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ABSTRACT

Keywords: We propose and explore the applicability of file timestamps as a steganographic channel.
Digital forensics We identify an information gap between storage and usage of timestamps in modern
Data hiding operating systems that use high-precision timers. Building on this, we describe a layered
Steganography

design of a steganographic system that offers stealthiness, robustness, and wide applica-
bility. The proposed design is evaluated through theoretical, evidence-based, and experi-
mental analysis for the case of NTFS using datasets comprising millions of files. We report a
proof-of-concept implementation and confirm that the embedded information is indis-
tinguishable from that of a normal filesystem use. Finally, we discuss the digital forensics
analysis implications of this new information-hiding technique.
© 2016 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

The need for protected information exchange and stor-
age in the digital world is constantly increasing. Crypto-
graphic techniques can provide information confidentiality,
authenticity, and integrity. However, they do leave evi-
dence of the information exchange.

Steganographic techniques are able to hide the exis-
tence of information passing through communication
channels or resting in storage media for later access. These
techniques are useful in a wide range of real-world sce-
narios, including but not limited to: circumventing
censorship and restrictions imposed by governments and
other adversaries (Akgiil and Kirlidog; Anderson, 2012),
assisting whistleblowers when disclosing documents
(Greenwald, 2014), and supporting businesses to protect

* Corresponding author.

E-mail addresses: sneuner@sba-research.org (S. Neuner), avoyiatzis@
sba-research.org (A.G. Voyiatzis), mschmiedecker@sba-research.org (M.
Schmiedecker), sbrunthaler@sba-research.org (S. Brunthaler),
katzenbeisser@seceng.informatik.tu-darmstadt.de (S. Katzenbeisser),
eweippl@sba-research.org (E.R. Weippl).

http://dx.doi.org/10.1016/j.diin.2016.04.010

strategic corporate information during transmission (Cox
et al., 2007).

Numerous steganographic techniques have been pro-
posed and analyzed in the research literature (Zielinska
et al,, 2014). The analysis focuses on criteria such as the
achieved secrecy on specific application scenarios, the
steganographic channel capacity, and the information
channel utilization.

Storage or format-oriented steganographic techniques
hide information in logical channels by utilizing redundant
or unused fields in format specifications. This includes,
among others, the master boot record (MBR) of non-
bootable hard disks and the unused disk space caused by
the misalignment of hard disk sector size and file size
(Khan et al., 2011).

Modern filesystems support a wealth of operations that
span beyond the primitive of mapping files into sequences
of hard disk sectors. The filesystem specifications define
additional data structures (i.e., “metadata”) to describe in-
formation like the owner, the access permissions, and the
date and time when important file events took place.

In this paper, we propose and explore, to the best of our
knowledge for the first time in literature, the applicability
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of filesystem timestamps as a steganographic channel. More
specifically, we make the following contributions:

1. We analyze the granularity of the timestamps that
modern filesystems implement, and we evaluate their
applicability for steganographic applications.

2. We propose the use of timestamps as a means to hide
information in NTFS and other filesystems with sub-
second timestamp granularity.

3. We describe a system design and a proof-of-concept
implementation that support different levels of
possible capacity to securely hide data on NTFS volumes.

4. We validate the proposed system using real-world and
synthetic datasets, and we show that the embedded
steganographic information cannot be distinguished
from the information produced by normal filesystem
operations.

5. We discuss the digital forensics implications of this new
steganographic method.

The rest of this paper is organized as follows: Section
(Background) provides a literature review on steganog-
raphy with emphasis on storage artefacts. Section
(Timestamps in modern filesystems) analyzes the use of
timestamps on modern filesystems. Section
(Steganography based on file timestamps) proposes a novel
steganographic channel based on file timestamps. Section
(Evaluation of the TOMS system) evaluates the security of
the proposed system. Section (Experimental system
validation) describes a proof-of-concept implementation
aiming at NTES filesystems. Section (Implications for
forensics analysis) discusses the implications on the digi-
tal forensics process. Finally, Section (Conclusions and
future work) concludes the paper and presents the future
directions of our work.

Background
Data hiding

Early works on digital steganography focused on hiding
data in the clear, deriving and discussing different methods
of embedding data, and arguing how steganography is and
probably will be used in the present and in the near future
(Katzenbeisser and Petitcolas, 2000; Zielinska et al., 2014).
Such works did not anticipate the widespread use of the
personal digital devices and the role of the Internet in our
daily lives (Franz et al., 1996; Anderson and Petitcolas,
1998).

A considerable amount of research was devoted to
embedding unobservable communication within normal
network traffic, ranging from the utilization of TCP/IP
timestamps (Giffin et al., 2003) to the more general usage
of TCP/IP fields (Murdoch and Lewis, 2005). Many imple-
mentations of steganography hide encrypted data in
innocent-looking network traffic (e.g., ptunnel (Stodle)),
header fields (Rutkowska, 2004), or use timing intervals
and artificial transmission delays for information trans-
mission (Lee et al., 2014; Berk et al., 2005; Mazurczyk and
Lubacz, 2010). While it has been shown that secure

steganographic protocols are feasible, we are still lacking
functional implementations and widespread use of such
tools (Hopper et al., 2009).

A second line of research focused on embedding unob-
servable information within the contents of stored files,
introducing undetectable degradation of multimedia
quality (e.g., manipulating the low-significance bits of pixel
representation in images (Bailey and Curran, 2006)), the
color palettes in GIF images (Fridrich and Du, 2000), or
(possibly) encoding information in YouTube videos that
look like static snow (Williams, 2015).

Filesystems

A plethora of different filesystems is available, including
FAT and NTFS for Microsoft-Windows-based devices, ext4
and btrfs for GNU/Linux systems, and HFS+ for Apple OS X
and i0S devices.! Most of them store different artefacts at
various levels of granularity and detail, collectively known
as “filesystem metadata”.

Filesystem metadata can be classified in five categories:
file system, application, file name, content, and generic met-
adata (Carrier, 2005). File system metadata are information
on how the filesystem is to be read and where the impor-
tant data structures reside. Application metadata are in-
formation useful for the application utilizing the filesystem,
such as the file owner and the file access permissions. File
name metadata are information for the human-readable
names mapping to logical data locations. Content meta-
data are information about the logical addressing of the
files, the file allocation status, and the actual data of the
files. Generic metadata are information mostly used inter-
nally by the filesystem for its operations. This includes in-
formation such as the timestamps of various events in the
lifecycle of a file.

Steganography using filesystem metadata

The topic of hiding data in filesystem metadata was
heavily discussed in the late 1990s (Anderson et al., 1998).
Back then, export restrictions on the use of strong crypto-
graphic algorithms outside the USA were in place, and there
was an increased concern by the public regarding key
escrow. StegFS, a steganographic filesystem compatible
with the Linux ext2 filesystem, was developed (McDonald
and Kuhn, 2000; Pang et al., 2003). This filesystem ach-
ieved plausible deniability of the hidden content thanks to
its indistinguishability from unused content. This behavior
was achieved by applying encryption on the content under
the assumption that a good encryption algorithm ensures
that encrypted data appear as random data. However, the
use of StegFS is not undetectable as the needed filesystem
driver is not hidden. Additionally, there is no integrity
check of the data. Thus, StegFS cannot recover from any
kind of intrusive data modifications.

Encoding (hiding) information in the order that a fil-
esystem indexes the file names is explored in (Aycock and

T An exhaustive list is provided in the Wikipedia entry available at
https://en.wikipedia.org/wiki/Comparison_of_file_systems.
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de Castro, 2015). The approach is applicable only in the case
of a FAT filesystem and cannot be generalized. The file
fragmentation is explored in (Khan et al., 2011). This
approach introduces significant performance penalties,
more evident in magnetic storage media, in the form of
delays when accessing the file contents. This delay is due to
the heavy file fragmentation that is enforced in order to
create the steganographic channel. The delay and the heavy
fragmentation can serve as indicators for the presence of
steganographic information, thus defeating the steganog-
raphy. Furthermore, (automatic) defragmentation of the
storage medium can destroy the steganographic
information.

Application metadata (e.g., the file owner or the file
access permissions) can encode only a few bytes of infor-
mation and the encoding is easily detected. For example, it
is technically feasible to attach an arbitrarily large list of
user—permission pairs in an NTFS file, even by referencing
non-existent users (Perklin). However, the mismatch of the
users mentioned in the system wuser list and the
user—permission pairs, on top of having such long lists in
first place, would raise suspicions in a forensics
investigator.

The file name cannot be considered as a good candidate
for steganographic operations. Indeed, an odd pattern of
filenames will look instantly suspicious.

Mixing steganographic information with the actual
contents of a file is studied extensively (Katzenbeisser and
Petitcolas, 2000; Cheddad et al., 2010; Li et al, 2011;
Amirtharajan et al., 2012; Hussain and Hussain, 2013).
Format containers for multimedia content (e.g., audio or
video) are transparent to and independent of the under-
lying filesystem that hosts the multimedia file. Thus, a
filesystem-level analysis will not be able to disclose the
presence of steganographic information in a format
container. Also, we note that multimedia transcoding can
effectively destroy the steganographic information without
significantly affecting the original information channel.

Generic metadata, such as temporal information
describing the lifecycle of a file, are very sensitive to both
the actions of the user and the operating system itself. For
example, certain timestamps of file events can be over-
written at any moment while using the filesystem in a
normal way. This includes a timestamp of the (last) file
modification and (last) access of the file. The fragility of the
temporal information might be the reason why, to the best
of our knowledge, timestamps have not yet been explored
as a steganographic means.

Timestamps in modern filesystems

We analyze in the following paragraphs how modern
filesystems use timestamps. The assumption we seek to
validate is that there is unused (redundant) capacity in
timestamps that is sufficient enough to create a logical
channel with steganographic strength.

NTFS is the standard filesystem for Microsoft Windows
operating systems. NTFS uses the number of 100 ns passed
since January 1, 1601 for its timestamps (Microsoft
Developer Network). The timestamps are saved as 64-bit
values in the $Standard_Information field of the Master

File Table (MFT). Additionally, they are saved in the NTFS
attribute $FILE_NAME. Each file has four 64-bit time-
stamps: (i) creation of the file, (ii) last access of the file, (iii)
last modification of the file, and (iv) last modification of the
corresponding MFT entry.

ext4 is the successor of the Linux standard filesystem
ext3. Ext4 uses 64-bit values to represent timestamps with
nanosecond granularity (Mathur et al., 2007; Fairbanks,
2012; Kerrisk, 2010). Ext4 uses the following four time-
stamps per file: (i) creation of the file, (ii) last modification
of the file, (iii) last access of the file, and (iv) the last
attribute modification of the file (e.g., permissions or
ownership).

btrfs is the upcoming major filesystem for the Linux
operating systems (Rodeh et al., 2013). It is a “copy-on-
write” filesystem based on B-trees. All file timestamps in
btrfs support nanosecond granularity and are saved as 64-
bit values (Poeschel and Gim). The first 32 bits of the
timestamps are the seconds since the epoch (January 1,
1970) and the remaining 32 bits are the nanoseconds since
the beginning of the second. The provided per-file time-
stamps include: (i) creation, (ii) last modification, (iii) last
modification of the file's attributes (e.g., permissions or
ownership), and (iv) last access.

ZFS is intended to be a highly performing, decentralized
filesystem (Rodeh and Teperman, 2003). The following per-
file timestamps of ZFS have a nanosecond granularity,
saved in 64 bits each: (i) creation, (ii) last modification, (iii)
last access, and (iv) the last attribute modification (Sun
Microsystems Inc., 2006).

FAT32 is the predecessor filesystem of NTFS on the
Microsoft Windows operating system. FAT32 uses three
different timestamps per file: (i) creation, (ii) last modifi-
cation, and (iii) last access. The first two timestamps are
saved as 32-bit values and the last one is saved as a 16-bit
value. The difference comes from the fact that the first two
timestamps are provided with a granularity of 2 s, whereas
the date of last access is provided with a granularity of one
day (Garfinkel, 2012).

HFS+ is the standard filesystem for the Apple Macin-
tosh and iOS devices. HFS+ uses the following per-file
timestamps: (i) creation, (ii) content modification, (iii)
last attribute modification, (iv) last access, and (v) the last
backup (Burghardt and Feldman, 2008). All of these time-
stamps have a granularity of 1 s and are saved as 32-bit
values.

ext3 is the successor of the ext2 filesystem and en-
hances it by providing journaling capabilities. Ext3 uses
three timestamps per file: (i) last access, (ii) last modifi-
cation, and (iii) last attribute modification. The timestamps
have a granularity of 1 s and are saved as 32-bit values. The
use of the undocumented large-size inode feature can in-
crease the granularity of the timestamps to 1 ns
(Antsilevich, 2009).

Table 1 summarizes our analysis. We confirm that many
modern filesystems use 64-bit values as timestamps and
offer sub-second granularity (Antsilevich, 2009). This
statement covers all filesystems that mainstream consumer
operating systems use or access nowadays (e.g., Apple OS X,
Google Android, GNU/Linux, and Microsoft Windows) with
the exception of the HFS+.
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Table 1
Characteristics of filesystem timestamps.

Filesystem File timestamp Size Granularity

NTES creation 64 bits 100 ns
access 64 bits 100 ns
modification 64 bits 100 ns
modif. of MFT entry 64 bits 100 ns

ext4 creation 64 bits 1ns
access 64 bits 1ns
modification 64 bits 1ns
attribute modif. 64 bits 1ns

btrfs creation 64 bits 1ns
access 64 bits 1ns
modification 64 bits 1ns
attribute modif. 64 bits 1ns

ZFS creation 64 bits 1ns
access 64 bits 1ns
modification 64 bits 1ns
attribute modif. 64 bits 1ns

FAT32 creation 32 bits 2s
access 16 bits 1 day
modification 32 bits 2s

HFS+ creation 32 bits 1s
access 32 bits 1s
modification 32 bits 1s
attribute modif. 32 bits 1s
backup 32 bits 1s

ext3 access 32 bits 1s
modification 32 bits 1s
attribute modif. 32 bits 1s

Three file timestamps, namely creation, access, and
modification are supported by almost all the analyzed fil-
esystems. All three timestamps store date and time infor-
mation with sub-second granularity (one or 100 ns).

The nanosecond precision is not communicated,
explicitly or implicitly, to the end users who access the
filesystem. They are confronted with file timestamp infor-
mation that resolves to a second granularity, as depicted in
Fig. 1. Thus, there is an information gap between how
timestamps are stored and how they are used.

000 |« sunshine.png Info
& sunshine.png 73 KB
e | Modified: Friday, January 8, 2016 at 10:25 AM
Add Tags
¥ General:

Kind: Portable Network Craphics images
Size: 73,104 bytes (74 KB on disk)
Where: fUsers/images
Created: Saturday, January 2, 2016 at 01:00 AM
Modified: Friday, January 8, 2016 at 10:25 AM
Stationery pad

Locked

¥ More Info:

Dimensions: 360 x 270
Color space: RGB
Color profile: Display
Alpha channel: Yes
Last opened: Friday, January 8, 2016 at 10:26 AM

Fig. 1. How file timestamps are displayed to Apple OS X users.

The creation timestamp is by and large a static piece of
information, as it refers to a unique event, the creation of
the file itself. The access and modification timestamps are
updated each time a file is accessed or modified.

Modern operating systems are exploiting latest ad-
vances in storage technologies to deliver increased perfor-
mance and reliability while reducing costs. USB flash drives
and SSD storage media are commonplace. In this setting it
is advisable, if the application scenario allows so, to reduce
filesystem overheads for timestamp housekeeping. This
includes disabling the update of per-file access and/or
modification timestamps. Such an approach can increase
both the performance and the lifetime of a storage medium.
Yet, in most consumer-grade usage scenarios, we can
expect that only the access timestamp remains intact.

The analysis above validates the first part of our initial
assumption: there is unused (redundant) capacity in fil-
esystem timestamps. Depending on the filesystem and
usage scenario, this capacity ranges from one to nine bytes
per file. With modern filesystems hosting hundreds of
thousands or even millions of files, this provides enough
capacity for storing up to a few megabytes of extra infor-
mation. In the next sections, we explore how the available
capacity can be utilized to create a logical channel with
steganographic strength.

Steganography based on file timestamps

We assume a threat model where the attackers can
inspect the file contents and can manipulate the filesystem
metadata. Also, the attackers can freely remove, rename, or
insert new files in the filesystem, and they accept the
associated risk of thereby disclosing their presence.

We aim for a steganographic storage system based on
file timestamps, namely TOMS (Time-On-My-Side) that is
stealthy, robust, and applicable in a wide range of scenarios.
“Stealthy” means that the attacker cannot deduce the
presence or absence of steganographic information by
examining the timestamps. Thus, the attackers are left only
with the option of a denial-of-service attack i.e., to over-
write all timestamps and destroy the steganographic
channel, thereby disclosing their presence. “Robust” means
that the system can sustain and recover from file manipu-
lation attacks. “Widely applicable” means that the system
can be configured to match different operation scenarios,
balancing performance and secrecy.

System design

The aim of the TOMS system is to hide an input (the
message) inside the metadata of the hosting filesystem (the
carrier). For the sake of clarity, we assume that the system
can identify the necessary space (i.e., the file timestamps to
use) and that all the necessary space is already available.
We will return on this issue at the end of the design
description (cf. Section (Information representation: the
case of NTES)).

The design of TOMS follows a layered approach. From
top to bottom, the system comprises: (i) a storage container
layer for the message, (ii) an error correction layer for
redundancy, and (iii) an encryption layer.
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Storage container layer

The storage container layer maps the message into the
underlying file timestamp metadata elementary storage
units. The naive approach for keeping track which files and
directories have been used to embed the information is to
keep an encrypted metadata file with the absolute paths of
the files and directories used. The metadata file approach
has the benefit that the correct ordering of the files to
extract the information is trivial. Also, this file does not
necessarily need to be stored in the same filesystem with
the hidden data. Rather, it can be stored in another storage
media altogether. This is beneficial, since the very presence
of a metadata file inside the examined filesystem is neither
elegant nor stealthy, even if its contents are encrypted. On
the contrary, such an encrypted file can raise further
suspicions.

A second option is to reliably embed and extract infor-
mation only based on the files and their timestamps. This
can be realized using oblivious replacements on whole fil-
esystems (e.g., an NTFS volume) or on the subfolder level
(e.g., an NTFS non-root directory). In this case, all files and
directories are sorted by their creation timestamp, either
globally (filesystem level) or locally (subfolder level). This
ordering defines a (logically) continuous storage space that
can be used to write and later read the hidden data.

Error correction layer

The normal use of the storage medium hosting the fil-
esystem as well as the actions of the attackers may remove
some of the files stored on the filesystem. Also, the at-
tackers might intentionally change the creation time-
stamps of some of the files. Such actions, deliberate or not,
cause a new ordering of the creation timestamps, which
results in the inability to either access the input file seg-
ments in the correct order or altogether.

The error correction layer augments the initial repre-
sentation of the input file with additional information that
can cope with the aforementioned issues. As a first step, an
error correcting code (ECC) is appended to the represen-
tation. The ECC can both detect and reconstruct missing
information. As a second step, this layer enforces a start
offset for the used files. This allows the program to start
from a random point in the ordering and use both older and
newer files. Thus, not only old files are used to hide
information.

The selection of an appropriate ECC is left to the
implementation. By and large, an ECC should not introduce
significant storage overhead.

Encryption layer

The error correction layer introduces data redundancy.
This redundancy comes on top of the structured informa-
tion needed to represent the links from timestamp to
timestamp in order to form a logically continuous storage
space. These can be sources that result in timestamps with
patterns. If patterns are detected, the whole steganographic
system will collapse, since they reveal the existence of
hidden information.

The role of the encryption layer is twofold: On the one
hand it protects the hidden information from disclosure.
Only somebody in possession of the related cryptographic

key(s) can access the encrypted and hidden information.
On the other hand the confusion and diffusion properties of
a (good) secure cipher ensure that hardly any pattern will
exist in the output allowing it to appear totally random.

The encryption layer uses symmetric-key cryptographic
algorithms to encrypt the information of the two previous
layers. Stream ciphers, as for example AES-OFB or RC4, can
be used in this layer. The advantage of stream ciphers over
block ciphers is that the former do not need to expand the
output of the operation and that they can recover to a
certain point from errors (e.g., missing timestamps) at a bit
rather than a block (i.e., dozens of bytes) level.

Information representation: the case of NTFS

We can now describe how the TOMS components work
together to hide a message in the file timestamps. In the
following, we will use the NTES filesystem as an example.
However, the description is valid for any other filesystem
with similar characteristics. Fig. 2 depicts the NTFS inode
data structure used to represent various filesystem objects,
including a file and a directory. In the following, we will use
the term “file” to refer to NTFS inodes.

Two file timestamps can be used by TOMS in the case of
NTES: the creation and the last access. Each timestamp uses
24 bits to represent its nanoseconds part. Thus, a total of six
bytes per file can be used to hide information. This con-
stitutes the elementary storage unit (ESU) for the TOMS
system. We assume that the size of the input (stegano-
graphic) message, M, is much larger than the size of an ESU.
First, an error correcting code function is applied to the
input message, E = ECC(M). Then n, the number of ESUs
needed to store E, is prepended (n||E).

Information hiding

The information hiding process works as follows. The
encoded message (E) is fragmented into n blocks of five
bytes each (By, Ba, ..., By). Then, every block is prepended
with one byte that is used as a block index (ie{1,...,n}).
The special value of 0x00 for the index byte is used to
prepend a block of five bytes that contains the number of
needed ESUs, n. The resulting structure is a linked list of
six-byte blocks: (0,n),(1,By),...,(n,By). This structure is
then encrypted with a stream cipher and a secret key,
producing an output list of six-byte blocks: Cy, C, ..., Cy.

TOMS constructs the list of candidate files that they can
be used as carriers. The list, F, is ordered based on the
creation timestamp of each file, and a start offset, s, is
chosen randomly. The ordered list of files,
Fs = {fs,fss1, ... fs+n} EF, will be used as the carrier. TOMS
then proceeds and replaces the nanoseconds part of the
creation and access timestamps of each file in F; with the
six-byte encrypted chunk ;.

Large message handling

Using just one byte as index limits the length of the
hidden message (E) to only 255 bytes. We overcome this
limitation by allowing multiple index bytes to share the
same value (overflow upon reaching the value OXFF and
restart numbering from 0x01). Whenever an overflow oc-
curs, an ESU is consumed in order to store the length of the
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struct _ntfs_inode {
uint64 mft_no;
MFT_RECORD *mrec;
ntfs_volume *vol;
unsigned long state;
FILE_ATTR_FLAGS flags;

offset seconds —————«— nanoseconds —>]

uint32 attr_list_size;
uint8 *attr_list;

0 7
I N A 2 0

uint32 nr_extents;
union {
ntfs_inode **extent_nis;

ntfs_inode *base_ni;

}

2

uint64 data_size;
uint64 allocated_size;

63

ntfs_time creation_time;
ntfs_time last_data_change_time;
ntfs_time last_mft_change_time;
ntfs_time last_access_time;

uint32 owner_id;
uint32 security_id;
uint64 quota_charged;
uint64 usn;

23 0

i...index
0—4... stored bytes

Fig. 2. Overview of storing data in the nanoseconds part of the timestamp fields.

whole message, using again an index byte of 0x00. Thus,
every ESU with an index byte holding the value 0x00
contains the total length of the message.

Recall of hidden information

The information recall process works as follows. The
timestamps for all the files in the filesystem are extracted,
sorted by their creation time, and then saved as a list G. For
every list entry, the nanoseconds part of the creation and
the access timestamps are decrypted by applying the same
stream cipher and key material used during the informa-
tion hiding process. If the decrypted first byte of the crea-
tion timestamp equals the index byte value 0x00, the
respective timestamps are added in an offset list L and the
number of ESUs, n, is recovered. Then, the next n list entries
are processed, recovering the respective index (i.e., 0x01,
0x02, ..., n) and the structure H. Next, the error correction
code function is applied on H, recovering the original
(hidden) message M.

Evaluation of the TOMS system

In this section, we evaluate the design principles of the
TOMS system. Our evaluation is based on theoretical,
experimental, and evidence-based analysis of the steg-
anographic strength of TOMS under the assumed threat
model (cf. Section (Steganography based on file
timestamps)).

Stealthiness

“Stealthiness” describes the degree to which the very
existence of hidden information is disguised, irrespectively
of the ability to recover the hidden message(s). We analyze
the two factors defining the stealthiness of the TOMS sys-
tem in the following.

Timestamp handling by operating systems

The use of the encryption layer ensures that the steg-
anographic information are not recoverable without having
access to the key material of the stream cipher used.

Furthermore, a good stream cipher ensures that each
output bit will be a one or a zero with equal probability. But
how do modern operating systems handle the timestamp
information in first place? Do they fill these data structures
with sub-second-precise information or do they opt for a
different strategy? If the former, what is the precision of the
provided time information? We sought the answer to these
questions using three approaches.

Code audit

As a first approach, we performed a code audit of the
NTFS-3g implementation of the NTFS filesystem (Tuxera
Inc). This is the default driver for accessing NTFS volumes
from within the Linux and Apple OS X operating systems,
and it is an open source code. A similar code audit for the
NTFS implementation of the Microsoft Windows operating
system was beyond our reach, since the source code is not
publicly available. The code audit revealed that the NTFS-3g
fills the related timestamp structures with nanosecond-
granular information provided by the Linux system clock
which also has a nanosecond granularity.

Synthetic data

The second approach was to create synthetic data for
experimentation, which is online at the authors' website
together with the most recent version of the code used for
this purpose.” We created files in batches using a Python
script on a Linux system accessing an NTFS volume via
NTFS-3g. Each batch created 100,000, one million, or ten
million different files. Half of the files were created with a
random delay of one to 2 s between each creation. The
other half of the files were created with zero delay, i.e., as
fast as the computer system could handle the requests.

Our “synthetic” dataset contains 117 million files. We
collected the three timestamps (create; access; and modify,
all equal to each other) for this dataset as well. We con-
ducted an exploratory data analysis to determine if the
timestamp distribution was uniformly distributed. Results

2 https://www.sba-research.org/dfrws2016/.
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for the Kolmogorov—Smirnov goodness-of-fit test for uni-
formness indicated that the timestamp distribution did not
deviate significantly from a uniform distribution
(D=.99,p=22x10716),

The source code audit and the experiments validate that
the Linux operating system uniformly uses the full spec-
trum of the 24-bit sub-second granularity to store the
timestamp information.

Real data

The third approach was to collect evidence from
Microsoft-Windows-based systems that are actively used
to perform day-to-day tasks (“real-world systems”). We
therefore collected the file timestamp information from a
sample of 70 filesystems (NTFS volumes) from multiple
Microsoft Windows computers available at our research
lab. On average, each filesystem of our sample contained
about 290,000 files and 40,000 directories; the largest one
contained over 2.2 million files and directories. The ma-
jority of the sampled filesystems (n = 63) were actually
“system volumes”, i.e., they contained the files of the
Microsoft Windows operating system (e.g., those files
commonly found in the C: \ Windows directory) and (most
likely) of the majority of installed software (e.g., those files
commonly found in the C: \ Program Files directory). Only
seven systems contained more than one NTFS volume (i.e.,
“non-system volumes”). Such volumes are often used as
storage for work or personal data (e.g., documents,
spreadsheets, and pictures). In total, our “real-world”
dataset contains the timestamps of 22,261,386 files and
directories.

We analyzed the timestamps contained in this dataset
and we noticed some irregularities in their distribution.
Creation timestamps that are filled with zeroes in their
nanoseconds parts were disproportinally more frequent
than expected. This is the case when files are migrated into
NTES volumes from FAT32 filesystems. The latter use a
granularity of 2 s at best, hence the zeroes. This assumption
was empirically tested and further confirmed by Micro-
soft's documentation regarding timestamp changes
(Microsoft).

Time of filesystem inspection

In the previous paragraphs, we saw that the timestamps
can be used as stealthy information carriers, since the sub-
second information follows a uniform distribution, as does
the output of a stream cipher encryption. Before replacing
any timestamps, one should consider if and how often the
filesystem is inspected by an attacker. As an example, we
consider the case of (operating) system files. These files are
installed once and are seldom, if ever, touched again (e.g.,
only when operating system updates are installed). Thus, if
their timestamps are proactively collected, any future
modification by the TOMS system will be easily detected.

In a forensics analysis scenario, we can assume that the
investigator will inspect the metadata after the message
was hidden in the timestamps. We can also assume that the
investigator does not have access to earlier versions of the
filesystem metadata information. Thus, existing time-
stamps can be utilized to hide steganographic information.
In a scenario where the filesystem can be proactively

inspected, already existing files might not be good candi-
dates for carriers. Thus, only new files (i.e., generated after
the last inspection) can be utilized to hide steganographic
information.

We assume for our subsequent analysis a more conser-
vative scenario, in which the filesystem is proactively
inspected. In this case, one should exclude all system files
and all files with timestamps containing zeroes in the sub-
second part. Applying this to our initial real-world dataset,
it resulted in an almost 50% drop of available files, down to
11 million files spanning 70 NTFS volumes.

Robustness

“Robustness” refers to the ability of the TOMS system to
cope with changes in the filesystem contents. The infor-
mation hiding and recall procedure of TOMS is straight-
forward when the initial ordered list of files F; remains
intact between information hiding and information re-
call(s). In the following, we analyze how the TOMS system
defends against actions that result in modifications of F;.

Encrypted metadata

This is the simplest of the proposed storage container
layers. The ordered list of files F; is not affected by opera-
tions on the filesystem level (assuming that these opera-
tions do not touch the timestamps). Should some files have
been removed from the filesystem, or some timestamps are
updated, the encryption and the error correction layers
may be able to recover the lost information thanks to the
use of the stream cipher and the ECC. If and how the
recovered information is stored back to the timestamps
(e.g., insert new files, re-encode information, or even fix the
“corrupted” timestamps) is a decision to be made taking
into account the severity of the errors and the assumed
time and frequency of inspection.

Oblivious replacements

In this approach the ordered file list Fs results from
sorting the timestamps that are provided by the filesystem.
Thus, it might be the case that the TOMS system unknow-
ingly uses a different list F; for information recall instead of
the one originally used for information hiding. If some files
were removed between information hiding and recall(s),
the same arguments as in Section (Encrypted metadata)
apply.

We assume that some additional files, Fg, are included in
the F, = F;UF, list, and that the computing system has a
proper clock. If oblivious replacement is applied globally
(filesystem level), the TOMS system will always recover the
correct F;. This is feasible because the file creation time-
stamp is immutable on an NTFS volume, i.e., it does not
change when the file is copied, renamed, or moved within
the same NTFS volume (Carrier, 2005). Thus, even if files are
moved across different NTFS folders, their creation time-
stamp will not change. Also, these additional files F, will
have more recent creation timestamps than those already
contained in the original F; and allow therefore a clear
separation of the two sets.

If oblivious replacement is applied locally (subfolder
level), then it is possible that the ordering of F, is
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intermixed with the ordering of F;. This is the case where
files are moved to the specific subfolder containing F;; as
mentioned earlier, the file creation timestamps are
immutable. This situation is accommodated by the use of
the encryption and the error correction layers. Assume that
afile fi, eF, is inserted in the ordered list F;. First, the ESUs
of f, must decrypt correctly and not be rejected by the
encryption layer. Then, the value of the index byte con-
tained in the (erroneously) decrypted ESUs must match the
currently expected sequence number in order to not be
rejected by the error correction layer. Finally, the payload
information contained in the ESUs must pass through the
ECC. Only then, these information are accepted as valid. If
the processing of f;, fails, the error correction layer provides
the necessary protection to recover from the error. Thus,
the two layers provide an adequate defense (up to a certain
point) against such (deliberate or not) insertion attacks.
The amount of redundant information handled by the ECC
defines this protection level. An oblivious replacement at
the subfolder level requires a stronger ECC compared to the
filesystem level.

Applicability

“Applicability” refers to the degree to which the TOMS
system can be utilized in various application scenarios. The
layered design of TOMS provides an initial indication of its
wide applicability. The TOMS system supports three
different storage layers and is agnostic to the ECC used as
well as to the stream cipher. Furthermore, TOMS can be
easily applied to any modern filesystem that supports sub-
second timestamp granularity; while the basic description
supports two timestamps often found in modern fil-
esystems (namely, creation and last access), there is no
design constraint regarding the number of timestamps or
the use of filesystem-specific timestamps (e.g., last attribute
modification for ext4). The design of the TOMS system al-
lows to explore various performance tradeoffs in order to
match the secrecy requirements of the selected application.
We discuss these tradeoffs in the following paragraphs.

The application scenario defines the use of existing files
or opts to create new ones to embed a steganographic
message. In the latter case, it is advisable to generate small
files that act as carriers (e.g., files in the range of few
thousands bytes).

The use of an ECC introduces an overhead of 10—20%. If
the risk of information loss can be sustained, the use of an
ECC can be omitted altogether.

The selection of the storage container type is important.
If an encrypted metadata file is used, one must decide if the
contents of the file should be embedded in the filesystem
or stored elsewhere. The resulting size of this metadata file
can be a decisive factor. When embedding about 1.5 MB of
data into 175,000 timestamps, the corresponding metadata
file takes about 215 KB of disk space. A benefit of this
approach is that there is no need to store index bytes to
rebuild the ordered list of carrier files and recover the
hidden information. Also, file reordering is not a threat in
this case (unless someone is tampering with the metadata
file) and thus the performance requirements for an ECC are
more relaxed (or can be omitted altogether).

The oblivious replacement approach mandates the use
of index bytes. Each ESU uses one index byte per five
payload bytes (ratio of 1:5). If only one timestamp is
available for each file, the ratio becomes 1:2, which may
cause a lot of overhead. On the other hand, if three time-
stamps are available, this ratio becomes 1:8, which is quite
efficient. Compared to an encrypted metadata approach,
oblivious replacement needs between 12.5% (two time-
stamps) and 20% (three timestamps) more files in order to
store the same amount of hidden information.

Experimental system validation

We developed a proof-of-concept implementation of
the TOMS system for the experimental validation of our
steganographic proposal. The implementation targets the
NTES filesystem and is based on the Python language
version 2.7 for flexibility and increased portability. Our
implementation can be delivered as a stand-alone execut-
able and does not require the installation of special soft-
ware or any modifications of the Linux kernel. It realizes
the layered design described in Section (Steganography
based on file timestamps) and can be easily ported to
work with any filesystem that uses a nanosecond time-
stamp granularity.

The development and experimentation platforms are
based on Xubuntu Linux 15.04 64-bit, running kernel
version 3.19.0—25, the latest stable one at the time of
writing. The underlying disk on which the operating sys-
tem is installed is a solid state disk (SSD) for faster 1/O ac-
cess. As NTFS is Microsoft-proprietary, we opt for NTFS-3g
in its current version. The steganographic executable
application takes care of all information management
tasks. The application is assumed to have full access to the
NTFS volume (filesystem).

The application supports the use of two- and three-file
timestamps. The file creation and last access timestamps
are not modified by the operating system: starting with
Microsoft Windows Vista, the default value of NtfsDisa-
bleLastAccessUpdate is set to one (Hermann). The corre-
sponding mount option in Linux is noatime; in most of the
popular Linux distributions this option is not activated by
default. The file last modified may be modified under
normal use, so it is up to the users to decide if they enable it
(and pay attention not to destroy the related information
during the normal use of the filesystem).

Information hiding and recall

The typical work flow for information hiding is as fol-
lows: the user starts the Python application and provides (i)
the message to be hidden, (ii) a key to encrypt the message,
(iii) the method for hiding (metadata file, oblivious re-
placements on volumes, oblivious replacements on sub-
folders), and (iv) the number of different timestamps to use
(either two: creation and access or three: creation, access,
and modification). Once the necessary information are
collected, the application performs the following steps: (i)
it concatenates the message with the error correction code,
(ii) adds the index bytes to the resulting data (if the chosen
hiding method is not the metadata file), (iii) encrypts the
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data with the stream cipher, and (iv) embeds the encrypted
data into the timestamps. On the information recall path,
the user enters the encryption key and the application
displays the decrypted message.
Listing 1 and Listing 2 outline in pseudocode the two
work flows for information hiding and recall respectively.
Listing 1: Embedding data in timestamps.

1| def hide(path, msg, key):

2 rs= calcReedSolomon (msg)

3| m= msg - rs

4|  C= chunk(m, 5)

5 index= 0

6 temp= 0

7 for ceC:

8 s= ¢

9 if index = 0 or index % 255 = 0:
10 s= length (m)

11 temp= temp - index - s

12 index++

13 files=sort (recEnumFiles (path) ,by=creation_time)
14 offset= calcRandomOffset ()

15 while offset:

16 files .pop ()

17 em= encrypt (temp, key, mode=RC4)
18 C= chunk(em, 6)

19 for ceC:

20 f= files .pop()

21 f.creation_time.nsec= c[0:3]

22 f.access_time.nsec= c[3:6]

Listing 2: Extracting data from timestamps.

1| def extract(path, key):

2 F= sort (recEnumFiles(path), by=creation_-time)
3] em= 0

4 for fe€F:

5 c= f.creation_time.nsec - f.access_time.nsec
6 em= em - c

7| m= decrypt(em, key, mode=RC4)

s| C= chunk(m, 6)

9 i,1=0,0

10 for (i,c) € enumerate(C):

11 if c[0] # 0x00:

12 continue

13 I= int (c[1:6])

14 break

15 S= sort (C[i:1], by=first_byte)
16 temp= 0

17 for (i,c) € enumerate(S):

18 t= c[1:6]

19 if c[0] # i:

20 t= 0x00 x 5

21 temp= temp - t

22 return decodeReedSolomon (temp)

Metadata file information protection

All information processed by the application are held in
memory (RAM) and are encrypted with AES-256-CBC using
a user-provided key. This is a precautious measure in order
to protect against extraction of the plain metadata file
during a forensics analysis of the storage medium, e.g., in
the slackspace of the hard disk (Mulazzani et al., 2013).

After the information has been embedded, the metadata
file is built from the information kept in RAM so far. Before
writing this information to the disk, it is compressed using
gzip and encrypted with the AES algorithm using a user-
provided password. Our implementation supports the use

of different passwords for the metadata file and the actual
data.

We take care not to accidently write the unencrypted
metadata file to the disk, as this could leave persistent
traces which particular files were modified. During the
embedding process the information resides unencrypted in
the RAM, and we did not implement countermeasures to
prevent the operating system to store the corresponding
memory pages on the disk, e.g., due to paging or hiberna-
tion. However, our application supports the encryption of
information on a per-path basis, right after embedding the
information in order to minimize the time the unencrypted
information resides in the RAM, at the cost of creating a
much larger metadata file due to the lack of compression.

Performance

Two of the main considerations of steganographic sys-
tems are the undetectability and the confidentiality of the
hidden data (Morkel et al., 2005). The performance of the
system is also an important factor with respect to
applicability.

We performed a series of experiments to gain insights
regarding the performance of TOMS when embedding and
extracting information using volume-wide oblivious
replacement. Table 2 summarizes our findings. The re-
ported figures are the averages of ten consecutive execu-
tions of hiding (embedding) and recall (extracting). The
amount of space used to embed data is reported as a per-
centage of the overall available storage space provided by
the ESUs (i.e., 6 bytes per file). The time needed to hide
(embed) the information is almost constant, irrespective of
the data volume. On the other hand the time to recall
(extract) the information is almost linear to the percentage
of embedded data. In both cases the time ranges in dozens
of seconds, which might be considered too high. Upon
closer inspection, it appears that the calculation of the
Reed-Solomon ECC dominates the processing time for both.
However, since the file metadata are extracted from the
MFT, which resides in the RAM, the average time to extract
is lower than the average time to embed. This lower time is
caused by performing the vast majority of filesystem op-
erations within the RAM instead of directly accessing the
hard disk.

Effect on actual filesystem operation

As a final consideration, we examined if the filesystem
remained operational for normal use after manipulating
the stored file timestamps. We mounted and unmounted
the NTFS volumes that were modified by our proof-of-
concept implementation using the drivers provided by

Table 2

Time to embed and extract information on filesystem.
Space used 15% 30% 50%
Timestamps needed 78,687 157,325 264,193
Time to embed [sec] 74.78 76.17 76.33
Time to extract [sec] 20.19 36.92 60.29
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Linux, Microsoft Windows, and Apple OS X operating sys-
tems. We did not notice any problems in using the volumes,
and no error messages were logged by the operating sys-
tems. We also performed regular file operations in the
volumes and did not notice any issues. Recall of the steg-
anographic information after the regular use succeeded
without any problems as well.

The analysis validates our initial assumption: typical
usage scenarios of modern filesystems allow to persistently
store additional information in file timestamps without
affecting their normal use.

Implications for forensics analysis

Responsible research in steganography involves both
developing new techniques for information hiding and
detection (steganalysis). The issue of detection is increas-
ingly important for digital forensics examiners, as criminal
activities through digital means ara becoming prevalent
(Europol, 2015).

Embedding information in file timestamps is feasible. As
discussed in Section (Evaluation of the TOMS system), these
information are indistinguishable from that of normal op-
erations, provided that a stream cipher is used in the
encryption layer. Thus, a statistical analysis of file time-
stamps should be incorporated in the forensics examina-
tion procedures as a first line of defense. This analysis can
provide hints for the presence of information hidden in the
timestamps, if one opts to disable the encryption layer of
the TOMS system.

There may be additional artefacts and implementation
details which can assist a forensics investigator in
disclosing the presence of hidden information. A fully-
functional TOMS demands careful implementation and
operation decisions. The developer must ensure that the
application leaves no installation or execution traces that
could reveal its presence. If a backup image of the fil-
esystem contents at an earlier time is available to the ex-
aminers, they can compare the timestamps regarding
unjustifiable modifications, especially for the case of the
creation timestamps. Furthermore, the generation of new
files to use them as carriers must be justifiable from a
modus operandi point of view. For example, if modification
timestamps are utilized, it must be justifiable why they
differ from the creation timestamps — this would be sus-
picious if it occurs in the same second for a large batch of
files. It is advantageous to check for modus operandi vio-
lations during the forensics examination process.

Another approach for the investigation procedure is the
correlation of an installation timeline for an operating
system and its well-known application files (e.g., the
Microsoft Office suite). If such files are used to hide infor-
mation and if they share the same timestamp up to the
second part, an installation timeline can reveal that the
creation order of some files does not match the expected
one.

The filesystem data structures are not the only place
where timestamps are stored. If an operating system re-
cords file-related events in its system logs with nanosecond
precision, a digital forensics investigator can perform a
correlation analysis between these two information

sources in order to detect unjustifiable mismatches. Oper-
ating systems also use transaction logs (journals) for re-
covery processes (e.g., the NTFS Transaction Log $LogFile
(Cho, 2013)). These can also be used for correlation analysis.
Wiping out such log files or carelessly modifying them can
raise further suspicions and assist aiding the investigation
along.

In the case of NTFS, an informed decision in our proof-
of-concept (PoC) implementation was to modify only the
filename attribute of the MFT. However, the same infor-
mation are maintained in the standard information attri-
bute as well. Thus, an investigator can compare the two
attributes and detect the use of the PoC implementation.

Conclusions and future work

In this paper, we proposed and explored the applica-
bility of file timestamps as a steganographic channel. Based
on our analysis of how modern operating systems store
timestamps for file events in filesystem data structures and
how they are displayed to the users, we reveal a redundant
space to hide information. We described how this space can
be utilized as a steganographic channel using a layered
design that offers stealthiness, robustness, and wide
applicability. We evaluated our design through theoretical,
evidence-based, and experimental analysis in the case of
the NTFS filesystem with datasets containing millions of
files: the hidden information are statistically indistin-
guishable from timestamps produced during normal use.
We also validated the applicability of our proposal through
a proof-of-concept implementation targeting the NTFS fil-
esystem. Finally, we discussed the implications of this new
steganographic technique for digital forensics analysis.

As future work, we consider it interesting to confirm our
findings with datasets provided by other researchers and
practitioners in the field. Regarding our evaluation on the
NTES filesystem, we plan to explore implications of the
TOMS system on the NTFS $LogFile. Also, to extend the
validation to other filesystems, such as the ext4 that is used
natively by the Linux operating system but also showing
the robustness of TOMS during heavy usage of the under-
lying filesystem. Another direction is to explore additional
filesystem artefacts and data structures beyond file time-
stamps that exhibit similar characteristics regarding time
handling. It is also useful to extend the study towards de-
vices that provide timing information with smaller preci-
sion: such devices may not offer the timing granularity that
results in uniformly-distributed timestamps.
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