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ABSTRACT
Inline caching is a very important optimization technique
for interpreters, effectively eliminating the overhead in dy-
namic typing. Unfortunately, inline caches are mostly used
together with dynamic translation, which is expensive in
terms of implementation costs. We present efficient inline-
caching techniques that do not require dynamic translation.
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1. MOTIVATION
Usually, inline caches are applied in conjunction with dy-

namic translation, i.e., in a piece of dynamically translated
code, inline caches serve the purpose of eliminating method
lookups and/or dynamic typing by caching a resolved target
address directly in the translated native code, replacing the
call to the system default lookup routine.

Inline caches per se—without their dynamic translation
counterpart—are, however, not present in many popular vir-
tual machines, e.g. Lua, Perl, Python, and Ruby. A possible
explanation for this is mentioned in Hölzle’s PhD thesis on
page 31: “A straightforward interpreter could not use inline
caching and would have to use a lookup cache instead.” [2].
Building on our previous results on the varying potential of
optimization techniques [1] for those interpreters, we present
techniques for adding efficient inline caches to them, and
report on preliminary experimental results. Compared to
the basic technique (cf. Section 2), the advanced technique
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(cf. Section 3) offers improved data locality and instruction
decoding efficiency.

2. BASIC INLINE CACHING
We demonstrate our technique for the Python interpreter,

because it offers a lot of potential for type feedback and in-
line caching in general. As an example of how the program-
ming language is implemented we present the implementa-
tion of the BINARY_ADD instruction:

case BINARY_ADD:

w= POP();

v= TOP();

if (PyUnicode_Check(v) && PyUnicode_Check(w))

x = unicode_concat(v, w, f, ip);

else

x = PyNumber_Add(v, w);

Py_DECREF(v);

Py_DECREF(w);

SET_TOP(x);

break;

We see in the BINARY_ADD example how the types are dy-
namically resolved in operation implementation. If operands
are Unicode-strings they are concatenated, the numerical
addition is delegated to the PyNumber_Add function.

Our inline caching scheme requires the following steps:

1. creation of an array of pointers with the same number
of elements as there are instructions in a given code
sequence.

2. change of the operation implementation to use the in-
line cache pointer.

3. initialization of the array of inline cache pointers.

4. implementation of type feedback primitives.
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Figure 1: After the first execution, the inline-cache
pointers at offsets n + 2 and n + 4 were updated.



5. change in the instruction pointer manipulation func-
tions to change the inline cache pointer, too.

For our inline cache to work, we need to change opera-
tion implementation to use a pointer instead of a direct call.
Continuing with our previous BINARY_ADD example, this re-
sults in:

case BINARY_ADD:

w= POP();

v= TOP();

x= ((binaddfun) *ic_ptr)(v, w, f, next_instr);

Py_DECREF(v);

Py_DECREF(w);

SET_TOP(x);

break;

The array of inline cache pointers is dynamically allo-
cated; we require the same amount of pointers as there are
bytecode instructions in a given function. In order to work
as expected, the array of inline cache pointers needs to be
initialized. Since the initialization functions are known at
compile-time, this requires only a simple iteration over the
sequence of bytecodes, where we assign a function pointer
for each bytecode we implement, e.g. if the i-th instruction
of a function is a BINARY_ADD instruction, then the corre-
sponding inline-cache pointer is initialized to point to the
address of the ic_add function, which realizes the operation
implementation of the BINARY_ADD instruction.

To implement type feedback, we need to instrument spe-
cific places which update the inline cache pointer of the cur-
rent instruction. Say that we want to inline cache whether a
BINARY_ADD instruction ended up being a string concatena-
tion, then we would have to update the inline cache accord-
ingly (cf. Figure 1, where unicode_concat and unicode_repeat

were inline cached). Since the inline cache can be invalid
at times, our technique changes the implementation of the
inline cached functions, which check whether the actual pa-
rameters match their expected types.

Finally, we need to take care of changing the inline cache
pointer whenever we change the instruction pointer of the
virtual machine, i.e. when dispatching to the next instruc-
tion, jumping as a result of a conditional statement or an
unconditional jump, etc.

3. BYTECODE + INLINE CACHE
Figure 2 illustrates the result of combining the separate

arrays of bytecodes and inline-cache pointers. Note that
for every bytecode instruction 2n the corresponding inline-
cache-pointer is 2n + 1.
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Figure 2: Merged representation.

In order to combine the separate arrays, we have to change
the instruction encoding of the Python interpreter. Instead
of the irregular encoding which uses dedicated bytes for en-
coding arguments to instructions, our technique requires the
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Figure 3: Rewrite pointers (middle-row) build the
correspondence from the old instruction encoding
scheme (top-row) to the new one (bottom-row).

switch to a regular instruction format. This regular instruc-
tion format encodes instructions and arguments into just one
native machine word. Consequently, the new instruction
format ensures that instructions are adjacent at all times,
which makes updating the inline cache pointer considerably
easier. Next, we need to interleave the instructions with
native machine words that we use to store the inline cache
pointers.

Since all jumps encoded in the original format include the
argument-bytes in their absolute/relative destination posi-
tions, we have to relocate the jumps to match the new in-
struction format. The relocation can be done during initial-
ization of our inline cache (cf. Figure 3).

The new combined data-structure requires significantly
more space—two native machine words for each instruction
byte. To compensate for the additional space requirements,
we use a profiling infrastructure to decide when to switch to
this new instruction encoding at run time.

4. EVALUATION AND CONCLUSIONS
First experiments demonstrate that our technique from

Section 3 reduces the number of executed native machine
instructions thereby improving performance, too. In par-
ticular, the reduction in call and jump instructions of up to
30% together with a speedup factor of up to 1.3 is promising,
and we are currently investigating this in more detail.
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