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Figure 1: We investigate the identification of users performing tasks in VR. (A) We normalize their virtual body proportions
(WN: Without Normalization, AN: Arm length Normalization, HN: Height Normalization, BN: Both Normalizations, black:
real body proportions, gray: applied normalization). (B) Tasks consist of a Bowling and an Archery scenario. (C) The captured
spatial motion data enables implicit identification (upper: model training data, lower: validation data from another day).

ABSTRACT

Virtual Reality (VR) is becoming increasingly popular both in the
entertainment and professional domains. Behavioral biometrics
have recently been investigated as a means to continuously and
implicitly identify users in VR. Applications in VR can specifically
benefit from this, for example, to adapt virtual environments and
user interfaces as well as to authenticate users. In this work, we
conduct a lab study (N = 16) to explore how accurately users can be
identified during two task-driven scenarios based on their spatial
movement. We show that an identification accuracy of up to 90% is
possible across sessions recorded on different days. Moreover, we
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investigate the role of users’ physiology in behavioral biometrics by
virtually altering and normalizing their body proportions. We find
that body normalization in general increases the identification rate,
in some cases by up to 38%; hence, it improves the performance of
identification systems.
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1 INTRODUCTION

Virtual Reality (VR) has undergone a substantial evolution in recent
years and is increasingly becoming a part of users’ daily lives.
Although games are currently the main driver for VR headsets, other
applications are also gaining importance. Examples range from
training [37] to rehabilitation and therapy [34] to e-commerce [30].

As is the case for other technologies, VR can benefit from knowl-
edge about the current user’s identity, particularly for multi-user
scenarios. Such scenarios could include work spaces in which VR
headsets are shared or situations at home in which multiple fam-
ily members or friends use VR headsets together. In such settings,
knowing a user’s identity creates opportunities for adapting the
user interface to the user’s needs, loading and setting personal
preferences, or granting access to personal information (e.g., social
media, personal messages, or financial information).

Current approaches to identify (or authenticate) users employ
forms like PIN's or passwords entered through hand-held controllers
and a virtual keyboard. These methods can interrupt interaction
with the system (e.g., through a password prompt popping up) and
hamper user immersion in a virtual environment. Moreover, hand-
held controllers as an input modality are readily observable by a
bystander, making them inherently insecure [10].

These traditional approaches are generally implemented by mak-
ing the user perform an explicit interaction with the identification
mechanism, such as selecting their user name from a list or the
entry of a password through a virtual keyboard. Nevertheless, the
utilization of an implicit interaction for identification is more fa-
vorable, as it does not interfere with the user’s interaction but can
derive the necessary information for identification from the user’s
general interaction with an application.

In this work, we create an identification system, capable of im-
plicitly identifying users by their behavior in VR. Specifically, we
look into two different task-based scenarios. Our scenarios mimic
common VR games, such as Bowling and Archery, where users
naturally interact with the game (cf., Figure 1). Our identification
system employs the elicited information from the user’s interaction
to implicitly determine the user’s identity in the background. We
use a standard consumer-grade head-mounted display (HMD) in a
lab study (N = 16) and collect spatial motion data from both the
HMD and the hand-held controllers. To understand the influence
of physiology on behavioral biometrics in VR, we normalize each
user’s height and arm length so that all participants shared the
same virtual body proportions.

We collected data in two separate study sessions to investigate
identification performance across several days, and we achieved an
accuracy of up to 90%. Also, we found that normalizing body pro-
portions (precisely, normalizing height) for identification increases
the identification accuracy by up to 38%.

Although this identification accuracy is not sufficient for security-
critical use cases, the underlying principle allows for creating VR
applications that derive the user’s identity from their regular inter-
action with the application transparently in the background. Hence
the burden of explicit identification is removed from the user, allow-
ing developers of VR applications to create a painless process for
the user and a seamless experience. Simultaneously, utilization of a
body normalization can strongly enhance identification accuracy.
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Contribution Statement. The contribution of this work is twofold.
First, we create a prototype for implicit user identification in VR
through task-driven behavioral biometrics in two scenarios and
report on a user study (N = 16). Our study, which spread across
two different days, includes investigating of how modified body
proportions influence identification accuracy. Second, we provide
guidelines and discuss how the interactive VR system’s identifi-
cation rate can be enhanced by employing body normalization.
Moreover, we publish our elicited data set.

2 RELATED WORK

Our work is situated within the domain of behavioral biometrics
for the purpose of identification in VR. As we elicit spatial motion
data, we also look at task-driven biometrics.

2.1 Identification and Authentication in VR

Authentication methods for VR are mostly adaptations from mobile
devices, implementing knowledge-based schemes (e.g., PIN and
password entry or pattern locks) [40]. Previous research has shown
that traditional methods for authentication in VR, such as the entry
of a PIN or password, are slow and subject to threats commonly
known from the real world, such as shoulder surfing [10]. In partic-
ular, prior work showed that up to 18 % of authentication attempts
can be observed from a shoulder-surfing bystander [10].

Virtual reality systems are in general characterized by a high
degree of immersion [6]. Therefore, to keep this immersion, implicit
authentication schemes that do not interrupt the interaction of
the user [36] and are carried out through actions that the user
would perform anyways seem to be a particularly good fit for
VR [15]. Besides the benefits of implicit authentication, behavioral
biometrics also enables continuous authentication [8].

The disadvantages of currently used authentication methods in
VR and the need for implicit authentication methods motivates the
development of new methods for identification and authentication
in VR. Pfeuffer et al. have shown that body motion and proprio-
ception can be used for authentication in VR by measuring spatial
relations between the controllers and the HMD movement [31].
Similarly, Mustafa et al. developed a solution to derive identity
from the head movement patterns which can be collected from
the HMD [28]. Sivasamy, Sastry, and Gopalan developed a similar
approach for the goal of continuous authentication [38]. These
concepts have been extended to include knowledge-based compo-
nents, such as 3D passwords [4] in conjunction with gaze and head
pose [9]. Furthermore, Mathis et al. include hand motion during
the input of a PIN in VR as a second modality [23].

2.2 Task-driven Biometrics

In recent years a new subcategory of behavioral biometrics moved
into the focus of research. Task-driven biometrics are based on data
elicited through a user’s performance of a manual task. Igarashi et
al., for instance, measured individual characteristics with regards
to a driving task to identify the driver of a car [14]. Pohl et al.
found that even a single button press contains a high degree of
individual behavior [32]. Kupin et al. tasked users to throw a ball
in VR and were able to recognize them across different sessions
that took place days apart [20]. An extended analysis of this task
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Figure 2: Illustration of the Bowling task. Figure (a) depicts the first discrete phase that spans from the initiation of the task
until the red ball on the pedestal is grabbed. The participant would then execute the swinging motion (b) and release the ball
(c). The final phase forms the duration until the ball either hits the pins or leaves the alley by intersecting the red border (d).

and experimental setup was performed by Ajit et al. [3], yielding
a higher accuracy. Miller et al. created an extended solution for
rejecting intruders [26] and performed a within- and cross-system
evaluation [27]. “BioMove” utilized the kinesiological movements of
the user (captured through an HMD and controllers) while grabbing,
moving and dropping balls and cubes from one position into another
container [29]. Moreover, they included eye tracking in their system
and recorded gaze (i.e., where users were looking during the task).

The behavior we classify always occurs with respect to a problem,
or in case of task-driven biometrics, a task. Mecke et al. have shown
that typing behavior can be intentionally altered to fit a given
target behavior [25] and Prange et al. lead an investigation into the
specifics of individual user behavior with respect to goal-oriented
tasks [33]. In a broader sense, also mimicry attacks (i.e. mimicking
a legitimate user) use task-driven behavior changes, though, the
goal is to gain access to a biometric system rather than the change
itself. Related work has shown such attacks to be successful for
several systems, including touch input behavior [16] and keystroke
dynamics on PCs [39] and mobile phones [17].

2.3 Virtual Embodiment

Kilteni et al. defined the sense of embodiment, stating that the sense
of embodiment emerges when the body’s properties are processed
as if they were the properties of one’s own biological body [18].
The virtual embodiment is dependent on the realism of the virtual
representation of the real body part [5]. For example, VR users
identify stronger with a realistic virtual hand than with a more
abstract virtual representation. Such factors can play an important
role in various fields that apply VR such as medicine [22].
Previous research also investigated the manipulation of virtual
body parts. Kilteni et al. experimented with “a very long arm il-
lusion”, investigating the limits of changing the VR user’s arm
length up to the point that it is not experienced as one’s own any-
more [19]. Rothe et al. found that a decreased eye height while
watching 360° recordings in VR was less disturbing to the viewers
than an increased one [35]. Viewers preferred that the virtual eye
height matches their real eye-level. Furthermore, if that was not the
case, a lower virtual eye height was preferred over a higher one.

Similar to these approaches, we modify the virtual arm length
and the body height for the purpose of normalization across partic-
ipants to investigate behavior based identification.

2.4 Summary

Prior work identified behavioral biometrics as a suitable means to
identify users implicitly. Applying such behavioral biometric-based
approaches to VR comes with many benefits: based on knowledge
on the identity, adaptive VR interfaces can be built, and identifica-
tion might be realized without breaking the immersion and with
minimal effort for the user. This opportunity has been recognized
by the community, as was shown by prior work, that the application
of behavioral biometrics to VR is generally possible.

What is missing as of today is a more nuanced understanding of
this approach, in particular, (a) how it performs beyond artificial
tasks and (b) how the physiology of the user influences accuracy.
To close this gap, we contribute an investigation of how well users
can be identified during ecologically valid tasks. In addition, VR
provides an unprecedented chance to investigate the influence of
physiology since it allows physiological properties of users to be
freely manipulated.

3 APPARATUS

This section describes how we designed an apparatus to investigate
(a) realistic VR tasks by designing meaningful scenarios and (b) the
influence of physiology on behavioral biometrics by normalizing
physiological features in VR.

3.1 Scenarios

We implemented two different task-based scenarios for the users to
solve : a Bowling and an Archery task. As an engine, we utilized
Unity3D and targeted the Oculus Quest as a consumer-grade entry-
level HMD. The scenarios we implemented were designed to be
familiar and straightforward to solve . Bowling employs a coarse-
grained movement and Archery, in turn, requires a precise, fine-
grained movement to be completed successfully.



CHI ’21, May 8-13, 2021, Yokohama, Japan

(@) (b)

Liebers et al.

Figure 3: Illustration of the Archery task. First the bow needs to be moved towards the quiver to pick up an arrow (a). The
second phase spans from the mounting of the arrow at the bow until the string is being pulled (b). During the third phase, the
string is pulled to tension the bow (c). The fourth phase spans from the release of the arrow until it hits a target (d).

3.1.1 Bowling-Task. In the bowling task (cf., Figure 2), users spawn
in a virtual bowling alley with 1.3 m width and a length of 7 m
between the start and pins. The bowling ball has a virtual mass
of 5 kg and an angular drag of 0.05. It spawns on the right side
on a pedestal that has a height of 0.75 m. If participants miss a
shot completely, the ball will despawn once it exceeds a boundary
(cf., Figure 2(d)), otherwise hit pins are replaced for each new trial.

In this controller-based scenario, users have the goal to hit as
many pins as possible. The task can be decomposed into three
discrete phases (cf., Figure 2). In the first phase, the user grabs the
ball with the controller by initiating a pressing motion on the grip
button. The second phase consists of the swinging motion, while
the grip button is being pressed until the ball is released. Once the
ball is released, the third phase is initiated, which remains active
until the ball either hits the pins or goes off the alley. After the third
phase is complete, a new round is initiated.

3.1.2  Archery-Task. Archery (cf., Figure 3) is a controller-based
task that requires high precision. Users are placed in a forest en-
vironment, approximately 3 m in front of a target. Their goal is to
shoot an arrow at the bull’s eye. The bow is mounted to the user’s
left hand while the right hand is free to pull the string. The ar-
rows are attached to the bow by moving it towards a virtual quiver
(located on the left-hand side, cf., Figure 3).

This task can be decomposed into four discrete phases. The first
phase is active until the bow is moved towards the quiver, and an
arrow attaches to the bow. The second phase ends when the user
grabs the string of the bow with the right hand. The third phase
describes the period of the string being pulled until it is released or
the hand is moved too far away from the back of the bow. The task
concludes with the fourth phase until the arrow hits an object.

3.2 Body Normalization

We impose two different body normalization types to explore the
influence of physiology in behavioral biometrics: 1) Arm length
Normalization (“AN”) and 2) Height Normalization (“HN”). For
applying the normalizations, our system acquires physiological
data by measuring users’ height and arm length through the HMD.

Therefore, the application requests users to stand up straight and
stretch their arms in front of them for 10 seconds. Consequently,
the system determines their heights as reported by the HMD and
measures the maximum distance from controllers to HMD.

3.2.1 Arm length Normalization. The first type of normalization
is the normalization of the user’s virtual arm length. The normal-
ization is achieved by modifying the positional mapping of the
virtual hand onto the real-world controller. The effect is that the
virtual maximum arm extension length is the same for all users.
This is established through a linear change in the acceleration of
the user’s hands up to the point that the arm is fully extended. Here,
the coordinates of the left and right hand of the user are calculated
by the formula Py,,g = Pyead + d - D - F, where Py,,q repre-
sents the position of the hand, Pp,,g4 is the position of the head
(i.e., the spatial coordinates of the HMD), d is a direction vector
pointing in the direction of the hand, D represents the previously
measured maximum distance from the head to the hand and F is an
automatically calculated normalization factor. Subsequently, this
normalization allows the assignment of a consistent virtual arm
length to all users. Thereby, a short-armed person receives longer
virtual arms, whereas a long-armed person receives shorter virtual
arms. Although not primarily intended, this normalization also as-
sures that every person has the same virtual capability to solve the
given tasks, as the required arm length is normalized independent
of the real capabilities.

3.2.2  Height Normalization. The second type of normalization is
the normalization of the user’s body height. This normalization
allows the assignment of the same height across all users. The mod-
ified reference point is the virtual head of the user. In contrast to
the Arm length Normalization, another design approach is required
for the implementation of this normalization because changes to
the positional mapping (e.g., by increasing the acceleration) be-
tween the virtual and real head can induce unwanted side effects
such as cybersickness. To mitigate these effects, we implemented
this normalization by setting the tracking origin type of the “OVR-
CameraRig” object within Unity3D to ’eye level” and assigning its
y-position a constant value. This results in an unhindered change
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of position of the virtual head up to the constantly set virtual height
but may result in the impression that the virtual feet are below the
level of the floor (i.e., a user that is taller than the set height would
be able to reach past the virtual floor by bowing down). To counter
this drawback, the tasks were designed so that the users neither
have to perform this motion nor do they have to pick something
up from the level of the real floor.

4 STUDY

We verified our approach to task-driven biometrics and explored
the effects of the changes imposed by the body normalization.

4.1 Study Design

To verify our approach of task-driven biometrics, we conducted a
within-subject controlled laboratory study in Virtual Reality using
the Oculus Quest. Our study followed a repeated-measures design
and was split into two sessions that took place on two different days,
sharing the same study design in both sessions. All participants
took part in both sessions. We chose this split to prove the stability
of our approach and to gain realistic data as the behavior might
change between days. This allows us to explore whether we would
be able to re-identify users across separate days.

Our independent variables were Scenario with two levels (Bowl-
ing vs. Archery) and Type of Normalization with four levels (Without
Normalization vs. Arm length Normalization vs. Height Normaliza-
tion vs. Both Normalizations). Each Scenario was tested in a block.
All blocks were counterbalanced using a Latin square. In each block,
we tested all Types of Normalization, again using a Latin square
design. Here, we took all combinations of both Latin square designs,
resulting in eight configurations.

Our research questions were:

RQ1 To what extend are different Virtual Reality scenarios
feasible to implicitly identify users?

RQ2 To what extend do physiological factors influence Behav-
ioral Biometrics?

4.2 Study Setting

We chose the Oculus Quest head-mounted display (HMD) as target
device for Virtual Reality. It features two six Degrees-of-Freedom
(DoF) controllers, supporting orientation and positional tracking
based on an inside-out tracking system and offering a field-of-view
of 100° at a refresh rate of 72 Hz. It operates without being connected
to a computer, thus being a wireless, consumer-grade device.

The study took place in a room with 3mx3m of free space. The
experimenter prepared the Oculus Quest for the procedure by en-
abling the integrated screen recording of the virtual environment
and covering the internal proximity sensor so that the device does
not switch into standby mode. Furthermore, the experimenter set
the safety guard beforehand and took care that the participants
would not leave the designated area during the study.

4.3 Procedure

Before the beginning of the actual study, participants gave written
and informed consent. We specifically informed the participants
that they could cancel their participation in the study at any time
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without detriments. Also, we answered any question from the par-
ticipants with regards to the procedure but we did not tell them
about the imposed types of body normalization prior to the study.
Moreover we informed the participants that the virtual environment
and their actions in the virtual environment would be recorded,
both data-wise and video-wise (external and in-app recording) .
After a short introduction to the Virtual Reality headset, assisted
adjustment of the straps and the adjustment of the device itself (i.e.,
the inter-pupillary distance), we tested two blocks, one for each
scenario (Bowling and Archery). After each block, the participants
took off the headset and filled out a Raw NASA TLX questionnaire
[12], rating each scenario’s workload. The Raw NASA TLX is a
commonly used modification of the NASA TLX and the employed
scale was the standardized 20 pt. scale [11].

Participants could always try out the scenario first. Afterwards,
we tested four types of normalization (i.e., Without Normalization,
Height Normalization, Arm length Normalization, and Both Normal-
izations) for 12 trials each. We counterbalanced the order of the
blocks and the order of the types of normalization within each
block using a Latin-square design. After participants had finished
all blocks, we conducted a semi-structured interview. We repeated
the procedure in a second session without the questionnaires and in-
terviews. Each participant took approximately 45 minutes to finish
the first session and about 30 minutes for the second session.

4.4 Participants

We recruited 16 volunteers (2 female, 14 male) via University mail-
ing list (mean age=25.47, SD=3.44, all were right-handed). We asked
participants for their height as reported in their personal ID card,
which yielded an average value of 177.85 cm (SD=8.23 cm). On a
scale from 1 (low; never experienced VR before) to 10 (high; daily
experience of VR) they rated their previous VR experience at an
average of 3.78 (SD=3.19). In total six participants responded that
they had a form of visual impairment and one did report partial
color blindness. During the study, five out of these six participants
wore a visual aid (e.g., glasses or contact lenses) as a compensation.
One participant did not wear any corrective eye wear but assured
that this would not affect their performance in VR.

For the body normalizations, we applied 168 cm as the normal-
ized height, which equals to the average human height in Europe
subtracted by a measured margin for the Oculus Quest device [24] .
Moreover, we set 0.7 m as the normalized arm length. We obtained
this value through measurement, following the principle of Da
Vinci’s Vitruvian Man.

4.5 Ethics

To preserve participants’ privacy, we assigned pseudonyms to the
data of each participant at the time of elicitation. After finishing
the study, we deleted the mapping of participants’ true identity
to the given pseudonyms so that no backtracking of participants’
true identities is possible. Note, that one purpose of the system is
identification. If employed in practice, it would be important to
inform users about the fact that the collected data is or can not
only be used for interaction, but also to identify them. Moreover,
VR applications in general can bear a risk to privacy, as discussed
by Adams et al., which needs to be accounted for [2].
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5 ANALYSIS

We create a deep learning classifier that is able to predict the user’s
identity across the two sessions of our study. Furthermore, we
evaluate its validation accuracy that is changed by the imposed
body normalizations.

5.1 Data Set

For the following evaluation, we split our data set into four separate
training and validation sets, one for each of the four types of body
normalization!. For training classifiers, we always use the data
from the first day of our study. Validation is exclusively performed
through testing the data from the second day of the study. We
opted for this split, as we assume that consecutive, repetitions of
the task’s execution are in general more likely to be similar than
executions that were captured days apart. Furthermore, this strict
split demonstrates the real-world applicability of our approach, as
participants had to re-equip the HMD for the second day. Thus, the
model cannot learn the specifics of one session such as wearing
the HMD in an odd way. Each repetition in the study forms one
sample in our data set. We always compare data within one type of
normalization and never across conditions. In contrast to our split,
a cross-validation with a standard split (e.g., 80:20) would lead to
a mixing of data that was elicited on different days resulting in a
model possibly using session dependent information. Most likely
this would enhance the overall achieved results but would give the
classifier an unrealistic advantage.

We then plotted all elicited data and performed a visual inspec-
tion. We did this in order to find random outliers that occured due
to a tracking loss and removed them from the data set. Figure 4
visualizes an excerpt of the spatial data that we captured from two
different participants and Figure 5 depicts the deviation of user
height in the Archery scenario.

5.2 Preprocessing

We apply the same preprocessing to all of the elicited data. First of
all, we deduct the global coordinates of the hand-held controllers
from the HMD to obtain their local coordinates with relation to
the HMD. This means that the obtained data is invariant of its
global position and that we do not classify users based on their
absolute position within the tracking space. Moreover, we create
several feature sets (cf., Table 1) to train the model on different
parts of the available data. If we include the HMD in a featureset,
we transform its coordinates with respect to its origin in the virtual
environment, i.e., we subtract the global coordinates of the initial
point of appearance from all subsequently captured points. This
leads to the HMD being represented by its change in space over
time (e.g., the HMD moved 30 cm in a certain direction) instead
of its consecutive global coordinates. We furthermore normalize
the Euler angle values in an interval of [0, 1). This way, we reach
positional invariance of the HMD so that only the motion that the
participants apply is transferred to the model.

Each repetition in the study corresponds to one sample in the
data set. As each repetition bears a different length and some repe-
titions form very large outliers, this consequently means that the
shape of the data is hard to unify. We tried the common approach

10ur data set is publicly available. It can be retrieved from https://research.hcigroup.de.
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S1, x/z S2, x/z

S1, x/z S2, x/z

28.2 283 284 285 286 287 288

(b) Participant 11

Figure 4: Motion data of the left hand-held controller in the
Archery scenario without any applied body normalization
for participants 2 and 11. The axes indicate the global coor-
dinate frame. The colors indicate the repetitions within the
study. “S1” and “S2” correspond to the first and second day
of the study and “x/z”, “x/y” and “z/y” are the plotted Unity
axes (i.e., top view, side view, frontal view). The similarity
within each participant is well visible together with the dis-
similarity between participants.
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Figure 5: Deviation of user height for the Archery scenario
across all repetitions.

of prepadding the data with zeros, yet a single outlier results in a
large amount of padding for all samples. Moreover, this padding
might have results on the training and validation, since the model
then could learn to classify the length of the execution of a motion.
We therefore changed our approach to reach temporal invariance.

To classify the fine grained motion of the participants , we imple-
mented a window slicing approach [21]. Here we employ a rolling
window with a size of 10 and a step size of 1 that iterates over each
participant’s data recording to generate new samples for each step.
We apply the same preprocessing and the same sliding window to
the validation data. As we classify each sample as generated by the
sliding window, we furthermore perform a majority vote of the
predicted labels to determine the user’s identity.

5.3 Model Architecture

To classify the elicited data from the study we developed two deep
learning models in Python, utilizing Keras and Tensorflow [1, 7].
Our first model consists of three long-short term memory layers
(“LSTM”) with 100 units each and is a recurrent neural network
(“RNN”) [13] . The first layer returns its sequences to the second
layer and the second layer repeats this by returning its sequences to
the third layer. All LSTM layers utilize the default sigmoid activation
function. At last, a fully-connected layer utilizing the “softmax”
activation function is reached that consists of 16 units, where each
unit corresponds to the identity of one person. We used Adam as
an optimizer with a learning rate of 0.001 and trained the model
for 500 epochs.

The second model employs a multilayer perceptron (“MLP”) and
consists of a Flatten input layer, followed by three Dense layers
that respectively consist of 256, 64 and 16 units. The first two dense
layers use the rectified linear activation function (“ReLU”) whilst
the last utilizes “softmax” as an activation function. For this model,
stochastic gradient descent (“SGD”) is used as an optimizer with a
learning rate of 0.001. As this model converges in general faster, we
trained it only for 100 epochs. We set a constant random generator
seed for the training of all model instances.
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Table 1: Table of all evaluated feature sets with their de-
scriptions and cardinalities (Card.). The HMD and both con-
troller objects consist of three coordinates each (x, y, z) for
their position and rotation.

Id. Card. Controllers HMD Timestamp Phase

Fo 19 X X X
F1 18 X X

F2 19 X X X

F3 12 X

5.4 Feature Sets

We created multiple groups of features to train the classifier on.
Each group formed one set of features. Thus, we seek the optimal
set of information the classifier requires for a high identification
rate (cf. Table 1).

FO The feature set FO consists of the phase, the HMD and the
controllers. Both the local position (x, y and z) and rotation
(euler_x, euler_y and euler_z) of the HMD and the hand
objects are part of this set. The phase describes the stage of
the interaction for the Bowling and Archery scenario.

F1 The next feature set, F1, is a reduction of FO0, as it takes the
same features but removes the phase.

F2 The feature set F2 employs the same information as FO but
replaces the phase with a timestamp that denotes the passed
time from the beginning of the interaction. The timestamp is
intended as a hint for the order of the slices that are created
from the rolling window so that relationships across slices
can be learned by the neural network. The timestamp is a
normalized number within the interval [0, 1).

F3 Finally, the feature set F3 only consists of the vectors from
the controllers towards the HMD.

6 RESULTS

First, we present our identification results that we obtained from
our validated classifier. Next, we discuss the outcome of the semi-
structured interviews and the Raw NASA TLX.

6.1 Identification Results

We validated our two model architectures with all feature sets
(cf., Table 1). Table 2 refers to our achieved results. The highest
overall identification accuracy is 0.90 for the Archery scenario with
feature set F3 and the application of Height Normalization with the
recurrent model (cf., Figure 6). For Bowling, the highest accuracy
is 0.68 with feature set F2, where the Height Normalization was
applied in combination with the recurrent model.

We applied inferential statistics to prove that the imposed body
normalizations have an effect on the identification rate of the clas-
sifier. We apply the statistics to the per-participant identification
rate, i.e., the diagonal axis in each obtained confusion matrix for
all scenarios and feature sets. We first perform a Friedman test for
each row in Table 2, once for the multilayer perceptron model and
once for the recurrent model. If the Friedman test returns signifi-
cant results (p < 0.05), we conduct six Wilcoxon tests for pairwise
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Table 2: Overview of all validation accuracies (Acc.) for all scenarios, feature sets (F.-Set) and body normalizations “Without
Normalization” (WN), “Arm Length Normalization” (AN), “Height Normalization” (HN) and “Both Normalizations” (BN). We
differentiate between recurrent model “RNN” and multilayer perceptron “MLP”. Highest accuracy per model is marked bold.

Acc. WN Acc. AN Acc. HN Acc. BN
Scenario F.-Set MLP RNN MLP RNN MLP RNN MLP RNN
Archery  FO 032 048 056 067 057 0.63 0.68 0.86
Bowling  F0 0.55 0.65 041 053 0.55 059 046 0.58
Archery F1 038 054 056 063 0.65 0.69 064 0.84
Bowling F1 049 059 042 050 0.55 0.62 048 0.60
Archery  F2 037 056 056 065 0.66 0.66 063 0.86
Bowling F2 0.52 058 042 047 054 0.68 045 0.56
Archery F3 0.61 063 0.68 070 0.78 0.90 0.68 0.84
Bowling F3 0.55 056 043 047 0.63 0.66 055 0.67

Table 3: Overview of all significant Wilcoxon tests to describe the effect of the body normalizations. WN = Without Normaliza-
tion, HN = Height Normalization, BN = Both Normalizations, RNN = Recurrent Neuronal Network (first model architecture),

MLP = Multilayer Perceptron (second model architecture).

Scenario Model F-Set. Comparison W Z P r

Archery RNN FoO WN vs. BN 8  -2.650 .034 .166
Archery  MLP+RNN F0 WN vs. BN 32 -3.444 002 .108
Archery  MLP+RNN F0 HN vs. BN 40 -2.603 .048 .081
Archery  MLP+RNN F1 WN vs. BN 58 -2.793 .025 .087
Archery  MLP+RNN F1 WN vs. BN 49  -2.795 .025 .087
Archery  MLP+RNN F2 WN vs. BN 49 -2.795 .025 .087
Bowling MLP+RNN F3 AN vs. HN 55 -2.680 .037 .084

comparisons of all body normalizations. Due to the large amount of
combinations, we only report significant results. Table 3 provides
an overview.

A Friedman test for the recurrent model with feature set FO
for Archery showed a significant difference (y%(3) = 8.168,p =
0.043, N = 16). The pairwise comparison of the four types of body
normalization through Wilcoxon tests revealed one significant ef-
fect of an increased identification: Without Normalization vs. Both
Normalizations (W = 8,Z = —2.650, p < 0.034,r = 0.166). To assess
the effect that both models are subject to, we conducted another
Friedman test on the fused confusion matrices of the MLP and re-
current model for Archery in FO. We found a significant difference
(x%(3) = 10.951,p = 0.0120, N = 16). Comparing Without Normal-
ization vs. Both Normalizations through Wilcoxon tests lead to a
significant result (W = 32,Z = —3.444, p < 0.002,r = 0.108). Com-
paring Height Normalization vs. Both Normalizations lead again to
a significant difference (W = 40,Z = —2.603,p < 0.048,r = 0.081).

For F1 in Archery and both fused models, we again identified
a significanct difference by a Friedman test (y?(3) = 11.033,p =
0.0116, N = 16). A Wilcoxon test for Without Normalization vs. Both
Normalizations resulted in a significant increase in identification
performance (W = 58,Z = —2.793, p < 0.025, r = 0.087). Similarly,
for Archery and F1 with two fused confusion matrices, we identified
another significant Friedman test (y?(3) = 8.284,p = 0.040, N =
16). The subsequent Wilcoxon test for Without Normalization vs.

Both Normalization showed another significant difference (W =
49,7 = =2.795,p < 0.025,r = 0.087).

For feature set F2, the Friedman test only yielded a significant
difference for the fused confusion matrices in Archery (y?(3) =
8.284, p = 0.040, N = 16). The resulting Wilcoxon Test for Without
Normalization vs. Both Normalization showed significant differences
(W =49,Z =-2.795,p < 0.025,r = 0.087).

Finally, we looked into feature set F3. For Archery, when fus-
ing the confusion matrices, a Friedman test yielded significance
(x%(3) = 7.938, p = 0.047, N = 16). None of the following Wilcoxon
tests could confirm this assertion. For Bowling, the Friedman test
showed, when fusing the confusion matrices, a significant result
(x%(3) = 8.784, p = 0.032, N = 16) leading to a significant Wilcoxon
test in Arm Length Normalization vs. Height Normalization (W =
55,Z = —2.680,p < 0.037,r = 0.084).

An investigation of all other groups did not lead to any other
statistically significant effects of body normalizations on the identi-
fication rate.

We also tested the distribution of the acquired scores (Archery:
total hit pins per participant, Bowling: total hit targets per partic-
ipant) for the task-based scenarios regarding the imposed body
normalizations to understand whether user performance was im-
pacted by the imposed normalization. A Friedman test showed no
significant differences (Archery: (y?(3) = 0.514,p = 0.916, N = 16),
Bowling: (y?(3) = 5.905, p = 0.0116, N = 16)).
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Figure 6: The confusion matrices for the best performing
models: (a) Archery with feature set F3, imposed Height Nor-
malization and a recurrent model and (b) Bowling for fea-
ture set F2 with Height Normalization and a recurrent model
(cf., Table 1).

6.2 Interviews and TLX

After each task we asked the participants to fill out a Raw NASA
TLX questionnaire (cf., Figure 7). Participants mostly rated both
scenarios equally in all categories and subsequent Wilcoxon tests
for each category could not show any significant differences .

In the semi-structured interview conducted after the study, par-
ticipants were asked questions about their experience with the sce-
narios during the study as well as how they perceived the changes
to their virtual body, if they noticed it at all. We asked them to
rate how well they liked each scenarios on a scale from 1 to 10.
The average score for Archery yielded 8.75 (SD=1.11) ; Bowling
achieved with 7.93 (SD=1.22) a slightly lower score.
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Figure 7: Results of the Raw NASA TLX that was filled out
by the participant after each block in the study.

Furthermore, we asked participants if they felt that something
was off or if they perceived that some factor of the environment
was changing during their interaction. Out of 16 participants only
four noticed some sort of change that was imposed by the given
conditions. Two participants reported to have realized this change
during the Bowling scenario and another two during Archery. How-
ever, three more participants mentioned that they felt the changes
after we told them that we modified their body representation. In
sum, less than half of the participants noticed any change.

Only one participant stated they would not like to have that
kind of arm and height changes, the others did not oppose the idea.
Finally, some interesting remarks were made during the study: One
participant suggested they would be able to see the changes clearly
if they could see the full virtual body including legs, and arms in
the scenarios, not just the hands. Another participant stated that
due to a lack of a reference point, it was difficult to notice a change:
“I did not realize any change as I focused on the target”. On the
other hand, one participant noticed the change and mentioned: “I
felt that I do need to bow further down to pick up the [bowling]
ball”.

7 DISCUSSION

We first discuss identification accuracy, continue with the impact
on body normalization, and implicate the effects on deep learning.

7.1 Identification Accuracy

From the given results (cf., Table 2), it is apparent that body nor-
malization has a strong effect on the identification rate and that
identification is in general possible (RQ1). Archery peaks at a rate
of 0.90 in feature set F3, followed by Bowling at a rate of 0.68 in F2.
Both utilize a recurrent model. Without the imposed normalization
and the same feature sets and models, the accuracies are 0.63 for
Archery and 0.58 for Bowling; hence, we see an increase of 27 and 10
percentage points, respectively. This identification rate is achieved
by the deep learning model validating the data of the second day of
the study, while it had been trained with the data from the first day.
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For Archery, only one identity was misclassified in more samples
than it was classified correctly (cf., Figure 6). Given the base chance
of 1/16, i.e. = 0.06 of correct classifications we overall argue, that
identification across several days is reliably possible when Height
Normalization is employed. A statistical analysis (cf., Table 3) shows
several significant increases in the identification rate due to the
body normalization.

We investigate the reasons for false classifications by looking
into the data and video recordings of Archery. P1 and P8 were par-
ticularly hard to classify (cf., Figure 6). To gain further insight, we
visualize the normalized mean heights for this task (cf., Figure 5). Af-
ter also investigating the in-app recording that was created during
the study, we could not find any apparent reason for the misclassifi-
cation of P1. For P8, however, we found the reason for the deviations
in the normalized height (compare negative outliers in Figure 5):
the participant went into a crouched stance in the middle of the
Archery task for three repetitions and thus shot arrows from a
lower position.

7.2 Impact of Body Normalization

We believe that the normalization of the user’s height forces the
deep learning model to adapt its learning process. Instead of rec-
ognizing different users by their physiology (i.e., height and arm
length), we force it to focus on the subtle changes in behavior
between participants. Hence, we would respond to our RQ2 by esti-
mating that physiological factors play a role in Behavioral Biomet-
rics, but removing them leads to a reduction in noise and, therefore,
to an increase in identifiability.

Although we employed several precautions, such as a subtle
fading between the repetitions of the scenarios, we cannot rule
out the possibility that some participants noticed this change due
to its appearance at some point in the study. From the interviews
in the study, we have seen that less than half of the participants
noticed the body normalization. We assume that an application
with a higher degree of immersion and fidelity might hide the effect
even better.

7.3 Effects on Identification Systems

With regard to the feature sets that can be used for identification
through deep learning models, we assume that less data yields
a bigger effect. Our best result for Archery was met in feature
set F3, which corresponds to only the positional coordinates and
rotation of the user’s controllers. As those are characterized as
the vector from the controller towards the HMD, they implicitly
bear information about the HMD; however, in comparison to the
same result of Archery in F1 with Height Normalization in the
recurrent model, the identification accuracy is increased by 21
percentage points. Here, we estimate that an overall reduction of
the data in a precision task such as Archery is beneficial for the
recognition rate and can result in a large positive effect. Although
this does not directly translate to Bowling, the difference of only
four percentage points appears minimal (i.e., Bowling in F1 with
Height Normalization and the recurrent model at 0.62 vs. Bowling
in F3 with Height Normalization and the recurrent model at 0.66).

Liebers et al.

8 CONCLUSION

In this work, we show that implicit identification of users in VR
through their spatial motion data (which can be captured through
a consumer-grade head-mounted display) is possible, given that
we achieved an identification rate of up to 90% across several days.
We show and evaluate identification performance in two different
scenarios in a user study with 16 participants. Furthermore, we
provide insight into the performance of four different feature sets
and show that a reduction and normalization of data leads to a
higher identification accuracy by a deep learning classifier. More-
over, we explore the concept of body normalization by virtually
altering the heights and arm lengths of the users. By normalizing
the body proportions of all participants, we were able to show that
this improves the accuracy of the classifier. We believe that body
normalization can improve future identification systems in VR.
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