizing the set

A = {0} × R× {0} (11)

as well as the origin of the dynamical system (6). The
Lyapunov construction is inspired by Aicardi et al. (1995).

Lemma 2. Let the feedback gains kr, kα ∈ R>0 be arbi-
trary. Consider the dynamics (6) with zR ∈ Z. Then

vR =

[
−kr cos(αR)

kr cos(αR) sin(αR) + kααR

]
(12)

locally asymptotically stabilizes the set A in (11). More-
over, V (zR) =

1
2 (r

2 + α2
R) is a Lyapunov function for the

closed-loop dynamics with respect to A. ⌟

Proof. First observe that 1
2 |zR|

2
A ≤ V (zR) ≤ 1

2 |zR|
2
A, i.e.,

V radially unbounded. Moreover, the directional derivative
of V along the dynamics satisfies
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⟨∇V (zR),fR(zR, vR)⟩
= r2vR1 cos(αR) + α(−vR2 − vR1 sin(αR))

= −krr
2 cos2(αR)− kαα

2
R < 0,

and thus d
dtV (zR(t)) < 0 for all zR ∈ R3\A which implies

asymptotic stability of A. 2

To additionally ensure that βR(t) → 0 for t → ∞, we
may include an additional term in the feedback law vR and
in the Lyapunov function.

Lemma 3. Let kr, kα, kβ ∈ R>0 be arbitrary. Consider the
dynamics (6) with zR ∈ Z. Then the control law

vR=

[ −kr cos(αR)

kr cos(αR) sin(αR)+kααR+kβ(αR−βR)
cos(αR) sin(αR)

αR

]
(13)

is well-defined for all zR ∈ Z, locally asymptotically

stabilizes the origin 0 ∈ R3 and V (zR) =
1
2 (r

2 +
kβ

kr
(αR −

βR)
2 + α2

R) is monotonically decreasing for all zR ∈ Z. ⌟

Proof. First note that limαR→0
sin(αR)

αR
= 1 and thus the

feedback law is well-defined. Moreover, since the matrix[
kβ+kr −kβ

−kβ kβ

]
is positive definite, V is radially unbounded.

Extending the derivations in Lemma 2, it holds that

⟨∇V (zR), fR(zR, vR)⟩
= r2vR1 cos(αR)+

kβ

kr
(−vR2

−vR1
sin(αR)+vR2

)(αR−βR)

+ αR(−vR2 − vR1 sin(αR))

= −krr
2 cos2(αR)− kαα

2
R + kβ(αR − βR) cos(αR) sin(αR)

− αRkβ(αR − βR)
(
cos(αR)

sin(αR)
αR

)
= −krr

2 cos2(αR)− kαα
2
R ≤ 0 ∀ zR ∈ Z

and thus, local stability of the origin follows. Moreover,
for all zR ∈ Z for which V is not strictly decreasing it
holds that żTR = [ 0 kββR kββR ] , whose right-hand side is
unequal to zero for all βR ̸= 0. Hence, local asymptotic
stability follows from the Krasovskii-LaSalle invariance
theorem (Vidyasagar, 1993, Theorem 5.3.77). 2

Observe that through kβ = 0, Lemma 3 covers the result
of Lemma 2 as a special case because (13) reduces to (12).
For the zF-dynamics in (6), using the same ideas, a result
equivalent to Lemma 3 can be derived. We summarize this
result in the following corollary.

Corollary 1. Let kr, kα, kβ ∈ R>0 be arbitrary. Consider
the dynamics (6) with zF ∈ Z. Then the control law

vF=

[
kr cos(αF)

kr cos(αF) sin(αF)+kααF+kβ(αF−βF)
cos(αF) sin(αF)

αF

]
(14)

is well-defined for all zF ∈ Z, locally asymptotically

stabilizes the origin 0 ∈ R3 and V (zF) =
1
2 (r

2 +
kβ

kr
(αF −

βF)
2 + α2

F) is monotonically decreasing for all zF ∈ Z. ⌟

4. A GLOBAL HYBRID STABILIZER

In this section we combine the two local control laws
introduced in the preceding section in a hybrid systems
formulation. As a first step, we introduce an additional
discrete variable q ∈ {−1, 1} where q = −1 represents the
rear camera R and q = 1 represents the front camera F.
In the overall system representation we consider the state

ξ = [r β α q]T ∈ Ξ (15a)

where the pair (α, β) can either represent (αR, βR) when
q = −1 or (αF, βF) when q = 1 and where the domain Ξ
is defined as

Ξ := R≥0 × R× [−π
2 − δ, π

2 + δ]× {−1, 1} (15b)

for δ ∈ (0, π
2 ). With this definition, the dynamics (6) can

be summarized through the flow map

ξ̇ =

 ṙ

β̇
α̇
q̇

 =

 −qv1r cos(α)
−v2

−v2 + qv1 sin(α)
0

 , ξ ∈ C (15c)

and the feedback laws (13) and (14) are captured through

v=

[
qkr cos(α)

kr cos(α) sin(α)+kαα+kβ(α−β) cos(α) sin(α)α

]
(15d)

The set C, denoting the flow set, is defined as

C := {ξ ∈ Ξ : |α| ≤ π
2 + δ, |β| ≤ 3

2π + δ}.
For the jump map and the jump set, we first define the
functions

gβ(ξ) =

[ r
β−2π sign(β)

α
q

]
, gα(ξ) =

[ r
β

α−π sign(α)
−q

]
and the sets

Dα := {ξ ∈ Ξ : |α|≥ π
2 +δ ∧ |β|≤ 3

2π+δ},
Dβ := {ξ ∈ Ξ : |β|≥ 3

2π+δ}.
Then the jump map is defined as

ξ+ ∈ G(ξ) =

{ {gβ(ξ)} if ξ ∈ Dβ\Dα,
{gα(ξ)} if ξ ∈ Dα\Dβ ,

{gα(ξ)} ∪ {gβ(ξ)} if ξ ∈ Dα ∩ Dβ ,
(15e)

and the jump set is defined as the union

D := Dβ ∪ Dα. (15f)

Note that β+ = β − 2π sign(β) defined through gβ
guarantees that β+ and β differ by a multiple of 2π
and |β+| < |β| for all ξ ∈ Dβ (wherein |β| ≥ 3

2π +
δ). Thus, β+ and β describe the same information with
respect to the position of the robot but β+ is closer to the
target orientation β = 0. Similarly, α+ = α − π sign(α)
defined through gα captures the properties in (5) when
the perspective of the cameras is switched. Additionally,
from the definition of the hybrid system it is clear that
multiple consecutive jumps are possible, but, due to the
selection of the parameter δ, Zeno behavior is not possible.
Finally, since (15) satisfies (Goebel et al., 2012, As. 6.5),
then asymptotic stability is robust in the sense of (Goebel
et al., 2012, Ch. 7).

Theorem 1. Let δ ∈ (0, π
2 ), kr, kα ∈ R>0 and kβ ∈

(0, 2δkr

3π ] be arbitrary. Then, the set Aq = {0} × {0} ×
{0}×{−1, 1} is globally robustly asymptotically stable for
the hybrid closed-loop system dynamics (15). Moreover,

V (ξ) = 1
2 (r

2+
kβ

kr
(α−β)2+α2) is monotonically decreasing

along solutions ξ : dom(ξ) → Ξ. ⌟

Proof. We have established local properties of the closed-
loop dynamics in Lemma 3 and in Corollary 1. What is left
to show, is that the function V is decreasing at discrete
time updates. Let ξ ∈ Dβ . Then it holds that

V (ξ+)− V (ξ) =
kβ

2kr
(α+ − β+)2 − kβ

2kr
(α− β)2

=
kβ

2kr

[
4(α− β) sign(β)π + 4π2

]
= 2

kβ

kr

[
α sign(β)π − β sign(β)π + π2

]
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≤ 2
kβ

kr

[
(π2 + δ)π − ( 32π + δ)π + π2

]
= 0.

Similarly, for ξ ∈ Dα it holds that

V (ξ+)−V (ξ)=
kβ

2kr
(α+−β+)2+ 1

2 (α
+)2− kβ

2kr
(α−β)2− 1

2α
2

=
kβ

kr
(α− β) sign(α)π +

kβ

2kr
π2 − |α|π + 1

2π
2

= −kβ

kr
|α|π +

kβ

kr
β sign(α)π +

kβ

2kr
π2 − |α|π + 1

2π
2

= −kβ

kr
|α|π + β sign(α)π +

kβ

2kr
π2 − |α|π + 1

2π
2

≤ −kβ

kr
(π2 +δ)π+

kβ

kr
( 3π2 +δ)π+

kβ

2kr
π2 − (π2 + δ)π + 1

2π
2

≤ −δπ + 3
2
kβ

kr
π2 ≤ 0

and where the last inequality follows from the assumption
kβ ≤ 2δkr

3π . Thus, V is monotonically decreasing and we can
conclude global asymptotic stability. Finally, robustness
follows from (Goebel et al., 2012, Thm 7.21). 2

5. NUMERICAL SIMULATIONS

We illustrate the results derived in the preceding section
based on numerical simulations. Figure 3 shows closed-
loop solutions using the feedback law (15d) with kβ = 0,
i.e., the final orientation ϕ (or β) is not penalized. In par-

Fig. 3. Closed-loop solutions of the hybrid system (15) with
controller gain kβ = 0.

ticular, closed-loop solutions for various initial conditions
in the (p1, p2)-plane, as well as the evolution over time in
the x and z coordinates are shown. The remaining gains
are defined as kr = 2 and kα = 1, respectively. Addition-
ally, the parameter δ = π

10 is used for the simulations.
To illustrate robustness properties of the controller, ξ is
replaced by ξ + [εr εβ εα 0]T in the right-hand side of
(15c) in the simulations, where εr, εβ and εα represent
white Gaussian noise with zero mean and standard devi-
ations σr = 0.05, σβ = σα = 3π

180 . As expected from the
theoretical results, r and α converge to to origin, while the
angle β does not necessarily converge to zero.

For the simulations in Figure 4 the gain kβ = 0 has

been replaced by kβ = 2δkr

3π . As expected, the controller
ensures that additionally the orientation in terms of β or
ϕ, respectively converges to zero for t → ∞ according to
Theorem 1. Figure 4 additionally shows the decrease of
the function V defined in Theorem 1.

6. CONCLUSIONS

Inspired by the controller design in Aicardi et al. (1995),
in this work we have proposed a globally stabilizing con-
troller for unicycle dynamics relying on a hybrid systems
formulation. The controller is motivated through mobile
robots equipped with range sensors and front and rear
cameras with overlapping fields of view.

While the control law derived in Theorem 1 is un-
bounded, a bounded globally stabilizing control law can be
obtained by appropriately scaling v in (15d) (see (Braun
et al., 2021, Theorem 2.3), for example). Such a scaling

Fig. 4. Closed loop solutions of the hybrid system (15).

can also be used to handle unknown input gains, which
have been encountered for example in Vinco et al. (2021),
where the input gain depends on the (unknown) state
of charge of the battery. Future work will focus on the
analysis of robustness properties of the controller and will
incorporate obstacle avoidance properties in the overall
controller design. In this context we will take inspiration
from Braun and Zaccarian (2021) and Marley et al. (2021).
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Abstract: Given a C1 function over a potentially high dimensional domain, the active subspace
method seeks an affine subspace inside which the functions changes the most on average. This
is done by finding the eigenvectors of a covariance matrix incorporating gradient information.
In a similar vein, the active manifold method finds a manifold γ and if information on f is
recovered along γ then f can be recovered on the connected component of a level set touching
γ. An inherent limitation of the Active subspace technique is that it only considers affine
subspaces (which may still be high dimensional). Inspired by methods in occupation kernel
dynamic mode decomposition, we develop a notion of active subspace taking place in a Hilbert
space which contains sufficient complexity to describe highly nonlinear level sets. In this learning
problem, only function values along trajectories following the gradient direction of the function
are required to determine this decomposition.

Keywords: active manifolds, occupation kernels, Liouville operators, reproducing kernels.

1. INTRODUCTION

Active subspaces is a dimension reduction technique orig-
inated by (Russi (2010)) and developed extensively by
(Constantine (2015)). Current implementations of the ac-
tive subspace method can capture “active” subspaces for
functions whose level sets are subspaces of Rn. However,
for functions that have very nonlinear levelsets, their ap-
plicability is limited to a small neighborhood, where the
functions may be effectively linearized. This limitation
manifests theoretically in the covariance matrix leveraged
in the construction of active subspaces which is finite
dimensional and lacks the complexity necessary for dis-
covering level-sets that are nonlinear manifolds.

To address this limitation, the present manuscript intro-
duces a new operator valued kernel to stand in place of the
covariance matrix of Constantine (2015). This operator
valued kernel, based on the Liouville operator given in
Section 4, acts on a vector valued RKHS, which is infinite
dimensional. This kernel makes available an infinite col-
lection of eigenvalues and eigenvectors that can be lever-
aged to decompose a function into “active” and “inactive”
components, where the active component will effectively
represent level sets of the original function. In this learning
problem, only function values along trajectories following
the gradient direction of the function are required to deter-
mine this decomposition. Significantly, the gradient of the
original function need not be computed using the present
method, which differs from established work (cf. Bridges
et al. (2019)).

2. REVIEW OF ACTIVE SUBSPACE METHODS

Let X ⊆ Rm be a compact subset equipped with a
probability measure ρ and suppose that f : X → R is a

C1(X) function. Let, ∇xf = [∂f/∂x1, . . . , ∂f/∂xn]> and
define the n× n matrix C given by

C = E[(∇xf)(∇xf)>] =

(∫
X

∂f

∂xi

∂f

∂xj
dρ

)n,n
i,j=1,1

. (1)

Since C is a positive semidefinite square matrix it admits
an eigenvalue decomposition

C = WΛW>, Λ = diag(λ1, . . . , λn), λ1 ≥ . . . ≥ λn ≥ 0.

For a given m < n we can further decompose Λ into
a block diagonal matrix Λ = diag(Λ1,Λ2) where Λ1 =
diag(λ1, . . . , λm) and Λ2 = diag(λm+1, . . . , λn). Likewise
W can be decomposed asW = [W1W2], whereW1 is n×m,
and

C = [W1 W2] diag(Λ1,Λ2)[W1 W2]>.

Let w1
i for i = 1, . . . ,m be the column vectors defined by

W1, For our choice of m we define A = span{w1
i | i =

1, . . . ,m} as the active subspace of f . We can interpret C
as the uncentered covariance for the gradient and since the
eigenvalues in the decomposition are listed in decreasing
order the active subspace A corresponds to directions
which have greater average variation for the function f . In
this paper we develop a generalized version of the active
subspace method that enables the learning of nonlinear
level sets through the introduction of an operator valued
kernel.

3. MATHEMATICAL PRELIMINARIES

The main setting for this generalized approach is vector
valued reproducing kernel Hilbert spaces (RKHS). For
completeness we will also define reproducing kernel Hilbert
spaces.

Definition 3.1. A RKHS,H, over a setX is a Hilbert space
of real valued functions over the set X such that for all
x ∈ X the evaluation functional Exg := g(x) is bounded.
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As such, the Riesz representation theorem guarantees, for
all x ∈ X, the existence of a function kx ∈ H such that
〈g, kx〉H = g(x), where 〈·, ·〉H is the inner product for H.

The function kx is called the reproducing kernel function
at x, and the function k(x, y) = 〈ky, kx〉H is called the
kernel function corresponding to H.

Vector valued RKHSs began to appear in learning theory
over the past decade Carmeli et al. (2010), though their
inception dates back at least as far as the 1950s (e.g.
Pedrick (1957)).

Definition 3.2. Given a Hilbert space Y and a set X, a
vector valued reproducing kernel Hilbert space, H, is a
Hilbert space of functions mapping X to Y, where for
each x ∈ X the evaluation mapping Ex : H → Y given by
Ex(f) = f(x) is bounded. The operator valued kernel for a
vector valued reproducing kernel Hilbert space is given by
K : X ×X → B(Y ), K(x, y) = ExE

∗
y , here B(Y) denotes

the bounded operators on Y.

Boundedness of the functional Ex : H → Y is equivalent to
the boundedness of the functional H 3 g 7→ 〈g(x), y〉Y for
each x ∈ X and y ∈ Y. The Riesz representation theorem
guarantees for each x ∈ X and v ∈ Y the existence of a
function Kx,v ∈ H such that 〈g,Kx,v〉H = 〈g(x), v〉Y for
all g ∈ H.

Remark 1. In general, for a vector valued reproducing
kernel Hilbert space H with kernel K, we can define
Kxv(·) := K(·, x)v ∈ H. We note that Kx,v = Kxv =
E∗x(v) since

(E∗x(v))(y) = EyE
∗
x(v) = K(y, x)v = (Kxv)(y)

for all y and the reproducing property is given by

〈f(x), v〉Y = 〈Ex(y), v〉Y = 〈f,E∗x(v)〉H = 〈f,Kx,v〉H .
Definition 3.3. Let X ⊂ Rn be compact, H be a Rn valued
RKHS of continuous functions over X, and γ : [0, T ]→ X
be a bounded measurable trajectory. For every v ∈ Rn, the

functional g 7→
〈∫ T

0
g(γ(τ))dτ, v

〉
Rn

is bounded, and may

be respresented as
〈∫ T

0
g(γ(τ))dτ, v

〉
Rn

= 〈g,Γγ,v〉H , for

some Γγ,v ∈ H by the Riesz representation theorem. The
function Γγ,v is called the occupation kernel corresponding
to γ in H and v ∈ Rn

Definition 3.4. Let X ⊂ Rn be compact, H be a Y-valued
RKHS of continuous functions over X, and γ : [0, T ]→ X
be a bounded measurable trajectory. Define the operators
Eγ and E∗γ by

Eγ : H → Y, g 7→
∫ T

0

g(γ(t))dt ∈ Y

and

E∗γ : Y → H, v 7→ Γγ,v.

We denote E∗γ(v) = Γγ,v by Γγv. Let P be the set of
bounded measurable trajectories. We call

Γ(x, γ) : X × P → B(Y), Γ(x, γ) := ExE
∗
γ

the operator valued occupation kernel.

Proposition 3.5. For all i ∈ {1, . . . , n} let Hi be real-
valued reproducing kernel Hilbert spaces on a set X and
H =

⊕n
i=1 Hi be the associated Rn-valued reproducing

kernel Hilbert space. For a given path γ : [0, T ] → X ⊂

Rk, let Γiγ ∈ Hi be the scalar valued occupation kernel
associated to γ. The function Γγ,v ∈ H is given by

Γγ(x)� v
where Γγ(x) = (Γ1

γ(x), . . . ,Γnγ (x))>. Here, � represents
the Hadamard product.

Proof. Let g = (g1, . . . , gn)> be in H, and v =
(v1, . . . , vn)> ∈ Rn then

〈g,Γγ,v〉H =

〈∫ T

0

g(γ(t))dt, v

〉
Rn

=
n∑
i=1

∫ T

0

vigi(γ(t))dt

=
n∑
i=1

〈gi,Γiγvi〉Hi
= 〈g,Γγ � v〉H .

4. THEORETICAL DESCRIPTION OF THE
METHOD

For this section we will assume the functions are over a
compact domain X ⊂ Rn and are Rn valued.

Definition 4.1. For an Rn valued reproducing kernel
Hilbert spaceH and a given symbol ψ : Rn → Rn we define
the Liouville operator with symbol ψ as Aψ(g) = D(g)ψ.

Modally, Aψ is a closed, densely defined, and unbounded
operator, owing to the inclusion of the differentiation oper-
ator D. Throughout this manuscript, a heuristic assump-
tion that this operator is bounded and even compact will
be leveraged in the development of the numerical methods
of this paper. This heuristic assumption is justified in
several contexts, where the selection of appropriate Hilbert
spaces in the range and domain of Aψ can make it a
bounded operator, and the use of scaled versions of this
operator (cf. Rosenfeld et al. (2021)) can in fact produce a
compact operator that agrees to computational precision
with Aψ on a compact subset of a given workspace.

Given a f, h ∈ C1(Rn,R), define the Liouville operator
A∇f : D(A∇f ) → H. Let Dh(A∇f ) ⊂ D(A∇f ) be
defined as those vectors g ∈ D(A∇f ) such that A∇fg ∈
D(A∗∇h). Under the heuristic assumption discussed above,
Dh(A∇f ) = H. Definition 4.2 yields an operator theoretic
replacement for the covariance matrix. The advantage
gained through this perspective is that the operator valued
kernel in Definition 4.2 provides a potentially infinite
collection of eigenvalues and eigenfunctions that can be
leveraged to decompose Rn in a nonlinear manner.

Definition 4.2. Let H be a Rn- valued reproducing kernel
Hilbert space, we define

C(∇f,∇h) : Dh(Af )→ H, C(∇f,∇h) := A∗∇hA∇f .

If it is assumed that A∇f is compact, which may require
an adjustment between the domain and range of the op-
erator (cf. Rosenfeld and Kamalapurkar (2021)), and con-
sequently C(∇f,∇f) is compact (compact operators form
an ideal in the algebra of bounded operators), then as a self
adjoint operator, C(∇f,∇f) is diagonalizable. That is, the
eigenfunctions of C(∇f,∇f) form an orthonormal basis
of H. Moreover, A∇f has a singular value decomposition,
where the right singular vectors are the eigenfunctions of
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C(∇f,∇f). In the subsequent numerical methods, finite
rank representations for C(∇f,∇f) will be extracted from
finite rank representations of A∇f .

Definition 4.3. Suppose ε > 0 is a given threshold and
that A∇f is diagonalizable. Define,

Aε := span{ϕ | C(∇f,∇f)ϕ = λϕ,
√
|λ| > ε}

Iε := A⊥ε .

Note, our Hilbert space H can be orthogonally de-
composed as H = Aε ⊕ Iε. Furthermore, for nota-
tional convenience write Σ := {ϕ ∈ H : ∃λ ∈
C such that C(∇f,∇f)ϕ = λϕ} and Σ∗ := {ψ ∈ H : ∃λ ∈
C such that A∇fA

∗
∇fψ = λψ}. Each ϕ ∈ Σ is a right sin-

gular vector of A∇f and maps to the left singular vectors
underA∇f . Moreover, the identity function, gid(x) = x,
which is assumed to be in H, admits the decomposition

x = gid(x) =
∑
ϕ∈Σ

〈g, ϕ〉Hϕ(x).

Set M = maxϕ∈Σ |〈ϕ, gid〉H | and set ε0 = ε/M . Write

Σε := {ϕ ∈ Σ :
√
|λ| > ε}. Then,

∇f(x)

= D(gid)∇f(gid(x))

= D(PAε0
gid(x))∇f(x) +D(PIε0 gid(x))∇f(x)

=
∑
ϕ∈Σε0

〈gid, ϕ〉HA∇fϕ(x) +
∑

ϕ∈Σ\Σε0

〈gid, ϕ〉HA∇fϕ(x)

=
∑
ϕ∈Σε0

〈gid, ϕ〉H
√
λψ(x) +

∑
ϕ∈Σ\Σε0

〈gid, ϕ〉H
√
λψ(x),

where ψ are the right singular vectors of A∇f correspond-
ing to ϕ ∈ Σ.

Definition 4.4. The subspace Aε0 described above will be
called the active subspace within H for f and PAε0

gid is
called the active component of gid (of order ε)

Each term of the active component satisfies

〈gid, ϕ〉
√
|λ| > ε.

5. FINITE RANK REPRESENTATIONS VIA
OCCUPATION KERNELS

To computationally determine an estimation of the eigen-
decomposition of C(∇f,∇f), a finite rank representation
of Af will be determined using a collection of trajectories,
{γi : [0, T ] → Rn}Mi=1, that satisfy γ̇i = ∇f(γi) and
their corresponding operator valued occupation kernels,
{Γγ}Mi=1. Significant to the method is the following propo-
sition:

Proposition 5.1. LetH be a Rn valued RKHS consisting of
continuously differentiable funcitons, and let γ : [0, T ] →
Rn be a trajectory satisfying γ̇ = ∇f(γ) for a function
f : Rn → R which yields a densely defined Liouville
operator, A∇f , over H. Then the following relation holds

〈A∇fg,Γγv〉H = 〈g, (Kγ(T ) −Kγ(0))v〉H . (2)

Hence, A∗∇fΓγ,v = (Kγ(T ) −Kγ(0))v.

Proof. Note that

〈A∇fg,Γγ,v〉H = 〈D(g)∇f,Γγ,v〉H

=

〈∫ T

0

Dg(γ(t))∇f(γ(t))dt, v

〉
Rn

=

〈∫ T

0

d

dt
g(γ(t))dt, v

〉
Rn

= 〈g(γ(T ))− g(γ(0)), v〉Rn

= 〈g,
(
Kγ(T ) −Kγ(0)

)
v〉H .

Leveraging this relation, a finite rank representation of
A∗∇f may be determined, and consequently the transpose
of this representation will represent A∇f under the bound-
edness assumption. In particular, replacing v with vectors
from the standard basis in Rn, and for a fixed 1 ≤ i ≤ n
writing βi = span{Γγjei}Mj=1 will give us the following
proposition.

Proposition 5.2. Let {ek} denote the standard basis for Rn
and fix an i ∈ {1, . . . , n}. For a finite dimensional subspace
given by βi = span{Γγj ,ei}Mj=1 = span{Γγjei}Mj=1,

[PβiA
∗
∇f ]βi

βi
=

 〈Γγ1ei,Γγ1ei〉H · · · 〈ΓγM ei,Γγ1ei〉H...
. . .

...
〈Γγ1ei,ΓγM ei〉H · · · 〈ΓγM ei,ΓγM ei〉H


−1

×

 〈
(
Kγ1(T ) −Kγ1(0)

)
ei,Γγ1ei〉H · · · 〈

(
KγM (T ) −KγM (0)

)
ei,Γγ1ei〉H

...
. . .

...
〈
(
Kγ1(T ) −Kγ1(0)

)
ei,ΓγM ei〉H · · · 〈

(
KγM (T ) −KγM (0)

)
ei,ΓγM ei〉H

.
Proof. For h ∈ D(A∗∇f ), the coefficients {aj}Mj=1 in
the projection of A∗∇fh onto βi, given by Pβi

A∗∇fh =∑M
j=1 ajΓγjei, can be expressed as a1

...
aM

 =

 〈Γγ1ei,Γγ1ei〉H · · · 〈ΓγM ei,Γγ1ei〉H...
. . .

...
〈Γγ1ei,ΓγM ei〉H · · · 〈ΓγM ei,ΓγM ei〉H


−1

×


〈
A∗∇fh,Γγ1ei

〉
H

...〈
A∗∇fh,ΓγM ei

〉
H

 .

Assuming that the occupation kernels are in the domain
of the Liouville operator, i.e., βi ⊂ D(A∗∇f ), for h ∈ βi,

given by h =
∑M
j=1 cjΓγjei, for a fixed k ∈ {1, . . . ,M}, we

have〈
A∗∇fh,Γγkei

〉
H

=
M∑
j=1

cj
〈
A∗∇fΓγjei,Γγkei

〉
H

=
(〈
A∗∇fΓγ1ei,Γγkei

〉
H
. . . ,

〈
A∗∇fΓγM ei,Γγkei

〉
H

)
· (c1 . . . cM )

>
.

As a result, a finite rank representation of A∗∇f restricted

to βi, i.e., the matrix [PβiA
∗
∇f ]αα that maps the coefficients

{cj}Mj=1 to the coefficients {aj}Mj=1, is given as

[Pβi
A∗∇f ]βi

βi
=

 〈Γγ1ei,Γγ1ei〉H · · · 〈ΓγM ei,Γγ1ei〉H...
. . .

...
〈Γγ1ei,ΓγM ei〉H · · · 〈ΓγM ei,ΓγM ei〉H


−1

×

 〈A
∗
∇fΓγ1ei,Γγ1ei〉H · · · 〈A∗∇fΓγ1ei,ΓγM ei〉H

...
. . .

...
〈A∗∇fΓγM ei,Γγ1ei〉H · · · A∗∇fΓγM ei,ΓγM ei〉H
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The proof is completed by an application of Proposition
5.1

Proposition 5.3. Let {ek} denote the standard basis for
Rn and for each i ∈ {1, . . . , n} let βi = span{Γγj ,ei}Mj=1 =

span{Γγjei}Mj=1. Let B = ⊕ni=1βi then

[PBA
∗
∇f ]BB = diag([PβiA

∗
∇f ]βi

βi
)

Proof. Let ` and m be arbitrary indices in {1, . . . ,M}.
We must show for i, j ∈ {1, . . . , n} with i 6= j that

〈A∗∇fΓγ`ei,Γγmej〉 = 0.

By an applications of Propositions 3.5 and 5.1 we get

〈A∗∇fΓγ`ei,Γγmej〉 = 〈Γγ`ej , (Kγm(T ) −Kγm(0))ei〉H
= 〈Γγ`,ej (γm(T ))− Γγ`,ej (γm(0)), ei〉Rn

where we get the difference of the scalar valued occupation
kernel for γ` evaluated at γm(T ) and γm(0) in the j-th spot
and a 1 in the i-th spot. Hence, this is non-zero only when
i = j.

Hence for each dimension of the workspace, a collection of
approximate eigenfunctions for A∇f may be determined

through the SVD of the matrix ([PβiA
∗
∇f ]βi

βi
)T . For each

singular vector of ([PβiA
∗
∇f ]βi

βi
)T , η = (η1, . . . , ηM ), with

singular value λ, the corresponding normalized singular

function in H is given as ϕ = 1√
ηTGη

∑M
j=1 ηjΓγjei, where

G is the Gram matrix corresponding to the basis for βi.
Hence, to evaluate

∑
ϕ∈Σε0

〈gid, ϕ〉H
√
λψ(x) we must be

able to compute 〈gid,Γγjei〉. By definition, this is given as

〈gid,Γγjei〉 =

〈∫ T

0

gid(γj(t))dt, ei

〉
Rn

=

∫ T

0

γij(t)dt,

i.e. it is the integral of the i-th component of γj : [0, T ]→
X ⊂ Rn

6. DISCUSSION AND CONCLUSION

This manuscript presents a new dimension reduction tech-
nique as a nonlinear version of the active subspace method.
To address the limitation of the active subspace routine
this manuscript introduces a new operator valued kernel
to stand in place of the covariance matrix of Constantine
(2015). This operator valued kernel, based on the Liouville
operator given in Section 4, acts on a vector valued RKHS,
which is infinite dimensional. This kernel makes available
an infinite collection of eigenvalues and eigenvectors that
can be leveraged to decompose a function into “active”
and “inactive” components, where the active component
will effectively represent level sets of the original function.
The authors expect the same challenges that appear in
occupation kernel DMD to be present in this new tech-
nique as well. While, in principle any reproducing kernel
Hilbert space can be used, choice of RKHS affects the
operator theoretic properties of boundedness and com-
pactness of C(∇f,∇f) and A∇f . (Russo and Rosenfeld
(2022)) explores the properties of Liouville operators over
the Hardy space and (Rosenfeld and Kamalapurkar (To
Appear)) gives a modification of Liouville operators that
allow for compactness. Moreover, it is found in dynamic
mode decomposition that careful parameter selection is
necessary and a poor choice of parameter can lead to bad

reconstruction of the function. This in general is one of the
major limitations of the technique.
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Abstract: Conventionally, data driven identification and control problems for higher order
dynamical systems are solved by augmenting the system state by the derivatives of the output
to formulate first order dynamical systems in higher dimensions. However, solution of the
augmented problem typically requires knowledge of the full augmented state, which requires
numerical differentiation of the original output, frequently resulting in noisy signals. This
manuscript develops the theory necessary for a direct analysis of higher order dynamical systems
using higher order Liouville operators. Fundamental to this theoretical development is the
introduction of signal valued RKHSs and new operators posed over these spaces. Ultimately,
it is observed that despite the added abstractions, the necessary computations are remarkably
similar to that of first order DMD methods using occupation kernels.

Keywords: system identification, operator theoretic methods in systems theory, model
approximation, control system analysis

1. INTRODUCTION

Data driven methods for dynamical systems have devel-
oped significantly over the past 20 years (cf. Budǐsić et al.
(2012); Kutz et al. (2016); Proctor et al. (2016); Mau-
roy and Goncalves (2020); Mauroy and Mezić (2016)).
Principle among them are those that leverage Koopman
operators (also known as composition operators) over
Hilbert function spaces to give a representation of finite
dimensional discrete time dynamics as an operator over
an infinite dimensional Hilbert space Budǐsić et al. (2012);
Williams et al. (2015). When a continuous time dynamical

⋆ This research was supported by the Air Force Office of Scientific
Research (AFOSR) under contract numbers FA9550-20-1-0127 and
FA9550-21-1-0134, and the National Science Foundation (NSF)
under awards 2027976 and 2027999. Any opinions, findings and
conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the
sponsoring agencies.

This manuscript has been authored, in part, by UT-Battelle, LLC,
under contract DE-AC05-00OR22725 with the US Department of
Energy (DOE). The US government retains and the publisher,
by accepting the article for publication, acknowledges that the
US government retains a nonexclusive, paid-up, irrevocable,
worldwide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for US government
purposes. DOE will provide public access to these results of federally
sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

system is forward complete, it may be discretized by fixing
a time-step, ∆t > 0, to yield a discrete time system. In this
setting, the Koopman operator has been demonstrated as
an effective tool for extracting the underlying governing
principles of a dynamical system, and for providing a
model for the state which performs well over short time
horizons via Dynamic Mode Decompositions (DMD).

In Rosenfeld et al. (2019b), the concept of occupation
kernels was introduced as functions inside of a RKHS
that, given a signal θ : [0, T ] → Rn, represent the

functional g 7→
∫ T

0
g(θ(t))dt. Occupation kernels gener-

alize the concept of an occupation measure (cf. Lasserre
et al. (2008)) by changing the setting from a collection
of measures to that of a Hilbert space. Thus, occupation
kernels can be leveraged as a basis in a Hilbert space
for function approximation and projections (cf. Rosenfeld
et al. (2019b,a); Rosenfeld and Kamalapurkar (2021, to ap-
pear, see arXiv:2101.02620); Li and Rosenfeld (to appear);
Russo et al. (2022)).

One limitation still present in the theory of data driven
methods for dynamical systems is that of high order dy-
namics. Conventionally in systems theory, higher order dy-
namics are converted to first order systems of augmented
state variables. For example, ẍ = f(x) can be adjusted

to z := (x ẋ)
T

with ż = (z2 f(z1))
T
. Theoretically, the

augmentation is well justified, but it is computationally
problematic in data driven methods. To estimate the new

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



state variable of z, data driven methods must compute
an approximation of the first derivative of x. Numerical
derivatives can be noisy, and if the order of the system
exceeds 2, they are unreliable. For example, in Brunton
et al. (2016), where numerical differentiation is used for
parameter fitting, a considerable amount of filtering was
required to get good results. The sensitivity of numerical
differentiation techniques to noise motivates the devel-
opment of methods that avoid numerical differentiation
altogether.

This manuscript introduces the necessary theoretical com-
ponents for the development of a DMD routine for second
order dynamical systems that avoids the use of numerical
derivatives and augmented state variables. The exposition
will be focused on second order dynamical systems. How-
ever, the developed methods may be readily adapted to
higher order dynamical systems. Underlying the subse-
quent development are vector valued Reproducing Kernel
Hilbert spaces (vvRKHSs), for which the relevant theory is
presented in Section 2. Using vvRKHSs as a tool, Section
4 develops a signal valued RKHS, which is a Hilbert space
of functions that map d times continuously differentiable
signals to a scalar valued RKHS over [0, T ]. The signal
valued RKHS framework allows for the formulation of well
defined second order Liouville operators over the Hilbert
space beyond the formal expression given in Section 5.
Once the essential elements are established, Section 6
presents a DMD method for the modeling of a second
order dynamical system, which avoids the use of numerical
derivatives.

2. VECTOR VALUED REPRODUCING KERNEL
HILBERT SPACES

This section presents the concept of vector valued RKHSs,
which recently came to prominence with Carmeli et al.
(2010), though their roots extend further back (e.g.
Pedrick (1957)). In the context of this manuscript the
Hilbert space Y will be a scalar valued RKHS, which will
facilitate the description of a function space on signals.

Definition 1. Given a Hilbert space Y and a set X, a
vector valued reproducing kernel Hilbert space, H, is a
Hilbert space of functions mapping X to Y, where for each
x ∈ X and v ∈ Y the functional g 7→ ⟨g(x), v⟩Y is bounded.

The Riesz representation theorem guarantees for each
x ∈ X and v ∈ Y the existence of a functionKx,v ∈ H such
that ⟨g,Kx,v⟩H = ⟨g(x), v⟩Y for all g ∈ H. It is readily
apparent that the map Kx : Y → H, that maps v to Kx,v,
is linear, and as such, is expressed as Kxv := Kx,v.

3. PROBLEM STATEMENT

Given a collection of trajectories, {γi : [0, T ] → Rn}Mi=1,
corresponding to a second order dynamical system γ̈ =
f(γ), where f is unknown, we want to determine a model
for a trajectory starting at x(0) = x00 and ẋ(0) = x10.
In the following, the model is constructed from a finite
rank representation of a second order Liouville operator,
Bf , obtained via adjoint relations between the Bf , and a
collection of occupation kernels.

Fig. 1. A visualization of relationships between vector
spaces and operators defined in Theorem 1.

4. SIGNAL VALUED RKHSS

In the following, three different RKHSs are under consid-
eration (see Figure 1). The range space, Y, is selected to be
a scalar valued RKHS over [0, T ], with kernel function K .
To construct a vvRKHS of functions that map signals from
Cd ([0, T ],Rn) (or a suitable substitute) to Y, we define

an auxiliary scalar valued RKHS, H̃, consisting of twice
continuously differentiable functions from Rn to R. For
each g ∈ H̃, a map from Cd ([0, T ],Rn) to Y is obtained as
ϕg[θ](t) := g(θ(t)) for all θ ∈ Cd ([0, T ],Rn) and t ∈ [0, T ].
Theorem 1 shows that the space of all such maps is a
vvRKHS.

Theorem 1. Let X = Cd ([0, T ],Rn) for some d ∈ N,
and let H̃ be a scalar valued RKHS over Rn. Moreover,
suppose there exists a RKHS Y over [0, T ] where the

composition operator Cθ : H̃ → Y is a bounded operator
for all symbols θ ∈ X. Define the vector space H(X) :=

{ϕg : g ∈ H̃} of mappings ϕg : X → Y given by
ϕg[θ] := g(θ(·)), together with the inner product induced

by H̃, ⟨ϕg1 , ϕg2⟩H = ⟨g1, g2⟩H̃ . Then H(X) is a vvRKHS.

Definition 2. The vvRKHS, H, given in Theorem 1 will
be called the signal valued RKHS from Cd ([0, T ],Rn) to

Y derived from H̃, more succinctly a signal valued RKHS,
when the other quantities are understood from context.

While a general characterization of pairs of RKHSs (H̃,Y)
that admit bounded composition operators Cθ is difficult,
the following example analyzes one such pair.

Example 1. A possible choice for H̃ would be the native
space of the Gaussian RBF kernel function, K̃(x, y) =

exp
(
−∥x−y∥2

2

µ

)
. Letting Y be the Sobolev space H1, it

can be seen that ϕg[θ] ∈ Y for all θ ∈ C2 ([0, T ],Rn). This
follows since g is infinitely differentiable and ϕg[θ](t) =
g(θ(t)) must then be twice continuously differentiable.

Corollary 1. Example 1 provides a vvRKHS of functions
from C2 ([0, T ],Rn) to H1, and it is a signal valued RKHS.

DMD relies on the action of Liouville operators on occupa-
tion kernels. As such, it is necessary to define second order
occupation kernels in the context of vvRKHSs of the form
in Theorem 1. To motivate the definition of higher order
occupation kernels, recall Cauchy’s formula for iterated

integrals given as h(−m)(T ) = 1
(m−1)!

∫ T

0
(T − t)m−1h(t)dt,

where h(−m)(t) :=
∫ t

0

∫ τ1
0

· · ·
∫ τm−1

0
h(τm)dτm · · · dτ2dτ1.
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For a RKHS of continuous functions, Y, as given in Theo-
rem 1, the mapping h 7→ h(−m)(T ) is a bounded functional.
As a result, by the Reisz representation theorem, there

exists 1(−m) ∈ Y such that ⟨h, 1(−m)⟩Y = 1
(m−1)!

∫ T

0
(T −

t)m−1h(t)dt. Note that for g ∈ H̃, θ ∈ Cd ([0, T ],Rn), and
ψ ∈ H such that ψ = T g, the functional

ψ 7→ ⟨g ◦ θ, 1(−m)⟩Y =
1

(m− 1)!

∫ T

0

(T − t)m−1g(θ(t))dt

is bounded. As such, by the Reisz representation theorem,

there exists Γ
(m)
θ ∈ H such that ⟨ψ,Γ(m)

θ ⟩H = ⟨g ◦
θ, 1(−m)⟩Y . We define Γ

(m)
θ as the m-th order occupation

kernel corresponding to θ ∈ Cd ([0, T ],Rn) in H.

Due to the fact that ⟨g ◦ θ, 1(−m)⟩Y = ⟨ψ[θ], 1(−m)⟩Y =
⟨ψ,Kθ,1(−m)⟩H , the m-th order occupation kernel corre-
sponding to θ can be identified with the kernel function
Kθ,1(−m) ∈ H of the vvRKHS.

Thus, in contrast with Rosenfeld et al. (2019b), where
occupation kernels are integrals of the kernel function of
an RKHS along trajectories, the m-th order occupation
kernels defined here are a subset of the set of vector valued
kernels in a vvRKHS.

5. HIGHER ORDER LIOUVILLE OPERATORS AND
OCCUPATION KERNELS

The structure of Liouville operators, given formally as
Afg(x) = ∇g(x)f(x), derive their form from the orbital
derivative. In particular, suppose that γ : [0, T ] → Rn

satisfies γ̇ = f(γ), then Afg(γ(t)) = ∇g(γ(t))γ̇(t) =
d
dtg(γ(t)). Consequently, higher order Liouville operators
may be derived via the same process, where g is composed
with γ and higher order derivatives with respect to time
are taken. To wit, letting H[g] denote the Hessian of
g : Rn → R,

d2

dt2
g ◦ γ(t) = γ̇(t)TH[g](γ(t))γ̇(t) +∇g(γ(t))γ̈(t).

Fixing H as a signal valued RKHS as in Theorem 1, let
f : Rn → Rn be the symbol for a second order Liouville
operator, Bf : D(Bf ) → H, defined as

Bfψ[θ](t):=∇ψ[θ](t)f(θ(t))

+

(
θ̇(0)+

∫ t

0

f(θ(τ))dτ

)T

Hψ[θ](t)
(
θ̇(0)+

∫ t

0

f(θ(τ))dτ

)
,

(1)

where D(Bf ) is precisely the collection of ψ for which

Bfψ ∈ H. Note that since ψ = ϕg for some g ∈ H̃,
∂

∂xi
ψ[θ](t) is defined as ∂

∂xi
g(θ(t)) for i = 1, . . . , n, which

facilitates the definitions of the gradient and Hessian of

ψ. Hence, when γ̈ = f(γ), Bfϕg[γ] =
d2

dt2 g ◦ γ(t). Owing
to the integral appearing in (1), the operator Bf needs
to be posed over a Hilbert space consisting of functions
of trajectories. Additionally, in contrast to the first order
Liouville operator, Bf is linear in ψ but not in the symbol,
f .

The operator Bf is connected to second order occu-
pation kernels in the following manner. If γ̈ = f(γ),

then ⟨Bfψ,Γ
(2)
γ ⟩H =

∫ T

0
(T − t)Bfψ[γ](t)dt =

∫ T

0
(T −

t)ψ̈[γ](t)dt =
ψ[γ](T )−ψ[γ](0)−T∇ψ[γ](0)γ̇(0) = ⟨ψ,Kγ,KT

−Kγ,K0
−

TKγ,K ′
0
⟩H , where K ′

0 := s 7→ d(K (s,t))/dt|t=0 ∈ Y.

Hence, the functional ψ 7→ ⟨Bfψ,Γ
(2)
γ ⟩H is bounded, and

the following proposition is established.

Proposition 1. Let f be the symbol for a densely defined 1

second order Liouville operator, Bf , over a signal valued
RKHS and γ ∈ C2 ([0, T ],Rn) be such that γ̈ = f(γ).

Then, Γ
(2)
γ ∈ D(B∗

f ), and B∗
fΓ

(2)
γ = Kγ,KT

− Kγ,K0 −
TKγ,K ′

0
.

6. DYNAMIC MODE DECOMPOSITIONS FOR
SECOND ORDER DYNAMICAL SYSTEMS

The objective of this section is to give a data driven model
for a state governed by an unknown second order dynam-
ical system. The development follows that of occupation
kernel DMD detailed in Rosenfeld et al. (2020).

The approach is to determine a finite rank representation
of Bf over H and to perform an eigendecomposition on
this representation to obtain eigenfunctions and eigenvec-
tors for the representation. Following this, the full state
observable is decomposed with respect to the eigenfunc-
tions, which ultimately allows for a model to be extracted
for the dynamical system.

Suppose that φ ∈ D(Bf ) is an eigenfunction for Bf with
eigenvalue λ. Then for γ̈ = f(γ), φ̈[γ](t) = Bfφ[γ](t) =
λφ[γ](t). Hence,

φ[γ](t) =
1

2

(
φ[γ](0) +

∇φ[γ](0)γ̇(0)√
λ

)
e
√
λt

+
1

2

(
φ[γ](0)− ∇φ[γ](0)γ̇(0)√

λ

)
e−

√
λt.

The full state observable for the signal valued case is
then given as ψid[θ] = θ. The objective is to decompose
each dimension of the full state observable with respect
to an eigenbasis, {φi}∞i=1 with eigenvalues {λi}∞i=1, of Bf ,
provided that one exists, so as to express ψid[γ](t) as

ψid[γ](t) = γ(t) = (2)

lim
M→∞

M∑
m=1

ξm,M

(
1

2

(
φm[γ](0) +

∇φm[γ](0)γ̇(0)√
λm

)
e
√
λmt

+
1

2

(
φm[γ](0)− ∇φm[γ](0)γ̇(0)√

λm

)
e−

√
λmt

)
. (3)

Since the eigenfunctions may not be pairwise orthogonal,
addition of each new eigenfunction to the linear combina-
tion in (3) may affect the coefficients corresponding to all
other eigenfunctions. This dependence of the coefficients
on the collection of basis functions is expressed through
the second subscript of M . In the following, finite-rank
representations of the coefficients ξm,M are referred to
as the second order Liouville modes for the dynamical
system.

Since Bf is not known when f is unknown. A finite rank
proxy of Bf needs to be constructed from the observed
trajectories. In the place of the eigenfunctions of Bf ,

1 An operator Bf : D(Bf ) → H is called densely defined if D(Bf )
is a dense subset of H.
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the eigenfunctions of a finite rank representation will be
leveraged to determine an estimate for (3). Let {γi}Mi=1 ⊂
C2 ([0, T ],Rn) be a collection of observed trajectories for

the second order dynamical system, and let α = {Γ(2)
γi }Mi=1

be the corresponding collection of second order occupation
kernels in H. Let Pα be the projection onto spanα.

A finite rank representation of Bf restricted to spanα, i.e.,
the matrix [PαBf ]

α
α that maps the coefficients {ai}Mi=1 to

the coefficients {bi}Mi=1, is given as

[PαBf ]
α
α=

⟨Γ(2)
γ1
,Γ

(2)
γ1

⟩H ··· ⟨Γ(2)
γ1
,Γ

(2)
γM

⟩H
...

. . .
...

⟨Γ(2)
γM

,Γ
(2)
γ1

⟩H ··· ⟨Γ(2)
γM

,Γ
(2)
γM

⟩H


−1

×

⟨Γ(2)
γ1
,B∗

fΓ
(2)
γ1

⟩H ··· ⟨Γ(2)
γM
,B∗

fΓ
(2)
γ1

⟩H
...

. . .
...

⟨Γ(2)
γ1
,B∗

fΓ
(2)
γM

⟩H ··· ⟨Γ(2)
γM
,B∗

fΓ
(2)
γM

⟩H

, (4)

where Bf was moved to the right of the inner products
through the adjoint relation, and the result of the mapping

B∗
fΓ

(2)
γ was given in Proposition 1. Letting G denote the

Gram matrix (⟨Γ(2)
γi ,Γ

(2)
γj ⟩H)Mi,j=1, a normalized “eigenfunc-

tion” can be extracted from an eigenvector, νj , of [PαBf ]
α
α

with eigenvalue λj as

φ̂j =
1√

νTj Gνj

M∑
i=1

(νj)iΓ
(2)
γi
, (5)

which can be leveraged as a proxy for a proper eigenfunc-
tion of Bf , in keeping with the implementation of DMD
for Koopman and Liouville operators. In (5) and in the
following development, (x)i denotes the projection onto
the i-th coordinate of x ∈ Rn.

The second order Liouville modes can then be constructed
by examining the inner products

〈
(ψid)i,Γ

(2)
γj

〉
H
, where

(ψid)i is the i-th component of the full state observable,
i.e., (ψid)i[θ](t) := (θ(t))i. The second order Liouville
modes {(ξm)i}Mm=1 are defined as the coefficients in the
projection of (ψid)i onto the span of the normalized
eigenfunctions in (5) that is,


〈
(ψid)1,Γ

(2)
γj

〉
H

...〈
(ψid)n,Γ

(2)
γj

〉
H

 ≈



〈
M∑

m=1

(ξm)1φ̂m,Γ
(2)
γj

〉
H

...〈
M∑

m=1

(ξm)nφ̂m,Γ
(2)
γj

〉
H


=

M∑
m=1

ξm

M∑
k=1

(νm)k√
νTmGνm

〈
Γ(2)
γk
,Γ(2)

γj

〉
H

=
M∑

m=1

ξmν
T
mG

j√
νTmGνm

,

where Gj denotes the j-th column of the Gram matrix.
The matrix ξ := (ξ1 · · · ξM ) of second order Liouville
modes is then given by

ξ =


〈
(ψid)1,Γ

(2)
γ1

〉
H

· · ·
〈
(ψid)1,Γ

(2)
γM

〉
H

...
. . .

...〈
(ψid)n,Γ

(2)
γ1

〉
H

· · ·
〈
(ψid)n,Γ

(2)
γM

〉
H

 (6)

×





νT1√
νT1 Gν1
...
νTM√
νTMGνM


G



−1

. (7)
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Accelerating wound healing with feedback
control: a data-driven approach ?
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Abstract: Controlling biological systems presents challenges not typically dealt with in
traditional control theoretic approaches but also gives way to leniences not traditionally
tolerated. Here, we present a holistic view to this new research area and current developments
integrating various data-driven approaches for modeling and control.
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1. INTRODUCTION

Feedback control can help to advance methods in precision
medicine (Selberg et al. (2020a)). Feedback control is
essential to the regulation of natural biological processes
and has been considered as an approach to artificially
guide or enhance existing biological systems (e.g. artificial
pancreas (El-Khatib et al. (2010); Quiroz (2019)) and
neuro-stimulation (Santaniello et al. (2010))).

Realizing feedback control in wound healing requires a
way to direct cellular response without genetic engineer-
ing. We propose to achieve this through precise control
over external signaling cues using bioelectronic devices. To
control biological systems, differential voltages are applied
to the bioelectronic device in order to drive the delivery or
removal of biochemical or biophysical signals to the extra-
cellular environment (Proctor et al. (2019); Malliaras and
Abidian (2015); Noy (2015)). These signaling molecules,
in turn, drive cellular response.

Bioelectronic devices provide an interface between signal
processing and biological tissue that allow one to program
custom feedback control strategies with sufficient resolu-
tion for enhanced performance. Thus, bioelectronic devices
are a promising technology for precision medicine (Löffler
et al. (2017); Wu et al. (2017); Birmingham et al. (2014);
Selberg et al. (2020a); Jia and Rolandi (2020)). In particu-
lar, bioelectronic devices have been at the center of smart
bandages (Mostafalu et al. (2018); Farooqui and Shamim
(2016)). Many of these bandages have advanced features
on board such as sensors to assess the state of wounds in
real-time (McLister et al. (2016); Sharp et al. (2010)) and
controlled release of therapeutics in a variety of patho-

? Research was sponsored by the Office of Naval Research and
the DARPA Biotechnologies Office (DARPA/BTO) and was accom-
plished under Cooperative Agreement Number DC20AC00003. The
views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official
policies, either expressed or implied, of the Office of Naval Research
and the DARPA Biotechnologies Office (DARPA/BTO) or the U.S.
Government. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any
copyright notation herein.

logical conditions (Williamson et al. (2015); Proctor et al.
(2019); Jonsson et al. (2015)). Here, we propose to advance
the capabilities of smart bandages with feedback control.

Methods in control theory typically assume that a predic-
tive model is available. Thus, the models can be used to
determine the most suitable type of controller and tune
parameters for the controller. The challenges that we face
in feedback control ensue from our efforts to control a com-
plex systems for which we do not have a predictive model
and there are limited observable states. Additionally, we
are trying to achieve a goal at the tissue level response
by controlling biological processes at the single cell level.
Thus, we need a way of mapping single cell response on
short timescales to tissue level response over the course of
wound healing.

In summary, we propose that an effective approach to
controlling complex biological processes interfaced with
a bioelectronic device is through a heirarchical control
architecture. The heirarchical feedback control architec-
ture allows one to design the components of the controller
independently and their integration provides control ob-
jectives at the single-cell level to achieve a desired tissue
level response. That is, our controller design at the single-
cell level does not have any dependence on the wound
healing model. The wound healing model is instead used
to inform the desired wound environment to be achieved
by the bioelectronic device at the single-cell level. We
note that the time scale of the dynamical response of
the bioelectronic device to changes in voltages is orders
of magnitude faster than that of biological processes in
wound healing. We propose the following three layers in
this heirarchical structure: the Decision Maker, Planner,
and Low-level Controller. We also argue that a data-driven
approach allows us to be successful without a complete and
predictive mechanistic model of wound healing. Below, we
describe our approach in more detail.

2. MACHINE LEARNING FOR COMPLEX SYSTEMS

Machine learning (ML)-based techniques are suitable when
accurate control is required in the absence of a precise
mathematical model (Marquez et al. (2019)). The best-
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Fig. 1. Heirarchical control scheme.

known ML techniques rely on the availability of large
datasets a priori and have not been applied to control
bioelectronic devices (Angermueller et al. (2016); Camacho
et al. (2018); Maltarollo et al. (2013); Park and Kellis
(2015)). We propose that ML-based techniques that are
explored as control solutions outside of biology for cases
involving complex non-linear systems are also suitable
for closing the loop for bioelectronic systems containing
biosensors, biology, and bioelectronic actuators. To this
end, tools from control systems theory leveraging ML
can be used to learn from new observations for effective
real-time operation without data a priori (Jafari and
Gomez (2019); Jafari et al. (2020); Kumpati et al. (1990);
Lavretsky and Wise (2013)). ML-based techniques can
be implemented directly or indirectly to solve complex
control problems (Hagan and Demuth (1999); Spooner
et al. (2004)). Additionally, we leverage ML to build data-
driven models for long term trajectory planning.

3. SYSTEM OF SYSTEMS APPROACH

3.1 Low-level Controller

The low-level controller directly drives cellular response.
The architecture of this inner loop resembles a standard
feedback control loop composed of the system, sensors,
actuators, and controller. A reference trajectory must be
provided to the low-level controller. The controller is then
tasked with achieving the desired response based on the
sensor readout. In this work, we have explored various
types of controllers including a NN-based controller with
no information a priori and a sliding mode controller that
can deal with saturating controller outputs imposed by the
limitations of the bioelectronic device.

We have already demonstrated closed-loop control of mem-
brane voltage (Vmem) in human pluripotent stem cells us-
ing bioelectronic stimulation (Selberg et al. (2020b)). This
type of closed loop control relies on fluorescent readout of
cell state. This state is then fed into a NN-based controller
that suggests to the bioelectronic device the necessary
intervention to achieve the desired state, in this specific
example in the form of H+ ions or pH (Jia et al. (2020b)).
Unique to this approach is the ability to obtain spatial
resolution close to the single cell level (100um) and tem-

poral resolution than spans many timescales from short
cell-events (ms) to cell development (hrs and days). This
approach goes well beyond Vmem and H+ ions and can
be used to control various types of cell behavior (Selberg
et al. (2020a, 2018)), including fate, with many types of
bioelectronic signals that include ions (Jia et al. (2020a)),
small molecules (Poxson et al. (2019)), and electric field.

3.2 Planner

The Planner takes in high level instructions from the Deci-
sion Maker and generates reference signals and/or control
objectives for the Low-level Controller. In recent work,
we have established a qualitative reduced order model of
wound healing to understand how timing of macrophage
polarization affects overall wound healing time (Zlobina
et al. (2021)). Macrophages play an essential role in wound
healing. Additionally, there are two primary subtypes
termed M1 and M2 macrophages. M1 macrophages are
pro-inflammatory and M2 are anti-inflammatory and pro-
mote the onset of the proliferative stage of wound healing.
The transition and timing of M1 to M2 macrophages is
critical to ensuring healthy wound healing. We aim to
manipulate the timing and speed of this process in order
to reduce inflammation time and accelerate transition into
proliferation, thereby, reducing wound healing time.

3.3 Decision Maker

The Decision maker consists of a high-level model of the
wound healing process. In particular, this component of
the controller is tasked with identifying and monitoring
progression through the wound healing stages in order to
accurately time interventions designed by the Planner. We
present preliminary ML-based models that predict wound
healing stage based on gene expression profiles and time
series RGB images of the wound.

4. CONCLUSION

In conclusion, we propose a framework for controlling bio-
logical systems motivated by our goal to accelerate wound
healing. This framework has the potential to be gener-
alized and extendended to other applications in biology
such as precision medicine, agriculture, and environmental
health, where systems are high dimensional and dynamics
are complex. Still some open questions remain such as
controllability of the system and safety guarantees.
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Abstract: We propose new neural networks algorithms for the approximation of deterministic
optimal control problems with maximum running cost. This problem is motivated by the
approximation of general optimal control problems in the presence of state constraints. This
problem is also related to Hamilton-Jacobi-Bellman equations with an obstacle term. Difficulties
arise in particular because of the non-smoothness of the value to be approximated, and
appropriate solutions are studied to deal with this specific issue. Numerical examples are given
on front propagation problems in the presence of an obstacle, for average dimensions 2 ≤ d ≤ 8.
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GENERAL PRESENTATION

In this work (see Bokanowski et al. (Preprint) for details)
we present new results and algorithms concerning the
use of deep neural network (DNN) approximations for
a deterministic finite-horizon optimal control problem in
presence of state constraints.

We focus on the value corresponding to a maximum
running cost problem with obstacle function g(.), for a
given T > 0, t ∈ [0, T ] and x ∈ Rd:

v(t, x) = inf
a∈mes((0,T ),A)

max
θ∈(t,T )

g(yat,x(θ))
∨
ϕ(yat,x(T )) (1)

where y(.) = yat,x(.) obeys ẏ(s) = f(y(s), a(s)) a.e. s ∈
(t, T ) with y(t) = x, associated to a measurable control
function a : (0, T ) → A, A ⊂ Rκ is a compact set, and
g(.), ϕ(.), f(., .) are assumed Lipschitz continuous.

This problem is motivated by the computation of back-
ward reachable set with state constraints (see Bokanowski
et al. (2010)). Moreover, this framework can be used in
order to compute the value of general deterministic opti-
mal control problems with a running cost, terminal cost,
and state constraints, following Altarovici et al. (2013): an
auxiliary value problem with one more variable enables to
deal with the state constraints and avoids discontinuous
value functions.

This setting was generalized in Germain et al. (2021) for
the control of state-constrained McKean-Vlasov equations
(using DNN approximations). It is also applied for opti-
mistic control in Bokanowski et al. (2022).

? This research benefited from the support of the FMJH program
PGMO and from the FiME laboratory

The value is also the solution of an Hamilton-Jacobi-
Bellman (HJB) equation in presence of an obstacle term

min(vt +H(x,∇xv), v − g(x)) = 0, t ∈ [0, T ], x ∈ Rd

v(T, x) = max(ϕ(x), g(x)), x ∈ Rd
(2)

hence an approximation for (1) is also valid for (2).

Recently, deep neural network (DNN) approximations for
control in a probabilistic context have been introduced
in Han et al. (2018) (deep BSDE algorithm), and also
in Huré et al. (2021) and Bachouch et al. (2022), for
the approximation of stochastic control problems on finite
horizon.

We are motivated in dealing with state-constrained de-
terministic control problems of average state dimension
(such as e.g. 5 to 10) where a brute force discretization
of the HJB equation (or of the dynamic programming
principle) is in general intractable or too costly to consider.
In this framework, in the absence of diffusion terms, the
value function is less regular than the usual setting for
DNN approximations schemes. In general the presence of
state constraints also prevents the value to be regular
(because of the possible non-existence of feasible trajec-
tories). Then the DNN may fail to well approximate the
desired value function. From a theoretical point of view,
the known convergence results for deep neural network
(DNN) approximations use at some the level the presence
of diffusion. The approach in Huré et al. (2021) utilizes
that the law of the process has a density, which is not
the case for deterministic evolution equations. Also, the
general convergence result for deep BSDE in Han and Long
(2020) needs a diffusion assumption on the SDE model as
well as restrictive assumptions on the dynamics.
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Here, we investigate, in the deterministic setting and
by using a level-set approach, the use of DNN schemes
based on the approximation of the dynamic programming
principle. We develop new schemes extending some ideas
coming from stochastic control of Huré et al. (2021),
Bachouch et al. (2022) and Germain et al. (2022). These
schemes are based on a time discretization of the PDE and
some time local optimizations using classical feedforward
networks (in our experiments, global methods such as
the deep Galerkin method of Sirignano and Spiliopoulos
(2018) may fail to see the obstacle).

We are able to prove the convergence of the algorithm in
some L1 norm. We also illustrate numerically the potential
of the algorithm (and variants) on some academic front
propagation problems in presence of obstacles in average
dimensions (e.g. 2 to 8).

IDEA OF THE RESULT

We will use an equivalent formulation of Bellman’s dy-
namic programming principle using feedback controls a ∈
A := mes(Rd, A), the set of measurable functions from
Rd into A. For a given N ≥ 1, let ∆t = T

N , tk = k∆t,
and consider approximate characteristics with time step
∆t, denoted F a(x), for the approximation of ẏ(t) =
f(y(t), a(y(t))), y(tn) = x, t ∈ [tn, tn+1]. For instance, the
Euler scheme is

F a(x) = x+ ∆tf(x, a(x));

the Heun scheme in our setting reads

F a(x) = x+
∆t

2
(f(x, a(x) + f(x1, a(x))

where x1 = x+ ∆tf(x, a(x)) (here the control is frozen at
the value a(x) where x is the foot of the characteristic),
etc. More complex explicit or implicit RK schemes have
also to be considered (see Bokanowski et al. (Preprint)).
The problem is then to compute an approximation of

Vn(x) := min
(an,...,aN−1)∈AN−n

(
max

k=n,...,N
g(Xa

k,x)
)∨

ϕ(Xa
N,x)

where, for a = (an, . . . , aN−1), the discrete dynamics
(Xa

k,x)k=n,...,N is such that

Xa
n,x := x

Xa
k+1 := F ak(Xa

k,x), ∀k = n, . . . , N − 1.

One of the considered scheme (the ”Lagragian scheme”)

in a simplified form, is as follows. Let (ÂΘ
n )n∈J0,N−1K

be a given sequence of finite-dimensional spaces (such
as feedforward neural networks), for the approximation
of feedback controls. We also consider a sequence of
random variables (Xk)k=0,...,N with associated densities
ρk ∈ L1(Rd) (assuming for instance ρk > 0).

Algorithm (”Lagrangian scheme”) Set V̂N := g ∨ ϕ.

Then, for n ∈ N − 1, . . . , 0, compute ân ∈ ÂΘ
n and set V̂n

as follows:

ân ∈ argmin
a∈ÂΘ

n

E
[
g(Xn)

∨
V̂n+1(F a(Xk))

]
(3a)

V̂n(x) := g(x)
∨
V̂n+1

(
F âk(x)

)
(3b)

In this algorithm, only the feedback controls (âk) are

stored (V̂n is not stored). In practice, the minimization
problem (3a) is dealt with a stochastic gradient method.

Each evaluation of the value V̂n+1(x) uses the previous
controls (ân+1, . . . , âN−1) to compute the approximated
characteristic, in a full Lagrangian philosophy. Then we
can show a convergence result in average, of the form

max
0≤k≤N

E[|V̂k(Xk)− Vk(Xk)|] Θ→∞→ 0

as the parameters Θ for the neural network approximation
space grows to infinity that is, assuming that

max
0≤k≤N−1

inf
ak∈ÂΘ

k

E[|ak(Xk)− āk(Xk)|] Θ→∞→ 0,

(āk)0≤k≤n beeing given optimal feedback controls for V0.
A difficulty in showing the convergence is the lack of
regularity of the controls in feedback form, which are in
general discontinuous. In order to deal with this issue, we
first construct near optimal Lipschitz continuous feedback
controls in order to approximate the value in some average
norm; then we show that our algorithm can produce
approximations of these controls (and associated values)
up to arbitrary precision, therefore leading to a global
convergence result for the approximated values.
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1. INTRODUCTION

According to the World Health Organization (WHO),
depression is a common mental disorder affecting 5% of
the adult population and a leading cause of disability
worldwide, and can lead to suicide. The WHO further
estimates that over 700 000 people die due to suicide every
year, with suicide being the fourth leading cause of death
in 15–29 year-olds (World Health Organization, 2021).

While the WHO also states that “there is effective treat-
ment for mild, moderate, and severe depression”, anecdo-
tal evidence observed by the author has it that in some
individuals depression can be very difficult to treat, has
temporally fluctuating features, and psychiatric treatment
often involves a long trial-and-error process for finding
an effective medication regime that strikes an acceptable
balance between effectiveness and its often severe side
effects.

Clinical depression, also known as major or severe depres-
sion, is the stronger form of depression, and its treatment
is more involved than simply administering the right drug
(after identifying the right one in the first place). Research
on the development of medical drugs would naturally in-
volve neuroscience and neurobiology as well as medical
studies.

At the same time, there exist a wealth of psychological
research and established therapies for treating depression
without administering drugs, including behavioral therapy
(attributed independently to Wolpe; to Skinner; as well as
to Rachman and Eysenck) and Aaron T. Beck’s cognitive
therapy and cognitive behavioral therapy.

There exist mathematical models in both of these reason-
ably distinct branches of depression research, e.g., Byrum
et al. (1999); Disner et al. (2011). A common feature
that can often be seen on both sides consists of causality
networks that show how signaling pathways and areas in
the brain influence each other, or how schemas, memories,
triggers and behaviors are coupled in different psycholog-
ical theories. An aspect most often overlooked, or at least
not studied at the same level of detail, is the time axis,
and the dynamical behavior of these graph-based models.

It is important to note that unlike in mathematics or the
exact sciences, it is practically impossible to either derive
a model from first principles or to identify a model from
data, and that a model that is “as simple as possible but
not any simpler” is the most desirable model. Another
difficulty is that it is often unclear whether the root source
of a patient’s depression is genetic or a result of external
factors, or a combination.

In the present contribution we propose a dynamical model
that only implements the most basic coupling topology.
Our model is simple in terms of its mathematical descrip-
tion, but not too simple to not exhibit complex enough
behaviors consistent with anecdotal observations about
the course of a depression.

There are two states in our model. One state represents
the severity of depression or another suitable symptom
that is a good indicator of depression. This is something
that would commonly be measured by a practitioner using
a questionnaire, such as the Beck Depression Inventory-
Second Edition (BDI-2), a widely used 21-item self-report
inventory measuring the severity of depression in adoles-
cents and adults (Beck et al., 1996), or the Beck Hopeless-
ness Scale (BHS), an instrument for assessing cognitive
thoughts among suicidal persons (Beck et al., 1988). The
second state measures the memory of past depression
experiences, following the schema idea in Beck’s cognitive
theory (Disner et al., 2011). In a nutshell, this memory
represents internal belief representations of past negative
stimuli or experiences, which has influence on the effect of
new stimuli. Unlike the depression state, the memory state
evades direct measurement and for a given individual may
only be inferred by the course of the illness in relation to
external stimuli, which are just as difficult to measure and
quantify.

The two states are coupled, and higher values of the mem-
ory state effect that external stimuli (which commonly
would consist of negative life events for the individual)
more severely worsen the depression, thus increase the
depression state. Persistently large values of the depression
state on the other hand effect a stronger increase of the
memory state, while in the absence of depression symp-
toms, the memory state attenuates over time.
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In Section 2 we propose a mathematical model from the
informal description given above, along with some design
choices for the numerical range of the states and the nature
of the coupling. As our modeling aims to be qualitative and
not to quantitatively match a given individual, there is no
loss in generality to assume that all coupling coefficients
have unit value. In Section 3 we examine properties of the
model and study several scenarios in some detail. Section 4
concludes this study and provides some ideas for future
research.

2. THE MATHEMATICAL MODEL OF DEPRESSION

Without loss of generality, we can normalize both the
depression state (according to a scale such as BDI-2 or
BHS, which naturally have a bounded range of possible
values), which we call s, and the memory state, which we
denote by m, to the unit interval [0, 1], with zero denoting
the absence of depression or a memory of it, and one the
most severe form of depression and maximal memory of it.

We denote the external stimulus or influence to the model
by e ≥ 0, with the convention that zero means absence
of the stimulus and larger values mean more severe and
pronounced forms of negative life events affecting the
individual. This stimulus may change with time.

With this notation the evolution of the symptom is given
by

ṡ =
(
e(1 + s+m)− s(1−m)

)
(1− s)s (1)

where the second and third factors, (1−s) and s, are simply
there to confine the solutions to the interval [0, 1]. The
growth term e(1+s+m) is always non-negative. It models
that the symptom increases if there is an external influence
(non-zero e), and that this rate of change is increased by
the combined effect of current symptom severity (s) as
well as symptom history (m). The decay term −s(1−m)
is always non-positive and models the attenuation of the
symptom. The net change rate is the combination of the
growth and decay terms.

The evolution of the memory is given by

ṁ =
(
s− (1− s)m

)
(1−m)m. (2)

Again the second and third factor ensure that the memory
remains confined to the interval [0, 1]. The growth term in
the change rate is simply s, the symptom severity, while
the decay term is −(1− s)m, modeling an an attenuation
of the the memory that is stronger if symptoms are low,
and less pronounced if symptoms are more developed.

Denoting the tuple x := (x1, x2)
T := (s,m)T ∈ [0, 1]2, we

can write the model in the more compact form

ẋ = f(x, e) (3)

with

f(x, e) =

((
e(1 + x1 + x2)− x1(1− x2)

)
(1− x1)x1(

x1 − (1− x1)x2

)
(1− x2)x2

)
.

Expanding f , it is apparent that the model is nonlinear
(polynomial in fact), which allows it to accommodate a
rich set of dynamics as we shall see next.

3. PROPERTIES OF THE MODEL OF DEPRESSION

3.1 Equilibria

Using x = (x1, x2)
T and (s,m)T interchangeably and

treating e ≥ 0 as a fixed parameter, we find the following
list of equilibrium points for system (3):

x̄1 = (0, 0)T

x̄2 = (− e
e−1 , 0)

T

x̄3 = (1, 0)T

x̄4 = ( e+
√
5 e2−10 e+1−1
2 (e−2) ,− 3 e+

√
5 e2−10 e+1−1
2 (e+1) )T

x̄5 = ( e−
√
5 e2−10 e+1−1
2 (e−2) ,− 3 e−

√
5 e2−10 e+1−1
2 (e+1) )T

x̄6 = (0, 1)T

x̄7 = (−2, 1)T

x̄8 = (1, 1)T

Of these, equilibrium point x̄7 is clearly outside our state
space [0, 1]2 and can be ignored in subsequent investiga-
tions.

Equilibria x̄2, x̄4, and x̄5 are dependent on the input e,
which may vary with time.

Equilibria x̄1, x̄3, x̄6, and x̄8 are by construction of the
model, while the point x̄2 is well-defined and in the domain
[0, 1]2 only if e < 1.

Provided that e ≤ 1− 2
5

√
5 ≈ 0.1, the equilibria at x̄4 and

x̄5 are well-defined and located in [0, 1]2.

Already at this point it is clear that the model will exhibit
changes in dynamics when the value of e varies across the
value of 1− 2

5

√
5 ≈ 0.1 or about 1.

It is an artifact of the design choices in this model that
the points x̄1, x̄3, x̄6, x̄8 are equilibria irrespective of
the value of e, meaning that an individual who has, say,
zero symptoms and memory, will always remain this way,
unfazed by any external stimuli. For practical purposes,
however, it is a more realistic scenario to consider whether
the states asymptotically converge to zero, or remain close
to zero, which is a question of (asymptotic) stability.

Put differently, no real world and alive individual can ever
be found in states x̄1 or x̄8, as everyone will have had some
negative experiences in their lives.

3.2 Linearization and local stability analysis

Linearizing f at x we obtain the Jacobian J(x, e) :=
∂f
∂x (x, e). At every point x ∈ [0, 1]2 the matrix J(x, e)
is Metzler, i.e., it has non-negative off-diagonal entries.
This means that the system ẋ = f(x, e) is monotone (in
x), which further implies that it is positive (i.e., positive
initial conditions result in states that remain positive) and
solutions for initial condition in [0, 1]2 and arbitrary non-
negative and locally integrable input e = e(t) exist for all
times and are confined to [0, 1]2, see, e.g., Smith (1995)
for an introduction to monotone systems. We’ll discuss
monotonicity in more detail in Section 3.4.

Evaluating the Jacobian of f at the equilibrium points in
the four corners of the state space, we find
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• J(x̄1) =

(
e 0
0 0

)
,

• J(x̄3) =

(
−2 e+ 1 0

0 1

)
,

• J(x̄6) =

(
2 e 0
0 1

)
, and

• J(x̄8) =

(
−3 e 0

0 −1

)
.

We can immediately read off the eigenvalues from the
diagonals and conclude that

• equilibrium x̄1 is unstable for e > 0; no conclusion
can be made for e = 0,

• equilibria x̄3 and x̄6 are unstable,
• equilibrium x̄8 is asymptotically stable for e > 0 and
no conclusion can be made for e = 0.

An important case to study remains: the stability proper-
ties of x̄1 in the case that e = 0. While we cannot deduce
(asymptotic) stability from J(x̄1), the consideration of
J(x̄4) for e ↘ 0 suggests that the origin should indeed be
asymptotically stable even for e = 0. We will come back to
this question in Section 3.4 after considering some sample
trajectories for time varying inputs in the next section, so
as to gain more insight into the system.

3.3 Sample trajectories

To demonstrate the nonlinear effects of the model, let us
consider the system response to two marginally different,
piece-wise constant inputs

e1(t) =



0 if t < 20

0.8 if 20 ≤ t < 24

0.01 if 24 ≤ t < 60

0.4 if 60 ≤ t < 70

0.1 if t ≥ 70

and

e2(t) =



0 if t < 30

0.8 if 30 ≤ t < 34

0.01 if 34 ≤ t < 60

0.4 if 60 ≤ t < 70

0.1 if t ≥ 70

.

The difference is the occurrence of the first step of the
external stimulus, which happens at t = 20 and t =
30, respectively, but lasts the same duration, and the
remainder of what might be thought of as environmental
exposure is the same. Let us assume that for both inputs
the system starts at x0 = (0.01, 0.01)T .

We find that the individual subject to e1(t) ultimately
seems to recover from the external stimuli, or at least we
can conclude that the level of the states remains bounded
away from the point (1, 1) (because we see a monotonic
decrease in both states and the system is monotone).

If the first stimulus happens 10 time units later, though,
we see that our individual, if instead subjected to e2(t)
does not recover, and propels into a severe depression, as
both states asymptotically reach 1.

Investigating the time evolution, we see two qualitatively
rather similar evolutions up to the end of the second

stimulus. Keeping in mind that the depression state is the
only thing that can be somewhat measured (even though
not with great accuracy and resolution through question-
naires), the obvious conclusion must be that timing is
important for the overall outcome for the patient, as is
the elusive memory state.

Another insight compatible with anecdotal evidence is that
removal of external stimuli alone may not lead to recovery
of an individual. For this consider the input

e3(t) =



0 if t < 20

0.5 if 20 ≤ t < 33

0 if 33 ≤ t < 200

0.1 if 200 ≤ t < 210

0 if t ≥ 210

corresponding to a moderately severe life event at t =
20 and another mild one at t = 200. Neither event is
particularly long, but the individual has a prior memory of
depression with m0 = 0.5 (and s0 = 0.01 as before). If left
without external stimulus, the memory would fade away to
zero over time. But due to the first stimulus commencing
at t = 20, the memory value is increased, and increased
too far, so that it does not recover after the stimulus has
ceased. Now a later and in comparison small, secondary
stimulus at t = 200 is sufficient to push the individual into
the a severe depression from which there is no recovery,
even after all stimuli are over.

3.4 Consequences of monotonicity

Much of the following analysis hinges on the following fact,
which can be gathered from Chapter 1 of Smith (1995)
utilizing the fact that our system (3) is cooperative. By
ordering we mean the component-wise ordering, i.e., for
vectors x, y we have x ≥ y if for each component i we have
xi ≥ yi.

Theorem 1. (e.g., Smith (1995)). Let x0 ≥ y0 be ordered
initial conditions, and let locally integrable input signals
e1, e2 be ordered point-wise, i.e., e1(t) ≥ e2(t) for all t.
Denote by x(t) the solution to the initial value problem
ẋ = f(x, e1(t)) with x(0) = x0, and similarly y(t) for the
initial condition y0 and input e2(t). Then the solutions
remain ordered for all times, that is x(t) ≥ y(t) for all
t ≥ 0.

The first consequence is a stability result for the origin.

Corollary 2. If there is an e∗ < 1 − 2
√
5/5 such that

e(t) < e∗ for all t ≥ 0 and x0 ≤ x̄4(e
∗) :=

(
e∗+

√
5 (e∗)2−10 e∗+1−1

2 (e∗−2) ,− 3 e∗+
√

5 (e∗)2−10 e∗+1−1

2 (e∗+1) )T , then the

solution to the initial value problem ẋ = f(x, e(t)), x(0) =
x0, satisfies x(t) ≤ x̄4(e

∗) for all t ≥ 0.

Since the order interval [0, x̄4(e
∗)] := {x ∈ R2 : (0, 0)T ≤

x ≤ x̄4(e
∗)} defines an arbitrarily small neighborhood of

the origin with e∗ arbitrarily close to zero, we have the
more specific result:

Corollary 3. If e ≡ 0 then the origin is stable with respect
to (3).

The corollary states that if an individual with mild depres-
sion symptoms and very minor memory of such symptoms
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experiences no further external stimuli, then neither the
depression nor memory of it does increase.

A different question is whether both of the states actually
dissipate to zero in this scenario. For that we need a
different tool.

Asymptotic stability analysis of the origin in the case
e = 0. In this case we can easily generate a specific
trajectory for e ≡ 0 that converges to the origin. This
trajectory comes from the initial condition x0 = x̄4(0.1).
And because this trajectory converges to the origin as
t → ∞, we conclude with the help of Theorem 1 that all
trajectories commencing in a neighborhood of the origin
must converge to the origin, as they are dominated by
one that does converge. We summarize this observation as
follows.

Corollary 4. For e ≡ 0 the origin is asymptotically stable.

This result supports the intuition that “time heals all
wounds” at least as long as the wound is a) small enough
and b) any external stimuli causing further damage are
completely removed.

4. CONCLUSION AND OUTLOOK

Our analysis is preliminary at this stage, but it is able
to recover with a basic mathematical model a range of
features that seem compatible with anecdotal evidence
observed in individuals suffering from depression.

The model follows the paradigm to be as simple as possible
but not simpler. It supports observations that a patient
should continue to take their medication despite already
feeling better—as the internal memory state may not have
recovered yet and as this may take a substantially longer
amount of time. It also supports scenarios where a patient
is catapulted back into a severe depression by seemingly
small trigger events that leave healthy individuals unaf-
fected.

At the same time, the modeling process used here has
made no attempt to seek grounding in more elaborate
models of schema therapy or causal networks of signal-

ing pathways in the brain as they are studied in neuro-
science. The objective here was merely to propose a model
that captures essential qualitative behavior, while being
tractable by standard methods and concepts of the systems
theory community, and we argue that this objective has
been achieved.

A number of extensions are of course possible. On the
mathematical side, more analysis can be done, for example
by computing regions of attraction, by considering stabil-
ity notions such as input-to-state stability, by designing
observers for the memory state using only measurements
of inputs and possibly quantized measurements of the
symptom state. At the expense of simplicity, the model
could further be augmented to account for treatment op-
tions such as medication, or to accommodate multiple
symptoms and memory features or a resilience concept.
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1. INTRODUCTION

Convex semialgebraic sets arise naturally in convex opti-
mization problems such as the semidefinite programming
or the hyperbolic programming. As a result, questions
motivated by optimization problems, such as the study
of the expressivity of semidefinite programming, lead to
questions in real algebraic geometry (e.g., study of classes
of sets that are representable by linear matrix inequalities).
We refer to Blekherman et al. (2013) for more information
about the interactions between these disciplines. In this
work, we apply techniques from tropical geometry to study
convex semialgebraic sets.

One of the research directions in tropical geometry is
to analyze the (semi)algebraic sets defined over non-
Archimedean fields with the help of the valuation map.
This idea was first applied to sets arising in convex opti-
mization by Develin and Yu (2007), who studied the trop-
icalizations of polyhedra. This inspired numerous other
works on the tropicalizations of polyhedra, see, e.g., Al-
lamigeon et al. (2015, 2018); Allamigeon and Katz (2017);
Joswig and Smith (2018). The study of tropical polyhedra
was also extended to more general semialgebraic sets, such
as spectrahedra (Yu, 2015; Allamigeon et al., 2020), hy-
perbolicity cones in dimension 3 (Le Texier, 2021), convex
semialgebraic sets (Allamigeon et al., 2019), and arbitrary
semialgebraic sets (Alessandrini, 2013; Allamigeon et al.,
2020; Jell et al., 2022). A recent idea proposed by Jell et al.
(2022) is to study the tropicalizations of semialgebraic sets
using a signed valuation map. In other recent development,
Loho and Végh (2020) and Loho and Skomra (2022b)
started a systematic study of tropical convexities in the
signed setting and proved new tropical analogues of the

? This work has benefited from the European Union’s Horizon 2020
research and innovation program under the Marie Sk lodowska-Curie
Actions, grant agreement 813211 (POEMA).

hyperplane separation theorem. In this work, we combine
both ideas by studying the signed valuations of convex
semialgebraic sets. Our main goal is to generalize the
known results about tropical polyhedra and spectrahedra
to the tropicalizations of hyperbolicity cones in arbitrary
dimension. We present the first results in this direction, by
characterizing the regular sets arising as tropicalizations of
convex semialgebraic sets, and by showing that the trop-
icalizations of hyperbolicity cones have a more restricted,
“tropically quadratic” structure.

2. PRELIMINARIES

2.1 Generalized Puiseux series

In this work, we denote by K the field of absolutely
convergent generalized real Puiseux series, i.e., series of
the form

x = x(t) = c1t
α1 + c2t

α2 + . . . , (1)

where both the coefficients ci and the exponents αi are real
numbers. We further suppose that the sequence (αi)i>1 is
strictly decreasing and either finite or unbounded and that
the series x(t) is absolutely convergent for all sufficiently
large t > 0. It is known that K is a real closed field (van den
Dries and Speissegger, 1998). In particular, K is ordered by
putting x > 0 ⇐⇒ c1 > 0. We state our results for K, but
we note that a quantifier elimination argument discussed
in Allamigeon et al. (2020) allows to transfer our main
theorems from K to any real closed field equipped with a
nontrivial and convex valuation whose value group is R.

As a non-Archimedean field, K has a valuation function
val : K→ R ∪ {−∞} that maps a series of the form (1) to
its leading exponent, val(x) = α1, with val(0) = −∞. We
note that the usual convention in the theory of valued fields
would be to define the valuation as −α1 rather than α1.
We use the opposite convention for the sake of coherence
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with the max-plus tropical semiring introduced below. One
can easily adapt our results to the other setting. We also
use an extended valuation map that keeps track not only
of the leading exponent of the series but also of its sign.

Definition 1. We define the signed valuation sval : K →
({−1, 1}×R)∪{−∞} by setting sval(x) =

(
sign(x), val(x)

)
,

with the convention that sval(0) = −∞.

We extend the definitions of val and sval to vectors by
applying them coordinatewise. A signed tropicalization of
a semialgebraic set X ⊂ Kn is then given by sval(X). An
alternative viewpoint follows from the work of Alessandrini
(2013), who showed that if X ⊂ Kn>0, then val(X)
coincides with the “log-limit” of setsX(t) ⊂ Rn>0 obtained

by fixing the parameter t, val(X) = limt→∞ logt
(
X(t)

)
. In

this way, if X ⊂ Kn, then sval(X) is obtained by “gluing”
the log-limits given by all sign patterns.

2.2 Signed tropical numbers

Tropicalizations of semialgebraic sets are studied with the
help of an algebraic structure known as the tropical semir-
ing, see Maclagan and Sturmfels (2015); Joswig (2021)
for more information. The tropical (max-plus) semiring is
defined as T = (R∪{−∞},⊕,�), where a⊕b = max{a, b}
and a�b = a+b. In order to replace valuation by the signed
valuation, we extend T to signed tropical numbers. The set
of signed tropical numbers is T± = ({−1, 1}×R)∪{−∞}.
By convention, we denote the numbers of the form (1, a)
by a and call them positive. We also denote the numbers
of the form (−1, a) by 	a and call them negative. Then,
the set T± is ordered by mimicking the order of the real
line, with −∞ having the role of zero, so that

	2 < 	1 < 	(−1) < −∞ < (−1) < 1 < 2 .

We denote by [a, b] the interval from a to b in T± and
we embed the set T in T± by identifying it with the set of
signed tropical numbers that are not smaller than −∞. We
equip T± with the topology induced by the order and use
the product topology on Tn±. We also use a sign function
tsign: T± → {−1, 0, 1} that gives the sign of a signed
tropical number, tsign(−∞) = 0, and an absolute value
function | · | : T± → T that acts by forgetting the sign of
a tropical number. In this way, the function φ : T± → R
defined as φ(x) = tsign(x) exp(|x|) is an order-preserving
homeomorphism. Thus, Tn± and Rn are homeomorphic.

In order to equip T± with an algebraic structure, we first
define the multiplication on T± (still denoted by �) as
a� b = −∞ if −∞ ∈ {a, b} and

a� b =
(
tsign(a) tsign(b), |a|+ |b|

)
otherwise. As an example, (	2)�3 = 	5, (	3)�(	4) = 7.
Defining the addition is more problematic as there is no
way to define an addition that extends⊕ and turns T± into
a semiring. As a way to overcome this difficulty, we equip
T± with a multivalued addition � : T± → 2T± defined as

a� b =


a if |a| > |b| or a = b,

b if |b| > |a|,
[	|a|, |a|] otherwise.

In this way (	2)�3 = 3, but (	2)�2 = [	2, 2]. We extend
the addition to vectors by applying it coordinatewise and
to sets A,B ⊂ T± by putting A�B = ∪{a� b : a ∈ A, b ∈
B}. These operations turn (T±,�,�) into a hyperfield,

see Baker and Bowler (2019) for more information. The
following lemma gives a link between the signed valuation
and the hyperfield operations.

Lemma 2. For any x,y ∈ K we have sval(xy) = sval(x)�
sval(y) and sval(x+ y) ∈ sval(x)� sval(y).

2.3 Tropical polynomials

A (signed) tropical polynomial P (x) ∈ T±[x] is an expres-
sion of the form

�
α∈Λ

cα � x�α1
1 � . . .� x�αn

n ,

where cα ∈ T±. A tropical polynomial defines a mul-
tivalued function P : Tn± → 2T± . One can check that
if we evaluate P on a point x ∈ Tn±, then the result
is either a singleton in T± or an interval of the form
[	a, a] for some a > −∞. We define the (signed) tropical
hypersurface of P as the set {x ∈ Tn± : −∞ ∈ P (x)}.
Furthermore, given a polynomial P ∈ K[x] of the form
P (x) =

∑
α∈Λ cαx

α1
1 . . .xαn

n , we define its formal tropical-

ization as trop(P ) =�α∈Λ sval(cα)� x�α1
1 � . . .� x�αn

n .
The next lemma follows from Lemma 2 and links the
classical and tropical hypersurfaces.

Lemma 3. Let P ∈ K[x] be a polynomial. Then, the set

sval
(
{x ∈ Kn : P (x) = 0}

)
is included in the tropical hypersurface of trop(P ). In
general, this inclusion may be strict.

Example 4. Consider the bivariate polynomial P ∈ K[x]
defined as P (x) = (x1−1−t−1)4 +x4

2−1. By opening the
parentheses, one can see that the formal tropicalization of
P is given by x�4

2 � x
�4
1 � (	x�3

1 )� x�2
1 � (	x1)� (−1).

The tropical hypersurface of trop(P ) is the boundary of
the set depicted in Figure 1. In this case, the inclusion
from Lemma 3 is satisfied as an equality.

2.4 Tropical convexity

In the unsigned case, we say that a subset X ⊂ Tn is
tropically convex if for every x, y ∈ X and for all λ, µ ∈ T
such that λ⊕µ = 0 we have (λ�x)⊕(µ�y) ∈ X. We note
that this mimics the definition of convexity over Rn, since 0
is the neutral element of � and the weights λ, µ are always
“nonnegative”, as they satisfy λ, µ > −∞. The following
lemma relates the classical and tropical convexity, see,
e.g., Develin and Sturmfels (2004), Develin and Yu (2007),
Allamigeon et al. (2019) for more information.

Lemma 5. If X ⊂ Kn is convex, then val(X) ⊂ Tn is
tropically convex.

The following extension of tropical convexity to T± was
introduced by Loho and Végh (2020).

Definition 6. We say that a set X ⊂ Tn± is TO-convex
if for every x, y ∈ X and for all λ, µ ∈ T± such that
λ, µ > −∞ and λ� µ = 0 we have (λ� x)� (µ� y) ⊂ X.

The drawback of multivalued addition is that the TO-
convexity is a rather strong property. In particular,
Lemma 5 does not generalize to the signed setting (this
requires to use a weaker notion of TC-convexity). Never-
theless, we still have a weaker property.

Lemma 7. (Loho and Skomra (2022a)). IfX ⊂ Kn is con-
vex, then the interior of sval(X) ⊂ Tn± is TO-convex.
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Fig. 1. Signed valuation of a convex semialgebraic set.

Example 8. The TV screen set is a convex set in R2

defined as {x ∈ R2 : x4
1 + x4

2 6 1}. The convexity of the
TV screen set implies that the set S1 = {x ∈ K2 : (x1 −
1− t−1)4 +x4

2 6 1} is also convex. Figure 1 depicts the set
sval(S1). We note that this set is TO-convex.

Example 9. The bean curve is the curve defined by the
polynomial p(x) = x1(x2

1 + x2
2) − x4

1 − x2
1x

2
2 − x4

2. The
region {x ∈ R2 : p(x) > 0} is convex. This implies that the
set S2 = {x ∈ K2 : x1 > t−1, p(1 − x1,x2) > 0} is also
convex. Its signed valuation is the same as in the previous
example, sval(S1) = sval(S2).

3. MAIN RESULTS

We now state our main results concerning the signed
valuations of convex semialgebraic sets. Some of these
results were obtained in collaboration with Georg Loho.

For the purpose of this work, we say that a set X ⊂ Tn±
is regular if it is equal to the closure of its interior.
Regular sets arise naturally in the study of valuations of
convex sets—it is known that generic tropical polyhedra
are regular (Allamigeon et al., 2015) and the same is true
for tropical Metlzer spectrahedra (Allamigeon et al., 2020).

3.1 Polyhedra

The signed valuations of polyhedra are studied in Loho and
Végh (2020); Loho and Skomra (2022a,b). In particular,
we have the following result.

Theorem 10. (Loho and Skomra (2022a)). Let X ⊂ Tn±
be a regular set. Then, the following are equivalent:

(1) X is an intersection of finitely many signed tropical
halfspaces.

(2) X is a signed valuation of a polyhedron.

Here, a signed tropical halfspace is a set of the form

{x ∈ Tn± : P (x) ∩ [−∞,+∞) 6= ∅} ,
where P (x) is an affine tropical polynomial,

P (x) = c0 � (c1 � x1)� . . .� (cn � xn) .

For the unsigned valuation, it is known that Theorem 10
holds even without the regularity assumption, see Develin
and Yu (2007); Gaubert and Katz (2011). On the other
hand, some assumption is necessary in the signed case.
Indeed, an intersection of finitely many signed tropical
halfspaces does not need to be connected, whereas a signed
valuation of a convex set is always connected. It is an open
question if Theorem 10 is true if we replace the assumption
“X is regular” by “X is connected”.

3.2 General convex semialgebraic sets

In order to characterize the regular sets that arise as
images of convex semialgebraic sets, we need the following
definition.

Definition 11. Let X ⊂ Tn± be any set and let σ ∈
{−1, 1}n be a vector of signs. Then, the maximal stratum
of X given by σ is the subset of Rn defined as

str(σ,X) = {(|x1|, . . . , |xn|) : x ∈ X ∧ ∀i, tsign(xi) = σi} .

We also say that a closed subset of Rn is semilinear if it
is a union of polyhedra of the form {x : Ax > b}, where
b ∈ Rm and A ∈ Qm×n is a rational matrix. The following
theorem is our main result about tropicalizations of convex
semialgebraic sets.

Theorem 12. Suppose that the set X ⊂ Tn± is regular.
Then, the following are equivalent:

(1) X has a TO-convex interior and semilinear maximal
strata.

(2) X is a signed valuation of a convex semialgebraic set.

For the unsigned valuation, a full characterization that
does not require regularity was given by Allamigeon et al.
(2019). As in the case of polyhedra, it is an open question
to obtain a generalization of Theorem 12 that does not
require regularity.

The next corollary gives more insight into the structure of
signed valuations of convex cones.

Corollary 13. Suppose that X ⊂ Kn is a convex semi-
algebraic cone such that sval(X) is regular. Let W be
any nonempty maximal stratum of sval(X). Then, W is
a support of a pure polyhedral complex of dimension n.
Furthermore, if F is an (n − 1)-dimensional face of this
complex, then the affine space spanned by F is of the form

{x ∈ Rn : λ+ xk = pTx}
for some k ∈ [n], λ ∈ R, and p ∈ Qn>0 that satisfies pk = 0

and
∑n
i=1 pi = 1.

Example 14. Consider the cone S3 = {x ∈ K3 :
(
x1 −

(1 + t−1)x3

)4
+ x4

2 − x4
3 6 0,x3 > 0}, which is a

homogenized version of the set S1 from Example 8. Its
signed valuation S = sval(S3) is therefore a (tropically)
homogenized version of the set depicted in Figure 1. If we
fix σ = (1, 1, 1), then str(σ, S) is a polyhedral complex
with three faces of dimension 2. These faces are included
in affine spaces given by x3 = x1, x3 − 1 = x1, and

x2 =
1

4
x1 +

3

4
x3 . (2)

3.3 Hyperbolicity cones

Let us recall that a homogeneous polynomial P ∈ K[x]
is hyperbolic with respect to e ∈ Kn if P (e) > 0 and,
for all x ∈ Kn, all the roots of the univariate polynomial
λ 7→ P (e − λx) belong to K. If P is hyperbolic with
respect to e, then the set

{x ∈ Kn : λ 7→ P (e− λx) has only nonnegative roots}
is called its hyperbolicity cone. The following lemmas
summarize basic properties of hyperbolicity cones. They
are stated over R in Renegar (2006), but they hold in all
real closed fields.
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Lemma 15. Hyperbolicity cones are convex.

Lemma 16. The hyperbolicity cone of P with respect to e
is equal to the closure of the connected component of the
set {x ∈ Kn : P (x) > 0} that contains e.

Our first result gives a tropical analogue of Lemma 16.

Proposition 17. Suppose that X ⊂ Kn is a hyperbolicity
cone of P with respect to some point. Furthermore,
suppose that sval(X) is regular and let e be any point
in the interior of sval(X). Then, sval(X) is equal to the
closure of the connected component of the set

{x ∈ Tn± : trop(P )(x) is a positive singleton}
that contains e.

We note that the boundary of the connected component
mentioned in Proposition 17 belongs to the tropical hy-
persurface of trop(P ). Proposition 17 implies that this
boundary is a subset of sval

(
{x ∈ Kn : P (x) = 0}

)
.

Our final result implies that signed valuations of hyper-
bolicity cones have more restricted structure than signed
valuations of general convex semialgebraic sets.

Theorem 18. Suppose that X ⊂ Kn is a hyperbolicity
cone such that sval(X) is regular. Let W be a nonempty
maximal stratum of sval(X) and let F be an (n − 1)-
dimensional face of a polyhedral complex with supportW.
Then, the affine space spanned by F is of the form

{x ∈ Rn : λ+ xk = pTx} , (3)

for some k ∈ [n], λ ∈ R, and p ∈ {0, 1
2 , 1}

n that satisfies
pk = 0 and

∑n
i=1 pi = 1. In particular, p has either one or

two nonzero coefficients.

Example 19. Equation (2) implies that the set S3 from
Example 14 does not satisfy the condition of Theorem 18.
In particular, S3 is not a hyperbolicity cone. By the
discussion in Examples 8 and 9, we recover the known
fact that neither the TV screen set nor the set bounded by
the bean curve are spectrahedral, see Helton and Vinnikov
(2007); Henrion (2010) for more discussion.

Informally, Theorem 18 can be interpreted by saying that
signed valuations of hyperbolicity cones are “tropically
quadratic” since the hyperplanes of the form (3) are given
by tropical polynomials of degree 2. In this sense, Theo-
rem 18 generalizes the result of Allamigeon et al. (2020)
who showed that generic tropical Metzler spectrahedral
cones are described by systems of tropical quadratic in-
equalities. We note however that Theorem 18 is only a local
result: it states that every face separately can be described
by a tropically quadratic polynomial, but does not give a
global characterization of sval(X). I particular, the follow-
ing is the main open question about the tropicalizations of
hyperbolicity cones. This question is the tropical analogue
of the generalized Lax conjecture, see Amini and Brändén
(2018) for more information.

Problem 20. Suppose that X ⊂ Tn± is a signed valuation
of a hyperbolicity cone. Does this imply that X is a signed
valuation of a spectrahedron?

We note that if the answer to Problem 20 is negative and
a counterexample is obtained from a linear transformation
of a real polynomial (like in Example 14), then we would
obtain a negative answer to the generalized Lax conjecture
over the real numbers.
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Abstract: For constrained linear systems with bounded disturbances and parametric un-
certainty, we propose a robust adaptive model predictive control (MPC) scheme with online
parameter estimation. Constraints enforcing persistent excitation in closed loop operation are
introduced to ensure asymptotic parameter convergence. The algorithm requires the online
solution of a convex optimisation problem, satisfies constraints robustly, and ensures recursive
feasibility and input-to-state stability. Almost sure convergence to the actual system parameters
is obtained under mild conditions on stabilisability and the tightness of disturbance bounds.
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1. INTRODUCTION

To be effective, model predictive controllers require accu-
rate models of the controlled system. Adaptive MPC algo-
rithms allow model parameters to be estimated online, re-
ducing model uncertainty without expensive or disruptive
offline testing. In system identification and adaptive con-
trol, persistent excitation (PE) conditions play a key role
in establishing convergence of parameter estimates (Green
and Moore, 1986; Shimkin and Feuer, 1987). By incor-
porating constraints to ensure appropriate PE conditions,
a constrained MPC strategy can impose a lower bound
on the expected rate of parameter convergence. As a re-
sult, adaptive MPC has the potential to estimate system
parameters while controlling the system subject to con-
straints. Various approaches have been proposed (Mayne,
2014), but robust, computationally tractable adaptive
MPC remains an open topic under research.

Adaptive MPC strategies usually have the dual purpose
of regulating the system via feedback and providing suf-
ficient excitation for identification of the system. Differ-
ent adaptive MPC approaches place varying emphasis on
these two competing objectives. Some focus on robust con-
straint satisfaction and stability (e.g. through constraint
tightening (Di Cairano, 2016), min-max cost formulations
(Adetola et al., 2009; Wang et al., 2017) or tube MPC
(Lorenzen et al., 2019; Lu and Cannon, 2019)) but omit
persistent excitation conditions in the problem formula-
tion. On the other hand, some approaches consider a
nominal MPC problem and force the control law to be
persistently exciting, but fail to ensure constraint satisfac-
tion and closed loop system stability (Goodwin and Sin,
1984; Marafioti et al., 2014).

Other approaches aim to achieve the dual objectives of
system regulation and sufficient excitation simultaneously.
For example, Weiss and Di Cairano (2014) use an aug-
mented cost function to make the resulting control law
more likely to be persistently exciting, but this is not

guaranteed. Tanaskovic et al. (2014) avoids imposing PE
conditions by considering the discrepancy between the
nominal and actual models. However, this requires a non-
convex, infinite-dimensional optimisation that can only be
simplified for specific examples. Gonzalez et al. (2014)
uses a dual mode control strategy that injects persistent
excitation into the system whenever the state enters a
target region for parameter identification. The proposed
algorithm is only applicable to open-loop stable linear
systems however, and the existence of the target region
is example-dependent. Hernandez Vicente and Trodden
(2019) propose an algorithm that satisfies a PE condition
and state and input constraints recursively, but the system
model cannot be adapted online. Parsi et al. (2022) explic-
itly predicts the effect of future model updates in order to
ensure sufficiently accurate parameter estimates, but this
requires the online solution of a nonconvex problem.

In addition, although the importance of Persistent Exci-
tation conditions have been widely acknowledged in the
adaptive control literature (Narendra and Annaswamy,
1987), few strategies incorporate these conditions in a
convex optimisation formulation. For example, Marafioti
et al. (2014) simplifies the PE condition by expressing
it as a nonconvex quadratic inequality in terms of the
control input. Similarly, Hernandez Vicente and Trodden
(2019) demonstrate that a PE condition can be satisfied
using a periodic solution computed offline, but this so-
lution might not be optimal. Other approaches (Lu and
Cannon, 2019; Lu et al., 2021) use linearisation of the
PE condition around a reference trajectory to determine
sufficient conditions for persistency of excitation, but are
unable to ensure closed loop satisfaction of PE conditions
through recursively feasible constraints.

In this work we consider linear models with parametric
uncertainty and unknown bounded additive disturbances.
Building on Lu et al. (2021), we propose an adaptive
MPC algorithm that combines set-based parameter iden-
tification, robust regulation, and recursively feasible con-
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straints. The algorithm is input-to-state stable (ISS) and
ensures convergence of parameter estimates with probabil-
ity 1. Using a random excitation sequence injected into a
terminal control law, we derive closed loop bounds on the
expectation of PE coefficients. The algorithm employs a
convex online optimisation and uses a randomised check
to enforce a non-convex PE condition. The algorithm is
convex and computationally tractable due to its fixed-
complexity polytopic tube representation.

Notation: N≥0, R≥0 are the non-negative integers and reals
respectively, and N[p,q] denotes {n ∈ N : p ≤ n ≤ q}. The
identity matrix is I. The ith element of a vector a is
[a]i and ‖a‖ denotes the Euclidean norm. The ith row of
a matrix A is [A]i, and vec(A) is the vector formed by
stacking the columns of A. For X ,Y ⊂ Rn, AX = {Ax :
x ∈ X}, X ⊕ Y = {x + y : x ∈ X , y ∈ Y}. Expectation is
E and yk|t is the k steps ahead prediction of y at time t.

2. PERSISTENT EXCITATION

The system state xt ∈ Rnx , control input ut ∈ Rnu and
unknown disturbance input wt ∈ Rnw , satisfy

xt+1 = A(θ∗)xt +B(θ∗)ut + Fwt. (1)

at all times t ∈ N≥0. Matrices A(θ∗) and B(θ∗) depend on
an unknown constant parameter θ∗ ∈ Rp.
Assumption 1. (Additive disturbance). The disturbance se-
quence {wt ∈ W, t ∈ N≥0} is independent and identically
distributed (i.i.d.), E(wt) = 0, E(wtw

>
t ) � εwI, εw > 0,

and W is a known convex polyhedral set.

Assumption 2. (Model parameters). (a).A(θ), B(θ) are de-
fined in terms of known matrices Aj , Bj , j ∈ N[0,p]:

(A(θ), B(θ)) = (A0, B0) +

p∑
i=1

(Ai, Bi)[θ]i, ∀θ ∈ Θ0.

(b). Θ0 is a known polytopic set containing θ∗:

θ∗ ∈ Θ0 = {θ : MΘθ ≤ µ0} = Co{θ(1)
0 , . . . , θ

(m)
0 }.

(c). The pair
(
A(θ∗), B(θ∗)

)
is reachable.

(d). (A(θ), B(θ)) = (A(θ∗), B(θ∗)) if and only if θ = θ∗.

2.1 Set-based parameter estimation

Parameter identification methods include recursive least
squares (Heirung et al., 2017), comparison sets (Aswani
et al., 2013), set membership identification (Tanaskovic
et al., 2014; Lorenzen et al., 2019) and neural network
training (Akpan and Hassapis, 2011). Here we use a set
membership approach to enable robust satisfaction of con-
straints. Set-based parameter identification was proposed
in (Chisci et al., 1998; Veres et al., 1999) and it was
shown in Lu et al. (2021) that the estimated parameter set
converges to the true parameter value with probability 1
if the associated regressor is persistently exciting (PE).

At times t ∈ N>0 we use observations of the state xt to
determine a set ∆t of unfalsified model parameters. This
is combined with Θt−1 to construct a new parameter set
estimate Θt. The model (1) can be rewritten as

xt+1 = Φ(xt, ut)θ
∗ + φ(xt, ut) + Fwt

where Φt and φt are known at time t and are defined by

Φt = Φ(xt, ut) = [A1xt +B1ut · · · Apxt +Bput] (2)

φt = φ(xt, ut) = A0xt +B0ut. (3)

Given xt, xt−1, ut−1 and the disturbance set W, the
unfalsified parameter set at time t is given by

∆t = {θ : xt −A(θ)xt−1 −B(θ)ut−1 ∈ FW}
The parameter set Θt may be updated using ∆t by
various methods, including minimal (Chisci et al., 1998),
fixed-complexity (Lorenzen et al., 2019), and limited-
complexity (Tanaskovic et al., 2014) update laws. In each
case, Θt is non-increasing and Θt ⊆ Θt−1 for all t ∈ N>0.

For a fixed-complexity parameter set update law, the
parameter set estimate Θt is defined as Θt = Θ(µt) =
{θ : MΘθ ≤ µt} where MΘ ∈ Rr×p is an a priori chosen
matrix and µt ∈ Rr is determined so that Θt is the smallest
set containing the intersection of Θt−1 and the unfalsified
sets ∆t−Nµ+1, . . . ,∆t,

µt := min
µ∈Rr

vol
(
Θ(µ)

)
s.t.

t⋂
j=t−Nµ+1

∆j ∩Θt−1⊆ Θ(µ) (4)

where ∆j := Rp for j ≤ 0 and Nµ is the parameter update
window length. Note that µt can be computed by solving
a set of linear programs.

We briefly recap the definition of persistent excitation
(PE). The regressor Φt in (2) is persistently exciting if
there exists a horizon Nu and a scalar εΦ > 0 such that

t+Nu−1∑
k=t

Φ>k Φk � εΦI (5)

for all t ∈ N≥0. In the current work however, we define
persistent excitation using the expectation condition

t+Nu−1∑
k=t

E
{

Φ>k Φk
}
� εΦI, (6)

which is required to hold for some εΦ > 0 with non-
zero probability, for all t ∈ N≥0. We refer to the interval
N[t,t+Nu−1] as a PE window.

Assumption 3. (Tight disturbance bound). For all w0 ∈
∂W and any ε > 0 the disturbance sequence {w0, w1, . . .}
satisfies Pr

{
‖wt − w0‖ < ε

}
≥ pw(ε), for all t ∈ N≥0,

where pw(ε) > 0 whenever ε > 0.

The following result extends Lu et al. (2021), Corollaries
2 and 3, to the case of the modified PE condition (6).

Lemma 1. Under Assumptions 1 and 3, if Φt satisfies the
PE condition (6) with probability p > 0 for all t, then the
minimal and fixed complexity parameter set estimates Θt

with Nµ ≥ Nu converge to {θ∗} with probability 1.

Assumption 1 on the disturbance sequence {wt, t ∈ N≥0}
is common in practice. Assumption 3 may be more dif-
ficult to verify, but we note that this assumption can be
relaxed at the expense of some residual uncertainty in the
parameter set estimate (see Lu et al. (2021) for details).

2.2 Linear feedback with injected noise

Consider a feedback law with injected noise:

ut = Kxt + st (7)

where st is a stochastic variable. To simplify notation we
define AK(θ) = A(θ)+B(θ)K, AK,i = Ai+BiK, i ∈ N[0,p].

Assumption 4. (Stability). For zt ∈ Rnx and t ∈ N≥0,
zt+1 ∈ Co{AK(θ)zt, θ ∈ Θ0} is quadratically stable.
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Assumption 5. The sequence {st ∈ S, t ∈ N≥0} is i.i.d.
with E(st) = 0, E(sts

>
t ) � εsI, εs > 0, st is independent

of xt and wt, and S is a known polytopic set.

Theorem 2. If Nu > nx, then under Assumptions 1, 2,
4 and 5, the regressor Φt in (2) of the system (1) with
ut = Kxt + st satisfies, for some εΦ > 0 and all k ∈ N≥0,

t+Nu−1∑
k=t

E
(
Φ>k Φk

)
� εΦI. (8)

3. ADAPTIVE ROBUST MPC

The noise st injected into the feedback law (7) can cause
poor tracking performance and may violate state and
control constraints. However, a receding horizon control
law incorporating injected noise can avoid these undesir-
able effects while exploiting the PE properties it provides.
Consider a predicted control law parameterised at time t
in terms of decision variables vt = {v0|t, . . . , vN−1|t}:

uk|t =

{
Kxk|t + vk|t, k ∈ N[0,N−1]

Kxk|t + sk|t, k ∈ N[N,N+Nu−1]
(9)

where N is the prediction horizon. We assume linear state
and control input constraints

xk|t ∈ X , uk|t ∈ U , ∀k ∈ N[0,N+Nu−1], (10)

where X , U are given polytopes. To enforce these con-
straints we define a terminal set XT satisfying

XT ⊆ X , KXT ⊕ S ⊆ U , (11)

AK(θ)X ⊕B(θ)S ⊕ FW ⊆ XT ∀θ ∈ Θt. (12)

3.1 Tube MPC formulation

To ensure satisfaction of constraints (10) we construct a
sequence of sets denoted Xt = {Xk|t, k ∈ N[0,N+Nu−1]},
satisfying, for all θ ∈ Θt and k ∈ N[0,N−1],

Xk|t ⊆ X , KXk|t ⊕ {vk|t} ⊆ U , (13)

AK(θ)Xk|t ⊕ {B(θ)vk|t} ⊕ FW ⊆ Xk+1|t. (14)

The initial and terminal conditions are given by

X0|t = {xt}, (15)

Xk|t = XT , k ∈ N[N,N+Nu−1] (16)

where XT satisfies (11)-(12). We consider a nominal cost
defined for a given nominal parameter vector θ̄t ∈ Θt by

J(xt,vt, θ̄t) =
N−1∑
k=0

l(x̄k|t,Kx̄k|t + vk|t) + VN |t(x̄N |t)

with x̄0|t = xt, x̄k+1|t = AK(θ̄t)x̄k|t + B(θ̄t)vk|t, k ∈
N[0,N−1]. The stage cost l(·, ·) and terminal cost VN |t(·)
are assumed to be positive definite quadratic functions
satisfying, for given θ̄t ∈ Θ0 and all x ∈ Rnx ,

VN |t(x) = VN |t
(
AK(θ̄t)x

)
+ l(x,Kx). (17)

The MPC law is determined by the solution, denoted
(vot ,X

o
t ), of the problem of minimising J(xt,vt, θ̄t) over

vt and Xt subject to (13)-(16) and additional constraints
described in Section 3.2 to ensure the PE condition (6).

3.2 PE condition

To define a recursively feasible set of constraints, we con-
struct a series of Npe overlapping PE windows extending
from the past and across the prediction horizon, where

Npe =

{
N + t, t < Nu − 1

N +Nu − 1, t ≥ Nu − 1.

Consider the PE conditions defined at time t ∈ N>0 for
given vt, st, Xt and all κ ∈ N[N−Npe,N−1] by

κ+Nu−1∑
k=κ

Φ(xk|t,Kxk|t + qk|t)
>Φ(xk|t,Kxk|t + qk|t) � βκ|tI

(18)
for all xk|t ∈ Xk|t, k ∈ N[κ,κ+Nu−1], where qk|t := vk|t
if k < N and qk|t := sk|t if k ≥ N . These conditions are
nonconvex in vt, Xt, and hence unsuitable as constraints in
an online MPC optimisation. However, following Lu et al.
(2021) we can linearise these conditions around a reference
trajectory (x̂t, ût) = {(x̂k|t, ûk|t), k ∈ N[0,N+Nu−1]}. For a

given nominal parameter vector θ̄t and sequences v̂t, st,
this reference trajectory is defined by

x̂0|t = xt (19a)

x̂k+1|t = A(θ̄t)x̂k|t +B(θ̄t)ûk|t, k ∈ N[0,N+Nu−2] (19b)

ûk|t =

{
Kx̂k|t + v̂k|t, k ∈ N[0,N−1]

Kx̂k|t + sk|t, k ∈ N[N,N+Nu−1].
(19c)

We define the sequence v̂t for t ∈ N>0 using the solution
of the MPC optimisation at time t − 1, denoted vot−1 =
{vo0|t−1, . . . , v

o
N−1|t−1}, and sN |t:

v̂k|t =

{
vok+1|t−1, k ∈ N[0,N−2]

sN−1|t, k = N − 1.
(20)

Linearising (18) by neglecting quadratic terms in the de-
cision variables (vt,Xt) yields a set of LMIs in vt, the
vertices, x

(j)
k|t, of Xt, and additional optimisation vari-

ables β′t = {β′κ|t, κ ∈ N[N−Npe,N−1]}, given for κ ∈
N[N−Npe,N−1] by

−1∑
k=κ

Φ>k+tΦk+t +

κ+Nu−1∑
k=max{0,κ}

Mk|t � β′κ|tI (21)

where Mk|t = M>k|t ∈ Rp×p, k ∈ N[0,N+Nu−2] satisfies

Mk|t � Φ̂>k|tΦ̂k|t + Φ̂>k|tΦ(x
(j)
k|t − x̂k|t,Kx

(j)
k|t + qk|t − ûk|t)

+ Φ(x
(j)
k|t − x̂k|t,Kx

(j)
k|t + qk|t − ûk|t)>Φ̂k|t,

for all j ∈ N[1,ν], with Φ̂k|t = Φ(x̂k|t, ûk|t).

To increase the probability of the solution satisfying (6),
we include (21) in the MPC optimisation at times t > 0
with the following constraints on β′t

β′κ|t ≥ β̂
′
κ|t, ∀κ ∈ N[N−Npe,N−1], (22)

where β̂′κ|t is a lower bound on the maximum value of β′κ|t
satisfying (21) for (vt,Xt) satisfying (13)-(16). Thus we

determine β̂′t = {β̂′κ|t, κ ∈ N[N−Npe,N−1]} by finding β̂′κ|t
in (22) as the solution of

β̂′κ|t := max
β′
κ|t∈R

β′κ|t s.t. (21) (23)

with qk|t := v̂k|t if k < N and qk|t := sk|t if k ≥ N , and

with x
(j)
k|t := x

(j) o
k+1|t−1, ∀j ∈ N[1,ν], k > 0, where x

(j) o
k|t−1

denotes a vertex of Xo
t−1.

To impose (6) with non-zero probability, we propose a
computationally undemanding check whether the solution
of the online MPC optimisation using sampling:

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



βsκ|t ≥ β̂
s
κ|t, ∀κ ∈ N[N−Npe,N−1]. (24)

Here βsκ|t denotes the maximum βκ|t satisfying (18) with
qk|t = vok|t, k < N and xk|t ∈ {x

(1)
k|t , . . . , x

(Ns)
k|t } where

x
(i)
k|t ∈ X

o
k|t for i ∈ N[1,Ns], k ∈ N[κ,κ+Nu−1] are random

samples, and β̂sκ|t is defined analogously with qk|t = v̂k|t for
k < N and random samples of X ok+1|t−1, k ∈ N[κ,κ+Nu−1].

Theorem 3. (Stability). Let Assumptions 1, 2 and 4 hold.
Then the system (1) under Algorithm 1 is input-to-state
practically stable (ISpS) (Limon et al., 2009, Def. 6) in the
set of initial conditions x0 for which P0 is feasible.

Theorem 4. (PE). Under Assumptions 1, 2, 4 and 5 and
with Nu > nx, the system (1) with the control law of
Algorithm 1 satisfies the PE condition (6) with probability
p > 0 for some εΦ > 0, for all t.

Theorem 3 implies (Limon et al., 2009; Lu et al., 2021)
the existence of a KL-function η and K-functions ψ, ξ
satisfying, for all x0 such that P0 is feasible, the bound

‖xt‖ ≤ η(‖x0‖, t) + ψ
(

max
τ∈N[0,t−1]

‖Fwτ +B(θ∗)sτ‖
)

+ ξ
(

max
τ∈N[0,t−1]

‖θ̄τ − θ∗‖
)
.

(25)

Thus Lemma 1 and Theorems 3 and 4 imply that: (i)
the parameter set estimate Θt converges asymptotically to
{θ∗}; (ii) system (1) is ISS under the action of Algorithm 1.

Algorithm 1 Adaptive MPC with PE constraints

At t = 0: Choose Θ0 and S. Determine K satisfying
Assumption 4 and XT , VN |0 satisfying (11)-(12) and (17).

Define N , Nu, Nw, Nθ. Obtain θ̄0 and x0 and compute the
solution, (vo0,X

o
0), of the quadratic program (QP):

P0 : minimise
v0,X0

J(x0,v0, θ̄0) s.t. (13)-(16). (26)

Apply the control input u0 = Kx0 + vo0|0.

At times t = 1, 2, . . .:
(a). Obtain the current state xt.
(b). Update θ̄t and Θt using (4) and VN |t via (17).
(c). Generate the noise sequence st and compute x̂t, ût,

v̂t, β̂
′
t using (19), (20) and (23).

(d). Find the solution (vot ,X
o
t ) of the semidefinite program

P>0 : minimise
vt,Xt,βt

J(xt,vt, θ̄t)

s.t. (13)-(16), (21) and (22).
(27)

(e). Generate Ns samples of Xk|t and X ok+1|t−1 for
k ∈ N[κ,κ+Nu−1] and compute βsκ|t, β̂

s
κ|t for κ ∈

N[N−Npe,N−1]. If (24) is not satisfied, set vot := v̂t
and Xo

t :=
{
{xt},X o2|t−1, . . . , X

o
N−1|t−1,XT , . . . ,XT

}
.

(f). Apply the control input ut = Kxt + vo0|t
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Abstract: In this extended abstract, we consider the problem of analyzing the performance
of distributed filters for continuous-time linear stochastic systems under certain information
constraints. We associate an undirected and connected graph with the measurements of the
system, where the nodes have access to partial measurements in continuous time. Each node
executes a locally optimally filter based on the available measurements. In addition, a node
communicates its estimate to a neighbor at some randomly drawn discrete time instants, and
these activation times of the graph edges are governed by independent Poisson counters. When
a node gets some information from its neighbor, it resets its state using a convex combination
of the available information. Consequently, each node implements a filtering algorithm in the
form of a stochastic hybrid system. We derive bounds on expected value of error covariance for
each node, and show that they converge to a common value for each node if the mean sampling
rates for communication between nodes are large enough. The material covered in this extended
abstract is based on the publications (Tanwani, 2021, 2022).

Keywords: Stochastic hybrid system; distributed filtering; graph theory; random
communication.

1. INTRODUCTION

Modern engineering systems often involve integration of
several components connected to one another to execute
a complex task with efficient use of resources. Imple-
mentation of such architectures have paved way for dis-
tributed decision making and consequently, this has lead
to immense research on design and analysis of distributed
algorithms, see for example (DeGroot, 1974; Tsitsiklis
et al., 1986). In particular, the problem of state estimation,
and filtering, in dynamical systems has received particular
attention (Olfati-Saber, 2007, 2009). Distributed filtering
allows us to disintegrate a centralized output into sev-
eral components, and then associate a filtering algorithm
with each of these smaller components, see Figure 1 for
a conventional layout of such architectures. In the usual
operation of distributed filters, it is assumed that the
sensor units, represented by the nodes in a graph, com-
municate the information about their own estimate to
their neighbors (determined by the graph topology) at
all times. In our work, however, we put constraints on
the communication between these dynamic agents, which
represent the individual filtering units. This makes the un-
derlying graph time-varying and the asymptotic behavior
of distributed algorithms in such cases has been studied in
(Jadbabaie et al., 2003; Moreau, 2005; Cao et al., 2008).
In our setup, we assume that each link in the graph is
activated at random time-instants and the random pro-
cess, which determines the discrete-times at which two
neighbors communicate, is described by a Poisson counter.
For this problem setup, we propose filtering algorithm in

? This work is sponsored by the project CyPhAI, financed by ANR-
JST CREST program with grant number ANR-20-JSTM-0001.

the form of a stochastic hybrid system. Such framework
has been advocated in (Hespanha, 2014) for control prob-
lems over networks with communication constraints. Some
historical developments on the use of Poisson counters for
sampling process are provided in (Tanwani et al., 2018).
Some recent work from the author deals with analyzing
the performance of model predictive control under random
sampling (Tanwani et al., 2019). The results proposed in
this work build on the centralized filtering case studied in
Tanwani and Yufereva (2020).

dx = Axdt+Bdω,

dy = Hxdt+ dv

y1

yN

y1 y2

y3yN

Graph of sensor network

Fig. 1. Layout of distributed filters, where dashed lines
represent communication at random times.

2. LOCALLY OPTIMAL DISTRIBUTED FILTERING

Let us begin with the description of the system class
and the formulation of the distributed filtering problem
studied in this paper. In the process, we describe the graph
structure representing the interconnection between sensor
nodes, and the sampling process at which the connected
nodes (or the neighbors) exchange information.
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2.1 System Class

We consider dynamical systems modeled by linear stochas-
tic differential equations of the form

dx = Axdt+B dω (1)

where (x(t))t≥0 is an Rn-valued diffusion process de-
scribing the state. Let (Ω,F ,P) denote the underlying
probability space. It is assumed that, for each t ≥ 0,
(ω(t))t≥0 is a zero mean Rm-valued standard Wiener pro-
cess adapted to the filtration Ft ⊂ F , with the property
that E[dω(t) dω(t)>] = Imdt, for each t ≥ 0. The ma-
trices A ∈ Rn×n and B ∈ Rn×m are taken as constant
with (A,B) controllable, and the process (ω(t))t≥0 does
not depend on the state. The solutions of the stochastic
differential equation (1) are interpreted in the sense of Itô
stochastic integral.

The centralized output measurement associated to the
process (1) is of the form

dy = Hx dt+ dv (2)

where H ∈ Rp×n is a constant matrix, with (A,H) being
observable, and (v(t))t≥0 is a zero mean Rp-valued stan-
dard Wiener process. The conventional filtering problem,
with initial state having Gaussian distribution, deals with
constructing a mean-square estimate of the state xt, de-
noted by x̂t so that E[|xt − x̂t|2 | (dy(s))s≤t] is minimized.
The optimal estimate which achieves this minimum value
is E[xt | (dy(s))s≤t] and is computed recursively using a
Kalman-Bucy filter. For the problem studied in this pa-
per, it is assumed that the centralized measurements are
not available and we address the filtering problem with
similar assumptions on system data, but under different
information constraints which are described next.

2.2 Information Structure

The measurements associated with system (1) are obtained
from a set of N sensors which are distributed in their
localization. Each of these sensors provides a partial mea-
surement about the state described as,

dyi = Hix dt+ dvi, i = 1, . . . , N, (3)

where Hi ∈ Rpi×n, and
∑N

i=1 pi = p. That is, for
each node, (yi(t))t≥0 describes an Rpi-valued continuous-
time observation process. In the observation equation (3),
vi(t) is a zero mean Ft-adapted standard Wiener process,
taking values in Rpi , and E[dvi(t) dvi(t)

>] = Vidt, with
Vi ∈ Rpi×pi assumed to be positive definite. The optimal
filter which minimizes the mean square estimation error
conditioned upon the information available through the
measurements {dyi(s)|s ≤ t} is,

dx̂i(t) = Ax̂i(t)dt+ Pi(t)H
>
i V
−1
i (dyi(t)−Hix̂i(t)dt)

(4a)

Ṗi = APi + PiA
> − PiH

>
i V
−1
i HiPi +BB>, (4b)

with x̂i(0) = E[x(0)], and Pi(t) is exactly the error
covariance E[(xi(t)− x̂i(t))(xi(t)− x̂i(t))> |dyi(s), s ≤ t] if
Pi(0) = E[(xi(0)− x̂i(0))(xi(0)− x̂i(0))>].

Communication Graph: The sensor nodes are connected
via a graph G = (V ,E ), where V = {1, . . . , N} is the
set of graph nodes, and E contains all the edges defined
by a subset of the pairs (i, j), i 6= j, i, j ∈ V . We

assume that the graph is undirected and connected. The
neighbors of a node i ∈ V are denoted by Ni and we
adopt the convention that i 6∈ Ni. The adjacency matrix
A := [αij ] ∈ {0, 1}N×N of the graph, which is symmetric,
provides the information about which sensor nodes can
communicate with each other, that is, if αij = 1 then
sensor i and j can communicate, whereas αij = 0 means
there is no communication possible between those sensors.
The degree of a node i ∈ V is defined as |Ni|, that is, the
cardinality of the set Ni. The diagonal matrix D = [dii],
with dii = |Ni| is therefore the degree matrix. We associate
a Laplacian L with this graph, defined as, L = D−A. For
our purposes, the nonnegative matrix Π = [πij ] ∈ RN×N ,
defined as

Π := IN − εL (5)

where 0 < ε ≤ mini∈V
1
|Ni| plays an important role. Note

that, by construction, Π is a doubly stochastic matrix, that
is, for each row and each column, the sum of their entries
equals one.

Random Sampling: The next main ingredient of our
problem formulation is the description of the time instants
at which the communication takes place between two
sensor nodes connected by an edge. Corresponding to each
edge (i, j) ∈ E , it is stipulated that there is an increasing

and divergent sequence (τ ijk )k∈N ⊂ [0,+∞[ with τ ij0 := 0,
and

• for each (i, j) ∈ E , the sensor nodes i, j ∈ V transmit

the value of their state estimate to each other at τ ijk ,
k ∈ N.

In this article, we are interested in the case where the
sampling times (τ ijk )k∈N are generated randomly. Formally,
we define

N ij
t := sup

{
k ∈ N

∣∣ τ ijk ≤ t} for t ≥ 0 (6)

and assume in addition that, tor each (i, j) ∈ E , (N ij
t )t≥0

is a continuous-time stochastic process such that τ ij
Nij

t

−→ +

∞ almost surely as t→ +∞. The map t 7→ N ij
t increments

by 1 at random times, and it provides a description of
the number of times the nodes i, j communicate with
each other up to and including time t. For the sake of
computational tractability, it is stipulated that

• For each (i, j) ∈ E , (N ij
t )t≥0 is an independent Poisson

process of intensity λij > 0. That is, (N ij
t )t≥0 is a

Markov process taking values in N, has independent
increments, and satisfies N ij

0 = 0, and for h ↘ 0 and
t ≥ 0,

P
(
N ij

t+h−N
ij
t = k

∣∣N ij
t

)
=


1− λijh+ o(h) if k = 0,

λijh+ o(h) if k = 1,

o(h) if k ≥ 2,

where the terms o(h) do not depend on t.

Because of the arrival of new information at random times,
the estimate x̂i, i ∈ V , gets updated. To describe this
update rule, we associate with each node i ∈ V , the
process N i

t ,

N i
t :=

∑
j∈Ni

N ij
t

so that N i
t increments by one whenever node i ∈ V

exchanges information with any of its neighbor. We recall

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



that N i
t is also a Poisson process of intensity λi :=∑

j∈Ni
λij . The times at which N i

t gets incremented are
denoted by τNi

t
. We can now introduce the activation set

Ai
t,

Ai
t :=

{
j ∈ Ni

∣∣∣N ij
t −N

ij
t 6= 0, t = τNi

t−1

}
,

so that, at communication times tc = τNi
t
, the set Ai

tc

describes the neighbors of node i ∈ V that communicate
their estimate to node i ∈ V . Consequently, at tc = τNi

t
,

we update the state estimate as follows:

x̂i(t
+
c ) =

∑
j∈Ai

tc

πij x̂j(t
−
c ) +

(
1−

∑
j∈Ai

tc

πij

)
x̂i(t

−
c ), (7)

where πij are the elements of the matrix Π introduced
in (5). If ei := x − x̂i denotes the estimation error, then
because of this update rule, it is observed that,

ei(t
+
c )e>i (t+c ) ≤

(
1−

∑
j∈Ai

tc

πij

)
ei(t
−
c )e>i (t−c )

+
∑

j∈Ai
tc

πijei(t
−
c )e>i (t−c )

which is a direct consequence of the following lemma,
whose proof appears in (Tanwani, 2022, Lemma III.3):

Lemma 1. Letm be a positive integer, and let x1, . . . , xm ∈
Rn. If z :=

∑m
j=1 γjxj for some γj ∈ [0, 1], then

zz> ≤
m∑
j=1

γjxjx
>
j . (8)

2.3 Summary of Filtering Algorithm

So far, we have specified the information available to each
sensor node and a filtering algorithm, (4), (7), which uses
this available information. If Yi

t denotes the information
available to sensor node i ∈ V up till time t ∈ [0,+∞[,
then we can write Yi

t = {(dyi(s), x̂j(τNi
s
)) | s ≤ t, j ∈

Ni}. Our goal is to quantify the performance of these
distributed filters by computing a bound on expected
value of the error covariance matrices, that is, E[E[(x(t)−
x̂i(t))(x(t) − x̂i(t))

> | Yi
t ]], for t ≥ 0. Here, the outer

expectation is with respect to the random update times,
and the inner expectation is with respect to the noise
process in the state and output equation. The estimate
computed by each node i ∈ V is obtained by executing
the following steps:

• Integrate (4a) and (4b) over the interval [τNi
t
, τNi

t+1[,

• At tc = τNi
t
, reset the state x̂i via (7), and set

Pi(t
+
c ) =

(
1−

∑
j∈Ai

tc

πij
)
Pi(t

−
c ) +

∑
j∈Ai

tc

πijPj(t
−
c ) (9)

with Pi(0) ≥ E[(x(0)− x̂i(0))(x(0)− x̂i(0))].

As a first step in obtaining the desired bounds, one
immediately observes that, for each i ∈ V , if we fix
the times at which node i ∈ V communicates with its
neighbors, then

E[(x(t)− x̂i(t))(x(t)− x̂i(t))> | Yi
t ] ≤ Pi(t), t ≥ 0 (10)

where Pi is described by (4b), (9). The remaining task
therefore is to compute expectation with respect to the
distributions assigned to the times at which information
between sensor nodes takes place.

3. MAIN RESULTS

The basic problem studied in this paper is the performance
of the distributed filters proposed in the previous section.
In particular, we want to relate the mean sampling rates
λij , corresponding to the edges (i, j) ∈ E , with the bounds
on the error covariance. As our first main result, we
compute an upper bound on the expectation (with respect
to sampling process N i

t ) of the error covariance matrices
E[E[(x(t)− x̂i(t))(x(t)− x̂i(t))> | Yi

t ]], for t ≥ 0.

Theorem 2. Consider system (1) with distributed mea-
surements (3) and the corresponding hybrid filters (4), (7),
(9) linked together by an undirected and connected graph
G = (V ,E ). For an edge (i, j) ∈ E , if the communication
between nodes i, j ∈ V takes place at random times
generated by a Poisson process of intensity λij > 0, then
for each i = 1, · · · , N , it holds that

E[E[(x(t)− x̂i(t))(x(t)− x̂i(t))> | Yi
t ]] ≤ Pi(t), (11)

where the matrix-valued function Pi : [0,∞[→ Rn×n

satisfies the differential equation

Ṗi = APi + PiA
> − PiH

>
i V
−1
i HiPi +BB>

+
∑
j∈Ni

λijπij(Pj − Pi). (12)

The proof of Theorem 2 follows from the proof of (Tan-
wani, 2022, Theorem III.1, item 1)). The result of Theo-
rem 2 provides a bound on the evolution of error covariance
for each node in terms of a differential equation. These
equations are quadratic (and hence nonlinear), driven by
a constant term which corresponds to the noise level
in the system, and are interconnected by some coupling
term. Such systems in the literature are studied under the
framework of heterogenous multi-agent systems since the
dynamics of Pi are different for each i ∈ V . In contrast to
homogenous agents, consensus in heterogenous agents is
not possible in general. However, one can get the states of
all the agents close to desired accuracy by increasing the
coupling strength. The next result relates to the asymp-
totic behavior of the coupled differential equations (12).

Theorem 3. For i = 1, . . . , N , consider the matrix-valued
equations (12) and assume that λij = λ is the same for
each (i, j) ∈ E . Let S ∈ Rn×n be symmetric positive
semidefinite matrix satisfying

0 = AS + SA> − 1

N
S

(
N∑
i=1

H>i V
−1
i Hi

)
S +BB>. (13)

Then for every δ > 0, there exists λ > 0 sufficiently large,
such that the corresponding solution of (12) satisfies 1

lim sup
t→∞

‖Pi(t)− S‖ ≤ δ. (14)

The proof of Theorem 3 is carried out in (Tanwani, 2021).
To conclude this section, we provide some remarks about
our main results.

Remark 4. The injection gains used in (4) over an interval
[τNi

t
, τNi

t+1[ do not need any information about how the

other filters in the network choose their gains. Moreover,
they minimize the value of Pi in (4b) over the class of linear
time-varying gains. The latter statement follows from the
fact that
1 When taking the norm of a matrix, we refer to Frobenius norm.
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(A−LiHi)Pi+Pi(Ai−LiHi)
>+LiViL

>
i = (A−LiHi)Pi

+ Pi(Ai − LiHi)
> + LiViL

>
i − (Li − Li)Vi(Li − Li)

>

(15)

for any constant matrix Li ∈ Rn×pi , and Li = PiH
>
i V
−1
i .

This shows that the filters (4) perform better than the
constant linear gains proposed by the author in (Tanwani,
2022).

Remark 5. In Theorem 3, we basically study convergence
of the differential equations (12) which contain quadratic
nonlinearities. In general, such nonlinearities result in
semiglobal convergence, that is, the solutions converge
starting from initial conditions in a compact set. However,
because of the minimum property described in Remark 4,
we get global convergence with no restrictions on the initial
condition. However, the convergence is not necessarily
asymptotic, but only up to a neighborhood of a fixed point,
which we often call practical convergence. The practical
aspect of the convergence is unavoidable since we allow
different noise covariance levels for each filter.

Remark 6. In the formulation of Theorem 2, since we
associate a different Poisson process to each link, the
nodes communicate with each other at different times.
However, we associate the same sampling rate λ with each
edge (i, j). The motivation for doing so is that, when we
write the collective dynamics for each node, the last term
in (12) is written as a scalar multiple of the Laplacian.

If we assume that the process N ij
t associated with edge

(i, j) has intensity λij , then the arguments required for
establishing practical convergence are more involved and
are not carried out in this paper. One would expect that
if each λij > 0 is large enough, then we do get practical
convergence.
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Abstract: This is an extended abstract of a paper “Positivity is undecidable in tensor products
of free algebras” which is currently in preparation. In quantum information, we are interested
in tensor products of free algebras and related algebras, since these tensor products model
spatially separated subsystems with entanglement. The recent MIP*=RE result shows that it is
undecidable to determine whether an element in the tensor product of two free group algebras
is positive in all finite-dimensional representations. This shows that this tensor product is not
RFD, resolving the Connes embedding problem. In this work, we show that these tensor products
are also not archimedean-closed, by showing that it is undecidable to determine if an element
of the tensor product is positive. The result also holds for tensor products of related algebras,
like algebra of *-polynomials or the group algebra of a free product of abelian groups.

1. INTRODUCTION

An element of a *-algebra is said to be positive if it is
positive in all *-representations. It is a natural problem to
determine whether or not a given element of a *-algebra is
positive, and if it is, find some certificate of positivity, like a
sum of squares decomposition. For commutative algebras,
this problem has a long history. For the group algebra of
the free group, this problem can be solved in two ways:

(1) by Bakonyi and Timotin (2007), the algebra is
archimedean-closed, so every positive element has a
sum of squares decomposition, and

(2) by Choi (1980) the algebra is RFD, meaning that an
element is positive if and only if it is positive in all
finite-dimensional *-representations.

Thus for this algebra we can find certificates of both
positivity and non-positivity. A similar solution is possible
for the the algebra of *-polynomials and the algebra of
contractions by Helton (2002) and Helton and McCullough
(2004). Similarly, the semi-pre-C∗-algebra A(n,m) gener-
ated by positive elements pxa, 1 ≤ x ≤ n, 1 ≤ a ≤ m
and satisfying relations

∑m
a=1 p

x
a = 1 for all 1 ≤ x ≤ n is

archimedean-closed and RFD by, e.g., Helton et al. (2012).
(See also Ozawa (2013) for background on semi-pre-C∗-
algebras.)

In quantum information, A(n,m) models a physical sys-
tem with n possible measurements, each with m outcomes.
The tensor product A(n,m) ⊗ A(n,m) models two spa-
tially separated (but possibly entangled) subsystems of
this form. The recent MIP*=RE result of Ji, Natarajan,
Vidick, Wright, and Yuen shows that it is undecidable
to determine whether an element in A(n,m) ⊗ A(n,m)

? WS acknowledges support from NSERC DG 2018-03968 and the
Alfred P. Sloan Research Fellowship program.

is positive in all finite-dimensional representations (Ji
et al. (2020)). This shows that this tensor product is
not RFD, resolving the Connes embedding problem (see
Ozawa (2013) for more background on this problem). In
this work, we show that:

Theorem 1. There is a mapping from Turing machines M
to elements αM ∈ A(n,m)⊗A(n,m) such that M halts if
and only if αM is not positive.

In other words, determining whether or not an element is
positive in A(n,m)⊗A(n,m) is coRE-hard. As a corollary,
this shows that A(n,m) ⊗ A(n,m) is not archimedean-
closed. The result also holds for tensor products of related
algebras, like algebra of *-polynomials, the algebra of
contractions, or the group algebra of a free group.
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Abstract: This paper concerns the problem of bounded ℓ2-gain adaptive control with noisy
measurements for linear time-invariant systems with uncertain parameters belonging to a finite
set. We show that it is necessary and sufficient to consider observer-based control with a multiple-
observer structure consisting of one H∞-observer paired with model fitness metric per candidate
model for minimax optimality.
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1. INTRODUCTION

The great control engineer is lazy; her models are sim-
plified and imperfect, the operating environment may be
poorly controlled — yet her solutions perform well. Robust
control provides excellent tools to guarantee performance
if the uncertainty is small Zhou and Doyle (1998). If the
uncertainty is large, one can perform laborious system
identification offline to reduce model uncertainty and syn-
thesize a robust controller. An appealing alternative is
to trade the engineering effort for a more sophisticated
controller, particularly a learning-based component that
improves controller performance as more data is collected.
However, for such a controller to be implemented, it had
better be robust to any prevalent unmodeled dynamics.
Currently, there is considerable research interest in the
boundary between machine learning, system identification,
and adaptive control. For a review, see for example Matni
et al. (2019). Most of the studies concern stochastic
uncertainty and disturbances and assume perfect state
measurements. Recently, works connecting to worst-case
disturbances have started to appear. For example, non-
stochastic control was introduced for known systems with
unknown cost functions in Agarwal et al. (2019) and ex-
tended to unknown dynamics and output feedback, un-
der the assumption of bounded disturbances and prior
knowledge of a stabilizing proportional feedback controller
in Simchowitz (2020). In Dean et al. (2019) the authors
leverage novel robustness results to ensure constraint sat-
isfaction while actively exploring the system dynamics.
In this contribution, the focus is on worst-case models
for disturbances and uncertain parameters as discussed
in Didinsky and Basar (1994) and Vinnicombe (2004) and
more recently in Rantzer (2021), but differ in that we con-
sider output-feedback. See Figure 1 for an illustration of
the considered problem. This paper extends Kjellqvist and
Rantzer (submitted) to multiple input, multiple output
systems and Theorem 1 in Rantzer (2021) to the output-
feedback setting.
⋆ This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 834142 (Scal-
ableControl).

Linear system with
uncertain parameters

Unmodelled
dynamics

Robust
Adaptive Controller

noisy
measurements

noise and
disturbances

errors

Fig. 1. For a finite set of linear time-invariant models,
the Robust Adaptive Controller minimizes the ℓ2-
gain from noise and disturbances to errors for any
realization of the unknown model parameters. This
gain bound guarantees robustness to unmodelled dy-
namics.

The outline is as follows. We establish the notation in
section 2. Section 3 defines the problem of finite-gain
adaptive control and constructs a corresponding two-
player dynamic game whose solution also solves the finite-
gain adaptive control problem. We introduce the multi-
observer as an information state in Section 4. Section 5
exploits the results from the previous setting to construct
an equivalent full-information game and shows how it
can be solved using dynamic programming. Concluding
remarks are given in section 6.

2. NOTATION

The set of n×m matrices with real coefficients is denoted
Rn×m. The transpose of a matrix A is denoted A⊤. For
a symmetric matrix A ∈ Rn×n and a vector x ∈ Rn we
use the expression |x|2A as shorthand for x⊤Ax. We write
A ≺ (≼) 0 to say that A is positive (semi)definite. We refer
to the value of a signal w at time t as w(t) and use the
shorthand notation w0:t for the sequence (w(τ))tτ=0.
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3. PROBLEM FORMULATION

We consider uncertain linear systems of the form
x(t+ 1) = Ax(t) +Bu(t) +Gw(t), x(0) = x0

y(t) = Cx(t) +Hv(t), t ≥ 0,

M = (A,B,C,G,H) ∈ M,

(1)

where the control signal u(t) ∈ Rnu is generated by a
causal output-feedback control policy

u(t) = µt(y(0), . . . , y(t), u(0), . . . , u(t− 1). (2)
In (1), x(t) ∈ Rnx is the state, y(t) ∈ Rny is the
measurement, the modelM is unknown but belongs to M.
For every model M , the matrix H ∈ Rny×nv is assumed
to be surjective. Similarly to H∞-control, we do not make
explicit assumptions of the probability distributions of the
disturbances v(t) ∈ Rnv and w(t) ∈ Rnw . We are interested
in control that makes the closed-loop system finite gain,
with gain from (w, v, x0) to (Q1/2x,R1/2u) bounded above
by γ. That is, the quantity

α(T, x̂0) := |x(T )|2Q +
T−1∑
t=0

(
|x(t)|2Q + |u(t)|2R

)
− γ2

T−1∑
t=0

(
w(t)2 + v(t)2

)
− γ2|v(T )|2 − |x(0)− x̂20|2PM

(3)
must be bounded for all T ≥ 0, any admissible distur-
bances, initial state and the possible realizationsM of (1).
PM quantifies prior information on the initial state and is
taken as a positive solution to the Riccati equation

PM =
(
AX−1

M A⊤ + γ−2GG⊤)−1
,

XM = PM + γ2C⊤(HH⊤)−1C −Q).
(4)

We cannot evaluate condition (3) directly since distur-
bances w, noise v and the active plant M are unknown.
We can, however, evaluate the worst case (the supremum),
and will consider the dynamic game with dynamics as in
(1), (2) and the objective:

J⋆(x̂0) = inf
µ

sup
w0:T−1,v0:T ,x0,M,T

α(T, x̂0). (5)

This problem setup is similar to a standard linear-
quadratic game Didinsky and Basar (1994) but differs
because the adversary selects the active model M ∈ M.

4. A MULTI-OBSERVER INFORMATION STATE

Consider the case when the data, (y0:T , u0:T−1), is gen-
erated by the dynamics (1) and (2) under model M and
control policy µ. Let αM (T, x̂0) be the largest value of
α(T, x̂0) consistent with the data and the dynamics,

αM (T ) = sup
w0:T−1,v0:T ,x0

{
α(T ) :

(y0:T , u0:T−1) generated by (1) and (2) under M
}
. (6)

We can partition the supremum in (5) into
J⋆(x̂0) = inf

µ
sup

y0:T ,M,T
αM (T, x̂0).

Define the state-dependent past cost by

WM (t+ 1, x, x̂0) = sup
w0:t,v0:t,x0

{
t∑

τ=0

(
|x(τ)|2Q + |u(τ)2R

)
− γ2

t∑
τ=0

(
|w(τ)|2 + |v(τ)2

)
− |x(0)− x̂0|2PM

}
, (7)

where the supremum is taken with respect to the dynamics
(1) and a fixed trajectory (y0:t, u0:t). Then αM becomes
αM (T, x̂0)

= sup
x

{
|x|2Q − γ2|Cx− y(T )|2(HH⊤)−1 +WM (T, x, x̂0)

}
.

(8)

In (Basar and Bernhard, 1995, Chapter 6), the authors
show how to express WM recursively. We summarize these
results in the following Lemma:
Lemma 1. Given a known model M ∈ M, a positive
quantity γ, positive definite matrices Q ∈ Rnx×nx and
R ∈ Rnu×nu . Assume that the Riccati equation (4) has
a positive definite solution PM such that XM is positive
definite. For a fixed trajectory (u0:T , y0:T ), WM in (7)
obeys

WM (t, x, x̂0) = −|x− x̂M (t)|2PM
+ lM (t). (9)

The observer state x̂M (t) is the solution to the dynamical
system

x̂M (t+ 1) = Ax̂M (t) +Bu(t)

+KM (y(t)− Cx̂M (t)) + ŵM (t)

KM = γ2AX−1
M C⊤(HH⊤)−1,

ŵM (t) = AX−1
M Qx̂M (t),

(10)

and lM obeys the recurrence relation
lM (t+ 1) = lM (t)− |x̂M (t)|2PM

− γ2|y(t)|2(HH⊤)−1

+ |u(t)|2R + |PM x̂M (t) + γ2C⊤(HH⊤)−1y(t)|2
X−1

M

. (11)

The initial conditions are (x̂M (0), lM (0)) = (x̂0, 0).

We can evaluate the supremum in (8),

αM (T ) = lM (T )− |x̂M (T )|2PM
− γ2|y(T )|2(HH⊤)−1

+ |PM x̂M (T ) + γ2C⊤(HH⊤)−1y(T )|2
X−1

M

(12)

Thus, the collection of model performance quantities
{lM (t) : M ∈ M} is sufficient information to evaluate
the finite-gain condition at time t − 1 together with the
observer states {x̂M (t) :M ∈ M}, and together with y(t)
we have all the information necessary to compute lM (t+1).
In other words, we have compressed the information in
the sequences (y0:t−1, u0:t−1) of increasing length, to one
quantity lM and one state-vector x̂M per model M .

5. OUTPUT-FEEDBACK MINIMAX DYNAMIC
PROGRAMMING

In this section we will construct a full-information dynamic
game, whose value equals (5). We then show that the game
can be solved using dynamic programming in Theorem 2.
Consider the game defined by the objective function

inf
η

sup
y,T,M

{
|x̂M (T )|2

(Q−1−P−1
M

)−1 + lM (T )
}

(13)
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and the observer dynamics described in (10) and (11). The
control signal is computed according to

u(t) = η(O(t), y(t)),

where O is the multi-observer state,
O(t) := {(x̂M (t), lM (t)) :M ∈ M}. (14)

Define the Bellman operator F and the corresponding
value iterations V0, V1, . . . by

FV (O(t)) = max
y

min
u
V (O(t+ 1)), (15)

and
V0(O) := max

M∈M

{
|x̂M |2

(Q−1−P−1
M

)−1 + lM

}
Vt+1(O) = FVt(O).

(16)

where x̂M (t + 1) and lM (t + 1) are computed as in (10)
and (11).
The following theorem is an extension of (Rantzer, 2021,
Theorem 1) to the output feedback setting. Both results
rely on establishing an information state that replaces
the uncertainty in the dynamics by a terminal cost. The
theorem establishes that the values (5) and (13) are equal,
and that the value iteration can be used to construct opti-
mal and suboptimal controllers for (5). The corresponding
controller architecture is illustrated in Fig. 2.
Theorem 2. Given a finite set M of linear dynamical
systems, positive definite matrices Q ∈ Rnx×nx , R ∈
Rnu×nu and a positive quantity γ. Assume that the Riccati
equations (4), have positive definite solutions PM ≻ Q for
each model M ∈ M. Then the values of (5) and (13) are
finite if and only if the value iteration V0, V1, . . . defined in
(5) is bounded. If the value iteration is bounded, the limit
V⋆ = limk→∞ Vk exists and the values of (5) and (13) are
both equal to V⋆(O0), where O0 = {(x̂0, 0) : M ∈ M} is
the initial observer state as in (14).
Furthermore, denote by η⋆ the minimizing argument of
FV⋆, then η⋆ is optimal for (13), and the policy
µ⋆(y(0), . . . , y(t), u(0), . . . , u(t− 1)) := η⋆(O(t), y(t)),

is optimal for (5).
If there exists a function V̄ ≥ V0, and a control policy η̄
such that

max
y

V̄ (O(t+ 1)) ≤ V̄ (O(t)),

where ut = η̄(O(t), y(t)), then the values (5) and (13)
are bounded above by V̄ (O0). The control policy ut =
η̄(O(t), y(t)) achieves

Jµ̄(x̂0) := sup
w0:T−1,v0:T ,x0,M,T

α(T, x̂0) ≤ V̄ (O0).

The proof follows closely that of (Rantzer, 2021, Theorem
1), but differs in the dynamics of the information state.

Proof. Consider,
FV0(O) ≥ max

M,y

{
lM − |x̂M |2PM

− γ2|y|2(HH⊤)−1 + |PM x̂M + γ2C⊤(HH⊤)−1y|2
X−1

M

}
= max

M
{|x̂M |2

(Q−1−P−1
M

)−1 + lM} = V0(O).

As F is monotone increasing in V , the sequence V0, V1, V2, . . .
is monotonically non-decreasing. For any fix T ≥ 0, J⋆(x̂0)
is bounded below by the finite-time objective

Observer-based
Controller:

η
Observer 2

Observer 1

...

Observer K

y u

(x̂1, l1)

u

(x̂2, l2)

u

(x̂K , lK)

u
Causal output-feedback

controller: µ

Fig. 2. Illustration of the proposed multi-observer control
architecture. One H∞-observer for each model M ∈
M outputs its state-estimate x̂M (t) and model per-
formance quantity lM (t) at each time t. The observer-
based control policy η maps the observer states, per-
formance quantities and the current output to the
actuator signal u(t).This control architecture forms
the causal control policy µ(y0:t, u0:(t−1)) that solves
(5).

inf
µ

sup
w0:T−1,v0:T ,x0,M

α(T, x̂0). (17)

Equation (17) is increasing in T , and J⋆ is obtained in the
limit. By Lemma 1, (17) is equal to

inf
µ

sup
y,M

{
|x̂M (T )|2

(Q−1−P−1
M

)−1 + lM (T )
}
. (18)

Standard dynamic programming arguments show that the
value of (18) is equal to VT+1(O0). This proves that (5)
has a finite value if and only if {Vk(O0)}∞k=0 is upper
bounded, and that the value is equal to the limit V⋆(O0) =
limk→∞ Vk(O0).
To show that V⋆(O) exists for any observer state O we first
note that for any other x̂′0 ∈ Rnx ,
−max

M
|x̂0 − x̂′0|PM

≤ J⋆(x̂0)− J⋆(x̂
′
0) ≤ max

M
|x̂0 − x̂′0|PM

.

This shows that the value iteration remains bounded if we
replace the initial states x̂0. To see that the iteration is
bounded for arbitrary values of the performance quanti-
ties, let O′ = {(x̂0, l′M ) :M ∈ M}, then

min
M∈M

l′M ≤ Vk(O′)− Vk(O0) ≤ max
M∈M

l′M .

We conclude that if Vk(O0) is bounded for k = 1, 2, . . .,
so is Vk(O′) and that V⋆(O) exists for all multi-observer
states O.
If (13) is finite, then Vt is bounded above by (13), so the
limit V⋆ is finite. Conversely, if V0 ≤ V̄ ≤ ∞ and Fη̄V̄ ≤ V̄ ,
we may define the sequence V̂0, V̂1, . . . by the recursion
V̂0 := V0 and

V̂t+1 := Fη̄V̂t.

By construction, (13) is bounded above by limt→∞ V̂t(O0).
By induction, V̄ ≥ V̂k for all k, so V⋆ ≤ limk→∞ ≤ V̄ . This
proves that V⋆(O0) ≤ Jµ̄(x̂0) ≤ V̄ (O0). In particular, the
control law is optimal if V̄ = V⋆.
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6. CONCLUSIONS

We have shown that it is both necessary and sufficient to
consider multi-observer-based feedback for minimax opti-
mal control of a linear system with uncertain parameters
belonging to a finite set. Such a controller guarantees that
the ℓ2-gain from disturbances to output is bounded. In
future research, we aim to leverage these results together
with approximate dynamic programming to synthesize
control policies with a guaranteed upper bound on the
gain from disturbances to error.
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Abstract: Recently, a unifying approach to the stability analysis of nonlinear model predictive
controllers (MPC) with arbitrary positive definite cost functions has been presented based on
dissipativity theory. We have established that regardless of the choice of the positive definite
cost function, the resulting value function always satisfies a dissipation inequality. This led to
less conservative stability conditions for nonlinear MPC that do not require monotonic decrease
of the optimal cost function along closed–loop trajectories. In this extended abstract we recall
these results and we analyze recursive feasibility, which has not yet been addressed. To this end
we use a control contractive terminal set and an adaptive prediction horizon, without adding a
terminal cost.

Keywords: Predictive control, Recursive feasibility, Control contractive sets, Stability of
nonlinear systems.

1. INTRODUCTION

Model predictive control (MPC) computes a control action
online by minimizing a finite–horizon cost function subject
to constraints. Standard stabilizing conditions for MPC
(Mayne, 2014; Rawlings et al., 2017) utilize the corre-
sponding optimal cost function as a monotonic Lyapunov
function (LF). These conditions can be classified as fol-
lows (Mayne, 2014): (i) terminal state and input equal
to steady–state values, e.g., see (Bemporad et al., 1994);
(ii) local control Lyapunov function (CLF) as terminal
cost and terminal state constrained to a controlled invari-
ant set, e.g., see (Mayne, 2013); (iii) local CLF as terminal
cost, no terminal state constraint and sufficiently long pre-
diction horizon, e.g., see (Mayne, 2001; Limon et al., 2006);
and (iv) no terminal cost, no terminal constraint, stage
cost satisfies an asymptotic controllability assumption and
sufficiently long prediction horizon, e.g., see (Grüne, 2012;
Boccia et al., 2014). These approaches to stability analysis
of nominal MPC consider a known, time–invariant steady–
state equilibrium, typically chosen as the origin, and they
require monotonically decreasing MPC cost functions.

However, predictive control with arbitrary positive def-
inite cost functions and prediction horizon values often
yields converging trajectories without imposing the above
mentioned conditions, allowing even for non–monotonic
cost functions. Also, industrial practice for MPC tuning
typically employs a sufficiently long prediction horizon,
yielding converging trajectories, instead of enforcing a
monotonically decreasing cost. It is thus of interest to
identify conditions under which predictive control with
arbitrary positive definite cost functions results in stable
closed–loop systems and recursively feasible optimization
problems.

Recently, (Lazar, 2021) presented a unifying approach to
the stability analysis of nonlinear model predictive con-
trol (MPC) with arbitrary positive definite cost functions
based on dissipativity theory. Therein, it was established
that regardless of the choice of the positive definite cost
function, the resulting value function always satisfies a
dissipation inequality. Then, it became clear that nonlinear
MPC with arbitrary positive definite stage costs is stabi-
lizing whenever the supply function induced by the stage
cost is negative definite along closed–loop trajectories.

In this extended abstract we provide a summary of the
main result of (Lazar, 2021) and we address the problem of
guaranteeing recursive feasibility for nonlinear MPC with
arbitrary positive definite cost functions. We show that
recursive feasibility and asymptotic stability of nonlinear
MPC with an arbitrary positive definite cost function can
be achieved by using control contractive terminal sets, as
proposed in (Limon et al., 2005). Therein the focus was on
enlarging the region of attraction of stabilizing nonlinear
MPC with a special terminal cost by using a sequence
of controllable or contractive terminal sets. In this work
we show that a control contractive terminal set suffices to
guarantee recursive feasibility and asymptotic stability for
nonlinear MPC with arbitrary positive definite cost func-
tions, i.e., without using a special terminal cost function.
This may require however dynamic, online adaptation of
the prediction horizon.

2. PRELIMINARIES

Let R, R+ and N denote the field of real numbers, the
set of non–negative reals and the set of natural numbers,
respectively. For a vector x ∈ Rn, ∥x∥ denotes an arbitrary
p-norm, p ∈ N≥1 ∪∞. A function φ : R+ → R+ belongs to
class K if it is continuous, strictly increasing and φ(0) = 0.
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A function φ : R+ → R+ belongs to class K∞ if φ ∈ K and
lims→∞ φ(s) = ∞.

Consider a discrete–time dynamical system

x(k + 1) = f(x(k), u(k)), k ∈ N, (1)

where f : Rn × Rm → Rn is a suitable function that is
zero at zero. We assume that the origin is a stabilizable
equilibrium for (1). The system variables are constrained
to compact sets with the origin in their interior, i.e.
(x, u) ∈ X×U. We assume that X is a constrained control
invariant set, i.e., for all x ∈ X, there exists a u := κ(x) ∈ U
with κ(0) = 0 such that f(x, u) ∈ X. For brevity, we refer
to (Lazar, 2006) for the definition of asymptotic Lyapunov
stability in X.

Consider the following discrete–time dissipation inequality

V (x(k + 1))− V (x(k)) ≤ s(x(k), u(k)), ∀k ∈ N, (2)

where V : Rn → R is a positive definite storage function
and s : Rn → R is a supply function that is bounded on
bounded sets and s(0, 0) = 0.

In what follows we relax the latter requirement and provide
a less conservative condition on the supply function s for
inferring asymptotic stability from dissipativity. To this
end, the following assumptions are instrumental.

Assumption 1. Controlled K–boundedness: For the sys-
tems dynamics f(·, ·) and the state–feedback control law
u(k) = κ(x(k)) that renders X controlled invariant it holds
that ∥f(x, κ(x))∥ ≤ σ(∥x∥) for all x ∈ X and some σ ∈ K.

Assumption 2. The storage function V satisfies

α1(∥x∥) ≤ V (x) ≤ α2(∥x∥), ∀x ∈ X, (3)

for some α1, α2 ∈ K∞.

Theorem 3. (Lazar, 2021) Let Assumption 1 and Assump-
tion 2 hold and let αs ∈ K∞. Suppose that {u(k)}k∈N =
{κ(x(k))}k∈N is such that the dissipation inequality (2)
holds for all x(0) ∈ X and all k ∈ N and (x(k), u(k)) ∈ X×
U for all k ∈ N. Furthermore, suppose that there exists a
M ∈ N≥1 such that for all x(0) ∈ X it holds that

M−1∑
i=0

s(x(k + i), u(k + i)) ≤ −αs(∥x(k)∥), ∀k ∈ N. (4)

Then the origin of system (1) in closed–loop with u(k) =
κ(x(k)) is asymptotically Lyapunov stable in X.

3. STABILITY OF NONLINEAR MPC

In this section we analyze stability of state–space nonlinear
MPC via Theorem 3. We will use the notation x(i|k)
to denote the predicted state at time i ∈ N[1,N ], given
measured state x(0|k) := x(k), and similarly u(i|k) to
denote the predicted input at time i ∈ N[0,N−1], while
setting u(k) := u(0|k). The prediction model is a copy of
(1), i.e.,

x(i+ 1|k) = f(x(i|k), u(i|k)), i ∈ N[0,N−1], k ∈ N.

Defining u(k) := {u(0|k), . . . , u(N − 1|k)} yields the MPC
optimization problem:

min
u(k)

J(x(k),u(k)) := lN (x(N |k)) +
N−1∑
i=0

l(x(i|k), u(i|k))

(5a)

subject to constraints:

x(i+ 1|k) = f(x(i|k), u(i|k)), ∀i ∈ N[0,N−1], (5b)

(x(i+ 1|k), u(i|k)) ∈ X× U, ∀i ∈ N[0,N−1]. (5c)

In equation (5a) lN : Rn → R+ denotes the terminal
cost and l : Rn × Rm → R+ denotes the stage cost. The
following assumptions are required to ensure Assumption 2
for the nonlinear MPC optimal cost.

Assumption 4. There exists α1,l ∈ K∞ such that

α1,l(∥x∥) ≤ l(x, u), ∀(x, u) ∈ X× U.

Let u∗(k) and x∗(k) := {x∗(i|k)}i∈N[1,N]
denote optimal

input and state trajectories obtained by solving the MPC
problem (5) at time k. Let us(k) := {u∗(1|k), . . . , u∗(N −
1|k), us(N |k)} with us(N |k) ∈ U and xs(N + 1|k) :=
f(x∗(N |k), us(N |k)) ∈ X denote a shifted input trajec-
tory constructed at time k from the optimal trajectory
computed at time k. Let J(x(k),u∗(k)) denote the optimal
cost function or value function at time k.

Assumption 5. There exists α2,J ∈ K∞ such that

J(x,u∗) ≤ α2,J(∥x∥), ∀x ∈ X.

Next, we state the nominal MPC dissipativity result.

Theorem 6. (Lazar, 2021) Suppose that X × U is con-
strained control invariant for system (1). Let the stage cost
be any positive definite function that satisfies Assump-
tion 4. For the terminal cost either of the following choices
can be made: any positive definite function that is zero at
zero or a zero terminal cost. Define the storage function
V (x(k)) := J(x(k),u∗(k)) and the supply function

s(x(k), u(k)) :=lN (xs(N + 1|k)) + l(x∗(N |k), us(N |k))
− lN (x∗(N |k))− l(x(k), u(k)), k ∈ N.

(6)

Then for all x(0) ∈ X, the dissipation inequality

V (x(k + 1))− V (x(k)) ≤ s(x(k), u(k)), ∀k ∈ N (7)

holds along the trajectories of system (1) in closed–loop
with u(k) := u∗(0|k) obtained by solving problem (5).

Let the MPC closed–loop system denote system (1) in
closed–loop with u∗(0|k) obtained by solving (5). Next we
state the nominal MPC asymptotic stability result.

Corollary 7. (Lazar, 2021) Let the stage cost in the MPC
problem (5) satisfy Assumption 4, suppose Assumption 5
holds and assume X × U is constrained control invariant.
Suppose that there exists a ρ ∈ K∞ and an M ∈ N≥1 such
that Assumption 1 holds for the trajectories of the MPC
closed–loop system, and the MPC supply function defined
in (6) satisfies for all x(0) ∈ X
M−1∑
i=0

s(x(k + i), u(k + i)) ≤ −ρ ◦ l(x(k), u(k)), ∀k ∈ N.

(8)
Then the origin of the MPC closed–loop system is asymp-
totically Lyapunov stable in X.

Relation with existing stabilizing conditions: The stabi-
lizing conditions corresponding to approach (i) (terminal
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equality constraint) force x(N |k) = 0, which allows setting
us(N |k) = 0 and xs(N + 1|k) = 0. Hence, s(x(k), u(k)) =
−l(x(k), u(k)) and condition (8) holds with M = 1 and
ρ = id. Approach (ii) (terminal set constraint) constructs
us(N |k) = h(x∗(N |k)) such that lN (x) is a Lyapunov
function for x(k + 1) = f(x(k), h(x(k))) which yields

lN (xs(N +1|k))− lN (x∗(N |k))+ l(x∗(N |k), us(N |k)) ≤ 0.

Hence, s(x(k), u(k)) ≤ −l(x(k), u(k)) and condition (8)
holds with M = 1 and ρ = id. Approach (iii) (MPC
without terminal constraint and with CLF terminal cost)
requires that lN (x) is a control Lyapunov function, i.e.,

min
us(N |k)

lN (xs(N+1|k))−lN (x∗(N |k))+l(x∗(N |k), us(N |k))

should be less than or equal to zero. This implies existence
of us(N |k) such that s(x(k), u(k)) ≤ −l(x(k), u(k)) and
condition (8) holds with M = 1 and ρ = id. Approach
(iv) (MPC without terminal constraint and with zero
terminal cost) uses the property (see (Grüne, 2012, Propo-
sition 3.4))

V (x(k + 1))− V (x(k)) ≤ −αl(x(k), u(k)),

where α ∈ (0, 1] is a constant. Taking a zero terminal cost
and requiring a monotonic decrease of V , as in (Grüne,
2012, Proposition 3.4), corresponds to existence of us(N |k)
such that

s(x(k), u(k)) = l(x∗(N |k), us(N |k))− l(x(k), u(k))

≤ −ρ ◦ l(x(k), u(k)),

which implies that (8) holds with M = 1 and ρ < id.

Next, we briefly indicate how to construct a shifted input
trajectory that verifies the developed stabilizing condi-
tions. To begin with, we opt for using a terminal cost
equal to the stage cost for the state, i.e. assume that
l(x, u) = l(x, 0) + l(0, u) and set lN (x) := l(x, 0). Then
the MPC supply function becomes:

s(x(k), u(k)) :=l(xs(N + 1|k), 0) + l(x∗(N |k), us(N |k))
− l(x∗(N |k), 0)− l(x(k), u(k))

= l(xs(N + 1|k), us(N |k))− l(x(k), u(k)).
(9)

At every time k ∈ N, given x(k), after u∗(k) was calcu-
lated, we need to check that there exists a us(N |k) ∈ U
such that

s(x(k), u(k)) =

l(f(x∗(N |k), us(N |k)), us(N |k))− l(x(k), u∗(0|k))
≤ −ρ ◦ l(x(k), u∗(0|k)),

(10)

for some ρ ∈ K∞ with ρ < id. If the above condition holds,
then the cyclically neutral supply condition also holds.

The above inequality can be further relaxed by exploiting
the accumulated supply over the previous M time steps,
where the current time must satisfy k ≥ M + 1, i.e.,

0∑
i=−M+1

s(x(k + i), u(k + i))

≤ −ρ ◦ l(x(k −M + 1), u∗(0|k −M + 1)).

(11)

Indeed, if we let M = 1 in the above inequality, we recover
(10).

4. RECURSIVE FEASIBILITY ANALYSIS

The following results are a new addition to (Lazar, 2021).
In order to guarantee recursive feasibility, consider the
following terminal set characterization for system (1):

XT := {x ∈ X : gq(X , x) ≤ c},
where c > 0 is such that XT ⊆ X, X is a proper C–set with
gauge function g(·, ·) (Blanchini et al., 2015), and q = 1 or
2 for ellipsoidal proper C-sets.

Assumption 8. There exists an admissible control law κ :
XT → U continuous at the origin and zero at zero such that
the set XT is control λ–contractive with λ : R+ → R+,
λ(0) = 0 and λ < id, for the dynamics (1), i.e., for all
x ∈ XT it holds that gq(X , f(x, κ(x)) ≤ λ ◦ gq(X , x).

Then we can formulate the following result.

Theorem 9. Let the hypothesis of Theorem 6 hold, let As-
sumption 5 hold and consider the nonlinear MPC problem
(5) at time k ∈ N with prediction horizon N(k) ≥ 2 and
the additional constraint x(N(k)|k) ∈ XT , where XT ⊆ X
is a terminal set satisfying Assumption 8 for a state–
feedback control law κ(x). Then the following properties
hold:

• If the nonlinear MPC problem (5) with the additional
terminal constraint is feasible at time k, then the
same problem is feasible at time k+1 for any N(k+
1) ≥ N(k);

• Assume there exists σ ∈ K such that

l(x, κ(x)) ≤ σ ◦ gq(X , x), ∀x ∈ XT . (12)

Then there exists a N(k + 1) ≥ N(k) such that the
negative supply condition (10) holds at time k + 1.

Proof. Since x∗(N(k)|k) ∈ XT , we can construct a feasi-
ble shifted sequence

{u∗(1|k), . . . , u∗(N(k)− 1|k),
κ(x∗(N(k)|k)), . . . , κ(x(N(k) +NT |k))}

(13)

for any NT ≥ 1, where

x(N(k) +NT |k) =
f(x(N(k) +NT − 1|k), κ(x(N(k) +NT − 1|k))) ∈ XT

for all NT ≥ 1. Hence, the MPC optimization problem
with the terminal constraint added is feasible at time k+1
for any N(k + 1) ≥ N(k).

Moreover, x∗(N(k)|k) ∈ XT implies gq(X , x∗(N(k)|k)) ≤
c. Hence, from inequality (12) it follows that there exists
a NT ≥ 1 such that

l(x(N(k) +NT |k), κ(x(N(k) +NT |k)))
≤ σ ◦ gq(X , x(N(k) +NT |k))
≤ σ ◦ λNT (c)

≤ (id− ρ) ◦ l(x(k), u∗(0|k)),
for any x(k) ̸= 0, which implies condition (10) holds for
N ≥ N(k) + NT . Above we have used that λ < id and
σ ∈ K. Hence, by selecting N(k+1) = N(k)+NT − 1 and
time k+1 we have that the dissipation inequality (7) holds

with Ṽ (x(k)) instead of V (x(k)) corresponding to the
extended sequence (13) and with the supply s(x(k), u(k))
satisfying (10). 2

The above result provides a mechanism for adapting the
prediction horizon online such that recursive feasibility
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and convergence of the optimal nonlinear MPC cost func-
tion are guaranteed (assuming N(k) converges to a con-
stant value in finite time), for an arbitrary positive definite
cost function. An alternative way of guaranteeing conver-
gence with a time–varying N(k) is to employ a contractive
terminal constraint, as proposed in (Limon et al., 2006), or
to resort to time–varying Lyapunov functions. The details
of these approaches will be presented in an extended paper.

Observe that the condition (12) is easily satisfied if the ter-
minal set is such that its Minkowski functional is a norm,
e.g., an ellipsoidal set. Indeed, since typically l(x, κ(x))
is upper bounded by a K–function of x in the terminal
set, condition (12) holds due to equivalence of norms. For
systematic computation of ellipsoidal contractive sets for
discrete–time nonlinear systems we refer to the sNMPC
toolbox (Eyüboğlu and Lazar, 2022).

5. PRACTICAL STABILIZING NMPC DESIGN

As a conclusion to this extended abstract we propose two
practical methods for designing stabilizing NMPC algo-
rithms with arbitrary positive definite stage cost functions.

Time–varying horizon NMPC

• At time k ∈ N, given x(k), N(k), l(·, ·), XT and κ(·),
X and U solve the optimization problem (assuming it
is feasible):

min
u(k)

N(k)−1∑
i=0

l(x(i|k), u(i|k))

subject to constraints:

x(i+ 1|k) = f(x(i|k), u(i|k)), ∀i ∈ N[0,N(k)−1],

(x(i+ 1|k), u(i|k)) ∈ X× U, ∀i ∈ N[0,N(k)−1],

x(N(k)|k) ∈ XT .

• Compute l(x∗(N(k)|k), κ(x∗(N(k)|k))), where κ(·)
is the state–feedback control law that renders XT

contractive and check if

l(x∗(N(k)|k), κ(x∗(N(k)|k))) < l(x(k), u∗(0|k)).
If the above inequality holds, apply u∗(0|k), setN(k+
1) = N(k) and repeat for k + 1.

• Else, compute l(x(N(k)+NT |k), κ(x(N(k)+NT |k)))
for NT = 1, 2, . . . using the dynamics f(x, κ(x)) until

l(x(N(k) +NT |k), κ(x(N(k) +NT |k)))
< l(x(k), u∗(0|k)).

Then apply u∗(0|k), set N(k + 1) = N(k) +NT and
repeat for k + 1.

If the terminal set and local controller κ(·) are not avail-
able/used, the above algorithm can still be implemented
by computing the additional control inputs online, solving
additional optimization problems, as suggested in (Lazar,
2021).

Alternatively, the following NMPC implementation can be
used, which explicitly enforces the stage cost constraint
and utilizes a slack variable s, to minimize the supply func-
tion induced by the stage cost. Simulation examples will be
provided during the presentation and in a corresponding
article.

NMPC with flexible supply constraint

• At time k ∈ N, given x(k), N , l(·, ·), XT and κ(·),
X, U, λ > 0 and ε ∈ N(0,1) solve the optimization
problem (assuming it is feasible):

min
u(k),s(k)

N−1∑
i=0

l(x(i|k), u(i|k)) + λs(k)

subject to constraints:

l(x(N |k), κ(x(N |k)))− εl(x(k), u(0|k)) ≤ s(k)

x(i+ 1|k) = f(x(i|k), u(i|k)), ∀i ∈ N[0,N−1],

(x(i+ 1|k), u(i|k)) ∈ X× U, ∀i ∈ N[0,N−1],

x(N |k) ∈ XT .
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EXTENDED ABSTRACT

The stochastic optimal control problem (SOCP) is a cor-
nerstone of systems and control theory. This problem has
received renewed attention with the growing interest in
data-driven analytics and control with applications rang-
ing from vehicle autonomy, robotics, transportation net-
works, power grid, security, and advanced manufacturing.
The SOCP is also at the heart of Reinforcement learn-
ing (RL), and various algorithms are developed for the
data-driven approximation of its solution. For a system in
continuous time with continuous state space and control,
the solution to SOCP essentially boils down to solving
a Hamilton Jacobi Bellman (HJB) equation, which is a
nonlinear partial differential equation. In discrete-time,
SOCP involves solving the Bellman equation using the
principle of dynamic programming. Thus, the Bellman
equation can be viewed as the discrete-time counterpart
of the continuous-time HJB equation. Given the non-
linear nature of the HJB equation, one of the popular
approaches to solving the HJB equation is the iterative
approach. In this work, we propose an alternate method
for solving SOCP based on the convex formulation of
the problem in the dual space of densities. We provide
a data-driven solution to the SOCP over an infinite time
horizon with continuous-time system dynamics. The dual
approach leads to a convex infinite-dimensional optimiza-
tion problem to be solved for the SOCP. Unlike iterative
algorithms for solving HJB equation in the primal domain,
the convex formulation in the dual space lends itself to
a single-shot approach for solving SOCP. We use a linear
operator theoretic framework involving P-F and Koopman
operators to provide a novel perspective on the SOCP
problem and the computation of its solution using data.
We show that the traditional primal formulation of SOCP
involving the HJB equation is closely tied to the Koopman
operator. Furthermore, the dual convex formulation of the
SOCP can be understood naturally through the lenses of
duality between the Koopman and P-F operator.

We provide a convex formulation to the SOCP using the
linear operator theoretic framework involving P-F and
Koopman operators. The linear P-F and Koopman op-
erators are dual and provide a linear lifting of nonlinear
system dynamics in the space of density and function
(observables), respectively. The dynamical system theory
inspires the results, as the duality in SOCP is discovered

⋆ Financial support from of NSF CPS award 1932458 and NSF
2031573 is greatly acknowledged.

through duality between the P-F and Koopman operators.
The SOCP problem is formulated using P-F operator-
based lifting of control system dynamics in the dual density
space. This dual approach leads to the infinite-dimensional
convex optimization-based formulation of the SOCP. We
provide a computational framework based on the data-
driven approximation of the P-F operator for the data-
driven stochastic optimal control design. The convex for-
mulation of SOCP is made possible by exploiting the P-
F operator’s linearity, positivity, and Markov properties.
Furthermore, we show that the hard constraints on the
control input and the state can also be written convexly
in the dual formulation. The state constraints will include
safety or obstacle avoidance constraints. On the other
hand, we establish a connection between the Koopman
operator and the HJB equation. This connection allows
us to develop a numerical algorithm for the data-driven
solution of the HJB equation based on Koopman theory.
In particular, we provide an iterative algorithm based on
a data-driven approximation of the Koopman operator for
solving the SOCP problem in the primal domain. This new
algorithm is reminiscent of the generalized policy iteration
(GPI) algorithm in RL, and we call it Koopman policy
iteration (KPI). Moreover, the interpretation of GPI using
the Koopman theory opens up the possibility of exploiting
the rich spectral theory of the Koopman operator for
data-driven control. It is important to emphasize that
the existing iterative algorithm for solving the HJB equa-
tion, including our proposed Koopman-based approach,
requires an initial control policy to be stabilizing. However,
designing stabilizing controller for a stochastic nonlinear
system is far from a trivial problem. Our proposed dual
approach to SOCP does not suffer from this drawback.
The convex optimization problem in our dual framework
can be solved as a single shot problem, where almost
everywhere, stochastic stabilizability arises as a constraint
of this optimization problem. So the data-driven stochastic
stabilization will emerge as the particular case of the main
result on SOCP.
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Abstract: This work focuses on the generic identifiability of dynamical networks with partial
excitation and measurement: a set of nodes are interconnected by transfer functions according
to a known topology, some nodes are excited, some are measured, and only a part of the transfer
functions are known. Our goal is to determine whether the unknown transfer functions can be
generically recovered based on the input-output data collected from the excited and measured
nodes. Introducing the notion of generic local identifiability, we derive a necessary and sufficient
algebraic condition, which can be checked efficiently by rank computation. Another notion,
generic decoupled identifiability, allows to reflect on a larger network which decouples excitations
and measurements. This yields a necessary path-based condition, and a sufficient one.

Keywords: System Identification, Networked Control Systems, Linear Systems.

1. INTRODUCTION

The goal of this work is to recover the local dynamics from
the global input-output behavior of a networked system
and the knowledge of the network topology.

We consider the identifiability of a network matrix G(q),
where the network is made up of n node signals w(t),
external excitation signals r(t), measured nodes y(t) and
noise v1(t), v2(t) related to each other by:

w(t) = G(q)w(t) +Br(t) + v1(t)

y(t) = Cw(t) + v2(t),
(1)

where matrices B and C are binary selections defining
respectively the nB excited nodes and nC measured nodes,
forming sets B and C respectively. The nonzero entries
of the network matrix G(q) define the network topology:
some of them are known and collected in G0(q), and the
others are the unknowns to identify, collected in G∆(q),
such that G(q) = G0(q) +G∆(q).

We assume that the global relation between the excitations
r and measurements y has been identified, and that the
structure of G(q) is known. From this knowledge, we aim
at recovering the unknown entries of G(q).

Networked systems have recently been the object of a
significant research effort. The independent identification
of all local dynamics in a networked system would require
exciting and measuring every single node of the network,
which is costly and often impractical. We therefore assume
here that we excite and measure different subsets of nodes,
and are able to identify the global input-output dynamics
going from the excited nodes to the measured nodes.

A recent approach employs graph-theoretical tools to de-
rive identifiability conditions on the graph of the network.
Using this approach, Hendrickx et al. (2018); Cheng et al.
(2019) address the particular case where all nodes are
excited. In the general case of partial measurement and
excitation, Shi et al. (2021) derive identifiability conditions

while exploiting unmeasured noise. In this work, we con-
sider partial measurement and excitation and we introduce
the notions of generic local and decoupled identifiability,
for which we derive algebraic and path-based conditions.

Assumptions: Consistently with previous works, we as-
sume that (I − G(q))−1 is proper and stable, and we
consider a single frequency z, so that all transfer functions
are modeled simply by a complex value, and the matrices
G and T (G) = (I−G)−1 are complex matrices rather than
matrices of transfer functions.

Genericity: Besides, we say that a network is generically
identifiable if it is identifiable at all G with same known
and zero entries, except possibly those lying on a set of
dimension lower than the number of unknown edges. In
the remainder of this paper, we say that a property is
generic if it either holds (i) for almost all variables, i.e
for all variables except possibly those lying on a lower-
dimensional set, or (ii) for no variable.

2. LOCAL IDENTIFIABILITY

First, we remind a notion of identifiability amenable to
linear analysis: local identifiability, which corresponds to
identifiability provided that G̃ is sufficiently close to G.

Definition 1. The network is locally identifiable at G from
excitations B and measurements C if there exists ε > 0
such that for any G̃ with same zero and known entries as
G satisfying ||G̃−G|| < ε, there holds

C T (G̃)B = C T (G)B ⇒ G̃∆ = G∆, (2)

where G̃∆ collects only the entries of G̃ corresponding to
unknown edges, just as G∆ does for G.

Local identifiability is a generic property of the network,
and is a necessary condition for identifiability. It is a priori
a weaker notion, yet no example locally identifiable but not
globally identifiable is known to the authors.
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2.1 Necessary and sufficient algebraic condition

Linearizing (2) yields a necessary and sufficient condition.

Proposition 2. Exactly one of the two following holds:

(i) the network is generically locally identifiable and for
almost all G, there holds

C T (G) ∆T (G)B = 0⇒ ∆ = 0, (3)

for all ∆ of same dimensions and zero entries as G∆.
(ii) the network is never locally identifiable and there is

no G for which (3) holds ∀ ∆ with same 0s as G∆.

Moreover, (3) holds if and only if matrix K(G) is full rank.
Expression of K(G) can be found in Legat and Hendrickx
(2020), along with an algorithm that efficiently determines
generic local identifiability by rank computation of K(G).

The algebraic condition of Proposition 2 allows rapidly
testing local identifiability for any given network, but
we aim at finding a combinatorial characterization for
generic identifiability, that is expressed purely in terms of
path-based properties, akin to what was done in the full
excitation case e.g. in Hendrickx et al. (2018). This spurs
the need for a new notion of identifiability.

3. DECOUPLED IDENTIFIABILITY

We consider a more general notion than local identifiabil-
ity. It is essentially inspired from (3), where the left and
right T (G) are no more equal, hence the name decoupled.

Definition 3. A network is decoupled-identifiable at (G,
G′), with G and G′ sharing the same zero and known
entries, if for all ∆ with same zeros as G∆, there holds:

C T (G) ∆T (G′)B = 0⇒ ∆ = 0. (4)

Similarly to local identifiability, decoupled identifiability
is a generic property: either it holds for almost all (G,G′),
or for no (G,G′). Besides, generic decoupled identifiability
is necessary for generic local identifiability, which is itself
necessary for generic identifiability. Hence, necessary con-
ditions obtained for generic decoupled identifiability apply
to (generic) (local) identifiability as well.

In addition, generic decoupled identifiability of a network
is equivalent to generic identifiability of a larger network,
constructed by duplicating the initial network, exciting one
copy, measuring the other one and adding the unknown
edges in the middle. This larger network is called decoupled
network and is defined in Legat and Hendrickx (2021).

3.1 Necessary path-based condition, and sufficient

Decoupled identifiability allows to reflect on the decoupled
network, on which for each unknown edge, one can route
a path that starts at an excitation and ends at a measure-
ment. Building on Proposition 2, this approach leads to
Theorem 4, which gives a necessary path-condition and a
sufficent one, for generic decoupled identifiability.

For ease of presentation, we consider the case where
there are exactly nBnC unknown edges, i.e. as many as
the number of (excitation, measurement) pairs. Transfer
functions are referred to as edges, and an assignation σ
is a function that assigns to each unknown edge a pair

(excitation, measure). We say that σ is connected if for
each unknown edge there is a path from its assigned
excitation to its assigned measurement, in which the
unknown edge is included.

Theorem 4. If a network is generically decoupled-identifi-
able, then there is at least one assignation σ such that:

(a) nC unknown edges are assigned to each excitation
(b) nB unknown edges are assigned to each measurement
(c) σ is connected
(d) for each excitation b, there are nC vertex-disjoint

paths between the edges assigned to b and measure-
ments C.

(e) for each measurement c, there are nB vertex-disjoint
paths between edges assigned to c and excitations B.

If there is only one such assignation, then this condition is
also sufficient for generic decoupled identifiability.

4. DISCUSSION

In Legat and Hendrickx (2021), the intuition is given that
a stronger version of Theorem 4 could exist, which would
extend path-based conditions of Hendrickx et al. (2018).
Specific counter-examples allow to narrow the search for
such stronger conditions and a low-level approach gives a
more clear understanding of the problem.

Besides, we remind that the necessary condition of Theo-
rem 4 extends to (generic) (local) identifiability, and that
no counter-example to sufficiency of generic decoupled and
local identifiability is known to the authors.

5. CONCLUSION

We introduced the notion of local generic identifiability,
which excludes situations where the set of solutions is
discrete. Linearizing this notion gave a necessary and suffi-
cient algebraic condition, which can be checked efficiently
by rank computation.

Another new notion, decoupled identifiability, allowed us
to reflect on a larger graph that highlights paths between
excitations and measurements. This approach led to a
necessary path-based condition, and a sufficient one.

Eventually, potential stronger path-based conditions are
discussed, supported by specific counter-examples and a
low-level approach.
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1. INTRODUCTION

The progressive liberalization of electricity markets mo-
tivates the need to develop realistic and robust models
for the analysis of the strategic bidding problem (Ventosa
et al. (2005)). Pricing rules in oligopolistic wholesale elec-
tricity auctions are mainly two: the uniform price rule
and the pay-as-bid rule (Rassenti et al. (2003), Fabra
et al. (2006)). In a uniform price auction, electricity is
paid/sold at the market-clearing price, regardless of the
offers that bidders actually made. On the other hand, in
the pay-as-bid auction (also called discriminatory price
auction), the remuneration is the bid price. Uniform price
auctions are usually employed in day-ahead markets, while
ancillary services markets sometimes adopt pay-as-bid re-
munerations (e.g, see Müsgens et al. (2014) and Gestore
dei Mercati Energetici (GME)).

From a game-theoretic point of view, appropriate models
for studying wholesale markets for electricity are Supply
Function Equilibrium (SFE) models. With this approach,
instead of setting their price bids (Bertrand) or quantities
(Cournot), see Mas-Colell et al. (1995), firms bid their
choices of supply functions and the predicted outcome is
a Nash equilibrium of the game. SFE models were first
introduced by Klemperer and Meyer (1989), and then
applied to electricity markets by Green and Newbery
(1992)). Empirical studies of strategic bidding suggest that
the SFE model provides a good approximation of the
behavior of large producers (Hortaçsu and Puller (2008);
Sioshansi and Oren (2007)).

There is a vast amount of literature directed to the study
of SFE outcomes in uniform-price auctions (e.g., David
(1993), Baldick and Hogan (2001), Anderson and Philpott
(2002), Baldick et al. (2004), Holmberg and Newbery
(2010)), but less clear is the behavior of SFE models
when discriminatory prices are considered. Our focus is
on existence and characterization of Nash equilibria in
supply functions with the pay-as-bid remuneration and

asymmetric firms. We determine conditions on the strat-
egy space under which existence is guaranteed and best
responses can be characterized. Our work is related to
Holmberg (2009), where uncertainty is considered. The
authors determine conditions on the hazard rate of the
demand distribution to ensure existence of Nash equilibria
which is in general not guaranteed. We instead study the
problem from a deterministic perspective with the goal
of determining a tractable model. Although different in
the purpose, it is relevant to mention Genc (2009), where
supply function equilibria game models are compared for
uniform-price and pay-as-bid auctions.

2. MODEL

2.1 Definition of the game

In the general setting, we shall consider:

- a player set N = {1, . . . , n} made of n firms equipped
with non-decreasing cost functions Ci(q), for i ∈ N ,
where q denotes the sold quantity. We assume that
Ci is twice continuously differentiable and such that
C ′

i ≥ 0 and C ′′
i ≥ 0 for every i ∈ N . The assumption

of convex costs is standard in literature (see Klem-
perer and Meyer (1989), Green and Newbery (1992));

- a strictly decreasing industry demand function D(p),
which retuns the aggregate quantity that consumers
are willing to buy at a (maximum) unit price p. We
define p̂ as the price such that D(p̂) = 0. We assume
that D ∈ C2 and such that D′ < 0 and D′′ ≤ 0.

The strategy of firm i ∈ N is a supply function belonging to
an arbitrary subset of the set of non-decreasing continuous
functions passing through the origin, i.e.,

F = {S ∈ C0([0, p̂]) , Si(0) = 0 , S non-decreasing} . (1)

The supply function Si returns the quantity q = Si(p)
that the firm is willing to produce at (minimum) unit price
p. The strategy configuration of the auction combines all
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Fig. 1. The equilibrium marginal price (on the left) and
the pay-as-bid remuneration (on the right).

strategies, that is, S = (S1, . . . , Sn). For a firm i ∈ N
and a strategy configuration S, we shall refer to the other
firms’ strategies with S−i = {Sj}j ̸=i.

Given a demand D and a strategy configuration S, the
equilibrium marginal price is determined as the price that
matches total demand and total supply, that is, p∗ ∈ [0, p̂]
satisfying

D(p∗) =
n∑

i=1

Si(p
∗) . (2)

We remark that p∗ exists unique in [0, p̂] under the assump-
tions of a strictly decreasing continuous demand func-
tion and increasing continuous supply functions satisfying
Si(0) = 0 for all i. The equilibrium marginal price deter-
mines the total quantity that will be sold by each firm
in the auction, that is, q∗i = Si(p

∗) for every i ∈ N . An
example of equilibrium marginal price is depicted on the
left of Fig.1.

We define the following class of games based on the pay-
as-bid remuneration. For a given A ⊆ F , the pay-as-bid
(PAB) auction is a game with player set N , strategy space
A and utilities, for every i ∈ N ,

ui(Si, S−i) := p∗Si(p
∗)−

∫ p∗

0

Si(p) dp− Ci(Si(p
∗)) , (3)

where p∗ := p∗(Si, S−i) is the equilibrium marginal price
satisfying (2). We shall denote the PAB auction with
U = (N ,A, {ui}i∈N ).

In words, firm i sells Si(p
∗) at the bid price and the final

utility is given by the total revenue minus the production
cost. We remark that the integral term is the one that
makes the difference between the uniform-price auction
and the pay-as-bid one. Indeed, notice that, when Si is
differentiable,∫ p∗

0

pS′
i(p) dp = p∗Si(p

∗)−
∫ p∗

0

Si(p) dp .

If the reward were only p∗Si(p
∗), we would be dealing

with a uniform price auction, thus obtaining the model
in Klemperer and Meyer (1989). Observe that, if Si is
invertible, the total revenue in the pay-as-bid auction
equals the integral from 0 to Si(p

∗) of the inverse of Si,
that is, the price function Pi(q) := S−1

i (q) of producer i.
The price function assigns to each quantity the marginal
price at which firms are willing to sell such quantity for.
Therefore, its integral from 0 to q∗i determines the total
pay-as-bid remuneration for firm i for a quantity q∗i . By

considering the formula in (3), we do not need to make
any assumption on Si.

An example of remuneration of the pay-as-bid auction
is depicted on the right of Figure 1. When the supply
function is S1 and the equilibrium marginal price is p∗,
the total revenue for firm 1 coincides with the green area
(the utility is then given by revenue minus costs).

Throughout the analysis, we shall focus on existence
and characterization of Nash equilibria of the pay-as-bid
auction: an action configuration S is a (pure strategy)
Nash equilibrium if, for every i ∈ N , Si maximizes the
utility given the other firms’ strategies. Let S−i ∈ AN\{i}.
We shall refer to the set

Bi(S−i) = argmax
Si∈A

ui(Si, S−i)

as the best response of firm i to S−i. Then, S is a Nash
equilibrium if and only if Si ∈ Bi(S−i) for every i ∈ N .

2.2 Remarks on the strategy space

In this section, in order to provide the motivation for our
work, we shall discuss existence of Nash equilibria in the
pay-as-bid auction depending on the choice of the strategy
space A.

Let us first observe that, when the supply functions can
be generic non-increasing continuous functions, that is,
when A = F as in (1), the PAB auction admits no Nash
equilibria. More precisely, we shall prove that the best-
response does not exist.

Proposition 1. Consider the PAB auction with strategy
space A = F as in (1). Then, for every i ∈ N and
S−i ∈ AN\{i}, Bi(S−i) = ∅.

Proof. We shall prove that for every feasible supply
function Si ∈ A, there exists another feasible supply
function S̃i ∈ A yielding to the same equilibrium price
and a higher utility. Formally, let Si be any non-decreasing
continuous function yielding to an equilibrium price p∗. We
shall then define

S̃i(p) := Si

(
p2

p∗

)
.

Observe that S̃i(0) = Si(0) and S̃i(p
∗) = Si(p

∗). Also

Si(p) ≥ S̃i(p) for all p ∈ [0, p∗] and, more precisely,

Si(p) > S̃i(p) for every p ∈ (0, p∗) such that Si(p) > 0.
Then,

ui(S̃i, Sj) > ui(Si, Sj) .
This concludes the proof.

Remark 1. The proof of Proposition 1 suggests that best
responses would exist if one could use step functions.
However, enlarging the strategy space to discontinuous
functions would lead to a number of different technical
difficulties. For instance, one has to solve some technical
problems in the definition of the game. Indeed, the ex-
istence of a unique marginal equilibrium price p∗ is not
anymore guaranteed. Anyway, even when we technically
solve such problem, Nash equilibria might fail to exist.

Thus, we observed that, in the general settings, Nash
equilibria might fail to exist. This gives the motivation for
the K-Lipschitz assumption, which guarantees existence
and characterization of Nash equilibria.
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3. RESULTS

3.1 The Lipschitzianity assumption

As previously observed, one of the main issues is that,
without any particular restriction on the strategy space,
the best response is a step function and existence of Nash
equilibria is not guaranteed. Accordingly, the best response
does not exist when considering generic continuous supply
functions. The problem is solved when considering K-
Lipschitz supply functions, for a fixed K > 0. Under this
assumption, not only best responses do exist, but it is
rather simple to determine their structure. As we shall
observe, this assumption drastically reduces the dimention
of the strategy space.

Let K > 0. We recall that a function S : [0, p̂] → [0,∞) is
K-Lipschitz if

|S(x)− S(y)| ≤ K|x− y| , ∀x, y ∈ [0, p̂] , x ̸= y .

Let us then define

AK := {S ∈ F , S is K-Lipschitz} . (4)

Under the assumption of K-Lipschitz supply functions,
that is, A = AK , we can characterize best response
functions, as showed in the following lemma.

Lemma 1. (Affine best-response). Consider the PAB auc-
tion U with strategy space A = AK . Then, for every i ∈ N
and S−i ∈ AN\{i},

Si ∈ Bi(S−i) ⇒ Si(p) = K[p− pi]+ (5)

for some pi ∈ [0, p̂].

Proof. Consider a generic function Si ∈ AK and let p∗ de-
note the equilibrium price such thatD(p∗) =

∑n
j=1 Sj(p

∗).
We shall prove the statement by construction, that is,
we provide a strategy S̃i ∈ AK of the form in (5) that
gives a greater or equal utility than Si. More precisely, we
construct S̃i of the form in (5) that passes through the

same p∗ as Si, that is, S̃i(p) = K[p− pi]+ with

pi := p∗ − Si(p
∗)

K
.

TheK-Lipschitzianity of Si combined with the assumption

that Si(0) = 0 guarantees that p∗ − Si(p
∗)

K ≥ 0 and thus
ensures the existence of pi ≥ 0. An example is shown in
Fig. 2 for S1 and S2 as in Fig. 1 and K = 3. We remark
that S̃i ∈ AK .

We shall now prove that Si(p) ≥ S̃i(p) for all p ∈ [0, p∗].
First, notice that, for p ∈ [0, pi], the inequality is trivial

since Si(p) ≥ S̃i(p) = 0. Let p ∈ (pi, p
∗]. Then, the

inequality is satisfied as

Si(p
∗)− Si(p) = |Si(p

∗)− Si(p)|
(1)

≤ K|p∗ − p| = K(p∗ − p)

= K(p∗ − pi)−K(p− pi)

= S̃i(p
∗)− S̃i(p)

= Si(p
∗)− S̃i(p)

where (1) is guaranteed by the K-Lipschitz property of Si.

To sum up, we observed that Si(p) ≥ S̃i(p) for all p ∈
[0, p∗] and Si(p

∗) = S̃i(p
∗). Therefore,

Fig. 2. Explanation of Lemma 1 (see Remark 2).

ui(Si, S−i) = p∗Si(p
∗)−

∫ p∗

0

Si(p)dp− Ci(Si(p
∗))

≤ p∗S̃i(p
∗)−

∫ p∗

0

S̃i(p)dp− Ci(S̃i(p
∗))

= ui(S̃i, S−i) .

More precisely, it holds that, ∀ p ∈ [0, p∗],∫ p∗

0

Si(p) dp =

∫ p∗

0

S̃i(p) dp ⇔ Si(p) = S̃i(p) ,

which implies that ui(Sj , Si) = ui(Sj , S̃i) if and only if

Si ≡ S̃i. This concludes the proof.

Remark 2. Lemma 1 is illustrated in Fig. 2. Consider two
generic supply functions S1 and S2 as in Fig.1. Notice
that when playing S̃1(p) = K[p− p1]+ for p1 as in figure,
firm 1 receives a higher utility than the one obtained by
playing S1. Indeed, the remuneration increases (colored
areas), while the equilibrium price does not change, thus
yielding to the same sold quantity. The same happens for
firm 2 when playing S̃2(p) = K[p − p2]+ instead of S2.
Then, for any supply Si, it is possible to construct another
supply S̃i yielding to a higher utility. Thus, best responses
must have such form.

Lemma 1 yields a fundamental simplification in our prob-
lem. Indeed, according to (5), every Nash equilibrium S∗

necessarily exhibits the form

S∗
i (p) = K[pi − p∗]+

for suitable values pi ∈ [0, p̂]. In particular, this yields a
complexity reduction from an infinite-dimensional strategy
space to a finite-dimensional one. In order to find Nash
equilibria, we can indeed further restrict the strategy
space to considering just functions as in (5), which are
parametrized by just one parameter, that is, pi ∈ [0, p̂],
for i ∈ N . We can then define a restricted game Ur =
(N ,Ar, {ur

i }i∈N ), where Ar = [0, p̂] and the utilities are
functions of pi and p−i = {pj}j ̸=i, that is, for i ∈ N ,

ur
i (pi, p−i) := p∗K[p∗ − pi]+ − (K[p∗ − pi]+)

2

2K
− Ci (K[p∗ − pi]+)

s.t.: K[p∗ − pi]+ = D(p∗)−
∑
j ̸=i

K[p∗ − pj ]+ .

(6)

We can now state the following corollary that formalizes
what previously observed, which is a direct consequence of
Lemma 1.

Corollary 1. The set of Nash equilibria of the PAB auction
U coincides with the set of Nash equilibria of the restricted
game Ur.
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Fig. 3. The unique equilibrium S for Example 1

Therefore, it is sufficient to study the restricted game Ur

to determine the entire set of Nash equilibria of the game
U . In the next section, we shall prove that the game Ur

admits at least one Nash equilibrium.

3.2 Existence and characterization of Nash equilibria

In this section, we shall prove that the restricted game
Ur admits at least one Nash equilibrium. According to
Corollary 1, the Nash equilibrium of the restricted game
Ur corresponds to a Nash equilibrium of the PAB auction
U with strategy space AK . Therefore, the PAB auction U
with strategy space AK admits Nash equilibria that can
be characterized in the same way.

Theorem 1. Consider the PAB action with strategy space
A = AK as in (4). Then, there exists at least one Nash
equilibrium S of the form Si(p) = K[p−pi]+ for i ∈ {1, 2}
and pi ∈ [0, p̂].

To prove the statement, we show that the utility function
in (6) is quasi-concave in pi. Quasi-concavity is proved
using the fact that the utility is concave in the stationary
points. This property, combined with the compactness and
convexity of [0, p̂] and the continuity of ur

i , permits to
apply Proposition 20.3 in Osborne and Rubinstein (1994)
(pp. 19-20) which guarantees existence of pure-strategy
Nash equilibria.

Let us conclude with an example.

Example 1. Let K = 10, D(p) = − 1
4p

2 − p + 10, C1(q) =
1
30q

3 + q2 + q and C2(q) =
1
30q

3 + 3
2q

2 + 2q. Then, there
exists a unique equilibrium S = (S1, S2) where

S1(p) = 10[p− 3.89]+
S2(p) = 10[p− 3.96]+

as shown in Fig. 3

4. CONCLUSION

We considered a supply function equilibrium model with
pay-as-bid remuneration and asymmetric firms. Existence
of an equilibrium is ensured if we restrict the strategy
space to K-Lipschitz supply functions. In such setting, a
characterization of Nash equilibria is given.

Further work comprehends conditions for uniqueness of
Nash equilibria. Also, we intend to include uncertainty
in our model. Motivated by the current structure of
electricity markets, we aim to study the concatenation of
a uniform-price auction and a pay-as-bid one, modeled as
a two-stage game.
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1. INTRODUCTION

Here X (the state space) and Y (the output space) are
Hilbert spaces and we suppose that we are given an output
pair (C,A) ∈ L(X ,Y) × L(X ) generating a state/output
linear system

Σ = ΣC,A:

{
x(j + 1) = Ax(j)
y(j) = Cx(j), j ∈ Z+,

there are various notions of stability:

(1) Σ is internally stable:

x(0) arbitrary ⇒ lim
j→∞

‖x(j)‖ = 0,

i.e., A is strongly stable: limj→∞ ‖Ajx0‖ = 0 for each
x0 ∈ X .

(2) Σ is internally exponentially stable, i.e.,

∃ ρ < 1, M <∞ so that ‖x(j)‖ ≤Mρj‖x(0)‖.
Equivalent conditions are:

(2a) A is similar to a strict contraction operator: ∃ an
invertible X on X so that ‖X−1AX‖ < 1.

(2b) A has spectral radius strictly less than 1:

ρsp(A) := lim
j→∞

‖Aj‖
1
j < 1.

(2c) The inverse linear pencil L(λ)−1 = (I − λA)−1

exists and is uniformly bounded on the closed
unit disk.

(3) Σ is output stable, i.e.,

x(0) arbitrary⇒ {y(j)}j≥0 ∈ `2Y .
We note that the state/output-signal map is given ex-
plicitly by the observability operatorO◦C,A: col [CAj ]j≥0

being bounded as an operator from X to `2Y . We
prefer to work with the Z-transformed version of the
observability operator O◦C,A given simply by

? The second author was supported by a collaboration grant from
the Simons Foundation.

OC,A:x 7→
∞∑
j=0

(CAjx)λj .

Conditions equivalent to output-stability of the out-
put pair (C,A) are:

(3a) The observability operator OC,A is bounded as
an operator from X to H2

Y .
(3b) The observability gramian GC,A = O∗C,AOC,A

exists as a bounded operator on X , and is given
by the strongly convergent infinite series

GC,A =
∞∑
j=0

A∗jC∗CAj .

While there seems to be no known Linear-Matrix-Inequality
(LMI) criterion for the property (1) (except in the finite-
dimensional case), there are LMI criteria for the notions
(2), (3):

(2) Exponential stability holds if and only if there is a
bounded positive definite H � 0 such that

H −A∗HA � 0. (1)

(3) Output stability holds if and only if there is a
bounded positive semi-definite H � 0 on X satisfying
the Stein inequality

H −A∗HA � C∗C. (2)

Specializing to the special case where X = Y and
C = IX , we arrive at the following statement: Given
A ∈ L(X ), A has the property that

∑∞
j=0 ‖Ajx‖2 <∞

for any x0 ∈ X if and only if ∃ H � 0 so that
H − A∗HA � IX . Since the right-hand side of this
last equation is strictly positive definite, we see that
its solution H must also be strictly positive definite.
Then a rescaling of this latter inequality finally gets us
back to (1). We conclude that exponential stability for
the state operator A is equivalent to output stability
for the output pair (IX , A), a fact presumably which
one can also see directly.
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Whether or not A is strongly stable (the internal stability
property (1) above) plays a key role in the finer structure
of the solution set for inequality (2), as illustrated in the
following result.

Theorem 1. Suppose that the output pair (C,A) is output
stable, so the inequality (2) has a positive semidefinite
solution H. Then:

(1) The observability gramian H = GC,A is the minimal
positive semidefinite solution of (2) and satisfies (2)
with equality:

H −A∗HA = C∗C. (3)

(2) If A is strongly stable, then H = GC,A is the unique
solution of the equality (3).

(3) Suppose that there exists H ′ � 0 such that H ′ −
A∗H ′A � 0 (equivalently, A is similar to a strict
contraction). Then conversely, if H = GC,A is the
unique solution of (3), then A is strongly stable.

Our goal here is to discuss recent work of the authors
(see Ball-Bolotnikov (2013) and the more comprehensive
treatment Ball-Bolotnikov (2022)) on a certain class of
time-varying discrete-time state/output linear systems. In
the definition of output stability, rather than requiring
that the Z-transform ŷ(λ) =

∑∞
j=0 yjλ

j of the output

sequence {y(j)}j≥0 be in the Hardy space H2 (i.e., that∑∞
j=0 ‖y(j)‖2 < ∞), we require that ŷ(λ) be in a pre-

scribed weighted Bergman space over the unit disk. Our
motivation comes from operator theory (the study of the
model theory for various classes of hypercontraction opera-
tors on a Hilbert space), but related problems with a more
engineering motivation have been studied in a continuous-
time setting in the work of Partington and collaborators
(see e.g. Jacob-et-al (2018)).

2. WEIGHTED BERGMAN SPACES

We note that the Z-transform of the space `2Y which has
a prominent role in the discussion of the previous section
is the Hardy space H2

Y

H2
Y = {f(λ) =

∞∑
j=0

fjλ
j :

∞∑
j=0

‖fj‖2Y <∞}.

The classical Bergman space A2 (here taken with values
in the coefficient Hilbert space Y) consists of holomorphic
Y-valued functions on the unit disk which are square-
integrable with respect to area measure:

A2,Y = {f(λ) =
∞∑
j=0

fjλ
j :

∫
D

‖f(λ)‖2YdA(λ) <∞}

where the area integral can also be expressed in terms of
Taylor-series coefficients:

‖f‖2A2,Y
=
∞∑
j=0

1

j + 1
‖fj‖2Y

More generally, for any natural number n ≥ 2 we may con-
sider the space An,Y consisting of Y-valued holomorphic
functions on D having finite weighted area integral

‖f‖2An,Y =
1

π

∫
D

‖f(λ)‖2Y(n− 1)(1− |λ|2)n−2dA(λ)

or in terms of Taylor coefficients

‖f‖2An,Y =
∞∑
j=0

µn,j‖fj‖2Y

where µn,j = j!
n(n+1)···(n+j+1) are reciprocal binomial

coefficients. All these spaces embed into a family of spaces
with continuous index ρ restricted only by 1 < ρ < ∞
where

‖f‖2Aρ =
1

π

∫
D

‖f(λ)‖2YdAρ(λ)

and dAρ(λ) = (ρ−1)(1−|λ|2)ρ−2dA(λ) or equivalently by

‖f‖2Aρ =
∞∑
j=0

µρ,j‖fj‖2Y

with µρ,j = j!
ρ(ρ+1)···(ρ+j−1) = j!Γ(ρ)

Γ(ρ+j) where Γ is the usual

gamma function meromorphic on the whole complex plane
C with simple poles at the negative integers −1,−2, . . .
which satisfies the interpolation conditions Γ(n) = (n−1)!.
Still more generally, following Ball-Bolotnikov (2013),
we introduce admissible weights ω = {ωj}j≥0 satisfying
admissibility conditions

ω0 = 1, 1 ≤ ωj
ωj+1

≤M for all j for someM <∞. (4)

A useful consequence of (4) is that the sequence {ω−1
j }j≥0

is nondecreasing:

1 = ω−1
0 ≤ ω−1

1 ≤ · · · ≤ ω−1
j ≤ ω−1

j+1 ≤ · · · . (5)

We then define a generalized weighted Bergman space
Aω,Y to consist of all Y-valued functions on D with finite
Aω,Y -norm, where∥∥ ∞∑

j=0

fjλ
j
∥∥2

Aω,Y
=

∞∑
j=0

ωj‖fj‖2Y .

One can show that Aω,Y is a reproducing kernel Hilbert
space with reproducing kernel of the form

KAω,Y (λ, η) = kω(λ, η)IY

where the scalar-valued kernel kω is given by

kω(λ, η) =
∞∑
j=0

ω−1
j λjηj .

We assume that kω(λ, η) 6= 0 for λ, η in the unit disk D.
We can then expand the inverse function 1

kω
into a series

of the form
1

kω
(λ, η) =

∞∑
j=0

cjλ
jηj .

We shall also occasionally need the shifted kernel function:
for κ = 1, 2, . . ., we define

k(κ)
ω (λ, η) =

∞∑
j=0

ω−1
j+κλ

jηj .

We shall need the additional hypothesis concerning the
coefficients {cj}j≥0 above:

∞∑
j=0

|cj | <∞. (6)

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



Let us also introduce a quick and dirty functional calculus
for functions of the form f(λ, η) =

∑∞
j=0 fjλ

jηj . For
S, T,H operators on X , we define

f(S, T )[H] =
∞∑
j=0

fjS
jHT ∗j ∈ L(X ) (7)

whenever the series converges. We shall apply this func-
tional calculus with f equal to the following functions:

f =
1

kω
, f =

k
(κ)
ω

kω
forκ = 1, 2, . . . . (8)

3. NOTIONS OF WEIGHTED STABILITY

Associated with an output pair (C,A) ∈ L(X ,Y) × L(X )
is the weighted state/output linear system

Σω = Σω,C,A:

{
x(j + 1) =

ωj
ωj+1

Ax(j),

y(j) = Cx(j).

Solving the recursions leads to

x(j) = ω−1
j Ajx(0),

y(j) = ω−1
j CAjx(0).

There are various possibilities for notions of stability for
such an autonomous time-varying system but it is not
clear which ones are useful and analyzable. For example
one might formulate internal stability of Σρ (or ω-strong
stability of the operator A) to mean that limj→∞ x(j) =
0 whenever {x(j)}j≥0 is a state trajectory of Σω, or
equivalently, A is ω-strongly stable in the sense that
limj→∞ ω−1

j Ajx0 = 0 for all x0 ∈ X , but we shall
introduce below another notion of ω-strong stability for
A which appears to be more useful. We focus here on:

(2-ω) Σω is internally ω-exponentially stable, i.e.,

∃ρ < 1, M <∞ so that ‖x(j)‖ ≤Mρj‖x(0)‖,
or A is ω-exponentially stable: ∃ρ < 1, M < ∞ so
that

ω−1
j ‖A

jx0‖ ≤Mρj‖x0‖ ∀x0 ∈ X .
An equivalent condition is:

(2b-ω) A has ω-spectral radius less than 1, i.e.,

ρω,sp(A) := lim sup
j→∞

{
ω
− 1
j

j ‖A
j‖

1
j

}
< 1.

(3-ω) Σω is ω-output stable, i.e.,

x(0) arbitrary ⇒
∞∑
j=0

y(j)λj ∈ H2
ω.

Equivalent conditions are:
(3a-ω) the ω-observability operator

Oω,C,A : x 7→ C
( ∞∑
j=0

ω−1
j λjAj

)
x

= Ckω(λIX , A
∗)x

maps X boundedly into H2
ω,Y .

(3b-ω) The weighted observability gramian

Gω,C,A = O∗ω,C,AOω,C,A
is a bounded operator on X .

We conjecture: A ∈ L(X ) is ω-exponentially stable if and
only if the output pair (C, IX ) is ω-output stable.

The LMI criterion for ω-output stability is as follows.

Theorem 2. The output pair (C,A) ∈ L(X ,Y) × L(X ) is
ω-output stable if and only if there exists H ∈ L(X ) so
that

H � A∗HA � 0, (9)

k
(κ)
ω

kω
(A∗, A)[H] � 0 forκ = 1, 2, . . . , and (10)

1

kω
(A∗, A∗)[H] � C∗C. (11)

Note that replacing C∗C with IX gives a criterion for ω-
exponential stability for A, assuming the validity of the
conjecture just preceding Theorem 2.

The statement of the analogue of Theorem 1 requires a
strengthening of the notion of strong stability to a notion
of ω-strong stability: Given an operator A on the Hilbert
space X , we say that A is ω-strongly stable if

lim
N→∞

A∗N
(
k

(N)
ω

kω
(A∗, A∗)[IX ]

)
AN = 0

in the strong operator topology.

Then we have the following result.

Theorem 3. (See Section 3 in Ball-Bolotnikov (2013).)
Suppose that (C,A) is an ω-stable output pair.

(1) Then H = Gω,C,A is the minimal positive semidefinite
solution of inequality (11) and itself satisfies this
inequality with equality:

1

kω
(A∗, A∗)[H] = C∗C for H = Gω,C,A. (12)

(2) Suppose that H = IX satisfies all the inequalities (9),
(10), (11). Then Gω,C,A � IX , i.e., the ω-observability
operator Oω,C,A is a contraction.

(3) The ω-observability gramian Gω,C,A is equal to the
identity IX (i.e., the ω-observability operator Oω,C,A
is isometric) if and only if (i) (C,A) satisfies inequal-
ities (9), (10) and equality (12), and (ii) A is ω-
strongly stable.

Remark. When we specialize the general admissible weight
ω to one of the standard weights µn (n = 1, 2, . . .),
Theorems 2 and 3 simplify considerably:

• The infinite set of inequalities (10) holds automati-
cally and one is left only with the two inequalities
(9), (11).

• µn-strong stability is the same as strong stability.
• One can add a uniqueness statement to item (1) in

Theorem 3: for the case where ω = µn for some
n = 2, 3, . . ., Gµn,C,A is the unique solution to (11)
if and only if A is strongly stable.

When (9) and ( 11) hold with H = IX and C = 0, then A
is said to be an n-hypercontraction in the operator theory
literature (see e.g. Agler (1985)). We expect that recent
operator-theory work of Olofsson (2015) should adapt to
provide a sharpening of Theorems 2 and 3.

REFERENCES

J. Agler, Hypercontractions and subnormality, J. Operator
Theory 13 (2) (1985), 203-217.

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



J.A. Ball and V. Bolotnikov, Weighted Hardy spaces:
shift invariant and coinvariant subspaces, linear systems
and operator model theory Acta Sci Math. (Szeged) 79
(2013b), 623-686.

J.A. Ball and V. Bolotnikov, Noncommutative Function-
Theoretic Operator Theory and Applications, Cam-
bridge Tracts in Mathematics 225, Cambridge Univer-
sity Press, 2022.

B. Jacob, J.R. Partington, S. Pott, and A. Wynn, β-
admissibility of observation operators for hypercontrac-
tive semigroups, J. Evol. Equ. 18 (2018), 153-170.

A. Olofsson, Parts of adjoint weighted shifts, J. Operator
Theory 74 (2) (2015), 249-280.

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



Noncommutative Nullstellensätze and
Perfect Games ⋆

Adam Bene Watts ∗ J. William Helton ∗∗ Igor Klep ∗∗∗

∗ University of Waterloo, Canada.
(e-mail: adam.benewatts1@uwaterloo.ca).

∗∗ University of California San Diego, USA.
(e-mail: helton@math.ucsd.edu)

∗∗∗ University of Ljubljana, Slovenia. (e-mail: igor.klep@fmf.uni-lj.si)

Abstract: The foundations of classical Algebraic Geometry and Real Algebraic Geometry
are the Nullstellensatz and Positivstellensatz. Over the last two decades the basic analogous
theorems for matrix and operator theory (noncommutative variables) have emerged. This paper
concerns commuting operator strategies for nonlocal games, recalls NC Nullstellensatz which
are helpful, extends these, and applies them to a very broad collection of games.
The main results of this procedure are two characterizations, based on Nullstellensatz, which
apply to games with perfect commuting operator strategies. The first applies to all games and
reduces the question of whether or not a game has a perfect commuting operator strategy to a
question involving left ideals and sums of squares. Previously, Paulsen and others translated
the study of perfect synchronous games to problems entirely involving a ∗-algebra. The
characterization we present is analogous, but works for all games. The second characterization
is based on a new Nullstellensatz we derive in this paper. It applies to a class of games we
call torically determined games, special cases of which are XOR and linear system games. For
these games we show the question of whether or not a game has a perfect commuting operator
strategy reduces to instances of the subgroup membership problem.

Keywords: Nonlocal Games, Operator Algebras, Noncommutative Algebraic Geometry

1. EXTENDED ABSTRACT

A nonlocal game describes a test performed between a
verifier and k players, in which the verifier tests the players’
ability to produce correlated responses without communi-
cating. In a round of the game the verifier sends questions
to the players and the players return responses to the
verifier. The list of questions and responses is then scored
according to a function known by both the verifier and the
players before the game began. By convention, the score
achieved lies in the interval [0, 1]. The players cooperate
to try and achieve the highest possible score, with the
challenge that the players can’t communicate while the
game is in progress and so don’t know the questions sent
to other players.

The optimal score the players can achieve on a nonlocal
game G depends on the resources the players share. If the
players share only classical randomness the optimal score
they can achieve in expectation is called the the classical
value of the game, denoted ω(G). If players share an ar-
bitrary state in a (possibly infinite dimensional) Hilbert
space and can make commuting measurements on it the
optimal score they can achieve is called the commuting
operator value of the game, denoted ω∗

co(G). The supre-
mum value achievable by players who make commuting

⋆ IK was supported by the Slovenian Research Agency grants J1-
2453, N1-0217 and P1-0222. ABW was supported by NSF grant
CCF-1729369.

measurements on a state in a finite dimensional entan-
gled space is called the quantum value, denoted ω∗

q(G).
These three values can all differ, though the inequalities
ω(G) ≤ ω∗

q(G) ≤ ω∗
co(G) are always satisfied.

Starting roughly in this century the classical subject of real
algebraic geometry has been extended to matrix and op-
erator (noncommutative) variables. Here inequalities and
equalities are explained by being equivalent to algebraic
formulas, often involving Sums of Squares (SOS). These
go under the names of Positivstellensatz for inequali-
ties and Nullstellensatz for equations. Of course finding
quantum strategies for games leads to many such noncom-
mutative (NC) inequalities and equalities.

In this paper we describe how the well developed NC real
algebraic geometry theory applies and integrates with non-
local games and commuting operator strategies for them.
We show a connection between NC Nullstellensatz and
whether or not a nonlocal game has a perfect commuting
operator solution (i.e., ω∗

co(G) = 1). This connection gives
a new algebraic characterization which applies to all non-
local games with commuting operator value exactly equal
to one. This characterization provides a unified algebraic
framework through which several previous results concern-
ing the commuting operator value of nonlocal games can
be understood. For a large class of games it also reduces the
question of whether or not a game has perfect commuting
operator value to an instance of the subgroup member-
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ship problem, providing a potential starting point for the
investigation of several yet-to-be studied families of games.

For context, Positivstellensätze have long played a major
role in the study of nonlocal games in that they are
behind the standard Navascués et al. (2008); Doherty et al.
(2008) upper bound on the commuting operator value of
a game. Underlying this bound is one of the earliest NC
Positivstellensätze, Helton and McCullough (2004). This
paper turns its attention to developing the analogous NC
real algebraic geometry which bears on perfect games.

In the remainder of this abstract we introduce some new
terminology, review some previous results concerning the
commuting operator value of nonlocal games, and then
give formal statements of some of our main results.

1.1 Algebraic Description of Commuting-Operator Strategies

A commuting operator strategy for a nonlocal game is a
description of how players can use commuting operator
measurements to map questions sent by the verifier to
responses. Formally, a (commuting operator) strategy can
be specified by a Hilbert space H, a state ψ ∈ H which is
shared by the players and projectors {E(α)ia} acting on H,
where α ranges over all players, i ranges over all questions,
and a ranges over all responses. The projector E(α)ia can
be read as “the projector corresponding to player α giving
response a to question i”.

Because the Hilbert spaceH on which they act is arbitrary,
it is difficult to reason about the E(α)ia directly. Instead we
introduce the universal game algebra U , a ∗-algebra gen-
erated by variables e(α)ia which satisfy the same relations

as the projectors E(α)ia, for example, that e(α)ia and e(β)jb
commute for any α ̸= β. 1 Commuting operator strategies
can then be specified by tuples (π, ψ), consisting of a ∗-
representation π mapping U to bounded operators on a
Hilbert space H, along with a state ψ ∈ H. When specified
in this way, it is understood that projectors E(α)ia are
given by π(e(α)ia) and that ψ gives the state shared by
the players.

1.2 Other Characterizations of Perfect Commuting-Operator
Strategies

Several other papers have considered the problem of de-
ciding whether or not a game has a perfect commuting
operator strategy and given criteria which determine the
existence of perfect commuting operator strategies for spe-
cific families of nonlocal games. We review some of those
families of games and the associated characterizations be-
low.

• Linear systems games are two player games based
around system of m linear equations on n variables.
In Cleve et al. (2017) it was shown that deciding
existence of a perfect commuting operator strategy
for a binary linear systems game was equivalent to
solving an instance of the word problem on a group
called the solution group of the game.

1 The ∗-algebra U is isomorphic to a group algebra and has
appeared before in other contexts. For example, in Lupini et al.
(2020) an algebra closely related to U was denoted A(X,A).

• XOR games are k player games which, similarly to
linear system games, test satisfiability of a system of
m binary equations on kn variables. In Watts and
Helton (2020) it was shown that deciding the exis-
tence of a perfect commuting operator strategy for an
XOR game was equivalent to solving an instance of
the subgroup membership problem on a group called
the game group.

• Synchronous games are two player nonlocal games
which include “consistency-checks”, where Alice and
Bob are sent the same question and win iff they
send the same response. Other than these consistency
checks, the questions and winning responses involved
in a synchronous game are arbitrary. In Paulsen
et al. (2016) it was shown that there was a perfect
commuting operator strategy for a coloring game iff
a ∗-algebra associated with a single player’s operators
could be represented into a C∗-algebra with a faithful
trace. In Helton et al. (2017) and Kim et al. (2018)
this was generalized to synchronous games.

1.3 Our Results

The main results of this paper are two theorems giving al-
gebraic characterizations of games with perfect commuting
operator strategies.

A key concept introduced on the way to proving these
theorems is the notion of a game being determined by a
set of elements F ⊆ U . Formally we say a game G is
determined by a set of elements F if, for any commuting
operator strategy (π, ψ), we have that (π, ψ) is a perfect
commuting operator strategy for G iff π(f)ψ = 0 for
all f ∈ F . We also note that any game G is naturally
determined by two sets of elements. The first, N , consists
of elements corresponding to projectors onto responses
which obtain a score less than 1 on questions asked by the
verifier, while the second, Y, consists of elements y−1 with
each element y corresponding to projectors onto responses
which obtain a score of exactly 1.

Our first major theorem follows from combining the notion
of sets of elements which determine a game with a result
in noncommutative algebraic geometry known as a Null-
stellensatz. To state the result formally, let L (X ) denote
the left ideal of U generated by X for any set of elements
X ⊆ U and SOSU denote sums of squares in the algebra
U . Then the following result holds:

Theorem 1. For a nonlocal game G determined by a set
F ⊆ U the following are equivalent:

(i) G has a perfect commuting operator strategy;
(ii) −1 /∈ L (F) + L (F)

∗
+ SOSU .

Theorem 1, combined with the natural determining sets N
and Y, gives a fully algebraic characterization of nonlocal
games with perfect commuting operator strategies. This
characterization is analogous to the characterization of
synchronous games given in Helton et al. (2017), but works
for all games. For the special case of synchronous games we
show that the characterizations of Theorem 1 and Helton
et al. (2017) are equivalent.

The second major theorem focuses on a general class of
games on which Theorem 1 can be simplified further. A
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game G is called a torically determined game if there exists
a group G with U ∼= C[G] and G is determined by a set of
elements

F = {βigi − 1} (1)

with each βi ∈ C and gi ∈ G. We call the elements
βigi clauses of F , and let H = {βigi} be the set of all
the clauses of F . We give the following characterization
of torically determined games with perfect commuting
operator strategies:

Theorem 2. Let G be a game torically determined by a
set of elements F with clauses H . Then G has a perfect
commuting operator strategy iff the following equivalent
criteria are satisfied:

(i) −1 /∈ L (F) + L (F)
∗
;

(ii) The subgroup H of U generated by H ∪H ∗ meets
C only in 1.

Condition (i) makes it clear Theorem 2 can be viewed
as a version of Theorem 1 for torically determined games
which holds without the SOS term. Additionally, condition
(ii) reduces the characterization of perfect commuting
operator strategies in terms of ∗-algebras given in Theorem
1 to one entirerly in terms of groups. In the paper we
show that both linear systems games and XOR games are
torically determined games, and that Theorem 2 recovers
the algebraic characterizations of these games given in
Cleve et al. (2017); Watts and Helton (2020) respectively.
We also show that Theorem 2 lets us extend the algebraic
characterization of both XOR and binary linear systems
games to more general games based on linear equations
Mod r for any integer r. 2

Both Theorems 1 and 2 allow new algorithms for iden-
tifying nonlocal games with perfect commuting operator
strategies. We will discuss one such algorithm, based on
Gröbner bases, and give some sample applications. We
note that, unlike the upper bounds coming from the ncSoS
hierarchy, these Gröbner bases algorithms can both prove
a game has commuting operator value strictly less than 1
and identify some games with commuting operator value
exactly equal to 1. 3
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Abstract:
Input-to-state stability is characterised by admissibility for linear systems, governed by strongly
continuous semigroups. Yet, in some applications semigroups may fail to be strongly continuous
with respect to the norm of the underlying Banach space. Typical examples are given by shift-
semigroups and the Gauß–Weierstraß semigroup on spaces of bounded continuous functions
as well as dual semigroups. This requires a suitable theory for this general setting within the
framework of so-called bi-continuous semigroups, including proper admissibility concepts. Our
contribution mainly focuses on non-trivial variants of results from the classical case. For instance,
the recently shown fact that the generator of a strongly continuous semigroup is only admissible
if it is a bounded operator, fails for bi-continuous semigroups.

Keywords: input-to-state stability, semigroups of operators, bi-continuous semigroup,
admissibility, maximal regularity

1. INTRODUCTION

Input-to-state stability (ISS) is a notion well-understood
for control systems modelled by ordinary differential equa-
tions, or delay equations. Its infinite-dimensional coun-
terpart, more precisely, in the context of dynamics gov-
erned by partial differential equations, is less understood,
despite intensive research efforts in the recent 15 years.
The so-far existing theory as well as a listing of remaining
challenges, such as for instance the existence of ISS Lya-
punov functions, is nicely summarized in the recent survey
Mironchenko and Prieur (2020), also see Dashkovskiy and
Mironchenko (2013), Mironchenko and Wirth (2018), and
Karafyllis and Krstic (2019). Clearly, difficulties in the
infinite-dimensional situation arise due to the many facets
of well-posedness for partial differential equations, but
also because of the presence of control acting through the
boundary in contrast to distributed controls.

Although ISS has proved successful as a concept for large
classes of nonlinear systems, already in comparably simple
finite-dimensional examples, one cannot expect standard
ISS estimates of the form

∥x(t)∥X ≤ β(∥x(0)∥, t) + γ(∥u∥∞,[0,t]), t > 0, (1)

for inputs u ∈ L∞(0,∞;U) and corresponding states
x(t) ∈ X. Here X and U denote Banach spaces, β ∈ KL
and γ ∈ K, where KL,K refer to standard Lyapunov
classes. The mapping (u, x(0)) 7→ x(t)) can be viewed as
solution operator for given (boundary) inhomogeneity u
and initial values x(0). The notion of integral ISS on the

other hand describes estimates of the form

∥x(t)∥X ≤ β(∥x(0)∥, t)+γ
(∫ t

0

µ(∥u(s)∥U )ds
)
, t > 0, (2)

with γ, µ ∈ K. While these notions are rather trivially
seen to be equivalent for finite-dimensional linear systems
ẋ(t) = Ax(t) + Bu(t), the situation in general infinite
dimensions remains a notorious open question.

More precisely, if A generates a strongly continuous
semigroup (T (t))t≥0 on the Banach space X, and B ∈
L(U,X−1), with X−1 being the completion of X with
respect to (λI −A)−1 for some λ in the resolvent set ρ(A)
of A, then we ask whether the (mild) solution

x(t) = T (t)x0 +

∫ t

0

T−1(t− s)Bu(s)ds, (3)

to the problem

ẋ = Ax+Bu, x(0) = x0, (4)

with x0 ∈ X, satisfies the ISS estimate (1) or (2),
respectively. Here T−1(t) denotes the extension of T (t)
to the space X−1 which exists uniquely as a bounded
operator. Note that here the notion of (integral) ISS in
particular includes the property that the solution x(t) lies
in the space X, which is non-trivial as a-priori x(t) only
lies in X−1, which is also the space on which (4) has
to be understood. In fact, if x(t) lies in X for all given
input functions from the space L∞(0,∞;U), inequality (1)
follows automatically. On the other hand, it is not hard to
see that integral ISS always implies ISS for linear systems
of the above form, which leaves us with the open question
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Does ISS of a linear system imply integral ISS?

Although several situations, under additional assumptions
on the strongly continuous semigroup and the spaces X
and U , see e.g. Jacob et al. (2018, 2019), are known,
this question in its full generality remains open until
today. Recently, in Jacob et al. (2022), an example was
provided showing the answer is no, if only continuous
input functions are considered. This example is pathologic
in the way that B = A−1, which can be interpreted as
the “worst input operator” one may choose. Still, the
question whether L∞-ISS implies L∞-integral ISS remains
untouched by the example. In the same paper, a relation
between ISS (or admissibility respectively) and maximal
regularity for abstract evolution equations was revealed.
More precisely, it was shown that ISS of B = A−1 is
equivalent to maximal regularity of A, if both notions
are considered with respect to the continuous X-valued
functions.

This contribution aims to pave the way for a corresponding
theory if the strong continuity of the semigroup is dropped.
Moreover, we want to study the above central question on
ISS for this more general class as well as the relation to
maximal regularity with respect to continuous and essen-
tially bounded functions. In particular, we want to explain
why the definitions of ISS respectively admissibility and
maximal regularity depend on the considered function
classes in a subtle way.

1.1 A motivating example

A first attempt to answer the above mentioned question
on ISS in the negative is given by the following example,
which is standard in semigroup theory.

Consider the space X = ℓ∞ of bounded, complex-valued
sequences (an)n∈N with the supremum norm ∥ · ∥∞. The
operators defined by

T (t)(xn)n∈N := (e−ntxn)n∈N, t ≥ 0,

clearly define a semigroup of bounded linear operators
on X, which fails to be strongly continuous. As the dual
semigroup of a strongly continuous semigroup on ℓ1, it is
clear that (T (t))t≥0 is bi-continuous with respect to the
weak∗ topology with generator A given by

D(A) = {(xn)n∈N ∈ ℓ∞ : (nxn)n∈N ∈ ℓ∞},
A(xn)n∈N = (−nxn)n∈N.

It is not hard to see that the following facts hold.

• B = A−1 is ISS, but
• B = A−1 is not integral ISS

with respect to inputs u in L∞(0,∞;X). Note that the
corresponding statement changes significantly if we replace
the space ℓ∞ by c0; then B = A−1 is not ISS. This is a con-
sequence of a recent result Jacob et al. (2022) stating that
L∞-ISS for B = A−1 for a strongly continuous semigroup
already implies the boundedness of the generator.

On the first glance, this result seems to resolve the
question posed in the introduction completely. A closer
look, however, reveals that the considered function space
L∞(0,∞;X) does not match the natural setting we en-
counter for bi-continuous semigroups.

2. NOTIONS AND PRELIMINARIES

We call a triple (X, ∥ · ∥, τ) a sequentially complete Saks
space if (X, ∥ · ∥) is a Banach space, τ is a coarser
Hausdorff locally convex topology than the ∥ · ∥-topology
such that (X, τ)′ is norming, and if ∥ · ∥-bounded τ -
Cauchy sequences are convergent. In our motivating ex-
ample (ℓ∞, ∥ · ∥∞, σ(ℓ∞, ℓ1)) is the sequentially complete
Saks space. Bi-continuous semigroups on a sequentially
complete Saks space (X, ∥ · ∥, τ) were introduced by
Kühnemund (2001, 2003) as exponentially bounded semi-
groups in the space of bounded linear operators L(X)
on X which are (only) τ -strongly continuous and locally
sequentially τ -equicontinuous on ∥ · ∥-bounded sets. The
precise definition looks as follows.

Definition 1. Let (X, ∥ · ∥, τ) be a sequentially complete
Saks space. A family (T (t))t≥0 in L(X) is called τ -bi-
continuous semigroup if

(i) (T (t))t≥0 is a semigroup, i.e. T (t+ s) = T (t)T (s) and
T (0) = id for all t, s ≥ 0,

(ii) (T (t))t≥0 is τ -strongly continuous, i.e. the map
Tx : [0,∞) → (X, τ), Tx(t) := T (t)x, is continuous
for all x ∈ X,

(iii) (T (t))t≥0 is exponentially bounded, i.e. there exist
M ≥ 1, ω ∈ R such that ∥T (t)∥ ≤ Meωt for all t ≥ 0,

(iv) (T (t))t≥0 is locally bi-equicontinuous, i.e. for every
sequence (xn)n∈N in X, x ∈ X with sup

n∈N
∥xn∥ < ∞

and τ - lim
n→∞

xn = x it holds that

τ - lim
n→∞

T (t)(xn − x) = 0

locally uniformly for all t ∈ [0,∞).

In order to interpret the (mild) solution (3) there are
some adaptations needed in the bi-continuous setting. The
generator of a τ -bi-continuous semigroup is defined similar
to the one of a ∥·∥-strongly continuous semigroup, namely,
by

Ax := τ - lim
t→0+

T (t)x− x

t
, x ∈ D(A),

where the domainD(A) consists of all x ∈ X such that this

τ -limit exists and supt∈(0,1]
∥T (t)x−x∥

t < ∞. The notion of
the extrapolation space X−1 and the extrapolated semi-
group (T−1(t))t≥0 was transferred by Budde and Farkas
(2019) to the bi-continuous setting and the semigroup
(T−1(t))t≥0 becomes a bi-continuous semigroup with gen-
erator A−1 on the sequentially complete extrapolated Saks
space (X−1, ∥ · ∥−1, τ−1). The integral appearing in (3)
is in general not a Bochner integral (in X−1) anymore
due to the extrapolated semigroup being only τ−1-strongly
continuous. However, one may regard this integral as a
Pettis integral in X−1 w.r.t. the τ−1-topology under the
constraint that U = X, B ∈ L(X;X−1) is in addition
τ -τ−1-continuous and the inputs u belong to the space
Cτ,b([0, t];X) of τ -continuous ∥ ·∥-bounded functions from
[0, t] to X. Now, the operator B is called Cτ,b-admissible
for t > 0 if this τ−1-Pettis integral belongs to X, and
it turns out that the Cτ,b-admissibility of B = A−1 is
equivalent to ∫ r

0

T (r − s)f(s)ds ∈ D(A)

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



for all f ∈ Cτ,b([0, t];X) and all r ∈ [0, t]. If B is Cτ,b-
admissible for all t > 0, then we call B Cτ,b-admissible.

Looking at the space Cτ,b([0, t];X) and aiming for a
corresponding result to Jacob et al. (2022) in the bi-
continuous framework, one realizes that the definition of
L∞-admissibility needs an adaptation as well. Namely, due
to the functions in Cτ,b([0, t];X) being only τ -continuous
they may not be ∥ · ∥-strongly measurable and therefore
it is not guaranteed that the inclusion Cτ,b([0, t];X) ⊂
L∞(0, t;X) holds. Thus one has to replace the ∥ · ∥-strong
measurability by τ -strong measurability and so the space
L∞(0, t;X) by

L∞
τ (0, t;X) := L ∞

τ (0, t;X)/N .

where L ∞
τ (0, t;X) is the space of functions f : [0, t] → X

which are τ -strongly measurable and essentially ∥ · ∥-
bounded, and N is the space of functions in L ∞

τ (0, t;X)
which vanish Lebesgue almost everywhere. If τ coincides
with the ∥ · ∥-topology, then this space coincides with
L∞(0, t;X).

Definition 2. Let (X, ∥ · ∥, τ) be a sequentially complete
Saks space and (T (t))t≥0 a τ -bi-continuous semigroup on
X. Let t0 > 0 and F (0, t0;X) be a space of functions on
[0, t0] with values in X such that the convolution

(T ∗ f)(t) :=
∫ t

0

T (t− s)f(s) ds

is a well-defined τ -Pettis integral in X for any t ∈ [0, t0].
We say that (T (t))t≥0 satisfies F -maximal regularity for
t0 if for all f ∈ F (0, t0;X) it holds that (T ∗ f)(t) ∈ D(A)
for all t ∈ [0, t0] and A(T ∗ f) ∈ F (0, t0;X). We say that
(T (t))t≥0 satisfies F -maximal regularity if it satisfies F -
maximal regularity for all t0 > 0.

3. RESULTS

3.1 A theorem on maximal regularity w.r.t. ∥ · ∥∞-norms

It is well-known that maximal regularity with respect
to continuous functions is rare for strongly continuous
semigroup generators. This is due to Baillon’s result given
in Baillon (1980), which even holds if the considered
semigroup is not strongly continuous.

Theorem 1. (Baillon’s result on maximal regularity). Let
A be the generator of a analytic semigroup on a Banach
space X such that A satisfies C([0, t];X)-maximal regu-
larity. If A is unbounded, then X contains an isomorphic
copy of c0.

The phenomenon observed in Section 1.1, however, is not
accidental, as the following result shows.

Theorem 2. Let A generate a strongly continuous semi-
group on a Banach space X and suppose that the adjoint
A′ satisfies C([0, t];X)-maximal regularity. Then X ′ con-
tains ℓ∞.

However, as mentioned above, maximal regularity and
admissibility with respect to functions in C([0, t];X) or
L∞([0, t];X) is not the natural setting as the continu-
ity/measurability relates to the wrong topology. Instead,
the spaces Cτ,b([0, t];X) and L∞

τ (0, t;X) should be used.

The ultimate goal of these considerations is to approach a
statement of the following form, which is inspired by the

corresponding result for strongly continuous semigroups,
Jacob et al. (2022).

Conjecture 3. Let (X, ∥ · ∥, τ) be a sequentially complete
Saks space. and (T (t))t≥0 a τ -bi-continuous semigroup on
X with generator (A,D(A)) such that 0 ∈ ρ(A). Then the
following assertions are equivalent:

(a) A−1 is L∞
τ -admissible.

(b) Fav(T ) = D(A) and (T (t))t≥0 satisfies the Cτ,b-
maximal regularity.

(c) D(A) = X and A : (X, γ) → (X, γ) is continuous.

Here, L∞
τ -admissibility is defined analogously to Cτ,b-

admissibility, Fav(T ) denotes the Favard space of T and
γ = γ(∥ · ∥, τ) the mixed topology introduced by Wiweger
(1961), see Cooper (1978) as well. If τ coincides with the
∥ · ∥-topology, then γ coincides with the ∥ · ∥-topology too.
So, if true, then this conjecture generalises the mentioned
result from Jacob et al. (2022). In order to achieve this, we
have developed a corresponding theory of sun dual spaces
for bi-continuous semigroups in Kruse and Schwenninger
(2022); a tool that was pivotal in the norm-strongly
continuous case. These results, which are of interest in
their own right, extend works by van Neerven (1992).
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1. EXTENDED ABSTRACT

State observer design for non-linear systems is concerned
with the question of how to construct a dynamical system,
the observer, that takes as input both the input u and the
output y of a given non-linear control system

ẋ = f(x, u, t),

y = h(x, u, t),
(1)

and produces as its output an estimate x̂ of the state
variable x. The notation in (1) is deliberately generic
since many variations of this problem are studied in the
literature that differ in terms of the spaces that the
variables x, u, and y live in, the assumed properties of
the functions f and h, or the notion of what constitutes a
good estimate x̂ of x.

One way to approach this problem is to make the Ansatz

˙̂x = f(x̂, u, t) + ∆(x̂, u, y, t), (2)

where the internal model term f(x̂, u, t) simulates the
observed system, or plant, (1) and the correction term
∆(x̂, u, y, t) is zero along trajectories of (1). In the linear
context this idea dates back to Luenberger (1964), and
in the non-linear context at least to Kou (1973), see also
Thau (1973). In the case where x, x̂ ∈ Rn and where we
are seeking an asymptotic observer, the problem is now
to construct a correction term ∆(x̂, u, y, t) such that the
observer error e := x̂− x fulfils

lim
t→∞

e(t) = 0 (3)

for all (admissible) choices of x(0), x̂(0) and u.

The significance of ∆(x̂, u, y, t) being zero along trajecto-
ries of (1) is that, together with uniqueness of solutions,
it implies the tracking property

x̂(0) = x(0) =⇒ x̂(t) = x(t) for all t. (4)

In other words, the behaviour (set of trajectories) of the
observer (2) contains the behaviour (set of trajectories) of
the plant (1), i.e. an internal model of the plant.

An obvious question now is to what extent such an internal
model plus correction term design is necessary. If we have
a general asymptotic observer

˙̂x = f̂(x̂, u, y, t) (5)

⋆ This research is supported by the Australian Research Council
Discovery Project DP190103615: “Control of Network Systems with
Signed Dynamical Interconnections”.

for which (3) holds, does the right hand side f̂ always split
as in (2)? An affirmative answer to such a question is called
an internal model principle for observers. Note that such a
result depends on the classes of plants and observers under
consideration as well as on the notion of what constitutes
a good estimate.

For linear systems, several such internal model principles
were proved in Trumpf et al. (2014), covering the most
common notions of good estimate: asymptotic, dead-beat,
and exact observers. See also the even more general results
in Blumthaler and Trumpf (2014). In the linear case,
observers do not necessarily contain full internal models
of the plant but internal models of significant parts of the
plant behaviour. For the details see Trumpf et al. (2014)
or Blumthaler and Trumpf (2014).

In this work, we will present a general internal model
principle for observers formulated in a purely set theoretic
generalisation of behavioural observer theory. We show
that the historic focus on the linear case has somewhat
obscured what is in essence a surprisingly simple theory, at
least once the manifold implications of linearity have been
disentangled and only the strictly necessary components
kept and generalized. We recover the known linear results
as special cases of our general result and also derive a novel
internal model principle for non-linear kinematic systems
on differentiable manifolds. To our best knowledge, this is
the first non-linear internal model principle for observers
in the literature.

Our theory proceeds from the observations that (3) defines
an equivalence relation on the set of state trajectories, i.e. a
notion of which pairs of trajectories are close to each other,
and that sets of trajectories form a poset (partially ordered
set) under set inclusion. We define the saturation of a given
behaviour (set of trajectories) as the set closure under the
closeness relation and use this concept to define what we
call the radical set associated with a given behaviour (set
of trajectories). The space of saturations of behaviours is
a poset under set inclusion. We show that the space of
radical sets also carries a natural poset structure. The case
where the poset of saturations and the poset of radical sets
are isomorphic via the natural isomorphism is of particular
interest. We say that the poset of radical sets admits local
poset sections in this case. This property holds for linear
systems as well as for kinematic systems on differentiable
manifolds.
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The general internal model principle for observers now
states that if the poset of radical sets admits local poset
sections and if the radical sets of behaviours are well-
founded (the latter is a standard property in the theory of
posets that implies the existence of minimal elements) then
any non-intrusive, observable observer behaviour contains
a minimal element of the radical set of the plant behaviour.

Focusing on the case of asymptotic observer design, for
linear systems the minimal element of the radical set is
unique and equals the anti-stabilizable part of the plant
behaviour, cf. (Trumpf et al., 2014, Theorem 5.6). We show
that for kinematic systems on differentiable manifolds the
radical set only contains the plant behaviour. It follows
that any asymptotic observer for a non-linear kinematic
system on a differentiable manifold contains a full internal
model of the plant.
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Abstract: We consider Dynamic programming equations associated to discrete time stochastic
control problems with continuous state space, which arise in particular from monotone time
discretizations of Hamilton-Jacobi-Bellman equations. We develop and study several numerical
algorithms for solving such equations, combining tropical numerical methods and stochastic
dual dynamic programming methods. We also compare these algorithms with the point based
methods for solving Partially Observable Markov Decision Processes (POMDP).

Keywords: Stochastic Control, Hamilton-Jacobi-Bellman equations, Stochastic Dual Dynamic
Programming, Tropical algebra, Partially Observable Markov decision processes.

1. INTRODUCTION

We consider the following stochastic control problem with
discrete time and a possibly discounted additive payoff,
either with a finite or infinite horizon T . At each step
t ∈ [[0, T ]], the state Xt ∈ X ⊂ Rn follows the following
dynamics

Xt+1 = f
Wt+1

t (Xt,Ut) ,

where (Wt)t∈[[0,T ]] is a sequence of random variables with
values in some measurable set (W,W), and (Ut)t∈[[0,T ]]

is an adapted sequence of (random) decisions or controls
with values in some measurable set (U,U). The state is
fully observed, and we may be in the hazard-decision
framework in which adapted means that, for all t, σ(Ut) ⊂
σ(X0,W1, . . . ,Wt+1). We may also be in the decision-
hazard framework, in which adapted means that, for all t,
σ(Ut) ⊂ σ(X0,W1, . . . ,Wt). At each time t, the decision
maker is receiving the reward

r
Wt+1

t (Xt,Ut) ,

and at the final time, if any, the decision maker receives
the final reward ψ(XT). Then, the decision maker aims to
maximize his total expected reward:

E

[
T−1∑
t=0

r
Wt+1

t (Xt,Ut) + ψ(XT)

]
.

Such a problem is also called a multi-stage optimization
problem. In the sequel, we shall assume that the random
variables Wt+1 are independent and with finite support

? Sponsor and financial support acknowledgment goes here. Paper
titles should be written in uppercase and lowercase letters, not all
uppercase.

W. The law of Wt+1 may depend on t. In the decision-
hazard framework, we may also consider the case where
the law of Wt+1 depends on (Xt,Ut), which is equiv-
alent to consider the general framework of Markov de-
cision processes, with some given transition probabilities
Tut
t (xt, xt+1) = P (Xt+1 = xt+1 | Xt = xt,Ut = ut),

such that Tut
t (xt, ·) has a finite support. In the hazard-

decision framework, we can assume that the law of Wt+1

depends on Xt, but it cannot depend on Ut. The discrete
probability law of Wt+1 will be denoted by pxt,ut

t (w) =
P (Wt+1 = w | Xt = xt,Ut = ut) in the first case, and by
pxt
t (w) = P (Wt+1 = w | Xt = xt) in the second case.

By the dynamic programming approach (see Bellman
(1984)), the value function of the above problem is the
function V0 obtained from the solution to the following
recurrence equation:

VT = ψ and ∀t ∈ [[0, T − 1]], Vt = Bt (Vt+1) , (1)

where Bt is the associated Bellman operator from the

set of extended real functions over X (RX
), to itself.

This operator can be written as the composition of three
different operators among the following ones which are
operating on functions from either X, X × U, X × U ×W
or X×W to R:
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Qt(φ)(x, u, w) = rwt (x, u) + φ
(
fwt (x, u)

)
,

M(1)
t (Q)(x,w) = max

u∈U
Q(x, u, w),

E(2)t (Q)(x) = E
[
Q(x,Wt+1)

]
=
∑
w∈W

pxt (w)Q(x,w),

E(1)t (Q)(x, u) = E
[
Q(x, u,Wt+1) | Xt = x,Ut = u

]
=
∑
w∈W

px,ut (w)Q(x, u, w),

M(2)
t (Q)(x) = max

u∈U
Q(x, u) ,

in which we use the convention +∞−∞ = −∞. Indeed, in

the hazard-decision case, we have Bt = E(2)t ◦M
(1)
t ◦Qt and

in the decision-hazard case, we have Bt =M(2)
t ◦E

(1)
t ◦Qt.

The above discrete time Bellman equation (1) can also be
obtained after some semi-Lagrangian time discretization
of a Hamilton-Jacobi-Bellman equation, see Falcone and
Ferretti (2014), or any monotone time discretization. The
dynamic programming approach suffers from the “curse
of dimensionality”, since one would need to compute for
all t ∈ [[0, T ]] the value function Vt on all the state
space X, and any grid-based discretization would need
a number of values exponential in the dimension n of
the state space X. Several methods have been proposed
in the litterature to bypass the obstruction of curse of
dimensionality. We shall only cite the ones related to the
present work: the tropical numerical methods developped
in the context of Hamilton-Jacobi equations (McEneaney
(2007); McEneaney et al. (2011); Qu (2014); Akian and
Fodjo (2018)), the tree-structured algorithm developped
recently by Alla et al. (2019), and the stochastic dual
dynamic programming method developped in the context
of discrete time stochastic control (Pereira and Pinto
(1991); Philpott et al. (2013)).

Here, we consider a general algorithm inspired by both
tropical numerical methods and SDDP algorithm and
which can be seen as a generalization of the algorithms
proposed in Philpott et al. (2013); Baucke et al. (2018)).
Moreover, we show that in the case of the dynamic
programming equation associated to a partially observable
Markov Decision Process (POMDP), it is similar to the so
called point based algorithms developped in Pineau et al.
(2003); Kurniawati et al. (2008); Shani et al. (2013).

2. TROPICAL NUMERICAL METHOD FOR
LIPSCHITZ PRESERVING BELLMAN OPERATORS

The following algorithm is introduced in more details in
Akian et al. (2020).

We assume that the map rwt takes its values in R∪{−∞},
to handle constraints in state and control. We also assume
that rwt is bounded from above, which will imply that
the Bellman operator preserves the set of upper bounded
function from X to R ∪ {−∞}. For any function φ from
a set Y to R ∪ {−∞}, the support of φ will be the set of
y ∈ Y such that φ(y) ∈ R. The constraints determined by
the support of rwt and the support of the final reward ψ
induce a sequence of sets Xt ⊂ X, t ∈ [[0, T ]], such that
any sequence Vt, t ∈ [[0, T ]], satisfying (1) is such that the
support of Vt is included in Xt.

It is well known that Bellman operators are order pre-
serving and nonexpansive for the sup-norm. Since X is an
infinite set, we shall need the following stronger property:

Assumption 1. There exists a sequence Lt, t ∈ [[0, T ]], of
compact subsets of the set of functions from X to R ∪
{−∞}, endowed with the uniform convergence topology,
such that, for all t ∈ [[0, T − 1]], the Bellman operator Bt

sends Lt+1 into Lt.

Compact subsets Lt can be obtained by taking the set
of functions from X to R ∪ {−∞}, that are Lt-Lipschitz
continuous (for some given norm of Rn) on their compact
support Xt, or any closed subset of this set. In Akian
et al. (2020), Assumption 1 is proved to be satisfied for
these particular sets Lt, for some constants Lt, under
some technical conditions similar to the ones that are
generally assumed in the proofs of convergence of SDDP
algorithm. Another important property assumed to apply
SDDP algorithm (in the above context of a maximization
problem) is that the control set is polyhedral, that the
reward functions are polyhedral and concave with respect
to state and control, and that the dynamics are affine
with respect to state and control. In that case the value
function can be approximated by the finite infimum of
affine functions, and the computation of appropriate affine
functions can be done by solving some Linear Programs. In
what follows, we describe a general algorithm which does
not necessarily need this property. What will be needed
however is the following assumption which is satisfied
again by the above particular sets.

Assumption 2. The subsets Lt of Assumption 1 are lat-
tices for the pointwise partial order: for all t ∈ [[0, T ]], and
φ, φ′ ∈ Lt, there exists a supremum (least upper bound)
of φ and φ′ in Lt, that we shall denote by φ ∨ φ′ and an
infimum (greatest lower bound) of φ and φ′ in Lt, that we
shall denote by φ ∧ φ′.

Note that the set Ct of concave functions that are Lt-
Lipschitz continuous on their compact support Xt is stable
by the infimum operation, so that the pointwise infimum
in the set of all functions coincides with the infimum in
Ct. It is not stable by the pointwise supremum, but the
supremum in Ct exists and coincides with the concave
hull of (the least concave map greater than) the pointwise
supremum.

The Tropical Dynamic Programming (TDP) algorithm
of Akian et al. (2020) (which generalizes Philpott et al.
(2013); Baucke et al. (2018)) consists in the iterative
construction of two approximations of the value function
Vt, one from above and one from below. At each iteration

k, the upper approximation, denoted V
k

t , is obtained as

the infimum (in Lt) of a finite set F
k

t of basic functions

and the lower approximation, denoted V k
t , is obtained as

the supremum (in Lt) of a finite set F k
t of basic functions.

Basic functions for the upper and lower approximations are
taken respectively in subsets Ft and Ft of Lt, that is we

have F
k

t ⊂ Ft and F k
t ⊂ Ft. Note that the approximations

V
k

t and V k
t are parametrized by the sets F

k

t and F k
t ,

which means that we never store the values of these
functions on a grid of X. The sets of basic functions F

k

t

and F k
t are increasing with respect to iteration number
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k, so that V
k+1

t ≤ V
k

t and V k+1
t ≥ V k

t . These sets are
computed using a sequence of state-action-noise, which is
itself computed using the previous sequence of functions.

Starting with an initial state x0 and emptysets, or appro-

priate singleton sets φ0
t+1

and φ
0

t+1, the algorithm solving

the Bellman equation in the hazard-decision framework
consists at each step k ≥ 0 in the following two phases:

• Forward phase: Compute a new (deterministic)
trajectory (xkt )t∈[[0,T ]] starting in x0 as follows. For
t = 0, . . . , T − 1, do:

For each w ∈ W, compute an optimal control uwt
for V

k

t+1 at xkt :

uwt ∈ arg max
u∈U

Qt(V
k

t+1)(xkt , u, w) . (2)

Compute the noise wt ∈ W which maximizes the
future gap

wt ∈ arg max
w∈W

(
V

k

t+1 − V
k
t+1

)(
fwt (xt, u

w
t )
)
.

Compute the next state associated to the above noise
and optimal control:

xkt+1 = fwt
t (xkt , u

wt
t ) .

• Backward phase: For t = T, T − 1, . . . , 0, select
for both upper and lower approximations, one new
basic function φt ∈ Ft (resp. φ

t
∈ Ft) and add it

to the corresponding set: F
k+1

t := F
k

t ∪
{
φt
}

and

F k+1
t := F k

t ∪
{
φ
t

}
.

If t = T , the new basic functions are chosen such
that

φT ≥ ψ and φT (xkT ) = ψ(xkT ).

and symmetrically

φ
T
≤ ψ and φ

T
(xkT ) = ψ(xkT ).

If t < T , the new basic functions are chosen such that

φt ≥ Bt

(
V

k+1

t+1

)
φt(x

k
t ) = Bt

(
V

k+1

t+1

) (
xkt
)
.

and symmetrically

φ
t
≤ Bt

(
V k+1

t+1

)
φ
t
(xkt ) = Bt

(
V k+1

t+1

) (
xkt
)
,

where for all t, k, we denote V
k

t = inf F
k

t and V k
t =

supF k
t .

For the decision-hazard framework, the only difference is
in the forward phase, in which one computes an optimal
control ut independent of w:

ut ∈ arg max
u∈U

E(1)t (Qt(V
k

t+1))(xkt , u) .

If Lt is the set of Lt-Lipschitz continuous functions on
their compact support Xt, for some given norm ‖ ·‖ of Rn,
then a typical example of a set of basic functions Ft is the
set of functions x ∈ Xt 7→ a − Lt‖x − x0‖ with a ∈ R
and x0 ∈ Xt. Then −Ft is also a good candidate for Ft. If
Lt is the set of concave Lt-Lipschitz continuous functions
on their compact support Xt, then one can replace Ft by
the set of Lt-Lipschitz continuous affine maps restricted to

Xt. This is what is done in the SDDP like algorithms of
Philpott et al. (2013); Baucke et al. (2018).

Theorem 3. (Akian et al. (2020)). Let Vt be the solution
of the Bellman equation (1). For all t ∈ [[0, T ]], the

sequences
(
V k

t

)
k∈N

and
(
V

k

t

)
k∈N

converge uniformly to

two functions V ∗t and V
∗
t of Lt which satisfy V ∗t ≤ Vt ≤

V
∗
t . Moreover, we have that V

∗
t (x∗t ) = Vt(x

∗
t ) = V ∗t (x∗t )

for every accumulation point x∗t of the sequence (xkt )k∈N.

In particular V
∗
0(x0) = V0(x0) = V ∗0(x0).

The above algorithm and theorem are defined and stated
in Akian et al. (2020) under some technical assumptions
which ensure that Assumptions 1 and 2 hold for the
set Lt of Lt-Lipschitz continuous functions with compact
support Xt. However, the algorithm and proof only use
the properties stated in these assumptions.

3. POINT BASED ALGORITHMS FOR POMDP

One way to solve a partially observable Markov decision
Problem (POMDP) is to introduce, for each time t, the
belief state bt that is a probability distribution among the
elements of the state space, given the information available
at time t. The value function and an optimal strategy can
then be obtained by solving the dynamic programming
equation of a Markov decision process over the belief state
space with perfect information. This gives in particular an
optimal strategy which only depend on the belief state at
the current time.

We recall this dynamic programming equation in the
discounted infinite horizon case, for which point based
algorithm were introduced (see Pineau et al. (2003); Kur-
niawati et al. (2008); Shani et al. (2013)). Assume that
the state space is equal to [n] := {1, . . . , n}, so that the
belief space is the simplex ∆n = {b ∈ Rn

+ |
∑

i bi = 1},
which is a compact subset of X = Rn. Assume also that
the observation space O and the control space U are finite
sets. For all o ∈ O and u ∈ U, let us denote by Mu,o the
n× n matrix with entries

Mu,o
xx′ = P (ot+1 = o,Xt+1 = x′ | Xt = x,Ut = u) ,

and let us any belief state as a row 1×n vector. Then, the
dynamics of the belief state is given by:

bt+1 = τot+1(bt,ut) with τo(b, u) =
bMu,o

bMu,o1
.

We also have

P (ot+1 = o | bt = b,Ut = u) = pb,u(o) := bMu,o1 .

Denoting γ < 1 the discount factor, the dynamic program-
ming equation of the POMDP is the fixed point equation

V = B (V )

with B =M◦ E ◦ Q for the following operators

Q(φ)(b, u, o) = R(b, u) + γφ
(
τo(b, u)

)
,

E(Q)(b, u) =
∑
o∈O

pb,u(o)Q(b, u, o),

M(Q)(b) = max
u∈U

Q(b, u) ,

in which R(b, u) = b r(·, u) =
∑

x∈[n] bxr(x, u). The above

Bellman operator has same form as the one of previous
section in the decision-hazard framework, but for some
special dynamics. The observation process ot play the role
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of the noise process Wt. Both belong to finite sets. So
we can apply the TDP algorithm as soon as we found
some appropriate sets Lt. It is well known that the value
function of a POMDP is a bounded convex Lipschitz
continuous function over the simplex ∆n. The bound and
the Lipschitz constant (with respect to the `1 norm on the
simplex) are both equal to L = Rmax/(1−γ), where Rmax

is the sup-norm of the reward function r. The point based
algorithms developped in (Pineau et al. (2003); Kurniawati
et al. (2008); Shani et al. (2013)) consist in approximating
the value function from below by a supremum of linear
maps and from above by either an infimum of functions
of the form b 7→ a + L‖b − b0‖1 or by the convex hull of
such functions. Both methods can be seen as a particular
case of the TDP algorithm, up to some improvements,
and a generalization to the infinite horizon case. Such a
generalization consists in gathering (at each iteration k)
all the improvements into the same approximate value

function V
k

or V k, and in stopping the trajectory (xkt )

at a time T such that
(
V

k − V k
)
(xkT ) ≤ ε.

In Smith and Simmons (2005), an analysis of the point
based algorithm is done, only under the assumption that
the algorithm stops. Moreover, in Fehr et al. (2018), it
is proved that the Bellman operator B preserves the set
of Lipschitz continuous functions over the simplex, but
the Lipschitz constant can become very large for some
γ > 1/2.

We can show however that the set L of functions on the
simplex which are bounded by L and can be extended
in a positively homogenous and L-Lipschitz continuous
map on the positive cone Rn

+ is preserved by the Bellman
operator of the POMDP. This set is compact for the
uniform convergence topology, so it satisfies Assumption 1.
It also satisfies Assumption 2. This allows us to construct
a variant of point based algorithm for which a convergence
result similar to Theorem 3 up to ε is possible.
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Reinforcement learning for control systems with unknown
or complex system models has attracted considerable at-
tention recently. Particularly, there have been exciting
advances on reinforcement learning for the (centralized)
linear quadratic regulator problem that adopt an opti-
mization viewpoint for algorithm design and theoretical
analysis. Specifically, it has been shown that the LQR
cost, when viewed as a function of the controller’s feedback
gain, is a gradient dominated function with a connected
domain, and model-free reinforcement learning algorithms
based on zeroth-order gradient estimation can achieve fast
convergence to the globally optimal solution. Motivated
by such success, this work attempts to investigate model-
free reinforcement learning of two other linear quadratic
control problems from an optimization viewpoint: i) de-
centralized linear quadratic control, ii) linear quadratic
Gaussian control.

We first study distributed reinforcement learning of decen-
tralized linear quadratic control. We consider a group of
N agents interacting with a discrete-time linear dynamical
system. Each agent only has access to partial state obser-
vations, local actions and local costs. The group of agents
are connected by a communication network. The goal for
each agent is to learn a local control policy by interacting
with the linear system and by exchanging information with
its neighbors in the network, so that the infinite-horizon
averaged global cost will be minimized.

We propose a Zero-Order Distributed Policy Optimization
algorithm (ZODPO) that learns local control policies
in a distributed fashion. ZODPO leverages the ideas of
policy gradient, zeroth-order optimization and consensus
algorithms. ZODPO operates on two timescales: The fast

⋆ This work was supported by NSF CAREER grant ECCS-1553407,
NSF AI Institute grant 2112085, and ONR YIP grant N00014-19-1-
2217.

timescale iterations proceed at the same pace with the
discrete-time linear system, while each iteration on the
slow timescale carries out one stochastic gradient descent
update. At the beginning of each slow timescale iteration,
each agent will generate a random perturbation and apply
the perturbed control policy to the system. Then we let the
system evolve for a sufficiently long period, during which
each agent will accumulate local costs and run a consensus-
based method on the fast timescale for estimating the
global objective value. At the end of the slow timescale
iteration, each agent constructs a zeroth-order partial
gradient estimator and carries out a stochastic gradient
descent update.

Further, we investigate the nonasymptotic performance of
ZODPO for linear static local controllers. We show that, as
long as the algorithmic parameters are properly chosen, all
intermediate control policies (K(1), . . . ,K(TG)) generated
by ZODPO will stabilize the system with high probability.
In addition, we derive a bound for the sample complexity
of ZODPO, defined as the number of samples needed to
approach a stationary point with arbitrary precision: In
order to achieve

1

TG

TG∑
s=1

∥∇J(K(s))∥2 ≤ ϵ

for a sufficiently small tolerance ϵ > 0, ZODPO requires a
sample complexity of

Θ

(
n3
K

ϵ4
max

{
nβ2

0 ,
N

1− ρW

})
.

Here nK denotes the dimension of the controller parameter
K, n denotes the dimension of the global state, β0 is a
constant determined by the system, and ρW captures the
rate of consensus via the communication network. To the
best of our knowledge, this is the first sample complexity
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result for reinforcement learning of decentralized linear
quadratic control.

We complement our theoretical results with numerical
experiments on a multi-zone HVAC system test case.

Note that our theoretical results for ZODPO can only
guarantee that a stationary point can be approached. This
limitation is closely related to the fact that the opti-
mization landscape of partially observable linear quadratic
control with static output feedback lacks good structural
properties that can facilitate convergence to the globally
optimal point. This motivates us to analyze the optimiza-
tion landscape of the linear quadratic Gaussian problem,
which considers the optimal control of partially observable
linear systems by dynamic controllers.

Specifically, we adopt an optimization viewpoint and re-
formulate the continuous-time linear quadratic Gaussian
problem as an optimization problem. We parametrize a
dynamic controller by its system matrices (AK, BK, CK).
The objective function is the infinite-horizon quadratic
cost, and the feasible region is the set of full-order dynamic
controllers that can internally stabilize the plant.

We first characterize the connectivity of the feasible region
of the LQG optimization problem. We prove that the
feasible region can be disconnected, but has at most two
path-connected components. Moreover, when the feasible
region is disconnected, its two path-connected compo-
nents are diffeomorphic under a similarity transformation
(AK, BK, CK) 7→ (TAKT

−1, TBK, CKT
−1) for any invert-

ible T with detT < 0, and this similarity transformation
also preserves the objective value. This brings positive
news to gradient-based local search algorithms for the
LQG problem, since it makes no difference to search over
either path-connected component even if the feasible re-
gion is disconnected. We further show that if the plant
can be stabilized by a reduced-order dynamic controller,
then the feasible region is always connected; this sufficient
condition for connectivity becomes necessary when the
plant is single-input or single-output.

We then investigate structural properties of the stationary
points and the globally optimal points of the LQG cost
function. It is known that the LQG cost is invariant under
similarity transformations on the dynamic controller. As
a consequence of this symmetry, the globally optimal so-
lutions to the LQG problem are not unique, not isolated,
and can be disconnected in the state-space domain. For a
class of LQG problems, we show that the set of globally
optimal solutions forms a submanifold with two path-
connected components. When characterizing the set of
stationary points, the notion of minimal controllers (con-
trollable and observable controllers) plays an important
role. We show it is likely that there exist many strictly
suboptimal stationary points of the LQG cost function,
and these stationary points are always non-minimal. We
even provide an example of a saddle point that has a
vanishing Hessian. In contrast, we prove that all mini-
mal stationary points are globally optimal solutions to
the LQG problem. These minimal stationary points are
identical up to similarity transformations. This is expected
from the classical result that the globally optimal LQG
controller is unique in the frequency domain. Our analysis
implies that if local search iterates converge to a critical

point that corresponds to a controllable and observable
controller, then the algorithm has found a globally optimal
solution to the LQG problem. These results reveal rich
yet complicated optimization landscape properties of the
LQG problem, and shed light on the algorithm design
and performance analysis of model-free policy gradient
methods for solving the LQG problem.
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Application of Generalized Functions in

Optimal Control

Erik I. Verriest ∗
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Abstract: A new spin is given on the classical optimal control problem with piecewise
differentiable dynamics and performance index with respect to the state variables. While in
each domain of differentiability, the necessary conditions for optimality are easily established,
their interpretation at the boundaries between domains is not well-understood. In this paper
we show that in order to make sense of the Euler-Lagrange equation at this interface one needs
to transcend the classical theory of Schwartz distributions and make suitable extensions to
allow for the questionable behavior of impulses multiplied by discontinuities, and the notion
of partial derivatives at a discontinuity. Such a theory has been developed, in the Colombeau,
Oberguggenberger and Rosinger theory of Generalized Functions in 1990, going back to ideas
from Nonstandard Analysis (NSA). We develop an alternative NSA based approach applicable
to impulsive dynamics and optimal control.

Keywords: Generalized Functions, Optimal Control

1. INTRODUCTION

At the Boulder AMS Conference in 1990, R. Hermann
presented a talk on the Colombeau, Oberguggenberger
and Rosinger theory of generalized functions and predicted
that it would revolutionize mathematical physics and
system theory in the 21-st century (Hermann (1994)). This
has not happened, perhaps because the details involved
on the extended Schwartz distribution theory are not very
transparent. In this paper, the theory is revisited, and it
is shown that it has indeed a distinctive merit.

Assume that the state space, for simplicity embedded in
Rn, is partitioned in two domains, Ω+ and Ω−, separated
by the interface Ω0 = { x | g(x) = 0 }. A standard opti-
mal control problem is to find the control and trajectory
for a system governed by the dynamics ẋ = f(x, u), in
going from an initial state, x0, to a desired final state,
xf , while minimizing some performance index, say J =
∫ T

0 L(x, u) dt, with T fixed for simplicity. In the hybrid
problem, L and f are smooth functions of the arguments
in each domain, but are discontinuous at Ω0. The optimal
trajectory from a given state x0 ∈ Ω− to a given final state
xf ∈ Ω+ must cross the interface an odd number of times.
Let’s focus here on the case having one such crossing.
Transversality requires that [∇gf−]t− [∇gf+]t+ > 0, where

t− = ti − ǫ and t+ = ti + ǫ for ǫ
>
→ 0. Crossing time and

crossing state are a priori unknown.
Classically, the solution is found stepwise: First, establish
the necessary conditions for optimality in Ω−: The opti-
mality condition relates u− to x− and λ− implicitly. In
principle one can express u explicitly so that the state
equation and the Euler-Lagrange equation (EL), λ̇− =

−

(

∂H−

∂x

)⊤

, where H−(x, u, λ) = L(x, u) + λ⊤f is the

Hamiltonian, leaves 2n coupled ODE’s for x− and λ−.

The initial condition, x0, provides n initial conditions
for these equations. Augmenting with the n unknown
parameters, λ0 = λ−(0), the solution of these 2n ODE’s
can be specified in parameterized form as x−(t;λ0), with
x−(0;λ0) = x0, for the states, and the co-states λ−(t;λ0).
Likewise, in the domain Ω+, the necessary conditions
lead to the 2n coupled ODE’s, parameterized by say
λ+(tf ) = λf , which are as yet unknown. This leads to
the parameterized form of the n states x+(t) = x(t;λf )
and the n co-states λ+(t;λf ).
This yields two families of trajectories: One starting from
x0 and parameterized by n parameters in λ0. The other
family, x+(t;λf ), ends at xf and is likewise parameterized
by the n parameters in λf . Continuity of the state at
the interface requires that for some time τ , x−(τ ;λ0) =
x+(τ ;λf ), which provides n equations, but introduces an-
other variable: τ . However, at the interface xi = x−(τ) =
x+(τ) ∈ Ω0 the equation g(x−(τ)) = 0 determines this τ in
principle. This still leaves n unknowns in the problem. One
solves for these n remaining parameters by optimization.
But, a close inspection of the problem reveals that the
information present in the Euler-Lagrange equation of the
optimal problem has not been exhausted. By separately
solving the EL equation in both domains, the EL equation
across the interface has not been used. Since λ− and λ+

may differ on g(x) = 0, it means that the derivative of
λ must be impulsive across the interface. Thus the right-
hand-side of the EL is impulsive as well. But there are
several problems with this. The right-hand side of the EL
equation is specified as the gradient with respect to x. If x
were smooth, Schwartz’s distribution theory tells us how
to relate the impulse with argument x to the impulse with
argument t, but here ẋ is not continuous across the inter-
face. Likewise the right hand side also involves a product
of distributions with respect to x with functions that are
necessarily discontinuous. Such objects are not allowed in
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Schwartz’s distribution theory. This is the essence of the
Schwartz impossibility theorem, relating to the fact that
the set of distributions does not have the structure of an
algebra. See Oberguggenberger (1992). Consequently, the
needed interpretation of the EL completely fails in the
classical Schwartz sense at the interface.

2. KRYLOV-SPACE

The way out of this impasse is to use the framework
of generalized functions with a well-defined multiplicative
structure, such as outlined in Grosser et al (2001). We pro-
pose a new definition of generalized functions, one that can
handle the interpretative problems of δ(x(t)) and φ(t)δ(t)
respectively when x is not differentiable and φ is not con-
tinuous. Non-standard analysis (NSA) provides an answer,
but seems more complicated than it needs to be (Goldblatt
(1998). In previous work Hyun and Verriest (2016, 2017)
we developed an axiomatic approach from the ground up.
This was introduced for the purpose of placing causality,
understood in the sense of a cause leading to an effect,
back in hybrid system theory. While in the linear theory,
the reachability problem is investigated using impulsive
inputs (the cause) creating jumps in the state (the effect),
in the nonlinear case hybrid systems are modeled at their
jumps solely by the effects, e.g., x(t+) = φ(x(t−), p), where
the p may be some control parameters. In the cited thesis,
the objective was to put the impulses back in the continu-
ous dynamical equation, but properly model the dynamic
behavior in our sense. This theory borrowed also from the
generalized function theory of Colombeau (1985), which
has found widely acceptance in mathematical physics. See
also Oberguggenberger (1992).
Within our post-Schwartzian generalized function theory,
we were able to obtain a clear understanding of this sin-
gular behavior of the EL equation λ̇ = −H⊤

x , across the
interface, which we called the generalized Euler-Lagrange
equation (GEL). The results then lead to a precise formula
for the jump ∆λ in the co-states across the interface
g(x) = 0 in terms of the co-states just before and just
after the Ω0 crossing (Zhou and Verriest (2022)). The
upshot of this is now that the GEL provides n additional
equations precisely in the remaining parameters. Hence the
GEL can be used instead of solving the classical param-
eter optimization problem. Solving nonlinear equations is
computationally more straightforward. This information
has not been exploited in problems involving singularities
in optimal control before.

3. SCHWARTZ DISTRIBUTION THEORY AND
BEYOND

The Schwartz distribution theory centers on D = C∞
0 (R),

the space of C∞ functions with compact support. The
space of distributions is then defined as the dual space D′.
A distribution f̃ ∈ D′ is regular if there exists f ∈ L1,loc,
the space of locally integrable functions, such that

∀φ ∈ D, f̃(φ) =

∫

R

f(x)φ(x) dx.

Let D′
reg denote the space of regular distributions. Then

D′
reg ⊂ D′ and ∀f, g ∈ L1,loc it holds that f̃ = g̃ ⇔

f = g a.e.. In contrast, the evaluation functional, σt :
C∞

0 → R : φ 7→ φ(t), is usually denoted as
∫

R
δt(x)φ(x) dx,

however the δt known as Dirac-delta’s are not functions.
For D ∈ D′, the distributional derivative is defined by
D′ : D′ → D′ : D → (φ 7→ −D(φ′)). For f̃ ∈ C1 ∩ L1,loc,

we get ˜(f ′) = (f̃)′. For smooth functions f ∈ C∞ and
D ∈ D′, we define fD : C∞

0 → R : φ 7→ D(fφ), and
note that fD ∈ D′. Furthermore, (fD)′ = f ′D+fD′, and

∀g ∈ L1,loc, f g̃ = ˜(fg).
The support of a distribution is the complement of the
largest open set on which the distribution vanishes. Let
D′

M = {D ∈ D′ suppD ⊆ M} for any measurable subset
of R. Let DM denote the restriction of the distribution D.
Desirable properties for a restriction are:
i) ∀D ∈ D′ and measurable M , DM ⊆ D′

clM , and DM

linear and idempotent.
ii) ∀f ∈ L1,loc and measurable M , if fM = χMf , with χM

the indicator function of M , then ˜fM = (f̃)M .
iii) ∀φ ∈ C∞

0 , ∀D ∈ D′ and measurable M it holds that
suppφ ⊆ M ⇒ DM (φ) = D(φ) and suppφ ∩ M = ∅ ⇒

DM (φ) = 0.
iv) Mi pairwise disjoint with M = ∪M1, it holds that
DM =

∑

DMi
and (DMi

)Mj
= 0 if i 6= j.

If suppD = {t}, then there exists N ∈ N, and αi ∈ R;

i = 0, . . . , n such that D =
∑N

i=0 αiδ
(i)
t and

∑N
i=0 αiδ

(i)
t =

0 ⇔ αi = 0, for i = 0, . . . , N .
As the conditions (i) to (iv) cannot be satisfied together,
Trenn (2009) defined an appropriate subspace of piecewise
regular distributions that allows (i) to (iv) to be satisfied.

D
′
pw reg = {f̃ +

∑

t∈T

Dt | f ∈ L1,loc, T ⊂ R, locally finite },

where Dt ∈ D′
{t}

. It is shown in (Trenn (2009)) that

D′
pw reg ⊂ D′, the representation is unique, (i) to (iv) are

satisfied, and for measurable M ⊂ R, D = f̃ +
∑

T Dt

implies DM = ˜fM +
∑

T χM (t) dt.
For D ∈ D′

pw reg, define D[t] = D{t} as Dt if t ∈ T and
zero else. Then D[·] =

∑

T Dt is the impulsive part of the
distribution D.
Multiplication with piecewise smooth functions is well-
defined (Trenn (2009)).
The class of piecewise smooth distributions is then defined
and with the differentiation and multiplication defines
an associative differential algebra. In Trenn (2009) it

was argued that χ̃[t,∞) δt = δt for all t corresponds with
a causality condition, rendering the Cauchy initial value
problem of an algebraic differential equation unique. While
successful in switched behaviors with impulses (Trenn and
Willems (2012)), the application of this multiplication to
the Euler-Lagrange equation in multi-mode optimal con-
trol is inconsistent with the solution method that com-
putes the set of optimal solutions in each domain, param-
eterized by the interface condition, and then determines
the optimal parameters. This stems from the fact that
the Euler-Lagrange and state equations constitutes a two-
point boundary value problem and not an initial value
problem. Hence causality is not a concern, and the so-
lutions in the above extension of D′

pw reg will not solve the
problem. The way out is to enlarge the set of distributions
in the nonstandard sense. Indeed, Todorov (1990) proved
the existence of a nonstandard function ∗δ ∈ ∗C∞

0 , such
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that for all φ ∈ C0

∫

∗R

∗δ(x) ∗φ(x) dx = φ(0).

This means that pointwise evaluation of a generalized
distribution is possible. The next section uses some notions
of non-standard analysis, see Goldblatt (1998). Essentially,
just as Cantor’s description of the reals is done by consid-
ering equivalence classes of Cauchy sequences of rationals,
the hyperreals or non-standard reals are definable as equiv-
alence classes (under a different equivalence relation) of
sequences of reals. A sequence in RN will be denoted by
{rn}n or {rn}.

4. KRYLOV SPACE

We review the formal construction in Hyun and Verriest
(2017).

4.1 Krylov Hyperreals

The set of hyperreals, ∗R, defined in NSA is too large to
be easily manageable. The redundancy of infinitesimals
prevents the space from having a constructive property
such as having a countable basis generating the hyperreals
as a vector space over a field, R. Therefore, we construct
a countably infinite basis, which generates a reduced
extension of the reals, denoted as K.

Definition 1: Let α > 1. A sequence 〈rn〉 is called a Ki-
sequence if there exists s ∈ R such that rn = ( 1

αin )s for all
n ∈ N.
This geometric form of the sequence is reminiscent of linear
algebra where it would be called a Krylov sequence. We’ll
denote it by 〈

1
αi ; s〉. A set {x ∈ R |x is a Ki−sequence} is

called Ki space. Thus x ∈ Ki means there exists s ∈ R
such that x = 〈

1
αi ; s〉.

Ki is a one-dimensional vector space over R with property

K0 = R, Ki ⊂ hal(0), ∀i ∈ N \ {0},

where hal(0) = { b ∈
∗R|b is infinitesimal } is the halo of

zero, as defined in NSA. A convenient basis for Ki is the
element ei =

〈

( 1
α
)i; 1

〉

. With the product defined above,
we have ei · ej = ei+j for all i, j ∈ Z. With addition, the

set KN = {x ∈ ∗R |x =
∑N

i=0 siei, {sn}
N
i=0 ⊂ R } is the

direct sum vector space ⊕N
i=0Ki with basis {ei}

N
i=0.

The set K = {x ∈ ∗R |x =
∑∞

i=0 siei, {sn}
∞
i=0 ∈ ℓ1 }

is called the Krylov hyperreal space. In fact K is also
a commutative ring, and the representation of x∗ ∈ K
with coordinates si is unique up to equivalence in ∗R.
There are elements in the hyperreal space that are not
elements of K. However, the Krylov space is large enough
to contain the reals and the infinitesimals. Given t∗ ∈ K
with representation {si}i ∈ ℓ1, we shall refer to s0 as the
sensible time of t∗, and sk, k > 0 as the insensible time of
t∗ with 1/αk as convergence rate.

4.2 Krylov Functions

Definition 2: A hyperreal function is a mapping F :
∗R → ∗R such that there exists a sequence {fn}n ⊂ RN an

t∗ ∈ ∗R and σt∗F
def
= 〈fn(tn)〉.

The restriction of F to the Krylov space K is called a
Krylov function. We start with sequences of smooth real

valued functions of the form 〈h, Sαh, S
2
αh, . . .〉 denoted

as 〈Sα : h〉, where h : R → R and Sα is the scaling
operator, σt(Sαx) = σαtx, and take the closure under
componentwise addition and multiplication

〈Sα; f〉+ 〈Sβ ; g〉= 〈f + g, Sαf + Sβg, S
2
αf + S2

βg, . . . 〉

〈Sα; f〉 · 〈Sβ , g〉= 〈fg, Sαf · Sβg, S
2
αf · S2

βg, . . . 〉.

Let σt be the evaluation functional on the class of regular
functions ∀t ∈ R : σth = h(t). The evaluation of a
hyperfunction 〈hn〉 at t∗ = 〈γ; t〉 ∈ ∗R is the hyperreal
〈h1(t), h2(γt), h3(γ

2t), . . .〉 The Krylov space is the space of
(equivalence classes) of such functions. A regular function,
h is embedded in the space generated by Krylov sequences
as the class of 〈1;h〉. The idea is that a function of the
form f∗ = 〈1; f〉+ 〈Sα; g〉 is a hyperfunction converging to
f in a precise way determined by the rate α and shape g.
The above defined hyperreal valued function is said to be
in the halo of f , while f is the shadow of f∗. More gen-
erally, we have σ〈β;t〉 〈f0, f1, f2, . . .〉 = 〈f0(t), f1(βt), . . .〉,
and σ〈1;t0〉+〈β;s0〉 〈1; f〉 = 〈f(t0 + s0), f(t0 + βs0), f(t0 +

βs20), . . .〉. The right limit of a regular function at t0 is the
shadow, f(t0+), if s0 > 0 and 0 < β < 1.

Consider now u ∈ C1(−1, 1)), with limt→−1 u(t) = 0,
limt→1 u(t) = 1, and extend it to a C0(R) function, h,
with h(t) = 0 for t < −1 and h(t) = 1 for t > 1.
Then h is a model for the Heaviside function, which
is defined as the generalized function Hh = 〈Sα;h〉. If
t ∈ R, then Hh(t) is the classical Heaviside function for
all h. Evaluation at the infinitesimal time 〈

1
α
; t〉 gives

σ〈 1

α
;t〉〈Sα;h〉 = 〈h(t), . . . , h(t), . . .〉 = 〈1;h(t)〉. On a micro-

scopic scale, there are infinitely many Heaviside functions.
Consequently, H2

h and Hh differ in insensible time, as they
respectively give h2(t) and h(t).
Similarly we can define H+

h by letting h(t) = 0 for t ∈

(−1, 0] and h(t) = 1 for t ∈ [0, 1). The derivative of H+
h is

represented by the sequence DH+
h = 〈α; 1〉〈Sα;Dh〉. With

Dh(t) = h(t) − h(t − 1), we see that in turn this can be
made continuous by a regularization δreg = 〈Sα;Dh〉reg =
〈α, 1〉〈Sα;h1〉 with h1 = Sα(I − T−α)h. In turn, this gives
for Dδreg the k-th term in the sequence DSαk(I −Tα)h =
αkSαk

(I−T−α)Dh. Taking again the regularization Dh =
Sα(I − t−α)h, we find (Dδreg)reg = 〈α2; 1〉〈Sα;Sα(I −

T−α2)(I − T−α)h〉. It is easily shown by induction that
the regularized ℓ-th derivative of the delta corresponds to

the generalized function 〈αℓ; 1〉〈Sα;Sαℓ

∏ℓ
i=1(I −T−αi)h〉.

Alternatively, let u ∈ C∞((0, 1)) with again u(1−) = 1
and u(0+) = 0, and extend it to a Heaviside function. All
derivatives are defined and regularization is no longer nec-
essary. In this case the ℓ-th derivative of Hh is represented
by 〈αℓ; 1〉〈Sαℓ ;Dℓh〉. Its evaluation at ∗t = 〈

1
αk ; t〉 is the

smooth function h(t) at level k = ℓ, and 0 for the other
cases.

5. MAIN RESULTS

Let fg ∈ C0 and F (t) = f(t) + g(t)H(t). The product
F (t)δ is not defined as a Schwartzian distribution, but does
in the Krylov sense.

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



Definition 3 The impulsivity of a generalized func-
tion ∗f at a point t0 ∈ R is given by the integral
∫ t0+〈 1

α
;1〉

t0−〈 1

α
;1〉

∗f(t) dt = 〈. . . , fk(
t−t0
αk ) dt, . . .〉.

For δ represented by 〈α; 1〉〈Sαh
′
〉, we find

∫ 〈 1

α
;1〉

〈 1

α
;1〉

∗δ(t) dt=

〈

. . . ,

∫ 1

αk

− 1

αk

αkh′(αkt)dt, . . .

〉

= h(1)− h(−1) = 1.

It is well known that f is continuous at 0, then f(t)δ(t) =
f(0)δ(t) for any representation of the Heaviside function.

Theorem 1 The impulsivity of f(t)δh(t) with f(t) ∈ C0
pw

is given by 〈f〉0
def
= 1

2 (f(0−) + f(0+)).

Proof: It holds that there exists g and k ∈ C0 and some
0 < ǫ ∈ R such that f(t) = g(t) + k(t)Hh(t). Thus the
impulsivity of f(t)δh(t) follows from

∫ 〈 1

α
;1〉

〈 1

α
;1〉

(g(t) + k(t)Hh(t))δh(t) dt

=

〈

. . . ,

∫ 1

αk

− 1

αk

(

g(t) + k(t)h(αkt)
)

αkh′(αkt)dt, . . .

〉

= g(0) +
1

2
k(0)(h2(1)− h2(−1)) = 〈f〉0.

Corollary On the sensible time scale f(t)δ(t) with f ∈

C0
pw is equivalent to 〈f〉0δ(t), and using the shift property

f(t)δ(t− t0) = 〈f〉t0δ(t− t0).

If x ∈ C1 with x(t0) = 0 and ẋ(t0) 6= 0, then it is known

that δ(x(t) = δ(t−t0)
|ẋ(t0)|

. The following theorem generalizes.

Theorem 2 Let x ∈ C1
pw(O(t0)) where O(t0) is a neigh-

borhood of t0, where x(t0) = 0. Let x be transversal, i.e.,

ẋ(0−)ẋ(0+) > 0, then δ(x(t)) ≈ δ(t−t0)
〈|ẋ|〉t0

.

Here, 〈x〉t+0 is the average 1
2 (x(t0−) + x(t0+)).

Proof: Use the fact that x(t) = (t − t0)(x−(t)H(−t) +
x+(t)H(t)) in a sufficiently small neighborhood of t0 where
x± ∈ C1 have the same sign. ✷

The solution of the ODE ẋ(t) = Ax(t)δ(t) is constant
for t > 0 and t < 0. Its behavior at t = 0 is retrieved
from the sequence of equations ẋk(t) = Aαkh′(αktxk(t)),
and leads to x(0+) = eAx(0−), which is consistent with
Nedeljkov and Oberguggenberger (2012), but differs from
Trenn (2009).

Theorem 3 The standard optimal control problem
sketched in the Introduction, with discontinuous cost rate
and dynamics w.r.t. x has a jump in the costates when the
interface is crossed given by

∆λ = −
(∆L+ 〈λ〉∆f)m

〈|m⊤f |〉
, m =

(

∂g

∂x

)⊤

.

Proof: The Euler-Lagrange equation for the optimal con-
trol problem is given by

λ̇ = −
∂L(x, u)

∂x

⊤

− λ⊤f(x, u).

Since L and f are discontinuous when g(x) = 0, the right
hand side of the EL is singular (as function of x). Hence
also the left hand side must have a singularity. However,
the latter is with respect to the time t. It is therefore neces-
sary to express δ(g(x)) in terms of a delta with respect to
time. But precisely because of this dependency, x, and thus
also g(x) have a discontinuous derivative when g(x) = 0.

Thus Theorem 2 applies. Likewise, the singularity in ∂f
∂x

is

multiplied by λ⊤ which has a jump when g(x) = 0. Here
Theorem 1 applies. Combining and integrating over time
in an infinitesimal interval across the discontinuity yields
the result. ✷
The traditional ”two-domain” method of solving the prob-
lem, keeping the cross-over point and time as parameters
to be optimized, is now replaced by a non-linear equation.
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Abstract:
The quantification of controllability has gained renewed interest in the context of large, complex
network dynamical systems. In some application areas such as computational neuroscience, there
is a large interest in modal controllability, which describes the ability of an input to control the
modes of a system. In case of a linear system, the modes of the system are given by the left
eigenvectors associated with the system matrix. In this work, we identify mode specific and
gross metrics for modal controllability for discrete linear time invariant systems. Our metrics
are based on energy requirements to move along a given mode and find applications in problems
involving selection of driver nodes for minimizing control effort along particular modes of the
network. We conclude by studying the properties of the metrics.

Keywords: modal controllability, network control, large scale systems, control energy

1. INTRODUCTION

In recent years, with the development of parallel and
decentralized algorithms, there has been a renewed interest
in the study of network systems. Such systems appear
frequently in the analysis of power grids, infrastructure
networks, brain networks, and even social networks. In
systems of this scale, simply answering the question of
whether a system is controllable or not is not sufficient,
as the energy requirements to control such a system can
in some cases be impractical, especially when the size of
the network is large. To analyze systems from an energy
perspective, several measures have been proposed based
on spectral properties of controllability gramian, such as
minimum eigenvalue(Yan et al. (2012); Pasqualetti et al.
(2014)), trace of inverse (Summers et al. (2016)), trace
(Summers and Lygeros (2014)), and determinant(Cortesi
et al. (2014)) of controllability gramian.

Modal analysis continues to be a strong tool to analyze
linear systems. Classically, the study of controllability
from a modal perspective involves the identification of
controllable and uncontrollable modes. There are two main
motivations to consider a modal analysis for large network
systems. Firstly, in large networks, the system matrices
may not be well-conditioned; therefore, it may be diffi-
cult to analyze the system as a whole. Such systems can
be divided into modes, and each mode can be analyzed
separately. Since each mode has unique conditioning, it
is possible to perform a modal analysis. Secondly, in large
systems, it is possible that one may be interested in partic-
ular modes of the system(for example, the unstable modes
or the mode associated with the dominant eigenvalue) and
not actually interested in the behavior of the entire system.

The overwhelming majority of literature on this topic
emphasizes the controllability/lack thereof for the system.
Notably, the tests for controllability (Hespanha (2018)),
such as Popov-Belevitch-Hautus (PBH) test and Eigen-
vector test, offer a qualitative measure of controllability.
Here, we focus on a quantitative measure for modal con-
trollability, which is important in practical situations due
to the limitations of physical components in large scale
networks.

To our knowledge, there are two metrics proposed in the
literature to measure modal controllability. In Hamdan
and Nayfeh (1989), it is proposed that the the cosine of
the angle between a mode and the input vector be used
as a metric. The argument to use this metric is based on
the fact that an increase in the mentioned angle from 0
to 90 degrees leads to a decrease in controllability, with
the system losing controllability at an angle of 90 degrees.
The authors claims that the use of cosine of the angle is
seen as an extension to the PBH test. While this metric
accounts for the variance in modal controllability due to
the angle between the mode and the input vector, it does
not account for the eigenvalue associated with the mode.
Due to this, this metric is unable to deal with the analysis
of a set of modes. A more recent metric (Pasqualetti et al.
(2014)) is based on the ability to maximize the reachability
of difficult to reach states. This metric is based on a
heuristic and has gained some traction in neuroscience
based applications( Gu et al. (2015)).

In this abstract, we define a new metric for modal control-
lability based on optimal energy requirements to control
a system along with a particular mode. We analyze this
metric and identify the driver nodes in a network that
minimize the energy requirements to move along a mode.
We also identify the modes that are the easiest to control
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from a given set of driver nodes. Unlike previous metrics,
our metric also has a normalization factor that allows the
comparison of energy requirements across modes.

The paper is organized as follows. We discuss some pre-
liminary theory in Section 2. We propose our new metric
in Section 3. In Section 4, we analyze the metric and study
how it varies with varying system parameters. Finally, we
conclude in Section 5.

Notation: We denote the set of real numbers by R. Rn×m
denotes the set of matrices of dimension n ×m. For any
matrix A ∈ Rn×m, A′ ∈ Rm×n denotes the transpose of
matrix A. We also denote the jth column of A as aj . The
symbol 1n denotes a vector in Rn, with all entries as 1.
We define the norm of a vector v ∈ Rn as ‖v‖ =

√
v′v.

2. PRELIMINARIES

2.1 Linear Systems Theory

We represent a discrete linear time invariant system (D-
LTI system) by

x+ = Ax +Bu. (1)

where, x ∈ Rn represents the state of a system, A ∈ Rn×n
is the system matrix, and B ∈ Rn×m is termed as an input
matrix. u ∈ Rm is the control input.

In the special case of networked control systems, the input
matrix may be denoted by BK, whose columns correspond
to the canonical vectors associated with the input/driver
nodes in the network. Further, in network systems, the
matrix A represents the adjacency matrix of the network.

If the eigenvalues and both left and right eigenvectors of
A can be computed, they contain a lot of information
that describes the system in certain circumstances. For
example, we may be interested in the dominant eigenvalue,
and its associated eigenvector. In a case where the system
matrix A is doubly stochastic, the dominant mode is
along the vector 1n. Here, controlling the system along
this mode could be used to influence the average state
of all nodes. As discussed in Bullo (2022), such systems
appear in applications such as cyclic pursuit in robotic
networks, wireless sensing networks and animal flocking
behaviour analysis. For the purpose of modal analysis,
the eigenvalues for A must not only be distinct, but A
should also be well conditioned. For matrices which have
a mixture of both well conditioned and ill conditioned
eigenvalues, we limit our methods to the well conditioned
eigenvalues.

Assuming A is sufficiently well conditioned, and has dis-
tinct eigenvalues, we consider the left eigenvectors of A as
the modes of the system, similar to Hamdan and Nayfeh
(1989). To guarantee uniformity across modes, we scale
the left eigenvectors to ensure their norm is unity.

2.2 Controllability Gramian

The PBH test(Hespanha (2018)) provides a qualitative
result, i.e. it does not quantify the difficulty in controlling a
system. In large scale systems, a binary answer, of whether
or not the system is controllable, may not be sufficient as
there may be practical constraints on the input energy.

In literature, several metrics have been proposed based
on controllability gramian, to quantify the control energy
(Müller and Weber (1972); Cortesi et al. (2014)). For the
D-TI system described in Equation (1),the controllability
gramian is given by

Wc(T ) =
T∑
τ=0

AτBB′(A′)τ .

We note that the minimum energy required to drive a
linear system from the origin to a point xf , in time horizon
T is given by

E = x′fW
−1
c (T )xf ,

2.3 Modularity

In our work, we are concerned with the selection of the
set of best driver nodes to control a mode, and the set
of modes that are easiest to control from a set of inputs.
We formulate both problems as set function optimization
problems. In this regard, we define modular set function
as follows:
Definition 2.1 (Lovász (1983)). Let V be a set. A set
function f : 2V → R is said to be modular if and only if
for any subset S ⊆ V , it can be expressed as

f(S) = a(φ) +
∑
i∈S

a(i) (2)

for some weight function a : V → R and φ denoting the
null set.

Optimization problems involving the selection of a subset
S ⊆ V in order to maximize or minimize a modular
function can be solved via a sorting algorithm.

2.4 An extension to Cauchy Schwarz inequality

To motivate our arguments, we use an extension to Cauchy
Schwarz inequality.
Lemma 2.1. Consider a symmetric, positive definite
matrix Q ∈ Rn×n. For any x ∈ Rn, ‖x‖ = 1, we have

x′Qxx′Q−1x ≥ 1.

Proof. Since Q is positive definite and symmetric, it can be
diagonalized by an orthogonal matrix (Horn and Johnson
(2012)), i.e,

Q = P ′DP, and

Q−1 = P ′D−1P.

where P is orthogonal. Orthogonal matrices preserve
norms, so ‖Px‖ = 1. Let y = Px. The LHS of our
inequality is now reduced to

y′Dyy′D−1y =
n∑
i=0

diy
2
i

n∑
i=0

y2
i

di
,

where di is the ith diagonal element of D.
Since Q is positive definite, di > 0, and since ‖y‖2 = 1,∑n
i=1 y2

i = 1. Applying Cauchy-Schwarz,
n∑
i=0

diy
2
i

n∑
i=0

y2
i

di
≥

n∑
i=1

√
di√
di

y2
i = 1.
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3. PROPOSED METRIC FOR MODAL
CONTROLLABILITY

In this section, we propose modal controllability metrics
for D-LTI systems.
Theorem 3.1. Let us consider a discrete time LTI sys-
tem (1) and assume (A,B) is controllable. Let vi be a
left eigenvector of A, associated with the eigenvalue λi.
Let the optimal energy required to traverse one unit in the
direction of vi be Ei, for a time horizon t, starting from
the origin. Then,

Ei ≥

(
v′iBB

′vi
1− λ2(t+1)

i

1− λ2i

)−1
.

Proof. The optimal control energy for a system to reach
vi starting from the origin is given by

Ei = v′iW
−1
c (t)vi,

where Wc is the controllability gramian. Since (A,B) is
controllable, the controllability gramian is symmetric and
positive definite. By Lemma 2.1, we have.

Eiv
′
iWc(t)vi ≥ 1. (3)

The controllability gramian, for a time horizon t is given
by ,

Wc(t) =
t∑

k=0

AkBB′(A′)k.

Therefore,

v′iWc(t)vi = v′i

(
t∑

k=0

AkBB′(A′)k

)
vi

=
t∑

k=0

v′iA
kBB′(A′)kvi

= v′iBB
′vi

t∑
k=0

λ2ki .

The theorem follows from Equation (3) and the above
equation.

Based on this theorem, we define a metric for discrete time
systems. We consider the following metric Md

i to control
the ith mode from the given input matrix B, for a time
horizon t,

Md
i (t) =

(
v′iBB

′vi
1− λ2(t+1)

i

1− λ2i

)−1
.

We extend this metric to quantify the difficulty of control-
ling multiple modes as follows:
Corollary 3.1. For the setup described in Theorem 3.1,
we have ∑

i∈T
Ei ≥

∑
i∈T

(
v′iBB

′vi
1− λ2(t+1)

1− λ2i

)−1
.

The proof for this statement follows from the theorem,
by summing across modes. Subsequently, we define the
following metric across modes. For a given set of modes,
T and a time horizon t, we have,

Md(T , t) =

(∑
i∈T

1

Md
i (t)

)−1
.

In the limiting case, as t→∞, when A is stable, we have,∑
i∈T

Ei ≥
∑
i∈T

(
v′iBB

′vi
1

1− λ2i

)−1
,

where the inequality follows as finite horizon energy con-
trol is always higher than the infinite horizon case.

4. DISCUSSION

4.1 Factors affecting the metric

A lower bound for the energy required to control a mode
is inversely related to viBB

′vi. Since the eigenvector vi is
normalized, this term only depends on the magnitude of
the columns in the input matrix, and the angle between
the column of the input matrix and the eigenvector. This
is in line with the PBH test, as when the two vectors are
orthogonal, the system is uncontrollable.
Further, a key feature of our metric is the ability to
compare the ease of controlling a system across modes.
This allows us to study optimization problems where we
consider the optimization of the ease of control across a
range of modes. Specifically, in the discrete case, we note
that modes with eigenvalues closer to unity are easier to
control. This is in part due to the natural response of
the system. This result is consistent with the findings in
Lindmark and Altafini (2018) for the case of continuous
time systems.

4.2 Similarity to past metrics

In Hamdan and Nayfeh (1989), the cosine of the angle
between an input column and the modal vector is defined
as a metric. Our metric is strongly correlated with that
metric, but our metric has the added benefit of allowing
comparison across modes. Specifically, while considering
the modal controllability of the ith mode from the jth

input column, if we consider the metric in Hamdan and
Nayfeh (1989), it is given by cos(θ)ij . Whereas our metric
for controlling the ith mode from the jth input is :

Mi =
‖bj‖2 cos2(θ)ij

1− λ2i
,

where bj is the jth input, and λi is the eigenvalue associ-
ated with the ith mode.

4.3 Similarity to eigenvector centrality

We extend our ideas to linear network systems, by study-
ing the relationship between our metric and the eigen-
vector centrality measure. In network science, there are
several centrality measures (Bullo (2022)) such as degree,
pagerank, and eigenvector centrality among others. Specif-
ically we focus on the eigenvector centrality measure. The
eigenvector centrality measure computes the influence of a
node in a network. In practice, this centrality measure can
be represented by the entries of the dominant eigenvec-
tor of the adjacency matrix. Specifically, if the dominant
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eigenvalue is λ, and the associated eigenvector is v, the
centrality measure of the ith node is given by vi. In the case
of linear network systems, each column of the B matrix is a
canonical vector. Therefore, our metric for infinite horizon,
for the control of the dominant mode from the ith input
reduces to

Mdom =
v2
i

1− λ2
. (4)

We show that this is true for a 100 node Erdos-Renyi
random network (Erdos et al. (1960)), by plotting Mdom

against the eigenvector centrality in Fig. 1.
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Fig. 1. The eigenvector centrality is related to the metric
for the dominant mode for the ith node as input as
per Equation (4).

4.4 Modularity of the metrics

We now discuss the modularity properties of our proposed
metrics.
Theorem 4.1. For a given mode i, associated with the
eigenvector vi, the function

f(K) = viBKB
′
Kvi

1

1− λ2i
.

is modular in K.

Proof. Since each column in BK is a canonical vector of
dimension n, BKB

′
K =

∑
j∈K bjb

′
j , our function reduces

to

f(K) =
∑
j∈K

v′ibjb
′
jvi

1

1− λ2i
.

Using Definition 2.1, the function is modular in K.

4.5 The case of Complex Modes

In general the system matrix A may have both real and
complex eigenvalues and eigenvectors. Here, we briefly
discuss the equivalent theory for complex modes. Using
a similar line of arguments, and replacing the transpose
operation with the conjugate transpose operation, the
results and inequalities can be extended to modes with
both real and imaginary components. For D-LTI systems,

Md
i (t) =

(
v∗iBB

∗vi
1− |λi|2(t+1)

1− |λ2i |

)
.

5. CONCLUSION

We have considered the problem of modal controllability
for networked systems. We propose an energy related

metrics, for discrete LTI systems, which serves as a lower
bound for the control effort required to move along a given
mode. We analyze the metric by studying its relationship
with existing metrics and other centrality measures, show-
ing that it is closely related to the eigenvector centrality.
We also formulate two problems regarding the optimiza-
tion of the metrics, in an effort to minimize the control
effort required for the control of a network along particular
modes. Our approach to solve these problems are illus-
trated using a numerical example using the topology of a
power grid.
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Abstract: The study of Optimal Polynomial Approximants (OPAs) in weighted Dirichlet-type
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1. INTRODUCTION

In the last decade, there has been considerable mathemat-
ical literature produced about optimal polynomial approx-
imants in connection with Hilbert spaces of analytic func-
tions (of one or several variables) – Bénéteau and Centner
(2021); Bénéteau et al. (2013, 2018, 2016a); Sargent and
Sola (2020a,b) to name a few. Recall the Hardy space H2

is the space of functions f(z) =
∑∞

k=0 akz
k analytic in

D, the unit disk, such that ∥f∥2 =
∑∞

k=0 |ak|
2
< ∞. We

define an inner-product for H2 by ⟨f, g⟩ :=
∑∞

k=0 akbk,
where g(z) =

∑
k bkz

k. Given a nonzero function f ∈ H2

and n ∈ N, we define the nth optimal polynomial
approximant (OPA) of 1/f in H2 to be the polynomial
qn that minimizes ∥pf − 1∥ among all polynomials p of
degree at most n. While only presented here in terms
of the Hardy space, OPAs have undergone considerable
investigation in terms of Dirichlet-type Hilbert spaces.

Another related and highly studied idea are cyclic func-
tions Bénéteau et al. (2016b, 2013, 2015). A function
f ∈ H2 is cyclic if {pf : p ∈ C[z]} is dense in H2. It turns
out that a function f is cyclic if and only if the OPAs qn
of f satisfy ∥qnf − 1∥ → 0 as n → ∞. Thus, we can study
cyclic functions via OPAs and vice versa.

A strange occurrence in commutative functional analy-
sis in several variables is that while analogues of many
classical Hardy space results can be found, their proofs
often balloon in complexity or in the use of novel proof
techniques. One explanation can be found in Jury and
Martin (2020): with the Hardy space in one variable,

multiplication by z is the shift operator and is an isom-
etry. Moreover, every isometry is unitarily equivalent to a
direct sum of shifts and a unitary operator. However, the
natural multivariable generalization of the Hardy space is
the Drury-Arveson space, where the appropriate analogue
of the shift is the Arveson d-shift S := (S1, . . . , Sd) with
Sif = zif . Notably, the Arveson d-shift is no longer a
(row) isometry, but rather a (row) partial isometry, which
is the source of many defects moving from one to several
variables. In Jury and Martin (2020), the authors correctly
identify the spiritual successor of the Hardy space shift
in several variables: the left free shift on the full Fock
space. Their choice is justified by the strength of their
conclusions: multivariable generalizations of Hardy space
theorems that also persist under compression to commut-
ing variables.

Recall that C⟨x⟩ is the free algebra in d freely noncommut-
ing indeterminates. We make C⟨x⟩ into a pre-Hilbert space
by choosing the free monoid ⟨x⟩ to be an orthonormal
basis. That is, if w1 = xi1 . . . xin and w2 = xj1 . . . xjm ,
then ⟨w1, w2⟩ equals 1 if n = m and ik = jk, and it equals
0 otherwise. The full Fock space in d-letters Fd is the
completion of C⟨x⟩ with respect to this inner product. The
left creation operators L1, . . . , Ld are natural analogues
of the Hardy space shift in the sense that if f ∈ Fd, then
Ljf = xjf – naturally, we can also define the right creation
operators as Rjf = fxj . The left free shift is the tuple
L = (L1, . . . , Ld); L is a row isometry, and given any row
isometry, it is isomorphic to the direct sum of copies of L
and a row unitary. Moreover, it has been well established
in the noncommutative function theory literature Agler
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and McCarthy (2015); Popescu (2006, 2010); Jury et al.
(2021a,b) as well as in terms of noncommutative repro-
ducing kernel Hilbert spaces Ball et al. (2016) that Fd is
canonically isomorphic to the free Hardy space, H2(Bd

N)
of noncommutative or free holomorphic functions on a
certain noncommutative multivariable open unit ball, Bd

N.

With respect to generalizing OPAs to several variables, as
we see from above, the full Fock space is a more faithful
multivariable generalization of the Hardy space. Moreover,
the recent papers Jury et al. (2021a,b) fully characterize
cyclic functions in Fd. A function f ∈ Fd is cyclic (for
the left free shift) if its left polynomial multiples have
dense range in Fd if and only if f(X) is nonsingular for
all X in the row ball. That is, the function f has no
singularities in the unit ball, a condition that is reminiscent
of the situation in the classical Hardy space.

We now arrive at the notion of a noncommutative optimal
approximant: given nonzero f ∈ Fd and n ∈ N, the nth left
nc optimal polynomial approximant (nc OPA) of 1/f is the
free polynomial pn that minimizes the norm ∥pf − 1∥Fd

among all free polynomials p of degree at most n. Note
that in every practical sense, the theory of left nc OPAs is
identical to the theory of right nc OPAs. Taking advantage
of the theory of reproducing kernels for NC functions, we
arrive at the following natural generalization of a classical
result.

Conjecture 1. Suppose f is a free polynomial that is cyclic
for the left free shift. If pn is the (left) nc OPA of 1/f and
pn(Λ) = 0 for some matrix tuple Λ = (Λ1, . . . ,Λd), then
∥Λ1Λ1

∗ + · · · + ΛdΛd
∗∥ > 1.

At the time of writing this abstract, the conjecture above
remains open. However, the novel techniques used in
investigating the conjecture have already borne fruit in
the commutative setting:

Theorem 2. Suppose f is a commutative polynomial that
is cyclic for the Drury-Arveson d-shift. If qn is the nth OPA
of 1/f in the Drury-Arveson space, then qn has no zeros
in the row ball.

That is, the row ball version of the Shanks Conjecture
holds.

Noncommutative arguments can often be obtained from
single variable proofs by generalizing the proof with “one
hand tied behind your back,” i.e. making no use of com-
mutativity. These nc arguments often generalize readily to
several variables. One distinct occasion where this fails,
is when the commutative argument takes advantage of
factoring, since in the noncommutative setting factoring
is often not possible e.g. x1x2x1 + x2 is irreducible when
x1 and x2 do not commute. However, the resolution to this
problem is something called stable associativity – see Cohn
(2006). Two free polynomials f and g are stably associ-
ated, if there exist m ∈ Z+ and P,Q ∈ GLm+1(C⟨x⟩) such
that

P (f ⊕ Im) = (g ⊕ Im)Q.
For example, xy and yx are stably associated. While stable
associativity seems like an inconvenience, it does have
advantages: every atomic (cannot be decomposed as a
nontrivial product of free polynomials) free polynomial f
with f(0) = I is stably associated to an irreducible monic
linear pencil L. This is incredibly appealing, since monic

linear pencils are remarkably well-studied Klep and Volčič
(2017); Klep et al. (2016); Helton et al. (2017). If we are
able to extend our notions of nc OPAs to matrix valued
functions, then every problem can be stated in terms of an
affine-linear (matrix-valued) polynomial. Thus, we are led
to a pair of questions.

Problem 1. What properties of nc OPAs are preserved
under stable associativity?

Problem 2. Can nc OPAs be generalized to matrix-valued
free polynomials? If so, what properties are preserved
under stable associativity?
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126.
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Abstract: A recent result in (Incremona et al., 2022) put forward an architecture of internal model based
controllers, in which the stabilizer can be fully separated from the internal model. In this paper we
propose a parametrized implementation of this controller, which isolates a parameter shaping properties
of the exosystem. We show that with this implementation the closed-loop dynamics have an affine
dependence on the parameter. As such, the closed-loop system remains stable even under arbitrary
variations of the parameter, as long as it remains bounded. We demonstrate that this property is beneficial
for adding an adaptation mechanism to adjust parameters of the internal model.

Keywords: Regulator problem, Internal Model Principle, adaptive control.

1. INTRODUCTION

Consider the plant

Px.t/ D Ax.t/ C Bd.t/ C Bu.t/; (1)

where x.t/ 2 R
n is its measurable state, u.t/ 2 R

m is a control
input, and d.t/ 2 R

m is a load (matched) disturbance. We
assume that the disturbance is generated by the exosystem

�

Pxex.t/ D Aexxex.t/; xex.0/ D xex,0

d.t/ D Cexxex.t/
(2)

for known Aex, assumed to possess no open left half-place
eigenvalues, and Cex and an unknown initial condition xex,0.
The control goal is to have an asymptotic rejection of every
disturbances of this class, i.e. limt!1 x.t/ D 0. This is a
particular case of the classical regulator problem, see (Saberi
et al., 2000; Isidori, 2017) and the references therein.

The regulator problem can be solved via the use of the internal
model principle of Francis and Wonham (1975). A conventional
modus operandi is to transplant a model of exosystem (2),
known as an internal model, into the feedback loop and then
stabilize the augmented system, comprising both the plant and
the internal model. The internal model needs to have the eigen-
values of Aex as its poles, but the choice of its other properties
is more flexible and can be adjusted to a concrete architecture.
This procedure is well understood in the linear case, even for a
more general setup than that described above.

Arguably, one of main shortcomings of the design procedure
outlined above is the need to design the stabilizing part of the
controller for augmented dynamics. This is not a serious issue
if (2) is low dimensional, but might become a problem for

? Supported by the Israel Science Foundation (grant no. 3177/21) and Sakranut

Graydah.

more complex exosystems, like those used in repetitive control
(Longman, 2010). Moreover, changes in parameters of the in-
ternal model necessitate a redesign of the stabilizer. This could
substantially complicate the employment of various adaptation
methods and deter from the use of high-order models, which
could be useful in reducing the sensitivity to small deviations
of d from its modeled version (Singhose, 2009).

An alternative approach to incorporate internal models into the
feedback loop was put forward in (Incremona et al., 2022). Its
essence is the use of an “internal model compensation” element
in addition to the internal model itself, inspired by the delay
compensation idea in (Mirkin, 2020) for repetitive control. This
addition enables a complete separation of the stabilizer, which
should be designed only for the unaltered plant (1), from the
internal model.

Circumventing the need to deal with augmented dynamics sim-
plifies the design of the stabilizer, it can be a static state feed-
back in the studied case. Yet the dependence of the resulting
controller on parameters of the exosystem is still complex,
which hampers adjusting those parameters. The goal of this
paper is to propose an alternative implementation of the con-
troller of (Incremona et al., 2022), in which parameters of the
exosystem that shape its properties, like oscillation frequen-
cies, can be isolated. The proposed architecture simplifies the
controller implementation and, more importantly, substantially
simplifies the dependence of the closed-loop dynamics on those
parameters. Specifically, we show that the dependence of the
closed-loop system on those parameters is affine. As a result,
the closed-loop stability is maintained even if parameters of the
internal model are tuned, provided they remain bounded.

This result paves the way to incorporating adaptation mecha-
nisms, whose purpose is to tune the model to uncertain / chang-
ing exosystems. We demonstrate the usefulness of the proposed
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architecture by presenting an adaptation mechanism, which en-
sures the global convergence and asymptotic attenuation of a
given class of disturbances under arbitrary unknown parameters
of the disturbance model.

Notation Given a full column rank matrix M 2 R
n�m, its left

inverse is denoted as M # 2 R
m�n, so M #M D I . We use the

compact notation
�

A B

C D

�

´ D C C.sI � A/�1B

for transfer functions in terms of their state-space realizations.
The lower linear-fractional transformation

Fl

��

˚11 ˚12

˚21 ˚22

�

; ˝

�

´ ˚11 C ˚12˝.I � ˚22˝/�1˚21;

see (Zhou et al., 1996, Ch. 10) for its properties.

2. PARAMETRIZATION OF THE INTERNAL MODEL

We start with fixing the structure of the control law in the form

u D M.v C Rstabx/: (3)

Here M is an internal model, whose poles coincide with those
of exosystem (2), Rstab is a stabilizer, whose purpose is natu-
rally to stabilize the closed-loop system, and v is a signal that
can be used to introduce a reference signal. We assume that

A1: M.1/ D I and M �1 2 H1,

which is required by the design procedure of (Incremona et al.,
2022) and entails no loss of generality (it does not affect poles).

A key component of the proposed approach is a special param-
etrization of the internal model in the form

M �1.s/ D

�

A0 B0

C01 I

�

C �

�

A0 B0

C02 0

�

D Fl

0

@

2

4

A0 B0 0

C01 I I
C02 0 0

3

5; �

1

A (4)

for a real parameter � and a Hurwitz A0. In the SISO case
this implies that we assume that the denominator of M.s/ is an
affine function of parameters and its numerator is Hurwitz and
does not depend on these parameters. In general, � shapes the
spectrum of Aex in (2). To see that, note that

M.s/ D Fl

0

@

2

4

A0 � B0C01 B0 �B0

�C01 I �I
C02 0 0

3

5; �

1

A

D

�

A0 � B0.C01 C �C02/ B0

�C01 � �C02 I

�

;

which follows from (Zhou et al., 1996, Lem. 10.3). This natu-
rally leads to the assumption that

A2: Aex D A0 � B0.C01 C �C02/ and Cex D �C01 � �C02,

which shall guarantee that the internal model solves the regula-
tor problem.

Representation (4) is related to the representation of an exosys-
tem in (Nikiforov, 1997). A difference is that we assume this
form of the internal model, whereas it was derived in (Niki-
forov, 1997, Lem. 3.1) as an asymptotic model for a general
SISO exosystem.

To provide a flavor of this structure, consider a couple of simple
examples. First, if d.t/ D a sin.!tC�/ with a known frequency
! > 0 and unknown amplitude a and phase �, then a general
internal model satisfying A1 is M.s/ D �.s/=.s2 C !2/ for an
arbitrary second-order Hurwitz and monic polynomial �.s/. In
this case

M �1.s/ D
s2

�.s/
C

�

�.s/
D Fl

��

s2=�.s/ 1
1=�.s/ 0

�

; �

�

(5)

under � D !2.

The case of two harmonics, say with frequencies !1 > 0 and
!2 > 0, is perhaps less obvious. For example, the sum of two
harmonic oscillators as above does not fit into (4), because the
parameters (frequencies) affect its numerator as well. But it is
not hard to see that M.s/ D �.s/=..s2 C !2

1 /.s2 C !2
2 // for an

arbitrary fourth-order Hurwitz and monic �.s/ is an admissible
choice. It corresponds to

M �1.s/ D
s4

�.s/
C

.!2
1 C !2

2/s2 C !2
1!2

2

�.s/

D Fl

0

@

2

4

s4=�.s/ 1

s2=�.s/ 0
1=�.s/ 0

3

5 ; �

1

A

under � D
�

!2
1 C !2

2 !2
1!2

2

�

, which is in a bijective relation

with !2
1 and !2

2 .

3. MAIN RESULTS

Given any internal model M satisfying A1, the procedure of
(Incremona et al., 2022) is to select the stabilizer of the form

Rstab D QRstab � �;

where the “internal model compensation” � is any stable
system such that

� .s/.sI � A/�1B D I � M �1.s/

and QRstab is any controller stabilizing the (non-augmented) plant
(1). Possible choices are

� .s/ D .I � M �1.s//.B#s � B#A/; (6)

where B# is a left inverse of B, and

QRstab D K;

where K 2 R
m�n is such that A C BK is Hurwitz (the full

column rank of B and stabilizability of .A; B/ are naturally
assumed). This yields the following form of the control law (3):

u D M.v C .K � � /x/: (7)

Controller (7) involves two dynamic elements, the internal
model M and the internal model compensator � . They both
have a complex dependence on the model parameter �, which
hampers studying the effect of this parameter on the closed-loop
dynamics. So our first goal is to present (7) in an alternative
form, in which the parameter � is isolated. This is done by the
result below, whose proof is omitted.

Proposition 1. The controller R W .v; x/ 7! u in (7) can be
implemented as R.s/ D Fl.	; �/, see Fig. 1(a), where

	.s/ D

2

4

A0 � B0C01 B0 BK �B0

�C01 I K C C01B0B# �I

C02 0 �C02B0B# 0

3

5 (8)

and BK ´ B0B#.A C BK/ � .A0 � B0C01/B0B#.
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Fig. 1. Implementation of the controller R W .v; x/ 7! u

Plugging this controller into the plant dynamics (1), we have
the following expression for the resulting closed-loop system
(the proof is also omitted).

Proposition 2. The closed-loop system T W .v; d/ 7! .x; u/ is

T D Tv

�

I M �1
�

�

�

0 0
0 I

�

; (9)

where

Tv.s/ D

2

4

A C BK B

I 0
K I

3

5 :

Some remarks are in order.

� The effect of the signal v on the closed-loop system, which
is Tv W v 7! .x; u/, is independent of the internal model
and its shaping parameter �. Thus, consistently with the
result of (Incremona et al., 2022), we can design v as if no
internal model was present in the loop. This could simplify
tracking design, as well as facilitates designing an external
loop, which may be helpful to handle an unmodeled part
of d .

� Straightforward algebra, together with A2, yields that the
signal d0 D M �1d satisfies

�

Px0.t/ D A0x0.t/; x0.0/ D xex,0

d0.t/ D Cexx0.t/:
(10)

This is an exponentially decaying function. The stability
of Tv implies then that the effect of the disturbance, at
least of its part modeled by (2), decays in steady state.
Thus, if A2 holds, i.e. if the internal model M agrees with
the exosystem, then the regulator problem is solved in the
sense that

lim
t!1

x.t/ D 0 and lim
t!1

.u.t/ C d.t// D 0:

4. ADAPTATION MECHANISM FOR UNKNOWN �

Advantages of the proposed architecture are even sharper in
the case of a varying �. Changing one or several parameters
in conventional internal model configurations might result in
a need to redesign the stabilizer and could thus substantially
complicate the analysis. Yet changing � in Fig. 1(a) results in
the very same closed-loop system as in (9), just with a varying
� affecting affinely M �1 in (4). And the closed-loop system is
stable as long as � remains bounded. This property paves the
way to the design of globally converging adaptation algorithms,
in which � in the internal model is adjusted to match unknown
and possibly varying parameters of the exosystem.

Specifically, assume that � is constant, but unknown. Denote

by O� its estimate, to be defined later on. In this case instead
of the controller in Fig. 1(a) we implement that in Fig. 1(b), i.e.

just replace � with its estimate. The following result can be
formulated.

Proposition 3. Introduce the signal e.t/ ´ x.t/ � xv.t/, where

Pxv.t/ D .A C BK/xv.t/ C Bv.t/;

and let P D P 0 > 0 satisfy .A C BK/0P C P.A C BK/ < 0 (it
exists because A C BK is Hurwitz). The adaptation law

PO�.t/ D B 0P e.t/� 0.t/; O�.0/ D O�0 (11)

where � is the second output of ˚ in Fig. 1(b), guarantees
the global boundedness of all signals in the system and the
asymptotic regulation in the sense limt!1 e.t/ D 0.

Proof (outline). A key observation, which can be shown by
straightforward algebra, is that the closed-loop plant satisfies

Px.t/ D .A C BK/x.t/ C Bv.t/ C Bd0.t/ C B Q�.t/�.t/;

where Q�.t/ ´ � � O�.t/ is the parameter mismatch and d0

satisfies (10). Hence,

Pe.t/ D .A C BK/e.t/ C Bd0.t/ C B Q�.t/�.t/

is independent of v. Because d0 is exponentially decaying and
independent of u, it can be excluded from the stability analysis.
Consider the Lyapunov candidate

V.t/ D e0.t/P e.t/ C tr. Q�.t/0 Q�.t//

for which, taking into account that PQ� D �
PO�,

PV .t/ D �e0.t/Qe.t/ � 2 tr. Q�0.t/.
PO�.t/ � B 0P e.t/� 0.t///:

where Q D �.ACBK/0P �P.ACBK/ > 0. Hence, (11) yields
PV .t/ D �e0.t/Qe.t/ � 0. The result follows then by standard

adaptive control arguments, like those in (Lavretsky and Wise,
2013, Ch. 9). �

4.1 Illustrative example

Consider the plant with

A D

�

0 1
0 0

�

and B D

�

0
1

�

and d.t/ D 0:5 sin.!t/. We model this disturbance by (5) with

the Butterworth �.s/ D s2 C
p

2s C 1. The state-feedback gain

K D
�

�1 �2
�

;

assigning both eigenvalues of A C BK to �1. We choose the
the unit step v.t/. Finally, in the adaptation law (11) we select
P D 75

�

3 1
1 1

�

, which is the solution to the Lyapunov equation
.A C BK/0P C P.A C BK/ D �150I < 0.

We simulate the resulted closed-loop system for ! switching
between 1=3 and 5=3 every 40 time units. The estimated pa-
rameter O�.t/ D O!2.t/ is shown in Fig. 2(a). Note that it might
take (nonphysical) negative values during transients. To prevent
this, the adaptation law (11) has to be modified, for example in
line with the discussion in (Goodwin and Mayne, 1987). But
it eventually always converges to the true value of � in this
example. The first component of the state, x1.t/, is presented in
Fig. 2(b). Its steady state limt!1 x1.t/ D 1 despite harmonic
disturbances, which is exactly why we introduced the internal
model to the controller. The control signal, shown in Fig. 2(c),
expectably converges to �d.t/, which is required to cancel the
effect of the load disturbance.
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(a) estimated disturbance parameter (actual � is shown by the thin red line)
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(b) plant output
u.t/

t

�
1

2

0

1

2

(c) control signal (the additive inverse of d.t/ is shown by the thin red line)

Fig. 2. Simulation results
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Abstract: The adverse effect of increasing penetration of distributed energy resources has
resulted in increased vulnerabilities to resilience, defined as the ability of the grid to preserve
the original properties under disruptive scenarios which were unforeseen in the traditional
power grid. Hence it necessitates the development of accurate and reliable resilience metrics
to have deeper insight under any disturbance resulting in modification of structural properties.
Especially, considering the critical role of local structure and its inherent underlying geometry
makes the impact analysis more challenging. In view of this, the proposed Persistent homology-
based resilience enhancement (PHRE) technique utilizes the concept of Topological Data
Analysis, particularly Betti numbers (identifying the most vulnerable buses) and persistent
homology, extracting the longer-lasting topological features of the graphs through the network
filtration at various spatial resolutions characterizing the structural functionality of the network.
The proposed PHRE technique is validated using a benchmark system.

Keywords: Betti-number, Grid instability, Persistent homology, Topological analysis

1. INTRODUCTION

The resilience of the power grid Tajer et al. (2021) is re-
ferred to as the quantification of the ability of the grid net-
work to maintain its functions under component failures
from random errors or external causes. During the design
of traditional power grids, the unforeseen vulnerabilities
arising from the increasing penetration of renewable en-
ergy generations and distributed energy resources were
not considered. Hence with the challenging assessment of
grid organization, reliable resilience metrices are necessary
for the energy systems under various disruptive scenarios,
including component failure, various attacks, or natural
disasters.

Understanding the structural properties of power networks
under disruptive scenarios gives profound insights into
their vulnerability. The most explored characteristics of
power grid resilience are node degree distribution and
mean degree, which are local properties Cuadra et al.
(2015) investigated at the level of individual nodes and
edges. Incorporating electrical engineering concepts like
impedances and power flows Zhu et al. (2014) into the
graph, particularly at the local level, then analyzing their
impact on grid functionality is a further difficult endeavor.
Recent studies Dey et al. (2017), Schultz et al. (2014)
suggest that the power grid robustness is associated with
its geometry through the network motifs, which are the
multi-node sub-graph patterns. However, motifs are inef-
ficient for power networks due to limited applicability to
unweighted topological graphs that fail to reflect informa-
tion about power grid functionality Sánchez-Garćıa et al.
(2014). Hence the emerging technique called Topological

Data Analysis (TDA) Patania et al. (2017), particularly,
Persistent Homology (PH) Otter et al. (2017), applicable
for weighted topological graphs is explored for the grid
analysis since its flexibility of integrating with machine
learning approaches.

The extended abstract proposes analysis of the power
system resilience through a Persistent Homology-based
Resilience Enhancement (PHRE) technique. Network ge-
ometry has characterised its structural functionality, and
the system’s ability to preserve the original network prop-
erties for a longer time during disruptive scenarios is en-
hanced through the PHRE technique for maintaining the
resilience standard. The number of one-dimensional holes
or the topological loops is identified as the resilience index.
The healthier system reports a higher number of holes,
and the number drops down drastically for the cascade
failures. The PHRE approach analyses the cascade failures
triggered by various causes such as voltage instability,
overloading, etc., as it is purely based on the network
topology and characterizes the functional information of
the grid through its underlying geometry.

The extended abstract discusses the main idea of PHRE
technique and the representative case study illustrating
the implementation on the benchmark IEEE 30 bus system
for validating the proposed approach.

2. TOPOLOGICAL DATA ANALYSIS (TDA) AND
PERSISTENT HOMOLOGY (PH)

TDA combines various fields, including algebraic topol-
ogy, data analysis, computational geometry, and statistics.
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TDA aims to gain deeper insights into the qualitative
characteristics of the data by utilizing the results obtained
from its geometry and topology. It is appealing approach
for the complex network functionality analysis through
some crucial features unveiling the component interactions
at multi-scale. These qualitative features are identified
through one of the TDA techniques called PH.

PH computes topological features at various spatial res-
olutions. Consider a weighted graph G = (V,E,w) with
V , E, and w denoting the set of vertices, set of edges,
and vector of edge weights, respectively. To find the PH
of G, the hierarchically nested sequence of subgraphs
G1 ⊆ G2 ⊆ · · ·Gn with the increased threshold limits
on edge weights υ1 < υ2 < · · · < υn are obtained, and
this stage is referred to as network filtration. Due to the
computational efficiency, the Vietoris-Rips (VR) complex
Zomorodian (2010) which considers the edge weights as a
distance measure between the two nodes forming the given
edge is used for network filtration. At a particular weight
threshold υj the VR complex is defined as

VRj = {ϱ ⊂ V |wpq ≤ υj∀p, q ∈ ϱ} (1)

where the edges with weights wpq ≤ υj are kept and
the remaining edges are discarded to obtain the subgraph
Gj with the adjacency matrix Apq = 1wpq≤υj

. VRj will
contain the k-node subsets of Gj where k = 1, · · · ,K
with the pairwise connection with an edge as simplices
of dimensions k − 1. These simplicial complexes aid in
approximating the hidden geometric structures of the grid
in a combinatorial way.

With VR filtration, VR1 ⊆ VR2 ⊆ VRn, the persistent
or long-lived features are detected. Persistent features are
analyzed through various topological summaries like Betti
numbers, persistent diagrams, and persistent barcodes. For
each filtration, the Betti numbers are identified such that
Betti-0 (β0) describes the number of connected compo-
nents, Betti-1 (β1) reports the number of one-dimensional
holes or topological loops, and Betti-2 (β2) gives the num-
ber of two-dimensional holes or topological voids, and so
on. For a given filtration, persistent diagrams represent
the feature with a point in the Cartesian coordinate sys-
tem, with ’x’ coordinate describing its birth time and ’y’
coordinate describing its death time. The longer distance
from main diagonal in persistent diagrams is treated as the
notion of stronger persistence. Persistent barcodes capture
the birth and death instances of the features as a bar.

3. PERSISTENT HOMOLOGY-BASED RESILIENCE
ENHANCEMENT (PHRE) TECHNIQUE

A weighted graph G = (V,E,w) describes the topology of
the power grid with its buses comprising the set of vertices
V = (ν1, ν2, · · · , νn), its lines forming the set of edges
E = (e1, e2, · · · , em) and the edge weights w proportional
to line impedances, or, admittances, or, power flows. The
adjacent node connectivity is given by weighted adjacency
matrix Apq for the nodes p and q as

Apq =

{
wpq ∀epq ∈ E, p ̸= q
0 otherwise

(2)

Fig. 1. The flowchart of proposed PHRE technique

The PHRE technique presented in Fig. 1 is applied for
investigating the grid resiliency. The network filtration is
carried out through VR filtration as explained in 1 for
a range of thresholds υj , j = 0, · · · , n imposed on edge
weights. To obtain the Betti-0 (β0) numbers, number of
connected components are identified, and the presence of
one-dimensional holes are detected to report the Betti-1
(β1) numbers in the corresponding VR complex.

The blackouts due to cascading failures triggered by events
like voltage instability, or overloading results into the
change in topology as G′ = (V,E′, w) whereas E′ and
w′ are reduced set of edges and reduced vector of weights.
The VR complices and corresponding betti numbers are
identified for the similar range of weight thresholds con-
sidered previously. The change in betti numbers ∆β

υj

0 and
∆β

υj

1 for threshold υj is calculated as

|∆βυj
r | =

∣∣βb,υj
r − βf,υj

r

∣∣ (3)

where, r = (0, 1), βb
r corresponds to the healthy system

and βf
r corresponds to the deformed graph G′ for failure.

The change in the number of one-dimensional holes∣∣∆β
υj

1

∣∣is used as the measure of the grid resiliency. The line
outage changes the network topology and the deformation
is reflected into the change in Betti numbers. The loss of
edges will break the topological loops which results into
fall in the number of holes i.e. β1. If there is fall in the
number of holes then the lines are more vulnerable as the
outage has caused deformation to the network topology. If
the number of holes are remain unchanged then it implies
that the lines are not vulnerable.
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4. REPRESENTATIVE CASE STUDY

Fig. 2. One line diagram of benchmark IEEE 30 bus system

Benchmark IEEE 30 bus system (Fig.2) with 30 buses and
42 transmission lines of 289.1 MW generation and 283.4
MW load flow capacity Gupta et al. (2015) is considered as
representative case study. Topological graph G = (V,E,w)
of this network is developed by considering the load and
generator buses as the vertices, the transmission lines
and transformers as the edges, and the impedance of the
corresponding transmission line as edge weight. Two cases
comprising base case corresponding to a healthy power
grid and failure case corresponding to a cascade failure
are discussed to verify the PHRE method.

4.1 Case 1: Base Case

Fig. 3 (h) shows the graph for base.The network filtra-
tion is computed with the VR filtration by varying the
thresholds from υ = 0 to υ = 0.7 which are presented in
Fig. 3 along with the Betti numbers associated with each
complex. Fig. (a) describes the filtration with the threshold
υ = 0, where all the edges are discarded, and the point
cloud of 30 nodes is observed. So the Betti-0 (β0) = 30
and there are number holes so Betti-1 (β1) = 0. With
the increasing thresholds, more edges are getting included
in the complices, and the number of β0 is decreasing as
more and more features are disappearing in the filtration.
The one-dimensional holes are computed by tracing the
topological loops present in the topology. The first hole
appears at the threshold limit υ=0.2. With the further
increase in the threshold, the number of holes, i.e., β1,
keeps on increasing. Finally, all edges are included at the
threshold υ = 0.7, and the last complex illustrates the
healthy power grid.

4.2 Case 2: Failure Case

The cascading effect is created by tripping one of the
lines from the base case system. The study has been
conducted on the cascading scenario discussed in the
Gupta et al. (2015) where the cascade has been initiated by
tripping the line L21. Then the lines L22 and L29 tripped
sequentially, resulting in cascade failure. The cascade

Table 1. Betti numbers associated with VR
complices for the cascade failure

Sr. No. Threshold (υ)
Betti Numbers
β0 β1

1. 0.0 30 0

2. 0.2 11 1

3. 0.4 4 4

4. 0.6 2 4

5. 0.7 1 4

scenario is simulated by removing the edges representing
the lines L21, L22, and L29 from the graph of the base case.
The VR complices are computed in a similar manner as the
base case with the same threshold range. The changes in
the Betti numbers for the failure case are demonstrated in
Table 1. The number of connected components reported by
the β0 decrease with the varying threshold. It is observed
that the first hole appears at the threshold υ = 0.2, and
the number of holes increases with further filtration.

4.3 Comparative analysis

Table 2. Comparison of Betti numbers associ-
ated base case and failure case

Sr. No. υ
Base Case Failure Case |∆β0| |∆β1|β0 β1 β0 β1

1. 0 30 0 30 0 0 0

2. 0.2 8 1 11 1 3 0

3. 0.4 3 5 4 4 1 1

4. 0.6 1 5 2 4 1 1

5. 0.7 1 6 1 4 0 2

Table 2 summarises the Betti numbers identified for the
base case and failure case with the corresponding threshold
limits. The variation in connected components (β0) with
the varying threshold for the base case and the failure case
is illustrated in Fig. 4. The dynamics of one-dimensional
holes (β1) for various VR complices for the base case and
the failure case is demonstrated in Fig. 5. It is observed
that for the same threshold value, the number of one-
dimensional holes β1 drop down due to the cascade failure,
and the number of β0 increases as there are deformations
in the network topology. Hence it is inferred that the
number of holes is more for the healthy system, and during
cascade failure, the number of holes drops down due to
deformation of the topology. The more drastic change in
the one-dimensional holes points out the fact that the
corresponding lines are more vulnerable to failures. On the
other hand, there may be line outages where the number
of holes remains unchanged; such lines are not vulnerable
to failure. Hence with the PHRE technique, it is deduced
that the number of one-dimensional holes can be used as
the measure of the resilience of the system.

5. CONCLUSION

The underlying geometry of power grid plays a vital role
in investing its various functional characteristics for the
resilience analysis. To gain profound insights into the vul-
nerability to the grid resilience, the TDA approach, specif-
ically the persistent homology (PH) was explored. The ex-
tended abstract proposed an idea of a PHRE technique for
analysing the capability of the system to retain its original
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Fig. 3. VR complices of the base case with the threshold varying from υ = 0 to υ = 0.7 (The blue dots represent the
vertices of the graph and the red lines represent the edges of the graph.)

Fig. 4. Dynamics of Betti-0 (β0) with respect to thresholds
for base case and failure case

Fig. 5. Dynamics of Betti-1 (β1) with respect to thresholds
for base case and failure case

properties over a longer period under disruptive scenarios.
The PHRE method was validated on the benchmark IEEE
30 bus system. From the results, it was observed that the
healthy system reported a higher number of holes, and the
cascade failure resulted in a drastic drop in the number of
holes. Hence it was concluded that the number of holes
or the topological loops might be treated as the measure
of the system’s ability to retain the resilience standard.
The PHRE technique proved advantageous for analysis
of cascade failure occurred by various factors, including
component failure, overloading, voltage instability due to
its relevance with the network geometry for characterizing
its functional information.
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1. INTRODUCTION

Real world networks usually consist of a large number of
interconnected systems (agents) which communicate with
each other in order to achieve a global objective. Many
of these objectives can be formulated into distributed
optimization problems. Distributed optimization can be
traced back to the seminal works of [Tsitsiklis (1984)] and
[Bertsekas and Tsitsiklis (1989)]. The most common way
of solving distributed optimization problems is to use dual
decomposition and first order methods (or subgradients)
as in [Kelly et al. (1998)] and [Boyd et al. (2011)].

In this paper we study the discrete-time version of the dual
decomposition case of a distributed optimization problem
as it was presented in [Samar et al. (2007)]. This algo-
rithm uses a hypergraph communication despite the fact
that graph communication is the most commonly used
in distributed optimization problems [Yang et al. (2019)].
Hypergraphs were introduced in [Berge (1973)] as a gen-
eralization of graphs. The importance of the hypergraph
lies in the fact that it allows more than two nodes to
be linked in the same edge (hyperedge). As a result, a
hypergraph can depict more complex relationships com-
pared to the communication structure of a graph. This
different communication structure exists in reality e.g.
large online social networks, supply chain management,
etc. Various advantages of the hypergraph communication
are presented in [Wolf et al. (2016)].

Our main contribution is to show that when the objective
functions of the hypergraph distributed optimization prob-
lem are quadratic one can construct a dual decomposition
based algorithm that converges in only one step, when the
Hessians of the objective functions are available. This is
in contrast to more classical first order methods where the
convergence is asymptotic, i.e., this will involve an infinite
number of steps.

An interesting observation is that the communication
matrix of the dual decomposition algorithm is the Bolla’s
Laplacian for hypergraphs [Bolla (1993)]. This observation
creates a link with graph based algorithms since they

are most commonly described with the use of the graph
Laplacian [Yang et al. (2019)]. In our setting the Laplacian
communication matrix is also a projection matrix. As a
result, the gap between the largest and smallest non zero
eigenvalues is zero since both are equal to one. We know
from [Duchi et al. (2011)] that a small aforementioned gap
can lead to an improved convergence rate. This therefore
hints that when the underlying communication topology
is designed such that it corresponds to a hypergraph,
optimization algorithms with faster convergence rate can
be constructed.

The paper is organized as follows: Section 2 presents the
mathematical tools that will be used. Section 3 introduces
the distributed optimization problem in the hypergraph
setting. Finally, in section 4 we present the dual decompo-
sition algorithm along with the proposed modified version
where the main results of the paper are associated with the
convergence and the optimality of the modified algorithm.

2. PRELIMINARIES

2.1 Notation

The set of real numbers is R. For x ∈ Rn, x ≥ 0 (resp.
x > 0) means that all components of x are nonnegative
(resp. positive). We define the cardinality of a set C as |C|.
With vec(ai)

n
i=1 we denote the vector obtained by stacking

the vectors a1, ..., an into a column vector.

2.2 Convex Analysis

A differentiable function f : Rn → R is said to be convex
if f(x) − f(y) ≤ ∇f(x)T (x − y) ∀ x, y ∈ Rn. If strict
inequality holds then f is a strictly convex function. A
function f : A ⊂ Rn → Rn is locally Lipschitz if for each
x, x0 ∈ A, there exist constant M > 0 and δ0 > 0 such
that ||x− x0|| < δ0 ⇒ ||f(x)− f(x0)|| ≤M ||x− x0||.

2.3 Hypergraphs

A hypergraph (e.g. [Vitaly (2009)]) is a pair H = (V, E)
where V = {v1, ..., vn} is a finite set of nodes and E =
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{E1, ..., Em} is the set of hyperedges. A hyperedge can join
any number of nodes and not just two as it is in the case of
a graph. The degree of a node in a hypergraph is the total
number of hyperedges that are adjacent to this node. The
size of a hyperedge Ej , denoted by |Ej | is the total number
of nodes that are adjacent to this hyperedge. We have that
|Ej | ≥ 2, ∀ 1 ≤ j ≤ |E|. We define by DV the diagonal
|V|×|V| matrix whose entries are the degrees of each node
and by DE the diagonal |E| × |E| matrix whose diagonal
entries are the sizes of each hyperedge. For a hypergraph
H, the incidence matrix denoted by E, is a |V|×|E| matrix
whose (i, j)-th entry is given by

Eij =

{
1, vi ∈ Ej
0, otherwise.

The Bolla’s Laplacian for hypergraphs denoted by L, is
given by

L = DV − E(DE)−1ET .

2.4 Matrix Theory

For a square matrix M ∈ Rn×n, S(M) denotes the
spectrum of matrixM . A square matrix P ∈ Rn×n is called
a projection matrix if P 2 = P . A square matrix P ∈ Rn×n

is called an orthogonal projection matrix if P 2 = P = PT .
For a projection matrix P its spectrum is S(P ) = {0, 1}. A
symmetric matrix M is called positive semidefinite M � 0
if xTMx ≥ 0 for every nonzero x ∈ Rn. If we have strict
inequality we say that matrixM is positive definiteM � 0.

3. THE HYPERGRAPH DISTRIBUTED
OPTIMIZATION ALGORITHM

We have the following distributed optimization problem
with K subsystems

min
x=[x1,...,xK ]

K∑
i=1

fi(xi)

s.t. xi = Eiz i = 1, ...,K (1)

where fi : Rpi → R is the objective function of ith subsys-
tem and is considered to be strictly convex, continuously
differentiable with its gradient ∇fi being locally Lipschitz.
The vectors xi,∀ 1 ≤ i ≤ K denote the variables of the
K subsystems. For each subsystem i we have xi ∈ Rpi

and we denote the lth component of vector xi as xli. We
assume that all the components of all the variables appear
in the variables of other subsystems 1 (i.e. they are cou-
pling variables). We assume there are N different groups
of coupling variables, with the variables in each group
required to be equal. The components of vector z ∈ RN

give the respective common values in each of these groups.
The relationship xi = Eiz defines the equality constraints
(“consistency constraints”) among the coupling variables
of subsystem i and their respective common values. In

1 Note that this is without loss of generality as minimization w.r.t.
local variables that do not appear in other subsystems can be
incorporated within the functions ∇fi.

particular, Ei is a pi × N matrix whose (l, j)-th entry is
given by

Elj
i =

{
1, if xli = zj ,

0, otherwise.
(2)

Hence xji is the coupling variable of the ith subsystem
that belongs to the jth group of coupling variables for
i = 1, ...,K and j = 1, ..., N . The vector of coupling
variables is denoted as x = (x1, ..., xK) ∈ Rp, where
p = p1 + ...+ pK .

We consider a hypergraphH = (V, E) to represent the cou-
plings among the variables. In particular, the set of nodes
V is partitioned into V = {V1, ...,VK} where each node in
subset Vi is associated with a component of variable xi.
Each hyperedge Ej is associated with a component zj of
vector z. Therefore the hyperedge set E is associated with
the “consistency constraints” among the coupling variables
of different subsystems. For the hypergraph H = (V, E) we
have |V| = p, |E| = N and incidence matrix E ∈ Rp×N

where E =

E1

...
EK

. The node degree matrix of the hy-

pergraph is DV = Ip×p and the hyperedge size matrix is
DE = diag{|E1|, ..., |EN |} where |Ej | ≥ 2,∀ 1 ≤ j ≤ N . The
relationship xi = Eiz,∀ 1 ≤ i ≤ K can also be written as
x = Ez.

Fig. 1. Hypergraph Communication

It is important to note that this distributed optimization
setting can be viewed as a multiple consensus problem,
a consensus value must achieved for each hyperedge. The
Lagrangian of (1) is

L(x, z, v) =
K∑
i=1

fi(xi)− vT (x− Ez) (3)

where v ∈ Rp is the Lagrange multiplier associated with
x = Ez. The equation (3) can also be written in the form

L(x, z, v) =
K∑
i=1

(fi(xi)− vTi xi) + vTEz

where vi is the subvector of v associated with the ith
subsystem. The optimality conditions are:
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∂L

∂x
= 0⇒ ∇fi = vi (subsystems interconnections) (4a)

∂L

∂v
= 0⇒ x = Ez (primal feasibility) (4b)

∂L

∂z
= 0⇒ ET v = 0 (dual feasibility). (4c)

Example 1. In Figure 1 we have a hypergraph communi-
cation with node set V = {1, 2, 3, 4, 5} and hyperedge set
E = {E1, E2}. For each node i there is a variable component

xji associated with it. Variables {x11, x12, x13} are attached
to hyperedge E1 and variables {x23, x24} are attached to
hyperedge E2. The node degree matrix, hyperedge size
matrix and the incidence matrix are

DV = I5×5, DE =

(
3 0
0 2

)
and E =

E1

E2

E3

E4

 =


[1 0]
[1 0][
1 0
0 1

]
[0 1]


respectively.

Remark 1. It is important to note that in our setting
ETE = DE .

4. DUAL DECOMPOSITION

In this section we will introduce the discrete-time dual de-
composition algorithm and present also a modified version
that leads to the main results in the paper.

To find the dual function we first minimize (3) over z,
which results in the condition (4c). Then we solve the
following subproblems independently for each i given vi

min
xi

fi(xi)− vTi xi. (5)

Since the objective functions fi(xi) are strictly convex,
the solution to each subsystem is unique. The dual of the
original problem (1) is

max
v=[v1,...,vK ]

K∑
i=1

qi(vi)

s.t. ET v = 0 (6)

where qi(vi) = min
xi

{fi(xi) − vTi xi}. A detailed procedure

for the extraction of the dual decomposition algorithm is
given in [Samar et al. (2007)]. The algorithm is presented
below:

Dynamical System

ET v(0) = 0 initial conditions (7a)

∇fi(xi(k)) = vi(k) optimize subsystems (7b)

z(k) = (ETE)−1ETx(k) average x (7c)

v(k + 1)− v(k) = −ρ(x(k)− Ez(k)) update v (7d)

where k = 0, 1, 2, ... denotes the iteration number and
ρ > 0 is the stepsize. Relationship (7b) results from (5). If
we substitute (7c) in (7d) we have

v(k + 1)− v(k) = −ρ(x(k)− E(ETE)−1ETx(k))⇒
v(k + 1)− v(k) = −ρQx(k)

where
Q = I − E(ETE)−1ET . (9)

Remark 2. As mentioned in Remark 1, ETE = DE and
as a result, matrix Q in (9) can be written as Q = DV −
E(DE)−1ET since DV = I. Hence matrix Q is the Bolla’s
Laplacian for the hypergraph considered, [Bolla (1993)].
It is proven in [Samar et al. (2007)] that matrix Q is an
orthogonal projection matrix.

Quadratic Case Below we will present the main re-
sult of our work. We consider the problem (1) with the
objective functions to be fi(xi) = 1

2x
T
i Aixi + bTi xi +

ci, 1 ≤ i ≤ K. This problem can also be written in the
following form,

min
x=[x1,...,xK ]

1

2
xTAx+ bTx+ c

s.t. x = Ez (10)

where matrix A = diag{A1, ..., AK} is a block diagonal
matrix, each Ai ∈ Rpi×pi , 1 ≤ i ≤ K is a symmetric
positive definite matrix. Parameters b and c can be ex-

pressed as b = vec(bi)
K
i=1 and c =

K∑
i=1

ci respectively. Below

we propose a modification of dynamical system (7a)-(7d)
which solves the optimization problem (10) in a single
iteration.

Dynamical System

ET v(0) = 0 (11a)

∇fi(xi(k)) = vi(k) (11b)

z(k) = (ETAE)−1ETAx(k) (11c)

v(k + 1)− v(k) = −A(x(k)− Ez(k)) (11d)

Remark 3. We notice that a main difference of the dynam-
ical system (11a)-(11d) compared to (7a)-(7d) is equation
(11c). In equation (7c) we only average the primal variables
while in equation (11c) we conduct a weighted averaging,
where the weights are determined by the Hessians of the
objective functions.

Remark 4. The choice ρ = A in (11d) can be seen as using
a non-uniform stepsize among subsystems.

Substituting (11c) in (11d) we have

v(k + 1)− v(k) = −A(x(k)− E(ETAE)−1ETAx(k))⇒
v(k + 1)− v(k) = −AQ′x(k)

where
Q′ = I − E(ETAE)−1ETA. (13)

Lemma 4.1. Matrix Q′ in (13) is a projection matrix.

Proof.

We have that

(Q′)2 =[I − E(ETAE)−1ETA]2

=[I − E(ETAE)−1ETA][I − E(ETAE)−1ETA]

=I − 2E(ETAE)−1ETA

+ E(ETAE)−1ETAE(ETAE)−1ETA

=I − 2E(ETAE)−1ETA+ E(ETAE)−1ETA

=I − E(ETAE)−1ETA

=Q′.
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As a result, Q′ is a projection matrix. The spectrum of Q′

is S(Q′) = {0, 1}.
Remark 5. It is important to note that matrix Q′ is not
symmetric and as a result, not an orthogonal projection
matrix.

Using the fact that ∇f(x) = Ax+b = v ⇒ x = A−1(v−b)
the algorithm (11a)-(11d) can also be written compactly
as follows:

ET v(0) = 0 (15a)

v(k + 1)− v(k) = −AQ′A−1v(k) +AQ′A−1b. (15b)

The following theorems present our main results which are
associated with the convergence of the modified algorithm
in one iteration and the optimality of its equilibrium point.

Theorem 4.2. The algorithm in (11a)-(11d) converges in
one iteration.

Proof. We consider the compact form in (15a)-(15b). By
considering an iteration to find v(k + 2) we have

v(k + 2) =(I −AQ′A−1)v(k + 1) +AQ′A−1b

=(I −AQ′A−1)((I −AQ′A−1)v(k) +AQ′A−1b)

+AQ′A−1b

=(I −AQ′A−1)2v(k) + (I −AQ′A−1)AQ′A−1b

+AQ′A−1b

=(I −AQ′A−1)2v(k) + 2AQ′A−1b

− (AQ′A−1)2b.

We notice that

(I −AQ′A−1)2 =(I −AQ′A−1)(I −AQ′A−1)

=I − 2AQ′A−1 +AQ′A−1AQ′A−1

=I − 2AQ′A−1 +A(Q′)2A−1

=I −AQ′A−1

since Q′ is a projection matrix which implies (Q′)2 = Q′.
Similarly for (AQ′A−1)2 we have that

(AQ′A−1)2 = AQ′A−1AQ′A−1 = A(Q′)2A−1 = AQ′A−1.

As a result,

v(k + 2) = (I −AQ′A−1)v(k) +AQ′A−1b = v(k + 1).

Therefore by induction v(k) = v(1) for k ≥ 1, hence the
algorithm converges in one iteration.

Theorem 4.3. The algorithm in (11a)-(11d) satisfies the
optimality conditions (4a)-(4c) at equilibrium.

Proof. Conditions (4a), (4b) are trivially satisfied at
equilibrium from (11b), (11d), respectively. It remains to
show that ET v = 0 at equilibrium. Since we have the
initial conditions ET v(0) = 0 it is sufficient to show
ET v(k + 1) = ET v(k) for all k ≥ 0. Premultiplying (11d)
by ET we need to show that

ETA(x(k)− Ez(k)) = 0.

This holds since

ETA(x(k)− Ez(k)) = ETA(I − E(ETAE)−1ETA)x(k)

= 0.

Remark 6. It should be noted that if A is diagonal then
the iteration in Algorithm (11a)-(11d) decomposes into
distributed computations within each hyperedge. If A is
block diagonal distributed algorithms that terminate in

a finite number of steps can be formulated by communi-
cating the Hessians of the objective functions throughout
the network. The development of more efficient distributed
computational procedures in this case is part of ongoing
work.

Remark 7. The classical first order algorithms usually re-
quire less information for their implementation (no Hes-
sians, smaller connectivity) but they converge asymptoti-
cally, i.e., they tend to the optimal solution after an infinite
number of steps.

5. CONCLUSION

We have considered a distributed optimization problem
with coupling constraints formulated by means of a hyper-
graph. We have shown that when the objective functions
are quadratic a modified dual decomposition algorithm,
which makes use of the Hessians of the objective functions,
can be constructed such that the optimal solution is ob-
tained after one iteration. Future work includes extensions
to problems with general convex objective functions where
the hypergraph structure is exploited to obtain improved
convergence rates.
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deterministic LTI systems may not be as intractable as previously assumed. By comparing the
structure of resulting parametric quadratic programs for the data-driven and classical model-
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1. INTRODUCTION

Data-driven predictive control (DPC), where the predic-
tion of the systems’ behavior is carried out based on col-
lected input-output data instead of a model, is becoming
more and more popular (see, e.g., Coulson et al. (2019);
Berberich and Allgöwer (2020); Dörfler et al. (2021)).
Remarkably, assuming perfect data and linear dynamics,
the fundamental lemma by Willems et al. (2005) and
variants of it (as proposed by van Waarde et al. (2020)
and Markovsky and Dörfler (2020)) allow establishing the
equivalence of the data-driven and model-based approach
with respect to the resulting control actions.

However, while strongly related, the two approaches lead
to different optimal control problems (OCP). In fact, DPC
usually results in an OCP with significantly more decision
variables than model-based predictive control (MPC, see
Rawlings et al. (2017) for an overview). Moreover, MPC
typically results in strictly convex OCP while (unmodified)
DPC only offers convexity. As a consequence, explicit
solutions of the data-driven OCP seem “unattractive” at
first sight (Alpago et al., 2020, Section IV.B), even for
applications where explicit MPC (Bemporad et al., 2002)
is tractable.

We show in this note that the perceived imbalance between
DPC and MPC can be resolved in some cases. In fact,
while more decision variables indeed typically result in
more complex explicit solutions (in terms of the number
of regions etc.), this is not the case for deterministic DPC
in comparison to its model-based analogue. To see this,
we establish a novel and stricter relation between the
two approaches, which reveals that the larger number of
decision variables merely results in ambiguity rather than
more complex explicit solutions. Note that previous ap-
proaches to explicit DPC either operate in the statespace,
i.e. assume fully measurable states (Sassella et al., 2021),
or utilize additional regularization to obtain a strictly
convex OCP (Breschi et al., 2021). For our analysis, we
will not apply such simplifications or modifications.

The note is organized as follows. In Section 2, we sum-
marize classical MPC and fundamentals of DPC. The
analysis of explicit solutions of the corresponding OCPs
and the identification of a closer relation between them are
carried out in Section 3. We illustrate our findings with
an illustrative example in Section 4. Finally, promising
directions for future research are discussed in Section 5.

2. FUNDAMENTALS OF MPC AND DPC

2.1 Classical MPC

We briefly summarize classical MPC in a form that is
compatible with the data-driven realization in Section 2.2.
To this end, we assume that a linear prediction model

x(k + 1) = Ax(k) +Bu(k) (1a)

y(k) = Cx(k) +Du(k) (1b)

is known. We further assume that input and output
constraints are given in terms of polyhedral sets

U := {u ∈ Rm |Muu ≤ vu } ,Y := {y ∈ Rp |Myy ≤ vy } ,
which are specified by the matrices Mu/y and vectors vu/y,
respectively. Then, classical MPC (without terminal cost
and constraints) can be realized by solving

min
u(k),x(k),y(k)

Nf−1∑
k=0

∥y(k)∥2Q + ∥u(k)∥2R (2)

s.t. x(0) = x0,

x(k + 1) = Ax(k) +Bu(k), ∀k ∈ {0, ..., Nf − 2},
y(k) = C x(k) +Du(k), ∀k ∈ {0, ..., Nf − 1},

(y(k), u(k)) ∈ Y × U , ∀k ∈ {0, ..., Nf − 1}
in every time-step for the current state x0, where Q and
R are assumed to be positive definite weighting matrices
and where Nf ∈ N denotes the prediction horizon. Now,
the OCP (2) is typically condensed into a quadratic
program (QP) such that only the inputs remain as decision
variables. To this end, one first introduces the sequences
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uf :=

 u(0)
...

u(Nf − 1)

 and yf :=

 y(0)
...

y(Nf − 1)

 , (3)

and the extended weighting matrices Q := diag(Q, . . . , Q)
and R := diag(R, . . . , R) in order to rewrite the cost
function as

Nf−1∑
k=0

∥y(k)∥2Q + ∥u(k)∥2R = ∥yf∥2Q + ∥uf∥2R. (4)

We further define the matrices

ON :=


C
CA
...

CAN−1

 and TN :=


D 0

CB
. . .

...
. . .

. . .

CAN−2B . . . CB D

,

which we will consider for different N during this note. For
N = Nf , we then obtain the relation

yf = ONf
x0 + TNf

uf . (5)

Finally, substituting (5) into (4) and introducing the aug-
mented matrices Mu/y := diag

(
Mu/y, . . . ,Mu/y

)
leads to

u∗f (x0) := argmin
uf

1

2
u⊤f Huf + x⊤

0 F
⊤uf (6)

s.t. Guf ≤ Ex0 + d

with the parameter x0 as well as

H := 2T ⊤
Nf

QTNf
+ 2R, F := 2T ⊤

Nf
QONf

,

G :=

(
Mu

MyTNf

)
E :=

(
0

−MyONf

)
, (7)

d :=
(
v⊤u . . . v⊤u v⊤y . . . v⊤y

)⊤
.

2.2 DPC using input-output sequences

In contrast to MPC, DPC considers input-output data
instead of a model as in (1). More precisely, DPC builds
(in its simplest form) on two sequences ud and yd as in (3)
but of length Nd ∈ N that reflect prerecorded system
inputs and outputs. We note, at this point, that with
slight abuse of notation, we denote both the elements
of uf and ud with u(k). However, the relationship will
always be clear from the context. The same applies to
the elements of the sequences yf and yd. Now, in order
to realize DPC by means of ud and yd, the sequences have
to carry enough information about the systems’ dynamics.
This condition can be fulfilled if the output sequence yd
is consistent with a persistently exciting and sufficiently
long input sequence ud. More specifically, for deterministic
DPC, which we consider here, consistency means that
there exists a model (1) with initial state x0 such that

yd = ONd
x0 + TNd

ud. (8)

Further, according to Willems et al. (2005), ud is persis-
tently exciting of order Ne ∈ N if the Hankel matrix

HNe
(ud) :=


u(0) u(1) . . . u(Nd −Ne)
u(1) u(2) . . . u(Nd −Ne + 1)
...

. . .
...

u(Ne − 1) u(Ne) . . . u(Nd − 1)


has full row rank, i.e., rank(HNe

(ud)) = mNe. Note that
this requires HNe

(ud) to have as least as many columns as
rows, i.e.,

Nd −Ne + 1 ≥ mNe ⇐⇒ Nd ≥ (m+ 1)Ne − 1. (9)

Finally, the fundamental lemma by Willems et al. (2005)
allows associating the given sequences ud and yd with
other input-output sequences of the same system. In
fact, under the assumption that the underlying system is
linear, controllable, and ud is persistently exciting of order
Ne := Nc + n, with n being the state dimension, candidate
sequences (uc, yc) of length Nc ∈ N belong to the same
system as (ud, yd) if and only if(

uc
yc

)
∈ im

(
HNc(ud)
HNc(yd)

)
.

At this point, we briefly note that recent extensions of
the fundamental lemma by van Waarde et al. (2020)
and Markovsky and Dörfler (2020) allow alleviating some
of the restrictions above. Now, in order to utilize the
previous results for DPC, we proceed similarly to Coulson
et al. (2019). We choose an integer Np ≤ n equal to or
larger than the observability index, i.e., such that the
corresponding matrix ONp has full column rank, which
clearly requires observability. Next, we assume that ud is
persistently exciting of order

Ne := Np +Nf + n. (10)

According to the fundamental lemma, we then find that
the concatenated sequences (u⊤p u⊤f )

⊤ and (y⊤p y⊤f )
⊤ with

up :=

u(−Np)
...

u(−1)

 and yp :=

y(−Np)
...

y(−1)


and with (uf , yf ) as in (3), belong to the same system as
(ud, yd) if and only ifup

uf
yp
yf

 =

(
HNp+Nf

(ud)
HNp+Nf

(yd)

)
a. (11)

for some a ∈ Rl with l := Nd − Nf − Np + 1. Based on
reordering and partitioning, (11) can be rewritten as

ξ :=

(
up
yp

)
= Wpa, uf = Ufa, and yf = Yfa (12)

with the matrices Wp, Uf , and Yf representing blocks
of the concatenated Hankel matrices. We are now ready
to formulate the OCP associated with DPC. In fact, the
combination of (4) and (12) allow expressing the costs

∥yf∥2Q + ∥uf∥2R = ∥a∥2Y ⊤
f

QYf+U⊤
f
RUf

as a function of a. Taking into account the constraints
Muuf ≤ Vu and Myuf ≤ Vy and the remaining condition
ξ = Wpa then leads to the QP

a∗(ξ) := argmin
a

1

2
a⊤H̃a (13)

s.t. G̃a ≤ d,

Wpa = ξ

with the parameter ξ, the vector d as in (6), and

H̃ := 2Y ⊤
f QYf + 2U⊤

f RUf , G̃ :=

(
MuUf

MyYf

)
.

Remarkably, the role of the initial state x0 in (6) is replaced
by ξ, i.e., the Np previous inputs and outputs, in (13). Fur-
thermore, a∗(ξ) only reflects an intermediate result that is
used to compute optimal inputs via u∗f (ξ) := Ufa

∗(ξ).

3. FROM EXPLICIT MPC TO EXPLICIT DPC

The QPs (6) or (13) are typically solved for the current
state x0 or the most recent sequences ξ, respectively, to
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obtain the optimal input for the current time-step. Sub-
sequently, the procedure is repeated at the next sampling
instance. Alternatively, in order to avoid numerical opti-
mization during runtime, (6) can also be solved explicitly
using parametric optimization. As a result, we then find
the continuous and piecewise affine (PWA) solution

u∗f (x0) =


L1x0 + c1 if x0 ∈ X1,

...
...

Lsx0 + cs if x0 ∈ Xs,

(14)

which is defined on a polyhedral partition {Xi}si=1 of
the state space (Bemporad et al., 2002). Computing this
solution offline and evaluating it online is referred to as ex-
plicit MPC. While conceptually attractive, explicit MPC
can usually only be applied for moderate “sizes” of the
underlying QP since it is well-known that the number
of regions s ∈ N typically grows exponentially with the
number of decisions variables and constraints. As a conse-
quence, solving (13) parametrically seems unattractive at
first sight, since especially the number of decision variables
is significantly larger than in (6). In fact, while uf is of
dimension mNf , the dimension l of a is lower-bounded by

l ≥ (m+ 1)(Np +Nf + n)−Nf −Np

= mNp +mNf + (m+ 1)n

according to (9) and (10). Now, while the difference of
at least mNp + (m + 1)n decisions variables is significant
especially for m > 1, we claim that this increase does
not result in a more complex explicit solution for the
special case of deterministic DPC. In fact, we claim that
the increase in decision variables only leads to ambiguous
solutions and that this ambiguity can be reduced (or even
removed) by systematically eliminating variables.

3.1 Eliminating equality constraints for DPC

Following this claim, we initially eliminate the equality
constraints in (13). To this end, we assume that a general-
ized inverse W+

p of Wp (satisfying the Penrose conditions)
and a matrix Vp characterizing the null-space of Wp (i.e.,
im(Vp) = ker(Wp)) are known. Then, we can substitute a
in (13) with

a := W+
p ξ + Vpα,

where α is of dimension ν := nullity(Wp) = l− rank(Wp).
Clearly, the equality constraints in (13) are satisfied for
every α ∈ Rν . Hence, we obtain the transformed QP

α∗(ξ) = argmin
α

1

2
α⊤Ĥα+ ξ⊤F̂⊤α (15)

s.t. Ĝα ≤ Êξ + d

with

Ĥ := V ⊤
p H̃Vp, Ĝ := G̃Vp, F̂ := V ⊤

p H̃W+
p , Ê := −G̃W+

p .

Now, taking into account that Wp contains mNp rows
of the full rank matrix HNp+Nf

(ud), we obviously have
rank(Wp) ≥ mNp (and tighter bounds can be obtained
with moderate effort). Hence, the number of decision
variables in (15) is significantly smaller than in (13). Apart
from this benefit, the two OCPs are almost equivalent.
However, the transition from (13) to (15) involves a subtle
modification. In fact, while (13) is infeasible for ξ not
belonging to the system, (15) may be feasible for such ξ.
This is due to to the fact that WpW

+
p ξ (implicitly) maps

such ξ to belonging ones as specified in Corollary 1 below.

3.2 The “common denominator”

The QP (15) not only provides a reduced number of
decision variables but it also allows establishing a closer
relation between MPC and DPC. To see this, we simply
need to specify the (trivial) relation between x0 and ξ. To
this end, we recognize that ξ and the assumed observability
allow reconstructing x(−Np). Using up, it is then easy to
derive x0. More formally, the procedure is captured by the
relation x0 = Γξ, where

Γ :=
(
B−ANpO+

Np
TNp

ANpO+
Np

)
with B :=

(
ANp−1B . . . B

)
andO+

Np
:= (O⊤

Np
ONp)

−1O⊤
Np

.

Using this relation, we obtain the following relationship
between the QPs (6) and (15).

Corollary 1. The cost and constraint specifications of (6)
and (15) satisfy

Ĥ = V ⊤
p U⊤

f HUfVp,

F̂ = V ⊤
p U⊤

f FΓWpW
+
p + V ⊤

p U⊤
f HUfW

+
p ,

Ĝ = GUfVp, Ê = EΓWpW
+
p −GUfW

+
p .

A formal proof is omitted due to space restrictions. We
note, however, that the key ingredient is the equation

Yf = ONf
ΓWp + TNf

Uf , (16)

which can be considered as a variant of (5) for multiple
sequences represented by Hankel matrices and which simi-
larly appears in Persis and Tesi (2020). In fact, given (16),
the relations in Corollary 1 follow from simple rearrange-
ments and facts like WpVp = 0.

By further exploiting the novel relation between (6),
(13), and (15), one can derive even stricter connections
between MPC and DPC. In fact, we show in Klädtke
et al. (2022) that there is actually a one-to-one relation
between the (explicit) solutions of (6) and (15). While
a formal specification of this relation, which is based on
an additional parametrization and analysis of the involved
subspaces, is beyond the scope of this note, we illustrate
some of our findings with a numerical example next.

4. CASE STUDY

For our case study, we consider system (1) with

A = 1.2 and B = C = D = 1.

and the constraints U = [−1, 1] and Y = [−4, 4]. Further,
we choose Q = R = 0.5 and Nf = 2, which already
determines the MPC problems (2) and (6). Explicitly
solving (6) then leads to (14), where the s = 5 segments
are specified by

L1 = L5 =

(
0
0

)
, L2 = L4 =

(
0

−0.6

)
, L3 =

(
−0.64
−0.28

)
,

c1 = −c5 =

(
1
1

)
, c2 = −c4 =

(
1

−0.5

)
, c3 =

(
0
0

)
,

as well as X1 = [−5,−2.5], X2 = [−2.5,−1.5625], X3 =
[−1.5625, 1.5625], X4 = [1.5625, 2.5], and X5 = [2.5, 5].
The corresponding PWA solution is illustrated in Figure 1.

Now, to setup and investigate the DPC, we first note that
Np = 1 guarantees full rank of ONp = C = 1. Hence, we
choose an input sequence ud, which is persistently exciting
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Fig. 1. Explicit solution u∗f (x0) for MPC.

Fig. 2. Explicit solution α∗(ξ) for (modified) DPC. Note
that (yp, up) is artificially restricted to Y × U for
visualization.

of order Ne = 4. According to (9), this requires at least
Nd = 7 elements. It can be easily verified that

ud := (−0.6 0 0 0 0.5 0.5 1)
⊤

satisfies all conditions. Furthermore,

yd := (−0.1 0 0 0 0.5 1 2.1)
⊤

is a consistent output sequence since (8) is satisfied for
x0 = 0.5. According to (12), ud and yd specify

Wp =

(
−0.6 0 0 0 0.5
−0.1 0 0 0 0.5

)
, Uf =

(
0 0 0 0.5 0.5
0 0 0.5 0.5 1

)
,

and Yf with l = 5. In the following, we mainly focus on
the transformation to (15) and its explicit solution. To
this end, we require the generalized inverse W+

p and the
null-space description via Vp. Taking rank(Wp) = 2 and,
consequently, ν = 3 into account, suitable choices are

W+
p =


−2 2
+0 0
+0 0
+0 0
−0.4 2.4

 and Vp =


0 0 0
1 0 0
0 1 0
0 0 1
0 0 0

 .

Obviously, the transformation from (13) to (15) allows to
reduce the number of decision variables from l = 5 to
ν = 3. Still, (6) involves only mNf = 2 variables. Hence,
following our original claim, the transformed DPC problem
should still offer some ambiguity. This can be confirmed
by investigating the matrices

Ĥ =

(
0 0 0
0 0.50 0.75
0 0.75 1.75

)
,

F̂ =

(
0 0

−0.62 3.72
−1.34 8.04

)
,

Ĝ =



0 0 −0.5
0 −0.5 −0.5
0 0 −0.5
0 −0.5 −0.5
0 0 −0.5
0 −0.5 1
0 0 −0.5
0 −0.5 −1.0


.

In fact, as apparent from the zero rows and columns,
the choice of α1 neither affects the cost function nor

the constraint satisfaction. Without giving details, this

is not surprising since (1 0 0)
⊤

spans the null-space of
UfVp. Now, eliminating this variable from (13) results
in a strictly convex QP (whereas (13) is only convex

as apparent from Ĥ). Solving the reduced QP explicitly
leads to the PWA functions in Figure 2. Clearly, while the
domain is different, α∗(ξ) likewise consists of s = 5 affine
segments.

5. CONCLUSIONS AND OUTLOOK

By establishing a stricter relation to its explicit MPC coun-
terpart, we have shown that explicit DPC for deterministic
LTI systems may not be as intractable as the parameter
dimensions of the corresponding OCP suggest. While the
analyzed example is kept simple to allow visualization,
similar results can be obtained for more complex systems.

Future work will, among other things, thoroughly establish
the connection between both formulations in terms of the
(number of) partitions and (strongly) active constraints
as well as further classify and reduce the amount of
redundancies. Furthermore, it must be examined how
(well) the results can be extended to systems or data with
uncertainty.
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Abstract: We are interested in determining the worst performance exhibited by a given first-
order optimization method on the class of quadratic functions. Since its introduction, the
Performance Estimation Problem (PEP) methodology has allowed the computation of the
exact worst-case performance of first-order optimization methods on several functions classes,
including smooth convex, strongly convex or nonconvex functions.
In this work, we extend the PEP framework to the class of quadratic functions, and apply it
to analyze the difference of performance of the gradient method between convex quadratic and
general smooth convex functions.

Keywords: Performance estimation, First-order methods, Quadratic functions, Linear matrix
inequalities

1. INTRODUCTION

The Performance Estimation Problem (PEP) methodol-
ogy (introduced by Drori and Teboulle (2014)) allows to
compute the exact worst-case performance of a first-order
optimization method on a given class of functions. More
precisely, given a method and a performance criterion
(lower is better), a PEP is an optimization problem that
maximizes this criterion among all possible functions be-
longing to some class. Thus, it provides the worst possible
behavior of the method on the class of functions.

It has been shown in Taylor et al. (2017) that a PEP can
be reformulated as a convex semidefinite program for a
wide range of function classes C. This provided several
tight results on the performance of first-order methods. In
particular, the worst-case behavior of the Gradient Method
(GM) on the class Fµ,L of L-smooth µ-strongly convex
functions was exhaustively covered.

In this work, we extend the PEP framework to function
classes defined by matrices. This typically allows to study
the worst-case performance of first-order methods on the
class Qµ,L of homogeneous quadratic functions of the form
f(x) = 1

2x
TQx with µI ⪯ Q ⪯ LI for given parameters

µ and L (0 ≤ µ ≤ L). Another type of classes newly
analyzable through our extension of the PEP are function
classes C1 and C2 of the form g(Ax) and h(x) + g(Ax).
These three classes turn out to be included in Fµ,L if we
define the smoothness and strong convexity parameters of
A, g and h in a proper way. Since the worst-case functions
of Fµ,L for (GM), found in Taylor et al. (2017), are
sometimes but not always quadratic or of the form g(Ax),
we will quantify the performance gap between the general
class Fµ,L and the classes Qµ,L, C1, C2 or other function
classes involving matrices that we can now analyze through
the PEP framework.
⋆ N. Bousselmi is supported by the French Community of Belgium
through a FRIA fellowship (F.R.S-FNRS).

Theorems are stated without proofs in this extended
abstract, they will be appear in a forthcoming paper.

2. PEP FORMULATION

Typically, a PEP can be formulated as follows. Given the
class of functions C, the optimization method M perform-
ing N iterations, the initial distance R and the classical
performance criterion f(xN ) − f∗ (objective function ac-
curacy after N iterations), the PEP is

max
x0,...,xN ,f

f(xN )− f∗

s.t. f ∈ C,
xk generated by applying M to f from x0,

||x0 − x∗|| ≤ R.
(PEP)

We can study any method M that computes each iterate
as a linear combination of the initial point x0 and the
gradients of the previous iterations, i.e.

xk = x0 −
k−1∑
i=0

hk,i∇f(xi).

Coefficients hk,i entirely describe the method M. For
example, the gradient method with constant step size 1

L
started from x0:

For i = 0 : N − 1

xi+1 = xi −
1

L
∇f(xi) (GM)

= x0 −
1

L

k−1∑
i=0

∇f(xi).

is described with{
hk,i =

1

L
if i < k,

hk,i = 0 otherwise.
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The constraint f ∈ C must be expressed in an explicit way
with interpolation conditions in order to have a tractable
problem.

Definition 1. Given a set of triplet {(xi, gi, fi)}i∈I with
I some set of indices, interpolation conditions for the class
of functions C are such that there exists a function f ∈ C
with

f(xi) = fi ∀i ∈ I,

∇f(xi) = gi ∀i ∈ I,

if and only if the interpolation conditions are satisfied.

When those conditions are available, the PEP can be
rewritten as the following finite-dimensional problem

max
x0,...,xN ,x∗,g0,...,gN ,g∗,f0,...,fN ,f∗

fN − f∗

s.t. xk = x0 −
k−1∑
i=0

hk,i∇gi,

||x0 − x∗||2 ≤ R2,

∥g∗∥2 = 0,

{(xi, gi, fi)}i∈I={0,1,...,N,∗} are interpolable

by some function f ∈ C.

(PEP)

Finally, it was shown in Taylor et al. (2017) that this
problem becomes a convex semidefinite problem provided
that the iterates xi and their gradients gi are represented
as elements of the Gram matrix G = PTP , with

P =
(
x1 · · · xN g1 · · · gN

)
∈ Rd×2N .

3. PROBLEM STATEMENT

The key step and our main contribution is to obtain
interpolation conditions for the class Qµ,L of quadratic
functions. Indeed, we want to solve the following PEP on
the class Qµ,L,

max
x0,...,xN ,f

f(xN )− f∗

s.t. f ∈ Qµ,L,

xk generated by applying M to f from x0,

||x0 − x∗|| ≤ R.
(PEP-Q)

where we need an explicit equivalent reformulation of the
condition f ∈ Qµ,L in order to solve (PEP-Q).

As mentioned above, (PEP) can be formulated under the
form of a semidefinite program (see Taylor et al. (2017))
involving only the Gram matrix G of the iterates xi and
their gradients gi and the values fi of the function at these
iterates.

In order to work in the class Qµ,L, we must consider the
set of Gram matrices associated to a quadratic function.
Note that in that case we have

∇f(x) = Qx ∀x (1)

Definition 2. A symmetric matrix G ∈ S2N is a (µ,L,N)-
quadratic-Gram matrix if and only if there exist a dimen-
sion d ∈ N, a symmetric matrix Q ∈ Sd with µI ⪯ Q ⪯ LI
and a sequence xi ∈ Rd for i = 1, . . . , N such that
G = PTP with

P =
(
x1 · · · xN

g1︷︸︸︷
Qx1 · · ·

gN︷ ︸︸ ︷
QxN

)
∈ Rd×2N .

The set of all (µ,L,N)-quadratic-Gram matrices is de-
noted Gµ,L,N . It can be shown that any conic combination
of (µ,L,N)-quadratic-Gram matrices is also a (µ,L,N)-
quadratic-Gram matrix, hence the set Gµ,L,N is a convex
cone.

In the following, we provide an explicit convex description
of this set in order to be able to include those constraints
to (PEP-Q). In other words, we show a convex formulation
of the condition f ∈ Qµ,L.

4. INTERPOLATION CONDITIONS

Several observations can be made about the form of the
(µ,L,N)-quadratic-Gram matrices. Indeed, if a matrix G
belongs to Gµ,L,N , then, by diagonalization of Q, it can be
written under the form

G =

(
XTX XTQX
XTQX XTQ2X

)
=

(
Y TY Y TDY
Y TDY Y TD2Y

)
=

d∑
k=1

(
uku

T
k λkuku

T
k

λkuku
T
k λ2

kuku
T
k

)
(2)

where X = (x1 · · ·xN ) ∈ Rd×N , Q = V DV T is the
eigenvalue decomposition of Q, Y = V TX ∈ Rd×N ,

D = diag(λ1, . . . , λd), λk ∈ [µ,L] and uk =

y1,k
...

yN,k

.

Vector uk contains the k-th component of all vectors yi.
Expression (2) informs us that each block XTX, XTQX,
XTQ2X can be expressed as the sum of d positive definite
rank-1 matrices uku

T
k , λkuku

T
k and λ2

kuku
T
k .

By characterizing the Gram matrices exhibiting this struc-
ture, we are able to obtain the following explicit descrip-
tion of (µ,L,N)-quadratic-Gram matrices.

Theorem 2. Given a symmetric matrix

G =

(
A B
BT C

)
∈ S2N

with A,C ∈ SN and B ∈ RN×N , the conditions

G ⪰0 (C1)

B =BT (C2)

B ⪰ µL

µ+ L
A+

1

µ+ L
C (C3)

are necessary and sufficient for

G ∈ Gµ,L,N .

Observe that the quadratic interpolation conditions (C1),
(C2) and (C3) of Theorem 2 do not involve the function
values fi. Actually, the variables fi are directly encoded
in the diagonal of the block matrix B = XTQX. Indeed,
thanks to (1), we have

f(x) =
1

2
xTQx =

1

2
xT∇f(x)
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and the iterates xi, gi and fi are linked through

fi =
1

2
xT
i gi.

Since B contains the scalar products xT
i gj , whenever we

need the value of fi, we just use

fi =
1

2
Bii.

It is now possible to replace the condition f ∈ Qµ,L

in (PEP-Q) by the interpolation conditions obtained in
Theorem 2, which allows to reformulate the whole problem
as a tractable optimization problem. This problem is
a convex semidefinite program involving linear matrix
constraint and can be comfortably written and solved with
the Python library PEPit (see Goujaud et al. (2022)).
Note that as we only consider homogeneous quadratic
functions in the class Qµ,L, we can assume implicitly
that x∗ = 0 and f∗ = f(x∗) = 0, which simplifies the
formulation.

Finally, as mentioned in the introduction, we actually
obtained more general interpolation conditions that the
ones of the class of quadratic functions. Indeed, Definition
2 and Theorem 2 provide interpolation conditions for any
two sequences xi and yi linked by a matrix, i.e. yi =
Qxi ∀i. For example, if we apply a first-order method
to the class of functions of the form f(x) = g(Qx), then
we will need to compute the gradient of f , i.e.

∇f(x) = Q∇g(Qx). (3)

In order to describe this class with interpolation condi-
tions, we need to force xi and yi = Qxi to be linked by a
matrix as well as the ui = ∇g(Qxi) and vi = Q∇g(Qxi).
Thanks to Theorem 2, we are able to do it and, thus, to
analyze the worst-case performance of this class through
PEP.

5. RELATION BETWEEN INTERPOLATION
CONDITIONS OF Fµ,L AND Qµ,L

The class of quadratic functions Qµ,L is included in Fµ,L,
therefore, from the interpolation conditions of Qµ,L, it
must be possible to obtain the interpolation conditions
of Fµ,L.

In Taylor et al. (2017), the following interpolation con-
ditions for the class Fµ,L have been obtained ∀i, j =
0, 1, . . . , N

fi − fj − gTj (xi − xj) ≥
1

2(1− µ/L)
(4)(

1

L
(gTi gi + gTj gj − 2gTi gj)

+ µ(xT
i xi + xT

j xj − 2xT
i xj)

− 2
µ

L
(gTj xj − gTj xi − gTi xj + gTi xi)

)
.

In the quadratic case, if we define a matrix M = − µL
µ+LA+

B − 1
µ+LC, the condition (C3) can be written as the

positive semidefiniteness of matrix M which is equivalent
to

M ⪰ 0 ⇔ zTMz ≥ 0 ∀z ∈ RN

⇔
N∑

k=1

N∑
l=1

zkzlMkl ≥ 0 ∀z ∈ RN . (5)

Choosing zi = 1, zj = −1 and all the other components
of z equal to zero in (5) and then using fi =

1
2x

T
i gi yields

the interpolation conditions (4) of the class Fµ,L.

Therefore, the finite set of interpolation conditions of
Fµ,L is explicitly seen as a consequence of the set of
interpolation conditions of Qµ,L.

6. ANALYSIS OF THE GRADIENT METHOD

In Taylor et al. (2017), the worst-case performance and
the functions reaching it for the class Fµ,L have been
completely analyzed thanks to the PEP methodology. We
would like to compare these results with the behavior
of (GM) on the class Qµ,L and other classes involving
matrices.

In the convex case µ = 0, the worst-case performance on
the class F0,L is (from Taylor et al. (2017))

f(xN )− f∗ ≤ LR2

4N + 2
. (6)

Note that this worst-case performance is reached by a
Huber function, which is not quadratic and does not
belong to Q0,L.

Thanks to our extension of PEP for the class Qµ,L, we
can solve (PEP) for the class Q0,L. It yields the following
numerical results. Fig. 1 is the worst-case performance of
(GM) on F0,L (red) and Q0,L (blue) for each number of
iterations N .

Fig. 1. Worst-case performance of (GM) on Qµ,L (blue
dots) obtained by PEP and on Fµ,L (red dots).

It turns out that it is possible to identify the worst-case
rate of performance of (GM) on Q0,L, which is equal to
the following analytical expression

f(xN )− f∗ ≤ LR2

4N + 2

(
2N

2N + 1

)2N

(7)

and this worst performance is achieved by the quadratic
function

f(x) =
Lx2

4N + 2
.

We observe that the numerical results of PEP (blue dots)
in Fig. 1 exactly matches the rate (7) (blue line).
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Interestingly, the difference between the worst-case perfor-

mance of (GM) on F0,L and Q0,L is the factor

(
2N

2N+1

)2N

.

Moreover, this factor exhibits two particular properties

lim
N→∞

(
2N

2N + 1

)2N

=
1

e
,(

2N

2N + 1

)2N

≥ 1

e
∀N ∈ N.

Therefore, we can say that, for any numberN of iterations,
the worst-case performance of (GM) with constant step
size 1

L on F0,L is always lower than the performance on
Q0,L multiplied by a factor e.

To be complete, we must now mention that the literature
already provides a methodology to analyze the worst-
case performance of a first-order method on the class of
quadratic functions with eigenvalues between µ and L (see
for example Flanders and Shortley (1950); Nemirovsky and
Polyak (1984); d’Aspremont et al. (2021)) and, thus, to
obtain the rate (7). Indeed, given a quadratic function
1
2x

TQx, an initial point x0 and a method M, the max-
imization of the last iterate xN can be expressed as the
maximization of a polynomial evaluated at the elements of
the spectrum of Q, where the coefficients of the polynomial
only depend on the method M. Therefore this leads to the
maximization of some explicit polynomial whose degree
grows with the number of iterations. It can be shown that
such a reasoning will provide the same rate (7).

However, as explained earlier, we are now also able to ana-
lyze the class of functions of the form g(Ax), which cannot
be tackled by the simple polynomial approach described in
the previous paragraph. We observe a difference of worst-
case performance of (GM) between the general class F0,L

and the class C1 of functions of the form f(x) = g(Ax)
where f is still L-smooth convex. Fig. 2 is the worst-
case performance of (GM) on F0,L (red) and C1 (blue)
for each number of iterations N . Note again that such

Fig. 2. Worst-case performance of (GM) on C1 (blue dots)
obtained by PEP.

results cannot be obtained by the abovementioned spectral
analysis, and that it is possible with PEP to study even
more complex functions classes such as h(x) + g(Ax).

7. CONCLUSION

PEP has been shown to be a powerful tool for the anal-
ysis of the worst-case behavior of first-order optimization
methods on a given class of functions. We showed how to

extend PEP to the class of quadratic functions, thanks to
Theorem 2, using a list of explicit convex constraints on
the Gram matrix G. Moreover, we are able to implement
and solve the PEP thanks to the Python library PEPit.

Our numerical experiments exactly match the analytical
expression of the worst-case performance of the gradient
method on convex quadratic functions Q0,L and we com-
pared it to the worst-case performance on smooth strongly
convex functions F0,L. An interesting direction for future
research would be to obtain a bound on the performance
gap of any method between the general class Fµ,L and the
class Qµ,L.

Moreover, in addition to the class of quadratic functions,
we are now able to formulate explicit interpolation con-
ditions for any class of functions involving matrices and
to analyze them through PEP. This include for exam-
ple the simple class of functions f(x) = g(Ax) but also
more complicated classes of functions as f(x) = h(x) +
g(Ax). Although the worst-case performance on the class
of quadratic methods could already be obtained via the
spectrum analysis approach, our extension of PEP appears
to the best of our knowledge to be the first tool able to
analyze classes of function of the forms f(x) = g(Ax) or
f(x) = h(x) + g(Ax).
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Abstract: It is well known that noncommutative (nc) rational functions regular at the origin
admit a good realization (or linearization) theory. This is very useful both conceptually and for a
variety of applications since it often essentially reduces the study of these rational functions to a
study of linear pencils. By translation the method can be applied to nc rational functions that are
regular at some scalar point, but not beyond. In this talk we discuss the realization problem for nc
rational functions regular at an arbitrary given matrix point using the nc difference–differential
calculus and the general Taylor–Taylor series of nc function theory Kaliuzhnyi-Verbovetskyi and
Vinnikov (2014) and provide a solution which is the analogue of the classical Hankel realization.

Keywords: Noncommutative Rational Functions, Free Noncommutative Function Theory,
Taylor–Taylor Series, Noncommutative Multidimensional Systems

NC RATIONAL FUNCTIONS

We consider the ring of nc polynomials (the free ring)
K〈x1, . . . , xd〉 over a field K. Here x1, . . . , xd are nc in-
determinates, and p ∈ K〈x1, . . . , xd〉 is of the form

p =
∑

w∈Gd

pwxw, (1)

where Gd denotes the free monoid on d generators (letters)
g1, . . . , gd with identity ∅ (the empty word), pw ∈ K, xw

are nc monomials in x1, . . . , xd (xw = xj1 · · ·xjl
for w =

gj1 · · · gjl
∈ Gd and x∅ = 1), and the sum is finite. p can be

evaluated in an obvious way on d-tuples of square matrices
of all sizes over K: for X = (X1, . . . , Xd) ∈ (Kn×n)d,

p(X) =
∑

w∈Gd

pwXw =
∑

w∈Gd

Xwpw ∈ Kn×n. (2)

Notice that nonzero p can vanish on (Kn×n)d for some
n: p = x1x2 − x2x1 vanishes on

(
K1×1

)d, and p =∑
π∈Sn+1

sign(π) x
π(1)−1
1 x2 · · ·xπ(n+1)−1

1 x2 (where Sn+1 is
the symmetric group on n + 1 elements) vanishes on
(Kn×n)d. However if p(X) = 0 for all X ∈

∐∞
n=1 (Kn×n)d

then p = 0.

The skew field of nc rational functions K (<x1, . . . , xd )>
over a field K (the free skew field) is the universal skew
field of fractions of the ring of nc polynomials over K.
This involves some non-trivial details since unlike the
commutative case, a nc rational function does not admit
a canonical coprime fraction representation; see Amit-
sur (1966); Bergman (1970); Cohn (1971a, 1972) for
some of the original constructions, and Rowen (1980)
(Chapter 8) and Cohn (1971b, 2006) for good expositions
and background. The following is most natural from the
point of view of nc function theory and is a version of

Amitsur’s original construction except that we use eval-
uation on d-tuples of square matrices of all sizes over K
instead of evaluation on a “large” auxilliary skew field;
see Kaliuzhnyi-Verbovetskyi and Vinnikov (2009, 2012)
for details and further references. We first define (scalar)
nc rational expressions by starting with nc polynomials
and then applying successive arithmetic operations —
addition, multiplication, and inversion. A nc rational ex-
pression r can be evaluated on a d-tuple X of n×n matrices
in its domain of regularity, dom r, which is defined as the
set of all d-tuples of square matrices of all sizes such that
all the inverses involved in the calculation of r(X) exist.
(We assume that dom r 6= ∅, in other words, when forming
nc rational expressions we never invert an expression that
is nowhere invertible.) Two nc rational expressions r1

and r2 are called equivalent if dom r1 ∩ dom r2 6= ∅ and
r1(Z) = r2(Z) for all d-tuples Z ∈ dom r1 ∩ dom r2. We
define a nc rational function r to be an equivalence class
of nc rational expressions; notice that it has a well-defined
evaluation on dom r =

⋃
R∈r dom R (here R denotes a 1×1

matrix-valued rather than scalar nc rational expression,
i.e., some of the intermediate expressions may involve
matrices of scalar nc rational expressions, cf. below). We
set (dom r)n = dom r ∩ (Kn×n)d.

It is clear that the evaluation of a nc rational function
respects direct sums and simultaneous similarities, so that
a nc rational function r defines a nc function (Kaliuzhnyi-
Verbovetskyi and Vinnikov (2014)) on dom r (technically,
on an apriori somewhat larger set called the extended
domain of regularity of r obtained by evaluating r on d-
tuples of generic matrices). In particular, nc rational func-
tions admit a difference-differential calculus. The partial
nc difference-differential operators

∆j : K (<x1, . . . , xd )> → K (<x1, . . . , xd )>⊗K (<x1, . . . , xd )>,
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j = 1, . . . , d, can be defined recursively (on the level of nc
rational expressions) starting with ∆j(xi) = δij(1⊗1) and
using the nc calculus rules, see Kaliuzhnyi-Verbovetskyi
and Vinnikov (2012).

POWER SERIES EXPANSION AROUND A SCALAR
POINT

A nc rational expression which is regular at 0 determines
a nc formal power series. This correspondence is defined
recursively using addition and multiplication of nc formal
power series and inversion of a nc formal power series
with an invertible constant term (the coefficient of z∅).
Furthermore, r1 and r2 are equivalent if and only if
the corresponding nc formal power series coincide. By
translation, if λ = (λ1, . . . , λd) ∈ (dom r)1 ⊆ Kd we obtain,
for X = (X1, . . . , Xd) ∈ Kn×n,

r(X) ∼
∑

w∈Gd

(X − Inλ)wrw. (3)

Here rw ∈ K are the coefficients, and X − Inλ stands for
(X1 − Inλ1, . . . , Xd − Inλd).

From the point of view of nc function theory, (3) is the
Taylor–Taylor (TT) power series expansion of r around
λ. In particular, the coefficients rw can be calculated
by means of the nc difference-differential calculus: rw =
∆wr(λ, . . . , λ), Also, the series (3) actually converges to
r(X) in the following cases: (a) if X − Inλ is a jointly
nilpotent d tuple of matrices so that the sum is finite; (b) in
the case K = R or K = C, the series converges normally on
any open nc ball

∐∞
n=1

{
X ∈ (Kn×n)d : ‖X − Inλ‖ < r

}
(with respect to any operator space norm on Kd, e.g.,
‖Z‖ = ‖Z∗

1Z1 + · · · + Z∗
dZd‖ for Z = (Z1, . . . , Zd))

contained in the (extended) domain of regularity of r.

REALIZATION THEORY AROUND THE ORIGIN

We have the following basic facts of life (Kleene (1956),
Schützenberger (1961, 1963), Fliess (1970, 1974a,b), see
Berstel and Reutenauer (1988) for a good survey, Ball,
Groenewald, and Malakorn (2005, 2006a,b), Kaliuzhnyi-
Verbovetskyi and Vinnikov (2009, 2012)):

(1) A nc power series
∑

w∈Gd
rwxw ∈ K〈〈x1, . . . , xd〉〉 is

the power series expansion of a nc rational function
at a scalar point iff the corresponding infinite Gd×Gd

Hankel matrix H = [ruv]u,v∈Gd
has finite rank.

(2) If a nc rational function r is regular at 0 it admits
a unique (up to unique similarity) minimal (control-
lable and observable) state space realization:

r(x) = D + C(I −A1x1 − · · · −Adxd)−1

(B1x1 + · · ·+ Bdxd), (4)

where A1, . . . , Ad ∈ KL×L for some integer L,
B1, . . . , Bd ∈ KL×1, C ∈ K1×L, and D = r(0).
Furthermore,

dom r =
∞∐

n=1

{
X = (X1, . . . , Xd) ∈

(
Kn×n

)d :

det(ILn −X1 ⊗A1 − · · · −Xd ⊗Ad) 6= 0
}
.

Here a realization is called minimal if the state space
dimension L is as small as possible, controllable if

spani=1,...,d, w∈Gd
im AwBi = CL,

and observable if
∩w∈Gd

ker CAw = {0}.

The items (1) and (2) are closely related: the realization
(4) implies immediately that the column rank of the
Hankel matrix H is at most L, and whereas a realization
can be constructed recursively by synthesis, starting with
polynomuals (or even just the basic monomials x1, . . . , xd)
and using sum, product, and inversion formulae, it can also
be constructed in one step using the columns space of H.
We refer to Ball, Groenewald, and Malakorn (2005) and
Kaliuzhnyi-Verbovetskyi and Vinnikov (2012) for details
and further references.

POWER SERIES EXPANSION AROUND A MATRIX
POINT

Some notation: for P = [Pij ]i,j=1,...,m , Q = [Qij ]i,j=1,...,m ∈
Ksm×sm ∼= (Ks×s)m×m, we let P �s Q denote the product
of P and Q viewed as m × m matrices over the tensor
algebra of Ks×s:

P�sQ =

 m∑
j=1

Pij ⊗Qjk


i,k=1,...,m

∈
(
Ks×s ⊗Ks×s

)m×m
.

For Z = (Z1, . . . , Zd) ∈ (Ksm×sm)d and w = gj1 · · · gjl
∈

Gd, we let Z�sw = Zi1 �s · · · �s Zil
∈
(
(Ks×s)⊗l

)m×m

.

The power series expansion around Y ∈ (dom r)s is now
given by, for X ∈ (Ksm×sm)d,

r(X) ∼
∑

w∈Gd

(X − Im ⊗ Y )�sw
rw. (5)

Here, the coefficient rw is a l-linear mapping (Ks×s)l −→
Ks×s, where l is the length of the word w, or alternatively
a linear mapping (Ks×s)⊗l −→ Ks×s. Notice that(

X −
m⊕

α=1

Y

)�sw

∈
((

Ks×s
)⊗l
)m×m

,

hence we can apply rw to every entry of this matrix
yielding a matrix in (Ks×s)m×m ∼= Ksm×sm — which is
where the value r(X) lies.

NC formal power series with a matrix centre Y , of the
form (5), form a ring with an obvious convolution product.
It is clear that any nc polynomial can be written as a
(finite) nc power series with centre Y , and the power series
expansion of a nc rational expression r regular at Y can
be obtained recursively using addition and multiplication
of nc formal power series with centre Y and inversion of
a nc formal power series with an invertible constant term.
From the point of view of nc function theory, (3) is the TT
power series expansion of r around a matrix centre Y . One
important difference with the case of a scalar centre is that
the coefficients rw are not arbitrary multilinear mappings;
they have to satisfy certain compatibility conditions with
respect to Y , see Kaliuzhnyi-Verbovetskyi and Vinnikov
(2014) ((4.14)–(4.17)).

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



REALIZATION THEORY AROUND A MATRIX
POINT

We have shown in Porat and Vinnikov (2021, 2020) that if
a nc rational function r is regular at Y ∈ (Ks×s)d, it admits
a unique (up to unique similarity) minimal (controllable
and observable) state space realization with centre Y : for
X ∈ (Ksm×sm)d,

r(X) = Im ⊗D+

(Im⊗C)
(
ILsm−(X1−Im⊗Y1)A1−· · ·−(Xd−Im⊗Yd)Ad

)−1(
(X1 − Im ⊗ Y1)B1 + · · ·+ (Xd − Im ⊗ Yd)Bd

)
. (6)

Here A1, . . . ,Ad : Ks×s → KLs×Ls for some integer L
and B1, . . . ,Bd : Ks×s → KLs×s are linear mappings,
C ∈ Ks×Ls, and D = r(Y ) ∈ Ks×s. Furthermore,

(dom r)sm =
{
X = (X1, . . . , Xd) ∈

(
Ksm×sm

)d :
det
(
ILsm−(X1−Im⊗Y1)A1−· · ·−(Xd−Im⊗Yd)Ad

)
6= 0
}
.

In contrast to the case of realizations around the origin (or
around a scalar centre), there are necessary and sufficient
compatibility conditions with respect to Y on the coeffi-
cients A1, . . . ,Ad, B1, . . . ,Bd, C, D for the corresponding
sequence of coefficients rw to satisfy the compatibility con-
ditions of Kaliuzhnyi-Verbovetskyi and Vinnikov (2014)
((4.14)–(4.17)) and for (6) to define a nc rational function.

HANKEL REALIZATIONS AND A GENERALIZED
FLIESS–KRONECKER THEOREM

The construction of the realisation (6) in Porat and
Vinnikov (2021, 2020) involves synthesis using sum,
production, and inversion formulae. In this talk we will
use the nc difference–differential calculus to associate to
the realisation (6) a functional model that is obtained
directly from the function r and the s × s matrix centre
Y . This leads to a generalization of the Fliess–Kronecker
theorem. Let I =

⋃∞
`=0 I`, I` = {ω ∈ Gd : |ω| = `} ×

({1, . . . , s}×{1, . . . , s})`. Then the nc power series (5) with
centre Y , with the coefficients satisfying the corresponding
compatibility conditions of Kaliuzhnyi-Verbovetskyi and
Vinnikov (2014) ((4.14)–(4.17)) with respect to Y , is the
power series expansion at Y of a nc rational function iff
the infinite Hankel matrix

H =
[
ruu′

(
Ei1,j1 , . . . , Ei|u|,j|u| , Ei′1,j′

1
, Ei′

|u′|
,j′

|u′|

)]
where (u, (i1, j1), . . . , (i|u|, j|u|)), (u′, (i′1, j

′
1), . . . , (i

′
|u′|, j

′
|u′|))

∈ I has finite rank.

The power series expansions and realizations around an
arbitrary matrix point provide a direct construction of the
free skew field as the limit of the corresponding local rings.
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A Hankel realization for discrete-time
overdetermined systems
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Abstract: We consider overdetermined multidimensional discrete-time systems where the
evolution of the whole state vector is given by several update equations in several linearly
independent directions. Such systems are overdetermined and we assume that they come
equipped with compatibility difference equations for the input and output signals. As a
consequence of these compatibility equations frequency domain analysis leads to function theory
on a certain algebraic curve rather than to function theory in several complex variables. More
precisely, the transfer function of the system is (under certain assumptions) a meromorphic
bundle map on a compact Riemann surface. In this talk we will discuss the corresponding
realization problem and provide a solution which is the higher genus analogue of the classical
Hankel realization.

Keywords: Multidimensional Systems, Algebraic Curves, Vector Bundles on a Compact
Riemann Surface

OVERDETERMINED SYSTEMS AND
COMPATIBILITY DIFFERENCE EQUATIONS

We consider a 2D (linear, time-invariant) discrete-time
input/state/output (i/s/o) system given by

Σ :

{
x(t + e1) = A1x(t) + B1u(t)
x(t + e2) = A2x(t) + B2u(t)

y(t) = Cx(t) + Du(t)
(1)

where t ∈ Z2, u(t) takes values in the input space E , x(t)
takes values in the state space X , and y(t) takes values in
the output space E∗ and e1, e2 denote the two standard
basis vectors

e1 = (1, 0), e2 = (0, 1)
for R2, here used to indicated increments in the horizontal
and vertical directions, respectively, on the integer lattice
Z. The system is overdetermined since there are two ways
to compute x(t + e1 + e2) from x(t):

x(t) 7→ x(t + e1) 7→ x(t + e1 + e2),
x(t) 7→ x(t + e2) 7→ x(t + e2 + e1).

This leads to the necessity of consideration of compati-
bility conditions to be satisfied in order that the system
equations have solutions.

Requiring the system equations to be compatible for the
free evolution (zero input) and arbitrary initial state leads
to the commutativity condition:

A1A2 = A2A1. (V1)
Analysis of non-free evolution leads us to assume that we
have factorizations

B1 = B̃σ1, B2 = B̃σ2,

A2B1 −A1B2 = A2B̃σ1 −A1B̃σ2 = B̃γ (V2)

for operators σ1, σ2 and γ mapping the input space E
into some auxiliary input space Ẽ and an input operator
B̃ : Ẽ → X ; then a sufficient condition for the input signal
to be compatible is given by the input difference equation:

σ2u(t + e1)− σ1u(t + e2) + γu(t) = 0. (2)
We seek a similar output difference equation for the
corresponding output signal

σ2∗y(t + e1)− σ1∗y(t + e2) + γ∗y(t) = 0 (3)

for some σ1∗, σ2∗ and γ∗ in L(E∗Ẽ∗). Using the system
equations, this leads us naturally to assume that there is
an operator D̃ ∈ L(Ẽ , Ẽ∗) so that

σ1∗CA2 − σ2∗CA1 = γ∗C, (V3)

σ2∗D = D̃σ2, σ1∗D = D̃σ1,

σ2∗CB̃σ1 − σ1∗CB̃σ2 + γ∗D = D̃γ. (V4)

A collection of spaces and operators satisfying (V1)–
(V4) is called a (commutative two-operator) vessel. It
corresponds to the overdetermined system (1) with the
compatibility difference equations (2) & (3), as well as to
the dual system

Σ∗ :


x∗(t− e1) = A∗

1x∗(t) + C∗σ∗1∗u∗(t)
x∗(t− e2) = A∗

2x∗(t) + C∗σ∗1∗u∗(t)
y∗(t) = B̃∗x∗(t) + D̃∗u∗(t)

(4)

with state space X , input space Ẽ∗ and output space Ẽ ,
and compatibility difference equations

σ∗2∗u∗(t− e1)− σ∗1∗u∗t− e2) + γ∗∗u∗(t) = 0 (5)
and

σ∗2y∗(t− e1)− σ∗1y∗(t− e2) + γ∗y∗(t) = 0. (6)

These systems are the discrete-time analogues of overde-
termined 2D continuous-time systems that were discovered
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by Livšic (1978, 1979a,b). They were extensively studied,
see Livšic–Kravitsky–Markus–Vinnikov (1995); Vinnikov
(1998); Livšic (2001); Ball and Vinnikov (2003), pri-
marily as a system-theoretic tool for spectral analysis of
pairs of commuting nonselfadjoint (primarily dissipative)
operators 1 , and for applying the state-space method to
function theory on algebraic curves and compact Riemann
surfaces. Assorted applications were considered in Livšic
(1997, 2002).

FREQUENCY DOMAIN ANALYSIS

We consider a discrete wave trajectory
u(t) = λt1

1 λt2
2 u0, x(t) = λt1

1 λt2
2 x0, y(t) = λt1

1 λt2
2 y0,

t = (t1, t2) ∈ Z2, where λ = (λ1, λ2) ∈ C2 (double
frequency), u0 ∈ E , x0 ∈ X , y0 ∈ E∗ (amplitudes). We
assume that the four input and output spaces are all finite
dimensional and that (non-degeneracy assumption) ∃ξ1, ξ2

s.t. ξ1σ1 + ξ2σ2, ξ1σ1∗ + ξ2σ2∗ are invertible. It follows
that dim E = dim Ẽ , dim E∗ = dim Ẽ∗, and we define
the input discriminant polynomial, the input discriminant
curve, and the input family of subspaces threreupon:

p(λ) = det(λ1σ2 − λ2σ1 + γ),
C0 =

{
λ ∈ C2 : p(λ) = 0

}
,

E(λ) = ker(λ1σ2 − λ2σ1 + γ) for λ ∈ C0,

and similarly on the output side:
p∗(λ) = det(λ1σ2∗ − λ2σ1∗ + γ∗),
C0∗ =

{
λ ∈ C2 : p∗(λ) = 0

}
,

E∗(λ) = ker(λ1σ2∗ − λ2σ1∗ + γ∗) for λ ∈ C0∗.

We conclude that if we are given a wave trajectory as
above with u0 6= 0, then λ ∈ C0, u0 ∈ E(λ), and
y0 = S(λ)u0 ∈ E∗(λ), where

S(λ) = D + C ((ξ1λ1 + ξ2λ2)I − (ξ1A1 + ξ2A2))
−1

B̃ξ1σ1 + ξ2σ2)
∣∣E(λ) : E(λ)→ E∗(λ)

is the joint transfer function of the vessel (independent of
the choice of ξ1, ξ2 ∈ C as long as the rsolvent exists).

Allowing for zero multiplicities, we may assume that the
input and the output discriminant polynomials share the
same irreducible factors with possibly different multiplici-
ties ri and ri∗. Under additional assumptions (maximality
of determinantal representations), E and E∗ lift to vector
bundles of ranks ri and ri∗ respectively on the correspond-
ing desingularizing Riemann surfaces. If we assume now
that the system is finite-dimensional, i.e., dimX < ∞,
then it follows that the joint transfer functions lifts, for
each irredicible component of the discriminant curve, to
a meromorphic budle map between kernel bundles (if the
vessel is minimal⇐⇒ controllable and observable then the
poles of the joint transfer function coincide exactly with
the joint spectrum of A1 and A2).

The theory of determinantal representations identifies ex-
actly, up to isomorphism, kernel bundles of determinantal
representations: up to a certain twist they are isomorphic
to vector bundles of the form Vχ ⊗∆, where Vχ is a flat
vector bundle corresponding to some representation χ of
1 So the discrete-time version yields a tool for spectral analysis
of pairs of commuting nonunitary operators (primarily, commuting
contractions).

the fundamental group and ∆ is a line bundle of differen-
tials of order 1/2 (a square root of the canonical bundle),
so that h0(Vχ⊗∆) = 0. The corresponding collection, one
for veach irreducible component of the discriminant curve,
of meromorphic bundle maps Vχ⊗∆→ Vχ∗⊗∆, is called
the normalized joint transfer function of the vessel.

THE REALIZATION PROBLEM

Assume for simplicity that we have only one irreducible
component. The realization problem is then as follows: we
are given a compact Riemann surface X together with
a pair of meromorphic functions y1 and y2 on X that
generate the whole field of meromorphic functions and
determine therefore a birational embedding of X into P2

as an irreducible projective curve C. We are also given a
pair of vector bundles Vχ⊗∆ and Vχ∗⊗∆ on X as above,
and a meromorphic bundle map T : Vχ ⊗∆ → Vχ∗ ⊗∆
which is holomorphic at the poles of y1 and y2. We want
to construct a vessel with discriminant curve C, input and
output determinantal representations with kernel bundles
isomorphic to Vχ ⊗ ∆ and Vχ∗ ⊗ ∆ respectively, and
normalized joint transfer function T .

One approach to this problem, worked out essentially
in Livšic–Kravitsky–Markus–Vinnikov (1995) in the in-
finite dimensional conservative setting, proceeds by first
constructing the two determinantal representations and
using the so called restoration formula to recover from T
the characteristic function of a 1D colligation. One then
applies the usual realization theorem. Another approach,
worked out in Ball and Vinnikov (1996) in case T has only
simple poles, is the analogue of the so called Gilbert re-
alization — it constructs the vessel explicitly by factoring
the residues.

Our approach will be very different: we will construct both
the state space and the input/output spaces of the vessel
as spaces of meromorphic sections of the bundle Vχ∗ ⊗∆
using the meromorphic bundle map T and the functions
y1, y2, analogously to the usual construction of the Hankel
realization.
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Abstract: The relationship between the cone of positive semidefinite (psd) real forms and its
subcone of sums of squares (sos) of forms is of fundamental importance in real algebraic geometry
and optimization, and has been studied extensively (see for instance Marshall (2008)). The study
of this relationship goes back to the 1888 seminal paper of Hilbert, where he gave a complete
characterisation of the pairs (n, 2d) for which a psd n-ary 2d-ic form can be written as sos. In
this talk we discuss how this relationship changes under the additional assumptions of invariance
on the given forms, i.e. when we consider the induced action of a real finite reflection group on
the ring of polynomials. We will see that in equivariant situations Hilbert’s classification does
not remain true in general and depends on the group action, the degree and the number of
variables.

Keywords: Positive semidefinite forms, Sums of squares, Symmetric forms, Test sets, Extremal
rays

1. INTRODUCTION

Hilbert (1888) studied the inclusion Pn,2d ⊇ Σn,2d, where
Pn,2d and Σn,2d are respectively the cones of psd and sos
forms of degree 2d in n variables. He proved that:

Pn,2d = Σn,2d if and only if n = 2, d = 1, or
(n, 2d) = (3, 4).

In order to establish that Σn,2d ( Pn,2d, he demonstrated
that Σ3,6 ( P3,6, Σ4,4 ( P4,4, thus reducing the problem
to these two basic cases using an argument to increase
the number of variables and degree of a given psd not
sos form while simultaneously preserving the psd not sos
property. In these two cases Hilbert described a method
to produce examples of psd not sos forms, which was
“elaborate and unpractical” (see Choi et al (1977)), so no
explicit examples appeared in literature for next 80 years.
The first explicit examples of psd not sos forms in these two
cases were found by Motzkin (1967) and Robinson (1969),
in the late 1970’s. Subsequently more examples were given
by Choi-Lam (see Choi (1975), Choi et al (1976), Choi et
al (1977)), Reznick (see Reznick (1989)) and Schmüdgen
(see Schmüedgen (1979)).

In 1976, Choi and Lam (see Choi et al. (1977)) considered
the same inclusion for symmetric forms, i.e forms invariant
under the action of the symmetric group Sn. As an
analogue of Hilbert’s approach, they demonstrated that
establishing the strict inclusion for all n ≥ 3, 2d ≥ 4
and (n, 2d) 6= (3, 4) reduces to show it just for the pairs
(n, 2d) = (3, 6), (n, 4)n≥4, by using a trick that increases
the degree – however not the number of variables – of
a given psd not sos symmetric form by simultaneously
preserving the psd not sos symmetric property. Assuming
the existence of psd not sos symmetric n-ary quartics

for n ≥ 5, they showed that Hilbert’s characterisation
above remains unchanged. Recently, we (see Goel et al
(2016)) constructed explicitly these quartic forms, thus
completing their proof. For this we used test set for
(positivity of) symmetric quartics, that was originally
given by Choi-Lam-Reznick (see Choi et al (1980)) and
later generalized by Timofte (see Timofte (2003)) for
symmetric polynomials of degree 2d in n variables.

Recently, we studied systematically the above inclusion
of cones for even symmetric forms, i.e. forms invariant
under the action of the group Sn × Zn

2 . The idea was to
develop an analogue of reduction to basic cases, in the
same spirit as Hilbert and Choi-Lam. Choi-Lam-Reznick
(see Choi et al (1987)) and Harris (see Harris (1999))
established that Hilbert’s characterisation is no longer true
for even symmetric forms; indeed equality of these cones
holds also for the pairs (n, 4)n≥4 and (3, 8). Moreover, they
gave psd not sos even symmetric examples for the pairs
(n, 6)n≥3, (3, 10) and (4, 8). Building up on their work,
we (see Goel et al (2017)) established strict inclusion for
the pairs (3, 2d)d≥6, (n, 8)n≥5, (n, 2d)n≥4,d≥5, and proved
that it suffices for all the remaining cases [i.e. for all
n ≥ 3, 2d ≥ 6 and (n, 2d) 6= (3, 8)]. For this we introduced
as our leading tool a “Degree Jumping Principle”(that
increases the degree of a given psd not sos even symmetric
form while simultaneously preserving the psd not sos even
symmetric property) and constructed explicit counterex-
amples for the pairs (n, 8)n≥5, (n, 10)n≥4, (n, 12)n≥4. This
let us to a complete resolution of all remaining open cases,
thus providing a complete analogue of Hilbert’s theorem
for even symmetric forms (see Goel et al (2017)), namely,

“an even symmetric n-ary 2d-ic psd form is sos if and
only if n = 2 or d = 1 or (n, 2d) = (n, 4)n≥3 or

(n, 2d) = (3, 8)”.
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Recently, Blekherman-Riener (2020) studied the asymp-
totic behaviour of symmetric psd forms and symmetric sos
forms when the degree 2d is fixed and the number of vari-
ables n grows. For degree 4 they showed that the difference
between symmetric psd forms and sos forms asymptoti-
cally goes to zero. For n ≥ 4, they gave symmetric n-ary
quartic forms which lies on the boundary of the symmetric
sos cone but not on the boundary of the symmetric psd
cone. They used representation theory of the symmetric
group and examined possible kernels of an extreme ray
of the dual cone of symmetric n-ary sos quartics which
does not come from a point evaluation. They developed
this method for the symmetric situation from the work in
Blekherman (2012) for the non-symmetric situation [where
for (3, 6) and (4, 4) cases, the author constructed quadratic
forms that span extremal rays of the dual cone of Σn,2d

but are not point evaluations]. Recently, Debus (2019)
used methods similar to the ones in Blekherman et al.
(2020), and proved equality of psd and sos quaternary
quartics invariant under the diagonal action of D2.4×D2.4,
where the Dihedral group D2.m is the symmetry group of
a regular m-gon.

2. PSD VS SOS IN EQUIVARIANT SITUATIONS

The problem of finding sos decompositions of a polynomial
invariant under the action of a finite group was studied by
Gatermann-Parrilo (2003) and by Cimpric et al. (2009)
(for reductive groups). Further, it is interesting as well
as important to find the explicit description of the cone
of invariant sos forms; this is done for invariance under a
finite group generated by pseudo reflections and octahedral
group by Vallentin et al. (2017).

As discussed in section 1 above, taking invariance under a
bigger group results in equality of the cones of invariant
psd and invariant sos forms for more number of pairs.
This naturally opens up an idea to investigate a wider
generalization of analogues of Hilbert’s theorem for forms
invariant under other group actions.

One possible approach tries to develop more sophisti-
cated arguments and tools for the invariant forms under
consideration, along the same lines as Hilbert (1888),
Choi-Lam (1977) and Goel-Kuhlmann-Reznick (2017), in
particular

• reduction to basic cases
• indefinite irreducible multipliers invariant under the

considered group G (like Degree jumping principle)
• counterexamples in basic cases
• generalization of Timofte’s degree principle (see Tim-

ofte (2003)) to invariant forms

This is very important since all these tools (in particular
test sets for positivity of symmetric polynomials) played
an important role in establishing the analogues of Hilbert’s
theorem for symmetric and even symmetric forms. An
adaptation of Riener’s algebraic proof (see Riener (2012))
of Timofte’s theorem would be necessary, depending on
the invariants of the group action. In this spirit we are
investigating the inclusion of cones for forms invariant
under the action of finite reflection groups and Lie groups,
using a recent generalization of Timofte’s degree principle

for these groups given by Acevedo-Velasco (2015) and
Friedl-Riener-Sanyal (see Friedl et al. (2016)).

Another possible approach is to see how the represen-
tation theory of these groups allows to use the symmetry
inherent in these cones to give more efficient descriptions,
in particular using the methods similar to the ones in
Blekherman-Riener (2012) and Debus (2019).

Any real reflection group can be identified with a di-
rect product of essential reflection groups G. According
to Coxeter classification (see Humphreys (1992)), these
G includes four infinite families of irreducible reflection
groups An−1, Bn, Dn, I2(m), and the six exceptional re-
flection groups E6, E7, E8, F4, H3, H4. In a joint work with
Sebastian Debus and Cordian Riener, we are investigating
inclusion of cones for forms invariant under the action of
finite reflection groups, using the second approach.

For the first approach we needed “test sets” a la
Timofte. On the other hand with the second approach
that we suggested above, it would circumvent the need of a
currently non existing general Timofte result for reductive
groups (although such a general result would be interesting
of course in its own right).

In this talk we will focus especially on the results for forms
invariant under the action of An−1, Bn and Dn (based on
joint work with Sebastian Debus and Cordian Riener). The
case of forms invariant under the action of I2(m) is trivial,
since the I2(m)-invariant forms are bivariate and thus by
Hilbert’s characterisation these forms are psd if and only
if they are sos.

3. CONCLUSION

It is noteworthy that the first counterexamples (i.e. psd
not sos ternary sextics and quaternary quartics) substan-
tiating Hilbert’s 1888 theorem were given almost 80 years
later in 1967. Moreover, the results on equality and strict
inclusions of the cones of psd and sos forms (respectively
symmetric, even symmetric forms) by Hilbert (respectively
Choi-Lam-Reznick, Harris and Goel-Kuhlmann-Reznick)
were building stones in establishing Hilbert’s theorem (re-
spectively its analogue for symmetric and even symmetric
forms). Thus, given a finite group G, establishing equality
or strict inclusion of cones of invariant psd and invariant
sos forms for any (n, 2d) will be a novel contribution in
this research area and would have a strong impact on the
applications of sums of squares.
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Abstract: The best low rank tensor approximation problem occurs in a wide variety of
applications; however, this problem is strictly speaking not well posed. Indeed, best low rank
tensor approximations can fail to exist. In the case that a best low rank approximation fails to
exist, computing a near optimal low rank approximation is highly numerically ill-conditioned.
In this talk we will consider the best low rank approximation problem for the special class
of tensors which are positive definite. We will show that the set of low rank tensors that are
positive definite is relatively closed as a subset of the set of tensors that are positive definite.
Using this fact, we will provide a deterministic bound for the existence of a best low rank
approximation of a positive definite tensor. We will illustrate through numerical experiments
that our bound is highly predictive of numerical errors when attempting to compute a best low
rank approximation of a measured tensor.

Keywords: Tensors, Canonical polyadic decomposition, Best low rank approximation, Positive
definite

1. INTRODUCTION

Tensors, or multiindexed arrays, play an important role
in fields such as machine learning and signal processing.
These higher-order generalizations of matrices allow for
preservation of higher-order structure present in data, and
low rank decompositions of tensors allow for recovery of
underlying information. One of the most popular decom-
positions for tensors is the canonical polyadic decomposi-
tion (CPD) which expresses a tensor as a sum of rank one
tensors.

Tensor decompositions are widely used applications as
they many desirable qualities which are distinct from
matrix decompositions. For example, a decomposition of
a low rank tensor is generically unique. This essential
uniqueness allows for extraction of component information
from a measured tensor of interest and makes tensor
decomposition a valuable tool in applications such as blind
source separation.

A common setting in practice is to have access to a noisy
measurement of some low rank signal tensor of interest.
This measurement itself does not have low rank, so one
must compute a best low rank CPD approximation of the

⋆ This research received funding from (1) Flemish Government: This
work was supported by the Fonds de la Recherche Scientifique–
FNRS and the Fonds Wetenschappelijk Onderzoek–Vlaanderen un-
der EOS Project no 30468160 (SeLMA) and under the “Onderzoek-
sprogramma Artificiële Intelligentie (AI) Vlaanderen” programme;
(2) KU Leuven Internal Funds C16/15/059; (3) NSF grant DMS-
1500835

measured tensor. However, this approximation problem is
ill-posed as the set of tensors of rank less than or equal to
R is in general not closed when R > 1.

In the case a tensor does not have a best rank R approxi-
mation, then as one’s rank R approximation improves, the
norm of rank-1 tensors in the rank R approximation must
approach infinity. This phenomena known as “diverging
components”. These diverging components present a seri-
ous numerical issue when one wishes to obtain component
information from a tensor which does not have a best low
rank approximation.

One particularly important setting is where the tensor of
interest is positive (semi)definite. For example, positive
definite tensors in the form of higher-order statistics play
a key role in blind source separation. In addition, there are
many applications in which a tensor models a nonlinear
function which has positive evaluation on any input. The
tensor used to model such a function will be positive
definite.

In this talk, we show that the set of “low rank” positive
definite tensors is relatively closed as a subset of the set
of positive definite tensors. Using this result, we produce
present a deterministic guarantee for the existence of a
best low rank approximation in the form of a spectral norm
bound on measurement error. Furthermore we show that
this bound is computable via semidefinite programming
and sharp in certain settings.
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2. POSITIVE DEFINITE TENSORS

In this talk, a tensor is a multiinedexed array T of size
R× . . .×R. Here the integer R occurs a total of N times
where N is even. We denote this space by (RR)⊗N . We
say a tensor T ∈ (RR)⊗N is symmetric if T if the entries
of T are invariant under a permutation of indices. That is,
T ∈ (RR)⊗N is symmetric if for all permutations π acting
on the set {1, . . . , N}, one has

T (i1, i2, . . . , iN ) = T (iπ(1), iπ(2), . . . , iπ(N)).

for all i1, i2, . . . , iN .

Given a symmetric tensor T ∈ (RR)⊗N , a common goal is
to compute the (symmetric) canonical polyadic decompo-
sition (CPD) of T . That is, one wishes to decompose

T =
R∑

r=1

δr(ur ⊗ . . .⊗ ur) (1)

where R is as small as possible. Here ur ∈ RR and δr = ±1
for each r = 1, . . . , R. The product ⊗ denotes the outer
product of vectors. In particular, the tensor ur ⊗ . . .⊗ ur

has i1, i2, . . . , iN+1 entry equal to

ur(i1) . . .ur(iN ),

where ur(in) denotes the inth entry of ur. When R is
as small as possible in equation (1), we say the tensor T
has rank R. From here on, will use (ur)

⊗N to denote the
symmetric rank one tensor ur ⊗ . . .⊗ ur.

We let ⟨·, ·⟩ denote the usual Frobenius inner product on
(RR)⊗N . That is, given tensors T ,S ∈ (RR)⊗N , one has

⟨T ,S⟩ =
∑

T (i1, i2, . . . , iN )S(i1, i2, . . . , iN ).

Define quantities λmin(T ) and λmax by

λmin(T ) = min
∥u∥2=1

⟨T , (u)⊗N ⟩ λmax(T ) = max
∥u∥2=1

⟨T , (u)⊗N ⟩.

We say a tensor T is positive definite if T is symmetric
and if λmin(T ) > 0.

The first main result of the talk will be to show that
the set of rank R positive definite tensors in (RR)⊗N is
relatively closed as a subset of the set of positive definite
tensors in (RR)⊗N . Intuitively this is accomplished by
showing that a rank R positive definite tensor in (RR)⊗N

must be expressed as a positive coefficient sum of positive
semidefinite rank one tensors. This prevents the occurrence
of diverging components for tensors in a neighborhood of
T which in turn leads to the relative closedness of the set
of rank R positive definite tensors.

We use this result to provide a deterministic guarantee
for the existence of a best low rank approximation of a
perturbation of a rank R positive definite tensor T . In
particular, we show that if E ∈ (RR)⊗N is a symmetric
tensor which satisfies

λmax(E)/2 < λmin(T ),

then T + E has a best rank R approximation among the
set of symmetric tensors.

For tensors arising in applications where the tensor of
interest is expected to be positive definite, this existence

result can be interpreted as saying that the measured
tensor T + E has a best low rank approximation so long
as the conditioning of T and the signal to noise ratio of
T to E is good enough so that near optimal low rank
approximations to T +E are positive definite. Thus, a best
low rank approximation exists so long as it exhibits the
properties that are expected for the setting.
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A Mayer Form for Finite Horizon Hybrid Optimal Control Problems
Ricardo G. Sanfelice and Berk Altin

Abstract— We consider finite horizon optimal control prob-
lems for hybrid plants that are modeled as hybrid equations. To
determine key properties of the problem, such as existence and
regularity of the optimal cost, we formulate a Mayer form that
is tailored to hybrid systems. Within the setting of nominally
outer well-posed hybrid plants, and under mild (and standard)
regularity conditions, establishing existence of optimal solutions
and nice (upper semicontinuous and continuous) dependence
of the optimal cost is enabled by the proposed Mayer form.
The advantage of the proposed approach is that it does not
require additional properties that are typically required in the
literature, such as assumptions on the continuous dynamics or
that the terminal cost is a control Lyapunov function on the
terminal constraint set. The proposed new form is illustrated in
examples.

I. INTRODUCTION

Models and algorithms characterized by the interplay of
continuous-time dynamics and instantaneous changes have
become prevalent due to their capabilities of leading to
solutions to control problems that classical techniques cannot
solve, or simply do not apply. These advances have been
enabled by the modeling, analysis, and design techniques for
hybrid dynamical systems. A hybrid dynamical system, or just
a hybrid system, is a dynamical system that exhibits charac-
teristics of both continuous-time and discrete-time dynamical
systems.

Numerous tools are available in the literature for the study
of hybrid systems [1]–[6]. The literature is rich in tools for
the analysis of reachability [7]–[9], asymptotic stability [1],
[3], [5], forward invariance [10], [11], and control design [6].
On the other hand, optimality for hybrid systems is much less
mature.

Initial results on optimality of trajectories over finite hori-
zons were developed in [12], including a maximum principle
for optimality, for a class of switched systems. This result was
extended in [13], [14] to a broader class of systems, one al-
lowing for state resets – the models considered are in the spirit
of hybrid automata. More recently, linear-quadratic control
for a class of hybrid systems with a sample-and-hold structure
was considered in [15], [16]. In particular, the development in
[15] is within the hybrid inclusions framework of [5], [6], for
the special case when the continuous dynamics are modeled
by a differential equation that is linear and the discrete
dynamics are governed by a linear difference equation. The
problem of guaranteeing existence of optimal control inputs

R. G. Sanfelice is with the Department of Electrical and Computer
Engineering, University of California, Santa Cruz, CA 95064. Email:
ricardo@ucsc.edu. Research partially supported by NSF Grants no.
ECS-1710621, CNS-2039054, and CNS-2111688, by AFOSR Grants no.
FA9550-19-1-0053, FA9550-19-1-0169, and FA9550-20-1-0238, and by
ARO Grant no. W911NF-20-1-0253.

for a class of hybrid systems was studied in [17]. The hybrid
inclusions framework is employed in [17] and the conditions
for existence of optimal control inputs require the continuous
dynamics of the system to be governed by a differential
equation whose right-hand side is affine in the control input.
Optimality of static state-feedback laws for hybrid inclusions
with continuous and discrete dynamics modeled by (single-
valued) nonlinear maps was studied in [18]. Infinitesimal
conditions involving a Lyapunov-like function are presented
in [18] to guarantee optimality over the infinite (hybrid)
horizon. The finite horizon optimization problem for the same
broad class of hybrid systems was formulated and developed
in a sequence of papers leading to a model predictive control
framework; see [19]–[22].

Though the advances cited above have contributed to
optimal control for hybrid systems, some of the key prop-
erties of the optimal control problem associated to general
hybrid systems, wherein trajectories are constrained to evolve
continuously (flow) in certain regions of the state space and
to exhibit instantaneous changes (jump) under certain condi-
tions, have not been yet revealed in the literature. Specifically,
the regularity properties of the optimal cost, in particular,
(semi) continuous dependence of the optimal cost and optimal
trajectories on the constraints on where the trajectories can
flow or jump have not yet been investigated. Very importantly,
conditions enabling the approximations of the optimal cost in
a continuous manner are not available in the literature. Indeed,
results that permit relating the effect of varying parameters
and initial conditions when they approach nominal values,
the expectation being that the optimal cost also approaches its
nominal value, are missing. Understanding such a dependency
is critical due to the fact that it is unavoidable to numerically
compute trajectories (hence the optimal trajectories) without
error [23], [24].

II. OVERVIEW OF THE PRESENTATION

We consider concrete finite horizon optimization problems
for hybrid plants given by

HP

{
ẋP ∈ FP (xP , u) (xP , u) ∈ CP

x+P ∈ GP (xP , u) (xP , u) ∈ DP

(1)

where CP is the flow set, FP is the flow map, DP is the jump
set, and GP is the jump map. A solution of HP is defined by
a pair (called a solution pair) (t, j) 7→ (xP (t, j), u(t, j)) on
a hybrid time domain dom(xP , u) satisfying the dynamics
of HP , in a similar manner as the way a solution of the
(closed-loop) hybrid system H is defined in [5]. Given a
solution pair (xP , u) with compact domain, the associated
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cost is defined by J∑
j=0

∫ tj+1

tj

LCP
(xP (t, j), u(t, j)) dt

+

J−1∑
j=0

LDP
(xP (tj+1, j), u(tj+1, j))

+V (xP (T, J))

(2)

where tj is the j-th jump time and (T, J) ∈ dom(xP , u) is
the terminal time, i.e.,

dom(xP , u) =
J⋃

j=0

([tj , tj+1]× {j})

and T = TJ+1. In (2), the first term LCP
is the stage cost

capturing the cost over intervals of flows, LDP
is the stage

cost capturing the cost to jump, and V is the terminal cost.
The constructions presented above lead to the following

finite horizon hybrid optimization problem.

Problem: Given a hybrid system HP as in (1), a stage cost
for flows LCP

, a stage cost for jumps LDP
, a terminal cost

V , a closed set XP , a hybrid time (T, J) ∈ R≥0 × N :=
[0,∞)×{0, 1, . . .}, and an initial condition ξ, find a solution
pair (xP , u) minimizing (2) subject to

• The initial condition constraint xP (0, 0) = ξ.
• The terminal constraint xP (T, J) ∈ XP .
Note that the flow and jump sets of HP impose constraints

that the solution pair needs to satisfy during flows and jumps,
respectively. In fact, for the solution pair to exist up to hybrid
time (T, J) it has to belong to CP and DP : as [6, Definition
2.29] indicates, (xP , u) is a solution of HP if

• (xP (0, 0), u(0, 0)) ∈ CP ∪DP ;
• For each j ∈ N,

(xP (t, j), u(t, j)) ∈ CP

for all t ∈ intIj and
dxP
dt

(t, j) ∈ FP (xP (t, j), u(t, j))

for almost all t ∈ Ij , where Ij := {t : (t, j) ∈
dom(xP , u)};

• For each (t, j) ∈ dom(xP , u) such that (t, j + 1) ∈
dom(xP , u),

(xP (t, j), u(t, j)) ∈ DP

and
xP (t, j + 1) ∈ GP (xP (t, j), u(t, j))

In this presentation, we determine key properties of the
problem, such as existence and regularity of the optimal
cost, by formulating a Mayer form that is tailored to hybrid
systems. Under mild – and standard – regularity conditions,
we show that when the hybrid system is well-posed, existence
of optimal solutions and nice (upper semicontinuous and
continuous) dependence of the optimal cost can be established
using the proposed Mayer form. The results will be illustrated
in examples.
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A fundamental result of Löwner gives that a real-valued
function is matrix monotone if and only if it extends to an
analytic function with a rather rigid structure. Löwner’s
student Kraus essentially showed that functions that are
matrix convex are analytic functions with a similarly rigid
form.

Recall that Hermitian matrices have a partial ordering
where A ≤ B if 0 ≤ B − A (that is, B − A is positive
semidefinite). Suppose that f : (a, b) → R. A function
is called matrix monotone if f(A) ≤ f(B) whenever
A ≤ B and the spectrum of A,B is in (a, b). The classical
Löwner theorem gives the following connection between
monotonicity and analyticity. Let H denote the complex
upper half plane.

Theorem 1. (K. Löwner (1934)). A function f(a, b) → R

is matrix monotone if and only if f extends to a continuous
function f : H ∪ (a, b) → H that is analytic on H.

Functions that map H into itself are called Pick func-
tions. Nevalinna showed that Pick functions are character-
ized by a straightforward integral representation in terms
of a positive Borel measure µ:

Theorem 2. (Nevanlinna (1929)). Let f : H → C. The
function f is analytic and maps H to H if and only if
there exist a ∈ R, b ≥ 0 and a positive Borel measure µ
on R where 1

1+t2
is µ-integrable such that

f(z) = a+ bz +

∫

R

1

t− z
−

t

1 + t2
dµ(t)

for all z ∈ H.

Now let f : (a, b) → R be a function. We say that f is
matrix convex if

f

(

A+B

2

)

≤
f(A) + f(B)

2

for all A,B self-adjoint with spectrum in (a, b). Matrix
convex functions demonstrate the same essential rigidity
as matrix monotone functions.

Theorem 3. (Kraus (1936)). Let f : (−1, 1) → R. f is
matrix convex if and only if

f(x) = a+ bx+

∫

[−1,1]

x2

1 + tx
dµ(t)

⋆ Partially supported by National Science Foundation DMS Analysis

Grant 2055098

where a, b ∈ R and µ is a finite measure supported on
[−1, 1]. Note that all such functions analytically continue
to the upper half plane - that is, matrix convex functions
also continue as to a subset of Pick functions.

We are concerned with how to generalize these results
to functions of several variables. A natural setting for
the study of such functions turns out to be the rapidly
developing area of noncommutative function theory, which
concerns functions several noncommuting variables acting
on domains of matrix tuples.

Define the matrix universe to be tuples of same sized
matrices

Md =
⋃

Mn(C)
d.

A free set D ⊆ Md satisfies

(1) X,Y ∈ D ⇒ X ⊕ Y ∈ D
(2) X implies U∗XU ∈ D whenever U is unitary.

A (real) free function f : D → M1 satisfies:

(1) f(X ⊕ Y ) = f(X)⊕ f(Y )
(2) f(U∗XU) = U∗f(X)U whenever U is unitary.

In the context of functions of several noncommuting vari-
ables, we have a direct generalization of this single-variable
connection between monotonicity/convexity, analytic ex-
tension, and structured representation. We first consider
the case of matrix monotone functions (a selection of rele-
vant work in commutative and noncommutative variables
can be found in Agler et al. (2012); Pascoe (2019, 2018);
Palfia (2020); Pascoe and Tully-Doyle (2017, 2022, 2021)).

We restrict our attention to the noncommutative case. As
in the single-variable setting, a noncommutative function
f is said to be matrix monotone if f(A) ≤ f(B) whenever
A ≤ B.

Theorem 4. (Pascoe and Tully-Doyle (2022)). Let f be a
locally bounded matrix monotone function defined on a
convex free set of self-adjoints containing 0. Then there
exist a scalar a0, a vector Q, projections Pi, and a bounded
self-adjoint contraction A such that

f(X) = a0 +Q∗(A−

∑

PiX
−1

i )−1Q. (1)

As in the classical case, the form of this “Nevanlinna
representation” gives analytic continuation to a matrix
upper half plane - that is, matrix monotone functions in
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the noncommutative setting are those that analytically
continue as Pick functions.

The idea of the proof goes through power series. The
assumptions on f allow the application of the “royal road”
idea, which uses a complex analytic approach to show
that matrix monotone functions must be real analytic.
Then a matrix monotone function f has a power series
f(X) =

∑

cαX
α. Taking the derivative of f gives

Df(X)[H] =
∑

cβ∗xiαX
β∗

HiX
α

The monotonicity of f leads to the positivity of the xi-
localizing matrices Ci = [cβ∗xiα]α,β , which in turn allow
the construction of the ambient Hilbert spaces Hi from
which the projections Pi and the operator A are derived
in the representation (1) .

The royal road approach to realization runs through a
argument involving an application of the classical theorem
and presupposes the form of the realization formula to
be established. Another line of argument uses a Hilbert
space approach ( for example, in Agler et al. (2012) in
the case of several commuting variables) to derive the
representations. For a thorough treatment of the Hilbert
space methods, (so-called operator analysis) see Agler
et al. (2020). Löwner’s theorem has recently received
attention even in the classical case (see Simon (2019)).

We now consider the analogue of Kraus’s theorem on
matrix convex functions. As in the classical case, say that
a noncommutative function f is matrix convex if

f

(

A+B

2

)

≤
f(A) + f(B)

2
.

Matrix convex functions arise as an important object of
study in the body of work surrounding linear matrix in-
equalities. In Helton et al. (2006), Helton, McCullough,
and Vinnikov constructed a Kraus-like “butterfly realiza-
tion” for noncommutative rational matrix convex func-
tions. A similar argument to the proof of Theorem 4 gives
that the result holds for general functions.

Theorem 5. (Pascoe and Tully-Doyle (2022)). Let f be a
locally bounded matrix convex function defined on a
convex free set of self-adjoints containing 0. Then there
exist self-adjoint Ti, a vector Q, a scalar a0, and a linear
function L such that

f(X) = a0+L(X)+(
∑

QiXi)
∗(I−

∑

TiXi)
−1(

∑

QiXi).

As in the case of monotone functions, this representation
also has an analytic continuation result, but in this case
to a subset of a matrix upper half plane.

The study of noncommutative realizations for structured
families of functions has developed to include, for example,
partially matrix convex functions (see Jury et al. (2021))
and plurisubharmonic functions (see Dym et al. (2020);
Pascoe (2021)). A noncommutative function is partially
matrix convex if it is convex in one class of variables -
that is

f

(

A,
X + Y

2

)

≤
f(A,X) + f(A, Y )

2
.

Combining the complex analytic “royal road” viewpoint of
Pascoe and Tully-Doyle (2022) with the study of partially

matrix convex rational functions in Dym et al. (2020) leads
to the following realization theorem.

Theorem 6. (Jury et al. (2021)). A noncommutative ra-
tional function r in two variables a and x is partially
matrix convex in x on self-adjoints near 0 if and only if
there exists a vector rational function ℓ(a, x) that is linear
in x and a matrix rational function w(a) such that

r(a, x) =

ℓ(a, x)∗
√

w(a)(I −
∑

√

w(a)Tixi

√

w(a))−1
√

w(a)ℓ(a, x)

+ f(a, x)

where f(a, x) is affine linear in x and the Ti are matrices.

Ultimately, the perspective underlying this line of work
leads to a striking monodromy result (Pascoe (2021)) in
the noncommutative setting.
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Abstract: Several optimal control problems in Rd, like systems with uncertainty, control of
flock dynamics, or control of multiagent systems, can be naturally formulated in the space of
probability measures in Rd. The compatibility of such control systems with a state constraint
can be studied by an Hamilton-Jacobi-Bellman equation stated in the Wasserstein space of
probability measure. We show that the dynamic is compatible with the constraint when the
distance function satisfies the Hamilton Jacobi inequality in a suitable viscosity sense.

Keywords: Optimal control, optimal transport, Hamilton-Jacobi-Bellman equation,
multi-agent.

1. INTRODUCTION

The studied multiagent system concerns a control systems
with a so huge amount of agent that they are indistigu-
ishable and only a statistical description of the position
of the agents is available : at every time for every subset
A ⊂ Rd, the fraction ν(A) of the total amount of agents
that are present in A is known. So the state variable of
the system is a Borel probabily measure on Rd (the set
of such probability measure is denoted by P(Rd). Hence,
the evolution of the controlled multi-agent system can be
represented by the following two-scale dynamics

• microscopic dynamics: each agent’s position at time
t is given by x(t), which evolves according to the
dynamical system

ẋ(t) ∈ F (µt, x(t)), for a.e. t > 0 , (1)

where F is a set-valued map.Here each agent’s dy-
namics is nonlocal since it depends also on the in-
stantaneous configuration µt of the crowd of agents at
time t, described by the probability measure µtP(Rd).
• macroscopic dynamics: the evolution of the crowd of

agents at time t is given by a time-depending measure
µt ∈ P(Rd) whose evolution satisfies the following
continuity equation(cf Amb (2008))

∂tµt + div(vtµt) = 0, t > 0, (2)

coupled with the control constraint

vt(x) ∈ F (µt, x) for µt-a.e. x ∈ Rd for a.e. t ≥ 0. (3)

which represents the possible velocity vt(x) for an
agent at time t and at the position x.

Similar models have been studied in Ave (2018, 2021);
Bard (2022); Bon (2021); Cav (2021); Jim (2020, 2021);
Mar (2018).

? The research of the third author has been partially supported
by the Air Force Office of Scientific Research under award number
FA9550-18-1-0254.

Here we investigate the existence of solution of the above
multiagent system under a closed constraint K ⊂ P(Rd).
This constraint could be satisfied in the both folool=wing
meaning:

• The multiagent system is viable if and only if for
any initial condition µ ∈ K there exists a solution
t 7→ µt of the controlled continuity equation (2)-(3)
with µ0 = µ such that µt ∈ rK for all t ≥ 0;
• The multiagent system is invariant if and only if

for any µK and for any solution t 7→ µt of the
controlled continuity equation (2)-(3) with µ0 = µ
we have µt ∈ K for all t ≥ 0.

Following an idea firstly used in Buck (1998) in the frame-
work of stochastic control systems we give an equivalent
characterization of the viability and invariance in terms of
of a suitable Hamilton Jacobi Bellman inequalities under-
stood in the viscosity sense. This short note uses result
obtained in collaboration with Cavagnari, Jimenez and
Marigonda.

2. ASSUMPTIONS ON THE DYNAMICS

We denote by P2(Rd) the subset of the elements P(Rd)
with finite second moment, endowed with the 2-Wasserstein
distance (cf e.g. Amb (2008)).

We make the following supposition on the set-valued map
F

(F1) F : P2(Rd) × Rd 7→ Rd is continuous with convex,
compact and nonempty images, where on P2(Rd)×Rd
we consider the metric W2(µ1, µ2) + |x1 − x2|.

(F2) there exists L > 0, a compact metric space U and a
continuous map f : P2(Rd)×Rd×U → Rd satisfying

|f(µ1, x1, u)− f(µ2, x2, u)|
≤ L(W2(µ1, µ2) + |x1 − x2|),
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for all µ1, µ2 in P2(Rd) and x1, x2 in Rd such that

F (µ, x) = {f(µ, x, u) : u ∈ U} .
Under these assumptions we know that the set of solution
of (2)-(3) with µ0 = µ is nonempty and compact (cf Jim
(2020, 2021); Mar (2018)).

Given a closed subset K ⊂ P2(Rd), we define its distance
function dK : P2(Rd) 7→ R+ by

dK(µ) := inf{W2(µ, ν), ν ∈ K }.

3. HAMILTON JACOBI INEQUALITIES

Under the above assumptions are now ready to state the
main result

Theorem 3.1. Let K be a closed subset of P2(Rd)

The constraint K is viable iff the function µ 7→ dK(µ) is a
viscosity supersolution of

(L+ 2)u(µ) +Hviab
F (µ,Dµu(µ)) = 0,

where, for all µ ∈ P2(Rd), p ∈ L2
µ(Rd;Rd),

Hviab
F (µ, p) := −dK(µ)− inf

v(·) ∈ L2
µ(Rd)

v(x) ∈ F (µ, x)

∫
Rd

v(x).p(x) dµ(x).

K is invariant iff the function µ 7→ dK(µ) is a viscosity
supersolution of

(L+ 2)u(µ) +Hinv
F (µ,Dµu(µ)) = 0,

where, for all µ ∈ P2(Rd), p ∈ L2
µ(Rd;Rd),

Hinv
F (µ, p) := −dK(µ)− sup

v(·) ∈ L2
µ(Rd)

v(x) ∈ F (µ, x)

∫
Rd

v(x).p(x) dµ(x).

where the relations v(x) ∈ F (µ, x) appaearring under the
supremum and infimum means that for µ almost every
x ∈ Rd we have v(x) ∈ F (µ, x).

The notion of super solution has to be understood in
viscosity sense namely : The functioon u : P2(Rd) 7→
P2(Rd) is a viscosity supersolution to

(L+ 2)u(µ) +H(µ,Dµu(µ)) = 0,

if and only if for every µ̄ ∈ P2(Rd) and ε > 0 and any
continuous differentiable 1 function v : P2(Rd) 7→ P2(Rd)
such there exists r > 0 such that: v(µ̄) = u(µ̄) and

u(ν) ≤ v(ν)− εW2(µ̄, ν) ∀ν ∈ P2(Rd) s.t. W2(µ̄, ν) < r

we have

(L+ 2)v(µ) +H(µ,Dµv(µ)) ≤ Cε,

for a constant which depends only on F .

The proof of the theorems is based on a comparison result
for the Hamilton Jacobi equation that satisfy the following
value functions defined on : [0, T ]× P2(Rd)

V viab(t0, µ) := inf
(µt)t∈[t0,T ]

T∫
t0

dK(µt) dt, (4)

1 For the definition of continouly differentiable function with Lions
derivatives we refer te reader to Car (2018, 2013)

V inv(t0, µ) := sup
(µt)t∈[t0,T ]

T∫
t0

dK(µt) dt, (5)

where the infimum and supremum are taken on the set of
solutions of (2)-(3) with µt0 = µ.
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Abstract: We investigate in this work a fully-discrete semi-Lagrangian approximation of second
order possibly degenerate Hamilton-Jacobi-Bellman (HJB) equations on a bounded domain
O ⊂ RN (N = 1, 2, 3) with oblique derivatives boundary conditions. These equations appear
naturally in the study of optimal control of diffusion processes with oblique reflection at the
boundary of the domain.
The proposed scheme is shown to satisfy a consistency type property, it is monotone and
stable. Our main result is the convergence of the numerical solution towards the unique
viscosity solution of the HJB equation. The convergence result holds under the same asymptotic
relation between the time and space discretization steps as in the classical setting for semi-
Lagrangian schemes on O = RN . We present some numerical results, in dimensions N = 1, 2,
on unstructured meshes, that confirm the numerical convergence of the scheme.

Keywords: HJB equations oblique boundary conditions numerical approximation convergence
analysis

1. INTRODUCTION

In this work we deal with the numerical approximation of
the following parabolic Hamilton-Jacobi-Bellman (HJB)
equation

∂tu+H
(
t, x,Du,D2u

)
= 0 in (0, T ]×O,

L(t, x,Du) = 0 on (0, T ]× ∂O,

u(0, x) = Ψ(x) in O.

(1)

In the system above, T > 0, O ⊂ RN is a nonempty
smooth bounded open set and H and L are nonlinear
functions having the form

H(t, x, p,M) = sup
a∈A

{
−1

2
trace

(
σ(t, x, a)σ(t, x, a)>M

)
− 〈µ(t, x, a), p〉 − f(t, x, a)} ,

L(t, x, p) = sup
b∈B
{〈γ(x, b), p〉 − g(t, x, b)} ,

where A ⊂ RNA and B ⊂ RNB are nonempty compact
sets, σ : [0, T ] × O × A → RN×Nσ , with 1 ≤ Nσ ≤ N ,
µ : [0, T ] × O × A → RN , f : [0, T ] × O × A → R,
γ : ∂O × V → RN , with V ⊆ RNB being an open set
containing B, g : [0, T ]× ∂O ×B → R, and Ψ : O → R.

If A = {a} and B = {b}, for some a ∈ RNA and
b ∈ RNB , and γ(x, b) = n(x), with n(x) being the unit
outward normal vector to O at x ∈ ∂O, then (1) reduces
to a standard linear parabolic equation with Neumann
boundary conditions. In the general case, and after a
simple change of the time variable in order to write (1) in
backward form, the HJB equation (1) appears in the study
of optimal control of diffusion processes with controlled
reflection on the boundary ∂O (see e.g. Lions (1985) for
the first order case, i.e. σ ≡ 0, and Lions (1983); Bouchard
(2008) for the general case). Since the HJB equation (1)
is possibly degenerate parabolic, one cannot expect the
existence of classical solutions and we have to rely on the
notion of viscosity solution (see e.g. Crandall et al. (1992)).
Moreover, as it has been noticed in Lions (1982, 1985),
in general the boundary condition in (1) does not hold
in the pointwise sense and we have to consider a suitable
weak formulation of it. We refer the reader to Lions (1985);
Barles and Lions (1991) and Crandall et al. (1992); Barles
(1993, 1999); Ishii and Sato (2004); Bourgoing (2008),
respectively, for well-posedness results for HJB equations
with oblique boundary condition in the first and second
order cases.
The main purpose of this work is to provide a consistent,
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stable, monotone and convergent SL scheme to approxi-
mate the unique viscosity solution to (1). By the results
in Barles (1993), the latter is well-posed in C([0, T ]×O).
Semi-Lagrangian schemes to approximate the solution to
(1) when O = RN (see e.g. Camilli and Falcone (1995);
Debrabant and Jakobsen (2013)) can be derived from
the optimal control interpretation of (1) and a suitable
discretization of the underlying controlled trajectories.
These schemes enjoy the feature that they are explicit and
stable under an inverse Courant-Friedrichs-Lewy (CFL)
condition and, consequentely, they allow large time steps.
A second important feature is that they permit a simple
treatement of the possibly degenerate second order term
in H. The scheme that we propose for O 6= RN preserves
these two properties and seems to be the first convergent
scheme to approximate (1) with the rather general as-
sumptions. In particular, our results cover the stochastic
and degenerate case. Consequently, from the stochastic
control point of view, our scheme allows to approximate
the so-called value function of the optimal control of a
controlled diffusion process with possibly oblique reflection
on the boundary ∂O (see Bouchard (2008)). The main
difficulty in devising such a scheme is to be able to obtain a
consistency type property at points in the space grid which
are near the boundary ∂O while maintaining the stability.
This is achieved by considering a discretization of the
underlying controlled diffusion which suitably emulates its
reflection at the boundary in the continuous case. We refer
the reader to Milstein (1996) for a related construction of
a semi-discrete in time approximation of a second order
non-degenerate linear parabolic equation.

2. A SEMI-LAGRANGIAN SCHEME

Let ∆t > 0, set N∆t := bT/∆tc, I∆t := {0, . . . , N∆t}
and I∗∆t := I∆t \ {NT }. We define the time grid G∆t :=
{tk | tk = k∆t, k ∈ I∆t}. Given (k, i) ∈ I∗∆t × I∆x, a ∈ A,
and ` = 1, . . . , Nσ, we define the discrete characteristics

y±,`k,i (a) = xi + ∆tµ (tk, xi, a)±
√
Nσ∆tσ`(tk, xi, a).

Let I = {+,−} × {1, . . . , Nσ} and let c̄ > 0 be a fixed
constant. For any δ > 0 we set

(∂O)δ := {x ∈ RN | d(x, ∂O) < δ}.
Tthere exist R > 0 and two C1 functions (∂O)R × B 3
(x, b) 7→ pγb(x) ∈ ∂O and (∂O)R × B 3 (x, b) 7→ dγb(x) ∈
R, uniquely determined, such that

x = pγb(x)+dγb(x)γb(p
γb(x)), for all (x, b) ∈ (∂O)R×B.

Therefore, there exists ∆t > 0 such that for all ∆t ∈
[0,∆t], (k, i) ∈ I∗∆t × I∆x, a ∈ A, b ∈ B, and s ∈ I,
the reflected characteristic

ỹsk,i(a, b) :=

{
ysk,i(a) if ysk,i(a) ∈ O,
pγb(ysk,i(a))− c̄

√
∆tγb(p

γb(ysk,i(a))) else

is well-defined. Let us also set

d̃sk,i(a, b) :=

{
0 if ysi,k(a) ∈ O,
dγb(ysk,i(a)) + c̄

√
∆t otherwise,

g̃sk,i(a, b) :=

{
0 if ysk,i(a) ∈ O,
g
(
tk, p

γb
(
ysk,i(a)

)
, b
)

otherwise.

Notice that if ysk,i(a) /∈ O, then

ỹsk,i(a, b) = ysk,i(a)− d̃sk,i(a, b)γb
(
pγb(ysk,i(a))

)
.

For (k, i) ∈ I∗∆t × I∆x and Φ : G∆x → R, let us define
Sk,i[Φ] : A×B → R by

Sk,i[Φ](a, b) :=
1

2Nσ

∑
s∈I

[
I[Φ](ỹsk,i(a, b))

+d̃sk,i(a, b)g̃
s
k,i(a, b)

]
+ ∆tf(tk, xi, a)

and set
Sk,i[Φ] := inf

a∈A, b∈B
Sk,i[Φ](a, b).

We consider the following fully discrete SL scheme to
approximate the solution to (HJB).

Uk,i = Sk,i
[
Uk+1,(·)

]
, for (k, i) ∈ I∗∆t × I∆x,

UN∆t,i = Ψ(xi), for i ∈ I∆x.
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1. INTRODUCTION

In this talk we focus on minimization problems associated
to controlled dynamical systems of the form

ẏ = f(y) + g(y)u, y(0) = y0,

on the state space Rn and a time interval I = [0, T ] for
T ≤ +∞. Here, f : I × Rn → Rn describes the nonlinear
dynamics of the system and y0 denotes its initial state
which is contained in a given compact set Y0 ⊂ Rn.
We assume that the associated state trajectory y can be
influenced by a control input u(t) ∈ Rm which enters the
system via the, possibly state-dependent, control operator
g. Our interest lies in choosing a control u∗ such that
the associated control-state pair (u∗, y∗) minimizes an
energy J ,inf

y,u
J (y, u) :=

∫ T

0

J(t, y(t), u(t)) dt+ΨT (y(T ))

s.t. ẏ = f(y) +Bu, y(0) = y0,
(P (y0))

which is given in terms of a running cost functional J : Rn×
Rm and a final time penalty ΨT (y(T )), in case T < ∞.
Note that this general setting allows to consider stabiliza-
tion problems on infinite time horizons, of the form

J(t, y, u) =
1

2
|Q1y|2 +

β

2
|u|2, ΨT (y) = 0, if T = +∞,

as well as tracking-type optimal control problems with

J(t, y, u) =
1

2
|Q1(y − yd(t))|2 +

β

2
|u|2,

and

ΨT (y) =
1

2
|Q2(y − yTd )|2, if T < +∞,

where Q1 ≥ 0, Q2 ≥ 0, β > 0, in a unified way.

2. OPTIMAL FEEDBACK CONTROL

Computing optimal controls by solving the open loop min-
imization problem comes with several drawbacks. First,
such controls are only constructed as a function of time

and thus cannot take into account possible perturbations
of the dynamical system. Second, changing the initial
condition y0 the control action for a new initial condition
requires to solve P (y0) all over.

For these reasons, we turn to optimal controls in feedback
form, i.e. control inputs that are constructed as a function
of the state variable at every time point t. In more detail
we aim for a feedback law F ∗ : Rn → Rm such that:

• For every y0 ∈ Y0 there is a solution y∗ to

ẏ = f(y) + g(y)F ∗(y), y(0) = y0.

• For every y0 ∈ Y0, the pair (y
∗, F ∗(y∗)) is a minimizer

to (P (y0)).

Constructing an optimal feedback F ∗ is closely related to
the computation of the optimal value function

V ∗(t, y0) = inf
u,y

∫ T

t

J(t, y(t), u(t)) dt+ΨT (y(T ))

which satisfies aHamilton-Jacobi-Bellman equation (HJB),
a partial differential equation on the state space. Once
available, the optimal control to (P (y0)) can be expressed
in feedback form as u∗(t) = − 1

β g(t, y
∗(t))⊤∇V ∗(t, y∗(t)).

Following the HJB approach one is inevitably faced with
the curse of dimensionality : If M degrees of freedom are
used to discretize the HJB equation in each of the spatial
directions, then this results in a discrete system with Mn

degrees of freedom. Except for small dimensions n of the
state equation this is unfeasible and alternatives must be
sought.

2.1 A learning approach to feedback control

To circumvent the solution of the HJB-equation, in this
talk we propose to replace the control u in (P (y0)) by
the closed loop expression F ε

θ (y) where {F ε
· }ε>0 denotes

a family of parametrized models, each described by a
parameter θ ∈ Nε ≃ RNε , Nε ∈ N. We assume that
{F ε

· }ε>0 satisfies a C1-universal approximation property
regarding the optimal feedback F ∗:
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Assumption 1. Suppose that there exists a compact set
N(Y0) such that y∗(t) ∈ N(Y0) for every t ∈ I and y0 ∈ Y0.
The family {F ε

· }ε>0 is said to be a universal approximator
of F ∗ if there are parameters

sup
t∈I,y∈N(Y0)

[|F ∗(t, y)− F ε
θε |+ ∥DyF

∗(t, y)−DyF
ε
θε∥]

≤ Cϵ

for all ε > 0.

Under suitable assumptions on F ∗, this requirement holds,
for example for certain deep neural networks of varying
width/depth or for piecewise polynomials of increasing to-
tal degree. Subsequently, an approximate optimal feedback
law is determined from solving inf

θ

∫ T

0

J(t, y(t), F ε
θ (t, y(t))) dt+ΨT (y(T ))

s.t. ẏ = f(y) + g(y)F ε
θ (y), y(0) = y0,

(PY0
)

While it may be appealing to use a blackbox model for the
approximation of the feedback law, we will show the merit
of incorporating a priori knowledge on the structure of V ∗

(and its gradient) in the construction of the approximate
feedback. For example, in the case of stabilizing a non-
autonomous system with f(0) = 0 and g(y) = B, it is
well known that the associated optimal feedback law is
independent of time and satisfies F ∗(0) = 0. Similarly, in
the context of tracking-type optimal control problems, we
can directly imprint the transversality condition

F ∗(T, y) = − 1

β
g(y)⊤Q⊤

2 Q2(y − yTd ),

which follows from the necessary optimality conditions,
onto the model. Finally, we could also exploit the connec-
tion between F ∗ and the gradient of the optimal value
function V ∗. This leads to an ansatz of the form

F ε
θ = − 1

β
g(·)⊤∇V ε

θ (·)

where V ε
θ denotes a parametrized model for the scalar

value function.

Of course, it can be expected that the effectiveness of
this procedure depends on the location of the orbit O =
{y(t; y0) : t ∈ (0,∞)} within the state space Rn. To
accommodate the case that O does not ’cover’ the state-
space sufficiently well, we propose to look at the ensemble
of orbits departing from the compact set Y0 of initial
conditions and reformulate the problem accordingly. For
this purpose we introduce a probability measure µ on Y0

describing a ”training set” of initial conditions and replace
(PY0

) by{
inf
θ

∫
Y0

∫ T

0

J(t,y(t), Fθ(t,y(t))) dt+ΨT (y(T ))dµ(y0)

(Pε)
Here y is to be understood as an ensemble of state
variables which assigns to every y0 in the support of µ
the solution of the closed loop state equation

ẏ = f(y) + g(y)Fθ(y), y(0) = y0.

Our work gives mathematical rigor to this formulation
including e.g. a discussion of its well-posedness.

Theorem 2. Under suitable conditions on f, g,Ψ, and ap-
propriate constraints on the ensemble state y and the
parameters θ, Problem (P) admits at least one minimizing
pair (y∗

ε , θ
∗
ε).

This requires a careful perturbation analysis of the under-
lying equation which is e.g. aggravated by the, potential,
instability of the uncontrolled system as well as infinite
time-horizons. For the practical realization of the approach
we rely on first-order type methods. In this context, we
provide a characterization of the gradient of the objective
functional in the learning problem by means of adjoint
calculus.

We also address the convergence of feedback laws obtained
as the parametrized model gets more complex i.e. once ε →
0. This leads to a variety of different convergence results
depending on the particular type of problem under con-
sideration (e.g. tracking-type vs. stabilization problems)
as well as the training measure µ. In the aforementioned
stabilization example and for an arbitrary training mea-
sure µ, we can show that the optimal objective functional
values satisfy

min(Pε) →
∫
Y0

V ∗(y0) dµ(y0)

and thus approximate V ∗ in a suitable sense. Additionally,
the optimal approximate ensemble states y∗

ε and the as-
sociated approximate control actions BF ε

θ∗
ε
(y∗

ε) converge

to the respective optimal quantities as ε → 0. This is
expressed in the following two theorems, for which the
complete set of conditions on the problem data can be
found in Walter (2021-1), Walter (2021-2), and Walter
(2021-3).

Theorem 3. Assume that P(y0) admits a unique optimal
solution for every y0 in the support of µ. Then there holds

(y∗
ε , BF ε

θ∗
ε
(y∗

ε)) → (y∗, BF ∗(y∗))

where y∗ is the optimal ensemble i.e. y∗(y0) = y∗ and
convergence is obtained w.r.t a suitable topology on the
space of ensemble functions.

In the important case of finite training data, the unique-
ness assumption can be dropped and still convergence of
the feedback controls can be obtained:

Theorem 4. Assume that µ =
∑N

j=1 λjδyj
0
, yj0 ∈ Y0.

Then y∗
ε is of the form

y∗
ε = (y∗ε,1, y

∗
ε,2, . . . , y

∗
ε,N )

and every accumulation point of {(y∗ε,j , F ε
θ∗
ε
(y∗ε,j))}ε>0 is a

minimizing pair of (P (yj0)).

Similar results can also be derived in the context of
tracking-type problems with more general control oper-
ators. The cited papers Walter (2021-1), Walter (2021-
2), and Walter (2021-3) contain numerical examples which
illustrate the practical relevance of our learning approach.
They range from highly unstable low dimensional systems
to high dimensional examples stemming from the dis-
cretization of PDE systems. For related work with detailed
numerical investigations we refer to Onken et al. (2021).

3. CONCLUSION

In summary, on the one hand, the results presented in this
talk will show the great potential and success of learning
feedback laws for optimal control problems. On the other
hand, they also reveal open questions which stimulates
further research. These include the development of fast and
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reliable solution methods as well as the extension of our
approach to PDE systems. Moreover, the approach itself is
highly flexible in the sense that it directly allows to include
control and/or state constraints into the problem as well
as constraints on the feedback function itself.
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on a delicate derivation of a super-additive inequality.
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1. INTRODUCTION

In this note, we present the results of Cardaliaguet et al.
(2022) concerning the study of traffic flows models with
a bifurcation consisting in a single incoming road which
is divided after a junction into several outgoing ones.
There are two main classes of models to describe these
situations: microscopic models, which explain how each
vehicle behaves in function of the vehicles in front; and
macroscopic ones, taking the form of a conservation law
in which the main unknown is the density of vehicles on
the roads. Our aim is to start from simple microscopic
models on a bifurcation and derive from these models
continuous ones after scaling. The point is to get a better
understanding of the continuous traffic flow models arising
as the limit of discrete ones. Indeed there exists many
different continuous models of traffic flow on a junction or
with a local perturbation in the literature (see Garavello
et al. (2006) and references therein) and the relation
between these models is not completely clear. If the basic
continuous model on a single straight road (the so-called
LWR model, from Lighthill et al. (1955) and Richards
(1956)) is well understood and justified by micro-macro
limits in several contexts (see for example Di Francesco
et al. (2015)), there is no consensus for problems with a
junction or a bifurcation: the models are only obtained so
far by heuristic arguments, with the exception of Forcadel
et al. (2020) discussed below. Our goal is to show that
the continuous model suggested in Imbert et al. (2017)
pops up as the natural limit of follow-the-leader models.
The continuous model in Imbert et al. (2017) takes the
form of a flux limited Hamilton-Jacobi equation: it is a
kind of integrated form of the basic LWR model outside
the junction combined with a “flux limiting condition” on
the junction. Our micro-macro derivation holds for a large

class of follow-the-leader models, allowing for a possible
heterogeneous behavior of the vehicles.

Our starting point is a microscopic model. Before describ-
ing it, let us recall that few discrete traffic flow models with
a junction or a local perturbation exist in the literature
(see for example Colombo et al. (2020); Andreianov et al
(2018)). The only model proving micro-macro derivation in
the case of a bifurcation is Forcadel et al. (2020) in which
there are two outgoing roads and it is assumed (no too
realistically) that every second vehicle takes a given road.
In this setting the authors show that the convergence of the
discrete problem to a flux limited solution of a Hamilton-
Jacobi equation on a junction. One of the goals of the
paper is to introduce a more realistic model in which one
replaces the deterministic rule of Forcadel et al. (2020) by
a random one (e.g., every second vehicle in average takes
a given outgoing road). The introduction of randomness
in traffic flow problems is natural and can be traced back
to Chiabaut et al. (2010). The micro-macro derivation of
the LWR model from a random one on a single road was
established in Cardaliaguet et al. (2021). Here we present
the corresponding result for a bifurcation.

2. MAIN RESULT

2.1 Short description of the microscopic model.

In our discrete model there is one incoming road and K
outgoing ones, where K ∈ N, K ≥ 1. A position on the
road is given by a pair (x, k) where x is a real number
and k is a label in {0, . . . ,K}. If x is nonpositive, then by
convention k = 0 and the vehicle is on the incoming road.
If x is positive then k ∈ {1, . . . ,K} and the vehicle is on
the outgoing road k. The junction is an interval around
x = 0, say, to fix the ideas, [−R0, 0]. The vehicles are
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labelled by i ∈ Z. The position of the vehicle labelled
i at time t is denoted by Ui(t). The outgoing road the
vehicle chooses is fixed from the beginning (independent
of time) and denoted by Ti ∈ {1, . . . ,K}. The motion of
the vehicles is given by a leader-follower model: it satisfies
the system of ordinary differential equations
d

dt
Ui(t) = VZi(Ui+1(t)− Ui(t), U`i(t)− Ui(t), Ui(t)),

t ≥ 0, i ∈ Z, (1)

where V : Z×R3 → R+ is Lipschitz continuous in the three
last variables (uniformly in the z−variable), nondecreasing
with respect to the two middle ones and bounded by
‖V ‖∞. The type of the vehicle i ∈ Z is the random variable
Zi in Z. We assume that Z is a finite set. Throughout the
paper, Ω := ZZ is endowed with the product σ−field F
and with the product probability measure P. We denote
by τ : Z× Ω→ Ω the shift map defined by

(τnω)i = ωi+n, ∀ω = (ωi)i∈Z ∈ Ω, ∀n ∈ Z.
We set Zωi = ωi for ω = (ωi) ∈ Ω and i ∈ Z. As P is the
product measure on Ω, this means that the (Zi)i ∈ Z are
i.i.d.

The junction R is given by

R =

K⋃
k=0

Rk

where

R0 = (−∞, 0]×{0}, Rk = [0,+∞)×{k} for k ∈ {1, . . . ,K}.

We also denote by
o

R the interior of the roads:

o

R=
K⋃
k=0

o

Rk,

where
o

R0= (−∞, 0)×{0},
o

Rk= (0,+∞)×{k} for k ∈ {1, . . . ,K}.

We assume that all the vehicle are going or have gone
through the junction and were ordered before going
through the junction: i+ 1 is the label of the vehicle right
in front of the vehicle i before this vehicle has gone through
the junction. We denote by `i the label of the first vehicle
in front of vehicle i taking the same outgoing road as i (in
other words, `i = inf{j > i, Ti = Tj}). Each vehicle has a
type Zi encoding, on the one hand, the outgoing road the
vehicle is taking or is going to take (namely, Ti = T (Zi)
for a deterministic map T : Z → {1, . . . ,K}) and, on the
other hand, the “behavior” of the vehicle (for instance, if it
is a truck or a race car). The velocity law V = Vz(e1, e2, x)
depends on the type z ∈ Z of the vehicle, the distances e1
or e2 to the next vehicle and the position x of the vehicle.

In order to obtain a limit model with a few unknowns
and as simple as possible, we do not keep track of all
the vehicles of a given type (in contrast with Colombo
et al. (2018)). Instead we prefer a statistical description
and assume that the types (Zi) of the vehicles are random,
independent and with the same law (i.i.d.); as a conse-
quence the (Ti) are also i.i.d. In addition, we also suppose
that the traffic is homogeneous outside the junction (see
Assumption (H3) below).

For later use we denote by πk := P[Ti = k] the proportion
of vehicle taking (or planning to take) road k.

2.2 The continuous macroscopic model.

The goal of the paper is to understand the behavior of
the solution on large scale of time and space: namely, the
behavior of (x, t) → εU[x/ε](t/ε), (where [y] is the integer
part of the real number y).

For ε > 0, we look at the (scaled) traffic density of vehicles
on each road:

mε(dx, k, t) =



ε
∑

i∈Z, Ti=k

δεUi(t/ε)(dx)

if x > 0, k ∈ {1, . . . ,K}
ε
∑
i∈Z

δεUi(t/ε)(dx)

if x ≤ 0, k = 0

and want to understand the limit, as ε→ 0, of mε. For this
it is convenient to integrate in space mε and look instead
at:

νε(x, k, t) =



ε(πk)−1
( ∑
i∈Z, i≤0, Ti=k

δεUi(t/ε)((x,+∞))

−
∑

i∈Z, i>0, Ti=k

δεUi(t/ε)((−∞, x])

)
if x > 0, k ∈ {1, . . . ,K}

ε

( ∑
i∈Z, i≤0

δUi(t)((x,+∞))

−
∑

i∈Z, i>0

δUi(t)((−∞, x])

)
if x ≤ 0, k = 0.

(2)
Note that ∂xν

ε = −mε if x ≤ 0 while ∂xν
ε = −(πk)−1mε if

x ≥ 0 and k ∈ {1, . . . ,K}. This choice ensures the map νε

to be “almost continuous” at 0 since the vehicles are split
between the K roads after the junction in proportion πk

for the road k. Our main result (Theorem 1) roughly states
that, under suitable assumptions on V and if νε(·, ·, 0) has
a locally uniform (deterministic) limit ν0(·, ·) at time t = 0,
then νε has a.s. a locally uniform (deterministic) limit ν
which is the unique viscosity solution to
∂tν(x, k, t) +Hk(∂xν(x, k, t)) = 0 if x 6= 0, t > 0
∂tν+
max{Ā,H0,+(∂0ν), H1,−(∂1ν), . . . ,HK,−(∂Kν))} = 0

at x = 0
ν(x, k, 0) = ν0(x, k) for any x, k,

(3)
where for k ∈ {0, . . . ,K}, we denote by Hk,+ (resp. Hk,−)
the largest nondecreasing (resp. nonincreasing) map below
Hk.

The first equation is a Hamilton-Jacobi (HJ) equation
in which the homogenized Hamiltonians Hk(p) can be

explicitly computed from the Ṽ k. It corresponds to an
integrated form of the LWR equation. The second equation
describes the behavior of the vehicles at the junction
(reduced after scaling to x = 0): we explain below the
different terms. It roughly says that ∂tν + Ā = 0 at x = 0
(unless the HJ equation is satisfied at x = 0). The real
number Ā is the so-called flux limiter. This is the main
unknown of the paper. It quantifies how the traffic is
slowed down by the junction. We show that
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A0 ≤ Ā ≤ 0, where A0 := max
k∈{0,...,K}

min
p∈R

Hk(p).

When Ā = A0, the flux is not limited at all. If Ā = 0,
then the traffic is completely stopped by the junction (this
does not happen under our assumptions). The existence
of Ā is the main point of the paper, which presents the
first existence result of a flux limiter in the context of a
stochastic homogenization problem. We show that Ā can
be computed as follows:

Ā = − lim
t→+∞

1

t
]
{
i ∈ Z, ∃s ∈ [0, t], Ue,i(s) = 0

}
,

where ]E denotes the number of elements of a set E,
e = (ek)k=0,...,K is such that Hk(−1/ek) = minpH

k(p) for
any k ∈ {0, . . . ,K} and (Ue,i) is the solution to (1) with
the “flat” initial condition Ue,i(0) = eki (where k = 0
if i ≤ 0 and k = Ti if i ≥ 0). The quantity Ā can be
interpreted as the maximal fraction of vehicles the junction
can let pass given an amount of time. The introduction
of Hamilton-Jacobi equations on a junction or stratified
domains can be traced back to Achdou et al. (2013,
2015); Barles et al. (2013); Bressan et al. (2007); Imbert
et al. (2013); Schieborn (2013); a general theory of flux
limited solutions was developed in Imbert et al. (2017)
(see also Barles et al. (2018)) with, as fundamental result,
a comparison theorem; Lions et al. (2016, 2017) present
different arguments for the comparison while Barles et al.
(2018) proposes a general survey on the topic.

2.3 Assumptions

Let us state our standing assumptions on Vz:

(H1) For any z ∈ Z, the map (e1, e2, x) → Vz(e1, e2, x)
is Lipschitz continuous from R2

+ × R to R+ and
nondecreasing with respect to the first two variables;

(H2) There exists emax > ∆min > 0 and 0 < R2 < R1 <
R0, with R0 > emax, such that for any z ∈ Z, for any
(e1, e2, x) ∈ R2

+ × R,
(i) Vz(e1, e2, x) = 0 if (e1 ≤ ∆min and x ≤ −R2) or

if (e2 ≤ ∆min and x ≥ −R1),
(ii) Vz(e, e2, x) = Vz(emax, e2, x) and Vz(e1, e, x) =

Vz(e1, emax, x) if e ≥ emax;

(H3) There exists Ṽ 0, . . . , Ṽ K : [0,+∞) → [0,+∞) such
that

Vz(e1, e2, x) =

{
Ṽ 0
z (e1) if x ≤ −R0

Ṽ kz (e2) if x ≥ 0 and T (z) = k.

(H4) For any z ∈ Z and any k ∈ {0, . . . ,K}, there

exists hkmax,z ∈ (∆min, emax] such that p → Ṽ kz (p) is

increasing and concave in [∆min, h
k
max,z] and constant

on [hkmax,z,+∞);
(H5) There exists κ > 0 such that, for any z ∈ Z,

(i) Vz(e1, e2, x) = Ṽ 0
z (e1) if e1 ≤ e2, x ≤ −R2 and

Vz(e1, e2, x) ≤ κ,
(ii) ∂xVz(e1, e2, x) ≥ 0 if x ∈ [−R1, 0] and Vz(e1, e2, x)
≤ κ,

(iii) Vz(e1, e2, x) > 0 if e1 ∧ e2 > ∆min.

Note that, by assumption (H2), we have Ṽ kz (e) = 0 if

e ≤ ∆min and Ṽ kz (e) = Ṽ kz (emax) if e ≥ emax.

Some comment on the assumption are now in order.
Assumption (H2) is standard in the analysis of leader-

follower models. The existence of ∆min prevents vehicles
to collide (and could correspond to the size of the smallest
vehicle for instance). The existence of emax just says
that the vehicles do not take into account the vehicles
too far ahead. Assumption R0 > emax can be made
without loss of generality. Assumption (H3) means that
the roads are homogeneous outside the bifurcation. This
formalizes the fact that we concentrate here on a single
bifurcation. Assumption (H4) is also standard in the
analysis of leader-follower models. There is one restriction
though: the minimal distance such that the velocity has
to be positive (i.e., here ∆min) has to be the same for
all vehicle and is not allowed to depend on the type of
the vehicle; this restriction is related to the last (and
technical) assumption (H5). Assumption (H5) has to do
with the behavior of vehicles with slow velocity on the
junction and ensures that the vehicles starting with a
flat initial condition (Ui(0) := eki)i∈Z (where k = 0
if i ≤ 0 and k = Ti if i ≥ 0 and ek is such that
Hk(−1/ek) = minpH

k(p)) have a velocity bounded below
by a positive constant independent of time and position.
This last property is instrumental throughout the proofs.
Assumption (H5), without being unrealistic, is a little
restrictive, but we do not know if it is possible to relax
it.

2.4 The homogenized velocities and Hamiltonians.

Let V kmax,z := Ṽ kz (hkmax,z). Under assumptions (H1)—

(H4), the map Ṽ kz : [∆min, h
k
max,z]→ [0, V kmax,z] is increas-

ing and continuous for any z ∈ Z and any k ∈ {0, . . . ,K}.
We denote by (Ṽ kz )−1 its inverse.

Let

v̄0 := inf
z∈Z

Ṽ 0
z (emax), v̄k := inf

z∈Z, T (z)=k
Ṽ kz (emax). (4)

We recall from Cardaliaguet et al. (2021) the defini-
tion of the homogenized velocities V̄ k and homogenized
Hamiltonians: V̄ 0 is the inverse of the continuous increas-
ing map defined on (0, v̄0) by v → E

[
(Ṽ 0
Z0

)−1(v)
]
. We

note that V̄ 0 is defined on (∆min,E
[
(Ṽ 0
Z0

)−1(v̄0)
]
). We

extend it for any e ∈ [0,∆min] by V̄ 0(e) = 0 and for

e ≥ E
[
(Ṽ 0
Z0

)−1(v̄0)
]

by V̄ 0(e) = v̄0. In the same way

we define V̄ k as the inverse of the continuous increasing

map defined on (0, v̄k) by v → E
[
(Ṽ kZ0

)−1(v) | T0 = k
]
.

It defines V̄ k on (∆min,E
[
(Ṽ kZ0

)−1(v̄0) | T0 = k
]
). We ex-

tend it for any e ∈ [0,∆min] by V̄ k(e) = 0 and for any

e ≥ E
[
(Ṽ kZ0

)−1(v̄0) | T0 = k
]

by V̄ k(e) = v̄k. The maps

V̄ k (for k ∈ {0, . . . ,K}) are continuous and bounded on
[0,+∞).

We set, for any k ∈ {1, . . .K},{
H0(p) = pV̄ 0(−1/p),
Hk(p) = pV̄ k(−1/(πkp)),

p ∈ (−∞, 0),

H0(p) = Hk(p) = 0, ∀p ≥ 0

and
A0 = max

k∈{0,...,K}
min
p∈R

Hk(p). (5)
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By Assumption (H4), for i ∈ {0, . . . ,K}, Hk is convex in
(−1/(πk∆min), 0).

2.5 The main result

The main result of this note states that the system
homogenizes: let (U0,ε

i )i∈Z be a deterministic family of
initial conditions satisfying the compatibility condition: for
any i ∈ Z,

U0,ε
i+1 ≥ U

0,ε
i + ∆min if U0,ε

i+1 ≤ −R2

and
U0,ε
`i
≥ U0,ε

i + ∆min for any i ∈ Z. (6)

Up to relabel the indices, we also assume that U εi,0 ≤ 0 iff
i ≤ 0. Let U ε be the solution of (1) with initial condition

(U0,ε
i )i∈Z.

Theorem 1. There is a set Ω0 of full probability and a
constant Ā < 0 (the flux limiter) such that, if (U0,ε

i )i∈Z
is a family of initial conditions such that the associated
scaled function νε(·, ·, 0) defined by (2) (with t = 0)
converges locally uniformly in R to a Lipschitz continuous
map ν0 : R → R, then, for any ω ∈ Ω0, νε converges
locally uniformly in R× [0,+∞) to the unique continuous
viscosity solution of the Hamilton-Jacobi equation (3) with
flux limiter Ā.
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The purpose of this presentation is to study the well
posedness of a time–dependent Hamilton–Jacobi equation,
coupled with suitable additional conditions, posed on a
network.

We consider a connected network Γ embedded in RN
with a finite number of arcs γ, which are regular simple
curves parametrized in [0, 1], linking points of RN called
vertices, which make up a set we denote by V. We define
a Hamiltonian on Γ as a collection of Hamiltonians Hγ :
[0, 1] × R → R, indexed by arcs, with the crucial feature
that Hamiltonians associated to arcs possessing different
support, are totally unrelated.

The equations we deal with are accordingly of the form

ut +Hγ(s, u′) = 0 in (0, 1)× (0,+∞)

on each arc γ, the aim being to uniquely select distin-
guished viscosity type solutions of each equation which
can be assembled together continuously, making up a con-
tinuous function u : Γ × (0,+∞) −→ R with u(γ(s), t)
solution of the above equation for each γ. To accomplish
it, one has to appropriately exploit the network geometry,
via the adjacency condition between arcs and vertices, and
the decisive issue for that is the right definition of super-
solution. The subtle point in fact is that the conditions
for supersolutions are not the same at all vertices, but are
given taking into account the network structure.

The problem becomes discontinuous across all the one–
dimensional interfaces of the form

{(x, t), t ∈ [0,+∞)} with x ∈ V,

in contradiction to what happens for the stationary version
of this kind of equations, where the discontinuities are
located at the vertices, that is to say: they are finite and
of zero dimension. This dimensional change explains why
the analysis of evolutive equations on networks is by far
more challenging than the stationary ones.

There are consequently few results available in the lit-
erature. A basic reference is (3) by Imbert and Mon-
neau, where the topic is treated through PDE techniques,
adapting tools from viscosity solutions theory, under the
assumptions that the Hamiltonians in play are continuous,
semiconvex and coercive. In (1), (2) applications of this
theory are given.

We prove existence, uniqueness and stability of solutions
on the network assuming convexity of the Hamiltonians,
but without the growth conditions which allow applying
Fenchel transform, so that an action functional cannot
be defined. We do not have consequently representation
formulae for solutions at hand, and our techniques employ
purely PDE methods.

One of the main discoveries in (3) is that to get well
posedness of the evolutive problem, the assignment of an
initial datum at t = 0 is not enough. It must actually
be coupled with a condition regarding the time derivative
of solutions on the discontinuity interfaces. They qualify
as flux–limited the corresponding solutions. We adopt here
the same point of view, and the terminology of flux limiter
as well.

Our definition of solution and the one of (3) are clearly the
same outside the discontinuity interfaces, namely classical
viscosity solutions. On the interfaces, the definition of
subsolution coincides as well, while regarding supersolu-
tion, which is the most delicate point, the formulation is
different, and our definition is stronger. However, a full
comparison between the two notions cannot be done at
present since the junctions considered in (3) have un-
bounded arcs while the arcs of our networks are bounded
with two vertices as endpoints.

We think that our pattern is more related to the geomet-
rical sense of the definition, and is more simple to write
down, in particular because we take into account, for any
arc, also the arc with the opposite orientation. This in
particular implies that we do not have boundary vertices
since any vertex has a least two adjacent arcs with opposite
orientation. We would finally like to point out the fact
that testing separately the equations on any arc can be
a considerable advantage for a numerical analysis of the
topic.

In contrast with (3), we do not need constructing special
test functions at the vertices, and we do not use Crandall–
Lions doubling variable method to get the comparison
result.

Our method is different. We prove a comparison principle
by associating the Hamilton–Jacobi equation to a semidis-
crete problem posed on the discontinuity interfaces. This
is the same road walked in (4), (5) for the stationary case,
even if the evolutive setting brings in some complications.
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The proof of the comparison result for the semidiscrete
problem turns out to be quite simple, and it is then trans-
ferred to the initial equation exploiting the fundamental
property that a continuous function u : Γ × [0,+∞) → R
is solution of the main problem if and only u(γ(s), t) solves
the HJ equations in the viscosity sense for any γ, and
its trace on the discontinuity interfaces is solution of the
semidiscrete problem.

A further relevant peculiarity of our techniques with
respect to those in (3), is that we do not use special test
functions at the vertices, more generally, we do not need
functions testing at the same time solutions of equations
with different Hamiltonians. For our definition, it is enough
to consider viscosity test functions for the equations on
the arcs, separately considered, plus test functions on the
discontinuity interfaces. Finally, we do not use Perron–Ishii
method to prove existence of solutions, but rely on a more
constructive technique, showing first existence for small
time interval and then gluing together the local solutions
to get a solution global in time.
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Abstract: We study deterministic Mean Field Games with finite horizon in which the state
space of the players is a network. In these games, the generic agent can control its dynamics:
inside each edge, it can choose its velocity (which coincides with its control) and it can also
choose, when it arrives at a vertex, the edge in which it enters. It will pay a cost which is formed
by a running cost and a terminal cost; both these costs depend on the trajectory that it has
chosen and on the evolution of the distribution of all agents. On the other hand, its position
cannot affect the distribution of the whole population. As in the Lagrangian approach, we
introduce a relaxed notion of Mean Field Games equilibria which relies on probability measures
on trajectories on the network instead of probability measures on the network. Our main result
is to establish the existence of such Mean Field equilibria.
With such an equilibrium at hand, we can introduce the value function and we prove that this
function is a generalized solution to the associated first order Hamilton-Jacobi problem on the
network.

Keywords: Control of constrained systems, Game theories, Generalized solutions of
Hamilton-Jacobi equations, Hamiltonian trajectories in optimal control, Multi-agent systems,
Optimal control theory.

1. INTRODUCTION

The theory of Mean Field Games studies the asymptotic
behaviour of differential games (mainly in terms of their
Nash equilibria) as the number of players tends to infinity.
This theory started with the seminal papers by Lasry
and Lions (2006a), Lasry and Lions (2006b), Lasry and
Lions (2007) and by Huang et al. (2006). Models of this
type have been intensively studied in the last decade; a
detailed description of the achievements obtained in these
years goes beyond the scope of this presentation. For a
general overview we refer to the monographs by Achdou
and Capuzzo Dolcetta (2010), Bensoussan et al. (2013),
Cardaliaguet (2012) and Gomes et al. (2016).

In these games, the players are rational and indistin-
guishable and each one of them aims at choosing its own
trajectory so to minimize its own cost which depends on
the trajectory itself but also on the distribution of the
whole population of agents. The player are “microscopic”
and “identical”: the position of a single player cannot
affect the distribution of the whole population and the
cost is the same for each one of them. The dynamics
of the agents can be either stochastic or deterministic.

Consider the case where the dynamics of the players are
deterministic and the interaction among them is given by
a nonlocal regularizing operator acting on the distribution
of states of the agents. In the Euclidean setting, these
models are described by a system of first order partial
differential equations; indeed, the systems are formed by
a continuity equation for the density of the distribution of
the whole population (forward in time) and a Hamilton-
Jacobi equation for the optimal value of a representative
agent (backward in time), coupled with initial/final data
(the initial distribution of the population and the final
cost); see the paper by Cardaliaguet (2012).

We focus our attention on deterministic Mean Field
Games, with finite horizon and a nonlocal regularizing
interaction among the agents, in which the states of the
agents are constrained in a network (in our setting, a
network is given by a finite collection of vertices connected
by continuous edges which cannot self-intersect). In these
games, the generic agent can control its dynamics: inside
each edge, it can choose its velocity (which coincides with
its control) and it can also choose, when it arrives at a
vertex, the edge in which it enters; in particular, it can
also stop on any point of the network, either a vertex or a
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point inside any edge. It will pay a cost which is the same
for every agent and it is formed by a running cost and a
terminal cost. The running cost is formed by two parts:
a kinetic one (penalizing its high velocities) and a part
depending on the chosen trajectory and on the evolution
of the distribution of all agents; also the terminal cost
depends on the distribution of all agents at final time.
Moreover the costs (running and terminal) can change
from edge to edge and other costs can appear for the
times when the trajectories stay in the vertices. All the
costs depend on the distribution of agents in a nonlocal
regularizing manner. The position of a single agent cannot
affect the distribution of the whole population; in other
words, if an agent knows the evolution of the distribution
of the whole population, then it has only to choose its
trajectory so to minimize its cost.

Clearly these problems are encompassed in the framework
of deterministic state constrained Mean Field Games. On
one hand, even the study of deterministic control problems
on networks or other irregular sets is rather recent (see:
Achdou et al. (2013), Barles et al. (2014), Imbert et al.
(2013), Imbert and Monneau (2017), Lions and Souganidis
(2016) and Morfe (2020)) and this topic still displays a
lot of interesting open problems. On the other hand, it
is worth to recall that an important issue for these Mean
Field Games is that the agents could concentrate on the
boundary of the constraint (namely, in the vertices of
our network). Indeed we provide an example where the
distribution of agents develops singular measures immedi-
ately after the initial time. This issue makes difficult to
characterize the state distribution by means of a partial
differential equation. In order to overcome this difficulty,
we shall follow the approach introduced by Cannarsa and
Capuani (2018) for deterministic Mean Field Games con-
strained in the closure of a regular bounded open set. This
approach is based on the Lagrangian setting rather than
in terms of a system of differential equations.

As in the Lagrangian approach (see also Benamou and Bre-
nier (2000), Benamou and Carlier (2015) and Cardaliaguet
et al. (2016)), we shall describe the evolution of the game
in terms of a probability measures on the set of admissible
trajectories on the network instead of a probability mea-
sure on the network. Roughly speaking, to each probability
measure on the set of admissible trajectories, we associate
a time-dependent family of probabilities on the network
which, in turns, permits to define a running cost and a
terminal cost. A Mean Field equilibrium is a probability
on the set of admissible trajectories whose support is
contained in the set of optimal trajectories for the cost
associated to that probability.

Our main result is the existence of such a Mean Field
equilibrium. The proof is based on the application of
Kakutani fixed point theorem. To this end, we shall need
some properties of optimal control problems on networks
with finite horizon: existence of optimal trajectories and
an approximation result for trajectories on the network.

With such an equilibrium at hand, the costs for the agents
are well defined and, consequently a value function can
be introduced. We also prove that this value function is a
generalized solution to the associated first order Hamilton-
Jacobi problem on the network.
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Abstract: We study some models of evolutive deterministic mean field games with finite time
horizon where the Hamiltonian is not coercive in the gradient term because the dynamic of the
generic player has some forbidden directions. We study the existence of weak solutions and their
representation by means of relaxed equilibria in the Lagrangian setting which are described by
a probability measure on optimal trajectories.

Keywords: Mean Field Games, first order Hamilton-Jacobi equations, continuity equation,
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1. INTRODUCTION

We study evolutive first order mean field games (MFG)
systems where the Hamiltonian is neither strictly convex
nor coercive. They are described by a system of PDEs
coupling a continuity equation for the density of the dis-
tribution of the states (forward in time) and a Hamilton-
Jacobi equation for the optimal value of a representative
agent (backward in time).
We consider systems in Rn × (0, T ) of the form

(i) −∂tu+
|DHu|2

2
= F [m(t)](x)

(ii) ∂tm− divH(mDHu) = 0
(iii) m(x, 0) = m0(x), u(x, T ) = G[m(T )](x),

(1)

where DH and divH are respectively the so called ho-
rizontal gradient and the horizontal divergence, i.e. the
gradient and the divergence along n0 prescribed vector
fields, with n0 ≤ n. More precisely, we consider n0 vector
fields Xi(x), i = 1, · · · , n0 in Rn and we call B(x) the
n× n0 matrix whose columns are Xi. Using the matrix B
we can write:

DHu = DuB, divH(mDHu) = div(mDuBBT ).

These MFG systems arise when the generic player can
move in the whole space but it must follow horizontal
curves with respect to the vector fields Xi :

x′(s) = B(x(s))α(s), x(t) = x (2)

? The first and the second authors were partially supported by
GNAMPA-INdAM by the research project of the University of
Padova “Mean-Field Games and Nonlinear PDEs”, by the Fon-
dazione CaRiPaRo Project “Nonlinear Partial Differential Equa-
tions: Asymptotic Problems and Mean-Field Games” and by KAUST
project OSR-2017-CRG6-3452.01. The third author has been par-
tially funded by the ANR project ANR-16-CE40-0015-01.

where α ∈ Rn0 . Each agent wants to choose the control α
in L2([t, T ];Rn0) in order to minimize the cost

Jm
x,t(α) :=

T∫
t

[
1

2
|α(τ)|2 + F [m(τ)](x(τ))

]
dτ

+G[m(T )](x(T ))

(3)

where m(·) is the evolution of the whole population’s
distribution while (x(·), α(·)) is a trajectory obeying to (2).

We suppose that the coefficients of the matrix B have at
most a linear growth with respect to the space variable x.

Let us observe three important issues of these MFG
systems: (i) the Hamiltonian H(x, p) = 1

2 |pB(x)|2 is not
coercive in p, (ii) the system is in the whole space, (iii) in
equation (1)-(ii) the coefficient of the first order term may
have quadratic growth in x.
Point (i) prevents the application of standard approaches
for first order MFG (for instance, see (BFY; C)) because
they require uniform coercivity of the Hamiltonian.

On the other hand, points (ii) and (iii) give rise to some
difficulties for applying the vanishing viscosity method,
especially for the Cauchy problem for equation (1)-(ii) with
the viscosity term. Actually in this problem the coefficients
grow “too much at infinity” and one cannot invoke nor
standard results for the well-posedness of the problem
neither its interpretation in terms of a stochastic optimal
control problem.

We get two results: the former one is to prove the existence
of a weak solution to system (1) while the latter, and
main, one is to prove that this weak solution is also a
mild solution in the sense introduced by Cannarsa and Ca-
puani (CC) for the case of state-constrained MFG where
the agents control their velocity. Roughly speaking, as in
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the Lagrangian approach for MFG, this property means
that, for a.e. starting state, the agents follow optimal
trajectories for the optimal control problem associated to
the Hamilton-Jacobi equation.

In order to obtain the existence of a weak solution, we esta-
blish several properties of the solution to the Hamilton-
Jacobi equation (1)-(i) (as semiconcavity, Lipschitz con-
tinuity, regularity of the optimal trajectories for the as-
sociated optimal control problem). Afterwards, we adapt
the techniques introduced by PL. Lions in his lectures at
Collège de France, see (C), and also (AMMT; AMMT2;
MMMT) for similar approaches for some noncoercive
Hamiltonians). To get the result we perform three ap-
proximations: a completion Bε of B, a vanishing viscosity
procedure with the Euclidean Laplacian and a truncation
argument of the coefficients of matrix B. The completion
Bε fulfills detBε(Bε)T 6= 0 for any x ∈ Rn which is a
crucial property for getting uniqueness of optimal trajec-
tory for m0-a.e. starting point. The vanishing viscosity
procedure permits to exploit the regularity results of the
Laplacian while the truncation argument permits to avoid
parabolic Cauchy problems with coefficients growing “too
much” at infinity.
Finally, we shall prove that this weak solution is also a
mild solution in the sense introduced in (CC). In order to
prove that our solution is in fact a mild solution, we shall
use the superposition principle obtained in (AGS).

It is worth noting that our techniques relies on some com-
pactness of initial distribution of players and on sublinear
growth of the coefficients of B.

Uniqueness holds under classical hypothesis on the mono-
tonicity of F and G as in (C).

Some examples Our result can be applied to the follo-
wing examples:

– Completely degenerate case. In the state space Rn:

B(x) =

(
In0 0n0,(n−n0)

0(n−n0),n0
0(n−n0),(n−n0)

)
where Ii is the identity matrix i × i while 0i,j is the null
matrix i×j, i, j = n0, n−n0. With this matrix, the generic
player in the MFG controls only its first n0 coordinates.
For example for n = 2 and n0 = 1 the dynamics and the
Hamiltonian assume the following form

x′1 = α1, x
′
2 = 0.

H(x, p) =
1

2
p21 =

|pB(x)|2

2
.

– Grushin case. In the state space R2:

B(x) =

(
1 0
0 x1

)
.

In this case the dynamics and the Hamiltonian assume the
following form

x′1 = α1, x
′
2 = x1α2.

H(x, p) =
1

2
(p21 + (x1p2)2) =

|pB(x)|2

2
.

– Heisenberg case. In the state space R3:

B(x) =

(
1 0
0 1
−x2 x1

)
.

In this case the dynamics and the Hamiltonian assume the
following form

x′1 = α1, x
′
2 = α2, x

′
3 = −x2α1 + x1α2.

H(x, p) =
1

2
((p1 − x2p3)2 + (p2 + x1p3)2) =

|pB(x)|2

2
.
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Abstract: In his 1932 paper, Carleman proposes a linearization method to transform a
given finite-dimensional nonlinear system defined by an analytic function into an equivalent
infinite-dimensional linear system with (usually) unbounded operators. Finite truncation of
the transformed system has been used to study dynamical properties, learning, and control of
such nonlinear systems. One of the fundamental problems in this context is to quantify the
effectiveness of such finitely truncated models. In this paper, we provide explicit error bounds
and prove that the trajectory of the truncated system stays close to that of the original nonlinear
system over a quantifiable time interval. This is particularly important in several applications,
including Model Predictive Control, to choose proper truncation lengths for a given sampling
period and employ the resulting truncated system as a good approximation of the nonlinear
system.

Keywords: Application of nonlinear analysis and design, Model reduction, Lifting Operators,
Carleman Linearization, Nonlinear System

1. INTRODUCTION

Almost all natural, physical, and engineered systems are
time-varying and nonlinear, and often they need to be
modeled using partial differential equations. The nonlin-
ear nature of models has imposed fundamental challenges
for the analysis and design of real-world systems. Some
traditional design methods rely on a linear system ob-
tained from the first-order approximation of the nonlin-
ear system’s right-hand side. To study the properties of
a nonlinear system, researchers have developed several
frameworks over the past century Koopman (1931); Car-
leman (1932); Isidori (2013); Arnold et al. (1988); Wig-
gins et al. (1990); Khalil (2002). One of the mainstream
approaches, which has attracted researchers’ attention
for decades, represents a finite-dimensional nonlinear sys-
tem as an infinite-dimensional linear system using lifting
operators. Carleman linearization Carleman (1932) and
Koopman operator Koopman (1931) are two of the most
prominent examples closely connected in spirit. Carleman
linearization is a procedure, also referred to as lifting,
that transforms a finite-dimensional nonlinear system into
an infinite-dimensional linear system Kowalski and Steeb
(1991); Carleman (1932). Several follow-up works have
tried to address various aspects of this method Bellman
and Richardson (1963); Brockett (2014); Steeb and Wil-
helm (1980); Bertsekas (2011). Albeit the lifting procedure
results in a linear system, one usually has to deal with

⋆ This work was supported in parts by the AFOSR FA9550- 19-1-
0004 and ONR N00014-19-1-2478, and NSF DMS-1816313.

systems with unbounded operators and their associated
convergence issues.

Although Carleman linearization appears to be very ap-
pealing for analyzing and controlling nonlinear systems,
one should take extra care when working with unbounded
infinite-dimensional matrices. Unless there are some use-
ful structures, handling systems with unbounded infinite-
dimensional matrices is exceptionally challenging. A com-
mon remedy is to truncate the infinite-dimensional system
and then utilize the truncated system for analysis and con-
trol purposes. Several stories reported about the success-
ful employment of Carleman linearization in the control
systems community. The author of Banks (1992) iden-
tifies relationships between Carleman linearization and
Lie series and then utilizes it to design optimal control
laws for infinite-dimensional systems. In Svoronos et al.
(1994), a straightforward method for discretizing nonlin-
ear continuous-time systems via Carleman approximation
is provided. By exploiting the lifted system’s structure,
the authors of Amini et al. (2020a,b) propose an effi-
cient method to quadratize and solve the Hamilton-Jacobi-
Bellman (HJB) through an exact iterative method.

Despite numerous Carleman linearization applications in
nonlinear control systems, the convergence of finite trun-
cation of the lifting system was not addressed for general
nonlinear systems. Reference Forets and Pouly (2017) finds
some approximation bounds for the class of polynomial
systems, i.e. systems whose right-hand sides are finite
order polynomials. To the best of our knowledge, our

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



work is the first to quantify error bounds for the general
class of time-varying nonlinear systems whose right-hand
sides are analytic. We prove that the first block of the
truncated system (which provides an estimate of the actual
state) converges exponentially fast to the original system’s
solution when the order of truncation increases. In this
extended abstract we only included our main result and
removed the proofs due to the page limitation.

2. BACKGROUND: CARLEMAN LINEARIZATION

We consider the class of nonlinear systems whose dynamics
are governed by

ẋ = f(t,x) (2.1)

for all t ≥ t0 with a nonzero initial condition x(t0) = x0, at
a neighborhood of its equilibrium at the origin, where the
state of the system is denoted by x = [x1, . . . , xd]

T ∈ Rd

and the components of function

f(t,x) =
[
f1(t,x), . . . , fd(t,x)

]T
, t ≥ t0

are analytic on a neighborhood of the equilibrium. With-
out loss of generality, it is assumed that f(t,0) = 0. For
a given multi-index vector ααα = [α1, . . . , αd]

T ∈ Zd
+, let us

define xααα = xα1
1 · · ·xαd

d and express the Maclaurin series
expansion of the vector-valued function f(t,x) by

f(t,x) =
∑

ααα∈Zd
+
\{0}

fααα(t)xααα (2.2)

in which fααα(t) = [f1,ααα(t), . . . , fd,ααα(t)]
T . The conventional

Carlemen linearization of the nonlinear dynamic system
(2.1) starts from the reformulation

ẋj =
∑

α∈Zd
+
\{0}

fj,α(t)xααα (2.3)

for every j = 1, . . . , d. The standard Euclidean basis for R d

is denoted by ej = [0, · · · , 0, 1, 0, · · · , 0]T for j = 1, . . . , d
and it is assumed that

fj,ααα = 0 if ααα ̸∈ Zd
+\{0}. (2.4)

From (2.3), the derivative of monomial xααα for every
ααα = [α1, . . . , αd] ∈ Zd

+\{0}, can be calculated as

ẋα =
d∑

j=1

αj xααα−ej
ẋj =

d∑
j=1

αjxααα−ej

∑
γγγ∈Zd

+
\{0}

fj,γγγ(t)xγγγ

=
∑

βββ∈Zd
+
\{0}

 d∑
j=1

αjfj,βββ−ααα+ej
(t)

xβββ

with initial condition xααα(t0) = x0
ααα = xα1

1 (t0) · · ·xαd

d (t0).

Let us define |ααα| = α1+· · ·+αd for ααα = [α1, . . . , αd]
T ∈ Zd

+
and

Zd
k =

{
ααα ∈ Zd

+

∣∣∣ |ααα| = k
}

for k ≥ 0. Regrouping all ααα ∈ Zd
k for every k ≥ 1

and defining zk =
[
xααα

]
ααα∈Zd

k

yields the following infinite-

dimensional linear dynamical system

żk =
∞∑
l=k

Ak,l(t)zl (2.5)

for all t ≥ t0 and k ≥ 1 with initial condition zk(t0) =[
x0
ααα

]
ααα∈Zd

k

, where

Ak,l(t) =

 d∑
j=1

αjfj,βββ−ααα+ej
(t)


ααα∈Zd

k
, βββ∈Zd

l

(2.6)

for all k, l ≥ 1 are matrices of size
(
k+d−1
d−1

)
×

(
l+d−1
d−1

)
. By

defining the infinite-dimensional state vector

z =
[
z1, z2, . . . , zN , . . .

]T
, the set of linear systems (2.5)

can be rewritten in compact form

ż = A(t)z (2.7)

for t ≥ t0 with initial condition z(t0) =
[
x0
ααα

]
ααα∈Zd

+
\{0},

where

A(t) =


A1,1(t) A1,2(t) · · · A1,N (t) · · ·

0 A2,2(t) · · · A2,N (t) · · ·
...

. . .
...

. . .
0 0 · · · AN,N (t) · · ·

0
...

. . .

 (2.8)

is a block upper-triangular matrix. The resulting linear
system (2.7) is referred to as the Carleman linearization
of the nonlinear dynamical system (2.1).

While the original d-dimensional dynamical systems (2.1)
is nonlinear, its lifted form (2.5) is an infinite-dimensional
linear system whose state matrix A is an upper-triangular
block matrix with special structure and initial condition
is of exponential type. On the other hand, the apparent
disadvantage of the Carleman linearization is that the
resulting state matrix A is not a bounded operator on
ℓ2(Zd

+\{0}), the Hilbert space of all square-summable

sequences on Zd
+\{0}. Moreover, the initial condition has

exponential decay when ∥x0∥ < 1 and exponential growth
when ∥x0∥ > 1, which prevents the direct application of
existing theories to analyze the infinite-dimensional linear
system on Hilbert spaces ℓ2(Zd

+\{0}).
A natural question about the original nonlinear system
(2.1) and its Carleman linearization (2.5) is how effective
the finite section (truncation) of the linearized counterpart
is and whether the first component of the solution of the
truncated system converges to the solution of the original
nonlinear system. Our main contribution shows that if
the convergence radius of function f(t,x) is finite, then
the finite section of the Carlemen linearization converges
exponentially only when the initial condition is close
enough to the equilibrium.

3. CONVERGENCE OF FINITE-SECTIONING OF
THE CARLEMAN LINEARIZATION

Denote the bounded norm for x = (x1, . . . , xd)
T ∈ Rd

by ∥x∥∞ = max1≤j≤d |xj |. In this section, we show that
the first component of the solution of the finite section
approach to the the Carlemen linearization (2.5) converges
to the solution of the nonlinear dynamic system (2.1)
exponentially when the initial is not too far away from
the equilibrium.

The finite section approach to the Carlemen linearization
(2.5) can be solved as a linear dynamic system
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ẏ1,N (t)
ẏ2,N (t)

...
ẏN,N (t)

 =


A1,1(t) A1,2(t) · · · A1,N (t)

A2,2(t) · · · A2,N (t)
. . .

...
AN,N (t)




y1,N (t)
y2,N (t)

...
yN,N (t)


(3.9)

of dimension d
(
N+d
d

)
− d with initial yk,N (t0) =

[
xααα
0

]
ααα∈Zd

k

for 1 ≤ k ≤ N .

Assumption 1. The function f(t,x) in (2.1) is a time-
varying analytic function near the origin such that
f(t,0) = 0 for all t ≥ t0 and coefficients fααα(t) in its
Marclaurin expansion (2.2) satisfy uniform exponential
decay property

sup
t≥t0

d∑
j=1

∑
ααα∈Zd

k

|fj,ααα(t)| ≤ D0R
−k (3.10)

for all k ≥ 1 and some positive constants D0 and R.

Theorem 2. Suppose that Assumption 1 holds and x(t)
for t ≥ t0 is a continuous solution of the nonlinear system
(2.1) with initial condition x(t0) = x0 that satisfies

0 < ∥x0∥∞ <
R

e
. (3.11)

Then, the first component of the solution of the finite
section of the Carleman linearization (3.9), i.e., y1,N (t),
converges to x(t) exponentially as the truncation length
N increases for all t0 ≤ t < t0 + T ∗, i.e., for every
t0 < t1 < t0 + T ∗ there exist a positive constant C such
that

sup
t0≤t≤t1

∥y1,N (t)− x(t)∥∞ ≤ CeD0(t1−t0−T∗)N/R (3.12)

for all N ≥ 1, where

T ∗ =
(e− 1)R

(2e− 1)D0
ln

(
R

e∥x0∥∞

)
. (3.13)

The convergence of the finite section scheme has been
studied before by Forets and Pouly (2017), when the right-
hand side of the nonlinear system (2.1) is a time-varying
polynomial

pL(t,x) =
∑

1≤|ααα|≤L

pααα(t)x
ααα (3.14)

with degree L ≥ 1, where pααα(t) =
[
p1,ααα(t), . . . , pd,ααα(t)

]T
.

If L = 1, it can be verified that the corresponding state
matrix A(t) in the Carlemen linearization (2.8) will be a
block diagonal matrix. Hence, the first component y1,N (t)
of the solution of the finite section scheme (3.9) will be
equal to the continuous solution x(t) for all t ≥ t0 of the
original nonlinear dynamic system (2.1). Now, consider the
case that the degree of the polynomial PL is at least two,
i.e., L ≥ 2. Define

D0(pL, R) = sup
1≤k≤L

Rk sup
t≥t0

d∑
j=1

∑
ααα∈Zd

k

|pj,ααα(t)| (3.15)

For every R > 0, the uniform exponential decay property
(3.10) holds for the time-varying polynomial pL(t,x) with
D0 replaced by D0(pL, R) and the requirement (3.11)
is satisfied for all nonzero initial x0 when R is chosen
appropriately.

Corollary 3. If the right-hand side of system (2.1) is a
time-varying polynomial pL(t,x) with L ≥ 2 given by
(3.14), then the first component y1,N (t) of the solution of

the truncated system (3.9) will converge to the continuous
solution x(t) of the original nonlinear dynamical system
(2.1) for all t0 < t < t0 + T ∗(pL, e∥x0∥∞), where

T ∗(pL, e∥x0∥∞) =

sup
R>s

(e− 1)R

(2e− 1)D0(pL, R)
ln

(
R

e∥x0∥∞

)
. (3.16)

for some s > 0.

Let us define quantity

ak := sup
t≥t0

d∑
j=1

∑
ααα∈Zd

k

|pj,ααα(t)|,

for all 1 ≤ k ≤ L. One may verify that D0(pL, R) = aLR
L

hold for all R ≥ max1≤k≤L−1(ak/aL)
1/(L−k). Therefore,

when the initial condition satisfies

∥x0∥∞ ≥ e−1 max
1≤k≤L−1

(
ak
aL

)1/(L−k)

,

the maximal achievable time range in (3.16) is

T ∗(pL, e∥x0∥∞) = (3.17)

=
(e− 1)(L− 1)

(2e− 1)eL2−L supt≥t0

∑d
j=1

∑
ααα∈Zd

L
|pj,ααα(t)|

∥x0∥1−L
∞ .

4. CONCLUSION

For a given time-varying nonlinear system, We proved
that under some mild assumptions, the Carelman trun-
cation of the lifted system converges exponentially fast
to the original nonlinear system’s solution. Explicit error
bounds are characterized under the boundedness of the
trajectories and initial conditions. Our theoretical results
have the potentials to pave the way to prove stability
and convergence of Carleman-based methods for optimal
control design, e.g., model predictive control of nonlinear
systems using the finite truncated system.

REFERENCES

Amini, A., Sun, Q., and Motee, N. (2020a). Approximate
optimal control design for a class of nonlinear systems by
lifting hamilton-jacobi-bellman equation. In 2020 Amer-
ican Control Conference (ACC), 2717–2722. IEEE.

Amini, A., Sun, Q., and Motee, N. (2020b). Quadra-
tization of hamilton-jacobi-bellman equation for near-
optimal control of nonlinear systems. In 2020 59th IEEE
Conference on Decision and Control (CDC), 731–736.
IEEE.

Arnold, V.I., Kozlov, V., and Neishtadt, A. (1988). Dy-
namical systems III. Springer.

Banks, S. (1992). Infinite-dimensional carleman lineariza-
tion, the lie series and optimal control of non-linear
partial differential equations. International journal of
systems science, 23(5), 663–675.

Bellman, R. and Richardson, J.M. (1963). On some ques-
tions arising in the approximate solution of nonlinear
differential equations. Quarterly of Applied Mathemat-
ics, 20(4), 333–339.

Bertsekas, D.P. (2011). Dynamic programming and op-
timal control 3rd edition, volume II. Belmont, MA:
Athena Scientific.

Extended Abstracts of the 
25th International Symposium on Mathematical Theory of Networks and Systems 
Bayreuth, Germany, 12-16 September 2022



Brockett, R. (2014). The early days of geometric nonlinear
control. Automatica, 50(9), 2203–2224.

Carleman, T. (1932). Application de la théorie des
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Abstract: The relationship between nonnegative polynomials and sums of squares on semi-
algebraic set S is one of the central questions in real algebraic geometry. The (convex) dual
side of this story is important in analysis, where it is known as the truncated S-moment
problem, and it considers the truncated cones of moments which are dual to nonnegative
polynomials, and “pseudo-moments” which are dual to sums of squares. We bring a new tool for
understanding of these classical problems: tropicalization. While extensively studied in complex
algebraic geometry, tropicalization is rarely applied to semialgebraic sets. We provide explicit
combinatorial descriptions of tropicalizations of the moment and pseudo-moment cones, and
demonstrate their usefulness in distinguishing between nonnegative polynomials and sums of
squares, proving results limiting the power of sums of squares approximations of nonnegative
polynomials. We believe that this just scratches the surface of applications of tropicalization in
semi-algebraic geometry.

Keywords: Moments, pseudomonents, nonnegative polynomials, sums of squares, inequalities,
tropicalization.

1. INTRODUCTION

Understanding nonnegativity of polynomials in terms of
sums of squares has been a central challenge in real
algebraic geometry dating back to the work of Hilbert.
The dual side of this problem is important in analysis and
known as the moment problem. We now take a moment to
introduce it.

For a semialgebraic set S ⊆ Rn and a finite subset A ⊂ Nn,
we consider the convex cone MA(S) of A-moments of mea-
sures supported on S. Despite extensive work this cone can
be explicitly described in very few situations even when
S = Rn and A corresponds on to all moments of degree
at most 2d Curto and Fialkow (1996, 1991); di Dio and
Schmüdgen (2018); Schmüdgen (2017). An important tool
for understanding MA(S) comes from Positivstellensätze
in real algebraic geometry: theorems on representing the
dual cone of polynomials with support in A which are
nonnegative on S via sums of squares Schmüdgen (1991);
Putinar (1993). We denote the cone of linear functionals
dual to the cone of “obviously nonnegative” polynomials
generated by sums of squares by Σ(S)∨A and call such func-
tionals “pseudo-moments”. Tropicalization of the cones
? GB is partially supported by US National Science Foundation
grant DMS-1901950. JY is partially supported by US National
Science Foundation grant #1855726.

of moments and pseudo-moments gives us “combinatorial
shadows” of these sets. Our explicit descriptions of these
shadows lead to interesting combinatorial questions, some
of which have been considered in the context of SONC
polynomials Reznick (1989); Iliman and de Wolff (2016);
Katthän et al. (2021).

Another way of understanding our results is through bi-
nomial inequalities in moments and pseudo-moments of
measures supported on S. When the semialgebraic set
S is closed under Hadamard multiplication, the tropi-
calization tropMA(S) of the moment cone is a rational
polyhedral cone. Its dual cone (tropMA(S))∨ encodes
all of the binomial inequalities in A-moments. Similarly,
binomial moment inequalities that can proved via sums of
squares correspond to another rational polyhedral cone,
which may depend on a degree bound for the sums of
squares construction. While polynomial inequalities valid
on MA(S) are difficult to characterize, we explicitly de-
scribe all binomial inequalities in moments and pseudo-
moments by finding the extreme rays of the corresponding
rational polyhedral cones. The use of tropicalizations to
analyze the power of sums of squares method was first
introduced in Blekherman et al. (2020) for analyzing graph
density inequalities, and further developed in Blekherman
and Raymond (2021). We take inspiration from some of
their results and techniques, for instance the use of the
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Hadamard property to ensure that the tropicalization is a
convex cone. However, to the best of our knowledge, this
is the first instance where tropicalization is used to study
the relationship between the moment and pseudo-moment
cones.

We start with a pair of examples which illustrate our setup
and results

Example 1.1. (Motzkin Configuration on Orthant). Let
S = R2

≥0 be the nonnegative orthant and let A be the

Motzkin configuration: A = {(0, 0), (1, 2), (2, 1), (1, 1)},
which gives us the exponents of moments we are recording:

m00 =

∫
S

1 dµ, m12 =

∫
S

xy2 dµ,

m21 =

∫
S

x2y dµ, m11 =

∫
S

xy dµ.

There is only one binomial inequality satisfied by A-
moments of measures supported on S:

m00m12m21 ≥ m3
11. (1)

If we regard moments as functions on A, then we see
that moments are nonnegative log-convex functions on
A, and in fact inequalities coming from log-convexity are
the only possibly binomial inequalities in A-moments for
measures supported on the nonnegative orthant Rn≥0 (see

thm:genmom).

We now consider A-pseudo-moments of measures sup-
ported on Rn≥0. Pseudo-moments are defined as linear
functionals that are nonnegative on “obviously” non-
negative polynomials coming from sums of squares (see
sec:SOS). We show in tropicalizationpseudononneg that
A-pseudo-moments of measures supported on Rn≥0 satisfy
log-midpoint-convexity inequalities:

mαmβ ≥ m2

(α+β
2 )

, (2)

with α, β, α+β2 ∈ A. Moreover these inequalities generate
all possible binomial inequalities valid onA-pseudomoments.
Since the Motzkin configuration contains no midpoints,
we see that there are no binomial inequalities valid on A-
pseudomoments. �

Remark 1.2. The combinatorial notions of convex and
midpoint-convex functions on A are quite similar to what
has been developed for analyzing certain sparse glob-
ally nonnegative polynomials and sums of squares arising
from the arithmetic mean-geometric mean inequality. Such
polynomials were originally called AGI-forms by Reznick
in Reznick (1989) and were later called Sum of Nonnega-
tive Circuit Polynomials (SONC) in Iliman and de Wolff
(2016). The only difference is that for analyzing global non-
negativity, it makes a difference whether points in A have
all even coordinates or not, and for instance midpoints
convexity has to hold only between even points in A. As
we will see in thm:whole and tropicalizingpseudomoments
this is precisely what happens for us as well when analyzing
measures supported on all of Rn. �

Example 1.3. (Motzkin Configuration on Square.). Let
S = [0, 1]2 ⊂ R2 be the unit square given by inequalities
0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Let A ⊂ N2 again be the
Motzkin configuration. In addition to the log-convexity

inequality (1) the following binomial moment inequalities
are naturally valid on the unit square, since all variables
lie between 0 and 1:

m11 ≥ m12, m11 ≥ m21 m00 ≥ m11.

Any binomial inequality in A-moments of measures sup-
ported on S can be obtained from the above inequalities
and (1) via exponentiation and multiplication (See Exam-
ple 1.3).

As we increase the degree d, sums of squares provide
increasingly better approximations to polynomials sup-
ported on A that are nonnegative on S, and thus can,
in principle, be used to provide increasingly sharper bino-
mial inequalities for pseudo-moments. If we regard pseudo-
moments as functions on A then increasing the degree
allows us to use moments that lie outside of A. For instance
we can show that m00m12 ≥ 2m11 by combining the
inequality m12 ≥ m22 with the log-midpoint-convexity
inequality (2): m00m22 ≥ m2

11.

We show that the binomial A-pseudo-moment inequalities
stabilize, and only the following binomial inequalities can
be learned via sums of squares (regardless of the degree
d):

m11 ≥ m12, m11 ≥ m21, m00m12 ≥ m2
11,

and m00m21 ≥ m2
11.

Therefore for any degree d sums of squares cannot prove
the moment inequality m00m12m21 ≥ m3

11, and moreover,
sums of squares remain quantifiably far away from certi-
fying this inequality. �

Remark 1.4. Since the unit square is compact, it fol-
lows that from Schmüdgen’s Positivstellensatz Schmüdgen
(1991) that any polynomial f strictly positive on the
unit square has a sum of squares certificate. Therefore,
as degree increases sums of squares provide an increas-
ingly better approximation to all nonnegative polynomials
supported on A. However, as we have seen, tropicaliza-
tions stabilize, and higher degree sums of squares do not
have larger tropicalizations. This is due to the fact that
trop(S) only depends on the neighborhood of zero and
the “neighborhood of infinity” contained in S. We give a
simple example of this phenomenon below: Let S be the
planar triangle with vertices (0, 0), (1, 0) and (1, 1) and
let Sε be the quadrilateral with vertices (0, 0), (1, 0), (1, 1)
and (0, ε). The we have Sε → S as ε→ 0, however trop(Sε)
is the entire plane for all ε > 0. �

Remark 1.5. The unit square is special in that all nonneg-
ative polynomials have a sum of squares certificate. Ex-
ample 1.3 also shows that even though every nonnegative
polynomial is a sum of squares, there does not exist a de-
gree bound for the certificate even for just the A-supported
polynomials (Marshall, 2008, 9.4.6 Example (1)). �

1.1 Main Results in Detail:

We say that a subset S of Rn≥0 has the Hadamard property

if S is closed under coordinatewise (Hadamard multipli-
cation). Our main results are about the tropicalizations
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of moment cones and pseudo-moment cones for semi-
algebraic sets with the Hadamard property. Concretely,
we focus on nonnegative orthants, hypercubes, and toric
cubes to discuss our general results. Throughout, we fix
a finite set A ⊂ Zn≥0 of exponents and consider the A-

moments, that is to say
∫
S
xa for a ∈ A (also known as

truncated moment sequences).

We think of elements of the tropicalization of the moment
cone (resp. pseudo-moment cone) as functions h : A → R
and describe the tropicalization mainly in terms of discrete
convexity properties of these functions. For the moment
cone, we have a general description of the tropicalization
of MA(S) for any subset of the nonnegative orthant with
the Hadamard property:

Theorem 1.6. Let S ⊂ Rn≥0 be a semialgebraic set with
the Hadamard property such that the intersection of S
with the positive orthant is dense in S. The tropicalization
of the A-moment cone MA(S) is the rational polyhedral
cone of functions h : A→ R satisfying the following linear
inequalities:

(1) (Convexity:)
∑r
i=1 λih(ai) ≥ h(b) for all a1, . . . , ar, b ∈

A, λi ≥ 0,
∑r
i=1 λi = 1;

(2) (Nonincreasing:) h(a) ≥ h(b) whenever a − b ∈
trop(S)∨.

The first type of inequality is the naive form of discrete
convexity that arises in this context. The second type of
inequality is where the set S enters: The tropicalization of
S is a rational polyhedral cone and trop(S)∨ is its dual
cone, which defines a partial order of RA – and the second
inequality says that the functions in the tropicalization are
order preserving in this sense. Below, we combine these two
types by writing the inequality description as

∑
λih(ai) ≥

h(b) whenever
∑
λiai−b ∈ trop(S)∨. In case S = Rn≥0, we

have trop(S)∨ = {0} so that the tropicalizations of the A-
moment cones do not include inequalities of type (2). For
S = [0, 1]n, we get trop(S)∨ = Rn≤0 and the inequalities

of type (2) say that the functions h ∈ trop(MA(S)) are
non-increasing in coordinate directions.

We can also think of this result as an elegant description
of all binomial inequalities valid on the moment (by
exponentiation). With the analogous result for pseudo-
moment cones, we will see that these inequalities suffice
in distinguishing moments from pseudo-moments in many
important cases. Moreover, there is a rich combinatorial
interplay between geometry of the moment configuration
A and geometry and algebraic description of S.

We now move on to pseudo-moment cones, which are
the dual cones to truncated preorderings or quadratic
modules. We describe in detail how we truncate (in a total
degree version) at the beginning of sec:tsos. For pseudo-
moment cones, we focus on the case that the semialgebraic
set S has an inequality description in terms of pure
binomial inequalities.

Theorem 1.7. Let S ⊂ Rn≥0 be a semi-algebraic set defined

by pure binomial inequalities gi = xai − xbi such that
S ⊂ S ∩ Rn>0. Assume that the exponent vectors ai − bi
of the binomials defining S generate the semigroup N =
trop(S)∨∩Zn. For all sufficiently large d the tropicalization

of QMd(gi)
∨ is the rational polyhedral cone F (S)d given

by the following inequalities:

(1) (Midpoint convexity:) h(a1) + h(a2) ≥ 2h(b) for all
a1, a2, b such that |ai| ≤ d, |b| ≤ d and a1 + a2 = 2b;

(2) (Nonincreasing:) h(a) ≥ h(b) whenever a − b ∈
trop(S)∨.

The inequalities in A-pseudo-moments provable by sums
of squares of degree at most d are dual to the coordinate
projection of F (S)d onto the coordinates of A.

In the case of pseudo-moments, we need the additional
assumption on the inequality description of S that the
exponent vectors of the inequalities generate the semi-
group of lattice points in the convex cone trop(S)∨ to
give the same inequalities of type (2) as in the case of
moment cones. This is an assumption that, from a purely
theoretical point of view, can be made without loss of
generality by adding valid and redundant inequalities, if
necessary. Without this assumption, we only get some
inequalities of type (2), namely those corresponding to the
lattice points in trop(S)∨ that also lie in the semigroup
generated by the exponent vectors.

Our most intriguing observation is that tropicalizations
of pseudomoment cones stabilize as the degree bound d
grows. This means that for sufficiently large d the tropi-
calizations of pseudomoment cones remain the same, even
though pseudomoments themselves provide a convergent
approximation to the moment cone. This phenomenon was
already observed in Example 1.3. We provide an explicit
description of when stabilization occurs for the hypercube
[0, 1]n and provide examples of stabilization and a general
theorem.
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