
28 March/April 2014 Copublished by the IEEE Computer and Reliability Societies 1540-7993/14/$31.00 © 2014 IEEE

MOVING TARGET

Per Larsen, Stefan Brunthaler, and Michael Franz | University of California, Irvine

Because most software attacks rely on predictable behavior on the target platform, mass distribution
of identical software facilitates mass exploitation. Countermeasures include moving-target defenses
in general and biologically inspired artifi cial software diversity in particular. Massive-scale software
diversity has become practical due to the Internet (enabling distribution of individualized software) and
cloud computing (enabling the computational power to perform diversifi cation).

H ardly a day passes without a report of a major
soft ware vulnerability, oft en accompanied by the

uncomfortable information that the vulnerability is being
exploited in the wild. Almost all these vulnerabilities
result from human error as well as developers program-
ming in languages that have neither strong type systems
nor automatic memory management, but that have a per-
formance edge. In a perfect world, soft ware development
would occur in such a way that no exploitable errors are
created. For the time being, technology that reduces soft -
ware vulnerability will only have a chance in the market-
place if it has a small performance impact.

Th e principle that a moving target is harder to hit
applies in not only conventional warfare but also in
cybersecurity. Moving-target defenses change a system’s
att ack surface with respect to time, space, or both. For
instance, soft ware diversity makes the soft ware running
on each individual system unique—and diff erent from
that of the att acker. Diversity can have a potentially large
impact on security with litt le impact on runtime perfor-
mance. Th at’s not to say that soft ware diversity is free or
trivially easy to deploy, but it can be engineered to mini-
mize impact on both developers and users. In addition,

diversifi cation costs can be placed up front (prior to
execution) so there’s no ongoing drag on performance.

In this article, we survey the current state of soft -
ware diversity research and look at two fundamen-
tal approaches to soft ware diversity—compile-time
diversifi cation and binary rewriting. We also describe
an evolved approach that builds on these approaches’
strengths while minimizing their weaknesses.

Real-World Solutions:
Speed and Compatibility
When academics invent new soft ware protection tech-
niques, they’re free to assume that programs can be
rebuilt from sources, rewritt en in new languages, or exe-
cuted on postulated hardware platforms. Unfortunately,
the real world has legacy hardware platforms, large bod-
ies of legacy soft ware, and proprietary soft ware that can’t
be produced from source code—either because the
source code is lost or the original production environ-
ment (compiler, linker, and so forth) no longer exists.
And above all, runtime performance is important in the
real world—protection schemes that cause soft ware to
operate 10 times slower have no chance of deployment.

Security through Diversity:
Are We Th ere Yet?

j2lar.indd 28 3/14/14 9:21 AM

www.computer.org/security� 29

Techniques adopted by industry are typically perfor-
mance neutral because systems are power constrained;
performance impact translates to shorter battery life on
mobile devices and higher costs to operate datacenters.

Another important requirement for adoption is near
universal compatibility with existing code. Protections
that require extensive changes at the source level simply
aren’t economical. In contrast, the best solutions—for
example, cryptography—are inexpensive and transpar-
ent to developers and users alike. W ⊕ X protection
against code injection attacks is both cheap and trans-
parent due to hardware support. Similarly, stack canar-
ies that stop stack-smashing attacks impact program
performance by less than 1 percent on average and 5
percent at worst.

A poor man’s diversity of sorts is already deployed
in the form of address space layout randomization
(ASLR). Unfortunately, position-independent code
increases register pressure on x86 processors executing
32-bit code and thus degrades performance. Further-
more, ASLR is highly susceptible to information leakage
attacks; because all addresses in a segment are shifted
by a constant amount, a single leaked code pointer lets
attackers sidestep this defense.

 The point in the development pipeline at which
diversity is introduced matters for several reasons.
Because software is predominantly distributed in binary
form, diversification during compilation means that it
occurs before software distribution and installation on
end-user systems. So, software developers or distribu-
tors must pay for the computational resources necessary
for diversification. Postponing diversification until the
time at which the binaries are installed or updated on
the end-user system distributes the diversification cost
among users instead. However, post facto diversifica-
tion via binary rewriting interferes with code signing
because it changes the cryptographic hash. Signed code
is used pervasively on mobile devices and increasingly
on desktops. Finally, not all applications of diversity
are possible with host-based solutions. Diversification
makes tampering and piracy significantly harder1 and
protects software updates against reverse engineering2;
these protections are ineffective if diversification is host
based—users can simply disable the diversification
engine running on their systems.

The question, then, is this: Can software diversity
meet the above constraints?

Fundamental Approaches
We’ve hinted at the tension between compilers and
binary rewriters as delivery vehicles for diversity. It’s
instructive to revisit arguments made in favor of binary
rewriting approaches. Daniel Williams and his col-
leagues are concerned that “applying a transformation

… at compile time, although simple to do, creates
another problem: it produces multiple binaries, creating
both manufacturing and distribution problems.”3 Sand-
eep Bhatkar and his colleagues4 and Richard Wartell
and his colleagues5 similarly highlight binary rewriting’s
compatibility with current distribution mechanisms.
Jason Hiser and his colleagues add to these concerns
while summarizing their work: “In short, ILR [instruc-
tion layout randomization] operates on arbitrary exe-
cutables, requires no compiler support, and no user
interaction.”6 Wartell and his colleagues5 and Vasilis
Pappas and his colleagues7 highlight binary rewriting’s
compiler-agnostic nature and ability to work without
program sources and debugging information.

Although we mostly agree with these researchers and
think binary rewriting is an invaluable tool, it’s no silver
bullet. Compilation of source code to machine code is
an inherently lossy transformation. Specifically, the von
Neumann computer architecture makes distinguishing
code from data difficult. In addition, indirect and exter-
nal control transfer targets aren’t fully recoverable. As
a result, binary rewriters require various correctness-
preserving strategies to compensate for the information
lost in translation.

 Compile-time diversity approaches are all similar to
one another in the sense that they add another pass to
the translation sequence, the key difference being the
transformation types implemented. Binary-rewriting
approaches show much greater variety, particularly with
respect to the time at which rewriting occurs. Note that
both approaches support dynamic randomization (that
is, diversification during execution) in addition to static
diversification ahead of time.6,8

Pappas and his colleagues present a fully static
approach that rewrites binaries in situ.7 Because the
diversified binary’s code layout is isomorphic with
respect to the original code layout, indirect control trans-
fers aren’t a problem, and the performance impact is
modest. Unfortunately, code snippets remain untouched
and thus unprotected when they can’t be decompiled.

Hiser and his colleagues’ ILR approach couples static
analysis with dynamic binary rewriting in a process vir-
tual machine.6 The instructions’ virtual addresses are
randomized in an offline step, and a fall-through map
reassembles and caches code fragments during execu-
tion, diversifying all the application code with 13 per-
cent performance overhead. Wartell and his colleagues’
rewriter defers the layout randomization until load
time.5 Again, an offline step rewrites the binary to “stir”
it on execution. Because of the coarser diversification
granularity, the runtime overhead drops to 5 percent.
This approach requires twice the process memory nor-
mally used for code whereas its runtime overhead is on
par with basic compiler-based diversity.8

j2lar.indd 29 3/14/14 9:21 AM

30	 IEEE Security & Privacy� March/April 2014

MOVING TARGET

Evolved Approaches
In our view, neither solution strictly dominates the
other; a comprehensive diversification approach incor-
porates aspects of both.

Runtime Performance
The popularity of mobile devices, laptops, and cloud
computing means that energy efficiency matters. Using
more memory means higher power consumption; the
same is true of less efficient code.

Diversifying a code fragment tends to make it less
efficient. The impact on execution time depends on
how frequently the fragment is executed. Because
“hot” code fragments have more impact on the aggre-
gate slowdown from diversification, we can vary the
amount of diversification in proportion to execution
frequency. Instead of leaving the most frequently exe-
cuted code fragments untouched by diversification, we
can employ instruction-level transformations that add a
configurable amount of diversity to them. In addition,
we can displace all program addresses without touching
the “hottest” code because every change affects code at
every subsequent address.

This is one area in which compiler-based diversity
shows its strength. Every mature compiler includes the
machinery to instrument and profile programs. Even if
developers don’t take the time to profile their programs,
we can still vary the amount of diversity to lower perfor-
mance impact. We can simply use a fallback mechanism
that statically predicts execution frequencies on the
basis of the code’s structure.

Our recent work on a diversifying compiler, or
multicompiler, is an instantiation of this idea.9 It uses
no-operation instructions (NOPs) to randomize the
code layout based on observed execution profiles.
NOP insertion and other fine-grained transforma-
tions are powerful counters to modern exploits that
reuse tiny code fragments called gadgets. Unlike coarse-
grained randomization, these transformations can dis-
place gadgets and mutate their behavior. By varying the
amount of diversity, the performance overhead drops
from 5 to approximately 1 percent—in line with already
deployed security techniques—while offering essen-
tially the same security. Such profile-guided diversity
typically leaves between 1 and 30 percent extra gadgets
available to attackers relative to uniform diversifica-
tion. To put these numbers into perspective, uniform
diversification removes up to 99.95 percent of original
gadgets, hence even a 30 percent increase isn’t all that
helpful to attackers. In fact, our experiments with two
published ROP attack-generation tools showed that
attacks created for the original binary didn’t succeed in
compromising a program diversified with or without
profile guidance.

Coverage
Ahead-of-time compilers can’t diversify all kinds of
code. Two blind spots are particularly relevant: legacy
code and dynamically generated code.

We can’t recompile legacy code because the sources
and tool chain are no longer available or because the
code is closed source and isn’t diversified by the ven-
dor. Thus, we can’t apply compile-time diversification.
However, Kapil Anand and his colleagues’ recent work
on decompilation delivers the missing piece.10 Instead
of directly targeting a programming language, their sys-
tem—called SecondWrite—targets the low-level virtual
machine (LLVM) compiler’s intermediate representa-
tion (IR). This has multiple advantages including the
ability to leverage the extensive program analysis, opti-
mization, and code-generation functionality already
present in a mature compiler. In addition, a compiler IR
traditionally is a lower-level representation than source
code and thus closer to the binary program. We’re cur-
rently integrating SecondWrite with our multicompiler;
we expect that diversified binaries produced this way
will perform on par with existing binary rewriters.

This unified approach has several advantages. When
input programs are binaries, the output is no slower
than using other rewriters. When programs are diversi-
fied from source, the resulting binary runs at close to full
speed thanks to profile guidance. Improvements to our
diversifying compiler apply directly to both input types.

The popularity of just-in-time (JIT) compilation
also presents a challenge. Many newer languages have
features that ahead-of-time compilers can’t effectively
optimize. Deferring generation of machine code until a
code fragment is known to be hot often produces a bet-
ter result. Unfortunately, with the tools we discussed,
there’s no way to diversify such dynamically gener-
ated code. In theory, all JIT compiler developers could
implement their own diversifying transformations, and
in fact, some already do. However, this is impractical for
several reasons. First, the sheer number of internally dif-
ferent JIT compiler engines forces developers to repeat-
edly implement the same transformations. Second, it
leaves legacy JITs without protection.

Our solution is to implement a black-box diversifier
in the form of an external library called librando. Our
library is essentially a dynamic binary-rewriting system.11
It has the dual benefits of protecting all JITs on a given
system without modification and placing all diversifying
transformations within a common framework, resulting
in fast and comprehensive deployment of new diversifica-
tion techniques in response to emerging threats.

To support the widest range of JIT compilation
engines, librando works in a fully transparent manner.
Like Wartell and his colleagues, we keep the original code
emitted by the JIT compiler in memory and mark it as

j2lar.indd 30 3/14/14 9:21 AM

www.computer.org/security� 31

nonexecutable. Detecting when and where the JIT com-
piler generates code is relatively easy on modern systems.
Because of the W ⊕ X page-protection mechanism, the
JIT compiler must use special APIs to allocate executable
memory; we intercept these calls and ignore the request
to mark the pages as executable. When the control flow
reaches the original code, a signal handler is triggered.
Conceptually, librando handles this signal; disassem-
bles the newly generated code; emits diversified code to a
separate, executable location; and transfers control there.

Dynamic code-rewriting systems must be invisible
to their host application. However, most important,
fragments of diversified code reside at different virtual
addresses from their unmodified equivalents. Using
the usual machine instructions for function calls and
returns means that the return addresses pushed onto
the machine stack would point to diversified code.
Because the JIT might parse the stack and even make
arbitrary modifications to it, we keep unmodified return
addresses on the stack and translate them to their diver-
sified equivalents in the epilogue of diversified func-
tions. This translation step means we execute more
instructions per function than without diversification
and we interfere with the processor’s branch predictor.

With the current version of librando, performance
overheads for highly dynamic code such as the V8 Java
Script benchmarks were a factor of 3.5 on average. For
the Java Virtual Machine (HotSpot), the overhead fac-
tor was substantially lower—1.08 times on average.
However, personal experience using librando daily
indicates that the user experience isn’t affected when
browsing JavaScript-intensive webpages or running Java
applications. Nevertheless, we’re exploring ways to lower
overhead. For instance, we expect that using an inline
cache to store the diversified return address used the last
time the function returned will dramatically decrease
the performance impact on JavaScript code.

Combining the multicompiler, the SecondWrite
IR-level decompiler, and librando for JIT compilers
presents a unified, comprehensive approach to software
diversity. Most if not all code can be protected using this
method. The way the code is generated affects the result-
ing runtime overhead but not its security. This cements
the position of diversity as a universally compatible and
versatile defensive strategy, as opposed to the more nar-
rowly focused solutions in use today.

Distribution
Modern software distribution systems are complex; to
simplify the discussion, we fix a few of the variables. Pro-
prietary software and signed binaries are more challeng-
ing than open source programs and unsigned binaries;
we concentrate on the former cases. Similarly, software
is increasingly sold and distributed via the Internet for

both mobile and conventional computer systems, so we
won’t consider distribution via physical media. A con-
crete scenario that meets these criteria is software deliv-
ered via online marketplaces or “App Stores.”

In this scenario, we think the diversification engine
should reside in the App Store (see Figure 1), not on
end-user systems. This ensures that users don’t dis-
able the diversification engine. All users might agree to
diversify code to protect against exploits launched by a
third party, but not all will apply diversification to pre-
vent piracy or tampering. In addition, host-based diver-
sification of proprietary software is possible only with
binary rewriting, which typically produces slower code
relative to binaries diversified during vendor compila-
tion. Finally, it’s important to be compatible with code
signing. Without it, third parties can inject malware into
programs from a trusted source. Mandatory code sign-
ing also simplifies blacklisting of applications that con-
tain malware and helps establish provenance.

On the other hand, compile-time diversification
isn’t necessarily practical because it’s computationally
expensive to recompile and link a new program variant
for every user. However, diversifying a million binaries
doesn’t necessarily cost a million times more than diver-
sifying it once. In essence, compilers consist of a series
of code transformations arranged to form a pipeline.
With this architecture, we can easily add a diversify-
ing stage by adding another step to the pipeline. Code

Figure 1. A diversification mechanism can be hidden entirely within an online
software delivery system (“App Store”) so that it’s transparent to both code
consumers and software developers.

creates

App developer

App

Diversity engine
within App Store

creates

Subsequent downloaders receive functionally identical
but internally di�erent versions of the same app

delivers to

Variants

App Store

j2lar.indd 31 3/14/14 9:21 AM

32	 IEEE Security & Privacy� March/April 2014

MOVING TARGET

transformations that occur before the diversification
stage are invariant with respect to generation of addi-
tional diversified binaries and needn’t be recompiled.
Figure 2 illustrates how the potential to cache the com-
pilation work depends on the point in time at which
diversification occurs. Simply put, later is better. Our
multicompiler, built on top of the LLVM compilation
framework, performs diversification in the code-gener-
ation step, which happens very late (see the lower half of
Figure 2). We cache as much work as possible by writing
out LLVM bitcode before the code-generation step and
restarting the compilation from that point when creat-
ing additional variants. With bitcode caching, the time
to create a variant is cut roughly in half.

Part of the reason we’re not seeing even greater
speedups is that code generation—including instruc-
tion selection, scheduling, and register allocation—is
time consuming. Alternatively, we can perform trans-
formations such as NOP insertion and instruction
scheduling on the assembly code emitted by the com-
piler; this leads to additional savings because code
generation becomes redundant.

Our approach analyzes assembly files and computes
diversification opportunities ahead of time. Examples
include the places NOPs can be inserted and valid
instruction schedules. We use annotations to capture
the analysis results. A fast template-processing pass
reads the annotated assembly files and diversifies them
before assembling the final object file. This reduces the
time to create a diversified binary. For example, using
Firefox version 17, the time decreases from 1 hour and
41 minutes to 25 minutes—a 75 percent improve-
ment. We’re exploring ways to speed up build processes,
which are often I/O bound and contain repetitive or

superfluous work, and see potential for further optimi-
zation. For instance, we’ve reduced the time to diver-
sify several software packages by more than 92 percent:
diversifying GNU make causes a reduction from 6.17
to 0.44 seconds and diversifying vim causes a reduc-
tion from 52.60 to 4.02 seconds by recording makefile
actions and replaying only the essential ones.

We assume diversified binaries are distributed via
an App Store hosted by an infrastructure-as-a-service
(IaaS) provider such as Amazon, Google, or Microsoft.
It’s natural to assume that software developers will per-
form diversification in the cloud since this has several
advantages over an in-house solution. The multiplexing
of computing resources gives IaaS providers economies
of scale. Because of intensive competition among the
top providers, these savings are handed down to the
customers. Furthermore, cloud computing requires no
upfront investment, and resources are billed according
to actual use. This means that computing resources to
diversify binaries can be scaled up and down in response
to the number of download requests.

In addition, we’re optimizing the use of cloud com-
puting resources when diversifying binaries. IaaS
providers offer a range of hardware tiers with vari-
ous processing, RAM, and storage capabilities. Excess
capacity within each tier is sold at spot prices that
vary according to demand. Permanent storage is simi-
larly tiered according to availability and resilience.
This means we can satisfy user demand for diversified
binaries by maintaining a stockpile of prebuilt diversi-
fied binaries, so downloads start instantly like today’s
software downloads. If the stockpile is not running
low, we choose to replenish it only when spot prices
are favorable. If it needs quick restocking, we use

Figure 2. The effort required to create diversified program binaries from sources depends on two factors—the point in
time at which diversification occurs in the compilation pipeline (later is better) and when the diversification-invariant
work can be cached during compilation.

Work to create variant

Sources
Program variants

Early diversi	cation

Work per variant

Late diversi	cation

Object 	le cache

j2lar.indd 32 3/14/14 9:21 AM

www.computer.org/security� 33

regular, on-demand instances that, in turn, cost more.
In the unlikely case that this strategy can’t keep up with
demand at a reasonable cost, we can reduce the diversity
level—and thus security—slightly. For instance, we can
choose to distribute the same binary twice rather than
once. When done correctly and when there are millions
of users, attackers’ chances of obtaining the same binary
as their victims are small.

We believe that concerns about manufacturing and
distribution problems will turn out to be nonissues in
practice. Similarly, concerns that compiler-based diversity
can’t protect legacy binaries will go away once our multi
compiler is coupled with a decompiler such as Second
Write. Adding librando to the mix rounds out the
types of code we can successfully diversify: legacy code,
code that can be recompiled, and code yet to be compiled.

How Far Along Are We?
Recent years have brought tremendous progress in the
shift from a software monoculture to a diverse software
ecosystem. Researchers have several tools at their dis-
posal to diversify existing software from either source
or binary code, including black-box diversification
approaches to diversify dynamically generated native
machine code emitted by a JIT compiler.

However, not even the combined approach we out-
lined addresses all challenges in creating a diverse eco-
system. First, many major operating systems and mature
software packages support automatic error reporting. In
the presence of a fully diversified software stack, a cli-
ent’s error report doesn’t directly identify the actual
problem of the specific instance of a binary running on
the client computer. Depending on the diversification
techniques used, we would need to reliably “relocate”
the reported error information in such a way that cyber-
criminals can’t abuse this mechanism.

Second and in a similar vein, we need to address the
software update mechanism, which depends on the
software monoculture. Because a client’s binary image
will vary substantially among hosts, a single patch can’t
update all these hosts. A trivial solution to this problem
is to hand out new versions of the software to each user.
This has additional security benefits, as a host machine’s
software ecosystem would be in constant flux. On com-
mon desktop machines with fast Internet connections,
this approach might not be a problem; however, mobile
devices with expensive data plans would suffer from this
update provisioning system. One solution is shipping
diversified updates, customized for each binary running
on end users’ hosts.

To undo diversification and create customized
updates, a diversified binary must know the random
seed the diversification engine used to create it. Unfor-
tunately, just adding this random seed to a binary poses

a substantial security risk: if leaked, attackers can re-
create the whole binary and use it to create a targeted
code-reuse attack. The computer security community’s
solution to this problem is secret sharing.12 Adapted to
our problem, we would split the random seed in half:
the binary receives one half, and we store the other
half in the cloud. Compromising either one of these
parties won’t yield the complete seed necessary to re-
create the binary versions, and therefore both parties
are protected.

Besides securing both the cloud and its clients, this
technique has other favorable properties. For example,
the cloud could periodically remove entries from its
database of half-keys. Consequently, a client requesting
a patch would receive a fresh binary image. This is simi-
lar to a decoy, because attackers eavesdropping on the
communication between clients and the cloud wouldn’t
be able to infer any meaningful information.

A third challenge relates to preservation of cor-
rectness after diversification. Current best practice
dictates that a binary must pass a gamut of automated
tests as well as alpha and beta testing by early adopters
before it’s released to the entire user base. Some soft-
ware vendors might be reluctant to distribute diver-
sified binaries that don’t undergo the same level of
testing. However, advances in correctness testing have
made compilers some of the most mature and reliable
computer programs in existence.13 In our experience,
diversification techniques such as NOP insertion
and register allocation randomization are sufficiently
simple that they chiefly rely on the correctness of the
compiler’s underlying code analysis and optimization
framework. Moreover, to increase confidence in the
diversification process, software vendors can scale up
their automated testing procedures to run on several
diversified binaries instead of testing just one undiver-
sified version. The resulting increase in computational
resources can be addressed by moving the testing pro-
cedures to a computing cloud.

Reach of Diversity
In this article, we focus on the protection of machine
code in binaries against code-reuse attacks. However,
artificial diversity can be applied at the source code
level, too. Code randomization has been proposed as a
counter to code injection attacks such as SQL injection
and cross-site scripting.

We’re confident that researchers will propose new
applications of artificial diversity in response to new
offensive techniques. However, we don’t think of arti-
ficial software diversity as a universal panacea, but we
suspect that defenses such as W ⊕ X, stack canaries,
and fault isolation will continue to provide supplemen-
tal coverage and defense-in-depth. Software diversity

j2lar.indd 33 3/14/14 9:21 AM

34	 IEEE Security & Privacy� March/April 2014

MOVING TARGET

works by randomizing implementation details; attacks
that rely on defective program logic—regardless of its
implementation—remain unaffected because diversity
preserves program semantics.

In addition, researchers have demonstrated informa-
tion leakage attacks that are designed specifically to cir-
cumvent software diversity. In the presence of arbitrary
memory disclosures and scripting capabilities, attackers
can analyze the target binary and generate code-reuse
attacks on the target machine “just in time.”14 This effec-
tively shifts the required defense from preventing code
reuse to preventing memory disclosures, especially in
the context of attacker-controlled scripting environ-
ments, such as Web browsers. Although this attack is
possible, diversity raises the bar and forces attackers to
use sophisticated and difficult attacks.

S oftware diversity targets properties fundamental
to attacks on low-level code: knowledge of imple-

mentation details and the ability to replicate the victim
environment. Diversifying program implementations
not only stops a range of known attacks, it might also
counter yet unseen attack types.

Further research is warranted to put software diver-
sity into a unifying framework and to distinguish the
range of attacks it prevents from those it doesn’t. For
example, we lack commonly agreed-on metrics and
measurements to compare the security afforded by two
diversifying transformations with one another and with
competing techniques.

Considering how diversity can transition into prac-
tice is equally important. In that respect, we find cloud-
based, compile-time diversification augmented by binary
rewriting surprisingly attractive. It gets the broad strokes
right: the performance impact is minimal, it can protect
code regardless of how it was produced or whether it was
signed, and it produces diversified binaries cost-effec-
tively without enlarging the system’s attack surface.

However, like its alternatives, cloud-based diver-
sification isn’t a silver bullet. Attackers might be able
to latch onto implementation aspects that nobody
thought to diversify. Luckily, once the investment in a
diversified ecosystem is made, adding to the set of code
randomization techniques is as easy and transparent as
introducing new compiler optimizations and fixes via
regular updates.

Work remains to be done on error reporting and
patching of diversified software. To address these prob-
lems, the diversification process must be reproducible.
We can drive the diversification using a pseudorandom
sequence expanded from a seed value; the seed value
then becomes the only secret in the system requiring
protection. Rather than storing the whole seed in a

single place, again, we can use secret-sharing techniques
to store one part of the seed in the cloud and another on
the client side.

With most of the major obstacles cleared, we expect
the arrival of diversified software in the commercial
marketplace within the next three years. There will be
some initial resistance as people adapt to changes to
established security practices, but in the end, we’ll all be
more secure. Instead of a single target binary replicated
across millions of computers, we’ll present adversaries
with a moving target in the form of large numbers of
binary variations and no proper way of matching attack
vectors to target binaries.

Acknowledgments
This material is based on work partially supported by the
Defense Advanced Research Projects Agency under contracts
D11PC20024 and N660001-1-2-4014, by the National Sci-
ence Foundation under grant CCF-1117162, and by a gift from
Google. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors and
do not necessarily reflect the views of the Defense Advanced
Research Projects Agency, its Contracting Agents, the National
Science Foundation, or any other agency of the US government.

References
1.	 C.S. Collberg et al., “Distributed Application Tamper

Detection via Continuous Software Updates,” Proc. 28th
Ann. Computer Security Applications Conf. (ACSAC 12),
2012, pp. 319–328.

2.	 B. Coppens, “Protecting Your Software Updates,” IEEE
Security & Privacy, vol. 11, no. 2, 2013, pp. 47–54.

3.	 D.W. Williams et al., “Security through Diversity: Lever-
aging Virtual Machine Technology,” IEEE Security & Pri-
vacy, vol. 7, no. 1, 2009, pp. 26–33.

4.	 S. Bhatkar, R. Sekar, and D.C. DuVarney, “Efficient Tech-
niques for Comprehensive Protection from Memory
Error Exploits,” Proc. 14th Usenix Security Symp., 2005,
pp. 271–286.

5.	 R. Wartell et al., “Binary Stirring: Self-Randomizing
Instruction Addresses of Legacy x86 Binary Code,” Proc.
19th ACM Conf. Computer and Communications Security
(CCS 12), 2012, pp. 157–168.

6.	 J. Hiser et al., “ILR: Where’d My Gadgets Go?,” Proc.
33rd IEEE Symp. Security and Privacy (S&P 12), 2012, pp.
571–585.

7.	 V. Pappas, M. Polychronakis, and A.D. Keromytis, “Smash-
ing the Gadgets: Hindering Return-Oriented Programming
Using In-Place Code Randomization,” Proc. 33rd IEEE
Symp. Security and Privacy (S&P 12), 2012, pp. 601–615.

8.	 C. Giuffrida, A. Kuijsten, and A.S. Tanenbaum, “Enhanced
Operating System Security through Efficient and Fine-
Grained Address Space Randomization,” Proc. 21st Usenix
Security Symp., 2012, pp. 475–490.

j2lar.indd 34 3/14/14 9:21 AM

www.computer.org/security� 35

9.	 A. Homescu et al., “Profile-Guided Automatic Software
Diversity,” Proc. 11th IEEE/ACM Int’l Symp. Code Genera-
tion and Optimization (CGO 13), 2013, pp. 1–11.

10.	 K. Anand et al., “A Compiler-Level Intermediate Repre-
sentation Based Binary Analysis and Rewriting System,”
Proc. 8th EuroSys Conf., 2013, pp. 295–308.

11.	 A. Homescu et al., “Librando: Transparent Code Ran-
domization for Just-in-Time Compilers,” Proc. 20th ACM
Conf. Computer and Communications Security (CCS 13),
2013, pp. 993–1004.

12.	 A. Shamir, “How to Share a Secret,” Comm. ACM, vol. 22,
no. 11, 1979, pp. 612–613.

13.	 M. Franz, “E unibus pluram: Massive-Scale Software
Diversity as a Defense Mechanism,” Proc. 2010 Workshop
on New Security Paradigms, 2010, pp. 7–16.

14.	 K.Z. Snow et al., “Just-in-Time Code Reuse: On the Effec-
tiveness of Fine-Grained Address Space Layout Random-
ization,” Proc. 34th IEEE Symp. Security and Privacy (S&P
13), 2013, pp. 574–588.

Per Larsen is a postdoctoral scholar in the University of
California, Irvine’s Department of Computer Science.
His research interests include security, compilers,
code profiling, and optimization. Larsen received a
PhD in computer science from the Technical Univer-
sity of Denmark. Contact him at perl@uci.edu.

Stefan Brunthaler is a postdoctoral scholar in the Univer-
sity of California, Irvine’s Department of Computer
Science. His research interests include compilation,
interpretation, analysis, optimization, and verifica-
tion. Brunthaler received a doctorate in technical
sciences from the Vienna University of Technology.
Contact him at s.brunthaler@uci.edu.

Michael Franz is a full processor in the University of Cali-
fornia, Irvine’s Department of Computer Science. His
research interests include systems software, security,
compilers, and virtual machines. Franz received a doc-
torate in technical sciences from ETH Zurich. He’s a
senior member of IEEE. Contact him at franz@uci.edu.

PURPOSE: The IEEE Computer Society is the world’s
largest association of computing professionals and is the
leading provider of technical information in the field.
MEMBERSHIP: Members receive the monthly magazine
Computer, discounts, and opportunities to serve (all
activities are led by volunteer members). Membership is
open to all IEEE members, affiliate society members, and
others interested in the computer field.
COMPUTER SOCIETY WEBSITE: www.computer.org

Next Board Meeting: 2–6 June 2014, Seattle, WA, USA

EXECUTIVE COMMITTEE
President: Dejan S. Milojicic
President-Elect: Thomas M. Conte; Past President: David Alan
Grier; Secretary: David S. Ebert; Treasurer: Charlene (“Chuck”)
J. Walrad; VP, Educational Activities: Phillip Laplante; VP,
Member & Geographic Activities: Elizabeth L. Burd; VP,
Publications: Jean-Luc Gaudiot; VP, Professional Activities:
Donald F. Shafer; VP, Standards Activities: James W. Moore; VP,
Technical & Conference Activities: Cecilia Metra; 2014 IEEE
Director & Delegate Division VIII: Roger U. Fujii; 2014 IEEE
Director & Delegate Division V: Susan K. (Kathy) Land; 2014
IEEE Director-Elect & Delegate Division VIII: John W. Walz

BOARD OF GOVERNORS
Term Expiring 2014: Jose Ignacio Castillo Velazquez, David
S. Ebert, Hakan Erdogmus, Gargi Keeni, Fabrizio Lombardi,
Hironori Kasahara, Arnold N. Pears
Term Expiring 2015: Ann DeMarle, Cecilia Metra, Nita Patel,
Diomidis Spinellis, Phillip Laplante, Jean-Luc Gaudiot, Stefano
Zanero
Term Expriring 2016: David A. Bader, Pierre Bourque, Dennis
Frailey, Jill I. Gostin, Atsuhiro Goto, Rob Reilly, Christina M.
Schober

EXECUTIVE STAFF
Executive Director: Angela R. Burgess; Associate Executive
Director & Director, Governance: Anne Marie Kelly; Director,
Finance & Accounting: John Miller; Director, Information
Technology & Services: Ray Kahn; Director, Membership
Development: Eric Berkowitz; Director, Products & Services:
Evan Butterfield; Director, Sales & Marketing: Chris Jensen

COMPUTER SOCIETY OFFICES
Washington, D.C.: 2001 L St., Ste. 700, Washington, D.C. 20036-4928
Phone: +1 202 371 0101 • Fax: +1 202 728 9614
Email: hq.ofc@computer.org
Los Alamitos: 10662 Los Vaqueros Circle, Los Alamitos, CA 90720
Phone: +1 714 821 8380 • Email: help@computer.org
Membership & Publication Orders
Phone: +1 800 272 6657 • Fax: +1 714 821 4641
Email: help@computer.org
Asia/Pacific: Watanabe Building, 1-4-2 Minami-Aoyama, Minato-
ku, Tokyo 107-0062, Japan • Phone: +81 3 3408 3118
Fax: +81 3 3408 3553 • Email: tokyo.ofc@computer.org

IEEE BOARD OF DIRECTORS
President: J. Roberto de Marca; President-Elect: Howard E.
Michel; Past President: Peter W. Staecker; Secretary: Marko
Delimar; Treasurer: John T. Barr; Director & President,
IEEE-USA: Gary L. Blank; Director & President, Standards
Association: Karen Bartleson; Director & VP, Educational
Activities: Saurabh Sinha; Director & VP, Membership
and Geographic Activities: Ralph M. Ford; Director & VP,
Publication Services and Products: Gianluca Setti; Director &
VP, Technical Activities: Jacek M. Zurada; Director & Delegate
Division V: Susan K. (Kathy) Land; Director & Delegate Division
VIII: Roger U. Fujii

revised 7 Feb. 2014

stay connected.stay connected.

| IEEE Computer Society
| Computing Now

| youtube.com/ieeecomputersociety

| facebook.com/IEEE ComputerSociety
| facebook.com/ComputingNow

| @ComputerSociety
| @ComputingNow

j2lar.indd 35 3/14/14 9:21 AM

