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Abstract

Return-oriented programming (ROP) has gained a lot of
popularity lately, as an attack against currently imple-
mented defenses in modern operating systems. Several
kinds of ROP-based attacks and anti-ROP defenses have
been proposed in recent years. The original attack tech-
nique depends on the existence of a hand-picked set of
byte sequences (called gadgets) in the program, while
subsequent approaches use complex scanners, which per-
form semantic analysis on the code to locate gadgets.
The latter ones are efficient at finding gadgets and build-
ing an attack, but incur a significant cost in time.

We propose a ROP attack technique, based on a hand-
picked but flexible and Turing-complete set of gadgets.
One novelty in this approach is the use of microgadgets,
which are gadgets restricted to 2 or 3 bytes in length.
Our approach splits gadgets into several classes of vary-
ing sizes (from 1 to more than 800). Only a single gadget
from each class is required for Turing-completeness. The
short length of the gadgets, as well as the large size of
the classes, increase the likelihood of finding all required
gadgets. We also describe an efficient scanner which
locates these gadgets in a given program. We then use
this scanner on the /usr/bin directories from several
Linux distributions, to show that many programs indeed
contain a Turing-complete set of microgadgets, which at-
tackers can use to perform arbitrary computations.

1 Introduction

In many cases, application code can be useful not only
to its legitimate users, but also to attackers which seek
unauthorized access to the application. The intruder can
then either steal sensitive application data, or hijack its
execution. For the latter purpose, the attacker needs to
find a way to force the application to execute some code
chosen by the attacker. Once this happens, the program
can be used for arbitrary purposes, such as attacking

other applications or systems.
One important attack technique, so-called return-into-

libc [16], uses library functions to compromise the sys-
tem. To get access to those library functions, the attacker
only has to manipulate the stack, so that the proper re-
turn address and parameters are in the desired positions.
Later, Shacham [15] describes a technique called return-
oriented programming, or ROP for short, which uses ex-
isting snippets of code, called gadgets, to execute arbi-
trary algorithms. These gadgets, much smaller than a
function, are used as instructions of an abstract virtual
machine, which are proven Turing-complete. The at-
tacker chains gadgets together into a translated version
of the original attack.

Return-oriented programming is an active research
topic, of interest to both the academic community and
the security community at large. The original paper on
ROP presents a hand-picked set of gadgets, specific to
a particular version of libc. While it is possible to
update the set of gadgets for newer versions, the paper
implies that this would be done manually by visual in-
spection and suggests analyzing other libraries as future
work. Follow-up research [14, 7, 17, 6] describes au-
tomated systems that scan a binary and build a list of
gadgets programatically; in some cases they even com-
pile the attack payload using those gadgets. Some of
these tools use various semantic analysis techniques on
the gadgets, determining the effects of each gadget be-
fore using it.

The evolution of these tools allowed more complex
gadgets to be used in an attack, therefore making more
binaries vulnerable to ROP-based attacks. At first, scan-
ning was limited to single-instruction gadgets [7], but
later research lifted that restriction. Gadgets used for at-
tacks have become more and more complex, with one or
more of the following traits:

• Several instructions operating on different registers,
or in some cases the same register. This compli-



cates gadget analysis and usage, as the tools must
take into account interactions between different in-
structions.

• Memory operands with arbitrary offsets, which the
gadget tool must compensate for using other gad-
gets.

• Extra instructions in a gadget destroying values in
registers. Gadget compilers must use extra gadgets
to preserve these values, using register spilling tech-
niques.

As opposed to the growing complexity of gadgets
used in ROP attacks, we propose a very simple set
of hand-picked gadgets with the same computational
power: Turing-completeness. We group the gadgets in
the set into classes. Each class contains a set of micro-
gadgets with equivalent functionality, so that any single
microgadget from that class is sufficient to implement
the functionality of that class. Some microgadgets from
the same class differ just by their input operands, e.g.,
they operate on different registers, while others perform
the same operation in different ways. For example, one
way to clear the carry flag on x86 is to use the CLC in-
struction, another is to use SAHF. Either of these two op-
tions achieves the goal of finding microgadgets to clear
the flag.

We designed this set with 3 goals:

Simplicity so we can easily describe and analyze the
set of gadgets, without needing to account for any
complications or corner cases that other gadget sets
present. Our set does not contain gadgets with
memory operand offsets, immediate values or more
than one instruction.

Ubiquity (or near-ubiquity) so that the set occurs so fre-
quently in the binaries that the threat level warrants
attention.

Computational power so the attack can be used suc-
cessfully for arbitrary code execution or informa-
tion disclosure.

We picked Turing-completeness as the measurement of
computational power, since it is the most powerful tar-
get, while also being very clearly specified. While some
existing attacks [19] do not rely on this (instead using
ROP just as a prelude to x86 code injection), we expect
that analyzing a Turing-complete gadget set will provide
valuable information about less powerful sets.

To achieve ubiquity, our set must be found in all bi-
naries. While that is not truly possible due to the low
frequency of RET instructions, we designed our set to
achieve a good balance between all three goals. For this
reason, the key insight in our choice of gadgets is that

smaller gadgets have a higher probability of occurrence.
Therefore, we attempt to build an attack from gadgets
that are as small as possible, while still providing sim-
plicity and power. The smallest useful gadget on the x86
architecture is 2 bytes long: one byte for the proper in-
struction and another for the return instruction (the C3
byte). However, we raised the limit on gadget length to
3 bytes, so that we could include more useful operations,
like addition and memory accesses.

This paper makes the following contributions:

• In § 2, we present a Turing-complete ROP-based
gadget set focusing on short gadgets, so-called mi-
crogadgets.

• In § 2.5, we describe the applicability of our ap-
proach to attacks which use ROP to allocate an ex-
ecutable area of memory, then use that area to copy
and execute a second payload.

• In § 3, we analyze the likelihood of success using
this attack with a case study on several Linux distri-
butions and several individual binaries from those
distributions, showing the success rate of our ap-
proach and performance of our scanner.

• In § 3.4, we present a concrete ROP-based exploit
for PHP 5.3.2, using microgadgets to load and exe-
cute another x86 payload.

2 Description of Gadgets

Our gadget set implements a simple two-address RISC-
like instruction set on top of 32-bit x86 microgadgets,
using CPU registers as operands. It supports only sim-
ple addition, subtraction and logical operations, as well
as loads and stores to and from any memory location.
We allow all general-purpose integer registers except for
ESP as microgadget operands. Since each microgadget
contains one x86 instruction, other than the RET, we re-
strict the inputs to 2 different input registers and the out-
put to one of the input registers.

For every operation in our set, we hand-picked a list
of candidate microgadgets that execute that operation.
We derived this hand-picked set from practical experi-
ence with code generated by compilers such as gcc and
Clang/LLVM. Looking at larger binaries, we observe
the following facts:

• Many useful 2-byte gadgets are very likely to ap-
pear, such as POP reg and LAHF.

• Useful 3-byte gadgets appear in some forms, but not
all; for example, an XOR EAX, EBX might not al-
ways appear, but a XOR r1, r2 gadget has a high
probability of occurence.
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Instruction Contents
EAX EBX EDX

XCHG EBX, EAX v1 v2 v3
XCHG EAX, EDX v2 v1 v3
XCHG EBX, EAX v3 v1 v2

v1 v3 v2

Table 1: Exchanging EBXwith EDX, using EAX as a tem-
porary. The rightmost columns show the contents of each
register before each instruction.

A property of the x86 instruction set is that XCHG
EAX, reg is a 1-byte instruction. Therefore, we can
implement any exchange or move operation between two
registers using combinations of these microgadgets and
the EAX register as a temporary. The XCHG reg1,
reg2 simply exchanges (or switches) the values of two
registers. This approach guarantees that, unlike a set
where values are moved around using MOVs, values are
not destroyed by such a move. We call this principle no
value left behind. Table 1 shows an exchange between
the EBX and EDX registers.

We rely on a significant number of 2-byte gadgets:

• XCHG EAX, reg to move or exchanging register
values. This instruction switches the values of EAX
with the value of another register.

• POP reg to load constant values from the stack
into the specified register; only one of these is nec-
essary, since we can combine it with XCHG to obtain
all the other versions.

• LAHF or PUSHF to read the carry flag, necessary to
implement conditional branches.

• XCHG EAX, ESP or LEAVE or POP ESP to copy
another register into ESP, also necessary for condi-
tional branches.

• INC reg or DEC reg for various operations de-
scribed later.

• CLC, SAHF, AAA, DAA, AAS or DAS to clear the
carry flag before comparison operations.

• PUSHA to copy ESP into another register in the pro-
logue part of the program .

• LODSD to load a value from the address in ESI into
EAX.

• STOSD to store a value to memory.

Using only these instructions, we can already im-
plement several operations: loading a constant into a
register, moving a value into another register, incre-
menting/decrementing a value and, optionally, accessing

TMP
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Figure 1: Layout of the ROP program on the x86 stack.
The load prologue and ROP program code are supplied
by the attacker as shellcode, while the data and stack
cells are written by the ROP program itself.

memory. We were unable to obtain Turing-completeness
from this limited set, so we will use a set of 3-byte gad-
gets to offer the following extra operations, which prove
sufficient for achieving Turing-completeness:

• Add and subtract two values.

• Perform logical AND, OR, XOR and NOT operations
on two values; we only need one of AND/OR and one
of XOR/NOT/NEG, since we can emulate one from
each pair using the other one and De Morgan’s laws.

• Compare two values and branch on comparison re-
sult.

These instructions form a Turing-complete language,
since our set contains all instructions required to imple-
ment an OISC, or one-instruction set computer [11]. Our
model supports the subneg flavor of OISC, which only
requires three operations we support: subtraction, less-
than comparison and conditional branching.

2.1 Memory Layout
We use the machine call stack to store both the program’s
“code” and its data. The preliminary stack-based exploit
loads the code on the stack at the address pointed to by
ESP. The space on the stack below the code is used as
storage for data and temporaries. We reserve the first
word just before the code as the temporary variable TMP,
which we use as scratch space for various operations.
Figure 1 shows the complete layout on the x86 stack.

To access this storage throughout a ROP attack, we
need a pointer to some fixed offset on the stack. There-
fore, one of the first gadgets in the program has to be
some instruction that saves the contents of the ESP regis-
ter. We preserve this value across the entire execution of
the program, moving it through other registers as needed.
All stack-relative accesses use the initial ESP value as
the base address.
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We cannot use an XCHG microgadget for this, as we
require a non-destructive copy that produces a duplicate,
not a move that replaces the original value. We have sev-
eral other options available:

• MOV reg, ESP.

• ADD/ADC reg, ESP can be used if reg is ini-
tialized to 0 and CF to 0 for ADC (ADC is a variant
of ADD which also adds the carry flag to the result).

• XOR/AND/OR reg, ESP can be used if reg is
initialized to either 0 or 0x f f f f f f f f .

• PUSHA pushes all registers on the stack; with an ap-
propriate set of POP gadgets executed after it, this
microgadget will successfully copy ESP into an-
other register.

• PUSH ESP ; PUSH reg is a faster 2-
instruction variant of PUSHA.

Our gadget set requires at least one of these gad-
gets. The first operations of the program initialize reg if
needed, followed by the actual copy microgadget.

2.2 Addition, Logical and Memory Opera-
tions

Since x86 stores negative values using two’s-
complement representation, we can reduce subtraction
to addition or vice-versa with some simple operations:
a− b = a + (−b) = a + (b + 1). Therefore, we only
need to find a gadget implementing one of the four
addition/subtraction operations plus negation. We can
also use XOR for negation, since x = x⊕0x f f f f f f f f .
ADD and SUB are equivalent to ADC and SBB once

we clear the carry flag. To do this, we need a gadget
that clears this flag. We previously enumerated several 2-
byte instructions that do exactly this. There are also sev-
eral 3-byte instructions that clear CF, when used with the
proper register arguments: ADD, ADC, SUB, SBB, AND,
OR, XOR, CMP and TEST.

We also need one operation with a memory source,
and one operation with a memory destination. To mini-
mize the number of classes, we should design the classes
so that as many gadgets are shared between classes as
possible. If LODSD and STOSD for memory loads and
stores, we can look for memory access gadgets in the
other classes, like the addition and XOR classes. The
complete list of operations we need is:

• One of ADD, ADC, SUB or SBB.

• One XOR, NOT or NEG.

• One of AND or OR.

pop 0 into reg2 here
ADD reg2, reg1

Figure 2: Example of register-to-register copy using 0 as
the identity value.

• One memory-to-register operation (load), if LODSD
is not available.

• One register-to-memory operation (store), if
STOSD is not available.

We combine these to form all addition/subtraction, logi-
cal and memory operations.

Since all of these operations have identity values (all
ones for AND, 0 for the rest), the classes also provide a
non-destructive register-to-register copy from reg1 to
reg2. It does this by initializing reg2 with the iden-
tity value for an operation, then applying the operation
to the pair reg2, reg1. Figure 2 shows the steps of
this process. We use the same technique for a memory-
to-register load, initializing the destination register to the
identity value and then using an available memory-to-
register operation to load the value. We can also use any
MOV operations for the last two classes, if available.

The classes handle stores in one of several ways, de-
pending on gadget availability. If the binary contains a
direct memory store, we can simply use that. This is an
instruction of the form: MOV DWORD PTR [reg2],
reg1. Otherwise, we have to use a load operation to
load the previous value of the location we want to write
to, then compute the difference between the old and new
value. We apply this difference to the location of the
old value. For example, if we only have an addition op-
eration with a memory destination, we have to add the
difference between the old value and the new value. This
requires that the operation we use also has an inverse,
e.g., subtraction is the inverse of addition. An alternative
approach is to zero the contents of the destination loca-
tion (change its contents to 0), then apply our memory
store operation afterwards. There are several cases we
have to consider:

XOR store We have to use an operation of the form
XOR DWORD PTR [reg2], reg1. We simply
use any available load to get the old value of the cell
into a register, then XOR that register into the cell.
The new contents of the cell will be 0. Then we XOR
the new value into the cell, getting exactly the effect
we were looking for. Figure 3 shows the sequence
of operations for this case.

SUB/SBB store We only use this instruction if neither a
MOV, nor an XOR is available. However, some kind
of negation operation (XOR, NOT or NEG) with a
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load [addr reg] into tmp reg
XOR DWORD PTR [addr reg], tmp reg
XOR DWORD PTR [addr reg], new value reg

Figure 3: Sequence of operations to perform a memory
store using XOR.

load [addr reg] into tmp reg
SUB DWORD PTR [addr reg], tmp reg
pop 0xffffffff into XOR destination, if using XOR
NEG/NOT/XOR new value reg
INC new value reg if used NOT
SUB DWORD PTR [addr reg], new value reg

Figure 4: Sequences of operations to perform a memory
store using SUB or SBB.

register destination is necessary. A store using this
operation proceeds in two steps: first, we subtract
the old value of the cell from itself, so that the new
intermediate value of the cell becomes 0. We do
this by loading the value of the cell into a register,
then subtracting that register from the destination
cell. The second step adds the new value to the cell.
Since addition is equivalent to subtracting the two’s
complement, as shown earlier, we first negate or
complement and increment the new value, then sub-
tract it. Figure 4 shows this case. If the only nega-
tion we have is a XOR with a memory source, the
0x f f f f f f f f value has to be accessed from a mem-
ory location. We place this value on the stack, then
compute its address during execution and use that
address in the XOR. Since compilers frequently use
FF for padding, we can also use this byte, if avail-
able four times consecutively. If no XOR is avail-
able, then the NOT/NEG operation we use needs a
register operand.

ADD/ADC store This is mostly similar to the previous
case, except the old value needs to be negated, not
the new one. Figure 5 shows the base case, where a
NEG is used.

Once we have a memory load and memory store oper-
ation, we can implement all other operations using avail-
able classes. When we find a load and a store, it does not

load [addr reg] into tmp reg
NEG tmp reg
ADD DWORD PTR [addr reg], tmp reg
ADD DWORD PTR [addr reg], new value reg

Figure 5: Sequence of operations to perform a memory
store using ADD or ADC. An XOR or NOT together with
an INC/DEC can replace the NEG, if available.

matter if each individual instruction has memory, or reg-
ister operands. We use the TMP scratch space mentioned
earlier as a temporary store for memory-load or memory-
store instructions. For example, if we only have an ADD
with a memory destination, we implement addition and
subtraction as stores to TMP followed by loads from that
location. The attacker can implement multiplication, di-
vision and more complex operations using the operations
from this section and conditional branches shown below.

2.3 Conditional Branches
Our approach only supports conditinal branching on the
less-than condition directly. This requires only one ex-
tra microgadget class, which we describe below. Other
equality and ordering comparisons can be implemented
indirectly using this single operation.

Since all addition/subtraction operations set CPU
flags, we use those to compare two values. Because the
carry flag is the least-significant bit of the FLAGS regis-
ter, it is the easiest to access and use. If we compute the
unsigned difference a− b, CF is 1 iff a < b; conversely,
if a ≥ b then CF is 0. This inequality comparison can
be turned into an equality comparison using the follow-
ing observation: a = b iff b ≥ a and a ≥ b. The com-
parisons can also be inverted using negation: a > b iff
−a <−b. Checkoway et al. [4] use this approach to im-
plement conditional branches in their implementation of
ROP without returns.

We have several choices for extracting the carry flag:

• LAHF copies the lowest eight bits of FLAGS into
AH. To move the carry flag into the lowest bit, we
use unaligned memory operations, which the x86
architecture allows. The program saves EAX in the
TMP location using the address stored in a regis-
ter, then increments that register and loads back the
value. After masking out the extra most-significant
byte, this becomes equivalent to right-shifting the
3 most significant bytes of the old value. Another
masking operation clears out all bits other than CF.

• PUSHF pushed FLAGS on the stack. Unfortunately,
using a 2-byte PUSHF microgadget for this purpose
is incorrect, as the return instruction would incor-
rectly jump to the value of FLAGS. However, the ex-
tended PUSHF ; PUSH reg microgadgets pro-
vide the desired behavior. Figure 6 shows the ef-
fects of this microgadget on the stack. The gadget
overwrites the preceding stack locations, so addi-
tional code is needed that retores those locations to
their original values. The terminating RET loads the
address of the next gadget from the stack location
where reg is saved. Therefore, the value of reg
determines the next executed gadget.
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FLAGS
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Figure 6: Execution of the PUSHF ; PUSH reg microgadget. The RET instruction transfers execution to the
microgadget whose address was previously stored in reg.

• ADC and SBB also set a value according to the CF
bit. We use the identity value (0) again to neutralize
the arithmetic effect of these operations. Previous
ROP models [4] already used SBB successfully used
to implement conditional branches.

To actually do a conditional jump, we need a way to
change the value of ESP according to the value of CF.
The solution to this problem involves some memory ad-
dress arithmetic, too. We store the new address for the
false branch at some address addr and the address for
the true branch at addr + 4. Then, we copy addr into a
temporary register or TMP and add the value of CF four
times to that register, so that the value in the register be-
comes addr + 4 * CF. Figure 7 shows one possible
layout of the addresses and code on the machine stack,
when using this technique. We load the contents of the
memory word at this address and store it into ESP, using
one of:

• XCHG EAX, ESP.

• LEAVE copies EBP into ESP, so we set the former
to the branch target, then use this microgadget.

• POP ESP followed by a 32-bit word which is pro-
gramatically loaded with the branch target. The
ROP program has to store the branch target address
on the stack once per branch.

We cannot use the SETC or the CMOVC instructions,
which copy the value of CF to another register, due to
limiting the set to microgadgets of length 3.

2.4 Function and System Calls

The ultimate purpose of the attacker is, in most cases, to
take control of the program or the entire system which
runs the program. In the latter case, the final stage of the
attack entails a call into the operating system (in other
words, a syscall). There are two ways an attacker can do
this: directly, through the special instructions provided
by the CPU, or indirectly, through a library function.

The direct way to do a system call on a Linux distri-
bution on the x86 architecture uses one of two special in-
structions: INT 0x80 and SYSENTER, both available
as two-byte instructions. Since both of these are 2-byte
instructions, we can easily extend our set with an extra
class of 3-byte gadgets, dedicated to syscalls. Using ei-
ther of these instructions, the attacker can transfer control
to the operating system. Before executing the instruction,
the attacker has to put the arguments of the call into the
proper registers. Since our gadget set provides access to
all general-purpose registers except for ESP, the exploit
code can easily place all the proper values into the correct
registers.

The indirect way to call into the operating system uses
a library function, most likely from libc. On 32-bit
x86 Linux system, the ABI (Application Binary Inter-
face) specifies that all parameters are placed on the stack
before a function call. Therefore, the exploit code only
needs to place the function arguments on the stack at the
current ESP, then transfer control to the chosen function.
Just before the call, the attacker sets ESP to the address
of the first argument; we already provide a gadget class
that sets ESP.

Figure 8 shows the memory layout of the code and
data for this operation. Before the ROP program can call
into the library function, it must reserve a stack zone for
the arguments and function address. Then, it copies the
values of the arguments to that zone, preceded by the
address of the function and the pointer to a return gadget.
The last gadget in this sequence stores the base address
of that zone into ESP; since gadgets always end in a RET,
that return instruction loads the function address from the
new ESP and jumps to that address.

The stack zone starts with the address of the function,
so that the call gadget transfers control using a RET.
After that transfer, the stack pointer moves to the next
position, where the function return address is stored.
When the function ends, it executed its own RET in-
struction which loads the next gadgets from the return
address slot. We point this address at a gadget meant
to reset the stack pointer to the next gadget to be exe-
cuted by our ROP program. We save this return stack
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Figure 7: ROP code and address table layout for conditional jumps. The 2-element table contains 2 stack pointers, one
for the true case and one for the false case. The jump code reads the appropriate value from the table, then sets
ESP to that value.

ROP$program$
code

Argument$1
Func3on
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Func3on$call
gadget

Set$reg1$to$
func$address

More$
arguments

Argument$N
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Set$arg$NSet$args

Return
gadget

store*reg2*into*ESP
RET

more$ROP$
program$code

Set$reg2$to$
next$address

set$ESP
set$reg

Figure 8: ROP code and data layout for a function call.

position in a register reg2, which we must set before
the call and copy to ESP just after. In order to prevent
the function from destroying the contents of this regis-
ter, we must pick a callee-saved one: EBX, EBP, ESI or
EDI.

2.5 A Practical Subset of Classes

While Turing-completeness is a useful and interesting
goal in the design of ROP attacks, it often offers more
operations than the attacker needs. In practice, ROP has
been often used as the early stage of an attack, where a
short ROP payload is used to execute a longer x86 pay-
load. The ROP code first calls an OS function to allocate
a writable and executable zone, usually mmap on Linux
or VirtualAlloc on Windows. The code then copies
the full x86 payload to that zone, then transfers control to
the zone using an indirect branch instruction. Any set of
ROP gadgets that supports these operations is practically
useful.

Since the ROP payload needs to do very little compu-
tation in such an attack, many of the operations supported
by the earlier set become superfluous. For example, the
set does not need to support loops, since the only loop
in the payload simply copies the x86 payload to mem-
ory, and that loop is easily unrolled. The only critical
operations that a restricted set of classes for these ROP
trampolines are:

• Storing a constant value to a memory location, so
the program can copy the x86 payload to the address
returned by the allocation function.

• Loading a value from a memory address or branch-
ing to an address stored in memory (the indirect-
branch-to-memory operation), to support calling a
function from libc. This is needed on Linux be-
cause the OS loader stores the address of the alloca-
tion function, i.e. mmap, in the GOT. The ROP pay-
load either loads the address of mmap from memory
into a register, then jumps to the contents of that reg-
ister, or jumps directly to the address loaded from
the GOT.

• All gadgets required for function calls, including
gadgets required to continue execution of the ROP
program after the function returns, e.g., LEAVE.

The single function call made by this attack is much
easier to set up than a general function call. All func-
tion arguments have constant values, so the attacker can
simply place them inside the payload. The payload itself
contains the entire stack zone described in § 2.4. The
only complication is the presence of the arguments on
the stack. These arguments do not contain valid gadget
addresses. For this reason, the ROP payload uses the
function return gadget to move the stack pointer past the
arguments. The simplest solution is to use LEAVE for
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this purpose, after having set EBP to the correct stack lo-
cation. However, this requires that the attacker predict a
correct value for EBP, which is difficult in the presence
of ASLR.

Another possible solution uses the POPA instructions,
which pops all 8 registers from the stack from 8 consec-
utive slots. Since mmap takes 6 arguments, POPA would
be sufficient to skip over the arguments. However, it can-
not be used since one of the 8 registers is EAX, which is
the same register that contains the result of mmap. Using
POPA would require that EAX be saved to memory be-
forehand, which cannot be easily combined with POPA
in a single microgadget. This approach proved too in-
flexible to use in our set of classes.

The ASLR-proof solution we chose programatically
computes the correct EBP that the program copies to the
stack pointer after the function. The goal is to incre-
ment ESP at the end of the function by a value picked
by the attacker. One way to do this uses ADD ESP,
immediate gadgets. However, these gadgets are not
very frequent and have strict limits on the choice of the
immediate value. A more flexible, yet more compli-
cated solution, is to split this operation into several ones:

• Copy the stack pointer into some register reg.

• Load the constant offset into a register.

• Use register-to-register addition / subtraction /
exclusive-or to adjust the stack pointer.

• Copy the result back to EBP, using LEAVE as the
return instruction.

Since the addition operations are only available in 3-
byte microgadgets, we once again require the full set of
registers. However, we observe that the no value left
behind requirement is considerably weakened; there are
only two values that must be preserved across many gad-
gets: the computed stack pointer and the return value of
the function (stored in EAX). We can use gadgets that de-
stroy all other registers, a property which we use to ex-
tend the register exchange classes. In addition to XCHG,
we can also use MOV and many of the previously pre-
sented instructions to perform register-to-register copies.
However, we still use EAX as a scratch register and do
copies in several steps; therefore, for any register reg,
we require one class to copy EAX to reg and one class
for the reverse operation.

3 Evaluation

3.1 Microgadget Classes
The first step of our evaluation consists of building the
concrete sets of gadgets, based on the classes we describe

# Class Size 2-byte 3-byte
1 INC/DEC 14 X
2 POP reg 7 X
3 ADD/ADC/SUB/SBB 624 X
4 XOR/NOT/NEG 482 X
5 AND/OR 312 X
6 load from memory 295 X X
7 store to memory 217 X X
8 clear CF 839 X X
9 load flags 372 X X

10 load ESP 106 X X
11 set ESP 101 X X
12 XCHG EAX, EBX 1 X
13 XCHG EAX, ECX 1 X
14 XCHG EAX, EDX 1 X
15 XCHG EAX, EBP 1 X
16 XCHG EAX, ESI 1 X
17 XCHG EAX, EDI 1 X

Table 2: The set of microgadget classes and the num-
ber of microgadgets in each class. The two rightmost
columns show whether each class contains at least one
microgadget of that specific size.

in § 2. We automatically identify valid microgadgets for
each class and count the size of each class, shown in Ta-
ble 2. The more gadgets each class contains, the easier it
is to find it in a binary.

Table 2 also shows a subset of classes with one el-
ement each: the XCHG EAX, reg classes. These
classes are required for Turing-completeness, but each
class only contains one gadget. For this reason, we ex-
pect these six classes to have a large impact on our re-
sults. To get a better idea on the impact the XCHG EAX,
reg have on vulnerability rate, we performed two sets
of scans: one with the full gadget set and one without the
XCHG instructions. We believe that future extensions to
the no value left behind approach with larger classes and
more instructions will increase the flexibility of micro-
gadgets.

Our design for the simpler loader payload described
in § 2.5 shows a similar number of classes: 11 classes
for the non-ASLR version and 35 classes for the ASLR-
proof version. The latter has a larger number of gadgets
because there are 2 separate copy classes for each regis-
ter, and there are 6 registers other than EAX and ESP.

3.2 Threat Evaluation

To measure the vulnerability of actual programs suscep-
tible to our attack, we implemented a scanner in Python
and ran it on large sets of binaries. This scanner parses
each executable file and determines whether each pro-
gram contains the complete set of microgadget classes.
We selected a sample of Linux distributions released by
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different groups and in different years, so we could eval-
uate across a range of scanned program and compiler
versions. Tables 3 and 4 show the list of distributions
we scanned, the number of vulnerable binaries we found
and the time needed to scan each distribution. We set up
a VMWare Fusion virtual machine with 1 GiB of mem-
ory and 20 GB of disk space for each Linux system; the
host system consisted of an Intel Core i7 system with 8
GiB of memory and an 128 GB SSD and we performed
a clean installation of each distribution.

For every distribution, we run our scanner on the exe-
cutable sections of each file in /usr/bin. We use this
directory as it usually has the largest concentration of
Linux binaries on a system, as most Linux applications
get installed there. We ran our scanner in two modes: in-
dependent mode, or i-mode, where we scan each binary
on its own, and complete mode, or c-mode, where we also
recursively scan all libraries that each binary depends on.
The difference between these two modes is significant, as
the binaries themselves are not subject to ASLR, when it
hasn’t been compiled as position-independent code. By
default, Linux programs aren’t compiled with this op-
tions, as it comes with a performance hit [12]. If a binary
contains the full set of microgadgets without using any
libraries, then that binary can be attacked easily on many
different systems, as the programs themselves are not
loaded at a random address on Linux. On the other hand,
our results show that many more programs are vulnerable
when considering their dependencies, particularly since
some programs are just small loaders for larger libraries,
which implement the actual functionality.

While the exchange subset is required for Turing-
completeness, our results show that its small size has a
large impact on the frequency of the entire set. Scan-
ning without the exchanges showed an upper bound on
the vulnerability rate from our model, absent any future
extensions to the 11 large gadget classes. Removing the
exchange subset proved to have a significant impact on
success rate.

To investigate the impact of binary size on availabil-
ity of the gadgets, we also split the binaries into groups
by file size and scanned them in i-mode. Table 5 shows
the results of this scan, excluding all files smaller than
3MB. While the sample size is small (there are few bina-
ries in the > 1MB range on Linux), the table shows that
almost all the large ones contain all the required gadgets
for Turing-completeness.

We also ran our scanner on the two separate versions
of the restricted classes, which provide enough function-
ality to call mmap and copy an arbitrary payload to mem-
ory. The ASLR-proof version also includes the necessary
gadgets to compute the new value of ESP after mmap re-
turns. Our scans show that the simpler no-ASLR set oc-
curs much more frequently than the Turing-complete set,

no XCHG XCHG no XCHG XCHG
Distribution c-mode c-mode i-mode i-mode
CentOS 6.0 3m30s 3m14s 1m36s 1m35s
OpenSUSE 11.4 2m45s 3m15s 1m36s 1m34s
PCLinuxOS ’11 4m16s 3m31s 1m56s 1m48s
Fedora 15 3m40s 3m34s 1m26s 1m51s
Kubuntu 7.10 2m00s 2m04s 0m59s 0m57s
Kubuntu 11.10 2m09s 2m06s 1m00s 1m00s
Ubuntu 9.04 1m52s 2m19s 1m30s 1m15s
Ubuntu 10.04 2m04s 2m05s 1m03s 1m01s

Table 4: Time required to scan all of /usr/bin on sev-
eral Linux distributions.

due to the former’s simplicity. However, the ASLR-proof
set is complex enough that it occurs almost as rarely as
the Turing-complete set. In two particular cases, PCLin-
uxOS and OpenSUSE, the mmap-only set actually occurs
in fewer binaries. This happened because some of our
simplifications, such as the complete removal of classes
supporting logical operations, also eliminated some valid
candidates from the surviving classes.

3.3 Case Study: Web Browsers

Since web browsers are large, complex applications that
virtually every modern networked system uses, we de-
cided to scan two popular ones: Firefox and Google
Chrome. We used the version of Firefox available by
default on each distribution. Firefox is split into 2 sep-
arate parts: the launcher binary, firefox-bin, which is
around 64KiB in size, and the dynamic library (libxul.so)
which contains a major part of the implementation. We
scanned the dynamic library itself in i-mode, including
all exchanges, separately from our previous /usr/bin
scan. Table 6 shows the compiler and browser versions
installed on the systems we scanned. On almost all Linux
and Firefox versions we scanned, this library contained
all the needed gadgets for Turing-completeness. We
couldn’t scan the libxul.so file from Firefox 2.0.0.6
because that version of the browser doesn’t use this li-
brary; the browser code is split into several smaller li-
braries.

We also scanned Chromium, the open-source version
of Google Chrome. We installed and scanned the latest
version1 of these packages provided by Google, in both
the .rpm and .deb versions. Both versions provided
the browser as one large binary (around 80MiB in size).
The two binaries contained Turing-complete sets of gad-
gets, even when scanning in i-mode with exchanges.

1The Chromium version we tested was 15.0.874.106.
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Total binaries
no XCHG XCHG no XCHG XCHG mmap-only payload

Distribution All c-mode c-mode i-mode i-mode no ASLR ASLR-proof
CentOS 6.0 2231 783 340 20 7 24 10
OpenSUSE 11.4 2292 1804 323 77 18 58 16
PCLinuxOS ’11 2405 955 442 56 13 26 11
Fedora 15 1881 758 322 39 15 40 16
Kubuntu 7.10 1337 404 262 27 8 17 9
Kubuntu 11.10 1655 565 271 45 14 39 15
Ubuntu 9.04 1492 434 212 31 4 21 6
Ubuntu 10.04 1587 497 164 35 10 24 12

Table 3: Number of vulnerable binaries from /usr/bin on several Linux distributions. The mmap-only columns
show the availability of a set of classes that allow the attacker to execute an arbitrary x86 payload.

Distribution 3-4MB 4-5MB 5-6MB 6-7MB 7-8MB 8-9MB 9-10MB >10MB
CentOS 6.0 0 / 0 / 7 1 / 2 / 2 0 / 3 / 3 0 / 0 / 2 5 / 7 / 7 0 / 0 / 1 0 / 0 / 0 1 / 1 / 1
OpenSUSE 11.4 1 / 8 / 10 2 / 2 / 4 0 / 0 / 0 0 / 1 / 1 7 / 8 / 8 1 / 1 / 1 0 / 0 / 0 3 / 3 / 3
PCLinuxOS ’11 1 / 3 / 5 0 / 1 / 3 0 / 0 / 2 0 / 1 / 1 5 / 7 / 7 1 / 1 / 1 3 / 4 / 4 1 / 1 / 1
Fedora 15 0 / 8 / 22 1 / 1 / 2 1 / 1 / 1 0 / 1 / 1 5 / 7 / 7 2 / 2 / 2 3 / 3 / 3 2 / 2 / 2
Kubuntu 7.10 0 / 3 / 5 0 / 0 / 0 2 / 2 / 2 2 / 3 / 3 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0
Kubuntu 11.10 1 / 6 / 8 1 / 2 / 3 0 / 0 / 0 1 / 2 / 2 5 / 7 / 9 2 / 3 / 3 1 / 1 / 1 3 / 3 / 3
Ubuntu 9.04 1 / 4 / 9 0 / 1 / 4 0 / 2 / 2 2 / 3 / 3 1 / 2 / 2 0 / 0 / 0 0 / 1 / 1 0 / 0 / 0
Ubuntu 10.04 1 / 3 / 5 0 / 3 / 3 4 / 5 / 7 3 / 3 / 3 0 / 3 / 4 0 / 0 / 0 2 / 2 / 2 0 / 0 / 0

Table 5: Vulnerable with XCHG / without XCHG / total binaries grouped by file size, with browsers and files smaller
than 3MB excluded.

Version Vulnerable
Distribution Firefox Firefox Chromium
CentOS 6.0 3.6.9 X not installed
OpenSUSE 11.4 4.0b12 X X(.rpm)
PCLinuxOS’11 5.0 X X(.rpm)
Fedora 15 4.0.1 X not installed
Kubuntu 7.10 2.0.0.6 not installed
Kubuntu 11.10 9.0.1 X X(.deb)
Ubuntu 9.04 3.0.8 X not installed
Ubuntu 10.04 3.6.18 X not installed

Table 6: GCC and Firefox versions on each distribution
we scanned.

3.4 ROP in Practice

To prove the feasability of an attack using microgadgets,
we designed a payload and ran it on a popular network-
facing program. PHP is one of the most popular server-
side languages, so we used the official PHP interpreter
to test an attack. ROP attacks require an attack vector to
load the ROP program into the target process and exe-
cute the program. For this purpose, we used the vulnera-
bility described in CVE-2011-1938 [13] as a precursor to
ROP, targeting PHP version 5.3.2. As an x86 payload, we
used a piece of shellcode from the Metasploit [1] frame-
work, which we copied into our attack, with a very small
change. We used Ubuntu 10.04 as host operating system.

Modern compilers secure compiled binaries using sev-

Gadget File Offset Memory Address
POP EBP 0x3035a0 0x834b5a0
LEAVE 0x30fdad 0x8357dad
POP EAX 0x233125 0x827b125
JMP *[EAX] 0x109da1 0x8151da1
XCHG EAX, EDI 0x279712 0x82c1712
STOSD 0x038303 0x8080303
DEC EAX 0x1a5567 0x81ed567
PUSH EAX 0x27c206 0x82c4206

Table 7: Locations of gadgets in PHP 5.3.2 binary.

eral techniques, such as stack canaries, meant to detect
control flow hijacking. Since the default build of PHP
on Ubuntu is compiled with these security features en-
abled, we built our own version of PHP, with all security
features disabled. We then scanned the resulting binary
with our scanner and found all required gadgets for both
the non-ASLR classes and the ASLR-proof classes. Ta-
ble 7 shows the addresses of the non-ASLR gadgets in
the PHP binary. These 8 microgadgets provide all the re-
quired classes. We used these gadgets to build both ROP
payload as described in § 2.5 and successfully ran both of
them. The program opened a shell using both payloads.
Appendices A and B show the sequences of microgad-
gets used in the attacks.

As mentioned earlier, the x86 payload we used from
Metasploit did not work by default. At first, the program
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initializes this address to the value returned by mmap.
The x86 payload was written so that execution starts
from the beginning. However, our memory store op-
erations incremented the destination address after each
write. Therefore, the payload copy algorithm moved the
address to the end of the payload. To compensate for this,
we added a backwards jump to the beginning as the last
instruction of the payload, then moved the address back
two bytes to point to this jump.

4 Related Work

One arbitrary code execution technique that does not rely
on code injection is return-to-libc [16]. This technique
redirects the control flow of the program to one or more
functions found in the standard system libraries, allowing
the attacker to compromise the target program or even
the entire system. Exploits using this technique only set
up the stack so that a system call like system is pos-
sible. Recent research shows that this set of gadgets is
Turing-complete when the target binaries use the stan-
dard C library [18].

The original return-to-libc approach uses entire library
functions as the basic elements of the attack code. Krah-
mer [9] presents a simpler technique, which uses small
snippets of code from inside libraries or the program it-
self. These snippets are called borrowed code chunks.
The only restriction on the chunks was that each chunk
was responsible for transferring execution to the follow-
ing chunk. Shacham [15] formalizes these attacks (which
he calls return-oriented programming) and shows that
Turing-completeness is possible using just the C library
available on a Linux system, and chunks ending in a RET
instruction, so-called gadgets. Follow-up papers extend
this work to RISC architectures [3, 5, 8], and to differ-
ent branching instructions, like POP/JMP pairs [10] and
jumps in general [2].

The original ROP paper [15] describes a hand-picked
set of gadgets. Different compilers or compilation op-
tions arrange gadgets in the target binary or libraries
differently, or maybe remove some gadgets completely.
Shacham uses combinations of complex gadgets to im-
plement operations such as addition and conditional
branching, since simpler versions are not available.

Subsequent efforts [7, 6, 17, 14] focus on automated
construction of valid and Turing-complete sets of gad-
gets. These tools take as input a binary and a small
program written in a simplified gadget-specific language,
scan the binary and then build a list of gadgets in the bi-
nary. Next, they compile the input program into a “gad-
get program”, which is the sequence of gadgets which
implements the attack code.

The most significant problem in this approach is
matching gadgets (and their semantics) to some desired

behavior. Previous solutions simply limit the gadgets to
a few instructions (the Constructor [7] limits gadgets to
one instruction) and use one of those instructions to im-
plement each desired operation. Another implementa-
tion [6] determines semantics by reducing each gadget to
an expression tree which captures the gadget’s behavior.
Q [14] identifies the semantics of a gadget using a se-
mantic analysis step based on postconditions, then uses a
similar tree-based approach to match the semantics to the
behavior of the attack code. Another approach [17] use
a SMT solver to rewrite each gadget as a series of binary
functions of the input bits, where each function corre-
sponds to an output bit. This way, the problem reduces
to matching boolean functions between the gadgets and
the target code.

5 Discussion and Future Work

Our initial approach to no value left behind can be im-
proved using extensions to the set of exchanges. We be-
lieve designing more complicated sets that satisfy the no
value left behind requirement can extend our attack to a
larger set of binaries. Also, we note the entire gadget set
can be extended further, adding more gadgets to the cur-
rent classes or eliminating some classes completely. For
example, we can extend all classes which contain 2-byte
microgadgets with 3-byte versions of the same micro-
gadgets, where the middle byte is a NOP instruction or
similarly harmless operation.

The classes of microgadgets presented here target 32-
bit x86 systems, using 32-bit values and memory ad-
dresses. We can trivially reuse most classes of gadgets
presented here on 64-bit systems, with one exception:
the new 64-bit instruction set makes the increment/decre-
ment classes invalid. On 64-bit x86, the 1-byte encod-
ings for INC/DEC have been reassigned to the new REX
family of prefixes. In an attack targeted at 64-bit sys-
tems, increment/decrements would use the 2-byte ver-
sions of these operations, therefore requiring 3-byte mi-
crogadgets. One direction for future research would look
into using alternatives for the increment/decrement oper-
ations.

A second important feature of 64-bit systems are 64-
bit addresses. This difference has a significant impact on
microgadgets, since some registers store addresses used
for memory load, store or indirect jump operations. One
such register is EBP. On Linux systems, stack addresses
use more than 32 bits, so a ROP program accessing the
stack cannot use 32 bit registers to store stack addresses.
Therefore, memory operations would use 64-bit regis-
ters, which require an extra 1-byte REX prefix. In ad-
dition to memory operations, all other operations with
operands or results used as memory addresses need to
support 64-bit registers. Due to these extra requirements,
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many gadgets in our gadget classes would grow by an ex-
tra byte. Investigating the impact of this extra byte on the
ubiquity of 64-bit microgadgets is another direction for
future research.

6 Conclusions

We presented a Turing-complete set of 2- and 3-byte gad-
gets, which can be used to perform arbitrary operations
and call into the operating systems. We also showed two
non-Turing-complete sets that can be used to load an ar-
bitrary x86 payload into memory, then execute it. Our
evaluation showed that these gadgets occur with signif-
icant frequency (up to a third of all binaries on a Linux
system, when considering shared libraries), making it a
good step towards full understanding of ROP. In our eval-
uation, it also took a few minutes to scan thousands of
binaries. This lowers the cost to an attacker to locate the
needed gadgets, when targeting a specific binary. The at-
tack itself or some preliminary trampoline could contain
our microgadget scanner, making a Turing-complete set
of gadgets available with relative ease.

A simple, powerful, yet frequent enough set of gad-
gets is very useful to understand and quantify the threat
of return-oriented programming. While previous tools
provide information on gadgets by scanning binaries and
generating gadget databases, our set provides very useful
a priori knowledge of the gadgets an attacker might use.
This information could be used to design new defenses,
simulate attacks or estimate the likelihood of a successful
attack.
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Appendix A: No-ASLR Payload

POP EBP
<ESP after function>
POP EAX
<address of mmap in GOT>
JMP *[EAX]
LEAVE
<argument 1: addr=NULL>
<argument 2: length=0x1000>
<argument 3: prot=0x07>
<argument 4: flags=0x22>
<argument 5: fd=-1>
<argument 6: offset=0>
-- Function returns here --
XCHG EAX, EDI
POP EAX
<4 bytes of payload>
STOSD
POP EAX
<4 more bytes of payload>
STOSD
...
POP EAX
<last 4 bytes of payload>
POP EAX
XCHG EAX, EDI
DEC EAX
DEC EAX
PUSH EAX ; RET

Appendix B: ASLR-proof Payload

-- Load ESP into EBP using PUSHA --
POP EAX
<address of POP EAX>
XCHG EAX, EDI
POP EBP
<address of POP EBP>
POP EBX
<address of POP EAX>
POP EAX
<address of POP EAX>
XCHG EAX, ECX
PUSHA
-- Add delta to EBP --
POP EAX
<delta of ESP to add: 60>
XCHG EAX, EDX
XCHG EAX, EBP
ADD EAX, EDX
XCHG EAX, EBP
-- rest continues as no-ASLR version>
POP EAX
<address of mmap in GOT>
...
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