TECHNISCHE
UNIVERSITAT
WIEN

Vienna University of Technology

DISSERTATION

Purely Interpretative
Optimizations

ausgefiihrt zum Zwecke der Erlangung des akademischen Grades eines Doktors
der technischen Wissenschaften unter der Leitung von

Univ. Prof. Dipl.-Inf. Dr.rer. nat. Jens Knoop
E185/1
Institut fiir Computersprachen

eingereicht an der Technischen Universitat Wien
Fakultat fiir Informatik

von

Dipl.-Ing. (FH) Stefan Brunthaler
Matr.-Nr.: 0457299
brunthaler@complang.tuwien.ac.at
Giessaufgasse 4/11
1050 Wien

Diese Dissertation haben begutachtet:

Prof. Dr. Jens Knoop Prof. Dr. Michael Franz

Wien, am 14. Februar 2011

Stefan Brunthaler

Kurzfassung

Interpretierer sind einfach zu implementieren und kénnen mit marginalem
Zusatzaufwand portabel gemacht werden. Daher werden viele populédre Program-
miersprachen interpretiert und nicht traditionell kompiliert. Im Allgemeinen sind
diese Eigenschaften von Interpretierern vorteilhaft, jedoch verfiigen Interpretier-
er iiber einen gravierenden Nachteil: sub-optimale Ausfiihrungsgeschwindigkeit.
Gliicklicherweise wurde 1984 von L. Peter Deutsch und Allan Schiffman das
Verfahren zur dynamischen Ubersetzung eingefiihrt und in weiterer Folge pop-
ularisiert, sodass wir heute iiber hoch-performante dynamische Ubersetzter,
wie zum Beispiel die Java virtual machine oder die .NET Umgebung verfiigen.
Ungliicklicherweise bedeutet die Entscheidung einen dynamischen Ubersetzer zu
implementieren gleichzeitig auch, die urspriinglichen Eigenschaften eines Inter-
pretierers, mithin die Einfachheit der Implementierung und deren Portabilitét,
grofitenteils aufzugeben.

Die vorliegende Dissertation a) klirt auf warum fiir bestimmte Arten von
Interpretierern bereits bekannte Techniken nicht ihr tibliches Potential entfalten,
b) gibt eine Orientierung welche Arten von Optimierungen héheres Potential
bieten und c) présentiert mehrere rein-interpretative Optimierungstechniken
mit substantiellem Optimierungs-Potential — Geschwindigkeitssteigerungen bis
zu einem Faktor von 2.4176 sind moglich — jedoch ohne die Eigenschaften von
Interpretierern zu beeintrichtigen.

Abstract

Interpreters are easy to implement and can be made portable with only little
extra effort. Therefore, many popular programming languages choose an inter-
preter instead of a compiler as an execution platform. While the characteristics
of interpreters are regarded as an upside, usually, their major downside is con-
sidered to be sub-optimal performance. Fortunately, in 1984 L. Peter Deutsch
and Allan Schiffman introduced the modern concept of dynamic compilation
sub-systems to the programming language implementation community, which
subsequently became a success story, resulting in today’s high performance
just-in-time compilers for Java and .NET. Unfortunately, on the other hand,
deciding to implement a dynamic compilation sub-system involves trading off
the valuable innate characteristics of interpreters.

This dissertation a) explains why for some interpreters known techniques
do not yield reported speedups, b) provides orientation for focusing on other
optimization targets, and c) presents several purely-interpretative optimiza-
tion techniques that result in substantial speedups—we report speedups of up
to 2.4176—while simultaneously preserving the ease of implementation and
portability characteristics.

ii

ABSTRACT

[Disclaimer: All trademarks are the property of their respective owners.]

iii

Acknowledgments

Parts of this thesis were previously published at the following confer-
ences (in chronological order): BYTECODE’09 [Bru09], SAC’10 [BrulOa],
ECOOP’10 [BrulQc|, DLS’10 [BrulQb], and the upcoming CC’11 [Brull]. The
material presented herein has been updated and extended. Where necessary,
material has been rewritten to improve the presentation in general-—and the
reading experience in particular. I deeply appreciate all the constructive re-
views I got from the anonymous reviewers from all of these conferences. As
far as I remember, almost all of them were encouraging and provided valuable
insights—one way or another.

Prof. Jens Knoop deserves most of the credits from an advisory perspective:
I feel T have learned most of the tools and skills necessary for succeeding in such
a highly competitive endeavor as research nowadays is. He always took the time
to diligently review even the earliest drafts of my papers and actively supported
every idea I had along the way: getting internships—though ultimately not
going—, getting funding for travel expenses and writing an ultimately successful
grant proposal for the Austrian Science Fund (FWF). I have been very fortunate
to have him as my adviser.

Besides Prof. Knoop, I owe a lot to Prof. Anton Ertl. Not only did his
work start my interest in interpreters and their optimization, he consistently
provided valuable information concerning related work, too. Furthermore, he
offered helpful comments on several issues and ideas as well as supported the
previously mentioned grant proposal for the Austrian Science Fund (FWF).

Many thanks are due for Prof. Michael Franz, who immediately agreed to
be the co-examiner for this thesis. Upon my presentation at the University
of California, Irvine, in October 2010, he suggested the use of time lines for
improving the audience’s grasp of the actual, historically accurate, development
of techniques. I think this has been a very valuable advice, since the presentation
benefits a lot from the use of these time lines.

Next, I want to take the opportunity to thank Mario Wolczko from Oracle/Sun
Labs in Menlo Park, CA. He pointed out that dynamic compilation is not the
same as just-in-time compilation—an important distinction that we pay only
little attention to most of the time. While I cannot remember the names of
all participants there, I want to thank them for their hospitality and nice,
informative conversations following my talk.

Furthermore, I want to thank Urs Holzle and Gilad Bracha for helping me to
clarify the origins of the interpretative inline caching technique using interleaved
pointers, which Urs Hélzle mentions in his thesis and have been implemented
first by Robert Griesemer in 1996.

ACKNOWLEDGMENTS v

Then, I want to take the opportunity to thank Roland Lezuo, a fellow graduate
student who allowed me to re-run important benchmarks on our PowerPC 970
system. The data obtained by these tests contain valuable information and
indeed provide some of the best results for our last optimization technique.

My good friend and former colleague Michael Zwick deserves earnest appreci-
ation for reviewing an early draft of this thesis. I consider it a privilege of having
met him in Hagenberg. We had a lot of very interesting discussions concerning
not only computer science but rather the world at large, and jointly decided to
pursue a PhD at the University of Linz in the summer term of 2005.

Without the travel grants of both, the SIGPLAN Professional Activities
Committee and the SIGAPP Student Travel Award Programme, I would not
have been able to either go to DLS’10 in Reno, Nevada, or SAC’10 in Sierre,
Switzerland—this help is very much appreciated.

Finally, I want to thank my family and friends who had to suffer through the
misfortune (or fortune, depending on the point of view) of limited exposure to
myself during the course of my PhD studies in Vienna. My fiancee, Catherine, has
been vital to ensure my mental stability in all non-research related matters—we
have had, still enjoy and hopefully will always be having, a great time together.
I dedicate this thesis to Catherine, my great family and dear friends in fond
remembrance of beloved lost ones: Herbert Brunthaler, Otto Breg, and Michael
Bouvier.

Contents

g

[Abstract]

[Acknowledgments|

|List of Figures|

[List of Tables]

(1__Introduction|

II.1 Interpretation|.
I1.1.1 Architecture of an Interpreter|.

Background|

[2.1 _Structure and Performance of Efficient Interpreters|
P2 TInterpreter Abstraction-Levell
2.3 Design Decisions for Smalltalk-80 Interpreters|
2.4 Dynamic Compilation|

.5 UMIMNATY| . v v v o o e e e e e e e e e e e e e e e e

3

Purely Interpretative Optimizations|

3.1.1 Instruction En-/Decoding|
3.1.2 Data Object Inlining|
3.2 rofiling]
3.2.1 Using Two Dispatch Routines|
13.2.2 Swapping the Current Execution|
8.3 Inline Caching|
13.3.1 Dynamic Typing and its Locality|
[3.3.2 Look-up Caches|.
[3-3.3 Tnterleaving Inline Cache Pointers|
8.3.4 Quickening|o oo oo
13.3.5 Inline Caching Applications|
3.4 Reference Counting|.,

ii

iv

ix

xi

40

[3.4.1 Interpreter Operations Causing Reference Count Operations| 41

[3-4.2 Simple Abstract Interpreter]
8.4.3 Quickening| oo oo
8.5 Partial Stack Frame Cachingl

vi

42

CONTENTS

B5.1 BasiclIdeal.
13.5.2 Allocating Stack Frame Cache Slots|
[3.6 Interpreter Instruction Scheduling]
8.6.1 Formalizationl
13.6.2 Finding Computational Kernels|.
13.6.3 Scheduling Instructions|
[3.6.4 Compiling Instruction Schedules|
B7 _Code Generatorl.
I;ilill “ Sllils!;l!]lsi
13.7.2 Implementation in Numbers|.
4_Related Workl
4.1 Purely Interpretative Inline Caching|
4.2 Reference Count Quickening|.
4.3 Interpreter Instruction Schedulingl
[6__Evaluationl
9.1 System Setup and Configurations|

9.2 Evaluation of Optimization Potentia

T

[5.2.1 Dynamic Bytecode Frequencies|

5.2.2 nalysis ot Local Variables
15.2.3 Analysis of Function Calls| .

p.4.1 Detailed Speedup Factors| .

[5.4.2 Results per Optimization Technique]

5.4.3 Interpreter Instruction Schedulingl

6 Conclusions|

[A.1 Binarytrees|
[A2 Fapnkuchl

A5 Nbody] . - o v oo

|IB Comparison of Benchmark Results|

Curmicul Vitad

vii

47
48
53
54
95
58
63
64
67
68

70
70
71
73

75
(0]
76
76
78
79
80
81
81
82
84

86
86
87
89

90

97

97
100
104
107
111
114
117
121
124

125

131

List of Figures

2.1 Native machine instructions for interpreter operation implemen-

L Taliond . - . o o e e e 8
3.1 Standard irregular Python bytecode encoding.|. 14
3.2 Optimized regular bytecode instruction format) 14
3.3 Example tor relocation procedure on 32 and 64 bit systems.| . . . 16
[3.4 Illustration of constant object inlining.| 17
[3.5 Comparison of the assembly generated for INCA_LOAD_CONST (left) |

and LOAD_CONST (right.) | 18
3.6 Illustration and implementation ot global object inlining.|. 19
3.7 Relocating instruction pointer.| 23
[3.8 Relocating the stack of PyTryBlocks.|. 24
[3:9 Resolving ad-hoc polymorphism. 26
3.10 Inline Cache states). oL 27
|3.11 Interleaving inline cache pointers.|. 29

13.12 Illustration of inline caching using interleaved inline cache pointers.| 30

|3.13 Purely interpretative inline caching using interleaved pointers.|. . 30
13.14 Quickening in the Java virtual machine.| 34
[3.15 Purely interpretative inline caching using quickening|. 34
[3.16 Tlustration of immediate reference counting [Ung86[] 40
3.17 lustration of deferred reference counting |Ung86|.| 41
3.18 Redundant reference count operations.| 42
13.19 Illustration of redundant reference count operations.| 42
13.20 Finding redundant reference count operations using an abstract |

interprefer.] 44

13.21 Elimination of redundant reterence count operations by quickening.| 45

13.22 Partial stack frame caching illustrated|. 48
13.23 Computing the score for local variable occurrences.|. 49
13.24 Instruction scheduling.| oo 0oL, 53
[3.25_Graph from the instructions of the kernel for nbody benchmark.|. 60
[3.26 Example of the gdb output on the left side, and the corresponding |

Python data structure definition on the right side.| 65
18.27 UML class diagram of instruction hierarchy., 67
13.28 Flow diagram of instruction set generation.| 68
4.1 'Time line for inline caching.| 71
4.2 Time line for reference count quickening,|. 72

viii

LIST OF FIGURES ix

.1 Distribution of the number of local variables per stack trame.| . . 78
5.2 Frequencies of call types grouped by number of arguments and |
| call targets.| 79
5.3 Reference count operations per bytecode. 80
[A.1 _II5 intermediate graph for binarytrees benchmark| 99
[A2 intermediate graph for fannkuch benchmark.| 102
IA.3 IIS intermediate graph for fasta benchmark| 106
|A.4 1IS intermediate graph for mandelbrot benchmark.. 109
A.5 II5 intermediate graph for nbody benchmark., 112
A.6 IIS intermediate graph for spectralnorm benchmark,| 116
A.7 1IS intermediate graph for django benchmark (without edges of |
| weight <2)|. 119

AS

IIS intermediate graph for ai benchmark (without edges of weight |

| =0 122

IB.1 Benchmark run-times per optimization technique 126
IB.2" Benchmark run-times for different interpreter instruction schedules.[127
IB.3 Benchmark run-times per optimization technique 128

[B.4 Benchmark run-times for different interpreter instruction schedules.[129

D

enchmark run-times for different interpreter instruction schedules]130

List of Tables

[2.1 Reference of reported speedup factors for several techniques [Bru09|.| 7
[3.1 Dynamic frequencies of instruction types| 15
3.2 istribution of instruction types using the irregular instruction set.| 20
3.3 Optimized CALL_FUNCTION derivative instructions.| 37
3.4 Dynamic bytecode frequency for genRandom function of bench- |
| mark program fasta. L. 57
13.5 Dynamic bytecode frequency for an anonymous list comprehension |
| of benchmark program fasta.|. 57
3.6 Dynamic bytecode frequencies for kernel in advance. 59
[3.7 Interpreter Instruction Schedule for the nbody benchmark.. . . . 62
[3-8 Maximum number of operation implementation fix-ups per bench- |
T mark] - - o o o 64
3.9 T'ypes with context-dependent functions.). 65
3.10 Break-down of instructions generated.| 69
[p.1 _Overall comparative dynamic instruction frequency| 76
5.2 otal coverage of calls covered per number of local variables.| . . 78
5.3 Number of reference count operations per benchmark.| 80
5.4 Speedup factors per benchmark for all interpreter configurations |
[on the Intel Nebhalem 17-920J). 81
9.5 Speedup factors per benchmark for all interpreter configurations |
[on the PowerPC 970 82
5.6 IIS Speedup factors per benchmark on the Intel Atom N270) . . 83
|A.1 Comparative dynamic instruction frequency for the binarytrees |
| benchmark (Argument: 14).|. 97
[A:2 Tnstruction trace and frequency for make tree function of |
| binarytrees benchmark.| o000 98
[A73 Tnstruction trace and frequency for check_tree function of |
| binarytrees benchmark| 000 98
|A.4 Computed interpreter instruction schedule for the binarytrees |
| benchmark (Argument: 14).|. L. 100
IA.5 Comparative dynamic instruction frequency for the fannkuch |
| benchmark (Argument: 9).] Lo L. 100
IA.6 Instruction trace and frequency for fannkuch function of |
[fannkuch benchmark) 101

LIST OF TABLES xi

IA.7 Computed interpreter instruction schedule for the fannkuch |

| benchmark (Argument: 9).] 0 L. 103
IA.8 Comparative dynamic instruction frequency for the fasta bench- |
| mark. (Argument: 50,000)[. 104
|A.9 Instruction trace and frequency for genRandom function of fasta |
[benchmarkl)o o 104
IA.10 Instruction trace and frequency for the anonymous list compre- |
[hension of the fasta benchmarkl 105
|A.11 Computed interpreter instruction schedule for the fasta bench- |
| mark (Argument: 50,000).f L 107
|A.12 Comparative dynamic instruction frequency for the mandelbrot |
| benchmark. (Argument: 500) L 107
|A.13 Instruction trace and frequency for the mandelbrot function of |
[the mandelbrot benchmark]. 108
|A.14 Computed interpreter instruction schedule tfor the mandelbrot |
| benchmark (Argument: 500).) 110
|A.15 Comparative dynamic instruction frequency for the nbody bench- |
| mark. (Argument: 50,000)[. 111
|IA.16 Computed interpreter instruction schedule for the nbody bench- |
| mark (Argument: 50,000). 113
[A-T7 Comparative dynamic instruction frequency for the spectralnorm |
| benchmark. (Argument: 400) L. 114
|IA.18 Instruction trace and frequency for the eval A function of the |
| spectralnorm benchmark.|. 000000 114
IA.19 Instruction trace and trequency for the eval A_times_u function |
| of the spectralnorm benchmark.| 115
[A-20 Computed interpreter instruction schedule for the spectralnorm |
| benchmark (Argument: 400). L. 117
|A.21 Comparative dynamic instruction frequency for the django bench- |
[mark] ... 117

|A.22 Instruction trace and frequency for the force_unicode tunction |
[of the django benchmark.| 118
[A-23 Computed interpreter instruction schedule for the django bench- |
L mark] 120
|A.24 Comparative dynamic instruction frequency for the ai benchmark.[121
|A.25 Instruction trace and frequency for the n_queens function of the |
[ai benchmark) o 0 121
|1A.26 Computed interpreter instruction schedule for the ai benchmark. 123
|A.27 Relative reduction of reference count operations per benchmark.| 124
|A.28 Number of reference count operations per bytecode per benchmark.[124

Chapter 1

Introduction

Improving the performance of virtual machines has been a topic of considerable
interest during the past 25 years, and continues to be an active research area
until today. Its importance can hardly be neglected and it is indeed difficult to
imagine a world without high performance implementations of Java and C#.
However, most of the research has focused almost exclusively on improving the
performance of dynamic compilation sub-systems. This neglects the fact that
many important languages use interpreters without these dynamic compilation
sub-systems. These languages are powering much of the Internet infrastructure,
and indeed have been doing so from the early beginnings in the mid-90s, to
today’s modern Web 2.0 offering personalization capabilities, also known as
the social web. Perl has been the language of choice of the mid-90s Internet,
and continues to enjoy high popularity. Currently, Python and Ruby seem
to have captured most of the market—and more importantly—mind share for
programming the server-side of web applications. The same market- and mind-
share is less fragmented on the client side: here the undefeated champion is
JavaScript. Consequently, based on these experiences, the likelihood of those
systems powering the next iteration of Internet innovation—the Web 3.0—is
high.

Most of the advances in dynamic compilation sub-systems can be traced back
to optimizing the performance of processing high-level programming languages,
viz., Smalltalk and SELF. Interestingly, the most successful descendants of
this technology are the high-performance just-in-time compilers for Java and
C#, which—in comparison to the programming languages powered by their
ancestors—are much more low-level, e.g., statically typed instead of dynamically
typed programming languages, and having primitive data types instead of the
everything-is-an-object paradigm. The spiritual descendants of Smalltalk and
SELF, such as Perl, Python, and Ruby, however, have not kept up with their
ancestors’ achievements. The notable exception to this observation is the case of
JavaScript, which quite recently has seen a surge in interest for high performance
execution (cf. [GEST09]).

Often, the primary reason for lacking a dynamic compilation sub-system is a
lack of resources. Particularly in the early stages, many projects—often having
just one implementer—cannot afford to allocate valuable resources for the design
and implementation of a dynamic compilation sub-system—per se a non-trivial
artifact that significantly affects the complexity of any programming language

CHAPTER 1. INTRODUCTION 2

implementation. These problems aside, a dynamic compilation sub-system
sacrifices two of the most important benefits of implementing an interpreter:

¢ ease-of-implementation, and
e portability.

The key advantage of dynamic compilation sub-systems is performance.
Hence, when optimizing an interpreter, one usually faces the dilemma of prioritiz-
ing these conflicting properties. That is where purely interpretative optimizations
enter the arena. They enable to improve the performance of an interpreter with-
out sacrificing its innate characteristics. In comparison to research in dynamic
compilation, the area of purely interpretative optimizations has gotten signifi-
cantly less attention from the research community. This is unfortunate, since
this area offers two desirable properties.

First of all, the area is interesting, because often simple techniques have a big
impact. While computer science usually considers simplicity to be a favorable
trait by itself, in the context of interpreters this has the added benefit of keeping
implementation times minimal. In fact, implementing the purely interpretative
optimizations presented in this dissertation is a matter of days, or weeks at
most and yields considerable, yet portable, performance improvements. This
compares favorably to the effort that is necessary for implementing a dynamic
compilation sub-system, which usually is a multi-year team-effort. The notable
exceptions being the just-in-time compiler for Lua by Mike Pall (LuaJIT) and the
just-in-time compiler of the Squeak Smalltalk project, created by Eliot Miranda
(CogVM).

Second, research in the area of purely interpretative optimizations is impor-
tant, because it offers programming language implementers viable options to
significantly increase their run-time performance while keeping the benefits of
the interpreters.

Recent research in dynamic compilation sub-systems addresses the issue of
implementation effort, too, which confirms its importance. The basic idea is to use
an existing virtual machine infrastructure with a dynamic compilation sub-system
as a basis for another interpreter that runs on-top of it ([YWF09, BCFR09].)

We recognize the importance and general applications of using the quickening
optimization to perform dynamic optimizations based on available run-time in-
formation. We present novel techniques using quickening to achieve very efficient
purely interpretative inline caching (cf. Section , and to eliminate substantial
amounts of reference count operations in immediate reference counting (cf. Sec-
tion. Furthermore, we introduce a technique to optimize frequently occurring
load-store instructions of stack-based interpreter architectures (cf. Section [3.5)).
Finally, we show how to use a derivative of instruction scheduling to optimize
hardware instruction-cache utilization on the native machine processor executing
the interpreter (cf. Section [3.6)).

Using these techniques gives us speedups of up to 2.4176 on a modern
Intel i7 Nehalem architecture (cf. Section) In addition to the techniques
themselves, we present details of the code generator we use to generate customized
versions of the Python interpreter (cf. Section) Finally, we provide a set
of recommendations for interpreter implementers with the purpose of giving
practical, hands-on, advice to jump-start adoption of the techniques presented

herein (cf. Section [6.3])

CHAPTER 1. INTRODUCTION 3

1.1 Interpretation

A compiler is a program that reads a program p in some source language S and
translates it to a destination language D. Whenever the destination language D
is a native machine language, this means that the program p can be executed
on a native machine that knows how to process D—without the compiler being
present at all. This means, for example, that we can compile the program p
to some native machine representation different from the one that runs the
compiler. In consequence, the compiled program can then be executed on the
target hardware.

Contrary to this approach, an interpreter is a program that runs itself while
interpreting a program p. Hence, it does not translate the program p from
S to D, but directly executes the statements comprising p. Therefore, the
interpreter must know how to process all statements of p. If it does not, either
the input program is incorrect, or some run-time error occurred. We call the
language of p the host language—this is the language the interpreter processes.
The interpreter itself, however, is usually written in another language that
we call the interpreter- or implementation language. When the host language
and implementation language of an interpreter are identical, we speak of a
meta-circular interpreter.

1.1.1 Architecture of an Interpreter

In order for an interpreter to compute something, it needs to read an input
program p, which contains statements of the host language. Therefore, it needs
to parse the program p using the grammar of the host language. Using this
grammar, the interpreter constructs an abstract syntax tree—or AST for short—
which reflects the program’s structure. Now, an interpreter implementation can
either:

1. start executing the program p using its AST, or
2. translate the program p to a more efficiently interpretable representation.

In the first case, the AST interpreter needs to have knowledge on how to
process every node of the AST. In the second case, the interpreter translates the
program p to an intermediate representation known as bytecode, or (instruction-)
opcode. Now, an interpreter processes sequences of bytecodes instead of AST
nodes. This class of interpreters is commonly referred to as virtual machines.
Similar to AST interpreters that need to know how to interpret every node of the
AST, a virtual machine needs to have an instruction set that formally specifies
which instruction-opcodes it understands.

The compilation from the host language source code of the input program to
the bytecodes of the virtual machine can either be ahead-of-time, as is the case for
the Java programming language, or can happen just-in-time, i.e., directly before
interpreting the code, which is the way, for example, the Python interpreter
works.

Usually, bytecode interpreters or virtual machines are regarded to be more
efficient than AST interpreters, because the implementation of their instruction
sets is co-located in instruction memory, i.e., they considerably improve their
locality of reference in comparison to AST interpreters. Interestingly, while the

CHAPTER 1. INTRODUCTION 4

term bytecode conveys that the instruction-opcodes have a size of one byte—
which they frequently do—an interpreter can have different instruction formats,
such as a word-sized instruction format, too.

Whenever a virtual machine completes the execution of one instruction, it
needs to decode the following instruction and transfer the control to its successor.
We call this the instruction dispatch, which subsumes the instruction decode
phase. Therefore, any bytecode interpreter must maintain a distinct instruction
pointer or program counter to implement control flow. An AST interpreter does
not require an instruction pointer, since the AST contains explicit control flow
nodes, such as nodes describing if-then-else statements.

In an AST interpreter, the operands of an operation, such as an addition with
numerical operands, are child nodes of the corresponding sub-tree of the addition
operation AST node. In contrast to this, the virtual machine interpreter needs
to pass operands or instruction arguments using one of the following methods:

e Stack architecture: all operands are pushed onto and popped off a data
stack.

o Register architecture: every instruction includes the references identifying
registers holding the operands.

Interpreters with a stack architecture have been the predominant implemen-
tation choice, and require an additional stack pointer to implement data flow.
This is primarily due to compactness reasons: it is commonly suggested that
bytecodes for the stack architecture do not need to carry the register information
for its operands and therefore require less space. However, recently implemented
virtual machines trade the additional space for performance reasons: An inter-
preter using a register architecture requires fewer instructions for loading and
storing operands. Among the interpreters using a register-architecture are the
Lua interpreter, Google’s DalvikVM of the Android project, and the Parrot
virtual machine for executing Perl.

Starting with one of the very first wide-spread interpreters, Lisp 1.5 [McC62],
interpreters most often offer automatic memory management. All flavors of
automatic memory management techniques are present in various virtual ma-
chines, and research in the area of efficient garbage collection techniques is highly
interrelated with research in the area of efficient execution of interpreters. It
is, however, not a necessity for virtual machines to have automatic memory
management, i.e., one could very well design an interpreter that leaves memory
management to the host language.

Another frequently encountered architectural feature of interpreters is in the
area of type systems. Since an interpreter executes the instructions of an input
program, the actual operation implementation has the ultimate information at
its disposal. Dynamically typed programming languages rely on this feature,
i.e., depending on the actual operand types, proper operations are selected
at run-time. In general, an interpreter implements dynamic typing by having
type-generic instructions. For example, JavaScript, Lisp, Perl, Python, and
Ruby interpreters feature dynamic typing. While many interpreters use dynamic
typing, they can support static typing as well, e.g., the Java virtual machine,
or the Pascal virtual machine that processes p-code. In those virtual machine
interpreters, all bytecodes are type-specific instead of type-generic: For example,
compare the Java virtual machine’s iadd instruction for adding integers to

CHAPTER 1. INTRODUCTION 5

the untyped BINARY_ADD instruction of Python. Another architectural concern
within the implementation of type systems in interpreters is to decide whether
the typing rules are strongly or weakly enforced. Though a Python program is
dynamically typed, the interpreter does not perform operations on incompatible
operands, e.g., adding a string and an integer results in a type error, i.e., the
Python interpreter is strongly typed. Contrary to this example, the Perl and
Lua interpreters are weakly typed, e.g., when invoking the addition operator
on a string and an integer, their interpreters will try to coerce the string into a
meaningful numeric value and proceed with arithmetical addition if successful,
i.e., their interpreters will at least try to make a best effort before reporting a
type error. In other words, this strong and weak typing discipline can be seen as
giving either the operand types or the operation a higher precedence.

A final feature of interpreters is that because of their dynamic nature, they
can evaluate arbitrary code at run-time. Many interpreters choose to offer this
feature to the host language, which among other things allows for dynamically
loading and processing code without restarting the interpreter.

Summing up, there are many design alternatives determining the final archi-
tecture of an interpreter. Usually, interpreters can be fairly well classified using
the following characteristics:

e AST-interpreter or virtual machine interpreter,

o stack or register architecture instruction format,

e memory management technique,

o static or dynamic typing of host language objects,

o strongly or weakly enforced typing host language expressions.

Chapter 2

Background

2.1 Structure and Performance of Efficient In-
terpreters

In 2003, Ertl and Gregg published “The Structure and Performance of Efficient
Interpreters” [EGO3Db], which discusses many interesting points—so many in fact
that we decided to name this section after the paper. Originally, the paper
was a response to an earlier paper by Romer et al. [RLV™96|, which analyzed
the effect of hardware for various interpreters (MIPSI, Java, Perl, Tcl). Romer
et al. conclude that interpreters would not benefit very much from dedicated
hardware. Ertl and Gregg show, however, that this is actually not true, since
interpreters perform exceptionally high amounts of indirect branch instructions.
Subsequently, studying the performance of various branch predictors, Ertl and
Gregg report a speedup factor of up to 4.77 between no branch prediction and a
good branch predictor. We are, however, not directly interested in this paper’s
results of branch prediction. More importantly, this paper contains valuable
information on interpreters and interpretation in general.

First of all, Ertl and Gregg relate interpreter efficiency to optimizing native
code compilers, and find that while efficient interpreters perform with a slowdown
by a factor of 10 when compared to an optimizing native code compiler, inefficient
interpreters have a slowdown by a factor of 1000. Consequently, the relative-
slowdown between efficient and inefficient interpreters is ten-fold higher than the
slowdown between efficient interpreters and optimizing native code compilers.
Hence, optimization of inefficient interpreters has a disproportionally higher
amount of speedup potential.

Next, Ertl and Gregg analyze the performance of the following interpreters:
Gforth, OCaml, Scheme48, Yap, Perl, Xlisp. While Gforth, OCaml, Scheme48
and Yap are categorized as efficient interpreters, Perl and Xlisp benchmarks are
used for comparison purposes as inefficient interpreters. The working hypothesis
is that because operation implementation for many interpreter instructions is
usually small, instruction dispatch constitutes the most expensive part of an
interpreter, since it requires at least one expensive indirect branch instruction.
Therefore, optimization techniques focusing on minimizing the overhead in
instruct dispatch have substantial speedup potential (cf. Table)

CHAPTER 2. BACKGROUND 7

’ Optimization Technique \ Speedup Factor \ Reference ‘
Threaded Code up to 2.02 [EGO3D)]
(compared to switch dispatch interpreter)

Superinstructions up to 2.45 [EGO03al
(compared to threaded code interpreter)
Replication 4+ Superinstructions up to 3.17 [EGO03al

(compared to threaded code interpreter)

(both using switch dispatch)

Register vs. Stack Architecture 1.323 avg [SCEGO0S]

(both using threaded code)

Register vs. Stack Architecture 1.265 avg [SCEGOS]

Table 2.1: Reference of reported speedup factors for several techniques [Bru09).

Interesting facts are provided concerning the performance of inefficient inter-
preters:

The behavior of Xlisp and Perl is very different from the other
interpreters. Xlisp has a low misprediction rate for all predictors.
We examined the code and found that most dynamically executed
indirect branches do not choose the next operation to execute, but
are switches over the type tags on objects. Most objects are the same
type, so the switches are quite predictable. The misprediction rates
for Perl are more in line with other interpreters, but figure Fig. 7
shows that improving the prediction accuracy has little effect on Perl.
Non-return indirect branches are simply too rare (only 0.7%) to have
much effect.

Therefore, in the Xlisp case the original hypothesis is violated—instruction
dispatch does not cause the most indirect branches, but dynamic typing does.
In the Perl case, the reason for lacking success might be attributed to the fact
that it does not in fact use a bytecode interpreter, but its architecture is more
akin to a highly optimized AST interpreter.

In 2004, Vitale and Abdelrahman [VA04] reported their results on bringing
the quite successful optimization of Piumarta and Riccardi [PR9§| to the Tcl
interpreter. Interestingly, they reported not only that their speedups were far
lower than expected (cf. Table , but there were some cases were they actually
found slowdowns.

2.2 Interpreter Abstraction-Level

Because of the result on inefficient interpreters by Ertl and Gregg and surprising
result of Vitale and Abdelrahman (cf. Section , we decide to investigate the
performance of interpreters more deeply. Note that parts of this section have
been published before [Bru09].

The hypothesis of Ertl and Gregg [EG03b] was that the operation imple-
mentation of most interpreter instructions is small and therefore the instruction
dispatch overhead is considerable. Therefore, we analyze several interpreter
implementations, viz. Java, OCaml, Python, and Lua to verify this hypothesis.

CHAPTER 2. BACKGROUND 3

Whereas we find that this hypothesis holds for the first two interpreter imple-
mentations, Java and OCaml, our investigation of Python and Lua shows that
their operation implementation is usually much more complicated.

ADD ADD bytecode
bytecode
S plp P
:’) g g u | NEXT o|o Complex ADD g NEXT
S |INSTR PP H INSTR
P|P|D]|n I N I v o |
T T Ta Tb
a b
(a) Operation implementation realized (b) Expensive operation implementation.

by native machine.

Figure 2.1: Native machine instructions for interpreter operation implementation.

Figure shows how Java, OCaml and many other interpreters, such as
the Gforth interpreter delegate the actual operation implementation to the
executing native machine. Contrary to these interpreters, Figure illustrates
that the operation implementation for Python, Lua, and interpreters for other
programming languages, such as JavaScript, Perl and Ruby, is much more complex
and cannot be delegated to the native machine. In consequence, optimizations
targeting instruction dispatch are particularly effective on interpreters where the
ratio of native machine instructions in operation implementation aﬂto instruction
dispatch b is smaller than 1 (3 < 1, cf. Figure) Even more so, when the
instruction dispatch contains expensive instructions such as indirect branches.
For example, the regular switch-based instruction dispatch technique requires
9-10 native machine instructions, whereas the optimized direct threaded-code
instruction dispatch requires only 3-4 instructions [EGOQ1]. Besides halving the
native machine instructions necessary for instruction dispatch, direct threaded
code eliminates an additional indirect branch instruction, too. Since the native
machine realizes most of the operation implementations of interpreter instructions,
we call this class of interpreters low abstraction-level virtual machines.

If the ratio of operation implementation a to instruction dispatch b is much
greater than 1 (3 >> 1, cf. Figure , the optimization potential of optimiza-
tions targeting instruction dispatch decreases. Usually, the reason for this is that
the operation implementation itself is rather expensive, having many branches
and function calls. Because the native machine cannot provide the necessary
functionality, we call this class of interpreters high abstraction-level interpreters.

The classification of interpreters with respect to their abstraction level ex-
plains the varying optimization potential of optimization techniques targeting in-
struction dispatch—which explains the result of Vitale and Abdelrahman [VA04].
Interestingly, Piumarta and Riccardi anticipated this in the conclusion of their
paper [PRIS]:

The expected benefits of our technique are related to the average
semantic content of a bytecode. We would expect languages such

1We use the sans-serif font for establishing the relationship to Figure

CHAPTER 2. BACKGROUND 9

as Tcl and Perl, which have relatively high-level opcodes, to benefit
less from macroization. Interpreters with a more RISC-like opcode
set will benefit more — since the cost of dispatch is more significant
when compared to the cost of executing the body of each bytecode.

Consequently, to successfully optimize high abstraction-level interpreters, we
have to focus our efforts on optimizing the operation implementation instead.
We need to inspect the operation implementation of high abstraction-level
interpreters to answer the question of why it cannot be delegated to the native
machine. All of the previously mentioned programming languages having high
abstraction-level interpreters are highly abstract programming languages, too.
They share the following features:

e dynamic typing,
e automatic memory management,
¢ lack of primitive data types.

Therefore, the operation implementation for many of the interpreter’s instructions
needs to:

e dynamically resolve the types of operands and select the proper operation
implementation for the given types,

e manage the memory using one of the corresponding techniques,
e box and unbox primitive data from objects.

For example, to just add two integers, a high abstraction-level virtual machine
addition instruction must first determine the types of both operands, select
the actual integer addition operation based on the operand types, unbox the
integer values from the operand objects, perform the addition and box the result
again before pushing it onto the stack again. If the interpreter uses reference
counting [Col60] for automatic memory management, it has to decrement the
reference counts for both operands and increment the reference count for the
object holding the result value, too.

A brief look at the history of programming languages gives important insights
as to which optimization techniques reduce the overhead in operation implemen-
tation. The Smalltalk [GR83] and SELF [USQ7] programming languages come
to mind—both of which constitute high abstraction-level virtual machines that
have seen considerable performance improvements using pioneering optimization
techniques.

2.3 Design Decisions for Smalltalk-80 Inter-
preters

In 1982, Allen Wirfs-Brock published an important article detailing several
degrees of freedom and trade-offs one faces when implementing a Smalltalk
interpreter [WB82]. In 1983, this article has been published along others in a
very important book for high abstraction-level virtual machine implementers,
“Smalltalk-80: Bits of History, Words of Advice” by Glenn Krasner.

CHAPTER 2. BACKGROUND 10

The formal specification of Smalltalk-80 |[GR83] defines a virtual machine
architecture with an instruction set, primitive data types, and automatic mem-
ory management. Allen Wirfs-Brock mentions the following points as design
decisions:

1. Host Processor: Here we get advice on possible CPU speed, main memory
(“at least 1 megabyte of main memory”) requirements, number of available
registers, etc. This section is probably least relevant for nowadays modern
CPUs.

2. Implementation Language: The advice on choice of a programming language
is very important. It is recommended to implement an interpreter first in
a high-level programming language to get a “feel” for the language and a
correct implementation first. For ultimate performance, Allen Wirfs-Brock
recommends to implement the interpreter in a low-level language, i.e.,
assembly language, mentioning that their Smalltalk implementation for a
Motorola 68000 needs approximately 5,000 native machine instructions.

3. Object Pointer Formats: A section detailing pro and contra arguments
concerning specific tag-bit positions for supporting tagged integers as a
primitive data type in combination with regular object pointers.

4. Object Memory: Discusses several concerns when implementing an object
table. Modern implementations on modern CPUs need not necessarily
have an object table, i.e., the points therein do not actually correspond to
our discussion.

5. Bytecode Interpreter: Mentions the use of the indirect threaded code in-
struction dispatch optimization technique. Other discussion points include
the amount of caller/callee save registers for frequent function calls with
only few bytecodes (10 instructions or less).

6. Memory Management: Aside of mentioning that their initial interpreter
spent 70% of its time in memory management routines, this point covers
Smalltalk specifics for object allocation and storage reclamation. Object
allocation in Smalltalk is expensive because every function call needs to allo-
cate stack frame (“Context”) objects—these are visible to the host-language.
In storage reclamation, they observe that switching from immediate refer-
ence counting [Col60] to deferred reference counting [DB76] is beneficial.
Note that this discussion dismisses tracing garbage collectors for taking too
much pause time; this was also before the implementation of generation
scavenging by Ungar in 1984 [Ung84].

While points 1 and 4 are probably not an issue today anymore, the other
points contain valuable information. For instance, the choice of implementation
language even today substantially influences performance. Even though in 1987
Eliot Miranda presented a highly portable C-based Smalltalk implementation
called BrouHaHa [Mir87], he had to resort to do some sort of manual global
register allocation and used the same order of variable declaration to influence
the code generated by the C compiler. In early 2010, Mike Pall, the author of
the LuaJIT just-in-time compiler for the Lua programming language posted this
on the Internet [Pall(]:

CHAPTER 2. BACKGROUND 11

It’s much easier to record what an interpreter is doing. Just patch
its dispatch table and intercept every instruction.

The small gains of a simplistic compiler over a carefully hand-
optimized interpreter are just not worth the trouble (the LJ1 JIT
compiler is not much faster than the LJ2 interpreter, sometimes
it’s worse ﬂ Better focus on improving the trace compiler and stay
‘on-trace’ as much as possible.

Another subtle point, often forgotten in the reports about Mozilla’s
plan with JagerMonkey: the method compiler only triggers trace
recording, but they still need the interpreter to actually record the
traces! So now they gotta keep three engines in sync (interpreter,
method compiler, trace compiler). I'll leave it to your judgment
whether that’s a smart move or pure desperation.

The mentioned LuaJIT-2 interpreter is an interpreter written in assembly lan-
guage, which gives the implementer the ultimate control over machine details,
such as register usage, etc. This eliminates a level of indirection when coding in
C and using its compiler for compiling the interpreter. The same approach was
used by the implementers of the Strongtalk interpreter in 1996.

Design point no. 3, Object Pointer Formats, helps in eliminating the overhead
of (un-)boxing objects. Point no. 5, Bytecode Interpreter, includes advice on
optimizing the costs incurred by instruction dispatch. Finally, the last point,
Memory Management, recommends to spend a considerable amount of time
thinking about which automatic memory management technique to use. There is
no commonly accepted recommendation for using technique z in any implemen-
tation, since the performance is highly dependent on the application scenario
and on external design considerations, such as memory consumption, pause
times, etc. We refer the interested reader to the canonical reference of Jones and
Lins [JLI6], plus an updated survey article by Jones [Jon07].

2.4 Dynamic Compilation

Together, the recommendations of Section [2.3] allow us to attack at least some
of the problems of expensive operation implementation mentioned earlier in Sec-
tion [2:2] the notable exception being dynamic typing. The major innovation here
came in 1984, with the landmark publication of “The Efficient Implementation
of the Smalltalk-80 System” by L. Peter Deutsch and Allan Schiffman [DS84].
This paper introduced several important ideas:

e dynamic compilation from virtual machine code to native machine code,
e inline caching,
e de-optimization,

e throwing away code and re-generating it instead of paging-in cached code
from memory.

2Emphasis added by the author.

CHAPTER 2. BACKGROUND 12

These ideas have been very successful and have subsequently led to important
research on optimizing the SELF programming language. The PhD-theses of
Craig Chambers [Cha92] and Urs Holzle [HO194] give substantial details to
numerous optimizations, such as customization, and polymorphic inline caching.
In 2003, Aycock published a good article giving a historical perspective to
just-in-time compilation [Ayc03]. In 2008, Kotzman et al. published an article
detailing the design of the Java HotSpot™ client compiler [KWMT08]. In 2009,
Gal et al. |[GEST09| presented their work on using trace-based compilation for
speeding up the TraceMonkey JavaScript engine of the Mozilla Firefox browser.
This work changes the compilation unit of the dynamic compilation sub-system:
usually, whole methods were compiled, in a trace-based setting, however, traces
of instructions are compiled. These traces collect instructions across functions,
i.e., they perform function-inlining implicitly.

Dynamic compilation systems achieve premium performance, often at the
expense of additional memory—using the well-know optimization principle of
trading space for time. Independent of the programming language they opti-
mize, one can categorize dynamic compilation sub-systems according to their
compilation time:

e Mixed execution: An interpreter starts executing the bytecode instruc-
tions and collects profiling and type information. This information is
subsequently used in the dynamic compilation step.

e Just-in-time compilation: No interpreter is used, but a simple and fast base
compiler generates native code just-in-time before transferring the control
to the compiled method. This base compiler adds collectors for profiling
information. Once these information conclusively identifies a frequently
used piece of code, an optimizing compiler re-compiles it.

Inline caching effectively eliminates the overhead introduced by dynamic
typing. Therefore, it represents the missing piece for optimizing operation
implementation of interpreters.

2.5 Summary

This chapter introduced the notion of virtual machine abstraction-levels as the
primary reason for the varying optimization potential of optimization techniques
focusing on instruction dispatch. Using this observation, we briefly explored the
historical achievements on similar high abstraction-level interpreters, viz. the
Smalltalk and SELF systems. In consequence, this dissertation recognizes the
following features to substantially affect the performance of their interpreters, as
well as proposes optimization techniques to increase efficiency:

e Optimize dynamic typing by using purely interpretative inline caching.

e Optimize reference counting by eliminating redundant reference count
operations.

The next chapter presents additional optimizations, however, all but one of them
(interpreter instruction scheduling, cf. Section derive their existence from
these observations, viz. to minimize the overhead in operation implementation
of interpreters.

Chapter 3

Purely Interpretative
Optimizations

This chapter describes the implementation of our optimization techniques, as
well as the rationale behind them. The primary vehicle for demonstrating all
of these implementations is the Python 3.x series interpreter, specifically, the
Python 3.1 version. Our choice for the Python interpreter is that it has a simple
and clean code base that is a good representative for many other interpreter
implementations. We present optimization techniques that increase efficiency
by:

1. Changing the instruction format,

2. Introducing purely interpretative inline caching,

3. Elimination of redundant reference count operations,

4. Optimizing load and store instructions by partial stack-frame caching,

5. Optimizing instruction cache utilization by interpreter instruction schedul-
ing.

3.1 Instruction Format

This section deals with our changes to the instruction format of the Python 3.x
series interpreter. Like many other interpreter architectures, the Python 3.x
series interpreters use an irregular instruction format. Similar to the instruction
format of CPUs, an irregular instruction format requires complex instruction de-
and encoding.

3.1.1 Instruction En-/Decoding

We observe the irregularity of the Python instruction format by noticing that
not all bytes in the list of bytecodes are actually instruction opcodes. Rather, if
an instruction requires an argument, the two adjacent consecutive bytes contain
its value (cf. LOAD_FAST in Figure) In consequence, whenever we decode an
instruction, we have to check whether it has an argument/operand that needs to

13

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 14

be decoded, too. Otherwise, the instruction pointer of the interpreter would not
be able to properly dispatch to the next instruction.

LOAD 0 2 BINARY]
FAST ADD
RO

instr-ptr

Figure 3.1: Standard irregular Python bytecode encoding.

Since the interpreter needs to decode every instruction it executes, this
decoding should be as fast as possible, similar to the importance of optimizing the
actual instruction dispatch using some of the previously mentioned optimization
techniques, such as threaded code (cf. Table [2.1). The current instruction
decoding translates to the following assembly sequence on an x86-64 architecture,
as compiled by gcc 4.4.3 :

movzbl

xXor
add
cmp

jle
add
movzbl
movzbl
shl
lea

0x0(%r13), %ri15d
%r8d, %r8d
$0x1, %hr13
$0x59, %ri15d

L_SKIP_OPARG_DECODE

$0x2, %hri13
-0x1(%r13), heax
-0x2(%r13), %r8d
$0x8, heax

(%rax, %r8, 1), %r8d

L_SKIP_OPARG_DECODE:

r13 contains the instruction pointer,
r15 the opcode

zero out oparg, T8

advance instruction pointer by one

check 4f instruction has an argument (i.e.,

value is above 90 (= 0z59)

skip operand decoding if below 90

advance instruction pointer by two
load second byte into eazx

load first byte into r8d

shift eaz by one word to the left

use load-effective-address using offset com-

its

putation (raz + 1%r8) to calculate oparg (r8d)

We notice that the conditional instruction decoding requires at least a
comparison instruction (line 5) and branch (line 7). Whenever we actually have
to decode an instruction operand, we need two load instructions to fetch the
memory contents (lines 9, and 10 respectively) as well as a shift instruction to
prepare the operand value computation using a lea instruction. Finally, we need
another add instruction to advance the instruction pointer of the interpreter.
All in all, this amounts to executing 5 instructions for decoding the instruction

operand.

From the development of RISC CPUs, we know that having a regular in-
struction format enables us to use a fast fixed hardware instruction decoder.
Therefore, if we combine the instruction opcode and its operand into one native
machine word, we can simplify instruction decoding by quite a bit:

ARGUMENT

OPCODE

63

32131 0

Figure 3.2: Optimized regular bytecode instruction format.

[N

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 15

For our target architecture (x86-64), gcc 4.4.3 generates the following
assembly:

mov (hr12), %rs8 ; move contents of instruction pointer
locatzion to 78

(r12)

location of

add $0x8, %hri2 ; advance instruction pointer to nexzt word (8 bytes)
mov %r8d, 0x28 (%rsp) ; store opcode part (r8d) to the stack

; the opcode wartiable
shr $0x20, %r8 ; shift the oparg part to the right by 32 bits

Using our new, regular, instruction set, we can decode instructions more effi-
ciently. Instead of the 5/10 assembler instructions, we can decode an interpreter
instruction using just 4 native machine instructions. The new decoding needs
just one memory load (line 1) instead of 3, eliminates the comparison, branch and
exclusive-or instruction, and needs just one addition to advance the instruction
pointer (line 2), instead of two advances when decoding the instruction operand.

Besides these considerable savings, it is interesting to note that this instruction
decoding procedure does not need to allocate a dedicated register to the opcode
variable (line 1 in the previous listing, r15d). Instead, whenever we come to
the threaded code instruction dispatch, we can refer to the value of the opcode
variable by referring to the register holding the instruction pointer (r12) with
the appropriate size and an empty displacement ((r12d)). For less frequent
uses of the opcode variable, we store its value directly to the stack frame of the
interpreter routine (line 4). By removing the conditional operand decoding, the
compiler is free to remove all but the addition instruction (line 3) to advance
the instruction pointer, if the opcode and oparg values are not used within the
operation implementation, i.e., are dead code.

Note that even though we present this regular instruction format in the
context of a 64 bit architecture, it is perfectly applicable to a much more
common 32 bit system as well.

Quantitative Analysis

Dynamic Frequency of Instruction Types

Benchmark Absolute Percentage
Argument | No Argument || Argument | No Argument
ai-1 17,965,268 8,928,896 66.80% 33.20%
binarytrees-14 174,540,267 28,521,410 85.95%, 14.05Y%
django-1 35,924,110 5,100,864 87.57% 12.43Y%
fannkuch-9 61,282,842 15,721,656 79.58%, 20.427%
fasta-50000 7,817,146 3,236,110 70.72%, 29.28Y%
mandelbrot-500 78,958,007 14,163,979 84.79Y 15.21%
nbody-50000 39,267,950 29,708,384 56.93Y 43.07Y%
spectralnorm-400 134,776,564 70,457,432 65.67% 34.33%
Total \ 550,532,154 175,838,731 H 75.79% 24.21%

Table 3.1: Dynamic frequencies of instruction types.

Table [3.1] shows that about three quarters of executed instructions require
the more complex irregular operation argument procedure. Therefore, switching

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 16

to the regular instruction set eliminates 100% of the comparison and branch
instructions of the irregular instruction decoding. In addition, 75% of the operand
decoding instructions become unnecessary, thereby saving two memory loads,
one addition, and one lea instruction.

Relocation

All jumps encoded in the original format include the argument-bytes in their
absolute/relative destination positions. Hence, all jumps need to be relocated to
match our new instruction encoding.

LOAD ARG ARG LOAD ARG ARG |BINARY | JUMP ARG ARG

FAST 1 2 CONST 1 2 ADD BY 1 2
n n+l n+2 n+3 n+4 n+s n+6 n+7 n+8 n+9 n+10
[e 1 | [o 1 | | [e 1 | I |
LOAD LOAD BINARY JUMP
FAST CONST ADD BY
A“ m m+4 m+8 m+i12 [}
N m+8 m+16 m+24 .,

{-12 bytes if size(word) = 4

-24 bytes if size(word) = 8

Figure 3.3: Example for relocation procedure on 32 and 64 bit systems.

Algorithm:

o We use the old dispatch mechanism to determine the values of opcode and
oparg. Change a separate pointer relocate together with the next_instr
pointer. The relocate pointer points into the second memory area of size
n—equal to the number of instructions.

o If we have an instruction that performs a jump, use the following calculation
to relocate the jump target: opargnew := *(relocate—i—opargold) —xrelocate
With regard to our concrete example from Figure [3.3] this means:

— The current instruction pointer is at position n + 7, with oparg.q
having the value —7. The corresponding relocate pointer points to
m + 24.

— The jump instruction target is at instruction pointer position n. Its
corresponding relocate pointer (which is located at offset n, too)
points to offset m in the new instruction encoding scheme.

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 17

— Therefore,
o0Pargnew = *(relocate + (=7)) — (m + 24)
OPargnew = (M) — (m + 24),
OPAT Grew = —24

3.1.2 Data Object Inlining

If we take a closer look at the operand encoding in Figure we notice that we
reserve full 32 bits for encoding the operand value, whereas the original irregular
instruction format only required 16 bits for encoding the same. We notice that
even though our interpreter is running on a 64 bit architecture, half of its address
space is expressible using the 32 bits that our new regular instruction format
provides us with. Consequently, we can inline such data object references directly
into the instruction encoding. The following two sections explain two different
approaches that use this data object inlining: one for inlining constant object
references, the other for inlining global variable references.

Loading Constants

When running the interpreter, we quickly notice that most of the constant objects
that our interpreter uses for the computation are allocated in the lower memory
area, below 32 bits. This observation makes sense, because many of the used
constant objects will already be allocated at start-up time, such as the references
to Boolean true and false values in Python, i.e., Py_True and Py_False.

If we check that the address to a constant data object is in the lower memory
area, below 32 bits, we can safely inline its reference in the instruction encoding,
replacing the integer array index to that reference.

heap

/—Jinstriptr consts f\

o] |

PyObject

B

PyFrameObject

[

?

0%

PyObject

A

standard look-up

inlined reference LIl e -

. INCA_LOAD_CONST

Figure 3.4: Illustration of constant object inlining.

Figure shows the effect of using this optimization. We see that the
operation implementation can be significantly reduced by using this optimization.
Using gcc 4.4.3 to compare each of these versions shows that we are able to
eliminate 2 native machine instructions that load the memory location pointed
to by consts pointer:

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 18

mov 0x0 (%rbp) ,%r13 mov 0x0 (%rbp) ,%rax
add $0x8 ,%rbp add $0x8 ,%rbp
mov %r13d,%r15d mov heax ,%ribd
; first load instruction
mov 0xa0 (%rsp),%rdx
sar $0x20,%r13 sar $0x20,%rax
; second load imnstruction
mov 0x18 (%rdx ,%rax,8) ,%r13
mov %ebp ,heax mov %ebp ,heax
addq $0x1,0x0(%r13) addq $0x1,0x0(%r13)
mov %r13, (hr12) mov %r13, (hr12)
add $0x8,%r12 add $0x8,%r12
sub 0x30 (%rsp) ,heax sub 0x30 (%rsp) ,%eax
mov Y%eax ,0x78 (%rbx) mov %heax ,0x78 (%rbx)
mov 0x0 (%rbp) ,%heax mov 0x0 (%rbp) ,%eax
mov 0x0(,%rax,8),%rdx mov 0x0(,%rax,8) ,%rdx
xor Yeax ,heax xor %eax ,heax
jmpq *%rdx jmpq *)rdx

Figure 3.5: Comparison of the assembly generated for INCA_LOAD_CONST (left)
and LOAD_CONST (right.)

When we create the new instruction format, we can easily quicken all the
occurrences of matching LOAD_CONST instructions to the optimized INCA_LOAD_-
CONST instruction derivatives.

Loading Global Variable References

Contrary to the inlining of constant object references described in the previous,
references to global data objects are not read-only, i.e., there exist STORE_GLOBAL
instructions but not STORE_CONST instructions. Therefore, straightforward inlin-
ing of global data object references would invariably complicate the invalidation
mechanism when a store occurs. Moreover, global data object references can
occur anytime, whereas we can observe a certain locality of the memory addresses
of constant object references being in the lower memory area, below 32 bits.
Similar to the concept of hardware cache levels, we therefore introduce a small
cache to hold references to global objects.

We allocate an array of n elements of the following data structure in the
lower memory area, below 32 bits:
typedef struct {

bytecode_t *ip;

PyObject *elem;
} load_cache_elem_t;

This allows us to present a small set of n references to data objects of the
whole memory area by references to load_cache_elem_t array elements, which
by construction comply with our size restriction of 232 bits. Thus, we can inline
any data object reference for an occurrence of a LOAD_GLOBAL instruction by
inlining a reference to a load_cache_elem_t element.

Figure [3.6] shows how this inlining allows us to significantly simplify the
operation implementation of INCA_LOAD_GLOBAL when compared to a regular
LOAD_GLOBAL instruction. Instead of the expensive key look-up procedures in

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 19

PyCodeObject

heap

/Pyobjecty,
\

instr_ptr names: _—-_””////,,—————-%
j ' -
LOAD PyFrameObject . PyDictObject
IGLOBAL| . B
o
1 f_globals e
f_builtins e~
0 . PyDictObject
PyObject
o0 A

standard look-up

inlined reference with load cache

. INCA_LOAD_GLOBAL

load_cache_ptr

TARGET (LOAD_GLOBAL)
w = GETITEM(names, oparg);
x = PyDict_GetItem(f->f_globals, w); /* 1st */

if (x == NULL) {
x = PyDict_GetItem(f->f_builtins, w); /* 2nd */
if (x == NULL)

load_global_error:
/% remaining implementation omitted */

Figure 3.6: Hlustration and implementation of global object inlining.

Python dictionaries, we can just access the inlined load cache element, verify its
validity by checking the instruction pointer equivalence and use the actual data
object reference.

However, we still need to take care of proper cache invalidation, such that
using this optimization does not violate its soundness. Whenever a STORE_GLOBAL
updates a global data object reference, we need to ensure that any subsequent
LOAD_GLOBAL instruction that indirectly references that global data object with
its inlined load_cache_elem_t reference fails. Otherwise, the update of the
STORE_GLOBAL instruction would not be destructive and the interpreter would
continue to use the data object reference it obtains through the inlined load_-
cache_elem_t reference. There are two options available to an implementer: a)
a fine grained, and b) a course grained cache invalidation mechanism. The first
approach (a) would require us to fetch the currently held data object reference
of the global variable slot, i.e., we would need to execute the LOAD_GLOBAL logic
before actually updating anything. Next, we could search the array of load_-
cache_elem_t records for any references to that object an reset their ip field,
such that an INCA_LOAD_GLOBAL would fail when checking whether the inlined
reference still corresponds to its instruction pointer. After successfully ensuring
that no load_cache_elem_t record references the old data object reference, we
can safely update the global variable slot to reference the new data object. Any
subsequent INCA_LOAD_GLOBAL for such an inlined load_cache_elem_t would
fail and update itself.

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 20

A more course grained approach (b) would be to just invalidate all load_-
cache_elem_t members of the load cache array. All subsequent INCA_LOAD_-
GLOBAL would fail and update themselves. However, we would not have to fetch
the old data object reference before updating it in the operation implementation
of the STORE_GLOBAL instruction. For simplicity, our implementation follows this
second, coarse grained, approach.

Finally, we have to describe a small technical issue for successfully imple-
menting the cache miss. When inlining a reference to a load_cache_elem_t
element, we overwrite the operand value and within our optimized instruction
format have no hope of ever retrieving it again. The solution to this is to retrieve
its value from the old, irregular, instruction format—which we keep for other
purposes, such as debugging, too.

3.2 Profiling

The previous section (Section describes in detail how changing the instruction
format is a good thing, with respect to optimal performance. However, as we
can see in the corresponding figures, changing the instruction format has one
important downside: Switching to a regular instruction format considerably
increases memory requirements of representing the instructions. In our new
regular instruction format, we always need a native machine word to represent
an instruction—with or without operand. The original, irregular instruction
format, however, only needs a single byte for an instruction without operands,
and an additional 2 bytes if that instruction has an operand. On a modern
64 bit architecture, where a native machine word corresponds to 8 bytes, this
represents an overhead of 7 bytes per instruction in the first case and 5 bytes
per instruction in the second case.

Encoded Instructions

Benchmark Absolute Percentage

Argument | No Argument || Argument | No Argument
ai-1 15,313 2,857 84.28Y, 15.72%
binarytrees-14 8,476 1,276 86.92% 13.08%
django-1 31,851 4,868 86.74% 13.26Y%
fannkuch-9 8,509 1,283 86.90% 13.10%
fasta-50000 8,625 1,306 86.85% 13.15%
mandelbrot-500 8,447 1,268 86.95% 13.05%
nbody-50000 8,698 1,417 85.99% 14.01%
spectralnorm-400 8,524 1,288 86.87% 13.13%
Total 98,443 15,563 H 86.35% 13.65%

Table 3.2: Distribution of instruction types using the irregular instruction set.

Table shows that on average more than 85% of instructions have an
operand, i.e., they require 3 bytes, whereas only about 15% of all instructions
have no operand and therefore consume just one byte. Given these figures, we can
easily calculate the additional space requirements of using our regular instruction

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 21

format. When 85% use 3 bytes and 15% use 1 byte, then one instruction uses
2.7 bytes on average (0.85 x 3bytes + 0.15 x lbyte = 2.Tbytes).

On a 32 bit system, every instruction uses a native machine word, i.e., 4
bytes. Therefore, one instruction uses 4 — 2.7 = 1.3 bytes more using a regular
instruction set. This corresponds to an increase in space requirements by a factor
of %7 = 1.4815, or about 50%. On a 64 bit system, all instructions use a native
machine word, i.e., 8 bytes. Analogously to the 32 bit case, we need 5.3 bytes
more per instruction, which corresponds to an increase in space requirements by
a factor of 2.9630, or about 200%.

Thus, blindly switching to a regular instruction set for all instructions wastes
valuable memory. Instead, our implementation uses a simple profiling technique
for collecting cumulative calling and execution statistics. Whenever one of
those numbers reach a configurable threshold, we choose to optimize the current
activation. Thus, we can make informed decisions on when it is actually a good
idea to trade space for time—without wasting valuable memory resources on
infrequently executed parts.

3.2.1 Using Two Dispatch Routines

To support two distinct instruction formats, it is necessary to provide distinct
instruction decoding for both formats. Because using a run-time switch to decide
which decoding to use would offset our efficiency gains, we choose to use two
separate dispatch routines, i.e., two routines that contain the same interpreter
main loop, but with different instruction decoding. Note that doing this enables
us to easily accommodate additional optimizations, such as using an extended
instruction set: Whereas the original, system default, interpreter dispatch routine
contains only the basic instruction set, the optimized dispatch routine can use
an extended or even reduced instruction set. Therefore, the amount of cache
misses caused by changing the instruction set remains the same when compared
to the original interpreter, for infrequently executed parts.

So, we use two dispatch routines, one for supporting each instruction format.
To decide which routine handles the current activation, we add an additional
field to the internal code object data structure that represents Python code
(PyCodeObject/PyCode_Type), named co_inv_count. We increment this field
whenever we decide between the two routines. We choose to let the dispatch
routine with the optimized instruction format be the default call target for
all invocations. There, we check the co_inv_count field of the current code
object whether it is above or below our configurable threshold. As long as
the counter is below the threshold, we increase the counter and invoke the
system default dispatch routine, i.e., the dispatch routine with the original,
bytecode-based, irregular, instruction format. The rationale behind that choice
is that the additional function call caused by using this setup is negligible for
the infrequently called pieces of code it interprets.
...PyEval_EvalFrameEx...
if (! PyCode_HasReachedThreshold(PyFrame_GetCode(£f))) {

PyCode_IncCallCount (PyFrame_GetCode (f));

return PyEval_EvalFrameEx_SysDefault(f, throwflag);
Y/ if

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 22

Once co_inv_count reaches the threshold, we allocate memory to hold our
new instruction format, initialize this new memory area, and relocate the jump
instructions. The instruction pointer related data types have to be adjusted as
well, i.e., instead of being a pointer to unsigned char, our optimized interpreter
uses the following data type definition for the instruction pointer:

typedef unsigned long bytecode_t;

Changing the de-referenced type of the instruction pointer requires to change
the computation of the instruction offset, too.

3.2.2 Swapping the Current Execution

The previous section (Section illustrates the standard profiling behavior
that catches frequently called procedures. However, this type of profiling is
unable to detect infrequently called functions that execute large amounts of byte-
code instructions, such as top-level driver routines. Therefore, we complement
the previous invocation based counter with a second profiling approach that
approximates the total amount of bytecode instructions executed in the current
interpreter main loop. When this total amount of bytecode instructions counter
reaches a configurable threshold, we stop the current execution and swap it over
to the optimized interpreter routine.

Approximating the Total Amount of Instructions Executed

A fairly simple way to count the number of instructions executed would be to
increase a counter whenever we dispatch to the next instructions. This gives
an accurate counter at the expense of causing considerable run-time overhead.
Fortunately, however, the profiling technique does not necessarily require an
accurate measurement but rather an approximate indicator enabling us to identify
optimization potential. Even in the presence of a threaded code instruction
dispatch optimization, the Python interpreter relies on some instructions doing
a round-trip to the head of the dispatch loop for handling periodic tasks, e.g.,
releasing the global interpreter lock to enable the processing of other threads,
or processing signal handlers. Every n instructions, the regular instruction
dispatch is interrupted to take this round-trip. We use this functionality to
roughly approximate the total number of bytecode instructions executed during
the current activation.

The system default interpreter routine has an additional local variable that
accumulates the approximation. Whenever our code runs, we add a fixed amount
of estimated average instructions that have been executed so far. The following
piece of code shows our implementation:

PyEval_EvalFrameEx_SysDefault:
unsigned long bytecodes= 0;

bytecodes+= _Py_CheckInterval;
if ((bytecodes >= OPT_PROFILE_NO_OF_INSTRS()) {
/* swap ezecution to optimized dispatch routine */

Yy // if

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 23

Swapping the Current Execution

When we have reached the threshold of total bytecode instructions executed in
the current activation, we swap its execution from the system default interpreter
routine to its optimized counterpart. To swap the executions, we need to save
the current execution state and ensure that the optimized interpreter routine
can continue the execution where we stopped. The following two parts make up
the current execution state:

e the instruction pointer,
e the stack pointer.

Whereas the latter can be used by both interpreter routines, it is precisely the
change in the instruction format that forces us to relocate the former. This is, how-
ever, fairly simple: because the Python interpreter already supports co-routines
in the form of generators, its stack frame object (PyFrameObject/PyFrame_Type)
contains the offset of the last instruction executed (field identifier is f_flasti).
Therefore, we just need to calculate the correct offset for the new instruction
format, which consists of simply enumerating the current instruction position.

instr_ptr
0 1 2 3 4 5 6 7
LOAD LOAD BINARY
consT | 1 0 |const| O 0 ADD
first_instr 2

Figure 3.7: Relocating instruction pointer.

Figure shows our implementation. Since the instruction pointer (next_-
instr) points to the following instruction (position: 7) and we will not need the
pointer to the first instruction (first_instr) anymore, we can easily determine
the new instruction offset by advancing the pointer while eliminating the need to
decode the instruction operands. So, after decoding a new instruction—not its
operand—, as Figure|3.7|shows below the bytecode sequence in sub-sequent steps
1, 2, and 3, we increment a counter for enumerating the number of instructions
found (our implementation names this counter variable lasti). Thus, when
we find that first_instr equals next_instr, i.e., both pointer have the same
value (position 7 in Figure , we can relocate the instruction pointer to its
new value by multiplying the value of lasti (which would be 2 in Figure
by the size of the native machine word in bytes (8 on a 64 bit architecture.)
In our example of Figure the relocated instruction pointer offset would be
2% 8 =16.

The instruction pointer is, however, not the only place that requires relocation.
The Python interpreter creates blocks (PyTryBlock) to handle block structures.
The following listing shows its definition:

typedef struct {

int b_type; /% what kind of block this is */
int b_handler; /* where to jump to find handler */
int b_level; /% value stack level to pop to */

} PyTryBlock;

© 0 N O U A W N

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 24

As we can see, it contains a field (b_handler) that holds the offset of the
first instruction after that block (its identifier indicates the historic use for
implementing exceptions, but they have been used for other mechanisms, t00.)
Since this offset value indicates an offset that includes the interleaved operand
bytes, we have to relocate it. The following code shows how we are able to
efficiently relocate all block handler offsets in just one pass:

#define BLOCK(elem) f->f_blockstack[elem].b_handler
#define SKIP(flag) (skipvector |= (27flag));
#define SKIP_P(flag) ((skipvector & (27flag)) != 0)
#define UPDATE (elem) (BLOCK(elem)= new_lasti * NEXT_ELEM_IN_BYTES());
#define COND_RELOCATE(BLOCK_NO) do { \
if (!SKIP_P(BLOCK_NO)) BLOCK(BLOCK_NO)-= delta; \
if (BLOCK(BLOCK_NO) == 0) { \
UPDATE(BLOCK_NO); \
SKIP(BLOCK_NO); \

3o\
} while (0); \

int new_lasti= 0, i= 0, delta= 1, skipvector= 0, n= Py_SIZE(co->co_code);
while (i < n) {

/% decode instr and advance instr-ptr */

/% advances %, and adjust delta such that %°:= i + delta */

if (PyCode_GetNewInstrFormat (f->f_code) != NULL) {
switch (f->f_iblock) {

case 6: COND_RELOCATE(6); /* */

/

case 5: COND_RELOCATE(5); /¥ | x/

case 4: COND_RELOCATE(4); /* | */

case 3: COND_RELOCATE(3); /* | */

case 2: COND_RELOCATE(2); /* | */

case 1: COND_RELOCATE(1); /¥ /| fallthrough! */
case 0: break;

} // switch
Y /7 af

Y // while

Py_LeaveRecursiveCall ();

f->f_stacktop= stack_pointer;
PyCode_PromoteThreshold(f->f_code);
return PyEval_EvalFrameEx(f, throwflag);

Figure illustrates the relocation algorithm of the previous listing. The
left side shows the stack of PyTryBlock’s, having 3 structs.

I 3. 21 3 3 2

w
Ix1
g

838,

N
1x1
&
N3
o

&3,

|
N
x]
&

Figure 3.8: Relocating the stack of PyTryBlocks.

Within the PyTryBlock’s, the x’s denote the b_handler field containing the
absolute offset of the first instruction after the block. In order to relocate, we

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 25

decrement the respective offsets until they finally become zero. In the listing,
this is done in the while loop starting on line number 14. For every loop iteration,
we determine the instruction size (either 1 or 3, depending on whether the
instruction has operands) and store it in the variable delta. Next, we use the
macro COND_RELOCATE to conditionally decrement the bytecode offset stored in
b_handler by the instruction size stored in delta. This corresponds to the
vertical arrows pointing to the decreasing offsets on the abstracted horizontal
bytecode sequence line. Figure indicates diminishing values by reducing their
color from black to light-gray. The dashed vertically line on offset 0 corresponds
to the value where we know exactly the instruction offset of the new instruction
format. For this computation, we can reuse the lasti value from relocating the
instruction pointer, i.e., the complete relocation procedure can be done in just
one pass.

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 26

3.3 Inline Caching

Inline caching is a very important optimization that eliminates the overhead
caused by dynamic typing. Originally described in the landmark work of Deutsch
and Schiffman on the “Efficient Interpretation of the Smalltalk-80 System” [DS84],
it has been refined in the early 90s by the introduction of polymorphic inline
caches (PICS) by Holzle and Ungar [HCU91), [HU94], that allow the optimization
of polymorphic call sites.

First, we will have a look on why inline caching actually works (Section .
Next, we will show a purely-interpretative solution based on hash tables (Sec-
tion . Following a discussion of an improved solution in a changed instruc-
tion format (Section [3.3.3)), after which we present our most efficient solution
that uses quickening to realize efficient purely-interpretative inline caching (Sec-
tion . While we illustrate inline caching in the context of implementing
arithmetic operation instructions, we finally present several additional applica-
tions of using inline caching in the Python interpreter (Section .

Please note that parts of this section have been published in prior
work [BrulOal BrulOc, BrulQb].

3.3.1 Dynamic Typing and its Locality

The interpreter of a dynamically typed programming language needs to resolve
the ad-hoc polymorphism this feature imposes at run-time. This means, that the
selection of the proper operation implementation of a given operation happens
when the actual operand types are available—at the beginning of each operation.

BINARY_MULTIPLY

PyNumber_Multiply

binary_op
float_mult
long_mult complex_mult

Figure 3.9: Resolving ad-hoc polymorphism.

Figure [3.9] illustrates an example of resolving the ad-hoc polymorphism
imposed by dynamic typing using the BINARY_ADD instruction implementation.
If we, for example, assume that the types of operand objects A and B are float
objects (PyFloatObject/PyFloat_Type), the implementation of the BINARY_ADD
instruction dictates the selection—and subsequent invocation—of the matching
floating point addition function, i.e., the float_add function. Consequently,
every execution of a type-dependent operation requires an equivalent resolving
procedure.

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 27

It turns out, however, that once a specific occurrence of such an instruction
has been executed, the operand types for that occurrence tend to remain constant
for about 95% of all subsequent invocations of that occurrence. Deutsch and
Schiffman call this the “observation of dynamic locality of type usage” [DS84].
Since the operand types remain constant with a very high likelihood, the repeated
evaluation of the dynamic types for selecting the proper, type-dependent, opera-
tion implementation becomes redundant with the exact same likelihood. This
constitutes the overhead usually associated with dynamically typed programming
languages and their run-time systems.

Original Inline Caching Technique

Using this observation, Deutsch and Schiffman describe an optimization named
“inline caching” that allows us to effectively eliminate the overhead in dynamic
typing. The original description of inline caching by Deutsch and Schiffman uses
a dynamic translation system, i.e., a just-in-time compiler in modern terminology.
In Smalltalk-80, essentially every operation is a method call, or a message send
in Smalltalk terminology—hence their interpreters contain a send instruction.
When translating an interpreter’s send instruction to native machine code, they
emit a native machine call instruction invoking the system default look-up routine.
Based on the operands to an occurrence of a send instruction, this routine selects
the matching operation at run-time. Now, inline caching comes into play: After
the interpreter identifies the actual address of the method to be invoked, it
rewrites the original native machine call instruction to directly call the method,
thus circumventing the redundant invocation of the system default look-up
routine. To ensure correctness, we need to create guard statements that ensure
our type assumption and will invoke the system default look-up routine whenever
this assumption fails.

. = 4dFb0:
e I ?ETEE%EE? r%); } /| Implementation of
Py INCREF(X); / PyNumber Multiply |
LOAD_FAST lstie): Y Py
v=_POP(};
w= TOP();
LOAD FAST x= PyNumber Multiply(v, w);
_ A:es 34 05 08 007 f-" _---78bab3:
BINARY B:e8 189 _ab cd ! [DBype checking float
MULTIPLY Py DECREF ’ args prologue
PyiDEcREF I FEEEREEEERE o
o i (x == . mplementation of
. float_add
bytecode native machine code native machine code

Figure 3.10: Inline Cache states.

Figure illustrates the original inline caching technique, as described by
Deutsch and Schiffman [DS84]. On the left, we see a sequence of bytecodes,
i.e., virtual machine instructions—what Deutsch and Schiffman refer to as “v-
code”. A simple approach for compiling this sequence of bytecode instructions
to native machine code would be to concatenate their respective operation
implementations. In fact, this is what Figure [3.10| shows in the middle figure:
the operation implementation of the second LOAD_FAST instruction and the

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 28

corresponding BINARY_MULTIPLY instruction are concatenated. This technique
would eliminate the interpretative overhead due to the instruction dispatch.
Now, whenever a dynamic compilation sub-system generates a function call,
as is the case when we call the PyNumber _Multiply instruction, the call-site is
said to be “unlinked”. In Figure this corresponds to the Intel x64 binary
and assembly code displayed in red and indicated as position A. Invocation
of the PyNumber_Multiply function would evaluate the actual operand types
and for example end up invoking the float_mult function, i.e., the right-most
arrow in Figure [3.10] Whenever a system default look-up routine choose an
operation implementation based on the types of its actual operands, such as
PyNumber_Multiply does, inline caching means that we “link” the corresponding
call-site to the type-dependent function. In Figure [3.I0] this corresponds to the
blue binary and assembly code indicated as position B. Since the call-site in
the native-machine code does not actually know which type the linked function
expects, we have to link the call-site to a type-checking prologue that we prepend
to the actual operation implementations. Figure [3.10] also shows what inline
means: we inline the target address into the native machine instruction sequence.

PICS and JITs

Following this very important contribution by Deutsch and Schiffman in
1984 [DS84], Holzle, Chambers and Ungar introduced an important derivation of
this technique: polymorphic inline caches, or PICS for short, in 1991 [HCU91].
While this work is highly relevant and has been put to successful use in many
systems, such as the Java virtual machine’s just-in-time compiler, it has a major
drawback: the necessity of having a dynamic compilation sub-system.

While the implementation of a just-in-time compiler is itself a non-trivial,
time consuming task, its detrimental effects on future maintenance and porta-
bility of a programming language implementation impose considerable resource
requirements for any project. History shows that a successful implementa-
tion of a just-in-time compiler is a multi-year, multi-person effort that is usu-
ally reserved for corporations. If a project has enough visibility in the open
source world, these costs can be offset by volunteering implementers. Recent
research [YWF09, BCFR09] addresses these issues by investigating techniques
for leveraging existing virtual machine technology by implementing an interpreter
on top of an existing virtual machine that already offers a just-in-time compiler—
this is somewhat similar to the frontend/backend abstraction in compilers. While
these results present promising first steps in a new direction, we think that it is
certainly worthwhile to investigate purely interpretative optimization techniques
complementing these approaches.

3.3.2 Look-up Caches

One very popular, purely interpretative, approach to mimic the original inline
caching approach is to use hash-tables as look-up caches. Usually, globally
accessible hash-tables with a fixed size of entries contain method addresses for a
given pair of class type and method name, or selector in Smalltalk terminology.
If the look-up is successful, this technique requires an indirect branch to call
the target method address. Otherwise, the technique requires us to call the
system default look-up routine and place its result in the hash-table. This is a

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 29

worthwhile optimization under the premise that the indirect branch combined
with the look-up costs is less expensive than the actual invocation of the system
default look-up routine.

While this technique is advocated by the Smalltalk 80 implementers
guide [GR83| it has been used (often with changes) in other systems, for example
the Portable Common Lisp implementation [KR90], as well.

A good deal of research has gone into investigating this technique, the
following articles from “Smalltalk-80: Bits of History, Words of Advice” contain
valuable information [Kra84]:

e Allen Wirfs-Brock, “Design Decisions for Smalltalk-80 Implementors”,
Chapter 4 [WB82]: lists a couple of favorable characteristics for use of
these look-up caches.

e Thomas J. Conroy and Eduardo Pelegri-Llopart, “An Assessment of
Method-Lookup Caches for Smalltalk-80 Implementations”, Chapter
13 [CPL82]: Analyzes the accuracy and efficiency for several hashing
methods to be used when looking up information in hash-tables.

3.3.3 Interleaving Inline Cache Pointers

Another, more efficient, purely interpretative way of using dynamic locality of
type usage for optimization is to interleave the interpreter instruction sequence
with native machine words. Using these additional words, we can save addresses
to functions for any instruction occurrence.

ARGUMENT OPCODE 2n

INLINE CACHE PTR 2n+1

63 32131 0

Figure 3.11: Interleaving inline cache pointers.

Figure [3.11] illustrates how this change affects our instruction format. In-
terleaving the words requires us to change the instruction decoding: Since
instructions are located at even positions (2n), and inline cache pointers at odd
offsets (2n + 1), the instruction decoding must step over these inline pointers
to point to the successor instruction. We can use the relocation procedure
mentioned in Section to adjust the jump target offsets.

Figure shows how we can use this technique to achieve purely interpre-
tative inline caching. We see in Figure that the inline cache pointer allows
to replace the call to the system default look-up routine (PyNumber_Multiply)
with an indirect branch to the target address referenced by the inline cache
pointer. In consequence, we need to ensure that when we create the new instruc-
tion format, the inline cache pointers are properly initialized, for example that
every BINARY_MULTIPLY occurrence gets its inline cache pointer initialized to
PyNumber_Multiply.

To incorporate the type feedback at run-time, we need to update the inline
cache pointer of the current instruction accordingly. As we can see in the control

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 30

BINARY_MULTIPLY BINARY_MULTIPLY
PyNumber_Multiply --=long_mult
binary_op inline . /
cache [
pointer float_mult
float_mult
- complex_mult
long_mult complex_mult
(a) Ad-hoc polymorphism in Python 3.1. (b) Basic inline caching long_mult.

Figure 3.12: Illustration of inline caching using interleaved inline cache pointers.

flow of the BINARY_MULTIPLY instruction (cf. Figure , the binop function
selects the operation implementation based on actual type information, i.e., con-
verges from type-generic to type-dependent operation implementation. Therefore,
we instrument the binop function to update the inline cache pointer whenever
it has successfully determined the type-dependent operation implementation,
given some arbitrary but fixed operand types (cf. Figure [3.12b]).

BINARY
MULTIPLY T

PyNumber_Multiply

(a) Inline cache pointer initialized to invoke system default
lookup routine.

BINARY
MULTIPLY T

float multiply

(b) Updated inline cache pointer.

Figure 3.13: Purely interpretative inline caching using interleaved pointers.

Figure demonstrates how the update affects subsequent execution of a
specific occurrence of an instruction. While the first execution of that occur-
rence invokes the system default look-up routine (cf. Figure , updating
the corresponding inline cache pointer eliminates the redundant evaluation of

dynamic types (cf. Figure [3.13Db]).

Dealing with Cache Misses

The previous section contains details of how the inline caching approach using
interleaved pointers works. However, as we have mentioned earlier (cf. Sec-
tion , the cache is only valid about 95% of the time, i.e., we still need to
explain what happens in the remaining 5% of cache misses. The inline cache
references a type-dependent function where the actual operand types do not
match the previously valid assumption anymore. One way to prevent this from

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 31

happening would be to add another set of words to the instruction format and
encode the expected types there. For example, for a binary instruction, we would
need to add two words to the instruction format to encode the operand types
for both operands. Unfortunately, this change has two undesirable properties:

e increased memory consumption,
e implies an irregular instruction format.

While the first may seem to be bigger issue among the two, the latter one is
actually more problematic. We have already described the downside of irregular
instruction decoding in Section [3:1.1] but there is another major issue: a regular
instruction format enables us to easily find the inline cache pointers for each
instruction, such that the actual updating of its contents becomes trivial. In an
irregular instruction format, efficient updating the inline cache pointer becomes
difficult.

There is, however, a very simple way of dealing with cache misses eliminating
both problems. While the interpreter operation implementation, i.e., the caller,
has no information of the types expected by the type-dependent function, this
type-dependent function, i.e., the callee, is perfectly aware of the types it expects.
Therefore, we can prefix this type-dependent operation implementation function
with a type check to identify and handle cache misses. The following listing
shows our implementation of such a prefix inline cache miss check:

static PyObject *
long_add (PyLongObject *a, PyLongObject *b) {

if (!PyLong_Check(a) || !'PyLong_Check(b)) {
return inca_binary_add_sysdefault(a, b);

Y // if
}

Invoking the type-generic operation implementation function will re-evaluate
the operand types and select another operation implementation. Since this path
passes our instrumented operation selection function, this takes care of updating
the inline cache pointer for this operation, too.

Comparison with Look-up Caches

This technique eliminates the overhead implied by using a hash-table data
structure, i.e., we need no hashing, no look-up procedure, etc. Furthermore, we
are improving data locality by eliminating the access of the memory location of
the hash-table. While it is possible that the access of the hash-table memory
location may cause a page-fault, it is not possible using our technique. It is
certainly reasonable to assume that the hash-table, or—depending on its size—at
least some of its contents, will be present in hardware caches. Since our technique
eliminates the hash-table, we free up these resources, such that they can support
the actual interpretation.

The major issue with using this technique is its additional impact on memory
consumption. It turns out, however, that we can compensate for these additional
memory requirements by combining this interleaved representation with our
profiling technique (cf. Section .

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 32

Historical Perspective

Urs Holzle’s PhD thesis [H6194] of 1994 contains some interesting material
regarding the importance of several optimizations for the performance of a SELF
interpreter in Chapter 4.5 on page 31:

Without inline caching, sends are expensive. A straightforward
interpreter could not use inline caching and would have to use a
lookup cache instead.

However, the last paragraph in the same chapter on page 32 reads as follows:

Alternatively, the interpreter could just add inline caching to the
straightforward interpreter by adding one pointer per send byte code
to cache the method last invoked by that send; each method would
also cache the last receiver type. Similar organizations have been
used for Smalltalk interpreters [44 (ed: [DS84))]. Since most byte
codes are sends, this approach would require roughly one word per
byte code.

With only minor changes, this describes the approach presented herein, too.
The first difference is that we propose to add an inline cache pointer to every
interpreter instruction, whereas Holzle describes this addition only for send
instructions. This, however, is not a major difference in ideas, but rather comes
from the difference in interpreters: SELF requires an even higher abstraction-level
virtual machine than Python does, since—in the end—everything is resolved
using send instructions, whereas the Python interpreter contains numerous
instructions that do not rely on a method calﬂ Therefore, it would be quite
unnecessary to add the inline cache pointer to every instruction, except for
having a regular instruction set—which could very well be worthwhile, because
most instructions are in fact send instructions anyways. The second difference is
that we propose the combination with profiling to limit the somewhat excessive
memory requirements implied by adding the inline cache pointers—there is no
hint for a similar architecture in these paragraphs.

Holzle mentions that a similar approach has been used in Smalltalk systems
before and refers to the “Efficient Implementation of the Smalltalk-80 System” of
Deutsch and Schiffman. However, the author could not find any such references
in that work. In addition to that, this technique has not been implemented by
Holzle, such that we cannot compare our results.

In private communication, Urs Holzle [HOI09] as well as Gilad Bracha [Bral0]
pointed out that a similar architecture was used by the Strongtalk interpreter.
After the hint by Urs Holzle and its followup analysis, the author incorrectly
believed that a similar inline caching architecture was used only in the case
of just-in-time compilation, i.e., during native code execution. The comment
by Gilad Bracha led to another analysis that indicated that the Strongtalk
interpreter did in fact use the same kind of inline caching for send instructions.
The source code in question (see below) identifies Robert Griesemer is the author
of that particular piece of code [Gri96]—Gilad Bracha independently confirmed
this.

1Note that because Python supports additional ad-hoc polymorphism via operator over-
loading, thus most interpreter instructions can end up calling a method.

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 33

/-
// Inline cache structure for non-polymorphic sends

7/

// [send byte code] 1 byte

// [no. of args 1 1 byte, only if arg_spec == recv_n_args

// alignment 0..3 bytes

// [selector/method] 1 word

// [0/class] 1 word

// mext instr <--- est, after advance

/7

// mnormal_send generates the code for normal sends that can
// deal with either methodOop or nmethod entries, or both.

/7

// Note: As of now (7/30/96) the method sweeper %s running asynchronously and might modify

Ve (cleanup) the inline cache while a send is in progress. Thus, the inline cache might

/7 have changed in the meantime which may cause problems. Right now we try to minimize

7/ the chance for this to happen by loading the cached method as soon as possible, thereby
// reducing the time frame for the sweeper (gri).

In addition to the normal inline caching, the Strongtalk interpreter uses
purely interpretative inline caching, polymorphic inline caches, as well as meg-
amorphic inline caches, too. Contrary to our approach, it does not seem that the
Strongtalk interpreter combines this architecture with profiling—rather the pro-
filing is used to trigger the just-in-time compilation of frequently called methods.
Unfortunately, there is no publication highlighting the Strongtalk interpreter as
the first implementation of purely interpretative inline caching using interleaved
pointers. Therefore, the author independently re-discovered this idea about 13
years later and subsequently published this result [BrulOal [BrulObl [BrulOc]—the
prior work being unbeknownst to the author at that point.

3.3.4 Quickening

Quickening is a very important run-time optimization technique for interpreters.
It is based on using information obtained at run-time and rewriting generic
instructions to optimized derivatives of these generic instruction implementations.
We will first describe the original quickening optimization technique as it is
used in a Java virtual machine. Next, we introduce our novel approach to use
quickening for inline caching. Finally, we will present a brief discussion of the
pros and cons of using this optimization technique.

Quickening in the Java Virtual Machine

The Java virtual machine contains several instructions, such as the getfield
and putfield instructions, that reference data from the constant pool. The
Java virtual machine specification [LY96], describes how the instruction imple-
mentation of those instructions dynamically resolve their respective symbolic
constant pool entries. The result of this resolving procedure is invariant with
respect to recurring execution. Therefore, it is only necessary to actually resolve
constant pool entries once and cache their results for subsequent executions.
Now, optimized derivatives of these instructions omit expensive resolving steps
and directly access the cached result data. So, the Java compiler generates
the generic instructions as defined by the JVM specification. After their first
execution, they rewrite themselves to the optimized derivatives, such that these
expensive resolving procedure needs to be executed only once per occurrence.
This quickening optimization is internal to the interpreter, i.e., it is not necessary

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 34

for the compiler to know about the additional instruction derivatives. Summing
up, the quickening interpreter optimization consists of the following parts:

e Creating optimized instruction derivatives.

e Rewriting from generic to optimized derivatives.

get

field istore

iload

of

quick istore

iload

Figure 3.14: Quickening in the Java virtual machine.

Figure [3.14] shows how this replacement occurs. On the left side, we see how
the generic instruction resolves its reference to the constant pool. The operand
value of the instruction refers to a symbolic constant pool entry. The interpreter
caches the result of resolving this symbolic entry, and rewrites the operand value
to identify the cached data object. Hence, the derivative relationship between
the generic instruction and its derivative is defined via the operand value.

Inline Caching meets Quickening

The previous sections describe various important optimization techniques, viz.
inline caching and quickening. Now, we show how a combination of both tech-
niques results in a more efficient optimization technique. As we have mentioned
above, the JVM uses quickening to provide optimized derivatives with respect
to an operand value. If we, however, provide optimized derivatives with respect
to the result of resolving the ad-hoc polymorphism imposed by dynamic typing,
quickening allows for efficient inline caching in an interpreter.

v v
LOAD | LOAD [BINARY LOAD | LOAD |FLOAT
FAST | FAST | ADD FAST | FAST | ADD
> Eoatl [BINARY_ADD > Eoar] [_BINARY_ADD FLOAT_ADD
Obj B Obj B
PyNuniber_Add uhicode PyNumber_Add unicode
Float concatenate Float » ‘ concatenate foat add
ObjA binary_op Obj A binary_op =
madd complex_add
float_add float_add
long_add long_add

(a) Resolving ad-hoc polymorphism. (b) Inline caching using quickening.

Figure 3.15: Purely interpretative inline caching using quickening.

Figure [3:15]illustrates this approach: while executing the generic BINARY_ADD
instruction, the binary_op function selects the proper operation implementa-
tion for the actual operand types. Now, we quicken the generic BINARY_ADD

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 35

instruction to an optimized derivative that hard-wires the exact same operation
implementation function—in our case, the INCA_FLOAT_ADD instruction that
directly calls the float_add function. Thus, every subsequent execution of
this INCA_FLOAT_ADD function will by-pass the redundant type resolving mech-
anism. This pretty much resembles the original approach of inline caching in
the Smalltalk-80 system of Deutsch and Schiffman, with the notable exception
that we lifted the rewriting to the interpreter level instead of using a dynamic
translation sub-system.

In the interleaved pointer technique of Section we are detecting cache
misses by pre-pending our type assumption checks to the actual operation
implementation, i.e., pre-pending PyFloat_Type check before executing the rest
of the body of the float_add function. This was necessary, because the BINARY -
ADD instruction had no knowledge of our type assumptions—it was lacking this
context. By using this quickening based inline caching approach, however, every
optimized derivative has this context, and therefore we can generate these cache-
miss guard statements directly in the operation implementation, without the
need to instrument numerous library functions.

TARGET (INCA_FLOAT_ADD)
/% check for inline cache miss */
if (!(PyFloat_Check(TOP()) && PyFloat_Check (SECOND())))

/* call the default implementation without instr. decoding */
goto TARGET_BINARY_ADD_SKIP_DECODE;

w= POP();
v= TOP();
x= PyFloat_Type.tp_as_number->nb_add(v, w);

Py_DECREF(w);
Py _DECREF(v);

SET_TOP (x) ;
if (x !'= NULL) DISPATCHQ);
break;

Discussion

Lets discuss the advantages and disadvantages of both inline caching techniques
presented in the previous sections. The most important difference between
both techniques is that the quickening based approach eliminates the necessity
of interleaving native machine words with the actual instructions. Thus, the
quickening based inline caching requires only half as much memory as the
interleaving pointer technique does. However, since we extend the instruction set
with the optimized derivatives in the quickening based optimization technique,
the maximum representable 255 instructions in a bytecode format can pose a
major problem. Therefore, a change of the interpreter’s instruction format is
recommended when using either one of the inline caching techniques.

Along with the reduction of memory requirements, the quickening based
technique eliminates the indirect branch instruction by hard-wiring the operation
implementation function. While this elimination is beneficial on its own, it
enables the compiler to inline the function body of that function into the
operation implementation of the interpreter instruction, too. This inlining will

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 36

provide further performance improvements, since it considerably reduces the
function call overhead of frequently executed interpreter instructions.

Unfortunately—as is the case with many optimizations—, the quickening
based inline caching technique has disadvantages as well. First of all, extending
the interpreter instruction set with the multiple instruction derivatives presents
considerable “noise” for any programmers dealing with the interpreter. Our
solution to this problem is to use a code generator to generate the multiple
derivatives in a pre-compile step (cf. Section . Thus, the actual interpreter
implementation remains largely untouched and reduces the “noise” to a bare
minimum. Another downside of using quickening based inline caching is that its
net-performance depends on instruction cache size of the underlying CPU. If we,
for example, assume a small-scale CPU with only a small instruction cache, it is
possible that the larger interpreter instruction set causes more instruction cache
misses. The implied cache miss penalties could overcompensate for the efficiency
gains of using quickening based inline caching. So, while the quickening based
inline caching technique achieves the biggest speedups on modern desktop and
server CPUs, it is possible that the interleaving pointer approach outperforms
the quickening based optimization on smaller CPUs. Interestingly, this quicken-
ing based inline caching techniques performs significantly better on all of our
evaluation systems.

Finally, it is important to note that while the original quickening in the JVM
happens only once per occurrence, the inline cache based quickening technique
requires re-quickening after every inline cache miss.

3.3.5 Inline Caching Applications

During the previous sections, we illustrated our inline caching techniques using
the implementation of arithmetic operation instructions of the interpreter. The
use of this technique is not, however, restricted to this type of instructions. The
following sections provide additional details on using inline caching for other
instruction types.

Optimizing Call Instructions

Like many other modern programming languages, Python promotes the use of
(imperative) functions as its primary abstraction mechanism. Note that Python
is a multi-paradigm programming languages, which means that functions can be
methods as well. Therefore, the call instruction is among the most frequently
used interpreter instructions. Unfortunately, the CALL_FUNCTION instruction is
very abstract, similar to Urs Holzle’s assessment of the send instruction in the
SELF interpreter ([HoI94], page 31):

The byte code encoding is very abstract. As discussed above, there
is only one send byte code, and even local variable accesses are
expressed with this byte code. For efficient interpretation, it is
probably necessary to redesign the byte code format to separate
the “trivial” sends from the “real” message sends, or to cache an
intermediate representation as discussed below.

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 37

Though Python does not use the CALL_FUNCTION instruction to access local
variables, it is still too abstract for efficient interpretation, since it supports the
following possible call targets:

e Python functions,
e Python methods,
e C functions.

Thus, every execution of a CALL_FUNCTION instruction requires the interpreter
to first determine the call target, before it can actually call it. However, dynamic
locality of type usage corresponds in the CALL_FUNCTION case to very infrequent
change of call targets. In fact, to change the call target of a specific CALL_-
FUNCTION occurrence one would have to explicitly code it that way.

Besides supporting several call targets at once, Python allows for special
cases when invoking C functions with only no arguments or only one argument.
The reason for this is that in general, Python represents function arguments
by re-using its own tuple type (PyTupleObject/PyTuple_Type). Passing NULL
instead of a reference to an argument tuple is a shorthand for calling a C function
that expects no arguments. Similarly, passing the Python object directly without
the wrapping tuple object represents calling a C function with only one argument.

Finally, Python supports several additional peculiarities for passing arguments
to functions: a) named arguments, b) variable length argument lists, and ¢) a
combination of a) and b). Figure|5.2|in the evaluation chapter (cf. Section
contains the result of a simple quantitative analysis of dynamic instruction,
operand value and call target frequencies. Based on these information, we provide
optimized derivatives that replace the generic CALL_FUNCTION instruction for
each of the combinations in Table

Number of Arguments
Target Zero | One | Two | Three
C std. args X X
C variable args X X b X
Python function X X X
Python method X X b

Table 3.3: Optimized CALL_FUNCTION derivative instructions.

Optimizing Iteration Instructions

The Python interpreter contains a dedicated instruction for iteration, FOR_ITER.
This instruction expects an iterator object as the top-of-stack element, and it
will call a function on that iterator object resulting in either, the next value
object for another iteration, or a StopIteration exception, in which case it will
remove the iterator object from the operand stack. The following listing shows
the implementation of the FOR_ITER instruction.

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 38

TARGET (FOR_ITER)
/% before: [iter]; after: [iter, diter ()] *or*x [] */
v TOP () ;
X (*¥v->0b_type->tp_iternext) (v);
if (x != NULL) {
PUSH (x);
DISPATCHQ);

Dynamic locality of type usage for the iterator instruction means that the
actual type of the iterator object used for a given occurrence of a FOR_ITER
instruction is very likely to remain constant. Actually, in this case, we see that
the operand stack layout ensures that as long as the iterator sequence continues,
not only the type will remain the same, but the actual iterator object will remain
the same. Therefore, the repeated resolving of the indirections identifying the
function that takes this iterator data object reference and computes its successor
data object reference is completely redundant. Using the quickening based inline
caching approach allows us to create several optimized instruction derivatives
that hard-wire the iterator computation function. This allows the compiler to
perform inlining and removes the indirections as well as the indirect branch. The
following figure illustrates the optimization that is possible in that case:

TARGET (FOR_ITER_RANGEITER)
v= TOP();

/% check for inline cache miss */

if (v != NULL &&
(unsigned long)v->ob_type != (unsigned long)&PyRangelter_Type)
goto TARGET_FOR_ITER_SKIP_DECODE;

/% direct call to inline cached function */
x= PyRangeIter_Type.tp_iternext(v);

if (x !'= NULL) {

}

Analogously to the case with inline caching the arithmetic operator instruc-
tions, we can easily detect a cache miss by the context present in each instruction
derivative. In such a case, we literally goto the generic FOR_ITER instruction,
which determines the new iterator object type and re-quickens itself to another
optimized instruction derivative.

Optimizing Comparison Instructions

Like most other instructions of the Python interpreter, the comparison instruction
relies on ad-hoc polymorphism as well. Most often, the COMPARE_OP instruction
will invoke a type-generic comparison routine, do_richcompare, which uses the
type information of both operands to select the actual type-dependent comparison
routine. Again, the dynamic locality of type usage allows us to use inline caching
for optimization here. By providing optimized derivatives with hard-wired calls
to the comparison routines, we are able to eliminate the repeated, yet redundant,
resolving of the ad-hoc polymorphism.

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS

TARGET (INCA_CMP_FLOAT)

w= POP();
v= TOP();
if ((v->ob_type != w->ob_type)
Il (((size_t)v->ob_type) != (size_t)&PyFloat_Type))

goto COMPARE_OP_MISS;
x= PyFloat_Type.tp_richcompare(v, w, oparg);

Py_DECREF(w);

Py_DECREF(v);

SET_TOP (x);

if (x != NULL) DISPATCHQ);
break;

39

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 40

3.4 Reference Counting

In the previous section (Section we describe in-depth how to efficiently
implement purely interpretative inline caching techniques to eliminate the over-
head in dynamic typing. Unfortunately, however, this is not the only deficiency
of the Python interpreter: as we have described in Chapter [2] there are two
remaining bottlenecks in the operation implementation, viz. reference counting
and (un-)boxing of data objects. In this section we present a novel optimiza-
tion technique to considerably optimize reference counting. This technique
presents an alternative approach to the landmark work of Deutsch and Bobrow
in 1976 [DBT76], and maintains some of the good parts of immediate reference
counting, while eliminating the downside of deferred reference counting.

Immediate Reference Counting

Introduced in 1960 by Collins [Col60], reference counting provided a solution to
a problem with the mark and sweep garbage collection technique described by
McCarthy [McC62|, viz. mutator pauses consuming too much time.

stack

\ obj 1 obj 2 obj 3

TN
[ONG!

Figure 3.16: Tllustration of immediate reference counting [Ung86].

The basic reference counting invariant is that an object maintains a count of
objects referencing it at all times. Figure [3.16]illustrates how all objects correctly
enumerate the number of objects referencing it. Reference counting is a very
interesting automatic memory management technique that has the following
advantages:

e reclaims data immediately when it becomes garbage,

e storage maintenance is roughly equivalent to the overall computational
effort,

On the other hand, the following disadvantages explain why the technique
has become increasingly unpopular since its original description:

« cannot reclaim circular data references (cf. circular reference of obj 3 in
Figure 5.10),
e accommodation of the reference count datum,

o overhead of recursive freeing on container objects,

e large amounts of reference count operations due to local operand stack
modifications.

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 41

Deferred Reference Counting

As early as 1976, Deutsch and Bobrow present an optimization technique to
solve one of the biggest problems with the original reference counting approach,
viz. the huge amounts of reference count operations caused by local operand
stack modifications [DB76].

Deutsch and Bobrow observe that it is actually not necessary to continuously
adjust the reference count of all data objects because of these local operand
stack operations. In fact, they present a way to determine correct reference
counts by using a sophisticated scheme of tables that contain references to
several data objects. In consequence, they introduce a dedicated deferral phase,
where they process all pending reference counts and free objects that become
garbage during that process. Thus, all reference count operations are deferred
to a dedicated phase, similar to a mutator pause that other garbage collection
techniques require.

stack

Figure 3.17: Illustration of deferred reference counting [Ung86].

3.4.1 Interpreter Operations Causing Reference Count
Operations

Scott Baden’s measurements of 1982 [Bad82] indicate that the deferred reference
counting approach of Deutsch and Bobrow eliminates about 90% of reference
count operations. This demonstrates that most of the reference count operations
are due to modifications of the local operand stack. In order to present our
alternate solution to this problem, we first need to clarify why local stack
operations cause so many reference count operations.

Example

Figure shows a simple sequence of three bytecode instructions. On the
left side, we see the operand stack with two operand objects, A and B pushed
onto the stack by the preceding LOAD_FAST instructions. Now the operand stack
has references to these objects, which is why the implementation of LOAD_FAST
increments the reference counts of these objects. The implementation of BINARY -
ADD, however, shows that after the operands are fetched from the operand stack
(they got assigned to the local variables v and w) and added using the PyNumber_-
Add function, their reference counts are immediately decremented. Consequently,
in this sequence of three instructions, four reference count operations (one

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 42
A4

LOAD | LOAD [BINARY
FAST | FAST | ADD

>
B BINARY ADD
rc+1 vt
x= PyNumber Add(A, B);
A Py DECREF(AY;
Py DECREF (B)
SET_TOP(X) ;
rc+1 if Tx != NOLL) DISPATCH();
break;

Figure 3.18: Redundant reference count operations.

increment in each LOAD_FAST operation implementation plus two decrements
in the BINARY_ADD operation implementation) are redundant—their presence is
due to the conservative operation implementation.

Operand Stack Operations

stack

\ obj 1 obj 2 obj 3

=PONC!

Figure 3.19: Illustration of redundant reference count operations.

Analogously to the visualization of immediate and deferred reference counting
(cf. Figures and respectively), Figure displays how the interpreter
can eliminate redundant reference count operations: The second object has a
reference count of just one, while actually two references point to the object. The
second reference, however, is a redundant reference, i.e., it does not actually affect
the reference count of the object (obj 2). A load instruction would increment and
a subsequent operation instruction decrement it, therefore, only the reference
pointed to by the first object (obj 1) counts.

3.4.2 Simple Abstract Interpreter

Following the description of Java bytecode verification [Ler03] using a simple
abstract interpreter over the operand types, we realized that we can use the
same approach to identify sequences of redundant reference count operations: by
using a simple abstract interpreter over the amount of reference count operations
present in an operation implementation.

Implementation

The following listing contains our basic data type definitions:

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 43

typedef struct {
signed char imp; /* implicit rc ops */
signed char exp; /* ezplicit rc ops */
} tuple_t;

typedef struct {
bytecode_t *instrPtr;
tuple_t effect;

} effect_stack_elem_t;

We use the first data type tuple_t to model the reference count effect of one
instruction, i.e., the number of reference count operations that occur in one
operation implementation. Positive values indicate the number of increment
reference count operations, while negative values enumerate the number of
decrement reference count operations present in the operation implementation.
Furthermore, we need to distinguish between explicit and implicit reference
count operations—the following section (cf. Section explains why this is
necessary.

In addition to this tuple, our simple abstract interpreter stores a reference to
the instruction that generated this reference count effect. Thus, whenever we
find a sequence of redundant reference count operations, we can easily quicken
instructions to their optimized derivatives using this sequence of pointers.

Next, we declare the local variables our simple abstract interpreter uses:
bytecode_t *instr_ptr= codeobject->co_opt_code;
bytecode_t *cur= instr_ptr;
effect_stack_elem_t *stack_ptr= stack;
tuple_t effect;

opcode_t opcode;
int i= 0, n= 0, size= Py_SIZE(codeobject->co_code);

Instr_ptr always points to the next instruction, and because the Python
interpreter has an irregular instruction format, we need another pointer, cur,
to keep a reference to the current instruction. Stack_ptr points to a globally
pre-allocated stack of the previously explained custom data-type effect_stack_-
elem_t. We use the effect variable to determine the reference count effect
the current operation has. When decoding an instruction using the instr_ptr,
we determine the opcode of an instruction as a by-product. To iterate over all
instructions of a Python function/method, we use the variables i, and size
respectively. We store the arity of an instruction in the variable n.

1 while (i < size) {

2 cur= instr_ptr;

3 opcode= decode_instr ();

4 i++;

5

6 if (basic_block_border (opcode))

7 clear_stack();

s

9 if (rotate_instr (opcode)) {

10 rotate_stack_elems (stack_ptr, opcode);
11 continue; /* skip to the next iteration */
12 }

14 if (refcount_effect(opcode, &effect)) {
15 if (effect.exp < 0) {

16 n= -effect.exp;

17 stack_ptr-= n;

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 44

if (opcode == CALL_FUNCTION) {
..implementation omitted...
}
else {
if (n <= 2 && is_markable(opcode)) {
if (n == 2)
quicken_binary_op (&cur, &stack_ptr);
else if (n == 1)
quicken_unary_op (&cur, &stack_ptr);

push_opnds (&cur, &stack_ptr, &effect);

v

LOAD | LOAD BINARY
FAST | FAST | ADD

- . exp:-2
i -
iexp:i+lt
idmp: i
ip -
fexp:+1i
idmp: i

Figure 3.20: Finding redundant reference count operations using an abstract
interpreter.

Figure shows an illustrative example of an instruction sequence with
redundant reference count operations. We see how the simple abstract interpreter
we have just described maintains a stack of effect_stack_elem_t elements.
The ip member of the effect_stack_elem_t struct points to the instructions
that produced the stack element and amount of reference count operations
information (line 31 of the listing). When we determine that the BINARY_ADD
instruction has a stack effect of explicitly minimizing the reference counts of its
two operands (line 14 of the listing), we have successfully identified a redundant
sequence of reference count operations.

Figure [3:2]] illustrates the elimination of redundant reference count operations
by quickening the member instructions of the sequence to their corresponding
optimized derivatives. First, we decrement the stack pointer and assign the
operation arity to the variable (n := 2, lines 16 and 17.) We find that we are
quickening a binary operation (lines 23 and 24), and call the corresponding
function with references to the current instruction and the stack (line 25).
These references are necessary to quicken the instructions to their optimized
derivatives—indicated by the new instruction identifiers (postfix NORC) in a red
font of Figure [3.21

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 45

v

LOAD LOAD | BINARY
FAST FAST ADD
NORC NORC NORC

i o exp:-2
-

Figure 3.21: Elimination of redundant reference count operations by quickening.

3.4.3 Quickening

The previous section explains how our simple abstract interpreter identifies
sequences of redundant reference count operations. In Figure[3.21]we have already
illustrated how we use quickening to actually eliminate redundant reference count
operations. Therefore, we have to pre-generate optimized derivatives without
their corresponding reference count operations, such that we can use them for
quickening. For unary instructions, we need just one derivative omitting just
the one reference count operation that is present. Unfortunately, however, this
is not the general case. For example, whenever we want to eliminate reference
count operations for binary instructions, we have to consider four cases instead
of just two:

e Perform all four reference count operations—this corresponds to the con-
servative default implementation.

e Eliminate all four reference count operations—this represents the ideal,
and actually most frequent, case.

o Eliminate just two reference count operations—this can be the case for
either:

— the first operand, or

— the second operand.
Therefore, we have to carefully consider dynamic bytecode frequency measure-
ments to make informed decisions for which binary instructions it pays off to
have all three necessary derivatives. Making informed decisions is even more im-
portant in the case of ternary operations and function calls, which have variable

arity. However, in the last case, we have observed that the following cases occur
most often:

e Perform all n reference count operations for all n operands,
o Eliminate all n reference count operations,

e Eliminate n — 1 reference count operations, i.e., all but the top-of-stack
operand.

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 46

Thus, using just two extra CALL_FUNCTION derivative instructions, we can cover
the most frequently executed function call redundant reference count operations.
We perform the necessary calculation in line 20 of the simple abstract interpreter
listing, but omitted it from the presentation because of space issues.

To select the proper derivative among the variations, we have to distinguish
between explicit and implicit reference count operations. If we take a closer
look at the BINARY_ADD implementation of Figure [3.I8] we see that the reference
count of the result of the addition (held in variable x) is never incremented.
Therefore, any subsequent reference count operation cannot be redundant, i.e.,
a corresponding decrement reference count operation is necessary. We call such
a reference count operation implicit reference count operation, because it is not
visible in the operation implementation of the instruction, it is implicitly done
inside the operation implementation function (PyNumber_Add in Figure .

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 47

3.5 Partial Stack Frame Caching

Some parts of this section have previously been published in the author’s paper at
the Symposium on Dynamic Languages 2010 [BrulOb]. This section introduces a
simple, yet efficient optimization technique to reduce the interpretation overhead
for loading local variables onto the operand stack. First, we present findings of
a quantitative analysis (Section . Next, we show how to statically estimate
the utility of multiple local variables in the presence of a restricted local cache
variable set (Section . Finally, we demonstrate how to implement partial
stack frame caching, as well as present an evaluation of the effectiveness of using
our static scoring estimate.

3.5.1 Basic Idea

Using dynamic bytecode frequency measurement we can easily break down which
instructions are executed most often during the course of executing any given
program (cf. Section) We see that loading operands onto the operand
stack constitutes the most often executed instruction in the Python interpreter.
This has been independently confirmed in other studies as well, for example
when comparing the effectiveness of register and stack architectures for the
Java virtual machine [SCEGOS], they cite a similar figure, i.e., about 42% of all
executed instructions are load and store instructions.

In a previous section (cf. Section we already detailed on how to
efficiently implement the loading of constant data object references, and global
data object references. However, the LOAD_FAST instruction for loading function
arguments and local variable references onto the operand stack is executed more
often and can be optimized, too. The Python interpreter implements LOAD_FAST
the following way:

TARGET (LOAD_FAST)
x = GETLOCAL (oparg);
if (x !'= NULL) {
Py_INCREF (x);

PUSH (x);
FAST_DISPATCH();

#define GETLOCAL(i) (fastlocals[i])

Figure shows how LOAD_FAST uses an array indirection via fastlocals
to access local variable references from the heap-allocated Python stack-frame
object. Fastlocals is kept in the native machine stack frame that holds the
interpreter internals, such as the instruction pointer and the stack pointer. All
objects to the right of the native machine, or C stack frame, of the interpreter
are heap allocated and the Python stack frame object contains a contiguous
area of memory that is big enough to manage all local variable and function
argument references.

Using such a setup, the idea of partial stack frame caching is simple: extend
the interpreter stack frame to directly cache data object references (cf. Fig-
ure) This eliminates the array indirection via the fastlocals reference
as defined by the GETLOCAL macro. While the idea is rather simple, we first have

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 48

C stack

PyFrameObject

instr-ptr PyObject
stack-ptr
frame-ptr o 7

fastlocals |

(a) Looking up local variable references using fastlocals.
C stack
PyFrameObject

instr-ptr PyObject
stack-ptr

frame-ptr o

fastlocals *l

fast_slot a +

(b) Basic idea of partial stack frame caching.

Figure 3.22: Partial stack frame caching illustrated.

to find out how many of the additional stack frame cache slots (fast_slot_a)
we need.

3.5.2 Allocating Stack Frame Cache Slots

As we can see in Section [5.2.2] the number of local variables per Python function
depends largely on the benchmark program. However, despite the irregularities,
we find that a small amount is more frequent than a large amount, i.e., if we
have just four local variable cache slots, we can find optimal cache slot allocation
for most interpreter executions. In such a case, the optimal cache slot allocation
is trivial: because most of the functions have fewer than four local variable
references, we just allocate them to the available slots before actually executing
any code.

However, the dual, non-trivial, case is interesting, too. Whenever we want to
execute a function that has more than just four local variable references, just
allocating the first four to the available cache slots is likely to be sub-optimal.
Therefore, we present a way to statically estimate which local variables should
be promoted to the available cache slots in such a situation.

Whenever we face the situation where we have more local variables than
available caching slots, we can either:

e use a heuristic to determine which variable occurrences are likely to benefit
most from allocation to caching slots,

« use profiling information to choose the optimal candidates among all local
variable occurrences.

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 49

Of course, both choices are not mutual exclusive: we can use the heuristic
for promoting variables to cache slots before executing, and do profiling to
correct incorrect predictions. It turns out, however, that our heuristic predicts
the outcomes fairly well (cf. Section), which is why we only present our
implementation of this technique.

The basic argument for estimating success of allocating a variable to a cache
slot is its execution frequency. An allocation of local variables to the available
cache slots is optimal, if it eliminates the most array indirections for any given
Python function by replacing its LOAD_FAST instructions by instructions using the
cache slot instead. Thus, in the trivial case where we have fewer local variables
than available cache slots, we can eliminate all LOAD_FAST array indirections. In
order to estimate the execution frequency, we could simply count all occurrences
of local variable load instructions. However, this would discount the fact that
certain variable occurrences are likely to be executed more frequently than others:
those occurrences within loops. Hence, we use the additional information of loop
scopes to weigh occurrences more highly.

B
NL;:=1 Rroa... local variable occurrences
,,,,,,,,,,,,,,,,,,,,,,,,,,, > NL... nesting level
NL.:=100 >... increase nesting level (*100)
:[: 2 «... decrease nesting level (/100)
> NL;:=1 Final Scores:
T — . R:NL,+NL+NL+NL,=202
> NL,:=100 &:NL,+NL,+NL+NL,=10201
- > 0:NL,+NL,+NL,=20100
I NL;:=10000 i
o
| NL:=100
NL:=1

Figure 3.23: Computing the score for local variable occurrences.

Figure [3.23] illustrates how we compute the score for each load local variable
instruction occurrence in one pass, i.e., with linear time complexity. The leftmost
vertical line conceptually corresponds to a Python function. All parallel vertical
lines correspond to loops inside that Python function. Note that while the basic
approach might resemble linear scan register allocation to some extent [PS99],
partial stack-frame caching does not have any spill instructions.

The remainder of this section explains our implementation of computing
the scores, selecting the top n scores for n available cache slots, the derivative
instructions using the cache slot variables instead, and finally an evaluation of
the effectiveness of this heuristic.

The following listing contains all local variables we need for computing the
scores:

int open_blocks[16]= {0, 0, 0, O,
o, 0, 0, O,
o, 0, 0, O,
O: Os O: o};
unsigned short open_block_top= 0;

int cur_block_end= -1, scope_depth= 1;

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 50

int maxl= -1, max2= -1, max3= -1, nlocals= co->co_nlocals;
unsigned int scoring[nlocals];

unsigned int i= 0, n= Py_SIZE(co->co_code);
bytecode_t instr_ptr;

opcode_t opcode;

int oparg= O0;

Open_blocks and open_block_top are used to maintain a stack of open block
endings in the form of instruction offset indexes that close the currently open
block. As you can see, we limit ourselves to a maximum of 16 open blocks which
corresponds to 16 cascaded loops. Cur_block_end contains the instruction
offset that closes the current block. Scope_depth corresponds to the NL nesting
level of Figure i.e., we multiply/divide our constant block-depth weight
(100) with the scope_depth variable and add its current value to local variable
occurrences we find. In max1, max2, max3 we store the top-3 maximum scores of

our computation. The enumeration of the variables encodes its invariant, viz.

maxl > max3 > max3. Nlocals contains the number of local variables for

a given code object (co points to an instance of PyCodeObject/PyCode_Type).

Scoring is the array holding all scores for all local variables. For processing all
instructions we use the local variables i and n. Instr_ptr, opcode, oparg are
the variables we use for decoding instructions.

Score Calculation

The following C listing contains the code for computing the scores for each
local variable. Note that while we could calculate the scores separately using a
dedicated pass over the instructions, our implementation integrates the score
calculation when we create our regular instruction format, i.e., we combine both
into just one pass.
while (i < n) {
/% A: check for end of current block... */
if (cur_block_end == INSTR_OFFSET()) {

scope_depth/= 100;
cur_block_end= open_blocks[--open_block_top];

Y // if
/% B: decode instr and advance instr ptr... */
opcode= *instr_ptr++; i++;

if (HAS_ARG (opcode)) {
oparg= instr_ptr [0] << 8 + instr_ptr[1];

instr_ptr+= 2; i+= 2;
Yy // if
/% C: increment score for an occurrence of a load/store fast pair...
if (opcode == LOAD_FAST || opcode == STORE_FAST) {
scoring [opargl+= scope_depth;
Yy /7 oif

/% D: score computation for LOAD_DEREF missing */

/% E: check if we have another block inside of the current ome...

if (opcode == SETUP_LOOP) {
scope_depth*= 100;
open_blocks [open_block_top++]= cur_block_end;
cur_block_end= INSTR_OFFSET() + OPARG;

Yy // if

*/

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 51

}
The

A:

// while

following steps explain the code in detail:

Because the instr_ptr always points to the next instruction, we have to
check if our current instruction offset closes any currently open block scope.
This can not be done after instruction decoding, because the instruction
offset does not correspond to the current instruction but to its successor
instead. If we close any currently open block, we decrease the current
nesting level and pop the next block scope closing offset from the block
stack.

Decode the instruction pointed to by instr_ptr and assign values to
opcode and oparg.

Increment the score of a local variable occurrence for the local variable
denoted by oparg, if the opcode is either LOAD_FAST or STORE_FAST. There-
fore, code sequences with frequent STORE_FAST instruction occurrences
benefit from partial stack frame caching, too.

If we want to calculate the scores for other instruction types, such as
occurrences of LOAD_DEREF, too, we could insert the matching code here.

If the current instruction creates another loop block, increment the current
nesting level and use the block stack to properly handle cascaded loops.

When we terminate this loop, scoring contains all the positive integer scores
for all local variables in the range [0, nlocals).

Selecting Top-N Scores

After computing the scores for each local variable reference, we need to choose
the top scoring variable references for the number of available cache slots. The
following listing shows how we can choose any fixed amount of n maximum
scores in just one linear pass, i.e., without needing to sort the list of scores first
(where n := 3):

for (i= 0; i < nlocals; i++) {

}

int elem= scoringl[i];

if (elem > max1l) {
max3= max2;
max2= maxl;
maxl= elem;

}

else if (elem > max2) {
max3= max2;
max2= elem;

}

else if (elem > max3) {
max3= elem;

Y /7 if

// for

We see that by leveraging the transitive nature of the invariant maxl >
mazx2 > max3 for the top-most three elements, updates “trickle” down the list
of top-most scores.

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 52

Quickening Derivatives

Once we know which local variables to promote to their cache slots, we have
to quicken the corresponding occurrences to their optimized derivatives. The
following listing presents derivative instructions that use the cache slot instead
of the array indirection implemented in the GETLOCAL macro:

TARGET (LOAD_FAST_A)

x = fast_slot_a;
if (x !'= NULL) {

}

TARGET (STORE_FAST_A)
Py_XDECREF (fast_slot_a);
fast_slot_a= POP();
FAST_DISPATCHQ);

We compute the scores while creating the new instruction format. Thus we
can quicken the promoted LOAD_FAST instructions to their optimized derivatives
in the same pass—otherwise another pass would be necessary.

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 53

3.6 Interpreter Instruction Scheduling

Parts of this section will be published at the upcoming International Conference
on Compiler Construction, 2011 [Brull]. Instruction scheduling is a very well
known compiler optimization technique [Muc97, Mor98| [CT04]. Its objective
is to re-order native machine instructions of the input program for optimized
execution on the exact same fixed native machine, while retaining the original
semantics of the input program. It turns out that for an interpreter, the situation
is the exact opposite. Usually, for an interpreter we cannot change the order of
the instructions for the input program without changing its semantics. However,
we are free to change the interpreter, because it is not fixed as is the native
machine for a compiler.

/X

4
7

5|713
11213141516
CPU

(a) Instruction scheduling in a compiler.

819 110111]12

A77 ~n)

112131415]16]17]8]9[1of11f12 1121517131614]18]9]10111{12
I
Interpreter | /- Interpreter .>(
I

(b) Interpreter instruction scheduling.

Figure 3.24: Instruction scheduling.

Figure [3:24] illustrates this difference. Figure shows how instruction
scheduling permutes assembly instructions of the input program. The red and
blue arrows and permuted instruction numbers denote that the program semantics
remain unchanged by instruction scheduling. This is contrary to the illustration
in Figure We see that changing the instructions of the interpreter usually
changes semantics (red and blue arrows), i.e., changing the instruction order
changes the input program. However, we are free to re-arrange the operation
implementations inside the interpreter to optimize the interpretation of the input
program (shaded rectangles inside the Interpreter rectangle).

Given this setting, interpreter instruction scheduling tries to optimize the
interpreter’s instruction arrangement in such a way that we optimize instruction
cache utilization of the native machine that executes the interpreter. The
basic idea is to find particularly frequently executed sequences of interpreter
instructions and arrange them to be co-located in memory, such that whenever the
instruction dispatch from one instruction to its successor occurs, the instruction
cache already contains the operation implementation of the successor instruction.

Interpreter instruction scheduling is particularly effective for interpreters
that provide many optimized interpreter instruction derivatives, as is the re-
sulting interpreter when applying the previously presented purely interpretative

optimization techniques (cf. Sections)

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 54

3.6.1 Formalization

We present a formal description of the problem of interpreter instruction schedul-
ing.

I i=jig,i1,. .. in
A::ao,al,...,an

P =Do,P15---3Pm

Vpe P:3j:ij€INaj € Asp=(ij,a;) (3.1)

T:={pf)Ipe PNfeN}
K:={p|®f)eTANf>L}
KcP

We define an interpreter I as a set of n instructions i. To each instruction @
corresponds a native machine address a of the set of n addresses A, i.e., the
address for some interpreter instruction ¢; is a;. Next, we define a program
P consisting of m instruction occurrences, which are tuples of an instruction
i and the corresponding address a. This concludes the definition of the static
view on an interpreter. However, our optimization requires profiling information
obtained at run-time. Thus, we define the trace T of a program P as the set of
all tuples of an instruction occurrence p and its execution frequency f. Since
a trace contains much more information than we need, we define a kernel K,
that contains all instruction occurrences p of our program P that have execution
frequencies above some definable threshold L.

Given these definitions, the following functions allow us to precisely capture
the concept of distance between instructions.

5(pi) = lai1 — aq

a; —a;| —s(p;) ifi<jy,
d(piypj):: {' J | (p) J

la; — aj| — s(p;) if i > j. (3.2)
doverall(P) = Zd(pj—lapj)
j=1

First, we define a function s that computes the size of an instruction i. Next,
we define a function d that computes the distance of two arbitrary instructions.
Here, the important thing is to note, that if two instruction occurrences p; and p;
refer to two adjacent instructions, i.e., p; = (i;,a;) and p; = (4;41, @i41), then the
distance between them is zero. (d(p;,p;) = |ai+1 — a;| — |ai+1 — a;]) Finally, the
overall distance of a program is the sum of all of its sequential distances. Using
static program data, this makes no sense, because we do not a priori know which
parts of program P are hot. Here, we use our kernel K, which contains only
relevant parts of the program, with respect to the overall computational effort.
Thus, we define interpreter instruction scheduling as finding a configuration
of interpreter instructions that results in a minimal overall distance over some
kernel K.

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 55

3.6.2 Finding Computational Kernels

Section already mentions the importance of scheduling instructions only for
computational kernels of any given program. Thus, we avoid the computation of
instruction schedules for infrequently executed sequences. We collect instruction
traces from benchmark programs and use them as an input for the actual
instruction scheduling algorithm of Section [3.6.3

Obtaining Traces

Similarly to the easy way of obtaining dynamic bytecode frequency measurements,
we can collect instruction traces from any running benchmark program by the
following two-step procedure:

1. Instrumenting the interpreter: Alter the implementation of the instruction
dispatch mechanism to print relevant pieces of information to a stream,
such as stdout or stderr.

2. Running the interpreter with the benchmark program and pipe the tracing
output to a collector program.

This approach has very nice properties. First of all, it is a very simple
procedure that does not involve intricacies. Second, the actual instruction trace
is generated and subsequently immediately consumed by our collector program.
Since we are only interested in the aggregated data anyways, this saves the more
or less expensive round-trip of temporarily saving the data to a—potentially
very big—file and processing the files’ contents after the fact—which depending
on the file size can have its own difficulties. And while none of these things
are insurmountable objectives for any self-respecting programmer, we found
that this simple approach is ideally suited for all of our analysis tasks, e.g., the
same approach and often same collector is used for collecting dynamic bytecode
frequency measurements, instruction traces, aggregating the total number of
increment and decrement reference count operations.

The following two listings contain our collector program implementation in
Python:

class Occurrence(object):

def __init__(self, addr):
self.addr= addr
self.instructions= {}

self.occurrences= {}
def add(self, offset, identifier):
if offset not in self.instructions:

self.instructions[offset]= identifier

if offset not in self.occurrences:
self.occurrences [offset]= 0

if self.instructions[offset] != identifier:
self.instructions[offset]= identifier

self.occurrences [offset]+= 1

def hottness(self):
return sum(self.occurrences.values())

o B I N A N

o T T S S U S S
© W N OOk W N RO ©®

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 56

For all Python functions we create a dedicated Occurrences object. This
object collects all instruction occurrences that belong to it. We distinguish the
instruction occurrences by their instruction offset, and store the corresponding
instruction identifier in a separate dictionary, i.e., a hash-table.

def collect():
codeobjects= {}
overall= 0

for 1 in sys.stdin:
try:
(code_addr, offset, ident, arg)= 1l.split(’,’)
if code_addr not in codeobjects:
codeobjects [code_addr]l= Occurrence (code_addr)

codeobjects [code_addr].add(int (offset), ident + str(int(arg)))
overall+= 1

except:
pass

for x in sorted(codeobjects.values(), key=lambda x: x.hottness()):
print "Occurrence BEGIN", x.hottness(), overall / x.hottness()
x.show ()
print "Occurrence END"

The collect procedure does the actual “heavy lifting” of our collector
program. The main loop consists of reading lines 1 from stdin until we have
processed all information generated by the instrumented interpreter. Next, we
break apart the input line by the pre-defined delimiter character—in our case
a comma “,” character. Then, we create an Occurrence object if an object
corresponding to the current code address (code_addr) is not found. Once, we
have a corresponding Occurrence object, we just add this instruction occurrence
to that object.

After we have collected all instruction traces, we print all collected instruction
traces grouped by the function that contains all these instructions. For estimating
the overall computational impact of any specific code object, we compute the
ratio of the computational effort of the code object in question to the overall
computational effort.

Example

For further illustration, we introduce a working example here. We are going
to take a close look on how interpreter instruction scheduling works, using the
fasta benchmark of the computer language benchmarks game [Ful]. Running
the fasta program on the Python interpreter, for example with an argument
of 50,000, results in the execution of 10,573,205 interpreter instructions. We
extract a complete trace using the method described in the previous section, i.e.,
with an instrumented interpreter and an aggregating collector program. If we
restrict ourselves to only consider kernels for interpreter instruction scheduling,
we can significantly reduce the amount of information to consider. For example,
an aggregated trace of the fasta program shows that the interpreter executes
5,976,237 instructions while interpreting the genRandom function, i.e., more than
half of the totally executed instructions can be attributed to just one function
(cf. Table[3.4]) Another function—an anonymous list comprehension—requires
4,379,824 interpreted instructions (cf. Table [3.5}) Together, the genRandom
function and the list comprehension constitute 97.95% of all executed instructions.

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 57

] Frequency \ Offset \ Instruction Identifier ‘

1 16 | STORE_FAST_A

1 24 | LOAD_GLOBAL_NORC

1 32 | LOAD_FAST_B_NORC

1 40 | CALL_FUNCTION_NORC

1 48 | STORE_FAST_C

1 56 | SETUP_LOOP
396,036 64 | LOAD_FAST_A_NORC
400,000 72 | LOAD_FAST_NORC
400,000 80 | INCA_LONG_MULTIPLY_NORC
396,037 88 | LOAD_FAST_NORC
400,000 96 | INCA_LONG_ADD_NORC_TOS
396,041 104 | LOAD_FAST_B_NORC
400,000 112 | INCA_LONG_REMAINDER_NORC_TOS

396,040 120 | STORE_FAST_A
400,000 128 | LOAD_FAST_D_NORC
400,000 136 | LOAD_FAST_A_NORC

400,000 144 | INCA_FLOAT_MULTIPLY_NORC
396,039 152 | LOAD_FAST_C_NORC
400,000 160 | INCA_FLOAT_TRUE_DIVIDE_NORC_TOS

396,039 168 | YIELD_VALUE
399,999 184 | JUMP_ABSOLUTE

Table 3.4: Dynamic bytecode frequency for genRandom function of benchmark
program fasta.

| Frequency | Offset [Instruction Identifier |

6,600 16 | LOAD_FAST_A
402,667 24 | FOR_ITER_RANGEITER
396,002 32 | STORE_FAST_B
399,960 40 | LOAD_DEREF
396,001 48 | LOAD_DEREF_NORC
396,000 56 | LOAD_DEREF_NORC
396,000 64 | LOAD_DEREF_NORC
396,000 72 | FAST_PYFUN_DOCALL_ZERO_NORC
395,999 80 | FAST_C_VARARGS_TWO_RC_TOS_ONLY
395,999 88 | INCA_LIST_SUBSCRIPT
395,998 96 | LIST_APPEND
395,998 104 | JUMP_ABSOLUTE
6,600 112 | RETURN_VALUE

Table 3.5: Dynamic bytecode frequency for an anonymous list comprehension of
benchmark program fasta.

Though Tables[3.4] and [3.5]indicate that our trace gathering tool is imprecise,
since it seems to lose some instruction traces, it is precise enough to indicate
which parts of the instructions are kernels. For example, the kernel of function

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 58

genRandom includes all 15 instructions between the offsets 64 and 184, whereas the
kernel of the anonymous list comprehension includes all 12 instructions between
the offsets 24 and 104. In consequence, our interpreter instruction scheduling
algorithm only has to consider the arrangement of 27 instructions which constitute
almost the complete computation effort of the fasta benchmark. If all 27
instructions are distinct, the optimal interpreter instruction scheduling consists
of these 27 instructions being arranged sequentially and compiled adjacently,
according to the order given by the corresponding kernel. However, because of
the repetitive nature of load and store instructions for a stack-based architecture,
having a large sequence of non-repetitive instructions is highly unlikely. Therefore,
our interpreter instruction scheduling algorithm should be able to deal with
repeating sub-sequences occurring in a kernel. In fact, our fasta example
contains repetitions, too. The genRandom function:

e LOAD_FAST_A_NORC, at offsets: 64, 136.
e LOAD_FAST_NORC, at offsets: 72, 88.

The anonymous list comprehension contains the following repetition:
e LOAD_DEREF_NORC, at offsets: 48, 56, 64.

Fortunately, however, only single instructions instead of longer sub-sequences
repeat. Therefore, for the fasta case, an optimal interpreter instruction schedul-
ing can easily be computed. We generate a new optimized instruction set from
the existing instruction set and move instructions to the head of the dispatch
loop according to the instruction order in the kernels. We maintain a list of
all instructions that have already been moved, and whenever we take a new
instruction from the kernel sequence, we check whether it is already a member of
that remembered list. Thus, we ensure that we do not re-reorder already moved
instructions. For our fasta example, this means that for all of the repeated
instructions, we only generate them when we process them for the first time,
i.e., only at the first offset position for all occurrences. Consequently, interpreter
instruction scheduling generates chains of maximum length for subsequently
processed instruction sequences that correspond extremely well to the major
instruction sequences occurring in the fasta benchmark.

3.6.3 Scheduling Instructions

The last paragraph of the previous section already explained the objectives
and basic technique of interpreter instruction scheduling and mentions the
importance of recognizing repeating sub-sequences in computational kernels of
obtained instruction traces. In this section, we demonstrate how our algorithm
pays attentions to repeating sub-sequences and we illustrate its inner workings
by discussing another example.

Repeating Sub-Sequences

For demonstrating the importance of repeating sub-sequences, we use another
benchmark from the computer language benchmarks game [Ful|, viz. the nbody
benchmark. Running the nbody benchmark with an argument of 50,000 on top
of our instrumented Python interpreter for dynamic bytecode frequency analysis

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 59

results in the execution of 68,695,970 instructions, of which 99.9% or 68,619,819
instructions are executed in the advance function. Its kernel K consists of a
trace of 167 instructions, distributed among just 29 distinct instructions. Given
equal probability and distribution and considering only sub-sequences of length
1, each of the 29 instructions would be present 5.7586 times within kernel K.

Instruction Identifier \ Offset Occurrences \ Sum ‘
INCA_LOAD_CONST_NORC 208, 232, 272, 296, 336, 360, 488, 528, 576 21

624, 704, 784, 864, 944, 1024, 1160, 1200, 1256

1296, 1352, 1392
INCA_LIST_SUBSCRIPT_NORC 216, 240, 280, 304, 344, 368, 536, 584, 640 20

720, 800, 880, 960, 1040, 1176, 1208, 1272, 1304

1368, 1400
LOAD_FAST_NORC 152, 392, 456, 464, 544, 592, 656, 736, 808 17

816, 896, 976, 1048, 1056, 1184, 1280, 1376
LOAD_FAST_A_NORC 200, 264, 328, 520, 616, 696, 776, 1152, 1192 13

1248, 1288, 1344, 1384
INCA_LIST_ASS_SUBSCRIPT_NORC_TOS | 688, 768, 848, 928, 1008, 1088, 1240, 1336, 1432 9
INCA_FLOAT_MULTIPLY_NORC 416, 440, 472, 664, 744, 824, 904, 984, 1064 9
ROT_THREE 680, 760, 840, 920, 1000, 1080, 1232, 1328, 1424 9
DUP_TOPX_NORC 632, 712, 792, 872, 952, 1032, 1168, 1264, 1360 9
INCA_FLOAT_ADD 448, 480, 912, 992, 1072, 1224, 1320, 1416 8
LOAD_FAST_B_NORC 224, 288, 352, 568, 856, 936, 1016 7
INCA_FLOAT_SUBTRACT 248, 312, 876, 672, 752, 832 6
STORE_FAST 136, 384, 512, 560, 608 5
LOAD_FAST_C_NORC 400, 408, 648, 888 4
INCA_FLOAT_MULTIPLY_NORC_SEC 504, 1216, 1312, 1408 4
LOAD_FAST_D_NORC 424, 432, 728, 968 4
JUMP_ABSOLUTE 1096, 1440, 1456 3
STORE_FAST_A 184, 1144 2
INCA_FLOAT_MULTIPLY_NORC_TOS 552, 600 2
SETUP_LOOP 144, 1112 2
FOR_ITER_LISTITER 168, 1136 2
POP_BLOCK 1104, 1448 2
GET_ITER_NORC 160, 1128 2
STORE_FAST_C 256 1
STORE_FAST_B 192 1
STORE_FAST_D 320 1
INCA_UNPACK_TUPLE_TWO 176 1
FOR_ITER_RANGEITER 128 1
INCA_FLOAT_POWER_NORC_TOS 496 1
LOAD_DEREF_NORC 1120 1

Table 3.6: Dynamic bytecode frequencies for kernel in advance.

Table[3.6lshows actual distribution of instruction occurrences within kernel K:
For example the two top-most repeating instructions (INCA_LOAD_CONST_NORC,
and INCA_LIST_SUBSCRIPT_NORC) occur frequently in pairs. Hence, the simple

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS

60
procedure of just creating an instruction schedule by processing the instructions
according to the “plan” of the actual kernel K will likely result in a sub-optimal
schedule, because it does not pay attention to repeating sub-sequences.

LOAD_FAST_NORC

.
S
S
oAb s b NoRS > ‘
y 1

FOR_ITER_LISTITER
|
= I

LOAD_FAST_A_NORC

Figure 3.25: Graph from the instructions of the kernel for nbody benchmark.

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 61

The idea to schedule instructions in the presence of repeating sub-sequences
is to create a single-instruction graph from the instructions of the kernel K
(cf. Figure) However, for every instruction occurrence there is only just one
node in the graph, i.e., Figure [3.25| contains just 29 nodes. Whenever we want to
add an edge to the graph between a source node s and a destination node d that
already exists, we increment the existing edges’ weight instead. Consequently,
for any given source node s in the resulting graph, we can easily find the most
frequent successor node/instruction s’ by ordering the edges s — s’ in descending
order according to their weights and choosing the first one. We merge the list of
remaining alternate nodes with a global open list. Now, we follow the path from
s’ — s using the same steps as above until we exhaust the paths. Whenever we
cannot find a successor node, we start taking the node with the highest weight
from the global open list and start traversing down the most frequent path again.
Eventually, we will have processed all nodes from the original path.

Scheduling Algorithm

The following listing shows our implementation in Python, followed by a detailed
description of how it works:

def rsorted(dict): ## sort dict by reverse order
return sorted(dict.items (), key=lambda (key, value): -value)

def schedule_instr (graph):
schedule= []

open= rsorted(graph.most_frequent_vertices ())

open is a list of tuples (mode, number of edges)

open= [(node, 0) for (node, edge_count) in open]

now, we have erased the number of edges, such that when
we add the reachable destination nodes for the current
source node, and we sort the <open> list, the node that
can be reached with the edge having the highest weight
will be the first element on the <open> list

while open:
fetch the tuple, ignore the number of edges
(n, _)= open.pop(0)
while n:
if n not in schedule:
schedule.append(n)

reachable= rsorted(n.get_destinations())
if not reachable: break

find reachable nodes that have not been scheduled yet
(m, _)= reachable.pop(0)
while m in schedule:
if len(reachable) > O:
(m, _)= reachable.pop(0)
else:
m= None

if m:

n= m ## assign successor node

open= rsorted(reachable + open) ## keep reachable nodes sorted
else: break

return schedule

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 62

Note that instead of using a simple list and enforcing a certain order by
repeatedly calling the rsorted function on that list, we could very well use a
priority queue. However, we decided not to use a priority queue, because its
standard Python implementation is tied to the implementation heap queue algo-
rithm (for example the corresponding module name is heapq.) This considerably
complicates the previous algorithm by introducing an implementation detail
which does not improve the illustration of the algorithm’s mechanics.

The algorithm requires the following steps. First, we create a list named
open that contains tuples of nodes and the collective weight of edges leading to
that node. We sort the open list in descending order of the collective weight
component. Because we actually only need the collective weight for choosing the
first node and ensuring that we process all nodes, we can now safely zero out all
weights of the tuples in the open list. Then, we start the actual algorithm by
fetching and removing the first tuple element from the open list; we assign the
node part to n and ignore the weight. Next, we check whether n has already
been scheduled by checking whether the schedule list contains n. If it has not
been scheduled yet, we append it to the schedule list. Then, we start looking
for a successor node m. We process the successor nodes by having them sorted
in descending order of the edge-weight associated between nodes n and m. We
repeatedly fetch nodes m from the list of successors until we find a node that
has not already been scheduled or the list is finally empty. If we do not find a
node m, then we have to restart by fetching the next node from the open list. If
we find a node m, then we add the reachable nodes from n to m to the open list
and sort it, such that the successors with the highest weight will be chosen as
early as possible. Next we assign m to n and restart looking for m’s successors.

Table [3.7] contains the schedule that our algorithm generates for the kernel
shown in Figure [3:25] and Table [3.6]

’ No. \ Instruction \ No. \ Instruction

1 | INCA_LOAD_CONST_NORC 16 | LOAD_DEREF_NORC

2 | INCA_LIST_SUBSCRIPT_NORC 17 | GET_ITER_NORC

3 | LOAD_FAST_NORC 18 | FOR_ITER_LISTITER

4 | INCA_FLOAT_MULTIPLY_NORC 19 | STORE_FAST_A

5 | INCA_FLOAT_ADD 20 | STORE_FAST_B

6 | ROT_THREE 21 | STORE_FAST_D

7 | INCA_LIST_ASS_SUBSCRIPT_NORC_TOS 22 | INCA_FLOAT_MULTIPLY_NORC_SEC
8 | LOAD_FAST_A_NORC 23 | JUMP_ABSOLUTE

9 | DUP_TOPX_NORC 24 | POP_BLOCK
10 | LOAD_FAST_B_NORC 25 | LOAD_FAST_C_NORC
11 | INCA_FLOAT_SUBTRACT 26 | LOAD_FAST_D_NORC
12 | STORE_FAST_C 27 | INCA_UNPACK_TUPLE_TWO
13 | INCA_FLOAT_MULTIPLY_NORC_TOS 28 | INCA_FLOAT_POWER_NORC_TOS
14 | STORE_FAST 29 | FOR_ITER_RANGEITER
15 | SETUP_LOOP

Table 3.7: Interpreter Instruction Schedule for the nbody benchmark.

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 63

3.6.4 Compiling Instruction Schedules

Once we have computed a schedule of interpreter instructions, we need to compile
the interpreter with that schedule. We have extended our interpreter generator
from our previous work ([BrulOb]) to generate all instructions, not just the
optimized derivatives. Since we already have a schedule, it is straightforward
to generate an optimized instruction set from the standard instruction set. We
just process the schedule in order, move instructions from the old instruction
set, and add these instructions to the optimized instruction set. Once, we have
processed the plan, we just add the remaining instructions to the new optimized
instruction set.

There are compiler optimizations that can change the instruction order as
computed by our interpreter instruction scheduling. First of all, basic block
reordering as done by gcc 4.4.3 will eliminate our efforts by reordering basic
blocks after a strategy called “software trace-cache” [RLPNT99]. Fortunately,
we can switch this optimization off, by compiling the source file that contains
the interpreter dispatch routine with the additional flag ~-fno-reorder-blocks.
However, the instructions are still entangled in a switch-case statement. Since
it is possible for a compiler to re-arrange case statements, we decided to re-
move the switch-case statement from the interpreter dispatch routine as well.
Because our interpreter is already using the optimized threaded code dispatch
technique [Bel73], removing the switch-case statement is simple. However, we
stumbled upon a minor mishap: gcc 4.4.3 decides to generate two jumps for ev-
ery instruction dispatch. Because the actual instruction-dispatch indirect-branch
instruction is shared by all interpreter instruction implementations, available
expression analysis indicates that it is probably best to generate a direct jump
instruction back to the top of the dispatch loop, directly followed by an indi-
rect branch to the next instruction. On an Intel Nehalem (i7-920), gcc 4.4.3
generates the following code at the top of the dispatch loop:

.L1026:

xorl Y%eax, %eax
.L1023:

jmp *%rdx

And a branch back to the label .11026 at the end of every instruction:

movq opcode_targets.14198(,%rax,8), %rdx
jmp .L1026
Of course, this has detrimental effects on the performance of our interpreter.
Therefore, we use gcc’s -save-temps switch while compiling the interpreter
routine with -fno-reorder-blocks to retrieve the final assembler code emitted
by the compiler. We implemented a small fix-up program that rebuilds the basic
blocks and indexes their labels from the interpreter’s dispatch routine (PyEval_-
EvalFrameEx), determines if jumps are transitive, i.e., to some basic-block that
itself contains only a jump instruction, and copies the intermediate block over
the initial jump instruction. Thus, by using this fix-up program, we obtain the
original threaded-code jump sequence:
movq opcode_targets.14198(,%rax,8), %rdx
xorl Y%eax, jeax
jmp *Yrdx
Finally, we need to assemble the fixed-up file into the corresponding object
file and link it into the interpreter executable.

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 64

Compiling Instruction Schedules for the PowerPC 970

Our compiler on the PowerPC 970 system (gcc version 4.3.2) generates the same
code as the for the Intel Nehalem i7-920, i.e., a transitive intermediate jump
back to the head of the loop before actually dispatching to the next instruction.
Porting our fix-up program was actually very easy, we had to change some
regular expressions detecting branches and returns specific to the PowerPC
970 assembly. Unfortunately, however, the principal approach of using a fix-up
program to create dedicated instruction schedules has a major draw-back for
RISC architectures: Whenever we replace a single branch or jump instruction
back to the top of the dispatch loop with the sequence of assembly instructions
that perform the actual dispatch, the operation implementation of instructions
inevitably grows. Since the fixed instruction-set architecture of a RISC CPU
can only use a fixed amount of offsets for branches (in the PowerPC 970, this
maximum width is 16 bits), we simply cannot optimize the complete interpreter.
Since we did not have time to come up with a proper fix-up procedure in
time for publication of this thesis, we had to compromise. Depending on the
actual benchmark, and its corresponding instruction schedule, we had to limit
ourselves to a maximum amount of operation implementations to fix-up.

] Benchmark \ Max. Fix-ups ‘
binarytrees 44
fannkuch 39
fasta 15
mandelbrot 39
nbody 39
spectralnorm 39

Table 3.8: Maximum number of operation implementation fix-ups per benchmark.

Table contains our choice of maximum possible fix-ups per benchmark.
For the fasta benchmark, we had to limit ourselves to a maximum number
of 15 operation implementation fix-ups until gcc complained about an invalid
instruction argument outside of the 16 bit boundary. While it seems that this has
detrimental effects on the performance, our in-depth discussion in the evaluation
chapter (cf. Section convincingly shows that this does not affect performance
to a big extent. For future work, however, we are very interested in changing our
fix-up routine to implement the optimization for all 394 interpreter instructions.

3.7 Code Generator

To describe the original operation implementation for all of our instructions, we
use the Mako template string substitution system [Bayl0]. We chose the Mako
template system because it is easy to install and provides the functionality we
need, i.e., conditionals and iteration constructs. The following template is an
example of how we can generate C code—in this case for an optimized derivative
as is used by partial stack frame caching (cf. Section —using the Mako
template language:

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 65

TARGET (LOAD_FAST_${ instr.id.upper() 1})
Py_INCREF (fast_slot_${ instr.id.lower () 1});
PUSH(fast_slot_${ instr.id.lower () });
FAST_DISPATCH();

The sequence ${ ... } marks a string substitution, and we see that we use
the id field of the instr object to get a matching identifier for this instruction.

Context
Type Scalar | List [Map
PyLong_Type X
PyFloat_Type X
PyComplex_Type X
PyBool_Type X
PyUnicode_Type X X X
PyByteArray_Type X X
PyDict_Type X
PyList_Type X
PyMap_Type X
PyTuple_Type X X
PySet_Type X

Table 3.9: Types with context-dependent functions.

The types in Table [3.9) represent the most basic primitives of the Python
language, i.e., they are not defined in modules of the standard library but
represent the “core” of the language. Depending on the programs to be run in the
interpreter, providing different instruction derivatives might be beneficial; without
statistical evidence of real-world usage, however, it seems only natural to promote
the most basic primitives to their dedicated instructions. In order to select which
operations to implement, it is necessary to know which type implements which
operations. One approach would be to parse the C code containing the type
definitions and their bindings for several operations, represented as C struct’s.
While certainly possible, our approach is much simpler: using the gdb [SPS09)
debugger, one can inspect and print C data structures at runtime.

1 ={ ’PyFloat_Type’ : {
tp_name = 0x5438f6 "float", ’tp_name’ : 0x5438f6,
tp_itemsize = O, ’tp_itemsize’ : O,
tp_dealloc = 0x4ea940 <float_dealloc>, ’tp_dealloc’ : 0Ox4ea940,
tp_repr = 0x4ec630 <float_repr>, ’tp_repr’ : 0x4ec630,
tp_as_number = 0x799c40, >tp_as_number’ : {
tp_as_sequence = 0x0, ’nb_add’ : Ox4edcbO,

tp_as_mapping = 0xO0,
Figure 3.26: Example of the gdb output on the left side, and the corresponding
Python data structure definition on the right side.

The format gdb uses when printing this information is already very close
to Python data structure definitions. For example, Figure displays the

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 66

output of gdb’s print command with the Python floating point type structure
(PyFloat_Type) as its argument on the left side, and the corresponding Python
data structure definition on the right side. As we can see, converting gdb’s
runtime data structure output into valid Python data structure definitions is
trivial—it is possible to do this in your editor of choice with nothing more than
the regular search and replace feature, which is certainly faster than writing a
C parser. We put this information into a dedicated Python module, such that
further changes, refinements, and additions do not affect the code generator. We
captured gdb output for multiple types; all in all our type structure master data
file has 1700 lines of code. Using this module as a database, the code generator
automatically decides which operations to promote to their own instructions and
how to properly name them. Whereas the former is necessary to prohibit the
naive generation of operation implementations for unimplemented type functions,
the latter is necessary for debugging convenience.

The generation of the typed instruction derivatives for inline caching is
considerably simpler and more elegant if we use a template engine for string
substitution. In fact, it is so easy that we moved the generation of the optimized
call instructions to use templates, too—which supports our claim that they are
only different by type of call target, but remain predictable and largely constant
with varying amounts of arguments.

To implement the elimination of reference count operations, we create dedi-
cated Python classes that inherit the implementation of their parent class. All
classes eliminating reference count operations have a common parent class, called
RefcntDerivative, which supplies all features necessary to implement simple
and straightforward automatic removal of Py_INCREF and Py_DECREF operations.
Its major functionality is the enumeration of operands in exactly the same order
as they are fetched from the stack—using a simple regular expression. In addi-
tion, it provides methods for removing increment and decrement reference count
operations when given the variable identifier of the reference count operation
to be removed. So, classes realizing the separate optimization strategies are
easy to implement; see for example the implementation for the elimination of all
reference count operations:

class NoRefcnts(RefcntDerivative):

def generate(self):
super (NoRefcnts, self).generate ()

for var_id in self.enumerate_stack_ops():
self .erase_decrefs(var_id)

Our common parent class takes care of some additional work, such as ensuring
that whenever we have an optimized function/method call derivative instruction
with an explicit Py_DECREF operation of the arguments tuple, the common
generate method of the RefcountDerivative replaces its occurrence with a
call to our custom non-recursive-freeing de-allocation routine. Rewriting the
cache miss goto instructions to stay within the same class of reference count
operation elimination is another important common task.

Using inheritance for modeling our core “derivative” relationship seems
natural and enables us to quickly create the code generation system. Besides the
actual operation implementation, we use the generator to generate the actual
quickening functions necessary for our two-step quickening scheme:

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 67

1. from Python bytecode to reference count operation derivatives,
2. from reference count operation derivatives to inline cached derivatives.

Finally, the code generator generates several auxiliary files, such as the opcode
mnemonic definitions, the threaded-code dispatch table, and a debugging function
that displays a padded string identifier for an instruction opcode.

3.7.1 Architecture

InstructionSet

Instruction

“f- id: string

- set
- size: int

+add()
+ place()

+find()

+ optimize(plan: list)

- impl: string
- template: string
- arg: boolean

|

I

Defaultinstr

Unknownlnstr

Derivativelnstr

- parent: Instruction

|

IncaDerivative RefcntDerivative
- postix: siring
generate()

- replace_instr_id()
- replace_jmp_target()
- enumerate_stack_ops|

J\ - erase_decrefs(var_id: string)
- erase_increfs(var_id: string)

I I I - replace_arg_tuple_decref()
IncaSubscript IncaLoad IncaBuild IncaComparison
[\
NoRefcnts TosOnlyRefent
IncaUnpack | IncaStringConcat| | Incalterator
NoTosRefcnts | | NoSecRefcnts

Figure 3.27: UML class diagram of instruction hierarchy.

Figure [3.27] shows a UML class diagram of the code generator’s instruction
hierarchy. An InstructionSetEl contains a number of Instruction’s. Initially, all
instructions are instances of Unknownlnstr’s, where we add instances of Default-
Instr’s when we create the default instruction set. We then use several modules
to add derivative instructions to our InstructionSet instance (cf. Figure [3.28).
The common base class for all derivatives, Derivativelnstr, has a reference to its
parent instruction of which it derives. Thus, we can cascade derivatives, such as
having a NoRefcnts derivative of an IncaComparison derivative.

Figure [3.28| shows the pipeline of steps in our code generator. The shaded
rectangles are modules that can be enabled and disabled individually to config-
ure the resulting interpreter. With the exception of the Interpreter Instruction
Scheduling module, each of these modules creates instruction derivative instances
and adds them to the InstructionSet instance that is passed along the pipeline. At

2We use the sans-serif font to refer to the diagram.

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 68

g

Default
Instruction
Set

99

Partial
: Reference Interpreter
Ig;rt:ﬂfa Cla?clzwiﬁ Count Instruction
Caching 9 Quickening IScheduling
é Type Dyn. Instr.
Structure Frequency
Data Traces
gdb Collector
Instrumented
Python
Interpreter

Figure 3.28: Flow diagram of instruction set generation.

every step, we can quit processing the pipeline and directly go to the last step of
generating the implementation files. Below the modules, we see necessary input
data for each module. For example, the Partial Stack Frame Caching module needs
to know how many cache slots to generate code for. Above the modules, we see
how each module changes the input InstructionSet-instance. The star-like circle
around the labels approximates the amount of instructions in the instruction-set.
Thus, we visualize the extent of change by each module. The gray number above
the instruction set label displays the number of instructions added to it by the
preceding module. The gray number below the instruction set label shows the
amount of instructions present in the instruction set. Table [3.10] contains the
tabular data visualized in Figure [3:28] The lines-of-code figures given contain
empty lines as well and are therefore not exact. The next section discusses the
numerical aspects of the code generator.

3.7.2 Implementation in Numbers

We measured the lines of code using the sloccount program of David
Wheeler [Whel0]. Our code generator produces 6178 lines of C code that
is included in the main interpreter. The Python code of our generator amounts
to 2739 lines of code, however, out of those 2739 lines of code, 1700 lines of code
are consumed by our type-data file generated by raw-data from gdb. Therefore,
the actual amount of Python code without the master data needed to generate
the C code is 1039 lines of code. In addition to the generator and its product,
we have manually coded 1759 lines of code. These are 400 lines of code for
quickening the CALL_FUNCTION instruction and supplying our own version of
unicode_concatenate, 347 lines of code for our simple abstract interpreter to
rewrite the reference count operations, 272 lines of code for the creating and
manipulating the new instruction format (including the scoring heuristic), and 87
lines of code that implements the load cache that we described in Section [3.1.2}
The remaining lines of code are mostly externalized interpreter macros from the
original dispatch loop and smaller auxiliary files.

CHAPTER 3. PURELY INTERPRETATIVE OPTIMIZATIONS 69

Type \ No. of Instructions \ Lines of Code ‘
DefaultInstr 99 1,824
LoadFastStackFrame 4 32
StoreFastStackFrame 4 32
IncaBuild 4 62
IncaComparison 10 200
Incalterator 15 255
IncaLoad 4 56
IncaOperator 49 1,058
IncaStringConcat 1 18
IncaSubscript 3 57
IncaUnpack 4 76
FastCFunction 2 32
FastCVarArgs 4 155
FastGenerator 1 48
FastPyFunction 3 134
FastPyFunctionDoCall 3 146
FastPyMethod 4 225
NoRefcounts 94 2,095
NoSecRefcounts 12 301
NoTosRefcounts 61 1,324
TosOnlyRefcount 13 484

Table 3.10: Break-down of instructions generated.

Using ‘cat * | wc -1¢ to calculate the number of C-code markup inside

the Mako templates adds another 1385 lines of code.

Here, we cannot use

the sloccount program, since it does not process files of the Mako template

language.

Chapter 4

Related Work

4.1 Purely Interpretative Inline Caching

In his PhD thesis of 1994 [HG6194], Holzle mentions the basic idea of the data
structure underlying our purely interpretative inline caching technique based on
interleaving words (cf. Section . The major difference is that we are not
only proposing to use this data layout for SELF’s send instruction—or CALL_-
FUNCTION instruction in Python’s case—but for all instructions, since there is
enough caching potential in Python to justify that decision. Hoélzle addresses
the additional memory consumption issue, too. We use a simple low-overhead
invocation based counter heuristic to determine when to apply this representation,
i.e., it is only created for code we know is hot. Therefore, we argue that the
increased memory consumption is negligible—particularly when compared with
the memory consumption of state-of-the-art just-in-time compilers. Section [3.3.3
contains a detailed historical perspective.

In 2007, Haupt et al. [HHDO7] published a position paper describing details of
adding inline caching to bytecode interpreters, specifically the Squeak interpreter.
Their approach consists of adding dedicated inline caching slots to the activa-
tion record, similar to dealing with local variables in Python or the constant
pool in Java. In addition to a one-element inline cache, they also describe an
elegant object-oriented extension that enables a purely interpretative solution to
polymorphic inline caches [HCU91]. The major difference to our approach lies
in the relative efficiencies of the techniques: whereas our techniques are tightly
interwoven with the interpreter infrastructure promising efficient execution, their
technique relies on less efficient target address look-up in the stack frame.

Regarding the use of look-up caches in purely interpretative systems, we refer
to an article [CPL82|] detailing various concerns of look-up caches, including
efficiency of hashing functions, etc., which can be found in “Smalltalk-80: Bits
of History, Words of Advice” [Kra84]. Kiczales and Rodriguez describe the use
of per-function hash-tables in a portable version of common lisp (PCL), which
may provide higher efficiency than single global hash tables [KR90]. The major
difference to our work is that our inline cache does not require the additional
look-up and maintenance costs of hash-tables. Our quickening based approach
of Section [3.3:4] eliminates the use of indirect branches for calling inline cached
methods, too.

70

CHAPTER 4. RELATED WORK 71

Lindholm and Yellin [LY96] provide details regarding the use of quick in-
structions in the Java virtual machine. Casey et al. [CEG05] describe details
of quickening, superinstructions and replication. The latter technical report
provides interesting figures on the performance of those techniques in a Java
virtual machine implementation.

-Deutsch, Schiffman
~Holzle, Chambers, Ungar

dynamic compilation
inline caching

|
I,
o> ~-Strongtalk Sourcecode Release

......... Haupt, Hirschfeld, Denker
+Brunthaler, SAC'10
#-Brunthaler, ECOOP'10

| % L purely interpretative
- L inline caching
©

1985
1990
9

S
«

miscellaneuous

Figure 4.1: Time line for inline caching.

Figure shows the time line of the relevant techniques. The red dashed
line shows the genesis and rediscovery of the interleaved inline caching technique
of Section [3.3.3] including the original Strongtalk implementation of Robert
Griesemer in 1996, Sun’s decision to open the source of the Strongtalk system,
as well as the author’s independent re-discovery of the technique in 2009 with
the corresponding publication in 2010.

4.2 Reference Count Quickening

Regarding our second contribution, the elimination of reference count operations,
we cite the following related work. Introduced by Collins in 1960 [Col60],
Deutsch and Bobrow found in 1976 that while reference counting has
its advantages, the amount of reference count operations caused by local stack
modifications, i.e., load and store operations, have a considerable negative
impact on the performance of such systems. Hence, Deutsch and Bobrow suggest
to remove the immediate processing of reference count operations from the
mutator and defer them to a dedicated processing phase—similar to the explicit
garbage collection phase of other automatic memory management techniques.
Because of their introduction of deferred reference counting, the original reference
counting approach is often described as immediate or non-deferred reference
counting. As early as 1977, just a year after the deferred reference counting
approach described by Deutsch and Bobrow [DB76], Barth described a technique
to eliminate reference count operations using a global data-flow analysis in a
compiler [Bar77]. In addition to what we describe, Barth’s description is able to
eliminate more reference count operations than our approach. While our approach
works for stack-based interpreters, Barth’s description optimizes a derivative

CHAPTER 4. RELATED WORK 72

of Pascal that uses reference counting for automatic memory management.
Unfortunately, he does not give any evaluation we could use for comparison
purposes. Much of the following research on optimizing reference counting focuses
on deferred reference counting as suggested by Deutsch and Bobrow [DBT0].
Ungar and Patterson describe a set of optimization techniques to eliminate
redundant reference count operations from the implementation of standard
Smalltalk instructions, such as eliminating an increment and decrement reference
count operation by directly copying a value from the callee stack frame to the
caller stack frame and nilling out the source. These optimization techniques
are static and do not take dynamic instruction sequences into account, which is
precisely what allows us to eliminate large amounts of reference count operations.
As recently as 2006, however, Joisha took up the basic idea of Barth—with
much more comprehensive goals [Joi06]. The basic idea is to use data-flow
analysis to optimize a research version of a C# compiler that generates code
with reference counting for automatic memory management. Joisha uses liveness
properties of objects to remove way more reference count operations than our
simple approach is able to recognize. His work addresses the “coalescing” of
reference count operations that basically corresponds to our approach—but it is
only a minor part in his work. His subsequent work of 2008 describes ways to
eliminate reference count operations in the presence of modern object-oriented
constructs, such as exceptions [Joi08]. While his work achieves a much higher
elimination rate of reference count operations, it is certainly not easily realizable
in our setting. Our approach does not require any kind of data flow analysis
or fix-point computation, but on the other hand can not possibly eliminate as
many reference count operations.

miscellaneuous

--Colling +-Deutsch, Bobrow
Barth

--Brunthaler, DLS'10

immediate reference
counting, interpreter

immediate reference
counting, compiler

deferred
= reference
~ counting

1960
1970
1980
1990
2000

Figure 4.2: Time line for reference count quickening.

Figure [£.2] contains the relevant time line illustrating the corresponding
contributions. The figure shows how Deutsch and Bobrow created a dedicated
sub-field by deferred reference counting [DB76], and so did Barth in 1977 [Bar77|
by the use of static analysis in a compilation setting, which was quite successfully
continued by Pramod Joisha in 2006. In addition to the leveraging of 1996’s
quickening [LY96], we use a simple abstract interpreter over the amount of

CHAPTER 4. RELATED WORK 73

reference count operations within a given operation implementation, inspired by
the account of Java bytecode verification by Xavier Leroy in 2003 [Ler03].

4.3 Interpreter Instruction Scheduling

Pettis and Hansen [PH90] present their work on optimizing compilers for the
Hewlett Packard’s PA-RISC architecture. They optimize the arrangement of
procedures and basic blocks based on previously obtained profiling information.
Interestingly, our reordering algorithm is almost identical to their “algol” algo-
rithm; they may even be identical, but because no implementation is given, this
remains unclear. Another interesting fact is that both our maximum achievable
speedups are identical, i.e., both our work achieves a maximum speedup by a
factor of 1.14.

More recently, Zhao and Amaral [ZA05] demonstrate algorithms to optimize
switch-case computation as well as case-statement ordering in the Open Research
Compiler [opel(]. While both our approaches employ information gathered at
run-time, the application scenario is quite different. For instance, their approach
focuses on optimizing switch-case statements, and they calculate the order in
which they should be generated by their rank according to frequency. In contrast,
our work focuses on optimization of interpreters, particularly those without
using the switch-case dispatch technique. Because of better instruction cache
utilization, we choose to use another algorithm that recognizes the importance
of properly covering instruction sequences. So in a sense, the major difference
is that their optimization approach focuses on larger compiled programs that
use switch-case statements, whereas we recognize the nature of an interpreter,
where execution remains within its instruction set at all times. Another direct
consequence of this fundamental difference is that in an interpreter we are usually
not interested in the default case, since this indicates an error, i.e., an unknown
opcode, which in practice happens never—the exception being malicious intent
of a third party.

As for related work on interpreters, the most important work is by Lin and
Chen [LCO§|. Their work is similar to ours, since they show how to partition in-
terpreter instructions to optimally fit into NAND flash pages. Furthermore, they
describe that they too use profiling information to decide which combination of
interpreter instructions to co-locate on one specific flash page. Their partitioning
algorithm pays attention to the additional constraint of NAND flash page size,
i.e., their algorithm computes a configuration of interpreter instructions that
fits optimally within the flash pages and keeps dependencies between the pages
at a minimum. For the context of our work it is unnecessary to superimpose
such a constraint to our algorithm. Though, if one were to set the parameter N
determining the NAND flash page size of their algorithm to the maximum repre-
sentable value, all instructions would be packed into just one partition. Then, our
algorithms should produce similar interpreter instruction arrangements. Another
difference between our respective approaches is that ours operates on a higher
level. While they post-process the assembly output generated by gcc to enable
their optimizations, our approach is based on re-arranging the instruction at the
source code level. Though we admittedly have to fix-up the generated assembly
file as well, because of detrimental effects of a misguided optimization. Because
of their ties to embedded applications of the technique and its presentation

CHAPTER 4. RELATED WORK 74

in that context, we think that our presentation is more general in nature. In
addition, we complement our work with extensive performance measurements
on contemporary non-embedded architectures.

Ertl and Gregg [EG03a] present an in-depth discussion of two interpreter
optimization techniques—superinstructions and replication—to improve the
branch prediction accuracy and instruction cache utilization of virtual machines.
While the optimization technique of replication is not directly related to inter-
preter instruction scheduling, it improves the instruction cache behavior of an
interpreter at the expense of additional memory. The idea of superinstructions
is to combine several interpreter instructions into one superinstruction, thus
eliminating the instruction dispatch overhead between the single constituents.
While this improves branch prediction accuracy, it improves the instruction
cache utilization, too: Since all instruction implementations must be copied into
one superinstruction, their implementations must be adjacent, i.e., co-located
in memory, which is optimal with respect to instruction cache utilization and
therefore results in extremely good speedups of up to 2.45 over a threaded-code
interpreter without superinstructions. However, superinstructions can only be
used at the expense of additional memory, too. Since interpreter instruction
scheduling happens at pre-compile, and compile time respectively, of the inter-
preter, there are no additional memory requirements—with the notable exception
of minor changes because of alignment issues. Because the techniques are not
mutually exclusive, using interpreter instruction scheduling in combination with
static superinstructions will further improve the performance of the resulting
interpreter.

Summing up, the major difference between the related work on compilers
and our work is that the former focuses on optimizing elements visible to the
compiler, such as procedures, basic blocks, and switch-case statements, whereas
our work focuses on re-arranging interpreter instructions—which are transparent
to compilers. Related work on interpreters achieves a significantly higher speedup,
however, at the expense of additional memory. Our work demonstrates that is
possible to improve interpretation speed without sacrificing memory.

Chapter 5

Evaluation

5.1 System Setup and Configurations

We used several benchmarks from the computer language shootout game [Full.
Since the adoption of Python 3.x is rather slow in the community, we cannot
give more suitable benchmarks of well known Python applications, such as
Zope, and twisted. However, we used a patch by Martin von Lowis [vL10] for a
specific version of django to run Unladen Swallow’s [unl10] django benchmark
for measuring a real world web application framework [djall]. In addition to the
django benchmark of Unladen Swallow, we provide our extensive analysis data
for its ai benchmark, consisting of solving the n-queens problem and generating
permutations in pure Python code. We ran our benchmarks on the following
system configurations:

o Intel i7 920 with 2.6 GHz, running Linux 2.6.32-27 and gcc version 4.4.3.
(Please note that we have turned off Intel’s Turbo Boost Technology to
have a common hardware baseline performance without the additional
variances immanently introduced by it [Int08].)

o Intel Atom N270 with 1.6 GHz, running Linux 2.6.28-18 and gcc version
4.3.3.

o IBM PowerPC 970 with 2.0 GHz, running Linux 2.6.26-2 and gcc version
4.3.2.

We used a modified version of the nanobench program of the computer language
shootout game [Ful] to measure the running times of each benchmark program.
The nanobench program uses the UNIX getrusage system call to collect usage
data, e.g., the elapsed user and system times as well as memory usage of a process.
We use the sum of both timing results, i.e., elapsed user and system time as
the basis for our benchmarks. In order to account for proper measurement and
cache effects, we ran each program 50 successive times and the reported data
represent arithmetic averages over those repetitions.

(0]

CHAPTER 5. EVALUATION 76
5.2 Evaluation of Optimization Potential
5.2.1 Dynamic Bytecode Frequencies
’ No. H Standard Interpreter \ Frequency H Optimized Interpreter | Frequency
1 || roap_FasT 214,298,992 || INCA_LOAD_CONST_NORC 68,845,856
2 || Loap_consT 90,660,749 || LOAD_FAST_A_NORC 61,069,511
3 || STORE_FAST 71,733,904 || LOAD_FAST_B_NORC 39,059,617
4 || BINARY_ADD 45,947,498 || LOAD_FAST_NORC 34,729,268
5 || cALL_FuNcTION 32,723,786 || LOAD_FAST_C_NORC 28,315,920
6 || BINARY_MULTIPLY 29,858,698 || POP_JUMP_IF_FALSE 24,426,977
7 || Pop_juMp_1F_FALSE 27,079,748 || RETURN_VALUE 20,739,803
8 || compare_op 23,002,313 || INCA_LOAD_CONST 20,710,179
9 || RETURN_VALUE 20,739,774 || LOAD_FAST_D_NORC 19,437,445
10 || roap_cLoBAL 18,957,775 || STORE_FAST_C 17,296,437
11 || BINARY_SUBSCR 17,783,590 || INCA_LONG_ADD_NORC 16,806,475
12 || FoR_ITER 17,529,343 || STORE_FAST_A 15,035,063
13 || Jump_aBsoLuTE 13,466,488 || INCA_LOAD_GLOBAL_NORC 14,504,251
14 || BINARY_TRUE_DIVIDE 13,450,526 || LOAD_FAST_A 14,232,730
15 || uNPACK_SEQUENCE 13,390,066 || STORE_FAST_B 14,060,314
No. of executed instructions | 726,370,483 H 726,376,463

Table 5.1: Overall comparative dynamic instruction frequency.

Table contains the dynamic bytecode instruction frequencies measured
by running our benchmarks with an instrumented interpreter and collecting/ag-
gregating the instruction frequencies whilst running the benchmarks. Summing
this data over all of our benchmarks and taking the top-most 15 instructions
and their corresponding frequencies gives this table. First, we see that optimized
interpreter executes slightly more instructions, 5,980 interpreter instructions, or
about 0.0008% more. Because of detailed comparison of the instruction frequency
distribution among the computationally most relevant function of the corre-
sponding benchmarks give identical instruction frequencies, we assume that this
difference is due to interpreter internals, such as loading libraries from different
directories—given that the difference is numerically insignificant, however, this
has only negligible influence on the following quantitative evaluation.

First of all, Table shows that instructions loading operands onto the stack
constitutes the biggest part of all executed instructions:

o LOAD_FAST instructions constitute 28.50%,

o LOAD_FAST and LOAD_CONST instructions make up 41.98% of all executed
instructions,

e LOAD_FAST, LOAD_CONST, and STORE_FAST instructions total over half of
all instructions, viz., 51.86%.

Hence, the top 3 executed instructions make up more than half of all executed
instructions in the standard Python 3.1 interpreter. Therefore, some of our

CHAPTER 5. EVALUATION 7

optimizations, such as partial stack frame caching (cf. Section [3.5)), and data
object inlining (cf. Section [3.1.2) are particularly beneficial.
First, lets consider the effectiveness of data object inlining:

o LOAD_CONST: 98.78% of constant operand objects can be inlined by INCA_-
LOAD_CONST, and INCA_LOAD_CONST_NORC,

o LOAD_GLOBAL: 76.51% of global operand objects can be inlined by INCA_-
LOAD_GLOBAL, and INCA_LOAD_GLOBAL_NORC.

Next, we evaluate the effectiveness of partial stack frame caching. A glance
at Table [5.1] already indicates that using our heuristic works reasonably well,
since the dynamic bytecode frequencies of the optimized derivative instructions
are in decreasing order of their scores, i.e., from LOAD_FAST_A to LOAD_FAST_D:

o 28.50% of LOAD_FAST instructions can be promoted to LOAD_FAST_A alone,

e 75.65% of LOAD_FAST instructions can be optimized by using partial stack
frame caching instructions,

e 64.67% of STORE_FAST instructions can be promoted to using partial stack
frame caching instructions.

Finally, we analyze the effect of reference count quickening (cf. Section [3.4))
on the load instructions:

e 75.94% of LOAD_CONST instruction’s reference count operations are redun-
dant,

e 76.51% of LOAD_GLOBAL instruction’s reference count operations are redun-
dant,

e 85.21% of all LOAD_FAST instruction’s reference count operations are re-
dundant.

Interestingly, none of the top most-frequent STORE_FAST instruction occurrences
are optimized by reference count quickening, which suggests that most STORE_-
FAST occurrences store data objects with an implicit reference count operation,
as is the result of any arithmetic operation instruction.

In consequence, this evaluation shows that using these optimization techniques
apply to frequently occurring cases that support evidence of the applicability
of these techniques, since more than three quarters of load instructions can be
optimized.

CHAPTER 5. EVALUATION

5.2.2 Analysis of Local Variables

78

This section presents detailed data on the call frequency—more specifically
function stack-frames, where we are interested in the number of local variables
the stack frames. This helps us to examine the exact number of cache slots to
use in combination with partial stack frame caching (cf. Section [3.F)).

1030 -

=

o
™
S]
1

Frequency

100 -

*n
10"+ II l l
- N
I -0
I IlIII-Il
I I I I

I I
01234586
No. of local variables

L S S S s E O B
7 8 91011121314151617 19 20 32

Benchmarks

. ai-1

. binarytrees-14
django-1
fannkuch-9
fasta-50000
mandelbrot-500

| nbody-50000
spectralnorm-400

Figure 5.1: Distribution of the number of local variables per stack frame.

Figure [5.1] shows the frequency of processed functions broken down by the
number of local variables allocated in each stack frame. Moreover, Figure [5.1]
displays the gathered data for all benchmarks, which allows us to make informed

decisions concerning several distinct applications.

Number of Coverage Number of Coverage
Local Variables Local Variables

0 | 00.3322% 6 | 99.6401%
1| 18.9031% 71 99.8416%
2 | 66.4442% 8 | 99.8423%
3| 81.5752% 9 | 99.8428%
4 | 97.5539% 10 | 99.9932%
5 | 98.7543%

Table 5.2: Total coverage of calls covered per number of local variables.

Benchmarks

CHAPTER 5. EVALUATION 79

Table [5.2] displays the percentile coverage of calls. This shows us which
number of local variables is most frequent. When we compare these results
with Figure we can verify that indeed, stack frames with one or two local
variables dominate the measured frequencies. Furthermore, we have marked the
entry having four local variables in Table about 97.5% of calls have at most
four local variables. Therefore, we decide to use four cache slots for partial stack
frame caching Section .

5.2.3 Analysis of Function Calls

C-Function

Python—Function

Python-Method

ai-1-
binarytrees-14 —
django-1—
fannkuch-9 —
fasta-50000 —
mandelbrot-500 -
nbody-50000 —
spectralnorm-400 —

&

ai-1-
binarytrees-14 -
django-1—
fannkuch-9 -
fasta-50000 —
mandelbrot-500 -
nbody-50000 —
spectralnorm-400 —

ai-1-
binarytrees-14 -
django-1—
fannkuch-9 -
fasta-50000 —
mandelbrot-500 -
nbody-50000 —
spectralnorm-400 —

ai-1-
binarytrees-14 -
django-1—
fannkuch-9 -
fasta-50000 —
mandelbrot-500 -
nbody-50000 —
spectralnorm-400 —

&
&

ai-1-
binarytrees-14 -
django-1—
fannkuch-9 -
fasta-50000 —
mandelbrot-500 -
nbody-50000 —
spectralnorm-400 —

I I I I I I I I I I
10° 10 10° 10° 10° 10 10° 10° 10° 10 10° 10°
Frequency

Figure 5.2: Frequencies of call types grouped by number of arguments and call
targets.

Figure [5.2] shows the results we obtained by running several benchmarks
and collecting several function call data. We eliminated 69 entries amounting
to a total of 1,654 function call instructions—for argument tuples of size 5, 6,
and 7—out of 32,723,825 totally collected CALL_FUNCTION instructions. This
was necessary to eliminate the vertical grouping for the corresponding argument
tuple sizes, i.e., the figure only shows groups for argument tuple sizes from 0,
which corresponds to a function call without any argument, up to an argument
tuple size of 4. Horizontally, the data is grouped by the call target of the
CALL_FUNCTION instruction, i.e., grouped by whether the call target is either a
C-Function, a Python-Function, or a Python-Method.

For each CALL_FUNCTION grouped by call target, Figure shows that either
one or two arguments are among the most frequently occurring CALL_FUNCTION
instructions. In general, the common trend is that from that peak, the frequency

Benchmark

CHAPTER 5. EVALUATION 80

of CALL_FUNCTION instructions with a larger argument tuple decreases, i.e., is
less likely overall. Note that this corresponds very well with the real-world
django benchmark (cf. the red cross in Figure7 too. For example, calls to C
functions have a peak at argument tuple size two, calls to Python functions a
peak at argument tuple size one, and the most frequent calls to Python methods
within the django benchmark have two arguments. Hence, this data confirms
our choices for the selection of which argument sizes and call types to provide for
our optimized inline cached call instructions (cf. Table and Section m)

5.3 Analysis of Reference Count Operations

Reference Count Operations Instruction
Benchmark Standard Optimized Frequency
Increment \ Decrement || Increment \ Decrement

ai-1 35,084,658 38,820,194 27,329,155 30,609,845 26,894,583
binarytrees-14 184,145,592 203,145,824 127,161,852 155,681,200 203,062,096
django-1 60,374,548 74,326,819 50,809,784 62,629,187 41,027,619
fannkuch-9 100,000,143 107,032,592 72,121,596 77,906,679 77,004,917
fasta-50000 11,045,307 13,999,691 7,015,288 9,161,436 11,053,675
mandelbrot-500 53,052,259 72,879,417 13,667,179 33,494,333 93,122,405
nbody-50000 62,868,435 76,534,735 26,517,643 40,183,938 68,976,753
spectralnorm-400 | 149,402,835 211,900,227 78,936,240 147,817,776 205,234,415

Table 5.3: Number of reference count operations per benchmark.

i |
ai—1
binarytrees-14— I —
diango-1- R——
|
fannkuch-9 — Type
fasta-50000 NN Optimized
. Standard
|
mandelbrot-500 |
|
nbody-50000 - I
spectralnorm-400 - ——
[[[[[[[
0.0 0.5 1.0 15 2.0 25 3.0

RC Ops per Bytecode

Figure 5.3: Reference count operations per bytecode.

CHAPTER 5. EVALUATION 81

Figure [5.3] presents a figure from the raw data of Table The left
vertical line corresponds to the average number of reference count operations per
bytecode when using reference count quickening (cf. Section , whereas the
vertical line to the right corresponds to the number of reference count operations
in the standard interpreter. We can see that using reference count quickening
reduces the reference count operations per bytecode from about 2.25 to 1.5—a
reduction by a third or 33.3%.

5.4 Performance Evaluation

5.4.1 Detailed Speedup Factors

Tables and [5.6) present our calculated speedup factors per benchmark.

Our modified version of the nanobench program calculates the average time each
interpreter needs to process a benchmark by summing up all run-times recorded
and dividing this aggregate by the number of runs. In this specific averaging
process, we do not care about the instances of the arguments supplied to each
benchmark. For example, if we run the binarytrees benchmark 50 times with
different arguments of 10, 12, and 14, our average value sums up all recorded
times and divides them by 150. The rationale for this is that the interpreters

perform well on specific benchmarks and not on specific argument instances.

We calculate the speedup relative to the timing results of the vanilla Python
3.1 interpreter. We provide detailed run-time data for each benchmark and
interpreter configuration in the appendix (cf. Appendix) Because of the Intel
Atom N270 having only a 32bit instruction size, we do not report data for each
optimization technique separately, since some of them are not available, such as
data object reference inlining. Therefore, we only report interpreter instruction
scheduling data for the Intel Atom N270.

Speedup factors per benchmark
Interpreter binary- | fannkuch | fasta | mandel- | nbody | spectral- || Overall
trees brot norm
Vanilla 1.0000 1.0000 | 1.0000 1.0000 | 1.0000 1.0000 1.0000
+ Threaded Code 1.4525 1.4544 | 1.2902 1.5686 | 1.3173 1.5867 1.4330
+ New Instr. Format 1.3389 1.3712 | 1.3675 1.5487 | 1.2864 1.4190 1.3698
+ PSFC! 1.3846 1.3940 | 1.3913 1.6239 | 1.2498 1.5931 1.4083
+ Load Caching 1.4739 1.3927 | 1.3389 1.5790 | 1.2734 1.5509 1.4188
+ Inline Caching 1.8500 1.5508 | 1.4989 2.0342 | 1.5367 2.2518 1.7646
+ RCQ? 1.9257 1.6509 | 1.5446 2.0040 | 1.6165 2.2538 1.8213
I1S® /binarytrees 1.9891 1.6925 | 1.5148 2.1084 | 1.7301 2.4064 1.9028
I1IS /fannkuch 1.9748 1.6964 | 1.5861 2.1072 | 1.7602 2.4064 1.9203
IIS/fasta 1.9746 1.6824 | 1.7161 2.1315 | 1.7565 2.4146 1.9382
IIS/mandelbrot 1.9744 1.7264 | 1.6077 2.1847 | 1.7277 2.3796 1.9213
I1IS /nbody 1.9713 1.7211 | 1.6081 2.0995 | 1.7557 2.3710 1.9186
IIS /spectralnorm 1.9780 1.5866 | 1.4600 2.1255 | 1.6941 2.4176 1.8714

Table 5.4: Speedup factors per benchmark for all interpreter configurations on
the Intel Nehalem i7-920.

CHAPTER 5. EVALUATION 82
Speedup factors per benchmark
Interpreter binary- | fannkuch | fasta | mandel- | nbody | spectral- || Overall
trees brot norm
Vanilla 1.0000 1.0000 | 1.0000 1.0000 | 1.0000 1.0000 1.0000
+ Threaded Code 1.1469 1.1664 | 1.0509 1.1020 | 1.3885 1.1271 1.1854
+ New Instr. Format 1.0746 1.1856 | 1.0662 1.1514 | 1.4230 1.1447 1.1900
+ PSFC 1.0356 1.0843 | 0.9829 1.0520 | 1.2497 1.0774 1.0971
+ Load Caching 1.1690 1.0651 | 1.0172 1.0976 | 1.2949 1.0829 1.1469
+ Inline Caching 1.4173 1.2506 | 1.0619 1.1283 | 1.5689 1.4194 1.3445
+ RCQ 1.3818 1.3000 | 1.1197 1.1398 | 1.6330 1.3319 1.3513
IIS/binarytrees 1.4852 1.2951 | 1.1190 1.0778 | 1.5973 1.5405 1.3836
IIS /fannkuch 1.4394 1.3357 | 1.1816 1.1650 | 1.7000 1.4829 1.4199
IIS /fasta 1.4465 1.2561 | 1.1726 1.1499 | 1.5715 1.5885 1.3977
IIS/mandelbrot 1.4878 1.2812 | 1.0930 1.2842 | 1.6489 1.5731 1.4371
IIS /nbody 1.3747 1.3168 | 1.0986 1.1623 | 1.5882 1.5084 1.3728
IIS/spectralnorm 1.4343 1.2403 | 1.1508 1.2681 | 1.5660 1.5199 1.4022

Table 5.5: Speedup factors per benchmark for all interpreter configurations on
the PowerPC 970.

We report our highest speedup factor by 2.4176 for the spectralnorm bench-
mark on the Intel Nehalem i7-920 (cf. Table bold digits.) In general, the
performance improvements of our purely interpretative optimization techniques
are substantial: two benchmarks more than double their performance, one almost
doubles the performance and the remaining three at least improve performance
by at least 50%.

The optimization potential on the PowerPC 970 CPU is not on par with the
Intel Nehalem i7-920. Nevertheless, we report a maximum overall speedup factor
by 1.70 for the nbody benchmark on that system. Including our interpreter
instruction scheduling technique, we report an average speedup factor by 1.4371
or about 44% using the mandelbrot’s schedule, which performs very well across
several benchmarks.

The following sub-sections present a careful and detailed analysis of the figures
within the tables, first we are going to analyze the impact of each optimization
technique and, second we are going to discuss the effects of interpreter instruction
scheduling.

5.4.2 Results per Optimization Technique
Threaded Code Instruction Dispatch Optimization

Contrary to the result of Vitale and Abdelrahman [VA04], we have not found
any slowdowns by enabling the threaded code instruction dispatch optimization
in the Python interpreter. However, we find that its performance is significantly
below the usually reported figures of 2.02 (cf. Table) While it performs very

1Partial Stack Frame Caching.
2Reference Count Quickening.
3Interpreter Instruction Scheduling.

CHAPTER 5. EVALUATION 83
Speedup factors per benchmark
Interpreter binary- | fannkuch | fasta | mandel- | nbody | spectral- || Overall
trees brot norm
... + RCQ 1.0000 1.0000 | 1.0000 1.0000 | 1.0000 1.0000 1.0000
IIS/binarytrees 1.1131 1.0090 | 0.9998 0.9688 | 1.0073 1.0323 1.0257
ITIS/fannkuch 1.0119 1.1158 | 1.0182 0.9573 | 1.0478 1.0289 1.0241
IIS /fasta 1.0428 1.0098 | 1.0923 0.9238 | 1.0633 0.9920 1.0237
IIS/mandelbrot 1.0398 1.0521 | 1.0038 1.0736 | 1.0266 0.9817 1.0263
IIS /nbody 1.0173 1.0473 | 1.0011 0.9215 | 1.0902 0.9971 1.0129
IIS/spectralnorm 1.0176 1.0580 | 1.0188 0.9630 | 1.0361 1.1344 1.0354

Table 5.6: IIS Speedup factors per benchmark on the Intel Atom N270.

well on the Intel i7-920, its performance on the PowerPC 970 is substantially

lower. On the Intel i7-920, the performance is almost 21% higher (%:‘fggg.)

New Instruction Format

Switching to our new instruction format of Section reduces performance
on the Intel i7-920 and improves performance on the PowerPC 970 (there is
but one exception on both systems.) Neither increase (=~ 0.4%, 1132%) nor
decrease (=~ 5%, %:gggg) in performance are particularly noteworthy, yet some
of our follow-up optimization techniques require the increased bytecode size
and need more than 255 instructions representable in the standard byte-sized

bytecode instruction format.

Partial Stack Frame Caching

On our Intel i7-920 system, partial stack frame caching (cf. Section shows a
varying performance potential. While we mostly report improved performance
over the previous results with the new instruction format and the threaded code
version, the performance is only sometimes better than the original threaded
code version alone. To make matters worse, the performance on the PowerPC
970 is significantly below what we expected from our figures on the Intel i7-920
system. In fact, for the fasta benchmark we found that partial stack frame
caching reduces performance. From the dynamic bytecode frequencies for the
fasta benchmark, we note that this specific benchmark would benefit a lot from
LOAD_DEREF instructions via partial stack frame caching, too.

Load Caching, Data Object Reference Inlining

Enabling load caching, i.e., the inlining of data object references for the LOAD_-
GLOBALand LOAD_CONST instructions (cf. Section gives similar results as
what we have just discussed for partial stack frame caching. Again, our results
show that the effective optimization potential is highly dependent on the actual
benchmark.

CHAPTER 5. EVALUATION 84

Inline Caching

Using our quickening based inline caching technique from Section [3.3| gives the
biggest speedup factors across both processor architectures. For the Intel i7-920,
we report a maximum speedup by about 42% (~ 2:2318) when compared to the
threaded code only version. For the PowerPC 970, we report a maximum speedup
by about 26% (= %é%) when compared to the threaded code only version. We
report both maximum speedup factors for the spectralnorm benchmark. Over
all benchmarks, we report an increase of performance by about 23% (= 1'1233)
on the Intel Nehalem architecture and an increase by about 13% (= 154l

the PowerPC 970, when compared to the performance of the corresponding

17s51) ©
threaded code only interpreters.

Reference Count Quickening

Adding reference count quickening (cf. Section to the previous inline caching
based interpreter increases performance by about 3% (~ 1:8213) on the Intel
i7-920, and only moderately by half a percent (= }gi}lg) on the PowerPC 970.
The corresponding maximum performance improvements occur on the fannkuch
benchmark for the Intel Nehalem architecture (6.5% = %:gggg), and on the
spectralnorm benchmark for the PowerPC architecture (6.6% =~ 14392 .)
Following Figure [3.28] of Section [3.7] in combination with the encouraging
results of interpreter instruction scheduling (see next sub-section, Section ,
we assume that the performance of reference count quickening suffers from a
significant impact of instruction cache penalties caused by the numerous new

instruction derivatives.

5.4.3 Interpreter Instruction Scheduling

In addition to the speedup factors broken down by their respective optimization
technique and in-depth discussion and evaluation of the performance benefits,
Tables [5.4] [5.5] and [5.6] contain data for interpreter instruction scheduling with
schedules for each benchmark. Again, we report this aggregated data based on
our detailed results from the appendix (cf. Appendix)

For the Intel Nehalem i7-920 and the PowerPC 970, this data evidently states
that there is a non-causal relationship between the actual instruction sched-
ules and the benchmark programs themselves. For example, for the fannkuch
benchmark running on the Intel i7-920, the schedule computed by the kernel of
the mandelbrot benchmark performs best. Similarly, on the PowerPC 970 the
interpreter with the fannkuch schedule performs best for the nbody benchmark.
On the other hand, however, on the Intel Atom N270 Table displays a causal
relationship between the computed instruction schedule and the corresponding
benchmarks.

Another interesting effect of interpreter instruction scheduling is that there
seems to be a set of instruction sequences which are particularly well covered by
some computed schedules. The first evidence is that for both CPU architectures,
the overall scores for all interpreters with different instruction schedules perform
better than the versions without instruction scheduling. Supplementary evidence
is that there are some schedules which perform particularly well over all bench-
marks leading to a maximum combined speedup. For the Intel Nehalem i7-920,

CHAPTER 5. EVALUATION 85

an interpreter with the fasta instruction schedule achieves the highest overall
speedup by a factor of 1.9382, which corresponds to an improvement of about
6% (=~ i:ggfg) over the reference count quickening results, and an improvement
of about 10% (= 1:23%2) over the interpreter with inline caching. On the Intel
Atom N270, we measured the biggest overall speedup by 3.54% by using the
spectralnorm instruction schedule.

On the PowerPC 970, the interpreter with the mandelbrot instruction sched-
ule performs best from an overall perspective. When compared to the reference
count quickening interpreter, we report a performance improvement by about
6% (~ :3311). When compared to the inline caching interpreter, we report a
performance improvement by about 7% (=~ }:éiié)

When regarding the maximum potential of interpreter instruction scheduling,
we examine the spectralnorm benchmark on the PowerPC 970: Using the fasta
instruction schedule, the performance improves by substantial 19% (~ 1:5355)
when compared to the reference count quickening interpreter. This conclusively
shows that the instruction cache miss penalties caused by the considerable in-
struction set extension can be successfully overcome using interpreter instruction
scheduling. With an optimal interpreter instruction schedule, reference count
quickening can full unfold its additional potential: When compared to the inline
caching only interpreter, the performance improvement still makes up about

12% (~ 13551)

In conclusion, the evaluation of interpreter instruction scheduling demon-
strates the following:

o Applicability of interpreter instruction scheduling: Our data indicates
that some instruction schedules perform better than others for different
input programs. Therefore, it is merely an engineering problem to provide
interpreters that offer premium performance for given application profiles,
such as customized Python interpreters for the django web application
framework.

e Mazimum performance of interpreter instruction scheduling: When max-
imum performance for any interpreter is necessary, profiling and experi-
menting of the application in question can yield substantial benefits and is
therefore highly recommended.

Chapter 6

Conclusions

In conclusion, this thesis presents our efforts in optimizing interpreters. More
specifically, we demonstrate the potential of purely interpretative optimization
techniques, which are particularly well suited to optimizing high abstraction-level
interpreters, because these techniques target operation implementation instead
of instruction dispatch. We report significant overall speedups of up to 2.4176.

In addition to the competitive speedup potential, the techniques themselves
are simple in nature, which results in rapid implementation times with only little
effort. This is in stark contrast to the efforts necessary for implementing a dy-
namic compilation sub-system and therefore presents an important intermediate
step for optimizing virtual machines before having to commit valuable resources
to implementing a just-in-time compiler.

6.1 Summary of Contributions

o We discuss the historical perspective of using purely interpretative inline
caching based on interleaving pointers. Furthermore, we discuss how this
technique compares to the well-known approach of using hash-table based
look-up caches.

e We introduce a very efficient inline caching technique based on quickening,
which achieves substantial speedups. In addition to the application to
inline cache call instructions, we present their use in optimization of other
instructions, such as iteration and comparison instructions.

o We present partial stack-frame caching to reduce the overhead in the most
frequently executed instructions of stack based interpreters: load and store
instructions. In combination with the elimination of redundant reference
count operations and proper register allocation, this allows us to minimize
the operation implementation of a load instruction to just one assembly
instruction.

e We show our approach to eliminate redundant reference count operations
in immediate reference counting, effectively providing an alternative to
deferred reference counting [DB76]. Depending on the benchmark, this
technique is able to eliminate up to two thirds of increment and up to

86

CHAPTER 6. CONCLUSIONS 87

half of all decrement reference count operations. These rates could be
significantly higher if we were to add dedicated operation implementation
functions without implicit reference count operations.

o We show how to use interpreter instruction scheduling to improve the
instruction cache utilization of interpreters. This results in additional
speedup factors of up to 1.14 on a modern Intel i7 Nehalem, and of average
speedup of about 10% on Intel Atom architectures. While this technique
in its static implementation might seem unpractical for interpreters at first,
there is a need for either a) high performance server environments with
large scalability requirements can easily have multiple different interpreter
binaries with distinctive cache utilization patterns, and b) mobile devices
which would benefit not only by improved performance but actually from
reduced energy consumption. Here, too, customized binaries can be easily
used.

6.2 Future Work

We can categorize future work into two classes: i) demonstrate applicability, and
practicability, and ii) new research. We hope to demonstrate the applicability
of the optimizations presented herein by implementing them in other high
abstraction-level virtual machines, such as the JavaScript, Perl, and Ruby
interpreters. A very interesting project would be to add these optimizations to
functional and/or logical programming language implementations, too.

Among the low hanging fruit for new research and development is to further
enhance the performance of our purely interpretative inline caching technique by
inlining the function bodies of the functions implementing the actual operations,
e.g., inlining the float_add function body pointed to by the corresponding type
structure PyFloat_Type.tp_as_number->nb_add. Theoretically, any compiler
could do this already, however, gcc 4.4.3 does not do it, because the inlining is
restricted to module boundaries, i.e., the PyFloat_Type type and implementation
live in their own C module and cannot be inlined by gcc 4.4.3 . We estimate
the performance impact of inlining for important operators as well as frequently
used iterators to be substantial.

Similar to the recent result of Williams, McCandless, and Gregg [WMG10],
one could use our optimization techniques to dynamically generate optimized
instruction derivatives using a bytecode rewrite toolkit for virtual machine
implementations hosted on an existing virtual machine infrastructure with a
dynamic compilation sub-system. Consequently, we can significantly optimize
hosted implementations of Python (Jython), and Ruby (JRuby).

In our earlier discussion of overheads in operation implementation we identify
that many high abstraction-level virtual machines have significant overhead due
to any combination of the following three features:

e dynamic typing,
« reference counting,

o (un-)boxing of objects.

CHAPTER 6. CONCLUSIONS 88

Subsequently, we presented techniques to optimize the first two of the three
inefficiencies. However, we did not present an optimization to attack (un-)boxing
of objects. A traditional optimization approach is to use a tagged pointer
representation to combine multiple data object references into just one pointer.
Now, any operation implementation has to check the type tag and choose the
actual operation. Besides limiting the address range available to the implementer
for regular data object reference pointers, this involves relatively expensive tag
checks.

Our idea to remove the frequently used tagged data representation is to
combine multiple techniques presented in this thesis. First, we create a simple
abstract interpreter similar to the one to find sequences of redundant reference
count operations, but this new simple abstract interpreter finds sequences of
operations that operate on the same data objects. Next, we provide additional
optimized derivatives that operate on primitive values, instead of boxed objects.
Then, we create optimized derivatives of load and store instructions that unbox
and box objects correspondingly. Finally, we combine all previous steps and
quicken general instruction sequences to sequences of using primitive data types
instead. Note that this subsumes inline caching and reference counting, too.

CHAPTER 6. CONCLUSIONS 89

6.3 Interpreter Optimization Recommendations

1.

Use an interpreter generator, such as vmgen [EGKP02]. To generate
multiple derivatives, one could use a generator that generates vmgen source
files. This simplifies experimentation and development considerably. In
addition, one could use the configuration infrastructure of a project to
customize interpreter optimizations to the actual user’s needs.

. Use a regular instruction format, even at the expense of additional mem-

ory. Ensure that instruction en- and decoding is as efficient as possible

(cf. Section [3.1)).

Use threaded code optimization: Is highly likely to give speedups and is
an interpreter implementation best-practice.

Quantitative analysis to determine concrete value instance for optimization
variables, such as the number of partial stack frame caching slots.

Use partial-stack-frame caching to speed-up loads—this is independent
of abstraction-level and applies to almost all interpreters using a stack
architecture (cf. Section [3.5)).

Determine the abstraction level of the interpreter and choose optimization
techniques correspondingly.
If you have a high abstraction-level virtual machine:

(a) Use quickening based operation unfolding for expensive instruction-
operand-dependent implementations.

(b) Use purely interpretative quickening based inline caching for a
dynamically-typed programming language/interpreter (cf. Sec-
tion [3.3)).

(c¢) Eliminate overhead of reference counting using our technique from Sec-

tion 341
If you have a low abstraction-level virtual machine:

(a) Use superinstructions [EGO03al.
(b) Use replication [EG03al
Use interpreter instruction scheduling to optimize the interpreter execution

of a specific program on the target hardware, particularly worthwhile on
smaller architectures, such as 32bit x86, and PowerPC RISC architectures.

Bibliography

[Ayc03]

[Bad82]

[Bar77]

[Bay10]

[BCFRO09)

[Bel73]

[Bral0]
[Bru09]

[Brul0a]

[BrulOb]

John Aycock. A brief history of just-in-time. ACM Computing
Surveys, 35(2):97-113, 2003. Cited on page

Scott B. Baden. High performance storage reclamation in an object-
based memory system. Technical report, Berkeley, CA, USA, 1982.
Cited on page [}

Jeffrey M. Barth. Shifting garbage collection overhead to compile
time. Commaunications of the ACM, 20(7):513-518, July 1977. Cited

on pages [71] and [72]

Michael Bayer. Mako. http://www.makotemplates.org, May 2010.
Cited on page [64}

Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin
Rigo. Tracing the meta-level: PyPy’s tracing JIT compiler. In
Proceedings of the 4th Workshop on the Implementation, Compila-
tion, Optimization of Object-Oriented Languages and Programming
Systems (ICOOOLPS ’09), Lecture Notes in Computer Science,
pages 18-25. Springer, 2009. Cited on pages [2] and 28

James R. Bell. Threaded code. Communications of the ACM,
16(6):370-372, 1973. Cited on page [63]

Gilad Bracha. Private communication. June 2010. Cited on page

Stefan Brunthaler. Virtual-machine abstraction and optimization
techniques. In Proceedings of the jth International Workshop on
Bytecode Semantics, Verification, Analysis and Transformation
(BYTECODE ’09), volume 253(5) of Electronic Notes in Theoreti-
cal Computer Science, pages 3—14, Amsterdam, The Netherlands,
December 2009. Elsevier. Cited on pages [iv] & and [7}

Stefan Brunthaler. Efficient inline caching without dynamic trans-
lation. In Proceedings of the 2010 ACM Symposium on Applied
Computing (SAC ’10), pages 2155-2156, New York, NY, USA,
March 2010. ACM. Cited on pages [iv} 26} and [33]

Stefan Brunthaler. Efficient interpretation using quickening. In
Proceedings of the 6th Symposium on Dynamic Languages, Reno,
Nevada, US, October 18, 2010 (DLS ’10), New York, NY, USA,
2010. ACM Press. To appear. Cited on pages and

90

http://www.makotemplates.org

BIBLIOGRAPHY 91

[BrulOc]

[Brull]

[CEGO5]

[Cha92]

[Col60]

[CPL82]

[CT04]

[DB76]

[djall]

[DS84]

[EGO1]

Stefan Brunthaler. Inline caching meets quickening. In Proceed-
ings of the 24th European Conference on Object-Oriented Program-
ming, Maribor, Slovenia, June 21-25, 2010 (ECOOP ’10), volume
6183/2010 of Lecture Notes in Computer Science, pages 429-451.

Springer, 2010. Cited on pages [iv} [26] and [33]

Stefan Brunthaler. Interpreter instruction scheduling. In Proceedings
of the 14th International Conference on Compiler Construction,
Saarbricken, Germany, March 26-April 3rd, 2010 (CC ’11), Lecture
Notes in Computer Science. Springer, 2011. To appear. Cited on

pages [iv] and

Kevin Casey, M. Anton Ertl, and David Gregg. Optimizations for
a java interpreter using instruction set enhancement. Technical
Report 61, Department of Computer Science, University of Dublin.
Trinity College, September 2005. Cited on page [71]

Craig David Chambers. The design and implementation of the self
compiler, an optimizing compiler for object-oriented programming
languages. PhD thesis, Stanford, CA, USA, 1992. Cited on page

George E. Collins. A method for overlapping and erasure of lists.
Communications of the ACM, 3(12):655-657, December 1960. Cited

on pages [9} [I0] 40} and [71]

Thomas J. Conroy and Eduardo Pelegri-Llopart. An Assessment
of Method-Lookup Caches for Smalltalk-80 Implementations, chap-
ter 13, pages 239-247. In Krasner [Kra84], 1982. Cited on pages
and

Keith D. Cooper and Linda Torczon. FEngineering a Compiler.
Morgan Kaufmann, 2004. Cited on page

L. Peter Deutsch and Daniel G. Bobrow. An efficient, incremen-
tal, automatic garbage collector. Communications of the ACM,

19(9):522-526, 1976. Cited on pages and

Django. http://www.djangoproject.com/, January 2011. Cited
on page [75

L. Peter Deutsch and Allan M. Schiffman. Efficient implementation
of the Smalltalk-80 system. In Proceedings of the SIGPLAN 84
Symposium on Principles of Programming Languages (POPL ’84),
pages 297-302, New York, NY, USA, 1984. ACM. Cited on pages[11]

26, 27} 28} and B2

M. Anton Ertl and David Gregg. The behavior of efficient virtual
machine interpreters on modern architectures. In Furo-Par 01:
Proceedings of the 7th International Euro-Par Conference on Parallel
Processing, pages 403412, London, UK, 2001. Springer-Verlag.
Cited on page

http://www.djangoproject.com/

BIBLIOGRAPHY 92

[EG03a]

[EGO3b)]

[EGKP02]

[Ful]

[GES*09]

[GRS3)]

[Gri96]

[HCU91]

[HHDO7]

[H5194]

M. Anton Ertl and David Gregg. Optimizing indirect branch pre-
diction accuracy in virtual machine interpreters. In Proceedings of
the SIGPLAN 03 Conference on Programming Language Design
and Implementation (PLDI ’03), pages 278-288, New York, NY,
USA, 2003. ACM. Cited on pages 7} [74} and [89]

M. Anton Ertl and David Gregg. The structure and performance
of efficient interpreters. Journal of Instruction-Level Parallelism,
5:1-25, November 2003. Cited on pages [6] and [7}

M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Paysan.
Vmgen: a generator of efficient virtual machine interpreters. Soft-
ware Practice & Experience, 32:265-294, March 2002. Cited on

page 89}

Brent Fulgham. The computer language benchmarks game. http:
//shootout.alioth.debian.org/. Cited on pages[56] 58] and [75]

Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David
Mandelin, Mohammad R. Haghighat, Blake Kaplan, Graydon Hoare,
Boris Zbarsky, Jason Orendorff, Jesse Ruderman, Edwin W. Smith,
Rick Reitmaier, Michael Bebenita, Mason Chang, and Michael Franz.
Trace-based just-in-time type specialization for dynamic languages.
In Proceedings of the SIGPLAN ’09 Conference on Programming
Language Design and Implementation (PLDI ’09), pages 465-478,
New York, NY, USA, 2009. ACM. Cited on pages [I] and [I2]

Adele Goldberg and David Robson. Smalltalk-80: the language and
its implementation. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1983. Cited on pages [0} [10} and

Robert Griesemer. Strongtalk source code. http:
//code.google.com/p/strongtalk/source/browse/trunk/
vm/interpreter/interpreter.cpp#1931, June 1996. Lines
1931ff, checked October 2010. Cited on page 32

Urs Holzle, Craig Chambers, and David M. Ungar. Optimizing
dynamically-typed object-oriented languages with polymorphic in-
line caches. In Proceedings of the 5th Furopean Conference on
Object-Oriented Programming, Geneva, Switzerland, July 15-19,
1991 (ECOOP 91), volume 512/1991 of Lecture Notes in Computer
Science, pages 21-38. Springer-Verlag, 1991. Cited on pages [26] [28]
and

Michael Haupt, Robert Hirschfeld, and Marcus Denker. Type feed-
back for bytecode interpreters. Position Paper. (ICOOOLPS ’07). In
Proceedings of the 2nd Workshop on the Implementation, Compila-
tion, Optimization of Object-Oriented Languages and Programming
Systems (ICOOOLPS ’07), Lecture Notes in Computer Science.
Springer, 2007. Cited on page [T0}

Urs Holzle. Adaptive Optimization for SELF: Reconciling High
Performance with Exploratory Programming. PhD thesis, Stanford

http://shootout.alioth.debian.org/
http://shootout.alioth.debian.org/
http://code.google.com/p/strongtalk/source/browse/trunk/vm/interpreter/interpreter.cpp#1931
http://code.google.com/p/strongtalk/source/browse/trunk/vm/interpreter/interpreter.cpp#1931
http://code.google.com/p/strongtalk/source/browse/trunk/vm/interpreter/interpreter.cpp#1931

BIBLIOGRAPHY 93

[H5109)]

[HU94]

[Int08]

[JLO6]

[Joi06]

[J0i08]

[Jon07]

[KR90]

[Krag84]

[KWM™08]

[LCO8]

University, Stanford, CA, USA, 1994. Cited on pages [12] 32} [36]
and

Urs Hoélzle. Private communication. September 2009. Cited on
page [32]

Urs Holzle and David Ungar. Optimizing dynamically-dispatched
calls with run-time type feedback. In Proceedings of the SIG-
PLAN ’94 Conference on Programming Language Design and Im-
plementation (PLDI '94), pages 326-336, 1994. Cited on page

Intel. Intel Turbo Boost Technology in Intel Core microarchitecture
(Nehalem) based processors. Online, November 2008. Cited on

page [75]

Richard Jones and Rafael Lins. Garbage collection: algorithms for

automatic dynamic memory management. John Wiley & Sons, Inc.,
New York, NY, USA, 1996. Cited on page

Pramod G. Joisha. Compiler optimizations for nondeferred reference
counting garbage collection. In Proceedings of the 5th International
Symposium on Memory Management (ISMM ’06), pages 150161,
New York, NY, USA, 2006. ACM. Cited on page[72]

Pramod G. Joisha. A principled approach to nondeferred reference-
counting garbage collection. In Proceedings of the 4th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Ezecution
Environments (VEE ’08), pages 131-140, New York, NY, USA,
March 2008. ACM. Cited on page [72]

Richard Jones. Dynamic memory management: Challenges for today
and tomorrow. In Proceedings of the International Lisp Conference,
Cambridge, UK, March 31-April 5, 2007, pages 115-124, 2007. Cited

on page [IT]

Gregor Kiczales and Luis Rodriguez. Efficient method dispatch in
PCL. In Proceedings of the 1990 ACM Conference on LISP and
Functional Programming (LFP ’90), pages 99-105, New York, NY,
USA, 1990. ACM. Cited on pages [29] and [70]

Glenn Krasner, editor. Smalltalk-80: Bits of History, Words of
Advice. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1983, reprinted with corrections 1984. Cited on pages[29]

[70} 01} and [95]

Thomas Kotzmann, Christian Wimmer, Hanspeter Mdssenbdck,
Thomas Rodriguez, Kenneth Russell, and David Cox. Design of
the Java HotSpot™ client compiler for Java 6. ACM Transactions
on Architecture and Code Optimization (TACO), 5(1):1-32, 2008.
Cited on page

Chun-Chieh Lin and Chuen-Liang Chen. Code arrangement of
embedded java virtual machine for NAND flash memory. In Per
Stenstrom, Michel Dubois, Manolis Katevenis, Rajiv Gupta, and

BIBLIOGRAPHY 94

[Ler03]

[LY96]

[McC62]

[Mir87]

[Mor98]

[Muc97]

[opel0)]

[Pall0]

[PHOO]

[PROS]

[PS99)

[RLPN*99]

Theo Ungerer, editors, Proceedings of the Third High Performance
Embedded Architectures and Compilers International Conference,
Gdteborg, Sweden, January 27-29, 2008 (HiPEAC "08), volume 4917
of Lecture Notes in Computer Science, pages 369-383. Springer,
2008. Cited on page [T3}

Xavier Leroy. Java bytecode verification: Algorithms and formal-
izations. Journal of Automated Reasoning, 30(3-4):235-269, 2003.

Cited on pages [42] and [73]

Tim Lindholm and Frank Yellin. The Java Virtual Machine Spec-
ification. Addison-Wesley, Boston, MA, USA, first edition, 1996.

Cited on pages and

John McCarthy. LISP 1.5 Programmer’s Manual. The MIT Press,
1962. Cited on pages [and [40]

Eliot Miranda. Brouhaha—a portable smalltalk interpreter. In
Proceedings of the SIGPLAN ’87 International Conference on
Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA ’87), pages 354-365, New York, NY, USA, 1987.
ACM. Cited on page

Robert Morgan. Building an Optimizing Compiler. Digital Press,
1998. Cited on page

Steven S. Muchnick. Advanced Compiler Design and Implementation.
Morgan Kaufmann, 1997. Cited on page

Open Research Compiler. http://ipf-orc.sourceforge.net/,
October 2010. Cited on page [73]

Mike Pall. Better use an interpreter. http://
lambda-the-ultimate.org/node/3851#comment-57646, March
2010. Exact time stamp: 21:05, March 9, 2010. Cited on page

Karl Pettis and Robert C. Hansen. Profile guided code positioning.
SIGPLAN Notices, 25(6):16-27, 1990. Cited on page

Tan Piumarta and Fabio Riccardi. Optimizing direct threaded code
by selective inlining. In Proceedings of the SIGPLAN ’98 Conference
on Programming Language Design and Implementation (PLDI ’98),
pages 291-300, New York, NY, USA, 1998. ACM. Cited on pages|[7]
and 8

Massimiliano Poletto and Vivek Sarkar. Linear scan register alloca-

tion. ACM Transactions on Programmming Languages and Systems
(TOPLAS), 21:895-913, September 1999. Cited on page

Alex Ramirez, Josep-L. Larriba-Pey, Carlos Navarro, Josep Torrellas,
and Mateo Valero. Software trace cache. In Proceedings of the 13th
International Conference on Supercomputing, Rhodes, Greece, June
20-25, 1999 (ICS ’99), pages 119-126, New York, NY, USA, 1999.
ACM. Referenced by gcc/bb-reorder.c. Cited on page

http://ipf-orc.sourceforge.net/
http://lambda-the-ultimate.org/node/3851#comment-57646
http://lambda-the-ultimate.org/node/3851#comment-57646

BIBLIOGRAPHY 95

[RLV+96]

[SCEGOS]

[SPS09]

[Ung84]

[Ung86]

[unl10]

[UP82]

[USO07]

[VAO4]

[vL10]

[WBs2]

Theodore H. Romer, Dennis Lee, Geoffrey M. Voelker, Alec Wol-
man, Wayne A. Wong, Jean-Loup Baer, Brian N. Bershad, and
Henry M. Levy. The structure and performance of interpreters. In
In Architectural Support for Programming Languages and Operating
Systems (ASPLOS-VII), pages 150-159. ACM Press, 1996. Cited

on page [6]

Yunhe Shi, Kevin Casey, M. Anton Ertl, and David Gregg. Virtual
machine showdown: Stack versus registers. ACM Transactions on
Architecture and Code Optimization, 4(4):1-36, 2008. Cited on

pages [7] and [47]}

Richard M. Stallmann, Roland H. Pesch, and Stan Shabs. Debug-
ging with GDB: The GNU source-level debugger. Free Software
Foundation, 9th edition, 2009. Cited on page [65}

David Ungar. Generation scavenging: A non-disruptive high perfor-
mance storage reclamation algorithm. In SDE 1: Proceedings of the
first ACM SIGSOFT/SIGPLAN software engineering symposium
on Practical software development environments, pages 157167,
New York, NY, USA, 1984. ACM. Cited on page

David Michael Ungar. The Design and Evaluation of A High Perfor-
mance Smalltalk System. PhD thesis, EECS Department, University
of California, Berkeley, February 1986. UCB/CSD-86-287. Cited

on pages [40] and (]

Unladen Swallow. http://code.google.com/p/
unladen-swallow/, August 2010. Cited on page

David M. Ungar and David A. Patterson. Smalltalk-80: Bits of
History, Words of Advice, chapter 11, Berkeley Smalltalk: Who
Knows Where the Time Goes?, pages 189-206. In Krasner [Kra84],
September 1982. Cited on page [72]

David Ungar and Randall B. Smith. Self. In Proceedings of the 3rd
ACM SIGPLAN conference on History of programming languages
(HOPL III), pages 9-1-9-50, New York, NY, USA, 2007. ACM.
Cited on page [0

Benjamin Vitale and Tarek S. Abdelrahman. Catenation and spe-
cialization for Tcl virtual machine performance. In Proceedings of
the 2004 Workshop on Interpreters, virtual machines and emulators
(IVME ’04), pages 42-50, New York, NY, USA, 2004. ACM. Cited

on pages [7} [8] and 82}

Martin von Lowis. Porting django to 3k. http://wiki.python!
org/moin/PortingDjangoTolk, April 2010. Cited on page

Allen Wirfs-Brock. Smalltalk-80: Bits of History, Words of Advice,
chapter 4, Design Decisions for Smalltalk-80 Implementors, pages
41-56. In Krasner [Kra84], 1982. Cited on pages [0 and

http://code.google.com/p/unladen-swallow/
http://code.google.com/p/unladen-swallow/
http://wiki.python.org/moin/PortingDjangoTo3k
http://wiki.python.org/moin/PortingDjangoTo3k

BIBLIOGRAPHY 96

[Whel0]

[WMG10]

[YWF09]

[ZA05)

David Wheeler. sloccount. http://www.dwheeler.com/
sloccount/, May 2010. Cited on page [68

Kevin Williams, Jason McCandless, and David Gregg. Dynamic
interpretation for dynamic scripting languages. In Proceedings of
the 8th annual IEEE/ACM SIGMICRO/SIGPLAN International
Symposium on Code Generation and Optimization (CGO ’10), pages
278-287, April 2010. Cited on page 87

Alexander Yermolovich, Christian Wimmer, and Michael Franz.
Optimization of dynamic languages using hierarchical layering of
virtual machines. In Proceedings of the 5th Symposium on Dynamic
Languages (DLS ’09), pages 79-88, New York, NY, USA, 2009.
ACM. Cited on pages [2 and 28]

Peng Zhao and José Nelson Amaral. Feedback-directed switch-
case statement optimization. In Proceedings of the International
Conference on Parallel Programming Workshops, Oslo, Norway,
June 14-17 2005 (ICPP ’05 Workshops), pages 295-302. IEEE,
August 2005. Cited on page

http://www.dwheeler.com/sloccount/
http://www.dwheeler.com/sloccount/

Appendix A

Detailed Benchmark

Evaluation

Al

Binarytrees

Dynamic Bytecode Frequencies

’ No. H Standard Instruction \ Frequency H Optimized Instruction | Frequency
1 || LoaD_FasT 57,068,356 || INCA_LOAD_CONST_NORC 22,145,774
2 || Loap_consT 28,542,718 || LOAD_FAST_B_NORC 15,821,518
3 || STORE_FAST 25,390,930 || LOAD_FAST_C_NORC 15,821,512
4 || PoP_JUMP_IF_FALSE 12,698,922 || LOAD_FAST_A 12,713,996
5 || LoaD_GLOBAL 12,696,573 || POP_JUMP_IF_FALSE 12,698,944
6 || caLL_FuncTION 12,696,408 || RETURN_VALUE 12,693,728
7 || coMpaRE_oP 12,695,344 || INCA_LOAD_GLOBAL_NORC 9,519,126
8 || RETURN_VALUE 12,693,728 || STORE_FAST_C 9,519,122
9 || BUILD_TUPLE 6,346,416 || STORE_FAST_B 9,497,282

10 || uNPACK_SEQUENCE 6,346,339 || INCA_LOAD_CONST 6,389,787
11 || BINARY_SUBTRACT 6,302,429 || LOAD_FAST_B 6,367,924
12 || BINARY_ADD 3,175,595 || STORE_FAST_D 6,346,084
13 BINARY_MULTIPLY 3,151,274 INCA_BUILD_TUPLE_THREE 6,346,084
14 || INPLACE_SUBTRACT 3,151,198 || COMPARE_OP_NORC 6,346,079
15 || For_ITER 24,569 || INCA_UNPACK_TUPLE_THREE 6,346,078

Table A.1: Comparative dynamic instruction frequency for the binarytrees
benchmark (Argument: 14).

97

APPENDIX A. DETAILED BENCHMARK EVALUATION

98

’ No. \ Freq. \ Off. \ Instruction H No. \ Freq. \ Off. \ Instruction
1| 6,346,078 1 | LOAD_FAST_B_NORC 16 | 3,151,198 16 | INCA_LOAD_CONST_NORC
2 | 6,346,078 2 | INCA_LOAD_CONST_NORC 17 | 3,151,198 17 | INCA_LONG_SUBTRACT_NORC
3 | 6,346,078 3 | INCA_CMP_LONG_NORC 18 | 3,151,198 18 | LOAD_FAST_B
4 | 6,346,078 4 | POP_JUMP_IF_FALSE 19 3,151,198 19 | FAST_PYFUN_TWO
5| 3,151,198 5 | INCA_LOAD_CONST_NORC 20 | 3,151,198 20 | INCA_LOAD_GLOBAL_NORC
6 | 3,151,198 6 | LOAD_FAST_A_NORC 21 | 3,151,198 21 | LOAD_FAST_C_NORC
7 | 3,151,198 7 | INCA_LONG_MULTIPLY_NORC 22 | 3,151,198 22 | LOAD_FAST_B_NORC
8 | 3,151,198 8 | STORE_FAST_C 23 | 3,151,198 23 | FAST_PYFUN_TWO_NORC
9 | 3,151,198 9 | LOAD_FAST_B_NORC 24 | 3,151,198 24 | INCA_BUILD_TUPLE_THREE
10 3,151,198 10 | INCA_LOAD_CONST_NORC 25 3,151,198 25 | RETURN_VALUE
11 3,151,198 11 | INCA_LONG_SUBTRACT_NORC 26 3,194,880 26 | LOAD_FAST_A
12 | 3,151,198 12 | STORE_FAST_B 27 | 3,194,880 27 | INCA_LOAD_CONST
13 3,151,198 13 | LOAD_FAST_A 28 3,194,880 28 | INCA_LOAD_CONST
14 3,151,198 14 | INCA_LOAD_GLOBAL 29 3,194,880 29 | INCA_BUILD_TUPLE_THREE
15 3,151,198 15 | LOAD_FAST_C_NORC 30 | 3,194,880 30 | RETURN_VALUE
Table A.2: Instruction trace and frequency for make_tree function of

binarytrees benchmark.

’ No. \ Freq. \ Off. \ Instruction H No \ Freq. \ Off. \ Instruction
1 6,346,078 1 | LOAD_FAST_A 12 3,151,198 12 | LOAD_FAST_C_NORC
2 6,346,078 2 | INCA_UNPACK_TUPLE_THREE 13 3,151,198 13 | FAST_PYFUN_ONE_NORC
3 | 6,346,078 3 | STORE_FAST_B 14 | 3,151,198 14 | INCA_LONG_ADD_NORC_SEC
4 | 6,346,078 4 | STORE_FAST_C 15 | 3,151,198 15 | INCA_LOAD_GLOBAL_NORC
5 | 6,346,078 5 | STORE_FAST_D 16 | 3,151,198 16 | LOAD_FAST_D_NORC
6 | 6,346,078 6 | LOAD_FAST_C_NORC 17 | 3,151,198 17 | FAST_PYFUN_ONE_NORC
7 | 6,346,078 7 | INCA_LOAD_CONST_NORC 18 3,151,198 18 | INCA_LONG_SUBTRACT
8 6,346,078 8 | COMPARE_OP_NORC 19 3,151,198 19 | RETURN_VALUE
9 | 6,346,078 9 | POP_JUMP_IF_FALSE 20 | 3,194,880 20 | LOAD_FAST_B
10 3,151,198 10 | LOAD_FAST_B_NORC 21 3,194,880 21 | RETURN_VALUE
11 3,151,198 11 | INCA_LOAD_GLOBAL_NORC
Table A.3: Instruction trace and frequency for check_tree function of

binarytrees benchmark.

99

APPENDIX A. DETAILED BENCHMARK EVALUATION

Interpreter Instruction Scheduling

b) dYon~ e, 2Y0n~
hy mawq/oe /oem%\m o »\/Me I oo&
U_\O ~ n.
7

33YHL 31dNL a1INg VON

P 3 SIS\
1992 an0? oy
Zawrw\ o\v,%_w ~d0Y Son0 Syodd o
¢ & zO\u @A/m 7w Q ¢ Q
~30 A9 \vuAEV OV 7 490
\
>0

>)9 1Sv4 avol

3V 1Sv4 avol

- od o’

e A_O)\
\SV7_ 7\S
! \zao\/o 3

oo

—

Figure A.1: IIS intermediate graph for binarytrees benchmark.

APPENDIX A. DETAILED BENCHMARK EVALUATION

Schedule

’ Rank \ Instruction

H Rank \ Instruction

© 00 ~J O U Wi+

—
w N = O

INCA_LOAD_CONST_NORC
INCA_LONG_SUBTRACT_NORC
STORE_FAST_B
STORE_FAST_C
LOAD_FAST_B_NORC
FAST_PYFUN_TWO_NORC
INCA_BUILD_TUPLE_THREE
RETURN_VALUE
LOAD_FAST_A
INCA_UNPACK_TUPLE_THREE
INCA_LOAD_GLOBAL
LOAD_FAST_C_NORC
FAST_PYFUN_ONE_NORC

14
15
16
17
18
19
20
21
22
23
24
25
26

INCA_LONG_ADD_NORC_SEC
INCA_LOAD_GLOBAL_NORC
LOAD_FAST_D_NORC
INCA_LONG_SUBTRACT
INCA_LOAD_CONST
LOAD_FAST_B
FAST_PYFUN_TWO
STORE_FAST_D
COMPARE_OP_NORC
POP_JUMP_IF_FALSE
LOAD_FAST_A_NORC
INCA_LONG_MULTIPLY_NORC
INCA_CMP_LONG_NORC

100

Table A.4: Computed interpreter instruction schedule for the binarytrees
benchmark (Argument: 14).

A.2 Fannkuch

Dynamic Bytecode Frequencies

’ No. H Standard Instruction \ Frequency H Optimized Instruction | Frequency
1 || LoaD_FasT 22,806,616 || INCA_LOAD_CONST_NORC 9,846,026
2 || LoAD_consT 15,908,857 || INCA_LOAD_CONST 6,055,643
3 || BINARY_SUBSCR 5,970,294 || LOAD_FAST_NORC 5,869,899
4 || PoP_JUMP_IF_FALSE 5,231,481 || INCA_LIST_SUBSCRIPT_NORC 3,951,023
5 || STORE_FAST 4,852,554 || LOAD_FAST_A_NORC 3,899,599
6 || BUILD_SLICE 3,750,098 || BUILD_SLICE 3,750,098
7 || coMpaRE_oP 3,209,377 || LOAD_FAST_B_NORC 3,750,041
8 || Jump_aBSOLUTE 2,617,678 || INCA_LONG_ADD_NORC 3,723,440
9 || STORE_SuBsCR 2,615,691 || LOAD_FAST_C 3,462,490

10 || 1INPLACE_ADD 1,991,959 || POP_JUMP_IF_FALSE 3,212,977
11 || BINARY_ADD 1,734,059 || JUMP_ABSOLUTE 2,617,701
12 || caLL_FuncTION 1,251,663 || STORE_FAST 2,025,197
13 || setup_LooP 1,013,296 || STORE_FAST_B 2,018,796
14 || INPLACE_SUBTRACT 884,179 || POP_JUMP_IF_FALSE_NORC 2,018,526
15 || pop_BLOCK 650,423 || INCA_LIST_SUBSCRIPT 2,018,525

Table A.5: Comparative dynamic instruction frequency for the fannkuch bench-

mark (Argument: 9).

APPENDIX A. DETAILED BENCHMARK EVALUATION

101

No \ Freq. \ Off. \ Instruction H No. \ Freq. \ Off. \ Instruction
1 362,880 39 | LOAD_FAST_NORC 55 1,731,245 109 | LOAD_FAST_C
2 362,880 40 | INCA_LOAD_CONST_NORC 56 1,731,245 110 | INCA_LOAD_CONST
3 362,880 41 | INCA_CMP_LONG_NORC 57 1,731,245 111 | LOAD_FAST_B_NORC
4 362,880 42 | POP_JUMP_IF_FALSE 58 1,731,245 112 | INCA_LOAD_CONST_NORC
5 362,880 59 | SETUP_LOOP 59 1,731,245 113 | INCA_LONG_ADD_NORC
6 623,530 60 | LOAD_FAST_A_NORC 60 1,731,245 114 | BUILD_SLICE
7 623,530 61 | INCA_LOAD_CONST_NORC 61 1,731,245 115 | INCA_LIST_ASS_SUBSCRIPT
8 623,530 62 | INCA_CMP_LONG_NORC 62 1,731,245 116 | LOAD_FAST_NORC
9 623,530 63 | POP_JUMP_IF_FALSE 63 1,731,245 117 | INCA_LOAD_CONST_NORC
10 260,650 64 | LOAD_FAST_A 64 1,731,245 118 | INCA_LONG_ADD_NORC
11 260,650 65 | LOAD_FAST_D 65 1,731,245 119 | STORE_FAST
12 260,650 66 | LOAD_FAST_A_NORC 66 1,731,245 120 | LOAD_FAST_C_NORC
13 260,650 67 | INCA_LOAD_CONST_NORC 67 1,731,245 121 | INCA_LOAD_CONST_NORC
14 260,650 68 | INCA_LONG_SUBTRACT_NORC 68 1,731,245 122 | INCA_LIST_SUBSCRIPT_NORC
15 260,650 69 | INCA_LIST_ASS_SUBSCRIPT 69 1,731,245 123 | STORE_FAST_B
16 260,650 70 | LOAD_FAST_A_NORC 70 1,731,245 124 | JUMP_ABSOLUTE
17 260,650 71 | INCA_LOAD_CONST_NORC 71 287,280 125 | POP_BLOCK
18 260,650 72 | INCA_LONG_SUBTRACT_NORC 72 287,280 126 | LOAD_FAST_NORC
19 260,650 73 | STORE_FAST_A 73 287,280 127 | LOAD_FAST_NORC
20 260,650 74 | JUMP_ABSOLUTE 74 287,280 128 | INCA_CMP_LONG_NORC
21 362,880 75 | POP_BLOCK 75 287,280 129 | POP_JUMP_IF_FALSE
22 362,880 76 | LOAD_FAST_NORC 76 362,880 134 | SETUP_LOOP
23 362,880 77 | INCA_LOAD_CONST_NORC 77 623,530 135 | LOAD_FAST_A_NORC
24 362,880 78 | INCA_LIST_SUBSCRIPT_NORC 78 623,530 136 | LOAD_FAST_NORC
25 362,880 79 | INCA_LOAD_CONST_NORC 79 623,530 137 | INCA_CMP_LONG_NORC
26 362,880 80 | INCA_CMP_LONG_NORC_TOS 80 623,530 138 | POP_JUMP_IF_FALSE
27 362,880 81 | POP_JUMP_IF_FALSE 81 623,529 139 | LOAD_FAST_NORC
28 322,560 82 | LOAD_FAST_NORC 82 623,529 140 | LOAD_FAST_A_NORC
29 322,560 83 | LOAD_FAST_NORC 83 623,529 141 | LOAD_FAST_NORC
30 322,560 84 | INCA_LIST_SUBSCRIPT_NORC 84 623,529 142 | INCA_LOAD_CONST_NORC
31 322,560 85 | LOAD_FAST_NORC 85 623,529 143 | FAST_C_VARARGS_ONE_NORC
32 322,560 86 | INCA_CMP_LONG_NORC_TOS 86 623,529 144 | FAST_C_VARARGS_TWO_RC_TOS_ONLY
33 322,560 87 | POP_JUMP_IF_FALSE 87 623,529 145 | POP_TOP
34 287,280 88 | LOAD_FAST 88 623,529 146 | LOAD_FAST_D_NORC
35 287,280 89 | INCA_LOAD_CONST 89 623,529 147 | LOAD_FAST_A_NORC
36 287,280 90 | INCA_LOAD_CONST 90 623,529 148 | DUP_TOPX_NORC
37 287,280 91 | BUILD_SLICE 91 623,529 149 | INCA_LIST_SUBSCRIPT_NORC
38 287,280 92 | INCA_LIST_SUBSCRIPT 92 623,529 150 | INCA_LOAD_CONST_NORC
39 287,280 93 | STORE_FAST_C 93 623,529 151 | INCA_LONG_SUBTRACT_NORC_TOS
40 287,280 94 | INCA_LOAD_CONST 94 623,529 152 | ROT_THREE
41 287,280 95 | STORE_FAST 95 623,529 153 | INCA_LIST_ASS_SUBSCRIPT_NORC_TOS
42 287,280 96 | LOAD_FAST_C_NORC 96 623,529 154 | LOAD_FAST_D_NORC
43 287,280 97 | INCA_LOAD_CONST_NORC 97 623,529 155 | LOAD_FAST_A_NORC
44 287,280 98 | INCA_LIST_SUBSCRIPT_NORC 98 623,529 156 | INCA_LIST_SUBSCRIPT_NORC
45 287,280 99 | STORE_FAST_B 99 623,529 157 | INCA_LOAD_CONST_NORC
46 287,280 100 | SETUP_LOOP 100 623,529 158 | INCA_CMP_LONG_NORC_TOS
47 2,018,525 101 | LOAD_FAST_B_NORC 101 623,529 159 | POP_JUMP_IF_FALSE
48 2,018,525 102 | POP_JUMP_IF_FALSE_NORC 102 362,879 160 | BREAK_LOOP
49 1,731,245 103 | LOAD_FAST_C 103 260,650 162 | LOAD_FAST_A_NORC
50 1,731,245 104 | LOAD_FAST_B 104 260,650 163 | INCA_LOAD_CONST_NORC
51 1,731,245 105 | INCA_LOAD_CONST 105 260,650 164 | INCA_LONG_ADD_NORC
52 1,731,245 106 | INCA_LOAD_CONST 106 260,650 165 | STORE_FAST_A
53 1,731,245 107 | BUILD_SLICE 107 260,650 166 | JUMP_ABSOLUTE
54 1,731,245 108 | INCA_LIST_SUBSCRIPT 108 362,879 170 | JUMP_ABSOLUTE

Table A.6: Instruction trace and frequency for fannkuch function of fannkuch

benchmark.

102

APPENDIX A. DETAILED BENCHMARK EVALUATION

Interpreter Instruction Scheduling

do01 dn13s &

@ 1sv4 avol mﬂ‘

D 1svd4 avol (&

/l

\ 'zi

-/ L

) & @ ©

~ a0 - O X3 S S S oW ~a08 _ g0 40

O} 4O P WS 02 (9032 9032 gD o= - (d

_oedd © g S E E) AV N T a0 L\

199159 M o3 Zyodd Byodd o 1ol W RSy &y
Q> eV W7 e yoN

_ &//&\vnw \U/woz)

d
)

~

=

o

(2

3 _9

DT B~ =)

N 0 90
\
0

a

M& d0l dod
/,

) 33YHL 1OY

) 1SV4-avol

) 320787 d0od

DYON VvV 1Sv4 avol

Figure A.2: IIS intermediate graph for fannkuch benchmark.

APPENDIX A. DETAILED BENCHMARK EVALUATION 103

Schedule

’ Rank \ Instruction H Rank \ Instruction
1 | INCA_LOAD_CONST_NORC 20 | DUP_TOPX_NORC
2 | INCA_LONG_ADD_NORC 21 | INCA_CMP_LONG_NORC_TOS
3 | BUILD_SLICE 22 | INCA_LONG_SUBTRACT_NORC
4 | INCA_LIST_SUBSCRIPT 23 | STORE_FAST_A
5 | STORE_FAST_C 24 | INCA_LIST_ASS_SUBSCRIPT
6 | INCA_LOAD_CONST 25 | LOAD_FAST
7 | LOAD_FAST_B_NORC 26 | BREAK_LOOP
8 | POP_JUMP_IF_FALSE_NORC 27 | LDAD_FAST_A
9 | LOAD_FAST_C 28 | LOAD_FAST_D
10 | LoAD_FasT_B 29 | STORE_FAST
11 | INCA_LIST_SUBSCRIPT_NORC 30 | LOAD_FAST_C_NORC
12 | STORE_FAST_B 31 | INCA_LONG_SUBTRACT_NORC_TOS
13 | JuMP_ABSOLUTE 32 | ROT_THREE
14 | pop_BLOCK 33 | INCA_LIST_ASS_SUBSCRIPT_NORC_TOS
15 | LoAD_FAST_NORC 34 | LOAD_FAST_D_NORC
16 | 1NCA_cMP_LONG_NORC 35 | FAST_C_VARARGS_ONE_NORC
17 | poP_suMP_IF_FALSE 36 | FAST_C_VARARGS_TWO_RC_TOS_ONLY
18 | seTup_Loop 37 | pop_toP
19 | LoAD_FAST_A_NORC

Table A.7: Computed interpreter instruction schedule for the fannkuch bench-
mark (Argument: 9).

APPENDIX A. DETAILED BENCHMARK EVALUATION 104

A.3 Fasta

Dynamic Bytecode Frequencies

’ No. H Standard Instruction \ Frequency H Optimized Instruction Frequency

1 || LoaD_FasT 2,850,941 || LOAD_DEREF_NORC 1,200,000
2 || LOAD_DEREF 1,600,000 || JUMP_ABSOLUTE 810,342
3 || caLL_FuncTION 825,922 || LOAD_FAST_A_NORC 803,358
4 || STORE_FAST 816,708 || LOAD_FAST_NORC 801,693
5 || JuMP_ABSOLUTE 810,319 || FOR_ITER_RANGEITER 415,002
6 || BINARY_MULTIPLY 801,740 || POP_TOP 409,343
7 || FOR_ITER 417,739 || LOAD_FAST_C_NORC 408,352
8 || pop_toP 409,320 || LOAD_FAST_D_NORC 406,669
9 || BINARY_ADD 404,212 || LOAD_FAST_B_NORC 401,689
10 || BINARY_SUBSCR 402,414 || STORE_FAST_B 401,687
11 || BINARY_MODULO 401,676 || INCA_LONG_REMAINDER_NORC_TOS 401,666
12 || LIST_APPEND 400,155 INCA_LONG_MULTIPLY_NORC 401,666
13 || YIELD_VALUE 400,028 || LIST_APPEND 400,155
14 || BINARY_TRUE_DIVIDE 400,000 || YIELD_VALUE 400,028
15 || LOAD_CLOSURE 26,674 || STORE_FAST_A 400,025

Table A.8: Comparative dynamic instruction frequency for the fasta benchmark.
(Argument: 50,000)

’ No. ‘ Freq. ‘ Off. ‘ Instruction H No. ‘ Freq. ‘ Off. ‘ Instruction
1 | 400,000 8 | LOAD_FAST_A_NORC 9 | 400,000 16 | LOAD_FAST_D_NORC
2 400,000 9 | LOAD_FAST_NORC 10 400,000 17 | LOAD_FAST_A_NORC
3 400,000 10 | INCA_LONG_MULTIPLY_NORC 11 400,000 18 | INCA_FLOAT_MULTIPLY_NORC
4 | 400,000 11 | LOAD_FAST_NORC 12 400,000 19 | LOAD_FAST_C_NORC
5 | 400,000 12 | INCA_LONG_ADD_NORC_TOS 13 | 400,000 20 | INCA_FLOAT_TRUE_DIVIDE_NORC_TOS
6 | 400,000 13 | LOAD_FAST_B_NORC 14 | 400,000 21 | YIELD_VALUE
7 | 400,000 14 | INCA_LONG_REMAINDER_NORC_TOS 15 | 399,999 22 | POP_TOP
8 400,000 15 | STORE_FAST_A 16 399,999 23 | JUMP_ABSOLUTE

Table A.9: Instruction trace and frequency for genRandom function of fasta
benchmark.

APPENDIX A. DETAILED BENCHMARK EVALUATION 105

’ No. \ Freq. \ Off. \ Instruction H No. \ Freq. \ Off. \ Instruction
1 6,666 1 | BUILD_LIST 8 399,960 8 | LOAD_DEREF_NORC
2 6,666 2 | LOAD_FAST_A 9 399,960 9 | FAST_PYFUN_DOCALL_ZERO_NORC
3 | 406,626 3 | FOR_ITER_RANGEITER 10 | 399,960 10 | FAST_C_VARARGS_TWO_RC_TOS_ONLY
4 | 399,960 4 | STORE_FAST_B 11 | 399,960 11 | INCA_LIST_SUBSCRIPT
5 399,960 5 | LOAD_DEREF 12 399,960 12 | LIST_APPEND
6 399,960 6 | LOAD_DEREF_NORC 13 399,960 13 | JUMP_ABSOLUTE
7 | 399,960 7 | LOAD_DEREF_NORC 14 6,666 14 | RETURN_VALUE

Table A.10: Instruction trace and frequency for the anonymous list comprehension
of the fasta benchmark.

106

APPENDIX A. DETAILED BENCHMARK EVALUATION

Interpreter Instruction Scheduling

INIVA QTIIA

DYON ATdILININ ONOT VONI

d0O1 dod

Figure A.3: IIS intermediate graph for fasta benchmark.

APPENDIX A. DETAILED BENCHMARK EVALUATION

Schedule

107

’ Rank \ Instruction

H Rank \ Instruction

LOAD_DEREF_NORC
FAST_PYFUN_DOCALL_ZERO_NORC
FAST_C_VARARGS_TWO_RC_TOS_ONLY
INCA_LIST_SUBSCRIPT

LIST_APPEND
JUMP_ABSOLUTE

STORE_FAST_B

© 00 3O Uk Wi

LOAD_DEREF
LOAD_FAST_NORC

—_
o

—_
—_

FOR_ITER_RANGEITER

INCA_LONG_ADD_NORC_TOS

12 | LOAD_FAST_B_NORC

13 | INCA_LONG_REMAINDER_NORC_TOS

14 | STORE_FAST_A

15 | LOAD_FAST_D_NORC

16 | LoAD_FAST_A_NORC

17 | INCA_FLOAT_MULTIPLY_NORC
18 | LoaD_FAST_c_NORC

19 INCA_FLOAT_TRUE_DIVIDE_NORC_TOS

20 | YIELD_VALUE
21 | pop_toP
22 | INCA_LONG_MULTIPLY_NORC

Table A.11: Computed interpreter instruction schedule for the fasta benchmark

(Argument: 50,000).

A.4 Mandelbrot

Dynamic Bytecode Frequencies

| No. [Standard Instruction | Frequency || Optimized Instruction | Frequency
1 || LoaD_FasT 32,263,553 || LOAD_FAST_A_NORC 18,307,122
2 || STORE_FAST 13,343,628 || INCA_LOAD_CONST_NORC 7,172,150
3 || LoaD_consT 7,492,315 || LOAD_FAST_NORC 7,135,378
4 || FOoR_ITER 6,455,365 || FOR_ITER_RANGEITER 6,452,649
5 || POP_JuMP_IF_FALSE 6,359,639 || STORE_FAST 6,360,001
6 || coMpARE_OP 6,356,061 || POP_JUMP_IF_FALSE 6,359,662
7 || BINARY_ADD 6,354,917 || STORE_FAST_A 6,352,374
8 || BINARY_MULTIPLY 6,352,944 || INCA_COMPLEX_ADD_NORC_TOS 6,352,374
9 || cALL_FUNCTION 6,138,113 || INCA_COMPLEX_MULTIPLY_NORC 6,102,874
10 || JumMP_aBSOLUTE 252,469 || FAST_C_ONE_NORC 6,102,374
11 || GET_ITER 250,761 || LOAD_FAST_D_NORC 6,102,374
12 || seTup_Loop 250,756 || INCA_CMP_FLOAT_NORC_TOS 6,102,374
13 || BINARY_SUBTRACT 250,527 || LOAD_FAST_C_NORC 568,774
14 || BINARY_TRUE_DIVIDE 250,500 || INCA_LOAD_CONST 313,007
15 || INPLACE_SUBTRACT 219,000 || JUMP_ABSOLUTE 252,492

Table A.12: Comparative dynamic instruction frequency for the mandelbrot

benchmark. (Argument: 500)

APPENDIX A. DETAILED BENCHMARK EVALUATION

108

No \ Freq. \ Off. \ Instruction H No. \ Freq. \ Off. \ Instruction
1 501 28 | FOR_ITER_RANGEITER 44 6,102,374 71 | POP_JUMP_IF_FALSE
2 500 29 | STORE_FAST 45 150,726 72 | BREAK_LOOP
3 500 30 | INCA_LOAD_CONST_NORC 46 99,274 75 | POP_BLOCK
4 500 31 | LOAD_FAST_NORC 47 99,274 76 | LOAD_FAST_B_NORC
5 500 32 | INCA_COMPLEX_MULTIPLY_NORC 48 99,274 77 | INCA_LOAD_CONST_NORC
6 500 33 | LOAD_FAST_NORC 49 99,274 78 | LOAD_FAST_C_NORC
7 500 34 | INCA_COMPLEX_TRUE_DIVIDE_NORC_TOS 50 99,274 79 | INCA_LONG_LSHIFT_NORC
8 500 35 | INCA_LOAD_CONST_NORC 51 99,274 80 | INCA_LONG_ADD_NORC_SEC
9 500 36 | INCA_COMPLEX_SUBTRACT_NORC_TOS 52 99,274 81 | STORE_FAST_B
10 500 37 | STORE_FAST 53 250,000 82 | LOAD_FAST_C_NORC
11 500 38 | SETUP_LOOP 54 250,000 83 | INCA_LOAD_CONST_NORC
12 500 39 | LOAD_FAST_NORC 959 250,000 84 | INCA_CMP_LONG_NORC
13 500 40 | GET_ITER_NORC 56 250,000 85 | POP_JUMP_IF_FALSE
14 250,500 41 | FOR_ITER_RANGEITER 57 31,000 86 | LOAD_FAST_NORC
15 250,000 42 | STORE_FAST 58 31,000 87 | LOAD_ATTR_NORC
16 250,000 43 | INCA_LOAD_CONST 59 31,000 88 | LOAD_FAST_B
17 250,000 44 | STORE_FAST_A 60 31,000 89 | FAST_C_ONE
18 250,000 45 | INCA_LOAD_CONST_NORC 61 31,000 90 | POP_TOP
19 250,000 46 | LOAD_FAST_NORC 62 31,000 91 | INCA_LOAD_CONST
20 250,000 47 | INCA_FLOAT_MULTIPLY_NORC 63 31,000 92 | STORE_FAST_C
21 250,000 48 | LOAD_FAST_NORC 64 31,000 93 | INCA_LOAD_CONST
22 250,000 49 | INCA_FLOAT_TRUE_DIVIDE_NORC_TOS 65 31,000 94 | STORE_FAST_B
23 250,000 50 | INCA_LOAD_CONST_NORC 66 31,000 95 | JUMP_ABSOLUTE
24 250,000 51 | INCA_FLOAT_SUBTRACT_NORC_TOS 67 219,000 96 | LOAD_FAST_C_NORC
25 250,000 52 | LOAD_FAST_NORC 68 219,000 97 | INCA_LOAD_CONST_NORC
26 250,000 53 | INCA_COMPLEX_ADD_NORC_TOS 69 219,000 98 | INCA_LONG_SUBTRACT_NORC
27 250,000 54 | STORE_FAST_D 70 219,000 99 | STORE_FAST_C
28 250,000 55 | SETUP_LOOP 71 219,000 100 | JUMP_ABSOLUTE
29 250,000 56 | LOAD_FAST_NORC 72 500 101 | POP_BLOCK
30 250,000 57 | GET_ITER_NORC 73 500 102 | LOAD_FAST_C_NORC
31 6,201,648 58 | FOR_ITER_RANGEITER 74 500 103 | INCA_LOAD_CONST_NORC
32 6,102,374 59 | STORE_FAST 75 500 104 | INCA_CMP_LONG_NORC
33 6,102,374 60 | LOAD_FAST_A_NORC 76 500 105 | POP_JUMP_IF_FALSE
34 | 6,102,374 61 | LOAD_FAST_A_NORC 77 500 106 | LOAD_FAST_NORC
35 6,102,374 62 | INCA_COMPLEX_MULTIPLY_NORC 78 500 107 | LOAD_ATTR_NORC
36 6,102,374 63 | LOAD_FAST_D_NORC 79 500 108 | LOAD_FAST_B
37 6,102,374 64 | INCA_COMPLEX_ADD_NORC_TOS 80 500 109 | FAST_C_ONE
38 6,102,374 65 | STORE_FAST_A 81 500 110 | POP_TOP
39 6,102,374 66 | LOAD_FAST_NORC 82 500 111 | INCA_LOAD_CONST
40 6,102,374 67 | LOAD_FAST_A_NORC 83 500 112 | STORE_FAST_C
41 6,102,374 68 | FAST_C_ONE_NORC 84 500 113 | INCA_LOAD_CONST
42 6,102,374 69 | INCA_LOAD_CONST_NORC 85 500 114 | STORE_FAST_B
43 6,102,374 70 | INCA_CMP_FLOAT_NORC_TOS 86 500 115 | JUMP_ABSOLUTE
Table A.13: Instruction trace and frequency for the mandelbrot function of the

mandelbrot benchmark.

109

APPENDIX A. DETAILED BENCHMARK EVALUATION

Interpreter Instruction Scheduling

d001 Mv3dg YYON D 1SV4 avol

DYON LSNOD avoT VONI (4 = 32018 dOd

9 1Sv4 avol (& =) 1SNOD™avoT VONI

d007 dNn13s

D -1 5 O

300Y°g08® (308 -0 (130015015 ool vmﬁﬂ,om@o@ ;40 @O

_egd B8 S B g T gd O a3 360 Lo DY e T oed
53597 g vwm)ﬁ W¢oz4 S S vw%z N0 7 g RS mo%% \S

Figure A.4: IIS intermediate graph for mandelbrot benchmark.

APPENDIX A. DETAILED BENCHMARK EVALUATION

Schedule

’ Rank \ Instruction

H Rank \ Instruction

© 00~ O Uk Wi+

== e e e
DU WD~ O

17

LOAD_FAST_NORC
LOAD_FAST_A_NORC
INCA_COMPLEX_MULTIPLY_NORC
LOAD_FAST_D_NORC
INCA_COMPLEX_ADD_NORC_TOS
STORE_FAST_A
INCA_LOAD_CONST_NORC
INCA_LONG_SUBTRACT_NORC
STORE_FAST_C
JUMP_ABSOLUTE
LOAD_FAST_C_NORC
INCA_LONG_LSHIFT_NORC
INCA_LONG_ADD_NORC_SEC
STORE_FAST_B
INCA_LOAD_CONST
INCA_CMP_LONG_NORC
POP_JUMP_IF_FALSE

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

BREAK_LOOP

POP_BLOCK
LOAD_FAST_B_NORC
LOAD_ATTR_NORC
LOAD_FAST_B

FAST_C_ONE

POP_TOP
INCA_FLOAT_MULTIPLY_NORC
STORE_FAST_D

SETUP_LOOP

INCA_FLOAT_TRUE_DIVIDE_NORC_TOS

GET_ITER_NORC
FOR_ITER_RANGEITER
STORE_FAST
INCA_CMP_FLOAT_NORC_TOS
INCA_FLOAT_SUBTRACT_NORC_TOS
FAST_C_ONE_NORC

110

Table A.14: Computed interpreter instruction schedule for the mandelbrot
benchmark (Argument: 500).

APPENDIX A. DETAILED BENCHMARK EVALUATION 111

A.5 Nbody

Dynamic Bytecode Frequencies

’ No. H Standard Instruction \ Frequency H Optimized Instruction Frequency
1 || LoAD_FasT 19,819,638 || INCA_LOAD_CONST_NORC 9,000,317
2 || roaD_consT 9,007,540 || INCA_LIST_SUBSCRIPT_NORC 8,500,260
3 || BINARY_SUBSCR 8,501,013 || LOAD_FAST_NORC 7,300,084
4 || BINARY_MULTIPLY 6,750,233 || LOAD_FAST_A_NORC 5,000,111
5 || STORE_FaAST 4,306,788 || INCA_FLOAT_MULTIPLY_NORC 4,500,060
6 || STORE_SUBSCR 3,750,270 || ROT_THREE 3,750,027
7 || ROT_THREE 3,750,027 || INCA_LIST_ASS_SUBSCRIPT_NORC_TOS 3,750,000
8 || pup_torx 3,750,000 || DUP_TOPX_NORC 3,750,000
9 || INPLACE_aDD 2,250,044 || LOAD_FAST_B_NORC 3,500,160
10 || BINARY_SUBTRACT 1,500,087 || INCA_FLOAT_ADD 3,250,060
11 || INPLACE_SUBTRACT 1,500,035 || INCA_FLOAT_SUBTRACT 3,000,095
12 || BINARY_ADD 1,002,608 || STORE_FAST 2,056,696
13 || FOR_ITER 902,786 || LOAD_FAST_D_NORC 2,000,041
14 || JuMP_ABSOLUTE 802,019 || LOAD_FAST_C_NORC 2,000,041
15 || UNPACK_SEQUENCE 500,266 || INCA_FLOAT_MULTIPLY_NORC_SEC 1,250,010

Table A.15: Comparative dynamic instruction frequency for the nbody bench-

mark. (Argument: 50,000)

112

APPENDIX A. DETAILED BENCHMARK EVALUATION

Interpreter Instruction Scheduling

SO/~
So,~ 35~ Sog~ Loy, -
b) Oy) B) on
N o, ~. %o~ Do~ 2¥oy~, Mo~ N1y
Ly, ¥ Yon~, Mgy, VA on Ay oV A2y, 0,
Emb,ww Tm@g u w\ww.tww LSy Fan, N 'l Ty~ QYop~ . ¥m S.C\S y Ny ans
ON,\/
o,

_ 78\ p _ _
V 1SV4 3H0LS == é "% aav" LvoT4 WoNI

- Ay Ve _
D 1SV4 340LS = '\S») »0079 dod
g 1Sv4 3¥oLs ¥ 3 1Sv4 Id0l1S

) DYON ™ LdI¥DSEANS 1SIT VONI

_ L 3 7ONS
\/ o\n“ e 1 Yo o0 u@\%l//@

_ v\m _ 9/ PRs) -0 0% _ g0\ O\ O\ _gO\ O
a VmA_w \\v&AO/)Om&A_ “,Mi\&\wv\/ nw‘\w\%wOV wﬂw\w&/\/v\ V\ VmA 3 OM_ w\w&\wo n\vM\ yo¥ 3 WM\ VmA_w n\vA_O\ V&Aw o
W o) o)) ~30 20 oN oN oN
2 o) N o))

Figure A.5: IIS intermediate graph for nbody benchmark.

APPENDIX A. DETAILED BENCHMARK EVALUATION 113

Schedule

’ Rank \ Instruction H Rank \ Instruction
1 | INCA_LOAD_CONST_NORC 16 | LOAD_DEREF_NORC
2 | INCA_LIST_SUBSCRIPT_NORC 17 | GET_ITER_NORC
3 | LOAD_FAST_NORC 18 | FOR_ITER_LISTITER
4 | INCA_FLOAT_MULTIPLY_NORC 19 | STORE_FAST_A
5 | INCA_FLOAT_ADD 20 | STORE_FAST_B
6 | ROT_THREE 21 | STORE_FAST_D
7 | INCA_LIST_ASS_SUBSCRIPT_NORC_TOS 22 | INCA_FLOAT_MULTIPLY_NORC_SEC
8 | LOAD_FAST_A_NORC 23 | JuMP_ABSOLUTE
9 | DUP_TOPX_NORC 24 | pop_BLOCK
10 | LOAD_FAST_B_NORC 25 | LOAD_FAST_C_NORC
11 | INCA_FLOAT_SUBTRACT 26 | LOAD_FAST_D_NORC
12 | STORE_FAST_C 27 | INCA_UNPACK_TUPLE_TWO
13 | INCA_FLOAT_MULTIPLY_NORC_TOS 28 | INCA_FLOAT_POWER_NORC_TOS
14 | STORE_FAST 29 | FOR_ITER_RANGEITER
15 | serup_roop

Table A.16: Computed interpreter instruction schedule for the nbody benchmark
(Argument: 50,000).

APPENDIX A. DETAILED BENCHMARK EVALUATION 114

A.6 Spectralnorm

Dynamic Bytecode Frequencies

’ No. H Standard Instruction \ Frequency H Optimized Instruction | Frequency

1 || LoaD_FasT 64,085,676 || LOAD_FAST_A_NORC 25,601,220
2 || BINARY_ADD 32,002,543 || INCA_LOAD_CONST_NORC 19,200,002
3 || Loap_consT 25,623,176 || LOAD_FAST_NORC 12,816,822
4 || STORE_FAST 19,240,312 || LOAD_FAST_B_NORC 12,816,051
5 || BINARY_MULTIPLY 12,800,871 || INCA_FLOAT_ADD_NORC_TOS 12,800,000
6 || BINARY_TRUE_DIVIDE 12,800,001 || INCA_LONG_ADD_NORC 12,800,000
7 || cALL_FUNCTION 6,468,380 || JUMP_ABSOLUTE 6,418,402
8 || For_1TER 6,435,168 || FOR_ITER_ZIP 6,416,401
9 || JuMP_aBSOLUTE 6,418,379 || STORE_FAST_A 6,416,400
10 || RETURN_VALUE 6,401,632 || INCA_LOAD_CONST 6,416,015
11 INPLACE_ADD 6,400,834 || RETURN_VALUE 6,401,632
12 || UNPACK_SEQUENCE 6,400,661 INCA_FLOAT_ADD_NORC_SEC 6,400,800
13 || LoAD_GLOBAL 52,564 || STORE_FAST_D 6,400,401
14 || LoAD_ATTR 20,453 || LOAD_FAST_D_NORC 6,400,401
15 || pop_top 16,985 || INCA_UNPACK_TUPLE_TWO 6,400,400

Table A.17: Comparative dynamic instruction frequency for the spectralnorm
benchmark. (Argument: 400)

’ No. ‘ Freq. ‘ Off. ‘ Instruction H No. ‘ Freq. ‘ Off. ‘ Instruction
1| 6,400,000 1 | INCA_LOAD_CONST 10 | 6,400,000 10 | INCA_LONG_MULTIPLY
2 | 6,400,000 2 | LOAD_FAST_A_NORC 11 6,400,000 11 | INCA_LOAD_CONST_NORC
3 6,400,000 3 | LOAD_FAST_B_NORC 12 6,400,000 12 | INCA_LONG_TRUE_DIVIDE_NORC_TOS
4 | 6,400,000 4 | INCA_LONG_ADD_NORC 13 | 6,400,000 13 | LOAD_FAST_A_NORC
5 | 6,400,000 5 | LOAD_FAST_A_NORC 14 | 6,400,000 14 | INCA_FLOAT_ADD_NORC_TOS
6 | 6,400,000 6 | LOAD_FAST_B_NORC 15 | 6,400,000 15 | INCA_LOAD_CONST_NORC
7 | 6,400,000 7 | INCA_LONG_ADD_NORC 16 | 6,400,000 16 | INCA_FLOAT_ADD_NORC_TOS
8 6,400,000 8 | INCA_LOAD_CONST_NORC 17 6,400,000 17 | INCA_FLOAT_TRUE_DIVIDE
9 6,400,000 9 | INCA_LONG_ADD_NORC_TOS 18 6,400,000 18 | RETURN_VALUE

Table A.18: Instruction trace and frequency for the eval_A function of the
spectralnorm benchmark.

APPENDIX A. DETAILED BENCHMARK EVALUATION

115

No Freq. \ Off. \ Instruction H No. \ Freq. \ Oft. \ Instruction

1 8,020 12 | FOR_ITER_RANGEITER 19 3,200,000 30 | LOAD_FAST_A_NORC
2 8,000 13 | STORE_FAST 20 3,200,000 31 | LOAD_FAST_NORC
3 8,000 14 | INCA_LOAD_CONST 21 | 3,200,000 32 | LOAD_FAST_NORC
4 8,000 15 | STORE_FAST_A 22 | 3,200,000 33 | LOAD_FAST_C_NORC
5 8,000 16 | SETUP_LOOP 23 | 3,200,000 34 | FAST_PYFUN_TWO_NORC
6 8,000 17 | INCA_LOAD_GLOBAL 24 3,200,000 35 | LOAD_FAST_D_NORC
7 8,000 18 | INCA_LOAD_GLOBAL_NORC 25 | 3,200,000 36 | INCA_FLOAT_MULTIPLY_NORC_TOS
8 8,000 19 | INCA_LOAD_GLOBAL_NORC 26 | 3,200,000 37 | INCA_FLOAT_ADD_NORC_SEC
9 8,000 20 | LOAD_FAST_B_NORC 27 | 3,200,000 38 | STORE_FAST_A

10 8,000 21 | FAST_C_ONE_NORC 28 3,200,000 39 | JUMP_ABSOLUTE

11 8,000 22 | FAST_PYFUN_DOCALL_ONE_RC_TOS_ONLY 29 8,000 40 | POP_BLOCK

12 8,000 23 | LOAD_FAST_B 30 8,000 41 | LOAD_FAST_NORC

13 8,000 24 | FAST_PYFUN_DOCALL_TWO 31 8,000 42 | LOAD_ATTR_NORC

14 8,000 25 | GET_ITER 32 8,000 43 | LOAD_FAST_A

15 3,208,000 26 | FOR_ITER_ZIP 33 8,000 44 | FAST_C_ONE

16 3,200,000 27 | INCA_UNPACK_TUPLE_TWO 34 8,000 45 | POP_TOP

17 3,200,000 28 | STORE_FAST_C 35 8,000 46 | JUMP_ABSOLUTE

18 3,200,000 29 | STORE_FAST_D

Table A.19: Instruction trace and frequency for the eval_ A_times_u function
of the spectralnorm benchmark.

116

APPENDIX A. DETAILED BENCHMARK EVALUATION

Interpreter Instruction Scheduling

INTVA NYNLIY (4 7/ 1SV4 3YOLS

PR _.yo BPNT LT ~\odd O T e PENTo
359 w = N (63 ar® (e ¥ o)
RIS AR 2O T o P (@I N T yen©
\\u&Oi N Oi\m0/7 ~a0
~
mOV Ov\\u
S

Figure A.6: IIS intermediate graph for spectralnorm benchmark.

APPENDIX A. DETAILED BENCHMARK EVALUATION

Schedule

117

’ Rank \ Instruction

H Rank \ Instruction

© 00 ~J O Uk Wi+

= =
—= O

—
[\

LOAD_FAST_A_NORC
LOAD_FAST_B_NORC
INCA_LONG_ADD_NORC
INCA_LOAD_CONST_NORC
INCA_FLOAT_ADD_NORC_TOS
INCA_FLOAT_TRUE_DIVIDE
RETURN_VALUE
FOR_ITER_ZIP
INCA_UNPACK_TUPLE_TWO
STORE_FAST_C
STORE_FAST_D
LOAD_FAST_NORC

13
14
15
16
17
18
19
20
21
22
23

LOAD_FAST_C_NORC
FAST_PYFUN_TWO_NORC
LOAD_FAST_D_NORC

INCA_FLOAT_MULTIPLY_NORC_TOS
INCA_FLOAT_ADD_NORC_SEC

STORE_FAST_A
JUMP_ABSOLUTE

INCA_LONG_TRUE_DIVIDE_NORC_TOS

INCA_LONG_ADD_NORC_TOS
INCA_LONG_MULTIPLY
INCA_LOAD_CONST

Table A.20: Computed interpreter instruction schedule for the spectralnorm
benchmark (Argument: 400).

A.7 Django

Dynamic Bytecode Frequencies

’ No. H Standard Instruction \ Frequency H Optimized Instruction | Frequency
1 || voap_FasT 9,184,485 || INCA_LOAD_GLOBAL_NORC 4,397,549
2 || LoAD_GLOBAL 5,625,935 || LOAD_FAST 3,533,608
3 || caLL_runctiON 4,594,435 || LOAD_FAST_A_NORC 2,990,177
4 || Loap_consT 2,549,065 || POP_JUMP_IF_FALSE 1,788,535
5 || POP_JUMP_IF_FALSE 2,332,208 || FAST_C_VARARGS_TWO_NORC 1,623,574
6 || LoAD_ATTR 2,230,628 || RETURN_VALUE 1,445,828
7 || STORE_FAST 2,055,285 || LOAD_ATTR 1,255,999
8 || RETURN_VALUE 1,445,800 || STORE_FAST 1,245,146
9 || For_1TER 1,421,961 || CALL_FUNCTION 1,147,164

10 || pop_BLOCK 1,088,246 || POP_BLOCK 1,088,249
11 || pop_juMp_IF_TRUE 1,085,255 || POP_JUMP_IF_TRUE 1,085,382
12 || JuMP_aBSOLUTE 933,943 || LOAD_ATTR_NORC 974,795
13 || suMp_rFoRrWARD 752,603 || JUMP_ABSOLUTE 934,068
14 || setup_ExcepT 746,021 || INCA_LOAD_CONST 877,141
15 || sTORE_Suscr 682,121 || LOAD_CONST 862,260

Table A.21: Comparative dynamic instruction frequency for the django bench-

mark.

APPENDIX A. DETAILED BENCHMARK EVALUATION

118

’ No. ‘ Freq. ‘ Off. ‘ Instruction H No. ‘ Freq. ‘ Off. ‘ Instruction
1 473,360 1 | LOAD_DEREF_NORC 21 67,375 44 | LOAD_FAST_A_NORC
2 473,360 2 | POP_JUMP_IF_FALSE_NORC 22 67,375 45 | INCA_LOAD_GLOBAL_NORC
3 | 473,360 21 | SETUP_EXCEPT 23 67,375 46 | FAST_C_VARARGS_TWO_NORC
4 | 473,360 22 | INCA_LOAD_GLOBAL_NORC 24 67,375 47 | POP_JUMP_IF_FALSE
5 | 473,360 23 | LOAD_FAST_A_NORC 25 67,375 55 | INCA_LOAD_GLOBAL_NORC
6 | 473,360 24 | INCA_LOAD_GLOBAL_NORC 26 67,375 56 | LOAD_FAST_A_NORC
7 | 473,360 25 | FAST_C_VARARGS_TWO_NORC 27 67,375 57 | FAST_PYFUN_DOCALL_ONE_NORC
8 473,360 26 | POP_JUMP_IF_TRUE 28 67,375 58 | STORE_FAST_A
9 67,375 27 | INCA_LOAD_GLOBAL_NORC 29 67,375 59 | JUMP_FORWARD
10 67,375 28 | LOAD_FAST_A_NORC 30 67,375 68 | POP_BLOCK
11 67,375 29 | INCA_LOAD_CONST_NORC 31 67,375 69 | JUMP_ABSOLUTE
12 67,375 30 | FAST_C_VARARGS_TWO_NORC 32 405,985 101 | INCA_LOAD_GLOBAL_NORC
13 67,375 31 | POP_JUMP_IF_FALSE 33 405,985 102 | LOAD_FAST_A_NORC
14 67,375 37 | SETUP_EXCEPT 34 | 405,985 103 | INCA_LOAD_GLOBAL_NORC
15 67,375 38 | INCA_LOAD_GLOBAL_NORC 35 | 405,985 104 | FAST_C_VARARGS_TWO_NORC
16 67,375 39 | LOAD_ATTR_NORC 36 405,985 105 | POP_JUMP_IF_TRUE
17 67,375 40 | LOAD_CONST_NORC 37 | 473,360 113 | POP_BLOCK
18 67,375 41 | INCA_CMP_LONG_NORC_TOS 38 | 473,360 114 | JUMP_FORWARD
19 67,375 42 | POP_JUMP_IF_FALSE 39 | 473,360 138 | LOAD_FAST_A
20 67,375 43 | INCA_LOAD_GLOBAL_NORC 40 473,360 139 | RETURN_VALUE

Table A.22: Instruction trace and frequency for the force_unicode function of
the django benchmark.

119

APPENDIX A. DETAILED BENCHMARK EVALUATION

Interpreter Instruction Scheduling

S
/F
e

a

DYON TVE019 avoT VON

__= L 1Sv4 avol

> JD014 dod

&
1/,
V90719 avoT VONI ©
<4 @ »
S
& O G &= G ©

Figure A.7: IIS intermediate graph for django benchmark (without edges of

weight < 2).

APPENDIX A. DETAILED BENCHMARK EVALUATION 120

Schedule

’ Rank \ Instruction H Rank \ Instruction
1 | INCA_LOAD_GLOBAL_NORC 37 | LOAD_CONST_NORC
2 | LOAD_FAST_A_NORC 38 | INCA_CMP_LONG_NORC_TOS
3 | FAST_PYFUN_DOCALL_ONE_NORC 39 | INCA_LIST_SUBSCRIPT_NORC
4 | STORE_FAST_A 40 | CALL_FUNCTION_RC_TOS_ONLY
5 | PoP_BLOCK 41 | GET_ITER_NORC
6 | JUMP_FORWARD 42 | BINARY_SUBTRACT
7 | LOAD_FAST_B_NORC 43 | cOMPARE_OP
8 | LOAD_ATTR_NORC 44 | LIST_APPEND
9 | GET_ITER 45 | INCA_LOAD_GLOBAL
10 | FOR_ITER_LISTITER 46 | INCA_BUILD_TUPLE_TWO
11 | sToRE_FAST_C 47 | FAST_C_VARARGS_TWO_RC_TOS_ONLY
12 | SETUP_EXCEPT 48 | LOAD_FAST_C_NORC
13 | LOAD_FAST_NORC 49 | CALL_FUNCTION_NORC
14 | INCA_LOAD_CONST_NORC 50 | LoAD_FAST_C
15 | FAST_C_VARARGS_THREE_NORC 51 | COMPARE_OP_NORC_TOS
16 | poP_JUMP_IF_FALSE 52 | POP_JUMP_IF_FALSE_NORC
17 | LoaD_FAST 53 | LOAD_DEREF
18 | Loap_consT 54 | LOAD_FAST_A
19 | STORE_SuBscr 55 | LOAD_FAST_B
20 | sETUP_LOOP 56 | CALL_FUNCTION_VAR_KW
21 | LOAD_FAST_D_NORC 57 | INCA_LIST_ASS_SUBSCRIPT_NORC_TOS
22 | FAST_C_VARARGS_TWO_NORC 58 | CALL_FUNCTION_VAR
23 | POP_JUMP_IF_TRUE 59 | BINARY_SUBSCR_NORC
24 | LOAD_ATTR 60 | COMPARE_OP_NORC
25 | INCA_LOAD_CONST 61 | INCA_DICT_SUBSCRIPT_NORC
26 | FAST_C_VARARGS_TWO 62 | UNARY_NOT
27 | FAST_PYFUN_ONE_RC_TOS_ONLY 63 | BUILD_LIST
28 | RETURN_VALUE 64 | STORE_FAST_B
29 | FOR_ITER 65 | FAST_C_ZERO_RC_TOS_ONLY
30 | STORE_FAST 66 | FAST_PYFUN_DOCALL_ONE_RC_TOS_ONLY
31 | LOAD_GLOBAL 67 | BINARY_ADD
32 | CALL_FUNCTION 68 | UNPACK_SEQUENCE
33 | pop_toP 69 | FOR_ITER_TUPLEITER
34 | JUMP_ABSOLUTE 70 | BINARY_SUBSCR
35 | LOAD_FAST_D 71 | INCA_UNPACK_TUPLE_TWO
36 | FAST_PYMETH_ONE 72 | LOAD_DEREF_NORC

Table A.23: Computed interpreter instruction schedule for the django bench-
mark.

APPENDIX A. DETAILED BENCHMARK EVALUATION 121
A.8 Al
Dynamic Bytecode Frequencies
’ No. H Standard Instruction \ Frequency H Optimized Instruction | Frequency
1 || roAD_FAST 6,219,727 || LOAD_FAST_B_NORC 2,316,704
2 || BINARY_SUBSCR 2,481,525 || JUMP_ABSOLUTE 1,607,889
3 || FoR_ITER 1,868,739 || FOR_ITER_LISTITER 1,539,966
4 || STORE_FAST 1,727,699 || POP_TOP 1,533,860
5 || JuMmp_ABSOLUTE 1,607,866 || YIELD_VALUE 1,455,306
6 || pop_toP 1,533,837 || STORE_FAST_B 1,371,449
7 || Loap_consT 1,523,192 || LOAD_DEREF_NORC 1,364,372
8 || YIELD_VALUE 1,455,306 || INCA_TUPLE_SUBSCRIPT_NORC 1,364,368
9 || LOAD_DEREF 1,364,559 || LOAD_FAST_A_NORC 1,294,886
10 || BINARY_ADD 1,072,467 || INCA_LOAD_CONST_NORC 742,294
11 || caLL_FuncTION 744,620 || LOAD_FAST_B 692,775
12 || STORE_SUBSCR 693,327 || LOAD_FAST_C_NORC 692,769
13 || LoAD_GLOBAL 556,424 || INCA_LOAD_CONST 651,823
14 || BuILD_SLICE 522,004 || INCA_LONG_ADD_NORC_TOS 645,135
15 || poP_JuMP_IF_FALSE 437,200 || INCA_LIST_SUBSCRIPT_NORC 643,272

Table A.24: Comparative dynamic instruction frequency for the ai benchmark.

No Freq. \ Off. \ Instruction H No. \ Freq. \ Off. \ Instruction
1 80,642 12 | FOR_ITER 20 4,226 31 | INCA_LOAD_GLOBAL_NORC
2 80,640 13 | STORE_DEREF 21 4,226 32 | LOAD_CLOSURE
3 80,640 14 | LOAD_FAST_A 22 4,226 33 | BUILD_TUPLE
4 | 80,640 15 | INCA_LOAD_GLOBAL_NORC 23 4,226 34 | INCA_LOAD_CONST
5 | 80,640 16 | INCA_LOAD_GLOBAL_NORC 24 4,226 35 | MAKE_CLOSURE
6 80,640 17 | LOAD_CLOSURE 25 4,226 36 | LOAD_FAST_B_NORC
7 80,640 18 | BUILD_TUPLE 26 4,226 37 | GET_ITER_NORC
8 | 80,640 19 | INCA_LOAD_CONST 27 4,226 38 | FAST_CALL_GENERATOR_ONE
9 80,640 20 | MAKE_CLOSURE 28 4,226 39 | FAST_PYFUN_DOCALL_ONE_RC_TOS_ONLY
10 80,640 21 | LOAD_FAST_B_NORC 29 4,226 40 | FAST_C_ONE_RC_TOS_ONLY
11 80,640 22 | GET_ITER_NORC 30 4,226 41 | INCA_CMP_LONG
12 80,640 23 | FAST_CALL_GENERATOR_ONE 31 4,226 42 | JUMP_FORWARD
13 80,640 24 | FAST_PYFUN_DOCALL_ONE_RC_TOS_ONLY 32 76,414 43 | ROT_TWO
14 | 80,640 25 | FAST_C_ONE_RC_TOS_ONLY 33 76,414 44 | PpOP_TOP
15 80,640 26 | DUP_TOP 34 80,640 45 | POP_JUMP_IF_FALSE
16 80,640 27 | ROT_THREE 35 184 46 | LOAD_DEREF
17 80,640 28 | INCA_CMP_LONG 36 184 47 | YIELD_VALUE
18 80,640 29 | JUMP_IF_FALSE_OR_POP 37 184 48 | poP_TOP
19 4,226 30 | INCA_LOAD_GLOBAL_NORC 38 184 49 | JUMP_ABSOLUTE

Table A.25: Instruction trace and frequency for the n_queens function of the ai
benchmark.

122

SO/~
<L)
YA~ ¢0\</
Jy, U&.O < On V] AQ\Q
5 n oy~ L, o N b Ay, 0S8~
TO>\/ - TWAEM/\ - \A_YOMS\/ N agy \TUW%D ~ AW%OU/ wv\mOwO/ TO\</,U/ U%mbml ans Ssp~
LSby~, 7 434, Oeoq oeow S <457y Qo Qboy L8y, wf\ﬁ <451y

APPENDIX A. DETAILED BENCHMARK EVALUATION

Interpreter Instruction Scheduling

DYON 434¥3a avol

anvA aaia O

() doL dod

3011S aling

9 1Sv4 avol

Figure A.8: IIS intermediate graph for ai benchmark (without edges of weight

<1

APPENDIX A. DETAILED BENCHMARK EVALUATION

Schedule

123

’ Rank \ Instruction

H Rank \ Instruction

© 00 O Ui W N+

I I NI N I N N S e e S T e T
T W N O OO Ul WwWwNn —=O

LOAD_FAST_A_NORC
INCA_LIST_SUBSCRIPT_NORC
INCA_LOAD_CONST_NORC
INCA_LONG_ADD_NORC
BUILD_SLICE
INCA_LIST_SUBSCRIPT
LOAD_FAST_B_NORC
INCA_TUPLE_SUBSCRIPT_NORC
YIELD_VALUE

POP_TOP

JUMP_ABSOLUTE
INCA_LOAD_CONST
RETURN_VALUE

LOAD_FAST_A
FOR_ITER_LISTITER
STORE_FAST_B
LOAD_DEREF_NORC
INCA_LIST_ASS_SUBSCRIPT_NORC_TOS
LOAD_FAST_C_NORC
INCA_LONG_SUBTRACT_NORC_TOS
ROT_THREE

LOAD_FAST_B

LOAD_FAST_D
INCA_LONG_NEGATIVE
INCA_LIST_ASS_SUBSCRIPT

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

INCA_LOAD_GLOBAL_NORC
LOAD_CLOSURE
BUILD_TUPLE

LOAD_CONST

MAKE_CLOSURE
INCA_CMP_LONG_NORC_TOS
POP_JUMP_IF_FALSE
LOAD_FAST_NORC
POP_JUMP_IF_FALSE_NORC
SETUP_LOOP
DUP_TOPX_NORC
INCA_LONG_SUBTRACT_NORC
FAST_PYFUN_DOCALL_ONE_NORC
FAST_PYFUN_DOCALL_ONE_RC_TOS_ONLY
GET_ITER
FAST_CALL_GENERATOR_ONE
FOR_ITER_LISTREVITER
STORE_FAST_A

BINARY_ADD

LOAD_FAST

BREAK_LOOP
INCA_LONG_ADD_NORC_TOS
ROT_TWO

STORE_FAST_D

Table A.26: Computed interpreter instruction schedule for the ai benchmark.

APPENDIX A. DETAILED BENCHMARK EVALUATION

A.9 Reference Count Quickening Details

Reduction
Benchmark Increment \ Decrement
ai-1 0.7789 0.7885
binarytrees-14 0.6906 0.7664
django-1 0.8416 0.8426
fannkuch-9 0.7212 0.7279
fasta-50000 0.6351 0.6544
mandelbrot-500 0.2576 0.4596
nbody-50000 0.4218 0.5250
spectralnorm-400 0.5283 0.6976

124

Table A.27: Relative reduction of reference count operations per benchmark.

RC Operations per Bytecode

Benchmark Standard | Optimized | Ratio
ai-1 2.7479 2.1543 0.7840
binarytrees-14 1.9073 1.3929 0.7303
django-1 3.2832 2.7649 0.8422
fannkuch-9 2.6886 1.9483 0.7247
fasta-50000 2.2658 1.4635 0.6459
mandelbrot-500 1.3523 0.5064 0.3745
nbody-50000 2.0210 0.9670 0.4785
spectralnorm-400 1.7604 1.1049 0.6276
’ Average ‘ 2.2633 1.5378 ‘ 0.6825

Table A.28: Number of reference count operations per bytecode per benchmark.

Appendix B

Comparison of Benchmark
Results

125

126

APPENDIX B. COMPARISON OF BENCHMARK RESULTS

Benchmark Run-time Results for Intel Nehalem

i7-920

NI
do,w,oo S o\vm, w/x o> ¢®

suoneinbiuo) Ja1aidiaiu|

NI
oo,w,oc s o\vm \v/x > ¢®

do,w o oo&o\vm o e
L

do,w o oo&o\vm oM b
1

- 5T - ome oo 80
0z e -80 ~0Z0 | 50
L -
oo . oy Lot wy moaw Lgz'0 ; Ja [l
8¢ 21 ~0g0 [t
_og) | cor -zT
Lyt GE'0 |1
00£-wJouendads 00z-WwJouendads 00T-WwJoufendads Y0s-Apoqu
X X X X X X X X
c% o o& 0 % o ™ o& 0 % o c% o o»x »£° % o o ™ o)x »5° % o
L , 1 L , L , , ,
Lo =y -t
ﬁ.ﬂ. | gz oy 9T -2 = -80
”m v 07 ! v T i A
wn ~0€ e -0¢ ~91 rot
: -z : -8 Lz
~g€ ~v -o¢
Lzz 7T
305T-Apoqu 300T-Apoqu 00G-loig|spuew 00¥-1oig|spuew
VX
oo«v o o&o%. X oV o® o%w o o&o%, A oV P o% >, o&o% AoV of o% oz o& P PN
1 L 1 1 1 1 1
. . ~80 -850 .
G o ~0€0 sy . wan L
g T L o | T e B e T
' . I . — 0"
oW e e ot i R oo “* M.H
~or'o it Caso i
-1 Lgg0 -0¢
-S¥'0 -€T -06°0 x4
40G-else} A0ST-eise} A00T-eise} 6-yomjuue}
x Wx x X X Wx
.oo,w o,v/ O)x w/x N g5 .oo,v oc/ O)x \v.»u w/x 0v o/m do«v ooz O)x \vm w/x ov o/m .oo,w o,v/ O)x w/x o
1 1 1 1 1 L 1 1 1 1
LyT0 v -sz P)
i o My -9ro —0€ - |0 s4 HM.W
.’1* e 810 oo b —ge L < =L0 (.” £ L9T'0
-0z0 —o r M.N ~8T0
~220 Loy - _oz0
~¥Z°0 -0T
8-yanyuuey yT-SaalAreulq ZT-SaanAreulq 0T-SaanAleulq

(spuogas) swnuny

Figure B.1: Benchmark run-times per optimization technique.

COMPARISON OF BENCHMARK RESULTS 127

APPENDIX B.

N N
FNIRN m 45 2\0
¢ o,w% \mm// o%,w\ %o/@m
P WV o 7%9 °
L L L , L
iy vt - 9SYE'T
wwi ..umm,, &Q - ¥26ET
Ly . - 00vP'T
- 788Y'T
-9/EST
-9/85T
00E-wWwJouendads

Nen NS
RS
SN N \m// c%myw\m// %O
X % /mo/% To @o
| |
oy -
o, ._.v.\a C
J0ST-Apoqu
N o
Nen S BTN
o) o //)2
@ %,_ m// QP - W
moo,.v m.e_ ofoop ocﬂnvoo
—- 00520
F ¥ -¥0.2°0
» R .
u%a t%.. . - 91620
q - 9€TE0
A0S-eise}
N N o057 /o¢
%.9 %y\\o@//%%ov m//é,v Z/
v m&« ,.9/700 fmyo
, ,
. -8 ~0069€T°0
Wr Ml: ~G290¥T°0
. - 00¥¥¥T'0
~GeesvT0
~00T2ST 0
. ~G¢099T°0
~00009T°0
8-yanmjuuey

S3|NpPayds uononisuy| Jaraidia|

002-WJoufendads

\WANY
SN S %\m \©
<o %e\m// RO
66& \m & 96 OO//
PN ﬁ,uz
~V26ET
—00vY'T
~v88t'T
—9.ES'T
. ~9/8S'T
»00T-Apoqu
N o
m, A\ ST N
Nt Ng / RONS
v?&& oa/ @4&00&96\®V@v00//AJ
% oS owny/ To 0 fmzo
~GeelLo
s& um..& . 7 Lo0T80
- . 2
: ..NM - 52060
. —0000'T
A0ST-else}
N R
EARY NS
/7 o %y\“.uw//% e m,//&v &Nﬁ/ N
m®® P o Too @.oo
|
ot e b ;i -Seore
...,“...n.. W« .bﬂm —9EEY'T
. X3 —6v9r'C
- : < Ll voere
—18¢5¢C
yT-SeanAreulq

\
§ o%@ \m,// S NS
S zmax AR & oO
| | | | |
- .
—009T°0
R R
L - ~¥9.1°0
—6v81°0
—9€61°0
~5868
00T-WwJoufendads
N N
2\ o.,u\m \O
RS RO\
9,. o%y \m// oco, M/@%O//AJ
PN /,%. zow ¢o ,vvo fmvo
| |
~1096°0
..aun ai fd 0000’
. °2 ~v0v0'T
= . ~9180'T
. —9e¢T'T
~V99T'T
005-10iq[3puew
N o
ENEN S QTN
) N)2
%%, %« m//%%%\mw@v o/@
moa /ow Too ¥ fmv&
~006%°0
‘s ~¥815°0
W hﬂ s 97 -9pS0
- e Lol
o« ~1809°0
. —00¥9°0
A00T-e1se}
N o
A B e A\
o ¢9\®®// G@/«v m.// < AAJ@
O R O
2 9% oo 4,oo @o
| |
i et set | LSZ0880°0
%o K 2 —00006¥'0
o e _sgosero
i Lt ~00T#0S'0
—G¢eTTS0
—00¥8TS0
ZT-seankreulq

\
99\@/ 2N \®M oom\mwzz%
ST e %\m ,Mo//é
622 e 0¥ T% @
L L L , L
~9S0L°0
§ i~
Qm@ JW ~96€L°0
: . L vvLL0
~00T8°0
10s-Apoqu
N R
N =) omxmzzo
o w%ﬂw// @%\m// %o//em
m%,. zma ,% To rm,.o
,
&S e .
s dss 00790
wm” :@ %.. -¥2.9°0
~950.°0
-96€.°0
. ~vvLL0
00p-l10Jq|apuew
N o
OL A\ S ST EN
%o/ x\\mm// %%,w mw/@v o//AJm
2 %a &zmé zowpxrooo, 1o 6/00
, ?
m& 1 C
6-Uonxjuue}
N R
Nen N om\m//o
,.%/c%,_\mm//%o o m,//év PW°
PN 27 %y o,/Too @.OO
|
% l I-
...w.u %.m. - 006800
3 ol - SzeeTT 0
—~009STT 0
~G206TT'0
0T-S@ankleulq

(areas-1ibs *spuooas) awnuny

instruction schedules.

Benchmark run-times for different interpreter

Figure B.2

128

APPENDIX B. COMPARISON OF BENCHMARK RESULTS

Benchmark Run-time Results for PowerPC 970

do&, oo/ OO)xo \vm \vxx ,OVx ,9@

suoneinbiuo) Ja1aidiaiy|

do,w o oo&owm o e
I I I

N AN
oo,w,oo s o\vm w/x o> ¢®

ey
oo,w,oc s o\vm. \v/x > ¢®

wt 59 s Y = . " e
Fo'L o€ 80 .-
Lg, ~Z€ .
e [sL e e bered 60 - Lo€
L i ‘< 58 - B re = ’ L0'T .
- ~06 LOY ° roe
L g6 TT
00g-wJouendads 00z-wJoupendads 00T-wJoupendads %0S-Apoqu
X X X X X X X X
coMw S o& 2 w/x o ¢® o oo/ o& 5 \V/x o o® o oz o& % w/x > ¢® RSkt o& 0 w/x o ¢®
1 , , , , , 1 1 ,
oo » w.a -sv 75 v Py Ve
T) ros = lLog i L Foe
ey -8 we=m Lgg . N Lgg A
b ad -6 b o9 e = e ~09 . TR e ree
Lot rso s s . -29 t a4 Loy
Fo'L Fv'9
FTT Lgy A%
305T-Apoqu 300T-Apoqu 00G-10iqjepuewW 00p-loiqjepuew
X X X X
OO/W O/v/ O\/ O\vmv \V/x Ov\ o;n‘v d\udw OO/ O\/ OV@ \V/x Ov\ o/n.v .O\u/hw OO/ O) O\v® \V/x Ov\ o/n‘v OOJV Ozv/ O) O\vmv \V/x Ov\ 0/n\.
1 1 1 1
“eee ~02T N A ~€¢ SV
W . ale . .
X FaTT s Loe e Lvz .
A . . K e L o [
LA fe.d ~0€T S cyn Lge D ey 9
[y Y es e O] Wl . . *ﬂ Lg'g
FSeT . . o b r9¢ d
rov L -z : 09
X -Oov'T .
Y0G-eise} N0ST-eIse) Y00T-®eIse} 6-yomjuuey
X X X X
do& oo/ O)x 50 w/x o 98 e oo/ O)x ~5° \v/x o ¢ S oo/ o\/x 52 w/x o ¢® do,w oo/ o\/x 50 w/x o ¢®
1 L 1 L L
o, L~ T Loro
ﬁ. o -850 - ot s ro¢ .3.# .
L1y] -Sv°0
W afe 090 1T Lee)
. fx e] | . L7 3 050
990 i et ve
s e et £] Loz R S50
g8-yonyjuuey yT-SaaliAreulq ZT-S9alAreulq 0T-Sea.nAreulq

(spuodas) swnuny

Figure B.3: Benchmark run-times per optimization technique.

129

S3|NpPayds uononisuy| Jaraidia|

COMPARISON OF BENCHMARK RESULTS

NN \ N o 2NN N o
N N ow\& WO N N 357N SN N 857N EENAN N 35720
%@99%« mm,// %V\m/w M/@m é@o@%ﬂw// %V\m/w %M ©° é@%%«wm// %%6 N %M/%m R c% \@m// %%e N %M//A/_m,
e o¢9/ Too e s o® roo e O 700926 e O 22 9% "o Tooﬂy%o & S
L L 1 L L 1 1 1 1 L I} ,
L : S . roe LorgTz
.nl. m.a 20958 Qu. W 100952 P wua Mn.f - 72L9°0 - - 7081
™ T loscs 27 T Lsue e “7 pesoLo £ um W”
C 86979 00687 - 96EL0 - T CPREPS
~Gcco’L L G290°€ -vvlL0 e L 0096°¢
00E-wJouendads 00z-Wwiouendads 00T-WwJouendads 0S-Apoqu
NN N o N o \ 2NN
N n "2\ N 5”700 Nen 577200 N " 2\O
x93 Ao\ &2 N NSRS M) RIS o2 N N
vvﬁo/o%f N %%%\m// O/XJ vv%owc%/_ N oo%%\m// ,voO//AJ o o,/ro%f N %%%\m// O//,A_J vvw%,o%/ N oo%%\m// O/KJ
2PN o gs? ;o¢ o Tc S 2 oV es? /ov o ¢o S 22 oV es? zow o To O Pl éym /99/ To &
| , | | , | | | | | psl
o I-0052°9 - G20z uuu &3. -00v8'Y - .I-v. « E
soan I G205°9 1 L . ~6290°'S e, ﬂ ~00vZE S
. b 00T¥'¥ e C006ee Lezzpe =
te 00929 1 . e . . . A . e Gezv'e 3
oo % Lo - #ed G229 -3 [Geess et L -00T9€ ®
e 0062°L ~we — - 0078y : L0058 ~G208°€ &
Ll - G295°L Sph> ~G290'S . ~005¢'9 -00007 @
Y0ST-Apoqu 00T-Apoqu 005-10iqjpuEW 00v-10iqjapueL S
o
N ow N o N ow N oW
wu \) 57N m, N =) on\ N\ \m \ o) o e\ \0 A\) & N0
A% A g
< n.. /oy Too ¥ Yo zoy To R m% %a goy %o ¥ w% ,%a , ,goy %o * g
LogeTT - ooveE ./....w ~vostg o ~ootry B
. 2, - = . coye L IR
- - 799T'T = .-u.m.h _szeve I m.sm roosce s . see9'y
H - 00TZ'T . EBELLT | ooTo's SRR -k “SLEe . e - 00V8Y
gy - rrset ~ef ot [9SEre r - 6290'S
J05-eise} Y0ST-eise) A00T-eISR) 6-Uanuuey
N ot \ 2O \ N on \ N on
SN N %\o \© EEEN AN 37 en® EAN NN m. \ NS
%%,) o%,w\m// S0 ,.%e R W b 2o Ty o%,w\m// G2 ,_c%, W oI N
2 .%y %y/ofooo, a0 2 2, m&,. ,‘9/@4,009 oboo O = 27 o vo,/oTooQ 2 o 6707009 @0
|
s I 006%°0 .
née - T0S'0 w0000 s m.»@.a -956.'T | Gv.. [rreE0
o K Ras - 78150 k4 L 5z20€'6 Ay 5 -96v8'T] . ~ 696€0
. W +62€5°0 ‘. L . . - v¥06'T - - 96070
< s - 9/¥50 00T9'6 ~0096°T :
= 52950 -5226'6 ~Gzero
g8-yonjuue} yT-SeanAreulq ZT-Seankreulq 0T-S@ankreulq

APPENDIX B.

truction schedules.

ms

Benchmark run-times for different interpreter i

Figure B.4

COMPARISON OF BENCHMARK RESULTS 130

APPENDIX B.

m s9|Npayos uononnsu| Jayaidiai]
+ N o N N o N o N on
N N A5 e N 5o 35720 N N A5 7eN N\ N 357 2en®
< N T N D oo A 07 ST N 0P R W Wt
S W o Te® o o a0V S e Ao s ,7% 2o o o soN S o Se® o o% a0V
Bt o @ 2 © ¢ AR 0,9 .,% © S EN ,o, % 5 A ,.e .,o S
, | | , | | | ,
— &mw . !ﬂ ~zl .t ~58T .
~0'.1 ' vz ; -061 -9s

..obp -G/1 r -97 -G6'T g
= ek o Ay 8% Fet e 09

[‘o ek rast np res -] rQke 29

00£-wJouendads 00z-wJouendads 00T-WwJouendads Y0s-Apoqu
-
) N\ N DN N\ NN N\ BN N\ BN

= NG e M@m o2 O o O wo/%m S N0 a,w e oo//em, RS ,7%9\@@// & a%v\m/w/% @o//é@

" 2 %o,y ooy «9/ Tooo, 1o @o @% 927 /me. O Toop 1o @o 0% 9%,7 zma,. O roo o9 @o m&% 9¢ 69 PSS foo o° @0 :
| |

) . -80T ﬁ Lger 08 2

-g9tT ~QTII X g .

Pt i -Q » L0eT g8 3
> T MUl T e e e SEE | g M oe 2
n : =l ° PR o Ca 4. . € s . %)

. o -8T11I . -GSy . -6 2
fob) ~0'8T -0t : 0'ST 8
i o
R %05T-Apoqu %00T-Apoqu 005-10iqjepUEW 00v-10iqj9pUEWw a
v
N o N o N o N o
N N %\m WO BN N o857 en® N N 5570 N\ N 55N’
) e 9\@ N N @B A Wt IS e TN o A W
W cox Soe? o0 oV %t a% O o0 3oV o% 2 o® o0 5oV ay% A% CRRCEE AT
il ,yoA/ /ow To f&/ m& , , ,/ow To /mv ,m.& ,60 | zow To ,fn.v. Wo | , ,/ow ,To | ,ﬂmv
® puy | | , | , .
~v —0€T L ~-G€T
+ vy 88 k4
: ~GY | ger -06 —0vT
& o -26 ok 00 YF .
o o5 =Ly s - s LOVT 3 W‘ W Ly b * -SvT
= b0 R i [B X : \M: - o ge v - L
R H05-eISe) 0ST-eISe) 00T-eIsey 6-yomyuuey
N o N N N
\m \ m,// e //o¢ N N 45200 N N 82 //o \m. \ N A5 2en®
< 2 %¢,7 m@« o 209 10 @o m%y o ,7 m&, oo Too «o @o 2 %¢ % o Too oo @o oo a G\ foo o fm./o
| L | | | | | | | | , , | , , | |
. | epr Lo Lz —90'T
z ks e Ry = -
. o L C T r
S 0 O -3 R CL Sert

T o FEURTR et w0 wig L TS (2
< N 09T e o DO R A ; e
Q A\ g—-yonyuuey yT-ssankreuq ZT-seankieulq 0T-S8ankreulq

Benchmark run-times for different interpreter instruction schedules.

Figure B.5

Curriculum Vitae Stefan Brunthaler

Personal Data:

born September 19'", 1980 in Ried/Innkreis, Austria.

raised Braunau am Inn, Austria

languages German, English, French (basic)

marital status to be married to Mag. Catherine Bouvier in March 2011
Education:

2006 — March 2011 PhD student at the Compilers and Languages Group,
Institute of Computer Languages, Vienna University of Technology.
Advisor: Prof. Dr. Jens Knoop

2005 — 2006 PhD student at the Institute of System Software, University of Linz.
Advisor: Prof. Dr. Hanspeter Mdssenbock
2000 — 2004 Student of Software Engineering for Medical Purposes,

University of Applied Sciences in Upper Austria, Hagenberg, Austria.
Concluded diploma studies with a master’s degree (Dipl.-Ing. (FH)).
1999 High school diploma (Matura), BG/BRG Braunau am Inn, Austria.

Research Interests:

Programming languages, compilation, interpretation, analysis, optimization, and verification; garbage collec-
tion; formal methods, logic, model checking; system software, browsers, debuggers, decompilers, and editors;
legacy systems; domain specific languages.

Grants:

FWF 2010 Grant from the Austrian Research Council (FWF) for investigating speculative execution
for the Python interpreter. Joint work with Prof. Dr. Jens Knoop and Prof. Dr. Anton Ertl.
Project title: “Spyculative”, project volume: € 117,380.

ACM 2010 SIGPLAN PAC student grant for presenting at the Dynamic Languages Symposium (DLS ’10)
in Tahoe/Reno, Nevada, USA. Funded by SIGPLAN.

ACM 2010 Student Travel Award for presenting at the Symposium on Applied Computing (SAC ’10)

in Sierre, Switzerland. Funded by SIGAPP.

Invited Talks:

October 19, 2010 Mozilla Corporation, Mountain View, CA, USA.
October 15, 2010 Oracle/Sun Labs, Menlo Park, CA, USA.
October 11, 2010 University of California, Irvine, CA, USA.

Work Experience:

Feb 2009-Jul 2009 Software Architect at mms.ag GmbH, Vienna, Austria.
Projects: Consulting architect on a mobile check-in solution for StarAlliance.
2006-Jan 2009 Software Architect at VeriSign AG, Vienna, Austria.
Projects: Architect and technical lead for a mobile self-service platform.
Sep 2004-Dec 2005 Software Engineer/Scientific Employee at the Software Competence Center,
Hagenberg, Austria.
Projects: Re-engineering project of a big legacy application.

2004-2006 Software Engineer at 3united AG, Salzburg, Austria.
Projects: Content distribution platform.
2003-2004 Software Engineer at Xidris GmbH, Salzburg, Austria.
Projects: Sweep-stake application for Mobilkom Austria.
2000-2003 Software Engineer at Netzteil OEG, Braunau am Inn, Austria. (defunct)

Projects: Several Projects for max.mobil (Austrian branch of T-Mobile)

Teaching Experience:

Legacy Systems Part 3, Fall 2005, University of Applied Sciences, Hagenberg, Austria. (4h lecture + 4h lab)
Topics: Part 3 of the series was about the genesis of legacy systems with focus on
AS/400 as a hardware platform, and possible re-engineering scenarios.

Summer Schools:

LASER 2007 Summer School on Software Verification, Elba, Italy.

Organized by: Prof. Dr. Bertrand Meyer and Prof. Dr. C.A.R. Hoare
Swiss Federal Institute of Technology, Ziirich (ETH).

Focus Courses:

Verification of Compilers Summer 2008 Prof. Dr. Wolf Zimmermann
Computer Aided Verification Summer 2008 Prof. Dr. Helmut Veith

Analysis and Verification Winter 2007 Prof. Dr. Jens Knoop

Code Generation Techniques Winter 2007 Prof. Dr. Andreas Krall
Optimizing Compilers Winter 2006 Dr. Markus Schordan

Abstract Machines Summer 2006 Prof. Dr. Andreas Krall
Seminar on Garbage Collection Techniques = Winter 2005 Prof. Dr. Hanspeter Md&ssenbock
System Software Winter 2005 Prof. Dr. Hanspeter Md&ssenbock
Publications:

Peer reviewed:

C5.

C4.

C3.

C2.

Cl1.

Stefan Brunthaler. Interpreter Instruction Scheduling. In Proceedings of the 14th International Con-
ference on Compiler Construction, Saarbricken, Germany, March 26-April 3rd, 2011 (CC ’11), Lecture
Notes in Computer Science, Springer, 2011. To appear.

Stefan Brunthaler. Efficient Interpretation using Quickening. In Proceedings of the 6th Symposium on
Dynamic Languages, Reno, Nevada, US, October 18, 2010 (DLS ’10), pages 1-14, New York, NY, USA,
2010. ACM Press.

Stefan Brunthaler. Inline Caching meets Quickening. In Proceedings of the 24th European Conference on
Object-Oriented Programming, Maribor, Slovenia, June 21-25, 2010 (ECOOP ’10), volume 6183/2010
of Lecture Notes in Computer Science, pages 429-451. Springer, 2010.

Stefan Brunthaler. Efficient Inline Caching without Dynamic Translation. In Proceedings of the 2010
ACM Symposium on Applied Computing (SAC ’10), pages 2155-2156, New York, NY, USA, March 2010.
ACM.

Stefan Brunthaler. Virtual-Machine Abstraction and Optimization Techniques. In Proceedings of the
4th International Workshop on Bytecode Semantics, Verification, Analysis and Transformation (BY TE-
CODE ’09), pages 19-30, York, UK, March 2009. Electronic Notes in Theoretical Computer Science,
Elsevier, Amsterdam, The Netherlands.

Technical reports as proceedings:

W2.

W1.

Stefan Brunthaler. Inline Caching meets Quickening. In Tagungsband des 15. Kolloquiums Program-
miersprachen und Grundlagen der Programmierung (KPS 2009), (Maria Taferl, Osterreich, 12.-14. Ok-
tober 2009), Schriftenreihe des Instituts fir Computersprachen, Technische Universitat Wien, Bericht
2009-X-2 (2009), Erganzungsband, pages 7-21.

Stefan Brunthaler. Optimizing High Abstraction-Level Interpreters. In Proceedings of the 26th Annual
Workshop of the GI-FG 2.1.4 “Programmiersprachen und Rechenkonzepte” (Physikzentrum Bad Honnef,
Germany, May 4-6, 2009), Institut fir Informatik und Praktische Mathematik, Christian-Albrechts-
Universitat Kiel, Germany, Bericht Nr. 0915 (2009), pages 100-111.

Posters:

P2.

P1.

Stefan Brunthaler and Jens Knoop. Elimination of Reference Count Operations in Bytecode Interpreters.
In Proceedings of the Junior Scientist Conference 2010 (JSC ’10), Technische Universitit Wien, Vienna,
Austria, April 2010, pages 39-40.

Stefan Brunthaler and Jens Knoop. Optimizing the Python interpreter: Identifying performance bottle-
necks. In Proceedings of the Junior Scientist Conference 2008 (JSC '08), Technische Universitit Wien,
Vienna, Austria, November 2008, pages 41-42.

Thesis:

T1.

Stefan Brunthaler. Visualization and Management of Software Aspects. Master’s thesis, University of
Applied Sciences of Upper Austria, Hagenberg, Austria (2004).

	Kurzfassung
	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Interpretation
	Architecture of an Interpreter

	Background
	Structure and Performance of Efficient Interpreters
	Interpreter Abstraction-Level
	Design Decisions for Smalltalk-80 Interpreters
	Dynamic Compilation
	Summary

	Purely Interpretative Optimizations
	Instruction Format
	Instruction En-/Decoding
	Data Object Inlining

	Profiling
	Using Two Dispatch Routines
	Swapping the Current Execution

	Inline Caching
	Dynamic Typing and its Locality
	Look-up Caches
	Interleaving Inline Cache Pointers
	Quickening
	Inline Caching Applications

	Reference Counting
	Interpreter Operations Causing Reference Count Operations
	Simple Abstract Interpreter
	Quickening

	Partial Stack Frame Caching
	Basic Idea
	Allocating Stack Frame Cache Slots

	Interpreter Instruction Scheduling
	Formalization
	Finding Computational Kernels
	Scheduling Instructions
	Compiling Instruction Schedules

	Code Generator
	Architecture
	Implementation in Numbers

	Related Work
	Purely Interpretative Inline Caching
	Reference Count Quickening
	Interpreter Instruction Scheduling

	Evaluation
	System Setup and Configurations
	Evaluation of Optimization Potential
	Dynamic Bytecode Frequencies
	Analysis of Local Variables
	Analysis of Function Calls

	Analysis of Reference Count Operations
	Performance Evaluation
	Detailed Speedup Factors
	Results per Optimization Technique
	Interpreter Instruction Scheduling

	Conclusions
	Summary of Contributions
	Future Work
	Interpreter Optimization Recommendations

	Bibliography
	Detailed Benchmark Evaluation
	Binarytrees
	Fannkuch
	Fasta
	Mandelbrot
	Nbody
	Spectralnorm
	Django
	AI
	Reference Count Quickening Details

	Comparison of Benchmark Results
	Curriculum Vitae

