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MOVING TARGET 
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Because most software attacks rely on predictable behavior on the target platform, mass distribution 
of identical software facilitates mass exploitation. Countermeasures include moving-target defenses 
in general and biologically inspired artifi cial software diversity in particular. Massive-scale software 
diversity has become practical due to the Internet (enabling distribution of individualized software) and 
cloud computing (enabling the computational power to perform diversifi cation). 

H ardly a day passes without a report of a major 
soft ware vulnerability, oft en accompanied by the 

uncomfortable information that the vulnerability is being 
exploited in the wild. Almost all these vulnerabilities 
result from human error as well as developers program-
ming in languages that have neither strong type systems 
nor automatic memory management, but that have a per-
formance edge. In a perfect world, soft ware development 
would occur in such a way that no exploitable errors are 
created. For the time being, technology that reduces soft -
ware vulnerability will only have a chance in the market-
place if it has a small performance impact.

Th e principle that a moving target is harder to hit 
applies in not only conventional warfare but also in 
cybersecurity. Moving-target defenses change a system’s 
att ack surface with respect to time, space, or both. For 
instance, soft ware diversity makes the soft ware running 
on each individual system unique—and diff erent from 
that of the att acker. Diversity can have a potentially large 
impact on security with litt le impact on runtime perfor-
mance. Th at’s not to say that soft ware diversity is free or 
trivially easy to deploy, but it can be engineered to mini-
mize impact on both developers and users. In addition, 

diversifi cation costs can be placed up front (prior to 
execution) so there’s no ongoing drag on performance.

In this article, we survey the current state of soft -
ware diversity research and look at two fundamen-
tal approaches to soft ware diversity—compile-time 
diversifi cation and binary rewriting. We also describe 
an evolved approach that builds on these approaches’ 
strengths while minimizing their weaknesses.

Real-World Solutions: 
Speed and Compatibility
When academics invent new soft ware protection tech-
niques, they’re free to assume that programs can be 
rebuilt from sources, rewritt en in new languages, or exe-
cuted on postulated hardware platforms. Unfortunately, 
the real world has legacy hardware platforms, large bod-
ies of legacy soft ware, and proprietary soft ware that can’t 
be produced from source code—either because the 
source code is lost or the original production environ-
ment (compiler, linker, and so forth) no longer exists. 
And above all, runtime performance is important in the 
real world—protection schemes that cause soft ware to 
operate 10 times slower have no chance of deployment. 

Security through Diversity:
Are We Th ere Yet?
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Techniques adopted by industry are typically perfor-
mance neutral because systems are power constrained; 
performance impact translates to shorter battery life on 
mobile devices and higher costs to operate datacenters.

Another important requirement for adoption is near 
universal compatibility with existing code. Protections 
that require extensive changes at the source level simply 
aren’t economical. In contrast, the best solutions—for 
example, cryptography—are inexpensive and transpar-
ent to developers and users alike. W ⊕ X protection 
against code injection attacks is both cheap and trans-
parent due to hardware support. Similarly, stack canar-
ies that stop stack-smashing attacks impact program 
performance by less than 1 percent on average and 5 
percent at worst. 

A poor man’s diversity of sorts is already deployed 
in the form of address space layout randomization 
(ASLR). Unfortunately, position-independent code 
increases register pressure on x86 processors executing 
32-bit code and thus degrades performance. Further-
more, ASLR is highly susceptible to information leakage 
attacks; because all addresses in a segment are shifted 
by a constant amount, a single leaked code pointer lets 
attackers sidestep this defense.

 The point in the development pipeline at which 
diversity is introduced matters for several reasons. 
Because software is predominantly distributed in binary 
form, diversification during compilation means that it 
occurs before software distribution and installation on 
end-user systems. So, software developers or distribu-
tors must pay for the computational resources necessary 
for diversification. Postponing diversification until the 
time at which the binaries are installed or updated on 
the end-user system distributes the diversification cost 
among users instead. However, post facto diversifica-
tion via binary rewriting interferes with code signing 
because it changes the cryptographic hash. Signed code 
is used pervasively on mobile devices and increasingly 
on desktops. Finally, not all applications of diversity 
are possible with host-based solutions. Diversification 
makes tampering and piracy significantly harder1 and 
protects software updates against reverse engineering2; 
these protections are ineffective if diversification is host 
based—users can simply disable the diversification 
engine running on their systems.

The question, then, is this: Can software diversity 
meet the above constraints? 

Fundamental Approaches
We’ve hinted at the tension between compilers and 
binary rewriters as delivery vehicles for diversity. It’s 
instructive to revisit arguments made in favor of binary 
rewriting approaches. Daniel Williams and his col-
leagues are concerned that “applying a transformation 

… at compile time, although simple to do, creates 
another problem: it produces multiple binaries, creating 
both manufacturing and distribution problems.”3 Sand-
eep Bhatkar and his colleagues4 and Richard Wartell 
and his colleagues5 similarly highlight binary rewriting’s 
compatibility with current distribution mechanisms. 
Jason Hiser and his colleagues add to these concerns 
while summarizing their work: “In short, ILR [instruc-
tion layout randomization] operates on arbitrary exe-
cutables, requires no compiler support, and no user 
interaction.”6 Wartell and his colleagues5 and Vasilis 
Pappas and his colleagues7 highlight binary rewriting’s 
compiler-agnostic nature and ability to work without 
program sources and debugging information. 

Although we mostly agree with these researchers and 
think binary rewriting is an invaluable tool, it’s no silver 
bullet. Compilation of source code to machine code is 
an inherently lossy transformation. Specifically, the von 
Neumann computer architecture makes distinguishing 
code from data difficult. In addition, indirect and exter-
nal control transfer targets aren’t fully recoverable. As 
a result, binary rewriters require various correctness-
preserving strategies to compensate for the information 
lost in translation.

 Compile-time diversity approaches are all similar to 
one another in the sense that they add another pass to 
the translation sequence, the key difference being the 
transformation types implemented. Binary-rewriting 
approaches show much greater variety, particularly with 
respect to the time at which rewriting occurs. Note that 
both approaches support dynamic randomization (that 
is, diversification during execution) in addition to static 
diversification ahead of time.6,8

Pappas and his colleagues present a fully static 
approach that rewrites binaries in situ.7 Because the 
diversified binary’s code layout is isomorphic with 
respect to the original code layout, indirect control trans-
fers aren’t a problem, and the performance impact is 
modest. Unfortunately, code snippets remain untouched 
and thus unprotected when they can’t be decompiled.

Hiser and his colleagues’ ILR approach couples static 
analysis with dynamic binary rewriting in a process vir-
tual machine.6 The instructions’ virtual addresses are 
randomized in an offline step, and a fall-through map 
reassembles and caches code fragments during execu-
tion, diversifying all the application code with 13 per-
cent performance overhead. Wartell and his colleagues’ 
rewriter defers the layout randomization until load 
time.5 Again, an offline step rewrites the binary to “stir” 
it on execution. Because of the coarser diversification 
granularity, the runtime overhead drops to 5 percent. 
This approach requires twice the process memory nor-
mally used for code whereas its runtime overhead is on 
par with basic compiler-based diversity.8
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Evolved Approaches
In our view, neither solution strictly dominates the 
other; a comprehensive diversification approach incor-
porates aspects of both.

Runtime Performance 
The popularity of mobile devices, laptops, and cloud 
computing means that energy efficiency matters. Using 
more memory means higher power consumption; the 
same is true of less efficient code.

Diversifying a code fragment tends to make it less 
efficient. The impact on execution time depends on 
how frequently the fragment is executed. Because 
“hot” code fragments have more impact on the aggre-
gate slowdown from diversification, we can vary the 
amount of diversification in proportion to execution 
frequency. Instead of leaving the most frequently exe-
cuted code fragments untouched by diversification, we 
can employ instruction-level transformations that add a 
configurable amount of diversity to them. In addition, 
we can displace all program addresses without touching 
the “hottest” code because every change affects code at 
every subsequent address.

This is one area in which compiler-based diversity 
shows its strength. Every mature compiler includes the 
machinery to instrument and profile programs. Even if 
developers don’t take the time to profile their programs, 
we can still vary the amount of diversity to lower perfor-
mance impact. We can simply use a fallback mechanism 
that statically predicts execution frequencies on the 
basis of the code’s structure.

Our recent work on a diversifying compiler, or 
multicompiler, is an instantiation of this idea.9 It uses 
no-operation instructions (NOPs) to randomize the 
code layout based on observed execution profiles. 
NOP insertion and other fine-grained transforma-
tions are powerful counters to modern exploits that 
reuse tiny code fragments called gadgets. Unlike coarse-
grained randomization, these transformations can dis-
place gadgets and mutate their behavior. By varying the 
amount of diversity, the performance overhead drops 
from 5 to approximately 1 percent—in line with already 
deployed security techniques—while offering essen-
tially the same security. Such profile-guided diversity 
typically leaves between 1 and 30 percent extra gadgets 
available to attackers relative to uniform diversifica-
tion. To put these numbers into perspective, uniform 
diversification removes up to 99.95 percent of original 
gadgets, hence even a 30 percent increase isn’t all that 
helpful to attackers. In fact, our experiments with two 
published ROP attack-generation tools showed that 
attacks created for the original binary didn’t succeed in 
compromising a program diversified with or without 
profile guidance.

Coverage 
Ahead-of-time compilers can’t diversify all kinds of 
code. Two blind spots are particularly relevant: legacy 
code and dynamically generated code. 

We can’t recompile legacy code because the sources 
and tool chain are no longer available or because the 
code is closed source and isn’t diversified by the ven-
dor. Thus, we can’t apply compile-time diversification. 
However, Kapil Anand and his colleagues’ recent work 
on decompilation delivers the missing piece.10 Instead 
of directly targeting a programming language, their sys-
tem—called SecondWrite—targets the low-level virtual 
machine (LLVM) compiler’s intermediate representa-
tion (IR). This has multiple advantages including the 
ability to leverage the extensive program analysis, opti-
mization, and code-generation functionality already 
present in a mature compiler. In addition, a compiler IR 
traditionally is a lower-level representation than source 
code and thus closer to the binary program. We’re cur-
rently integrating SecondWrite with our multicompiler; 
we expect that diversified binaries produced this way 
will perform on par with existing binary rewriters.

This unified approach has several advantages. When 
input programs are binaries, the output is no slower 
than using other rewriters. When programs are diversi-
fied from source, the resulting binary runs at close to full 
speed thanks to profile guidance. Improvements to our 
diversifying compiler apply directly to both input types.

The popularity of just-in-time ( JIT) compilation 
also presents a challenge. Many newer languages have 
features that ahead-of-time compilers can’t effectively 
optimize. Deferring generation of machine code until a 
code fragment is known to be hot often produces a bet-
ter result. Unfortunately, with the tools we discussed, 
there’s no way to diversify such dynamically gener-
ated code. In theory, all JIT compiler developers could 
implement their own diversifying transformations, and 
in fact, some already do. However, this is impractical for 
several reasons. First, the sheer number of internally dif-
ferent JIT compiler engines forces developers to repeat-
edly implement the same transformations. Second, it 
leaves legacy JITs without protection.

Our solution is to implement a black-box diversifier 
in the form of an external library called librando. Our 
library is essentially a dynamic binary-rewriting system.11 
It has the dual benefits of protecting all JITs on a given 
system without modification and placing all diversifying 
transformations within a common framework, resulting 
in fast and comprehensive deployment of new diversifica-
tion techniques in response to emerging threats.

To support the widest range of JIT compilation 
engines, librando works in a fully transparent manner. 
Like Wartell and his colleagues, we keep the original code 
emitted by the JIT compiler in memory and mark it as 
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nonexecutable. Detecting when and where the JIT com-
piler generates code is relatively easy on modern systems. 
Because of the W ⊕ X page-protection mechanism, the 
JIT compiler must use special APIs to allocate executable 
memory; we intercept these calls and ignore the request 
to mark the pages as executable. When the control flow 
reaches the original code, a signal handler is triggered. 
Conceptually, librando handles this signal; disassem-
bles the newly generated code; emits diversified code to a 
separate, executable location; and transfers control there.

Dynamic code-rewriting systems must be invisible 
to their host application. However, most important, 
fragments of diversified code reside at different virtual 
addresses from their unmodified equivalents. Using 
the usual machine instructions for function calls and 
returns means that the return addresses pushed onto 
the machine stack would point to diversified code. 
Because the JIT might parse the stack and even make 
arbitrary modifications to it, we keep unmodified return 
addresses on the stack and translate them to their diver-
sified equivalents in the epilogue of diversified func-
tions. This translation step means we execute more 
instructions per function than without diversification 
and we interfere with the processor’s branch predictor.

With the current version of librando, performance 
overheads for highly dynamic code such as the V8 Java
Script benchmarks were a factor of 3.5 on average. For 
the Java Virtual Machine (HotSpot), the overhead fac-
tor was substantially lower—1.08 times on average. 
However, personal experience using librando daily 
indicates that the user experience isn’t affected when 
browsing JavaScript-intensive webpages or running Java 
applications. Nevertheless, we’re exploring ways to lower 
overhead. For instance, we expect that using an inline 
cache to store the diversified return address used the last 
time the function returned will dramatically decrease 
the performance impact on JavaScript code.

Combining the multicompiler, the SecondWrite 
IR-level decompiler, and librando for JIT compilers 
presents a unified, comprehensive approach to software 
diversity. Most if not all code can be protected using this 
method. The way the code is generated affects the result-
ing runtime overhead but not its security. This cements 
the position of diversity as a universally compatible and 
versatile defensive strategy, as opposed to the more nar-
rowly focused solutions in use today.

Distribution 
Modern software distribution systems are complex; to 
simplify the discussion, we fix a few of the variables. Pro-
prietary software and signed binaries are more challeng-
ing than open source programs and unsigned binaries; 
we concentrate on the former cases. Similarly, software 
is increasingly sold and distributed via the Internet for 

both mobile and conventional computer systems, so we 
won’t consider distribution via physical media. A con-
crete scenario that meets these criteria is software deliv-
ered via online marketplaces or “App Stores.”

In this scenario, we think the diversification engine 
should reside in the App Store (see Figure 1), not on 
end-user systems. This ensures that users don’t dis-
able the diversification engine. All users might agree to 
diversify code to protect against exploits launched by a 
third party, but not all will apply diversification to pre-
vent piracy or tampering. In addition, host-based diver-
sification of proprietary software is possible only with 
binary rewriting, which typically produces slower code 
relative to binaries diversified during vendor compila-
tion. Finally, it’s important to be compatible with code 
signing. Without it, third parties can inject malware into 
programs from a trusted source. Mandatory code sign-
ing also simplifies blacklisting of applications that con-
tain malware and helps establish provenance.

On the other hand, compile-time diversification 
isn’t necessarily practical because it’s computationally 
expensive to recompile and link a new program variant 
for every user. However, diversifying a million binaries 
doesn’t necessarily cost a million times more than diver-
sifying it once. In essence, compilers consist of a series 
of code transformations arranged to form a pipeline. 
With this architecture, we can easily add a diversify-
ing stage by adding another step to the pipeline. Code 

Figure 1. A diversification mechanism can be hidden entirely within an online 
software delivery system (“App Store”) so that it’s transparent to both code 
consumers and software developers.
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transformations that occur before the diversification 
stage are invariant with respect to generation of addi-
tional diversified binaries and needn’t be recompiled. 
Figure 2 illustrates how the potential to cache the com-
pilation work depends on the point in time at which 
diversification occurs. Simply put, later is better. Our 
multicompiler, built on top of the LLVM compilation 
framework, performs diversification in the code-gener-
ation step, which happens very late (see the lower half of 
Figure 2). We cache as much work as possible by writing 
out LLVM bitcode before the code-generation step and 
restarting the compilation from that point when creat-
ing additional variants. With bitcode caching, the time 
to create a variant is cut roughly in half.

Part of the reason we’re not seeing even greater 
speedups is that code generation—including instruc-
tion selection, scheduling, and register allocation—is 
time consuming. Alternatively, we can perform trans-
formations such as NOP insertion and instruction 
scheduling on the assembly code emitted by the com-
piler; this leads to additional savings because code 
generation becomes redundant.

Our approach analyzes assembly files and computes 
diversification opportunities ahead of time. Examples 
include the places NOPs can be inserted and valid 
instruction schedules. We use annotations to capture 
the analysis results. A fast template-processing pass 
reads the annotated assembly files and diversifies them 
before assembling the final object file. This reduces the 
time to create a diversified binary. For example, using 
Firefox version 17, the time decreases from 1 hour and 
41 minutes to 25 minutes—a 75 percent improve-
ment. We’re exploring ways to speed up build processes, 
which are often I/O bound and contain repetitive or 

superfluous work, and see potential for further optimi-
zation. For instance, we’ve reduced the time to diver-
sify several software packages by more than 92 percent: 
diversifying GNU make causes a reduction from 6.17 
to 0.44 seconds and diversifying vim causes a reduc-
tion from 52.60 to 4.02 seconds by recording makefile 
actions and replaying only the essential ones.

We assume diversified binaries are distributed via 
an App Store hosted by an infrastructure-as-a-service 
(IaaS) provider such as Amazon, Google, or Microsoft. 
It’s natural to assume that software developers will per-
form diversification in the cloud since this has several 
advantages over an in-house solution. The multiplexing 
of computing resources gives IaaS providers economies 
of scale. Because of intensive competition among the 
top providers, these savings are handed down to the 
customers. Furthermore, cloud computing requires no 
upfront investment, and resources are billed according 
to actual use. This means that computing resources to 
diversify binaries can be scaled up and down in response 
to the number of download requests.

In addition, we’re optimizing the use of cloud com-
puting resources when diversifying binaries. IaaS 
providers offer a range of hardware tiers with vari-
ous processing, RAM, and storage capabilities. Excess 
capacity within each tier is sold at spot prices that 
vary according to demand. Permanent storage is simi-
larly tiered according to availability and resilience. 
This means we can satisfy user demand for diversified 
binaries by maintaining a stockpile of prebuilt diversi-
fied binaries, so downloads start instantly like today’s 
software downloads. If the stockpile is not running 
low, we choose to replenish it only when spot prices 
are favorable. If it needs quick restocking, we use 

Figure 2. The effort required to create diversified program binaries from sources depends on two factors—the point in 
time at which diversification occurs in the compilation pipeline (later is better) and when the diversification-invariant 
work can be cached during compilation.

Work to create variant

Sources
Program variants

Early diversi	cation

Work per variant

Late diversi	cation

Object 	le cache

j2lar.indd   32 3/14/14   9:21 AM



www.computer.org/security� 33

regular, on-demand instances that, in turn, cost more. 
In the unlikely case that this strategy can’t keep up with 
demand at a reasonable cost, we can reduce the diversity 
level—and thus security—slightly. For instance, we can 
choose to distribute the same binary twice rather than 
once. When done correctly and when there are millions 
of users, attackers’ chances of obtaining the same binary 
as their victims are small.

We believe that concerns about manufacturing and 
distribution problems will turn out to be nonissues in 
practice. Similarly, concerns that compiler-based diversity 
can’t protect legacy binaries will go away once our multi
compiler is coupled with a decompiler such as Second
Write. Adding librando to the mix rounds out the 
types of code we can successfully diversify: legacy code, 
code that can be recompiled, and code yet to be compiled.

How Far Along Are We?
Recent years have brought tremendous progress in the 
shift from a software monoculture to a diverse software 
ecosystem. Researchers have several tools at their dis-
posal to diversify existing software from either source 
or binary code, including black-box diversification 
approaches to diversify dynamically generated native 
machine code emitted by a JIT compiler.

However, not even the combined approach we out-
lined addresses all challenges in creating a diverse eco-
system. First, many major operating systems and mature 
software packages support automatic error reporting. In 
the presence of a fully diversified software stack, a cli-
ent’s error report doesn’t directly identify the actual 
problem of the specific instance of a binary running on 
the client computer. Depending on the diversification 
techniques used, we would need to reliably “relocate” 
the reported error information in such a way that cyber-
criminals can’t abuse this mechanism.

Second and in a similar vein, we need to address the 
software update mechanism, which depends on the 
software monoculture. Because a client’s binary image 
will vary substantially among hosts, a single patch can’t 
update all these hosts. A trivial solution to this problem 
is to hand out new versions of the software to each user. 
This has additional security benefits, as a host machine’s 
software ecosystem would be in constant flux. On com-
mon desktop machines with fast Internet connections, 
this approach might not be a problem; however, mobile 
devices with expensive data plans would suffer from this 
update provisioning system. One solution is shipping 
diversified updates, customized for each binary running 
on end users’ hosts.

To undo diversification and create customized 
updates, a diversified binary must know the random 
seed the diversification engine used to create it. Unfor-
tunately, just adding this random seed to a binary poses 

a substantial security risk: if leaked, attackers can re-
create the whole binary and use it to create a targeted 
code-reuse attack. The computer security community’s 
solution to this problem is secret sharing.12 Adapted to 
our problem, we would split the random seed in half: 
the binary receives one half, and we store the other 
half in the cloud. Compromising either one of these 
parties won’t yield the complete seed necessary to re-
create the binary versions, and therefore both parties 
are protected.

Besides securing both the cloud and its clients, this 
technique has other favorable properties. For example, 
the cloud could periodically remove entries from its 
database of half-keys. Consequently, a client requesting 
a patch would receive a fresh binary image. This is simi-
lar to a decoy, because attackers eavesdropping on the 
communication between clients and the cloud wouldn’t 
be able to infer any meaningful information. 

A third challenge relates to preservation of cor-
rectness after diversification. Current best practice 
dictates that a binary must pass a gamut of automated 
tests as well as alpha and beta testing by early adopters 
before it’s released to the entire user base. Some soft-
ware vendors might be reluctant to distribute diver-
sified binaries that don’t undergo the same level of 
testing. However, advances in correctness testing have 
made compilers some of the most mature and reliable 
computer programs in existence.13 In our experience, 
diversification techniques such as NOP insertion 
and register allocation randomization are sufficiently 
simple that they chiefly rely on the correctness of the 
compiler’s underlying code analysis and optimization 
framework. Moreover, to increase confidence in the 
diversification process, software vendors can scale up 
their automated testing procedures to run on several 
diversified binaries instead of testing just one undiver-
sified version. The resulting increase in computational 
resources can be addressed by moving the testing pro-
cedures to a computing cloud.

Reach of Diversity
In this article, we focus on the protection of machine 
code in binaries against code-reuse attacks. However, 
artificial diversity can be applied at the source code 
level, too. Code randomization has been proposed as a 
counter to code injection attacks such as SQL injection 
and cross-site scripting.

We’re confident that researchers will propose new 
applications of artificial diversity in response to new 
offensive techniques. However, we don’t think of arti-
ficial software diversity as a universal panacea, but we 
suspect that defenses such as W ⊕ X, stack canaries, 
and fault isolation will continue to provide supplemen-
tal coverage and defense-in-depth. Software diversity 
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works by randomizing implementation details; attacks 
that rely on defective program logic—regardless of its 
implementation—remain unaffected because diversity 
preserves program semantics. 

In addition, researchers have demonstrated informa-
tion leakage attacks that are designed specifically to cir-
cumvent software diversity. In the presence of arbitrary 
memory disclosures and scripting capabilities, attackers 
can analyze the target binary and generate code-reuse 
attacks on the target machine “just in time.”14 This effec-
tively shifts the required defense from preventing code 
reuse to preventing memory disclosures, especially in 
the context of attacker-controlled scripting environ-
ments, such as Web browsers. Although this attack is 
possible, diversity raises the bar and forces attackers to 
use sophisticated and difficult attacks.

S oftware diversity targets properties fundamental 
to attacks on low-level code: knowledge of imple-

mentation details and the ability to replicate the victim 
environment. Diversifying program implementations 
not only stops a range of known attacks, it might also 
counter yet unseen attack types.

Further research is warranted to put software diver-
sity into a unifying framework and to distinguish the 
range of attacks it prevents from those it doesn’t. For 
example, we lack commonly agreed-on metrics and 
measurements to compare the security afforded by two 
diversifying transformations with one another and with 
competing techniques.

Considering how diversity can transition into prac-
tice is equally important. In that respect, we find cloud-
based, compile-time diversification augmented by binary 
rewriting surprisingly attractive. It gets the broad strokes 
right: the performance impact is minimal, it can protect 
code regardless of how it was produced or whether it was 
signed, and it produces diversified binaries cost-effec-
tively without enlarging the system’s attack surface.

However, like its alternatives, cloud-based diver-
sification isn’t a silver bullet. Attackers might be able 
to latch onto implementation aspects that nobody 
thought to diversify. Luckily, once the investment in a 
diversified ecosystem is made, adding to the set of code 
randomization techniques is as easy and transparent as 
introducing new compiler optimizations and fixes via 
regular updates.

Work remains to be done on error reporting and 
patching of diversified software. To address these prob-
lems, the diversification process must be reproducible. 
We can drive the diversification using a pseudorandom 
sequence expanded from a seed value; the seed value 
then becomes the only secret in the system requiring 
protection. Rather than storing the whole seed in a 

single place, again, we can use secret-sharing techniques 
to store one part of the seed in the cloud and another on 
the client side.

With most of the major obstacles cleared, we expect 
the arrival of diversified software in the commercial 
marketplace within the next three years. There will be 
some initial resistance as people adapt to changes to 
established security practices, but in the end, we’ll all be 
more secure. Instead of a single target binary replicated 
across millions of computers, we’ll present adversaries 
with a moving target in the form of large numbers of 
binary variations and no proper way of matching attack 
vectors to target binaries. 
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