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ABSTRACT
Touch offset models capture users’ targeting behaviour pat-
terns across the screen. We present and evaluate the first exten-
sion of these models to explicitly address behaviour changes.
We focus on user changes in particular: Given only a series of
touch/target locations (x, y), our model detects 1) if the user
has changed therein, and if so, 2) at which touch. We evaluate
our model on smartphone targeting and typing data from the
lab (N = 28) and field (N = 30). The results show that our
model can exploit touch targeting sequences to reveal user
changes. Our model outperforms existing non-sequence touch
offset models and does not require training data. We discuss
the model’s limitations and ideas for further improvement. We
conclude with recommendations for its integration into future
touch biometric systems.

Author Keywords
Change point model; touch biometrics; regression;
computational interaction

INTRODUCTION
A well-known aspect of mobile touch input is its inaccuracy:
Users may not hit their target exactly, for example due to
occlusion [4, 27], limited reach [5], finger orientation [17] and
alignment [18], movement [15], and encumbrance [22].

Touch offset models [6, 16, 29] are a computational tool to
address this problem: They use touch data to learn users’ 2D
targeting error patterns across the screen. The models can then
shift future touches, improving touch accuracy. These models
have also been used to recognise users based on their targeting
patterns [10] and to infer hand posture [11] and finger [6].

However, none of these models considered touch sequences:
1) Touch corrections were applied per single touch [16, 29].
2) Recognition of users and hand postures aggregated evidence
over multiple touches [6, 10, 11]. Hence, it remains unexplored
how to utilise structures within offset sequences, for example
changes in the underlying behaviour patterns.
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Figure 1. Left: Touch targeting errors (offsets) are measured between
touch and target location. Centre: Offset models use regression on such
touch targeting data to learn users’ individual targeting behaviour pat-
terns across the screen. Right: We extend this approach to touch se-
quences with behaviour changes, in particular changing users. In this
example of a sequence of T touches t1, t2, ..., tT , the user changes after cp
touches. Our model exploits the resulting change in offset patterns (i.e.
regression parameters) to 1) detect if a touch sequence contains a user
change, and to 2) locate at which touch that change occurs.

Touch targeting is often sequential behaviour, for example
when typing or navigating between or within apps. Hence,
we argue that there is a gap between the actually sequential
user behaviour and the existing offset models’ non-sequential
approach. This motivates our investigation of the first touch
offset model that treats touches in sequences (Figure 1). Our
model is thus able to address a new use case for utilising touch
offsets: Exploiting behavioural (in)consistencies in targeting
sequences to detect and locate changes in user behaviour over
time. In particular, here we address the case of changing users.

Detecting user changes has great practical relevance, for ex-
ample for informing interface adaptation and personalisation,
and behavioural biometric systems that protect users’ personal
data and devices. Touch targeting is the most fundamental and
common interaction on mobile devices today; yet it typically
yields rather limited data (2D touch/target locations). Thus,
detecting user changes purely based on targeting behaviour
presents an important and challenging problem.

We contribute 1) a novel touch offset model, the first to extend
existing offset models from single touches to touch sequences
with change points; and 2) detailed evaluations of this model
on touch targeting data in the lab (N = 28) and typing data in
the wild (N = 30).

The results show that our model can exploit touch targeting
sequences to reveal user changes. We discuss this as a building
block for touch biometric systems, considering limitations and
integration opportunities.
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RELATED WORK
In mobile touch input, touch-to-target distances (“offsets”)
depend on the GUI target’s location on the screen. Touch
offset models aim to capture and utilise these patterns. Here,
we relate our work to this line of research.

Henze et al. [16] collected touch targeting data with a smart-
phone game. They fitted fifth-order polynomial functions to
correct offsets, reducing error rate by 7.79 %. These functions
predicted x/y offsets based on touch x/y, respectively. Later, a
user-specific “2D” offset model by Buschek et al. [11] used
quadratic polynomials and considered both touch x and y to
predict offsets for both dimensions. Our approach embeds
such polynomials. In contrast to the related work, our model
explicitly considers that the polynomial’s parameters might
change over time; this is the foundation for detecting changes.

Beyond linear models, Weir et al. [29] used Gaussian Process
(GP) regression [23] for offset modelling to improve touch
accuracy. Other work also included motion data into such
models [20, 21]. Weir et al. [29] found that offset patterns
are highly user-specific, and Musić and Murray-Smith [19]
pointed out their speed-specific nature when tapping while
walking. Thus, later work employed these GP offset models to
personalise mobile messaging in context [9], and to identify
and authenticate users [10]. This research motivates the use of
touch offsets for touch biometrics in general, and in particular
our investigation of an offset model that detects and locates
user changes. The related work [10] also provides a baseline
approach for comparison (see our evaluation).

All existing offset models needed recorded touch and target
locations as training data. In particular, related work used 60 to
400 touches [6, 10, 11, 29]. Weir et al. [28] showed that this can
be reduced, using a sparse model, namely a Relevance Vector
Machine (RVM) [26]. Since our model looks for changes, not
known behaviour, it does not require training data beyond the
analysed sequence. Nevertheless, this related work motivates
our investigation of detecting user changes in sequences of
different lengths, showing that longer sequences (i.e. more
touches) better reveal changes.

In summary, existing touch offset models employ regression to
learn a mapping from sensed to intended location, using train-
ing data as a set, not a sequence. In contrast, our model consid-
ers touches as sequences of consistent targeting patterns (mod-
elled with linear regression) with potential pattern changes (i.e.
changing regression parameters). This novel approach to touch
offset modelling enables our model to utilise touch targeting
sequences to detect and locate behaviour changes.

APPLICATION CONTEXT
We highlight that our contribution in this paper is not a practi-
cal application, but a novel model and its detailed evaluation
with a discussion of limitations and opportunities. Neverthe-
less, as a motivation for this line of research, here we provide
examples of possible future applications for our model.

Automated guest mode: A smartphone could use our model
as part of a system that detects user changes to automatically
enter a “guest mode” for temporary device sharing. That mode
could enable phone calls but block viewing private photos.

Detecting misuse: Consider that a user leaves behind an un-
locked phone in a bar. A stranger might grab it to browse
private data. The device could analyse the sequence of recent
touches to detect if the user has changed. It could then lock
itself or raise alarm, for example by sending an email with its
GPS location to the legitimate owner or a trusted third party.

Personalisation on shared devices: Another use case is a
shared device, for example a “family tablet”. Different users
might use it for online shoppping, without explicitly switching
user accounts. It is thus not clear which user has seen which
products and should be shown which recommendations in the
future. To solve this problem, the device could detect user
changes based on touch behaviour to automatically open a
prompt asking for the new current user. It might also recognise
the new user automatically upon detecting a change when com-
bined with a user identification model. Moreover, detecting
user changes in touch sequences also helps to assign parts of
the browsing history to different users post hoc.

Note that we consider our model a building block among others
– many practical applications benefit from combining it with
other data and methods, as described in our discussion.

CHANGE POINT MODELLING FOR TOUCH SEQUENCES
Here, we first introduce the (linear) touch offset models that
we then integrate into our change point model.

Overview: Touch Targeting Offset Models
We describe a touch t at screen location x,y as a vector t =
(x,y)T ∈ R2. Abstractly, an offset model is a function f (t)
that maps a touch t to an offset o = (ox,oy). For training,
this offset is typically measured between the touch location
t and the target location (e.g. the target button’s centre). In
applications, adding the model’s predicted offset to the touch
yields a corrected touch location t′ = (tx +ox, ty +oy)

T . If the
model works well, this correction shifts the touch towards the
user’s intended target, improving touch accuracy [6, 11, 29].
The model developed in this paper detects behaviour changes
based on these offset patterns, instead of correcting touches.

Linear Touch Offset Models with Basis Functions
The linear touch offset models described in related work [6,
11] follow the general linear model, in matrix form defined as:

o = Xw+ ε, (1)

where X is the T × d design matrix with one row per touch
(e.g. in an interaction sequence of T touches) and one column
per basis function (explained below). Moreover, w contains
the model’s parameters, and o is a T ×2 vector containing the
observed offsets for both screen dimensions for all T touches.
Finally, ε is Gaussian noise. See the related work for more
details on parameters and how to estimate them from data [6].

The model uses basis functions Φ to transform the raw input
touches. For example, the quadratic model described in related
work [6, 11] uses Φ(t) = (1,x,y,x2,y2)T ∈ R5. In general,
basis functions allow the linear model to account for non-
linear relationships between touch locations and offsets.
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Extending Offset Models to Sequences & Change Points
We adapt the change point model from Rasmussen [24], which
uses Bayesian analysis and the general linear model. We de-
cided to build upon this model, since it allows us to integrate
the linear offset model described above with few adaptations.
The result is the first touch offset model that analyses touches
as sequences to detect behaviour changes.

Rationale
Intuitively, the model as described below “tries out” all possi-
ble splits of a touch targeting sequence into two parts, expect-
ing each part to show different but consistent user behaviour.
A change point then seems more likely for those splits of the
observed data which match this expectation.

Formal Definition
We describe the parts relevant to our changes and use of the
model. More background can be found in related work [24].

First, to be able to treat our two-dimensional output o ∈ RT×2

with one-dimensional regression, we unroll it into a long vector
ô = (ox1, ..., ixT ,oy1, ...oyT )

T ∈ R2T×1 (as in [29]).

We define a matrix Gt ∈ RT×2d per timestep t (the “splits”):

Gt =

[
X[1, ..., t;1, ..,d] 0t,d

0T−t,d X[t +1, ...,T ;1, ..,d]

]
(2)

Therein, 0n,m is a zero-filled matrix of dimension n×m, and
the X[...; ...] denote submatrices of X which consist of rows
and columns with the given lists of indices.

Next, we stack up these matrices Gt to Ĝt ∈ R2T×4d to match
the way we handle the 2D output with ô:

Ĝt =

[
Gt 0T,2d

0T,2d Gt

]
(3)

Using these matrices Ĝt , we define ρt as an intermediate step:

ρt = |ĜT
t Ĝt |−1/2[ôT ô− ôT Ĝt(ĜT

t Ĝt)
−1ĜT

t ô]−(T−d)/2 (4)

Finally, normalisation of these ρt yields the probability p(ct |ô)
of a change point ct happening at time t:

p(ct |ô) = ρt

(
T−1

∑
s=1

ρs

)−1

(5)

Computing p(ct |ô) for all t = 1, ...,T −1 yields the posterior.
For each timestep, we now have a probability describing how
likely we think it is that the change happens there. The prior
implied in the transformations leading to the equations above
is uniform [24]: Before seeing the data, the model considers
each time step to be equally (un)likely as a change point.

Model Limitations
The model in this specific form has two limitations: First, it
only expects a single change point in a sequence. We focus on
this case in our analyses to evaluate the fundamental model.
However, as described in related work [24], the formal ap-
proach can be extended to multiple change points, in our case
by modifying Equation 2 (e.g. to split into three parts). Even
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Figure 2. Posterior distributions for four example sequences, three with
change points (at 50, 150, 225 touches), and one without a true change
point. The plots show the probability of a change point at each touch in
the sequence, as estimated by our model. Note how the probability mass
concentrates around true change points and how the model remains “un-
decided” for the sequence with no true change point.

in its current form, the detection task (i.e. change in sequence
or not?) works with multiple change points, as long as at least
one of them is a clear enough change to our model.

Second, the model formulation originally analyses sequences
post hoc. For example, a touch biometric system could use
it to detect user changes in touch data after a usage session.
However, this approach can be turned into an online version by
processing chunks of touches (e.g. the last N touches, updated
at each touch). We return to these limitations in our discussion.

TOUCH SEQUENCE AND CHANGE POINT ANALYSES

Model Application I: Detecting Change Points
Intuitively, we decide that a change point is present in a touch
sequence if our model’s posterior p(ct |ô) shows a clear “peak”
(i.e. low posterior entropy). In contrast, if the model cannot
find a clear change point the posterior will be “flat” (i.e. high
entropy). Figure 2 shows examples for each of these cases.

Implementing this approach, we decide if a change point is
present or not based on the posterior entropy H:

H =−
T−1

∑
t=1

p(ct |ô) log p(ct |ô) (6)

In practice, the actual decision can be made, for example, by
comparing the entropy against a threshold.

Model Application II: Locating Change Points
A second task is to estimate where a change point is located
within a sequence. Our model’s posterior distribution also
enables such estimates. For example, we can estimate the time
step of the change point with the posterior mean location lmean:

lmean =
T−1

∑
t=1

p(ct |ô)t, (7)

We could also use the maximum’s location lmax:

lmax = argmax
t

p(ct |ô) (8)

We compare both approaches in our analyses. Our results show
that lmean yields more accurate estimates.
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STUDY I - MOBILE TOUCH TARGETING IN THE LAB
We evaluate the described model on a published smartphone
touch targeting dataset [6], collected in the lab. Per participant
(N = 28), the dataset contains two sessions (a week apart),
each with touches at 400 target locations per combination
of the two independent variables: hand posture (right thumb,
device in right hand; right index finger, device in left hand) and
target type – crosshair, key (4×7 mm), app icon (9×9 mm),
and full width button (height 9 mm).

Preprocessing
Following related work [6, 10], we removed outliers that result
from participants hitting the screen by accident (e.g. accidental
double tap). These touches are clearly too far away from the
target to be intended targeting actions. We removed touches
which are further away from their target than the task’s mean
offset length plus three standard deviations (1.4 % of the data).

Evaluation Procedure
The data contains touches from 28 users. Hence, to extensively
test our model, we can create sequences with and without
user changes as follows: For each pair of users ui,u j, we
concatenate ni touches from ui with n j touches from u j to
form one sequence (of length ni+n j) that has a user change (if
i , j) or no such change (if i = j). Note that this concatenation
introduces no artefacts (e.g. unusually long time gap) since
the sequence is still just a list of touch and target locations.

We then analyse these concatenated sequences with our model.
Ideally, the model would predict a change for all sequences
with touches from two different users (i.e. i, j), and no change
for all sequences with touches from a single user (i.e. i = j).

Moreover, by varying ni and n j, we can 1) shift the change
point’s location within the sequence, and 2) evaluate the model
on sequences of different lengths overall.

Performance Measures
To measure model performance, we use the two standard mea-
sures receiver-operating-characteristic area-under-curve (ROC
AUC) and equal error rate (EER) [14]: In our case, the ROC
curve is obtained by varying the decision threshold applied
to the model’s “score” (i.e. entropy, Equation 6). The curve
plots false positives (missing to detect a change) against true
positives (rightfully detecting a change). A high area under
this curve (AUC) means that cases with and without changes
can be distinguished well. The maximum AUC score (1) in-
dicates perfect distinction. Moreover, EER is the point on the
ROC curve closest to the line “false positive rate equals false
negative rate”. An EER of X% means that in X% of cases
the system would incorrectly detect a change, while in X% of
actual changes it would fail to detect them.

Results – Detecting User Changes
Table 1 shows the results of detecting user changes with three
different variations of our model (linear, quadratic, hyper-
bolic basis functions). The models analysed sequences of 300
touches with one hand posture and target type, with change
points located at 150 touches (i.e. at 50 % of the sequence).

Target
type

Hand
posture

Change point detection accuracy
linear Φ quadr. Φ hyperb. Φ rel. work combined
AUC EER AUC EER AUC EER AUC EER AUC EER

cross
thumb 0.96 12 0.97 8 0.96 10 0.85 23 0.97 8
index 0.92 17 0.92 16 0.92 16 0.79 29 0.94 13

key
thumb 0.94 15 0.96 15 0.95 13 0.86 23 0.97 8
index 0.92 15 0.91 17 0.92 16 0.83 23 0.93 15

app
thumb 0.88 19 0.88 17 0.88 15 0.80 29 0.91 13
index 0.89 21 0.91 19 0.91 17 0.78 31 0.93 15

fill
thumb 0.72 33 0.70 35 0.68 33 0.49 48 0.64 40
index 0.76 35 0.74 33 0.74 33 0.53 46 0.73 29

Table 1. Evaluation of change point detection for different targets, hand
postures, and offset models (i.e. basis functions Φ), with sequences of
300 touches and a true change point at 150 touches. The second to last
column shows the results using the approach from related work [10], the
last column combines it with our approach.

Target
type

Hand
posture

Change point detection accuracy
true cp at 25% true cp at 50% true cp at 75%
AUC EER AUC EER AUC EER

cross
thumb 0.91 16 0.96 10 0.91 17
index 0.85 23 0.92 16 0.85 23

key
thumb 0.90 19 0.95 13 0.89 21
index 0.86 20 0.92 16 0.85 21

app
thumb 0.82 24 0.88 15 0.83 24
index 0.81 27 0.91 17 0.81 26

fill
thumb 0.61 40 0.68 33 0.64 37
index 0.68 37 0.74 33 0.68 37

Table 2. Evaluation of change point detection for different locations of
the change point within the analysed sequence (for sequences of length
300 and the hyperbolic offset model). The results show that the model
performs better if a sufficient number of touches is observed for be-
haviour both before and after the change point.

Target Types and Hand Postures
Behaviour changes were clearer for interactions with smaller
targets. The large fill targets in particular hide user-specific
targeting behaviour, explained by their large area that allows
for less consistent behaviour [10]. Changes were also clearer
for thumb touches than index finger ones. Both findings are in
line with related work [10], which analysed individuality of
offsets touch by touch (not as sequences with change points).

Model Variations
Comparing variations of our model, the one with hyperbolic
basis functions performs best overall. It beats the quadratic one
only by a slight margin. This suggests that the complexity of
offset patterns is sufficiently captured by quadratic/hyperbolic
terms regarding the detection of changes.

Change Point Location in the Sequence
If a change occurs near the start or end of a sequence, either
behaviour before or after the change is only observed for few
touches. Hence, we are interested in evaluating how the model
reacts to change points in different places.

Table 2 shows results for change points at 25 %, 50 %, and
75 % of the whole sequence. These results show that change
points are easier to find with our model when a sufficient
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number of touches is observed for behaviour before and after
them. This is to be expected: Behaviour changes are clearer if
consistent behaviour can be observed around them, which only
becomes evident with a certain number of touches. Neverthe-
less, visual inspection and high AUC values indicate that the
model’s posterior provides considerable evidence for change
points even if they happen near the start/end of a sequence.

Sequence Length
We also analysed how evident change points appear to our
model in sequences of different lengths. Figure 3 (left) shows
the results: Changes are harder to spot in shorter sequences. In
contrast, more data gives our model longer subsequences of
consistent behaviour, making it easier to detect a change.

Comparison to Related Work / Non-Sequence Offset Models
Table 1 further shows results with the only previously pub-
lished approach for distinguishing users purely based on touch
offset patterns [10]. That approach uses non-sequence touch
offset models [29] to evaluate and aggregate the likelihood of
a specific user in contrast to others over all touches. Hence, it
needs training data from the user that it seeks to distinguish
from others; plus data from others.

Following the related work [10], for each evaluation case (see
procedure above), we trained that model on data from ui vs
data from all others but u j – using data from one study session,
then testing on sequences concatenated from data of ui and
u j from the other session. This is a recommended evaluation
scheme from behavioural biometrics [8, 10]; further details on
this model and approach can be found in said related work.

In contrast, our model does not require any data beyond the
sequence at hand. Moreover, instead of aggregating single
touches, it considers the sequence as such, that is, largely con-
sistent behaviour over time, possibly changing at some point.
Figure 3 shows that our sequence model is able to exploit
more touches (EERs decrease per touch), while aggregation
largely stagnates at higher EERs after a certain number of
touches. The black regression lines in Figure 3 show this (EER
in % falls -0.07 per touch with our model vs -0.02 with the
non-sequence model).

Based on the results in Table 1, our model improves EERs
by ≈ 40 % relative to the previously proposed approach for
distinguishing users purely with touch offset patterns.

Model Combination
Finally, as the last column in Table 1 shows, it is possible to
combine the “scores” obtained by both models (ours + related
work [10]) to improve user change detection. We combined
the models’ outputs as a weighted sum, with weights informed
by cross validation on one randomly chosen user’s data. Intu-
itively, this combined model performs better since it utilises
both indications of known behaviour and change of said be-
haviour: 1) The other model [10] trained as described above
assesses if the behaviour matches to that of the expected user
(ui in our evaluation scheme, see above); and 2) our model
assesses if the given sequence contains a behaviour change.
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Figure 3. Change point detection for sequences of different lengths (true
change point at 50 %). For our approach (left), more data leads to bet-
ter accuracy (i.e. lower EER). In comparison, the previously proposed
approach (right, [10]) remains at a higher error rate.
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Figure 4. Change point location estimation (hyperbolic Φ, sequence with
300 touches). We measure the difference in percent of sequence length
between predicted location and true location. We compare two estima-
tors (left: mean, Equation 7; right: max, Equation 8) and three locations
of the change point (x-axes: 25 %, 50 %, 75 % of sequence).

Results – Locating User Changes
We are also interested in detecting where a user change hap-
pens within a touch sequence. Our model inherently yields
an estimate of this change point location (Equations 7 and
8). We again follow the described evaluation procedure, now
only looking at cases with change points. We measure the
distance between the estimated change point location and the
true location, in % of the length of the whole sequence.

Target Types and Hand Postures
In line with results for detecting changes, estimating their
locations is easier for thumb input than index finger touches
(compare full vs dotted lines in Figure 4). Moreover, fill targets
stand out with much higher estimation errors (≈17.5 %), again
explained by less consistent user behaviour for such large
targets. In contrast, the model located changes for the smaller
targets more accurately, with errors of 3.51 % to 8.00 %. For
the tested sequence length, this means that changes are located
within about 10 to 24 touches around the true point. To put this
into context, in a typing sequence, for example, a user change
might thus be located within up to 2 to 5 words.
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Figure 5. Change point location estimation for sequences of different
lengths. The true change point is at 50 % of the sequence. The mean
approach (Equation 7, left) is more accurate than the maximum ap-
proach (Equation 8, right). Overall, changes are more accurately located
as more touches are observed.

Comparison of Change Point Location Estimators
Figure 4 (left vs right) shows two different approaches of esti-
mating the change point location from our model’s posterior:
mean (Equation 7) and maximum (Equation 8). The mean
estimator was more accurate for all targets and postures.

Change Point Location in the Sequence
Figure 4 shows results for changes at 25 %, 50 %, and 75 %
of the sequence. In line with results for detecting changes,
estimating change locations is easier when a sufficient number
of touches is observed for behaviour before and after them.

Sequence Length
We also compared location estimation for sequences of dif-
ferent lengths. Figure 5 shows the results: Overall, change
point estimation is more accurate relative to the length of the
sequence as more touches are observed. An exception are the
fill targets, again likely due to the highly inconsistent target-
ing behaviour evoked by their large area. Comparing both
estimators, the mean approach is consistently better than the
maximum approach for all tested sequence lengths. The trends
are similar (error in % sequence length about -0.02 per touch).

STUDY II - MOBILE TOUCH TYPING IN THE WILD
We complement our lab analyses with evaluations on touch
sequences collected from users’ own everyday typing. This
promises results of high ecological validity. In particular, an
in-the-wild study allows us to observe targeting behaviour
from a variety of everyday contexts for each user. This study is
part of a larger research project (see [7] for further analyses);
here we focus on targeting behaviour.

Apparatus
We modified Google’s Android Open Source Project (AOSP)
Keyboard1 to record keyboard touch data. To protect users’
privacy, the data was filtered on the device: In particular, we
used a “trigram filter”, which recorded touch locations only
1https://android.googlesource.com/platform/packages/
inputmethods/LatinIME/, accessed 7th October 2017.

for three subsequent touches with a random chance of 10 %.
After each recording, there was a minimum gap of at least
one character. These parameters were tested in a pre-study
to ensure that the recorded data would not reveal entered
text. Typing in special text entry fields (e.g. name, address,
password) was never recorded. Moreover, we added a “private
mode” button to the keyboard with which participants could
pause recording at any time.

We assessed hand posture via an experience sampling method
(ESM): Our keyboard displayed a set of posture pictograms
and asked participants to select their current hand posture.
This posture selection overlay was shown when opening the
keyboard, but no more than once every ten minutes.

Participants
We recruited 30 participants (15 female) via a newsletter and
social media. Their mean age was 24 years (18-33); one was
left-handed. Most were students and proficient touch keyboard
users. They received a e 15 gift card as compensation.

Procedure
We deployed our app in a three-week field study on partici-
pants’ own smartphones. App, study and examples of recorded
data were explained in an initial meeting. In line with our uni-
versity’s regulations, people signed an informed consent form.
Demographics were recorded with a questionnaire.

Participants then used their phone as usual. We did not in-
struct them, for example, to use certain hand postures (but we
assessed postures via ESM, see apparatus).

After three weeks, we informed participants about the end
of the study and asked them to uninstall the app. They also
provided feedback in a post-study questionnaire. No data was
recorded beyond the study.

Study Limitations
Samples in this study and the lab dataset are biased towards
students and thus young people. Touch behaviour might be
different for other user groups.

Moreover, our data might contain typing from non-participants
(e.g. device sharing). However, all participants owned personal
unshared devices. We also instructed them to use the “private
mode” if they should need to share their device temporarily.

Since hand posture was assessed via ESM, it might not be
perfectly accurate. A Likert question in the post-study ques-
tionnaire asked about this (“I always selected the posture I
was actually using”). All but one person (strongly) agreed
with this statement.

Finally, we only observed targeting behaviour while typing,
not for tapping in general (e.g. app selection on home screen).

Preprocessing and Evaluation Procedure
In total, we recorded 204,685 touches with screen locations
and the locations of their corresponding target keys. People
used their own devices; related work [2, 13] pointed out that
in this case touch locations need to be normalised for analyses
across screen sizes. Hence, we normalised them using the
recorded keyboard widths and heights.
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Hand
posture N

Change point detection accuracy
linear Φ quadr. Φ hyperb. Φ rel. work combined
AUC EER AUC EER AUC EER AUC EER AUC EER

all 30 0.91 17 0.92 17 0.85 21 0.86 36 0.92 16
two thumbs 19 0.90 18 0.90 17 0.86 20 0.71 33 0.93 15
right thumb 12 0.88 16 0.88 20 0.84 23 0.64 38 0.87 19

Table 3. Change point detection on touch targeting sequences from typ-
ing in the wild (sequences of length 300 with true change point at 50 %).

Hand
posture N

Change point detection accuracy
true cp at 25% true cp at 50% true cp at 75%
AUC EER AUC EER AUC EER

all 30 0.86 22 0.92 17 0.86 22
two thumbs 19 0.85 23 0.90 17 0.85 22
right thumb 12 0.81 26 0.88 20 0.81 26

Table 4. Evaluation of change point detection in the wild for different
locations of the change point within the analysed sequence (for sequences
of length 300 and the quadratic offset model).

For the following analyses, we used the same evaluation pro-
cedure as in the first study. However, we have many more
touches here than in the lab. To allow for comparisons to
the first study, we subsample shorter sequences of the same
lengths as in study one (up to 300 touches). To avoid intro-
ducing randomness by this procedure, we follow the common
ten-fold cross-validation scheme, that is, repeating all analyses
on different subsequences and reporting the averaged results.

Results
To avoid redundancy with our report of the lab study, here we
focus on differences, comparisons and additional insights.

Model Variations
The model with quadratic basis functions performed best over-
all (Table 3). It outperformed the linear one only slightly. This
suggests that the complexity of offset patterns for typing in
the wild is sufficiently captured by linear/quadratic terms re-
garding the detection of user changes. In contrast to the lab,
the hyperbolic model performed worse. One explanation is
that this model overfits on noisy everyday data, whereas the
simpler linear/quadratic models are more robust.

Hand Postures
Table 3 shows results for two postures, namely typing with
both thumbs (i.e. two handed use) or with the right one only
(i.e. one handed use). The number of participants per posture
differs, since not everyone used every posture. Other postures
(e.g. index finger) occurred as well, but were used too rarely
and/or by too few people for a meaningful analysis here.

Direct comparisons are difficult due to the different numbers
of participants. Nevertheless, the results suggest the tendency
that typing with both thumbs revealed user changes better than
typing with the right thumb. This is in line with related work
on password typing biometrics [8], which found in a lab study
that users are easier to distinguish by typing behaviour with
both thumbs compared to one.

Change Point Location and Sequence Lengths
As in the first study, we evaluated different locations of the
change point (Table 4) as well as different sequence lengths.
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Figure 6. Change point location estimation on touch targeting sequences
from typing in the wild. Left: Results for different locations of the change
point within the sequence (of length 300 touches). Right: Results for se-
quences of different lengths (true change point at 50 %).

The results confirmed the findings from the lab study: Be-
haviour changes are clearer 1) if consistent behaviour can be
observed both before and after them for a sufficient number of
touches, and 2) for longer sequences overall. The impact on
AUCs and EERs was comparable to the first study.

Performance in the Lab vs in the Wild
Table 1 and Table 3 show overall comparable change point
detection accuracy for key targets with our model. In contrast,
the non-sequence touch offset model [10] performs a lot worse
(EER 23 in the lab vs 36 in the wild). We explain this with
varying contexts of typing in daily life (e.g. on the go vs at
home). Relying on training data is challenging if that data was
collected in a different context. In contrast, our model analyses
the given sequence without training on previous recordings,
rendering it more robust to changing everyday situations.

Model Combination
The combined model still overall performed best (Table 3),
but the advantage was less distinct than in the lab; the linear
version of our model performed better than the combined
model for typing with the right thumb. This is explained by
the overall worse performance of the non-sequence model.

Locating User Changes
For locating the change point (Figure 6), this study overall con-
firmed the findings from the lab. Changes are more accurately
located by our model 1) when a sufficient number of touches
is observed before and after them; and 2) as more touches are
observed (error in % sequence length about -0.02 per touch).

DISCUSSION

Improving Offset Features for Touch Biometrics
Our analyses show that mobile touch targeting sequences re-
veal information about user changes. However, are the ob-
served results “good enough” to consider the model useful
for future research and (biometric) applications? We conclude
that the answer is yes, as explained below.

First, our model presents several advances compared to prior
work: 1) It outperforms the existing non-sequential method for
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exploiting touch offset patterns to detect changing users [10].
Comparing lab vs wild, it also better handles noisy real-world
data. 2) Moreover, our model requires no training data. 3) Our
model can be combined with the existing one [10] to improve
user change detection accuracy overall. 4) Our EERs are also
lower than those obtained for detecting user changes (between
enrolment and authentication, i.e. using training data) with
touch offset features on typing data in the lab [8] (our EER for
typing 17-26 % vs 30 % in the related work). 5) Finally, to the
best of our knowledge, we are the first to present a model for
locating change points in sequences of touch offsets.

Second, regarding observed absolute EERs, we highlight our
focus on touch offsets only: While this paper contributes a
novel offset model, practical applications interested in detect-
ing changing users can take into account more information.
Related work showed that combining different behavioural
biometrics improves accuracy [12]. This was also shown for
the particular case of combining touch offsets with other touch
features [8, 25]. Hence, related work demonstrates that im-
provements in utilising touch offsets, as achieved here, lead to
overall better touch biometric systems.

We thus conclude that our model presents a useful novel build-
ing block for touch biometric systems that enables them to
better exploit touch targeting (offset) sequences.

Modifying and Extending the Model

Online Change Point Detection
Some use cases require online change point detection. While
our model analyses sequences post hoc, it can be integrated
into an online version, for example, by processing the last
N touches, updated per touch. We also plan to investigate
dedicated online change point models (e.g. [1]) in future work.

Handling Multiple Change Points
Our model as described here assumes one change point. This
is suitable for some applications, such as locking a phone
or sending a warning email to its legitimate owner if a user
change has been detected in the last touch sequence.

Other applications might involve (post hoc) analyses of interac-
tion sequences that contain multiple user changes. The model
formulation can be extended directly to multiple changes
(see [24]). Even without modifications, detecting a change
is possible if at least one change point is evident enough to
our model. Thus, our model might be used in a “divide-and-
conquer” scheme that (recursively) subdivides the sequence
at a detected change to check the subsequences for further
changes. We will investigate such extensions in future work.

Handling Short (Sub)Sequences
Our analyses revealed that user changes are harder to detect
and locate if the model has little data to work with. This is the
case for 1) short touch sequences and 2) short subsequences,
that is, the user changes near the start/end of the sequence,
such that only few touches are available for one of the users. To
improve the model for such cases, it could be combined with
an approach that uses recorded training data, as demonstrated
with our combined model (also see next subsection).

Combining Change Detection and User Recognition
Our model detects user changes. Another task is to recognise
users. For example, a touch biometric system might assign
different parts of a finished browsing session on a shared
device to specific users to inform future personal shopping
recommendations based on who visited which website/product
(see application context section). Such a task benefits from
combining our model with a method to match the obtained
subsequences (i.e. split at change points) to known users. One
combination candidate is the model from prior work [10],
which we already successfully combined with our model to
improve the detection of changes itself (see Table 1 and 3).

Our model itself could also be used to help recognise a known
user: Concatenate a previously recorded touch sequence with
new touches. If our model detects no change point, this sug-
gests that the new data comes from the same user as the old
one. In contrast, if a change point is detected, this indicates
that the new data comes from a different user. We plan to
explore this idea further in future work, comparing it to other
anomaly detection methods (see e.g. [3, 8]).

Causes of Changes in Mobile Touch Targeting Behaviour
We focussed on behaviour changes due to user changes, since
1) this extends related work on the user-specific nature of touch
targeting behaviour [10, 29], and 2) promises to be useful as
a building block for touch behaviour biometrics. Neverthe-
less, there are other reasons for changes in touch targeting
behaviour, such as changing hand postures, starting to walk,
and so on. Our model itself is flexible and could be applied for
detecting other changes. An interesting challenge is to distin-
guish causes (e.g. new user or new hand posture?). To address
this question our model could be combined with posture detec-
tors [15, 30] and further information (e.g. application context,
other sensor data).

Our model already reveals insights into the relative impact of
context and user changes: Our typing data sequences contain
touches from multiple postures (“all” postures row in Table 3)
and likely from multiple contexts in the wild (e.g. at home
vs on the go), yet the high AUCs indicate that our model still
picked up user changes. This indicates that user changes are
more pronounced in typing sequences than changing postures
or situations – a promising result for touch biometrics.

Implementing and Integrating the Model in Applications
Our model has several favourable properties that facilitate easy
implementation and integration: 1) It requires no training data.
2) It is lightweight (our implementation has about 30 lines of
Python code). 3) The model runs fast and can utilise highly
efficient matrix routines, since it can be written almost entirely
in vectorised/matrix form.

CONCLUSION
Touch offset models capture 2D targeting behaviour patterns
to improve touch accuracy or to recognise users and hand pos-
tures [6, 10, 16, 29]. We presented the first extension of these
models to explicitly consider touches as sequences, enabling
our model to assess changes in user behaviour. In particular,
our model detects and locates user changes based on touch
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targeting offsets. This is useful, for example, to detect misuse,
to manage multiple user accounts, or to inform user-specific
personalisation and recommendation systems.

We evaluated our model on smartphone targeting and typing
data from the lab (N = 28) and field (N = 30). Depending
on hand posture, target, sequence length and change point
location, it detects user changes with a best equal error rate of
8 %, and locates them with a best error of 3.5 % sequence
length. Our model outperforms the existing non-sequence
touch offset models for detecting user changes and does not
require training data. We demonstrated that it can be combined
with existing models to further improve accuracy. Our model
also provides a posterior distribution, useful for locating user
changes within sequences and for combining it with other
probabilistic information (e.g. from other sensors).

Hence, our model allows researchers and applications inter-
ested in changes in users’ mobile interaction behaviour to
better exploit touch targeting (offset) sequences. By releasing
our model and data, we thus hope to provide a useful novel
building block for touch biometrics.

PROJECT RESOURCES
Our models and data are available on the project’s website:
http://www.medien.ifi.lmu.de/touch-change
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19. Josip Musić and Roderick Murray-Smith. 2016. Nomadic
Input on Mobile Devices: The Influence of Touch Input
Technique and Walking Speed on Performance and Offset
Modeling. Human-Computer Interaction 31, 5 (2016),
420–471. DOI:
http://dx.doi.org/10.1080/07370024.2015.1071195

20. Josip Musić, Daryl Weir, Roderick Murray-Smith, and
Simon Rogers. 2016. Modelling and correcting for the
impact of the gait cycle on touch screen typing accuracy.
mUX: The Journal of Mobile User Experience 5, 1 (19
Apr 2016), 1. DOI:
http://dx.doi.org/10.1186/s13678-016-0002-3

21. Matei Negulescu and Joanna McGrenere. 2015. Grip
Change As an Information Side Channel for Mobile
Touch Interaction. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing
Systems (CHI ’15). ACM, New York, NY, USA,
1519–1522. DOI:
http://dx.doi.org/10.1145/2702123.2702185

22. Albert Ng, Michelle Annett, Paul Dietz, Anoop Gupta,
and Walter F. Bischof. 2014. In the Blink of an Eye:
Investigating Latency Perception During Stylus
Interaction. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’14). ACM,

New York, NY, USA, 1103–1112. DOI:
http://dx.doi.org/10.1145/2556288.2557037

23. Carl Edward Rasmussen and Christopher K. I. Williams.
2006. Gaussian Processes for Machine Learning. The
MIT Press. http://www.ncbi.nlm.nih.gov/pubmed/15112367

24. Peter Rasmussen. 2001. Bayesian Estimation of change
points using the general linear model. Water Resources
Research 37, 11 (2001), 2723–2731. DOI:
http://dx.doi.org/10.1029/2001WR000311

25. Pin Shen Teh, Ning Zhang, Andrew Beng Jin Teoh, and
Ke Chen. 2016. A survey on touch dynamics
authentication in mobile devices. Computers and Security
59 (2016), 210–235. DOI:
http://dx.doi.org/10.1016/j.cose.2016.03.003

26. Michael E. Tipping. 2001. Sparse Bayesian Learning and
the Relevance Vector Machine. Journal of Machine
Learning Research 1 (2001), 211–244.
http://www.ai.mit.edu/projects/jmlr/papers/volume1/

tipping01a/abstract.html

27. Daniel Vogel and Patrick Baudisch. 2007. Shift: A
Technique for Operating Pen-based Interfaces Using
Touch. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’07). ACM,
New York, NY, USA, 657–666. DOI:
http://dx.doi.org/10.1145/1240624.1240727

28. Daryl Weir, Daniel Buschek, and Simon Rogers. 2013.
Sparse Selection of Training Data for Touch Correction
Systems. In Proceedings of the 15th International
Conference on Human-computer Interaction with Mobile
Devices and Services (MobileHCI ’13). ACM, New York,
NY, USA, 404–407. DOI:
http://dx.doi.org/10.1145/2493190.2493241

29. Daryl Weir, Simon Rogers, Roderick Murray-Smith, and
Markus Löchtefeld. 2012. A User-specific Machine
Learning Approach for Improving Touch Accuracy on
Mobile Devices. In Proceedings of the 25th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’12). ACM, New York, NY, USA, 465–476. DOI:
http://dx.doi.org/10.1145/2380116.2380175

30. Ying Yin, Tom Yu Ouyang, Kurt Partridge, and Shumin
Zhai. 2013. Making Touchscreen Keyboards Adaptive to
Keys, Hand Postures, and Individuals: A Hierarchical
Spatial Backoff Model Approach. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’13). ACM, New York, NY, USA,
2775–2784. DOI:
http://dx.doi.org/10.1145/2470654.2481384

Session 5A: IUIs for Wearable, Mobile and Ubiquitious Computing IUI 2018, March 7–11, 2018, Tokyo, Japan

486

http://dx.doi.org/10.1007/978-3-319-05452-0_14
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1145/2380116.2380184
http://dx.doi.org/10.1145/2037373.2037395
http://dx.doi.org/10.1145/1753326.1753413
http://dx.doi.org/10.1145/1978942.1979308
http://dx.doi.org/10.1080/07370024.2015.1071195
http://dx.doi.org/10.1186/s13678-016-0002-3
http://dx.doi.org/10.1145/2702123.2702185
http://dx.doi.org/10.1145/2556288.2557037
http://www.ncbi.nlm.nih.gov/pubmed/15112367
http://dx.doi.org/10.1029/2001WR000311
http://dx.doi.org/10.1016/j.cose.2016.03.003
http://www.ai.mit.edu/projects/jmlr/papers/volume1/tipping01a/abstract.html
http://www.ai.mit.edu/projects/jmlr/papers/volume1/tipping01a/abstract.html
http://dx.doi.org/10.1145/1240624.1240727
http://dx.doi.org/10.1145/2493190.2493241
http://dx.doi.org/10.1145/2380116.2380175
http://dx.doi.org/10.1145/2470654.2481384

	Introduction
	Related Work
	Application Context
	Change Point Modelling for Touch Sequences
	Overview: Touch Targeting Offset Models
	Linear Touch Offset Models with Basis Functions
	Extending Offset Models to Sequences & Change Points
	Rationale
	Formal Definition

	Model Limitations

	Touch Sequence and Change Point Analyses
	Model Application I: Detecting Change Points
	Model Application II: Locating Change Points

	Study I - Mobile Touch Targeting in the Lab
	Preprocessing
	Evaluation Procedure
	Performance Measures
	Results – Detecting User Changes
	Target Types and Hand Postures
	Model Variations
	Change Point Location in the Sequence
	Sequence Length
	Comparison to Related Work / Non-Sequence Offset Models
	Model Combination

	Results – Locating User Changes
	Target Types and Hand Postures
	Comparison of Change Point Location Estimators
	Change Point Location in the Sequence
	Sequence Length


	Study II - Mobile Touch Typing in the Wild
	Apparatus
	Participants
	Procedure
	Study Limitations
	Preprocessing and Evaluation Procedure
	Results
	Model Variations
	Hand Postures
	Change Point Location and Sequence Lengths
	Performance in the Lab vs in the Wild
	Model Combination
	Locating User Changes


	Discussion
	Improving Offset Features for Touch Biometrics
	Modifying and Extending the Model
	Online Change Point Detection
	Handling Multiple Change Points
	Handling Short (Sub)Sequences

	Combining Change Detection and User Recognition
	Causes of Changes in Mobile Touch Targeting Behaviour
	Implementing and Integrating the Model in Applications

	Conclusion
	Project Resources
	Acknowledgements
	REFERENCES 



