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Abstract. The widespread use of JavaScript (JS) as the dominant web program-
ming language opens the door to attacks such as Cross Site Scripting that steal
sensitive information from users. Information flow tracking successfully addresses
current browser security shortcomings, but current implementations incur a signif-
icant runtime overhead cost that prevents adoption.

We present a novel approach to information flow security that distributes the track-
ing workload across all page visitors by probabilistically switching between two
JavaScript execution modes. Our framework reports attempts to steal information
from a user’s browser to a third party that maintains a blacklist of malicious URLs.
Participating users can then benefit from receiving warnings about blacklisted
URLs, similar to anti-phishing filters.

Our measurements indicate that our approach is both efficient and effective. First,
our technique is efficient because it reduces performance impact by an order
of magnitude. Second, our system is effective, i.e. , it detects 99.45% of all
information flow violations on the Alexa Top 500 pages using a conservative 5%
sampling rate. Most sites need fewer samples in practice; and will therefore incur
even less overhead.

1 Motivation

Modern web pages have become complex web applications that mash up scripts from
different origins inside a single execution context in a user’s browser. Unfortunately, this
execution scheme opens the door for attackers, too. Vulnerability studies consistently
rank Cross Site Scripting (XSS) highest in the list of the most prevalent type of attacks
on web applications [1i2l3]. Attackers use XSS to gain access to confidential user
information. A recent study on privacy violating flows confirms the ubiquity of user data
theft when browsing the web [4].

Previous work on browser security shows that information flow tracking can counter
such attacks [516[7l8l9]. Even though information flow tracking prevents misappropri-
ation of sensitive data, all known approaches introduce runtime overheads that make
execution of JS code at least two to three times slower. We believe that industry will never
adopt the information flow approach without a substantial reduction in this overhead.

Taint tracking is a more efficiently implementable subset of information flow tracking;
for example, TaintDroid [10] reports an overhead of just 14%. Information flow tracking
increases security by tracking both data and control flow, but unfortunately no efficient
implementation is known for dynamically typed languages such as JS.



Our solution distributes the tracking overhead among a crowd of visitors, leveraging
the same property that attackers target: site popularity. The more visitors a site has,
the less tracking effort is required by an individual client. To balance precision and
performance, our system, CrowdFlow, primarily executes code in a partial taint tracking
interpreter and probabilistically switches to a slower information flow tracking interpreter
at decision points such as function boundaries.

The probabilistic switching between the two JS interpreters allows individual clients
to execute web applications much faster than traditional approaches where every client
always performs the costly information flow tracking. Even though the CrowdFlow
approach permits individuals to miss detection of specific information flow violations,
we show that a crowd of users, in aggregate, detects the majority of information flow
violations. Clients report policy violating flows to a trusted third party that collects
suspicious information flow reports, similar to commercial blacklisting initiatives like
Google’s Safe Browsing [11]] or Microsoft’s Smartscreen-Filter [12].

Currently, corporations hosting URL blacklist services populate the database at their
own expense, through automated scanning that tends to miss real-world use of web
applications by logged-in users. These services also provide a form through which end-
users can submit a malicious URL for investigation, but this collection mechanism tends
to catch code that causes user-level annoyance rather than surreptitious and silent data
theft. Additionally, website operators in adversarial competition submit false allegations
in an attempt to put competing websites on the blacklist.

We believe that automating the reporting process on the client side and basing it on
privacy-violating information flow results in three benefits. First, automated reporting
increases the amount of data that these systems have, enabling them to improve report
validation. Second, automated reporting reduces the number of false allegations by
raising the bar on the level of detail a report contains. Third, automated reporting tracks
into the deep web, inspecting application behavior after a user has logged in. CrowdFlow,
with its low per-user overhead, is a perfect front-end for these systems.

We provide background information on JS security that motivates the de-
velopment of CrowdFlow, define the threat model our system defends against
and make the following contributions:

e We introduce CrowdFlow (Section 4)), a novel approach to information flow tracking
that switches between two JS interpreters to balance performance and security. This
architecture distributes the tracking costs across a crowd of visitors to a page.

e We present a comprehensive information flow tracking browser based
on WebKit [13]] and provide implementation details for both partial taint tracking
and information flow tracking modes.

e We evaluate our system on a variety of real-world websites. In particular, we demon-
strate the practicality of our framework by showing that our system
satisfies the following important properties:

— Efficiency: CrowdFlow executes JS an order of magnitude faster than tra-
ditional approaches for information flow tracking, with an average runtime
overhead of 27.84% for SunSpider [14]] and 32.05% for V8 [15] benchmarks.
To compare, execution overhead of traditional information flow implementations
ranges between 200% and 300%.



— Effectiveness: Our approach finds almost all (99.45%) information flow viola-
tions on the Alexa Top 500 [16] web sites compared to a traditional information
flow tracking system. We achieve this detection rate with a crowd of only five
users, and a conservative function invocation sampling rate of 5%.

2 Background on JS Security

XSS is a code injection attack that allows an adversary to execute code without the
user’s knowledge and consent. For example, XSS allows attackers to harvest sensitive
information such as keystrokes, authentication credentials and credit card numbers. A
malicious script can even traverse the Document Object Model (DOM) [[17]] and steal all
visible data on a compromised web page [18]].

Web developers often include third-party functionality such as jQuery, Google
Analytics, and Facebook APIs to enrich a user’s browsing experience. Recent work by
Nikiforakis et al. [19] highlights the problematic situation of granting third-party scripts
access to application internals and shows the potential of included code to perform
malicious actions without attracting attention from either developers or end users.

Currently, browsers rely on the Same Origin Policy (SOP) [20], and the Content
Security Policy (CSP) [21] to limit a script’s access to information. The CSP allows page
authors to whitelist trusted sources and the SOP prevents access for scripts of different
origins when properly isolated with i frame-tags. However, neither policy can prevent
JS from stealing information on a page when developers include multiple libraries in the
same execution context, as currently practiced [19].

3 Threat Model

Throughout this paper we assume that attackers have the following abilities: (i) attackers
can operate their own hosts, and (ii) can inject code into other web pages. Code injection
into other pages relies either on exploiting a XSS vulnerability of a page, or the ability to
provide content for mashups, advertisements, libraries, etc., that victim sites include. The
attacker’s capabilities, however, are limited to JS and the attacker can neither intercept
nor control network traffic.

Phishing Campaigns vs. Targeted Attacks: In contrast to common information flow
tracking systems, the architecture of CrowdFlow does not attempt to prevent information
theft attacks from within the user’s browser. Rather, it reports detected information flow
violations to a trusted third-party aggregator, such as Google’s Safebrowsing initiative
or Microsoft’s Smartscreen-Filter. CrowdFlow is not designed to defend against a
targeted attack, in which the attacker tries to steal information of one particular person.
The architecture of CrowdFlow aims to protect the majority of users against phishing
campaigns, where the attacker distributes exploit code to high-traffic web pages to gather
as much information as possible.



Threat Examples CrowdFlow Defends Against: To steal information from a browser,
malicious code must surreptitiously communicate it to an attacker-controlled server. For
example, by placing an image on the page, the attacker can steal sensitive information
through the target URL of an image request:

elem.src = "evil.com/p.png?v=" + creditcard_number;

The GET request for the image p . png acts as a channel through which the attacker
steals the user’s credit card number as a query parameter of the target URL. The attacker-
controlled server records the image request, including the stolen data, in its logs.

4 CrowdFlow

The design of traditional JS information flow tracking systems requires every client to
track all information flows [5l6[7/819]. In contrast, CrowdFlow implements a probabilis-
tic approach, where each user only spends a fraction of the execution time in the slower
information flow tracking interpreter, thus paying only a fraction of the performance cost.
Following the distributed system design of the Internet itself, CrowdFlow distributes the
security analysis across a crowd of visitors, aggregates the flow reports at a trusted third
party, and shares findings back to users, warning them of potentially malicious pages.

4.1 Probabilistic Tracking

The CrowdFlow browser primarily executes in a partial taint tracking interpreter (state
PTT in[Figure I)) that propagates labels only across direct assignments (a = b;).

1 - inspect function for potential
information flow violations

2 - no potential leak detected, or
probabilistically decides to fall back to PTT

3 - potential leak detected, and
probabilistically decides to keep tracking

Fig. 1: Execution states in CrowdFlow. PTT - Partial Taint Tracking, IFT; - Information
Flow Tracking (trial), IFT, - Information Flow Tracking (permanent).

CrowdFlow has a configurable sampling rate, that controls the switch from state
PTT to the trial information flow tracking interpreter (state |IFT) at every function
invocation. Both IFT modes propagate every operation’s dependence on control-flow
predicates (see[Section 5.2)), preventing malicious code from using inference of control-
flow branches to circumvent the partial taint tracking. When executing in IF T mode,
CrowdFlow watches for operations that involve the mixing of data from multiple
domains, as this occurrence indicates a potential information flow violation.

Definition of a Potential Information Flow Violation: We define a potential infor-
mation flow violation as the result of two domains influencing a value.

For example, assume variable a originates from domain A and variable b originates
from domain B, thenb += a; constitutes a potential information flow violation because



data from both domains A and B influence the resulting value of variable b. When
malicious code attempts to steal data from a page, the copy or encoding operations
involved follow this definition and CrowdFlow detects the confluence of values from
multiple domains.

When no potential violation occurs in the trial information flow tracking mode
(IFT, state), the browser returns to the PTT state at the end of the function invocation.
But if the CrowdFlow browser detects a potential violation while operating in IF T, it
probabilistically switches to the permanent information flow tracking interpreter (state
IFT,). The probability of transferring to state IFT, and continue tracking the potential
information flow violation is also configurable. From here on, information flow tracking
occurs not only intra-procedurally but also inter-procedurally, preventing malicious code
from gaming the system by splitting the information theft attack across several functions.

4.2 Tracking Multiple Domains

Our system tracks the flow of information throughout program execution by applying
a label to every program value. These labels take the form of a bit-vector that encodes
information about a program’s origin (Section 5.4). CrowdFlow maintains a registry of
all domains represented on a page, mapping a unique bit to each page. When running
in information flow tracking mode, CrowdFlow labels each value resulting from an
operation with the set union of all domains of all inputs, including implicit inputs such
as the predicates of any currently executing branches and the origin of the code itself.

4.3 Reporting Information Flows

CrowdFlow tracks flows of information not only in the JS engine, but also across
scripting-exposed browser subsystems, including the DOM and user-generated events.
During execution, CrowdFlow monitors network traffic for information leaks.

Definition of an Information Leak: We define an information leak as the inequality
of domains between a network data payload and the target.

When the label of the payload indicates that the data has been influenced by any
origin other than the destination domain, the network request represents a communication
to a foreign party, possibly an attacker-controlled server. CrowdFlow detects the attempt
and reports the source domains involved in the leak and the target URL to a commercial
blacklisting initiative. We use the defined Example Threat from our Threat Model, as the
running example to explain how CrowdFlow detects such an information leak.

var url = "http://evil.com/p.png?v=" + creditcard_number;
img_elem.src = url;

Using a XSS vulnerability the attacker injects the example code on a page from
host bank . com. When loading the page, the CrowdFlow browser maps the host URL
bank . com to a unique label bit, say 0001. Because this snippet appears within the
page, it has access to all the host page’s application content.

To steal information, the malicious code appends the sensitive information stored
in host variable creditcard_number as part of the target query-string for an image



request (line 1). Setting the source attribute of an image element on the host page
causes the browser to issue a GET request to evil.com. CrowdFlow registers the new
domain with another unique label bit, 001 0. Before emitting the request on the network,
CrowdFlow inspects the label on the payload (0001) and finds that it differs from the
target (0010), triggering an information flow violation report.

Note that the same code, even when dynamically loaded from evil.com, also
triggers a flow report. In this case, the malicious code carries label of evil.com while
the host variable creditcard_number still carries the label of bank.com. As a
result of CrowdFlow’s label propagation rules, the computed url payload carries the
join of these domains (0011), which differs from the target domain (0010).

S Implementation

A single web page can incorporate data from several different domains. Within the JS
engine, data and objects originating from different domains (security principals) may
interact, creating values that derive from more than one domain. To model this behavior,
we take inspiration from Myers’ decentralized label model [22]] and represent security
labels as a lattice join over domains. Internally, the CrowdFlow browser associates each
domain with a unique marker and implements joins as a set union over domains.

5.1 Partial Taint Tracking Interpreter

We implement the CrowdFlow browser by modifying WebKit, which ships with a
register-based direct-threaded JS interpreter (JavaScriptCore), so that all values
carry a label indicating the domains that influenced its construction. The partial taint
tracking interpreter operates on tainted data and efficiently propagates labels for direct
assignments due to our label encoding: Because the label resides in the virtual machine
level representation of a JS value, a direct assignment from one variable to another also
carries that label, without additional computation logic.

var pub = secret;

This assignment shows that the content of pub depends directly on the value of
the secret variable secret. If the variable pub is publicly observable, then the secret
variable secret explicitly leaks through this flow of information. After the assignment,
variable pub not only has the value of variable secret, but it also carries the label of
variable secret, since the assignment is a full copy of the variable contents. Again,
the partial taint tracking interpreter propagates labels only for direct assignments.

5.2 Information Flow Tracking Interpreter

Conventional static analysis techniques for information flow, such as those developed
for the Java-based Jif [23]], are not directly applicable to dynamically typed languages,
such as JS. However, we adapt these techniques by introducing a control-flow stack that
manages labels for different regions of a running program, which is a common technique
for securing programs [5l9]]. At runtime, CrowdFlow updates the label on top of this
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stack at every control-flow branch and join within a program, to model entry and exit
points for secure regions of a program. The top of the control-flow stack always contains
the current security label of the current program counter, which carries the set join of
predicates in all enclosing branches.

Tracking Data Flow: The following accumulation operator shows the content of vari-
able secret adding or concatenating with the public variable pub.

pub += secret;

This code snippet illustrates how CrowdFlow can stop a specific data theft attempt.
An attacker gathers sensitive information on a web page, but before the attacker can
steal that information by sending it back to a server under his control, he needs to
concatenate the sensitive payload to the query-string of the request. The information
flow tracking interpreter tracks the operation by joining the labels of the operands of the
addition/concatenation together with the label of the current program counter.

Tracking Control Flow: The following code snippet shows an implicit direct informa-
tion flow [24] which occurs when a control-flow branch predicate influences a value.

var pub = undefined;
if (secret)
pub = true;

As illustrated, the script code steals a secret variable secret using such an implicit
direct information flow. An attacker can gain information about the secret variable
by inspecting the value of the variable pub after execution of the if statement. The
handling of implicit direct information flows therefore requires joining the label of the
variable pub with the label of the current program region. The CrowdFlow information
flow tracking interpreter propagates implicit direct information flows by updating the
label of the current program counter to reflect its dependence on the variable secret.
At the assignment (line 3), the variable pub becomes tainted with the label of secret
by virtue of joining with the current program counter.

The efficient handling of implicit indirect information flows [24]], where information
can be inferred by inspecting values in the non-executed path, still remains an open
research question. Our implementation can not track such implicit indirect information
flows. The browser information flow system presented by Vogt et al. [5] for example,
jumps to a conservative secure mode if their static analysis detects a function call or
use eval in the non-executed branch. CrowdFlow does not implement this technique
because it steadily elevates labels on all values and objects, leading to a phenomenon
known as label creep [23]].

5.3 Switching Interpreters

The naive way to implement our technique adds a condition to each interpreter instruction
checking whether to perform the operation in partial taint tracking or information flow
tracking mode. Our modifications to WebKit achieve the same effect more efficiently by
duplicating the set of interpreter instructions to obtain an information flow tracking in-
struction set in addition to the existing instruction set. We make efficient use of WebKit’s



direct-threaded JS interpreter by duplicating opcodes and providing an information flow
tracking equivalent implementation of every opcode.

For example, the opcode op_add now also has an information flow tracking equiva-
lent op-1i ft_add. Our framework uses abstract interpretation to lazily replace opcodes
with information flow tracking opcodes the first time a function is chosen to be executed
using the information flow tracking interpreter. Having two instruction streams allows
fast and easy switching between the partial taint tracking and the information flow
tracking interpreter by directing the interpreter’s instruction pointer to either the original
or our modified information flow tracking instruction stream at function entry.

5.4 Multi-Domain Label encoding

We implement security labeling by repurposing the memory layout of JSValues, the
virtual machine level representation of a JS value in WebKit. This modification of bits
inside JSValues allows for low overhead encoding of a 16-bit label within the 64-bit
word size indicating the origin.

|«— Type information
[«— Label encoding

0000 "~ XxxXX  pppp . pppp Pointers
ffff xxxx 1111 1111 Integers
63 47 31 15 Q

Fig.2: Label encoding using bits 32-47 in JSValues.

Pointers/Immediates: JSValues starting with the highest 16 bits all set to zero (see
[Figure 2)), indicate a pointer or immediate type. Pointers have alignment that forces
the lowest four bits to be zero. This encoding allows WebKit to efficiently distinguish
real pointers from immediate values which are all encoded in the lowest four bits:
null:0x02, false:0x06,true:0x07,undefined:0x0a.

The actual address of a pointer in WebKit uses 48 bits (bits 0—47). This design
unfortunately does not leave any space to directly encode a label for pointers within
JSValues. To encode a label, we repurpose bits and change the current encoding of
pointers. We use mmap with the 32 _BIT flag, to force memory allocations to be within
the 32 bit address space, freeing up 16 bits (bits 32—47) in the pointer address space.
Using these 16 bits allows us to encode up to 16 different domains in a label (marked as
XXXX).

Kerschbaumer et al. [9] show that web pages, on average, include content from 12
different domains. They also provide a technique for overcoming the space limitation for
encoding domains in values by reserving the highest bit as an overflow flag, indicating
that the page includes content from more domains than the available encoding space,
where the lower bits become an index into an array. Furthermore, this design of encoding
labels allows us to use efficient bit arithmetic for label join operations that propagate
labels within the browser and equality operations that detect information leaks at network
requests.



Integers/Doubles: Values starting with the highest 16 bits all set to one indicate an
integer type. The ECMAScript specification [26] defines JS integers to be 31-bit. To
encode security labels in integers we can also make use of the bits 32—47, which are
unused, even in the original WebKit encoding of JSValues.

WebKit’s encoding reserves all other values (highest 16 bits between 0x0001 and
0xfffe) for doubles. Since doubles in JS follow the double-precision 64 bit format,
there are no bits left for tagging JSValue doubles. Therefore we conservatively label
doubles by using the highest currently available security label in the lattice (i.e., the join
of all registered domains).

6 Evaluation

6.1 Security (Effectiveness)

To measure how well CrowdFlow matches the capabilities of a traditional information
flow tracking system, we simulate a crowd of users with a web crawler that automatically
visits the Alexa Top 500 web pages and stays on each web page for 60 seconds. The
crawler simulates user interaction by filling out and submitting the first available HTML-
form on each visited page.

390~ 390~ Mode

360- 360~ Crowd (Users A, B, C, D, E)
Mod Crowd (Users A, B, C, D)

3004 Wl 7o Tracking 300 Crowd (Users A, B, C)

Growd (Users A, B)

Crowd (User A)

4 s0-
60~ 60- [ I L]
I— !
0 10 2 E) P EY 0 ! X :
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Fig. 3: Reported information flow violations for the 50 pages that trigger the most
warnings when visiting the Alexa Top 500 pages. One user executing the information
flow tracking interpreter vs. a crowd of up to 5 users using CrowdFlow.

Full (Baseline) Information Flow Tracking: To establish a baseline against which to
compare CrowdFlow we arrange for the crawler to run in permanent information flow
tracking mode (state IFT, in [Figure T). This experiment detected information flows
across domain boundaries on 433 of the Alexa Top 500 pages. The crawler detected
a total of 8,764 such flows which are sent to a total of 1,384 distinct domains on the
Internet. Together, the Alexa Top 500 pages use a total of 391,930 different JS functions
(as of 2012/12/24) which are invoked 13.5 million times in total.

CrowdFlow: To show that the detection rate provided by CrowdFlow converges with
that of traditional information flow tracking systems, we revisit the Alexa Top 500 pages
using CrowdFlow and compare the results against the baseline. To evaluate this claim



we set CrowdFlow’s sampling rate at 5%. For popular sites, this setting “oversamples”
given the number of visitors seen in practice. However, we chose this rate because it
allows evaluation of CrowdFlow with a small, crawler-simulated crowd of five users.

(Ieft) shows the 50 pages that have the most information flow violations,
reported by one browser using a traditional information flow tracking system. We sort
and normalize pages based on the number of detected information flow violations. For
illustration purposes, we only show 50 pages in the plot, but discuss our findings for all
of the Alexa Top 500 pages. (left) shows a total of 4,359 detected information
flow violations as reported by our baseline. On all of the Alexa Top 500 pages combined,
our framework detects a total of 8,764 information flows.

(right) shows the detected information flows by five CrowdFlow clients
when revisiting the 50 pages having the most information flows on the Alexa Top 500
pages. Due to randomized sampling, user A does not detect all information flow violations
present in the baseline. User A detects and reports a total of 5,480 (58,77% in
information flow violations when browsing the Alexa Top 500 pages. In addition to the
flows found and reported by User A, User B reports 1,957 (23.49% in new
information flow violations. User C finds an additional 903 (13.81%) information flows
and User D finds a further 173 (1.33%) information flows. Finally, User E detects 203
(2.54%) information flows not previously discovered by either User A, B, C, or D.

In total, the crawler-simulated crowd of five visitors found 8,716 information flows
out of 8,764 (4,357 out of 4,359 in[Figure 3)) reported by a traditional information flow
tracking system, which represents a detection rate of 99.45%.

6.2 Performance (Efficiency)

To evaluate how CrowdFlow reduces the performance penalty of information flow track-
ing within browsers, we modified WebKit version 1.4.2. We execute all benchmarks on
a dual Quad Core Intel Xeon E5462 2.80 GHz with 9.8 GB RAM running Ubuntu 11.10
(kernel 3.2.0) where we use nice -n -20 to minimize operating system scheduler
effects. For evaluating the performance impact of our framework, we measure perfor-
mance using the SunSpider [14] and the V8 [[L5] benchmark suites. Both are frequently
used to evaluate JS security and therefore facilitate comparison to related work.
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Fig. 4: Performance impact of CrowdFlow.
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shows that CrowdFlow’s performance is directly proportional to the sam-
pling rate it uses. With a 100% sampling rate, CrowdFlow performs similar to other
information flow tracking systems, i.e., showing a slowdown by about 2.7, or 170%
when normalized to WebKit’s original JS interpreter, JavaScriptCore.

Using our conservative setting of five percent sampling rate reduces this overhead
by 5%, down to about 30% overhead compared to JavaScriptCore. The lower,
horizontal lines show the measured performance of both benchmark suites using only
our partial taint tracking interpreter. Interestingly, it shows that for SunSpider we are
already close to the lower bound, which is slightly below 20% overhead. CrowdFlow’s
performance on V8 shows different results: even though our sampling rate converges to
zero percent, using only the partial taint tracking results in almost ten percent further
performance improvement.

6.3 Discussion and Limitations

Currently browsers do not support any kind of information flow tracking and provide
little security against information theft attacks. Previous information flow tracking sys-
tems support only full tracking which severely affects a user’s browsing experience.
CrowdFlow provides a balanced, flexible approach that trades the guarantee of 100%
information flow tracking in return for improved performance. In aggregate, the Crowd-
Flow approach captures almost all of the information flows found by the full tracking
system, but at a much lower per-user performance cost.

Approach limitations: Our multi-domain labeling strategy allows our system to clearly
identify Content Distribution Networks (CDNs) which modern web pages use for per-
formance reasons to serve content to their users. Before our approach can be adopted,
we need a policy that allows web site authors to express allowed information flows, for
example, flows within their own CDNs (cf. [27]). For example, a declaration of such
a policy in the HTTP header, similar to the approach of Jim et al. [28]], is feasible. At
the moment, we also leave statistical analysis of the information flow reports up to a
third-party aggregator (commercial URL blacklisting service).

Implementation limitations: Dynamic information flow tracking systems are suscepti-
ble to timing channel attacks, and ours is no exception. At this time we are primarily
concerned with passive adversaries, those that are not actively trying to subvert our
countermeasures. Therefore, we consider this problem out-of-scope and are focused on
improving the speed of tracking. Should our system be widely adopted, we expect that at-
tackers will begin to craft code that exploits the randomization mechanism, only leaking
data when not running in information flow tracking mode. We can modify CrowdFlow
to label results of accesses to the JS built-in Date class, effectively tainting the system
clock as proposed by Myers [29] and Zdancewic [30].

A privacy-violating flow report may reveal information about the user who reported
it. In the current implementation, CrowdFlow elides all information about the state of the
web application and restricts the report contents to contain only the set of source domains
and the target domain involved in the privacy-violating flow. To hide information from
the URL blacklisting service about who visited what site, we can also incorporate a
traffic anonymizing service such as TOR [31]].
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7 Related Work

Distributed Dataflow Analysis: In 2011, Greathouse et al. [32I33] demonstrate that
sampling is a promising approach to optimize the performance of dynamic data flow
analysis. They show that a large population, in aggregate, can analyze larger portions of
a program than any single user individually running the full analysis of a program.

Information Flow Systems: The survey paper of Sabelfeld and Myers [25] puts the re-
lated work in the area of language-based information flow up until 2003 into perspective.

In 2007, Vogt et al. [5] present their implementation of information flow control
in the Firefox browser. In 2010, Russo et al. [34] provide a mechanism for tracking
information flow within dynamic tree structures. In 2011, Just et al. [[7] present their
information flow system, improving upon results made by Vogt et al. Finally, in 2012
De Groef et al. [6] describe their implementation of secure-multi-execution [35] in the
Firefox browser to give strong information flow security guarantees.

CrowdFlow shares similarities and takes inspirations from all of these systems, e.g.,
support for multi-domain labeling, comprehensive DOM coverage, and a combination
of taint and information flow tracking. However, these past approaches universally
follow the all-or-nothing paradigm, forcing every client to perform full information flow
tracking. CrowdFlow distinguishes itself by performing full tracking on randomized
program subsets, increasing execution speed at the expense of information flow coverage.

There exist many other approaches to secure JavaScript, such as previous work by
Hedin and Sabelfeld [36], Austin and Flanagan [37I34l8]], Chugh et al. [38]], and Nadji et
al. [39]. The key differentiator between these approaches and CrowdFlow is practicality.
Our system has an efficient implementation and does not require invasive changes to the
existing web architecture.

Third-Party Security Systems: In 2011, Canali et al. present a system called Prophiler [40]]
and Thomas et al. present a system called Monarch [41]]. Both approaches describe details
of machine learning techniques used to classify malware on the web.

For CrowdFlow, both of these projects (and the commercial blacklisting initiatives
mentioned previously) are complimentary because our approach adds efficient and
effective information flow tracking as another source of input. For example, the analysis
performed by Prophiler or the rich honey-clients used in Monarch can prioritize URLs
better with data from CrowdFlow reports.

8 Conclusion

We have presented a modified browser that probabilistically switches between a fast
partial taint tracking interpreter and a slower information flow tracking interpreter.
The probabilistic approach enables both performant code execution by participating
clients and prevention of attacker code from deterministically evading the information
flow tracking mechanism. Switching interpreters during execution of a program allows
different users to track the flow of information in different subsets of an application,
enabling the distribution of tracking costs across the crowd of visitors to a web page.
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CrowdFlow can report privacy-violating information flows to a blacklisting URL
service. Users benefit from their participation in information flow tracking by receiving
warnings about malicious code on a page.

Our results demonstrate that the CrowdFlow system is both: efficient, we report
slowdowns of around 30% on two popular JS benchmark suites, and effective, finding
99.45% of information flow violations on the Alexa Top 500 pages using a conservative
5% function invocation sampling rate.
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Benchmark JSCore (%)| PIT % IFT 9| Crowd %
V8-Total 6691.5 (0.0)|7466.8 (11.59)(18362.1 (174.41)|8835.9 (32.05)
crypto 1846.3 (0.0)|1896.9 (2.74)| 5541.4 (200.14)|2133.8 (15.57)
deltablue 1317.7 (0.0)|1504.7 (14.19)| 4255.4 (222.94)|1925.9 (46.16)
earley-boyer 425.8 (0.0)| 532.2 (24.99)| 1467.7 (244.69)| 667.6 (56.79)
raytrace 246.7 (0.0)| 269.1 (9.08)| 513.8 (108.27)| 332.6 (34.82)
regexp 901.5 (0.0)| 917.3 (1.75)| 913.7 (1.35)] 904.2 (0.3)
richards 1644.8 (0.0)|2003.0 (21.78)| 5088.7 (209.38)[2505.0 (52.3)
splay 308.7 (0.0)| 343.6 (11.31)] 581.4 (88.34)| 366.8 (18.82)
Sunspider-Total 807.6 (0.0)| 950.2 (17.66)| 2198.0 (172.16)|1032.4 (27.84)
cube 27.8 (0.0)] 34.0 (22.3) 90.0 (223.74)| 37.5 (34.89)
morph 32.0 (0.0)] 36.6 (14.38)| 123.0 (284.38)| 38.4 (20.0)
raytrace 34.7 (0.0)] 38.9 (12.1) 79.7 (129.68)| 46.1 (32.85)
binary-trees 10.0 (0.0)| 13.2 (32.0) 38.9 (289.0)| 16.0 (60.0)
fannkuch 63.8 (0.0)|] 89.7 (40.6)| 225.7 (253.76)| 106.3 (66.61)
nbody 28.5 (0.0)| 30.7 (7.72) 84.9 (197.89)| 33.3 (16.84)
nsieve 14.1 (0.0)| 20.0 (41.84) 73.0 (417.73)| 23.4 (65.96)
3bit-bits-in-byte| 22.0 (0.0)| 26.9 (22.27) 86.5 (293.18)| 30.1 (36.82)
bits-in-byte 22.1 (0.0)] 34.1 (54.3)] 124.1 (461.54)] 40.9 (85.07)
bitwise-and 23.9 (0.0)|] 36.2 (51.46)| 115.7 (384.1)|] 34.2 (43.1)
nsieve-bits 31.0 (0.0)] 38.0 (22.58)| 141.2 (355.48)| 38.0 (22.58)
recursive 12.0 (0.0)| 17.0 (41.67) 70.2 (485.0)] 21.6 (80.0)
aes 25.0 (0.0)|] 29.2 (16.8) 61.0 (144.0)| 31.3 (25.2)
md5 15.2 (0.0)| 19.1 (25.66) 54.6 (259.21)] 22.0 (44.74)
shal 15.0 (0.0)| 18.2 (21.33) 57.3 (282.0)|] 20.7 (38.0)
format-tofte 21.0 (0.0)| 26.0 (23.81) 51.0 (142.86)| 28.2 (34.29)
format-xparb 16.5 (0.0)| 21.9 (32.73) 33.2 (101.21)| 24.7 (49.7)
cordic 32.4 (0.0)] 40.6 (25.31)| 137.5(324.38)| 48.6 (50.0)
partial-sums 38.6 (0.0)] 40.6 (5.18) 743 (92.49)| 41.2 (6.74)
spectral-norm 21.1 (0.0)| 23.9 (13.27) 78.7 (272.99)| 27.5 (30.33)
dna 159.5 (0.0)| 158.2 (-0.82)| 159.5 (0.0)| 159.9 (0.25)
base64 20.3 (0.0)| 22.8 (12.32) 432 (112.81)| 23.9 (17.73)
fasta 21.6 (0.0)| 28.1 (30.09) 63.7 (194.91)| 30.0 (38.89)
tagcloud 33.0 (0.0)] 35.0 (6.06) 429 (30.0)] 35.1 (6.36)
unpack-code 47.4 (0.0)] 50.2 (5.91) 54.1 (14.14)| 520 (9.7)
validate-input 19.1 (0.0)| 21.1(10.47) 34.1 (78.53)| 21.5(12.57)

Table 1: Detailed performance numbers for V8 and Sunspider benchmarks normalized
by the JavaScriptCore interpreter.
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