AN EQUIVARIANT IWASAWA MAIN CONJECTURE
FOR LOCAL FIELDS

ANDREAS NICKEL

ABSTRACT. Let L/K be a finite Galois extension of p-adic fields and let Lo, be the
unramified Z,-extension of L. Then L. /K is a one-dimensional p-adic Lie extension.
In the spirit of the main conjectures of equivariant Iwasawa theory, we formulate a
conjecture which relates the equivariant local epsilon constants attached to the finite
Galois intermediate extensions M /K of Ly, /K to a natural arithmetic invariant arising
from the étale cohomology of the constant sheaf Q,/Z,, on the spectrum of L,. We give
strong evidence of the conjecture including a full proof in the case that L/K is at most
tamely ramified.

1. INTRODUCTION

Let E/F be a finite Galois extension of number fields with Galois group G. If E/F
is tamely ramified, then the ring of integers O in E' is projective as a module over the
integral group ring Z[G]. The study of the Galois module structure of O for tamely
ramified extensions was systematically developed by Frohlich (see [Fro83] for a survey)
and culminated in Taylor’s proof [Tay81] of Frohlich’s conjecture that the class of O in
the locally free class group of Z[G] is determined by the Artin root numbers associated
to the irreducible complex symplectic characters of G. Subsequently, Chinburg [Chi85]
formulated a generalization of Frohlich’s conjecture to the context of arbitrary finite
Galois extensions E/F. This is often called ‘Chinburg’s Qs-conjecture’ and is in general
still wide open.

Motivated by the requirement that the equivariant Tamagawa number conjecture (as
formulated by Burns and Flach [BF01]) for the pair (h°(Spec(E)), Z[G]) and its Kummer
dual (h°(Spec(FE))(1),Z[G]) should be compatible with the functional equation of the
associated equivariant L-functions, Bley and Burns [BB03] have formulated the ‘global
equivariant epsilon constant conjecture’. This conjecture asserts an equality in the relative
algebraic K-group Ky(Z|G],R) between an element constructed from epsilon constants
and the sum of an equivariant discriminant and certain terms coming from the étale
cohomology of G,,. Note that there is a natural surjective morphism from Ky(Z[G],R)
to the locally free class group of Z[G]. The projection of the global equivariant epsilon
constant conjecture under this morphism indeed recovers Chinburg’s {2;-conjecture. One
advantage of the refinement of Bley and Burns is that it naturally decomposes into ‘p-
parts’, where p runs over all rational primes.

Now fix a prime p and let L/K be a finite Galois extension of p-adic fields with Galois
group G. Breuning [Bre04] defined an invariant Ry x in the relative algebraic K-group
Ko(Z,]G],Q;), where Q; is a fixed algebraic closure of Q,. This invariant incorporates the
equivariant local epsilon constant of L/K (i.e. local Galois Gauss sums) and a natural
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arithmetic invariant arising from the étale cohomology of the sheaf Z,(1) on the spectrum
of L. His ‘local equivariant epsilon constant conjecture’ then simply asserts that Ry
vanishes. This fits into the very general framework of local noncommutative Tamagawa
number conjectures of Fukaya and Kato [FK06].

The global and the local conjecture are in fact closely related. Let v be a p-adic place
of I and fix a place w of E above v. We write F, and FE,, for the completions of F' at v
and E at w, respectively. Then the p-part of the global conjecture for E/F' is implied by
the local conjectures for the extensions E,,/F,, where v ranges over all p-adic places of F’
(see [Bre04, Corollary 4.2]). If p is odd, one actually knows that the p-part of the global
conjecture for all Galois extensions of number fields is equivalent to the local conjecture
for all Galois extensions of p-adic fields [Bre04, Theorem 4.3].

It therefore suffices to consider Breuning’s conjecture. The invariant Ry k is of the
form

Rk =Tk +Cryx + Uk — Mk,
where each term lies in Ky(Z,[G], Qg) Here, the term 77 is the equivariant local epsilon
constant, Uy, is the so-called unramified term (see §4.6) and M, is a certain correction
term. We now briefly recall the definition of the cohomological term Cp,x. Define a free

Z,|G]-module Hy, := P, Z,, where the sum ranges over all embeddings o : L — Q.
Then

(1.1) K} = RI'(L,Z,(1))[1] ® HL[—1]
is a perfect complex of Z,[G]-modules which is acyclic outside degrees 0 and 1. Moreover,
we have natural isomorphisms H'(K}) ~ Z,® H;, and H°(K}) ~ L*, the p-completion of

L*. The valuation map, the p-adic logarithm and the various embeddings o then induce
a Q5 [G-isomorphism (see [Bre04, §2.4])

o1 Q) ®z, H(K}) ~ Q, ®z, HY(K?).
These data can then be used to define Ok as the ‘refined Euler characteristic’ (see §2.3)
Crix = Xzyianas (K1, 011) € Ko(Z,[G], Q).

This definition only depends upon the trivialization ¢, and the class in Ext%p[g} (Z,, Z;)
that is naturally determined by the complex RI'(L,Z,(1)). This is essentially the funda-
mental class of local class field theory.

In this paper we approach the local equivariant epsilon constant conjecture via Iwasawa
theory. We formulate an equivariant Iwasawa main conjecture, which might be seen as
a local analogue of the main conjecture of equivariant Iwasawa theory for totally real
fields proven by Ritter and Weiss [RW11] and, independently, by Kakde [Kak13] (under
the assumption that Iwasawa’s p-invariant vanishes; see [JN18] for results without this
hypothesis).

Every p-adic field L has at least two Z,-extensions: the cyclotomic and the unramified
Z -extension. It is more common in the literature to look at the cyclotomic Z,-extension,
but also the unramified Z,-extension is often considered [Venl3, LZ14, LVZ15, LLTT16,
TV]. In order to explain why we believe that the unramified Z,-extension bears interesting
information in our case, we consider the following more general situation. Let V be a
finite dimensional Q,-vector space with a continuous action of G, the absolute Galois
group of K. Choose a Gg-stable Z,-lattice 7" in V' and denote the quotient V/T by
A. There are natural duals of 7" and V' given by T := Homg, (7T, Z,(1)) and V* :=
Homg, (V,Qy(1)) = Q, ®z, T*. Let K(A)/K be the extension defined by the kernel of
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the homomorphism Gx — Aut(V). Then K(A) = {J, K(A[p"]) is the field obtained by
adjoining all p-power torsion points of A and K(A)/K is a compact p-adic Lie extension.
Iwasawa theory over a p-adic Lie extension K, of K often behaves well when K, contains
K(A) as a subfield (see [OV02, §4.3], for instance; similarly for number fields [CFK105]).
In the case considered in this article, the lattice Z,(1) plays the role of 7*. Thus we have
A = Q,/Z, and then clearly K(A) = K so that every choice of K., will contain K (A).
Note that for all other Tate twists of Z, and in many further interesting cases as the
p-adic Tate module of an elliptic curve, the requirement K(A) C K, implies that K
contains the cyclotomic Z,-extension.

Let us consider the unramified Z,-extension L., of L. Then L,/ K is an infinite Galois
extension and its Galois group G is a one-dimensional p-adic Lie group. We let A(G)
denote the Iwasawa algebra of G and let Q(G) be its total ring of fractions. We also put
Q(G) = Q; ®q, Q(G).

Now assume that p is odd. Although we never need this assumption for our arguments,
we have to impose it whenever we refer to results of Ritter and Weiss, where it is always in
force. The local Galois Gauss sums behave well under unramified twists (see Proposition
3.6 below) and give rise to a homomorphism 7;__/x on the ring of virtual Qp-valued
characters of G with open kernel. This homomorphism takes values in Q°(I'x)*, where
'k := Gal(K./K) ~ Z,, and plays the role of Ty, above (in fact, the homomorphism
Tr..,k depends upon a choice of isomorphism C ~ C,, but our conjecture does not; we
will suppress this dependence in the introduction).

For n € N let L,, be the n-th layer of the Z,-extension L., /L. We define a complex of
A(G)-modules

K} = RHom(RI'(Leo, Qp/Z,), Qp/Z,)[-1] & Hi [-1],
where Hy = lim Hp, is a free A(G)-module of rank [K : Q,], and show that this

complex is indeed perfect. To see the analogy with (1.1), we observe that local Tate
duality induces an isomorphism

RT(L,7,(1))[1] = RHom(RI'(L, Q,/Z,), Qp/Z,)[—1]

in the derived category of Z,[G]-modules. We construct a trivialization ¢! of the complex
K7 _ which allows us to define a refined Euler characteristic

CrL./x € Ko(A(G), Q°(9)).

In contrast to the isomorphism ¢; above, the map ¢, no longer incorporates the val-
uation map because Z, becomes torsion when considered as an Iwasawa module. For
technical purposes, however, we have to choose a compatible system of integral normal
basis generators along the unramified tower (mainly because we will refer to results that
require coefficient rings with finite residue field so that we cannot pass to the completion
of the ring of integers in F,, for a p-adic field F'). The same choice will appear in our
definition of (a variant of) the unramified term U;_ ;. The main conjecture will then
not depend upon this choice. We will also define a certain correction term M _ /.
The main conjecture then asserts the following: There exists (a unique)

Cro/x € K1(Q9(G))
such that
OCro/i) = —ClLoy i — Uioo/K + Mrx
and
Det((r,./x) = TLoo /K-
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Here, 0 : K1(Q%(G)) — Ko(A(G), Q°(G)) denotes the (surjective) connecting homomor-
phism of the long exact sequence of relative K-theory and Det is a homomorphism map-
ping K;(Q°(G)) to a certain Hom-group (constructed by Ritter and Weiss [RW04]). The
analogy to the main conjecture for totally real fields as formulated by Ritter and Weiss is
apparent. To make the analogy to Breuning’s conjecture clearer, let us assume only for
the rest of this paragraph that G is abelian or, more generally, that Det is an isomorphism.
Then we may put Ty x = O(Det™ (1 /i) and

Rix =Trx + Crox +Up ik — Mk € Ko(A(G), Q°(G))-

Then the main conjecture asserts that R,k vanishes.

Our conjecture also fits into the framework of local noncommutative Tamagawa number
conjectures of Fukaya and Kato [FK06]. However, [FK06, Conjecture 3.4.3] only asserts
that ‘there exists a unique way to associate an isomorphism’ (called an e-isomorphism)
with certain properties for any pair (A, T) of certain adic rings A and finitely generated
projective A-modules T endowed with a continuous action of Gg,. They do not explain
how this isomorphism can (at least conjecturally) be constructed in general. In our situ-
ation this amounts to the definition of the trivialization of the complex K7_. Therefore
our conjecture makes the conjecture of Fukaya and Kato more precise in the situation
K =Q,, A = A(G) and T = A*(1), where A* denotes the free A-module of rank 1 upon
which o € G, acts as multiplication by '; here & denotes the image of o in G.

Building on work of Frohlich, Bley, Burns, and Breuning we show that our conjecture
holds for tamely ramified extensions. If G is abelian, then this is the local analogue of
Wiles’ result [Wil90] on the main conjecture for totally real fields. This allows us to
deduce the conjecture ‘over the maximal order’ from its good functorial behaviour. Note
that p does not divide [L., : K| if L/K is tamely ramified, and thus A(G) is itself a
maximal order (over the classical Iwasawa algebra Z,[T7]) in this case.

We give an important application of our results, which has no analogue at finite level:
it suffices to prove the main conjecture after localization at the height 1 prime ideal (p) of
Z,[T]. The cohomology groups of the complex K7 _ then become free (and thus perfect)
by a result of the author [Nic18] and so one does not need to take care of the associated
extension class any longer. This application makes heavy use of a result of Ritter and
Weiss [RW05] on the image of K;(A(G)) under Det. Note that a similar reduction step
appears in the proof of the main conjecture for totally real fields.

In a forthcoming article we will show that our conjecture implies Breuning’s conjecture
and also the equivariant local epsilon constant conjecture for unramified twists of Z,(1).
Note that (with a few exceptions) these conjectures are known to hold in exactly the
same cases: for tamely ramified extensions [Bre04, IV16], for certain weakly, but wildly
ramified extensions [BC16, BC17], and if L/Q,, is an abelian extension [Bre04, Venl13] (see
also [BF06, BB08]). So our work explains this analogy and provides a unifying approach
to these results. Moreover, it overcomes two major obstacles to proving Breuning’s con-
jecture: (i) the valuation map no longer appears and so the trivialization of the complex
is considerably easier and (ii) one may reduce to a situation where the occurring complex
has perfect cohomology groups and so one does not need to take care of the extension class.

This article is organized as follows. In §2 we review algebraic K-theory of p-adic group
rings and Iwasawa algebras. In particular, we study how K-theory behaves when one
passes from group rings to Iwasawa algebras. We introduce the determinant map of
Ritter—-Weiss and compare it with the equivalent notion of the reduced norm. In §3 we
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introduce local Galois Gauss sums and study their behaviour under unramified twists.
We define the homomorphism 7, /x and study its basic properties. The main part of §4
is devoted to the definition of the cohomological term C7,_ /. We introduce the complex
K7 _ and show that it is perfect. This in fact holds for more general Z,-extensions. We
then study (normal) integral basis generators and the behaviour of the p-adic logarithm
along the unramified tower. Choosing a certain compatible system of normal integral
basis generators, we define a trivialization of the complex K7 . A similar choice will
then appear in the definition of the unramified term U} _ K- We show that the sum
Cro/x + ULk is well defined up to the image of an element z € K:(Qj, ®z, A(G)) such
that Det(xz) = 1. This will be sufficient for our purposes, but we point out that it is
conjectured that the map Det is injective. For instance, this is true if G is abelian or,
more generally, if p does not divide the order of the (finite) commutator subgroup of G
(this follows from [JN13, Proposition 4.5] as explained in [JN18, Remark 4.8]). We also
define the correction term in this section. We formulate the main conjecture in §5. We
show that it is well posed and study its functorial properties. We also provide some first
evidence including a result that does not have an analogue at finite level. In §6 we prove
our conjecture ‘over the maximal order’. This includes a full proof of the conjecture for
tamely ramified extensions. As a corollary, we obtain an important reduction step toward
a full proof of the conjecture.
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this article.

Notation and conventions. All rings are assumed to have an identity element and
all modules are assumed to be left modules unless otherwise stated. Unadorned tensor
products will always denote tensor products over Z. If K is a field, we denote its absolute
Galois group by Gk. If R is a ring, we write M,,x,(R) for the set of all m x n matrices
with entries in R. We denote the group of invertible matrices in M,,,(R) by GL,(R).
Moreover, we let ((R) denote the centre of the ring R. If M is an R-module we denote
by pdg(M) the projective dimension of M over R.

2. ALGEBRAIC PRELIMINARIES

2.1. Derived categories. Let A be a noetherian ring and PMod(A) be the category
of all finitely generated projective A-modules. We write D(A) for the derived category
of A-modules and C*(PMod(A)) for the category of bounded complexes of finitely gen-
erated projective A-modules. Recall that a complex of A-modules is called perfect if it
is isomorphic in D(A) to an element of C®(PMod(A)). We denote the full triangulated
subcategory of D(A) comprising perfect complexes by DP(A). If M is a A-module and
n is an integer, we write M [n] for the complex

e — 00— 00— M —0—0—....
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where M is placed in degree —n. This is compatible with the usual shift operator on
cochain complexes.

2.2. Relative Algebraic K-theory. For further details and background on algebraic
K-theory used in this section, we refer the reader to [CR87] and [Swa68]. Let A be a
noetherian ring. We write Ky(A) for the Grothendieck group of PMod(A) (see [CR87,
§38]) and K;(A) for the Whitehead group (see [CR87, §40]) which is the abelianized
infinite general linear group. We denote the relative algebraic K-group corresponding to
a ring homomorphism A — A’ by Ky(A, A’). We recall that Ky(A, A’) is an abelian group
with generators [X, g, Y] where X and Y are finitely generated projective A-modules and
g: Ny X — N ®,Y is an isomorphism of A’-modules; for a full description in terms
of generators and relations, we refer the reader to [Swa68, p. 215]. Furthermore, there is
a long exact sequence of relative K-theory (see [Swa68, Chapter 15])

(2.1) Ki(A) — Ki(A) 2% koA, ) — Ko(A) —s Ko(A).

Let R be a noetherian integral domain of characteristic 0 with field of fractions FE.
Let A be a finite-dimensional semisimple E-algebra and let A be an R-order in A. For
any field extension F' of E we set Ap := F ®p A. Let Ko(A, F) = Ko(A, Ar) denote
the relative algebraic K-group associated to the ring homomorphism A < Ap. We then
abbreviate the connecting homomorphism Oy 4, to Jx p. The reduced norm map

Nrdy : A — ((A)

is defined componentwise on the Wedderburn decomposition of A (see [Rei03, §9]) and
extends to matrix rings over A in the obvious way; hence this induces a map K;(A) —
C(A)* which we also denote by Nrd4.

Let ((A) = [I, Ei be the decomposition of ((A) into a product of fields. For any
x = (x;); € ((A) we define an invertible element *z = (*z;); € ((A)* by *x; = a; if
x; # 0 and *z; =1 if z; = 0.

2.3. Refined Euler characteristics. For any C* € C®(PMod(A)) we define A-modules
O = @0%7 Oodd — @ 02i+1.
iez iez

Similarly, we define H**(C*®) and H°¥(C®) to be the direct sum over all even and odd
degree cohomology groups of C°, respectively. A pair (C*,t) consisting of a complex
C* € DP(A) and an isomorphism t : H°¥(C$) — H(C}) is called a trivialized
complex, where we write Cp for F' @% C®. We refer to t as a trivialization of C*.

One defines the refined Euler characteristic xa p(C®,t) € Ko(A, F) of a trivialized
complex as follows: Choose a complex P* € C’(PMod(A)) which is quasi-isomorphic
to C*. Let B'(Pp) and Z'(Pp) denote the i-th cobounderies and i-th cocycles of P,
respectively. For every ¢« € Z we have the obvious exact sequences

0 — BY(Pp) — Z'(Pp) — H'(Pp) — 0,
0 — Z'(Pp) — Py — B"'(Pp) — 0.
If we choose splittings of the above sequences, we get an isomorphism of Ag-modules

or: PR~ @D B(PY) @ HY(P}) ~ @) BI(P}) @ H(P}) = Py,

ez i€Z
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where the second map is induced by ¢. Then the refined Euler characteristic is defined
to be

XA,AF (C.at) = XA7F(O.7t) = [POdd7 ¢ta Pev] € KO(A7 F)
which indeed is independent of all choices made in the construction. For further infor-
mation concerning refined Euler characteristics we refer the reader to [Bur04].

2.4. p-adic group rings. Let GG be a finite group and F a field of charactersitic 0. We
write Irrp(G) for the set of F-irreducible characters of G. We fix an algebraic closure '
of F and let Gp := Gal(F*¢/F) denote the absolute Galois group of F.

Fix a prime p and set Irr(G) := Irrge (G). Then Gg, acts on each Qj-valued character 7
of G and thereby on Irr(G) via “n(g) = o(n(g)) for all o € Gy, and g € G. We fix a Q;[G]-
module V;, with character 1. Choosing a Q}-basis of V;, yields a matrix representation

Ty G — GLn(l)(Q;)
with character . We define a linear character

det,: G — (Q9)*

g > detgg(my(g)) = deteg(g | V3).
The Wedderburn decomposition of Q;[G] is given by

QG] = @ Q[Gle(n) ~ @ Miy1yxn(1)(Qp),
n€lrr(G) n€lrr(G)
where e(n) 1= n(1)/|G| Y ,cqn(g~")g are primitive central idempotents and the isomor-
phism on the right maps each g € G to the tuple (7,(9))nenr(c). In particular, we have
an isomorphism

(e~ .
nelrr(G)
The reduced norm of z € Qy[G] is then given by Nrdgg(g)(z) = (detqg (2 | V;))nem(a)- For
every g € G we have in particular

(2.2) Nrdege)(9) = (dety(9))nerr(c)-

By a well-known theorem of Swan (see [CR81, Theorem (32.1)]) the map Ky(Z,[G]) —
Ko(Q;[G]) induced by extension of scalars is injective. Thus from (2.1) we obtain an
exact sequence

c 617 c
(2.3) K1(2,[G]) — Ki(Q[G]) — Ko(Z£,[G],Q;) — 0,
where we write 0, for 82;;[0},@;?,‘ If H is a subgroup of GG, then there exist natural restriction

maps res$ for all K-groups in (2.3). If H is a normal subgroup of G, then there likewise
exist natural quotient maps quotg /H for all K-groups in (2.3). Moreover, the reduced
norm map induces an isomorphism

(2.4) Nrdggja) : K1 (Q5G]) — ¢(QS[G))*
by [CR87, Theorem (45.3)], and one has an equality
(2.5) Nrdg, () (K1(Z,[G])) = Nrdg, ¢)(£,(G]7)

as follows from [CR87, Theorem (40.31)].
We need the following generalization of Taylor’s fixed point theorem [Tay81] (see [Fro83,
Theorem 10A]) due to Izychev and Venjakob [IV12, Theorem 2.21].
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Theorem 2.1. Let E be a tame (possibly infinite) Galois extension of Q,. Let H be an
open subgroup of Gal(E/Q,) that contains the inertia subgroup, and put F := E*. Then

(Nrdey (Op[G)) " = Nrdpie (O#[G]¥) .

Let S be a ring extension of a ring R. We denote the kernel of the natural map
K1(R[G]) — K;(S[G]) by SK1(R[G],S). If R is a domain with field of fractions K, we
put SK;(R[G]) .= SK,(R|G], K).

Lemma 2.2. Let G be a finite group and let ' be a finite extension of Q, with ring of
integers O. Then the following holds.

(i) There is an exact sequence of abelian groups

0 — SK(Z,[G), 0) — SK,(Z,[G]) — SK,(O[G]) —

— Ko(Z,[G], O[G]) — Ko(Z,[G], Q) — Ko(O[G], &) — 0.

(ii) SK1(Z,|G],O) is a finite p-group.
(iii) If in addition the degree [Fy : Q] of the mazimal unramified subfield Fy in F' is
prime to p, then SK,(Z,[G], O) vanishes.

Proof. Tt follows from [CR87, Theorem (45.3)] that the natural map K (Q,[G]) — K1 (Q;[G])
is injective. Therefore SK(Z,[G]) identifies with the kernel of K;(Z,[G]) — K1(Q;[G]).
A similar observation holds for SK;(O[G]). As Ko(Z,[G]) — Ko(Q;[G]) is injective by
Swan’s theorem, a forteriori the map Ky(Z,[G]) — Ko(O|G]) has to be injective. Consid-
ering the long exact sequences of relative K-theory (2.1) for the three occurring pairs, a
diagram chase shows that we have (i). Then (ii) follows as SK;(Z,[G]) is a finite p-group
by [CR87, Theorem (46.9)]. The last claim is a consequence of [IV12, Theorem 2.25]
which actually says that the third arrow in (i) is an isomorphism in this case. O

2.5. Iwasawa algebras of one-dimensional p-adic Lie groups. We assume for the
rest of this section that p is an odd prime. Let G be a profinite group. The complete
group algebra of G over Z,, is

A(G) = Z,[G] = m Z,[G/N],

where the inverse limit is taken over all open normal subgroups N of G. Then A(G)
is a compact Z,-algebra and we denote the kernel of the natural augmentation map
A(G) — Z, by A(G). If M is a (left) A(G)-module we let Mg := M/A(G)M be the
module of coinvariants of M. This is the maximal quotient module of M with trivial
G-action. Similarly, we denote the maximal submodule of M upon which G acts trivially
by M.

Now suppose that G contains a finite normal subgroup H such that T := G/H ~ Z,,.
Then G may be written as a semi-direct product G = HxT' where < Gand I ~T ~ Z,,.
In other words, G is a one-dimensional p-adic Lie group.

If F is a finite field extension of Q, with ring of integers O = O, we put A9(G) :=
O®z,A(G) = O[G]. We fix a topological generator v of I' and put 7 := v mod H which
is a topological generator of I'. Since any homomorphism I' — Aut(H) must have open
kernel, we may choose a natural number n such that 47" is central in G; we fix such an
n. As Ty := I'?" ~ Z,, there is a ring isomorphism R := O[[\] ~ O[T] induced by
AP" + 14T where O[T] denotes the power series ring in one variable over O. If we view
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A®(G) as an R-module (or indeed as a left R[H]-module), there is a decomposition
pr—1

1°(9) = ) Rl

Hence A®(G) is finitely generated as an R-module and is an R-order in the separable
E = Quot(R)-algebra Q' (G), the total ring of fractions of A®(G), obtained from A®(G)
by adjoining inverses of all central regular elements. Note that QF(G) = F ®r A°(G)
and that by [RW04, Lemma 1] we have Q¥ (G) = F ®q, Q(G), where Q(G) := Q% (G).

For any field F' of characteristic 0 let Irrp(G) be the set of F-irreducible characters of
G with open kernel. Fix a character y € Irr%(g) and let 7 be an irreducible constituent
of res;x. Then G acts on 1 as 9(h) = (g~ 'hg) for g € G, h € H, and following [RW04,
§2] we set

Stn):={geG ' =n} e = > el
77|res%x
By [RWO04, Corollary to Proposition 6] e, is a primitive central idempotent of Q°(G) :=
Q5 ®q, Q(G). In fact, every primitive central idempotent of Q¢(G) is of this form and
e, = ey if and only if x = x’ ® p for some character p of G of type W (i.e. res%p =1).
The irreducible constituents of res%x are precisely the conjugates of n under the action of
G, each occurring with the same multiplicity z, by [CR81, Proposition 11.4]. By [RW04,
Lemma 4] we have z, = 1 and thus we also have equalities

wy —1 wy—1
i i X(l) _
resfix =D _ "y ex =3 el) = = > x(h Tk,
i=0 i=0 X heH

where w, := [G : St(n)]. Note that x(1) = w,n(1) and that w, is a power of p since H is
a subgroup of St(n).

Let V) denote a realisation of x over Q7. By [RW04, Proposition 5], there exists a
unique element 7, € ((Q°(G)e,) such that v, acts trivially on V) and v, = gc where
g € G with (g mod H) =5~ and ¢ € (Q;[H]e,)*. Moreover, v, = gc = cg. By [RW04,
Proposition 5], the element -, generates a procyclic p-subgroup I'y of (Q%(G)e,)* and
induces an isomorphism

(2.6) C(Q(G)ey) = Q°(I'y).

2.6. K-theory of Iwasawa algebras. We now specialze sequence (2.1) to the present
situation. If F//Q, is a finite field extension, then by [Wit13, Corollary 3.8] we have an
exact sequence

(2.7) Ki(A(9)) — K1(Q"(9)) — Ko(A(9), Q"(G)) — 0
and likewise an exact sequence
(2.8) K1 (A(G)) — K1(Q°(9)) — Ko(A(G), 2°(G)) — 0.

As any r € K (Q; ®z, A(G)) actually lies in the image of K;(F ®z, A(G)) for sufficiently
large F, we deduce from [Wit13, Theorem 3.7] that the natural map K;(Q; ®z, A(G)) —
K,(Q°(G)) is injective. An easy diagram chase now shows the following.

Lemma 2.3. The natural map

Ko(MG), Q @z, AG)) = Ko(A(9), Q°(9))

induced by extension of scalars is injective.



10 ANDREAS NICKEL

Following [RW04, Proposition 6], we define a map
Jx 1 C(Q(G)) — ((Q°(G)ey) = Q°(Ty) — Q(T),

where the isomorphism is (2.6) and the last arrow is induced by mapping =, to ¥*x. It
follows from op. cit. that j, is independent of the choice of % and that for every matrix

O € Mpun(Q°(G)) we have
Jx(Nrdge(g)(©)) = det oo (O | Homggay(Vy, Q°(9)")).

Here, © acts on f € Homgem)(Vy, Q°(G)") via right multiplication, and 7 acts on the left

via (Ff)(v) =~ - f(y ) for all v € V), where we recall that v is the unique lift of 7 to
I' < G. Hence the map

Det( )(x) : K1(Q(G)) — Q)
[P,a] deth(f)(Oé | Hong[H](VX, P)),
where P is a projective Q°(G)-module and a a Q°(G)-automorphism of P, is just j, o
Nrdge(g) (see [RW04, §3, p.558]). If p is a character of G of type W (i.e. resp = 1)

then we denote by p* the automorphism of the field Q°(T') induced by p*(7) = p(7)7.
Moreover, we denote the additive group generated by all Q;-valued characters of G with

open kernel by R,(G). We let Hom" (R,(G), @°(T')*) be the group of all homomorphisms
f: R,(G) — Q¢(T)* satisfying f(x®p) = p*(f(x)) for all characters p of type W. Finally,
Hom*(R,(G), @°(T)*) is the subgroup of Hom" (R,(G), Q°(T)*) of all homomorphisms f
that in addition satisfy f(“x) = o(f(x)) for all Galois automorphisms o € Gq,. If A is
a subring of Q¢(T), we put

Hom" (R,(G), A*) := Hom(R,(G), A*) N Hom" (R,(G), Q%(T'))

and similarly with Hom™.
By [RW04, Proof of Theorem 8| we have a Gg,-equivariant isomorphism

¢(Q°(9))* =~ Hom"(R,(G),Q(T)")
r =[x+ gy(z)]
By [RW04, Theorem 8] the map © — [x — Det(0)(x)] defines a homomorphism
Det : K,(Q%(G)) — Hom" (R 2(G), °(T))

such that Det maps K(Q(G)) into Hom*(R,(G), Q°(T')*), and such that we obtain com-
mutative triangles

(2.9)
NAW \
q(% Hom" (R,(G), Q4(T")*)
and
(2.10)

K5 (Q(
Nrdg(g) \
))/ Hom™(

¢(Q(G R,(G), Q¢(T)*).
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Let Z; be the integral closure of Z,, in Q; an put AT = Z;, 2z, A(T). By [RW06,
Lemma 2] the map Det restricts to a homomorphism

(2.11) Det : K1 (A(G)) — Hom*(R,(G), A°(T)*).

Let augr : Q) ®z, AT) — Q; be the natural augmentation map. The following result
will be useful when we like to check whether a given homomorphism lies in the image of

K1(A(G)) under Det.

Lemma 2.4. Let f, g € Hom" (R,(G), (Q ®z, A(T'))*) be two homomorphisms. Suppose
that augr(f(x)) = augr(g(x)) for all x € Irrqs(G). Then we have f = g.

Proof. Let x € Irrqs(G) be a character. There is an isomorphism A(T') ~ Z,[T], the
ring of formal power series in one variable 7" with coefficients in Z,, which maps 7 to
14+T. We identify f(x) and g(x) with the corresponding power series f, (") and g¢,(7') in
Q5 ®z, Z,[T7, respectively. We have to show that h, (T) := f,(T) — g, (T) vanishes. The
condition augpr(f(x)) = augp(g(x)) is equivalent to h,(0) = 0. Now let p be a character
of type W. Then we have p*(hy(T) = fyep(T) — gyap(T) = hyep(T), and so we obtain

ha(p(7) = 1) = e, (0) = 0.
Now h, (T") vanishes by [Was97, Corollary 7.4]. O

Example 2.5. For any g € G we claim that the homomorphism Det(g) is given on irre-
ducible characters x € Irrqs(G) by

(2.12) X — dety ()7,

where g € T’ denotes the image of g under the canonical projection G — I'. We first note
that dety,(g)gX®PM = p(g)XMdet, (¢)g¥V = p(det, (g)g¥"), and so (2.12) defines
an element in Hom" (R,(G), (Q; ®z, A(T))*). The middle displayed formula on p. 2774
of [Nic10, proof of Theorem 6.4] shows that Det(g)(x) belongs to Q% ®z, A(T'). As the
same is true for Det(g~")(x), we see that Det(g) € Hom" (R,(G), (Q¢ ®z, A(T'))*). By
Lemma 2.4 it now suffices to show that augr(Det(g)(x)) = det, (g). We have Det(g)(x) =
Jx(Nrdgg)(g)) by triangle (2.10). Choose a normal subgroup I ~ Z,, of G which lies in
the kernel of x. Put G’ := G/I” and view x as a character of G’. Now [Nicl0, (8)]
implies that augr(j,(Nrdgg)(g))) equals the x-component of Nrdg,e1(g’), where ¢' := g
mod I". However, this x-component is det,(¢g') = det,(g) by (2.2) as desired.

Remark 2.6. As we have observed in Example 2.5, the proof of [Nic10, Theorem 6.4] and
in particular [Nic10, (8)] show that we have a commutative square

KA(Q ©2, A(©)) lim I, (Q5[/A])
Dett :l (Nrdggio/n) .
Hom"™ (R, (9), () @z, MT))*) —=lim ((QGG/N ) = ] etrrgy () (@)

where the inverse limits are taken over all open normal subgroups N of G. Now Lemma
2.4 implies that the bottom map (which is given by f — (augp(f(x)))y) is injective.

Proposition 2.7. Let F' be a finite extension of Q, with ring of integers O. Then we
have a canonical isomorphism

Ko(A(G),A°(G)) = lim Ko(Z,|G/N], O[G/N]),

where the inverse limit runs over all open normal subgroup N of G.
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Proof. Choose ng € N such that """ is central in G. For n > ng we put G,, := G/T'?". As
the poset of subgroups I'"", n > ny is cofinal in the poset of all open normal subgroups
of G, we have to show that

Ko(AG),A(G)) ~ lim Ko(Z,[G,], O[Gal).

As the kernel of the natural projection Z,[G,+1] — Z,[G,] is contained in the radical
of Z,[G,+1] by [CR81, Proposition 5.26], we have a surjection Z,[G,:1]* — Z,[G,]*
by [CR81, Exercise 5.2]. We then likewise have K;(Z,[Gp+1]) = K1(Z,]|G,]) by [CR87,
Theorem (40.31)]. Therefore the inverse system K;(Z,[G,]), n > ng satisfies the Mittag—
Leffler condition. As SK;(Z,[|G,], O) is finite for all n > ny by Lemma 2.2, taking inverse
limits over the exact sequences of abelian groups

0 — SKi(Z,[G,],0) = Ki(Z,]|G,]) = Ki(O|Gy]) = Ko(Z,|G,],0]G,])) — 0

is exact. By [FKO06, Proposition 1.5.1] (this requires O having a finite residue field) we
have canonical isomorphisms

K1(MG)) ~ im Ki(Z,[Gr)),  Fi(AP(G)) = Lim K, (O[G)).

We thus obtain an exact sequence

0— I'&nSKl(Zp[Gn], 0) = K1(A(G)) = K1 (A°(G)) — @KO(ZP[GH], O[G,]) — 0

as desired. U
Lemma 2.8. Let I be a finite extension of Q, with ring of integers O. Define
SKl(AO(g)) = @SKKO[Q/N]),

where the inverse limit is taken over all open normal subgroup N' of G. Then we have an
exact sequence

0 — SK1(A°(G)) — K1(A(G)) 2 ¢(Q7(G))*.

Proof. Let z = (z,), € K1(A9(G)) = lim K1(O[G,]). Then we have Nrdgr(g)(z) = 1 if
and only if the homomorphism

(X = jx(Nrdgr(g)(2))] € Hom" (R,(G), (@) ®z, A(T)))

is trivial. Let y € Ier;(g) be a character. Choose n € N such that x factors through G,,.
As in Example 2.5 we have that augr(j,(Nrdgr(g)(z))) agrees with the y-component of
Nrdpig,)(7,). Now Lemma 2.4 implies the claim. d

Remark 2.9. As noted in [RW04, Remark E|, a conjecture of Suslin implies that the
reduced norm Nrdgr(g) : K1(QF(G)) — ¢(QF(G))* is injective. This is true if G is
abelian or, more generally, if p does not divide the order of the commutator subgroup
of G (this follows from [JN13, Proposition 4.5] as explained in [JN18, Remark 4.8]).
Whenever this holds, Lemma 2.8 shows that SK;(A®(G)) identifies with the kernel of the
natural map K;(A%(G)) — K.(QF(G)).

Remark 2.10. If F = Q, and G is a pro-p-group, then SK;(A(G)) coincides with the
kernel of the natural map K;(A(G)) — K1(A>(G)), where A>®(G) = @QP[Q/N] (see
[SV13, Corollary 3.2]).
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3. GALOIS GAUSS SUMS

3.1. General Notation. Fix a prime p. For any p-adic field K we denote its ring of
integers by Ok and let mx € Ok be a uniformizer. Then px = 7Ok is the unique
maximal ideal in Og. We let v : K* — Z be the associated normalized valuation, i.e.
vg(mr) = 1. If a is any ideal in Ok, we let N(a) = |Ok/al be its absolute norm. In
particular, N(pg) is the cardinality of the residue field of K. We set Up := Oy and
Uk =1+ p% for every positive integer n. We denote the absolute different of K by Dk
so that

@71 = {.7} e K | TI"K/QP(JIOK) - Zp} ,

where for any finite extension K/F of local fields Trg/p : K — F' denotes the trace map.
Similarly, we let Ng,p : K* — F* be the field theoretic norm map. We use the same

K/F where Tx/F

notation for the norm on ideals so that in particular Nk /r(px) = p?
denotes the degree of the corresponding residue field extension.
Let G3 := Gal(K®"/K) be the Galois group over K of the maximal abelian extension
K®* of K and let
(-, K): K* — G%
be the local Artin map. Then we have commutative diagrams

(—,K) (_7K

(3.1) K* Gab xR Gab
NK/FL l T ]VGYK/F

X (=F) ab X (=F) ab

F Gal F Gal

where in the left diagram the vertical arrow on the right denotes the canonical map, and
in the right diagram the vertical arrows are the natural embedding and the transfer map
VerK/p : G%b — G%P

3.2. Abelian Galois Gauss sums. Let L/K be a finite Galois extension of p-adic
fields with abelian Galois group G. Then every x € Irr¢(G) may be viewed as a complex
character of K* via the local Artin map and the natural projection G3° — G. The
conductor of y is the ideal f(x) = pi~, where m, is the smallest integer such that
x(Ux) = 1. Let v, be the composition of the following three maps:

Yy Q, — Q,/Z, — Q/Z — C*,

where the first map is the canonical surjection, the second map is the canonical injection
which maps Q,/Z, onto the p-component of the divisible group Q/Z, and the third map is
the exponential map x — e?™@. Thus ,(Z,) = 1 and for any r € N we have 1,(p™") = (r

271

where (,» = e»” is a primitive p"th root of unity. Define the standard additive character
Yg : K — C* to be the composition v, o Trg/q,. Note that the codifferent D is the
largest ideal of K on which ¢ is trivial.

Definition 3.1. The local Galois Gauss sum 7x(x) is defined to be the sum
() = Y. xlue)k(ucy!) € Q
welY JU X

where ¢, is any generator of the ideal f(x)® x (the sum is easily shown to be independent
of the choice of ¢,).
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Remark 3.2. If y is unramified (i.e. m, = 0) then we may view y : K*/Ox — C* as
a function on the fractional ideals in /K. Then the sum in Definition 3.1 reduces to one
term and we have 7 (x) = x(D%'). If x is ramified (i.e. m, > 0) then the sum runs over

all u € UYL JUZX = Ok /1 +§(x).

Remark 3.3. One knows that |7x(x)| = VN (f(x)) (see [Mar77, Chapter II, Proposition
2.2], for instance). In particular, 7x () is non-zero.

The following result is well known (see the proof of [Fro83, Chapter III, Lemma 6.1],
for instance). We give a proof for convenience of the reader.

Proposition 3.4. Let x, p € Irre(G) be two irreducible characters of G. If p is unramified
then

(X ® p) = p((FO)D k)™ )i (X) = pleg ) Tr(X).

Proof. As p is unramified, we have m,g, = m, and thus f(x ® p) = f(x). Let ¢, be a
generator of f(x ® p)Ox = f(x)O k. Hence

(x®p) = D> (x®p)(ucy Y (ucy')

uweUY JU X

= pleg) D xlue o (ucy)
ueUY, JU X
-1

= p(cx )TK(X)
= p((FO0DK)™)7r(X),
where the second equality uses the fact that p(uc;') = p(c;") for all u € Of. O

3.3. General Galois Gauss sums. Now let L/K be an arbitrary finite Galois extension
of p-adic fields with Galois group G. We write R(G) for the ring of virtual C-valued
characters of G. If y is a character of G, then deg(x) := x(1) is called the degree of .
This uniquely extends to a homomorphism

deg: R(G) — Z.

Let A be an abelian group. A family of homomorphisms f;# : R(H) — A, where H runs

through all subgroups of G, is called inductive in degree 0 if fx (ind%y) = fru(x) for every

subgroup H of G and every x € R(H) of degree 0. Such a family is uniquely determined

by its values on linear characters (see [Fré83, Chapter 111, remark after Lemma 1.1]; the

argument also appears in the proof of Proposition 3.6 below, in particular see (3.3)).
The following definition is in fact well defined (see [Mar77, Chapter II, §4]).

Definition 3.5. There is a unique family of homomorphisms
Tpr s R(H) — ()7
X = Ta(x)
such that 77u () is the abelian Galois Gauss sum defined in Definition 3.1 for every linear

character x of H, and such that the family is inductive in degree 0. We call 7x(x) the
local Galois Gauss sum of y.

If x is a complex valued character of G, we let f(x) be the Artin conductor of y. As
f(x+x') = f(x)-f(x) for any two characters x and x’, there is a unique way to define f(x)
for any virtual character y € R(G) such that f is a homomorphism on R(G) with values
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in the fractional ideals of K. We now prove the following generalization of Proposition
3.4 which might be also well known to experts.

Proposition 3.6. Let x, p € Irre(G) be two irreducible characters of G. If p is unramified
(and thus linear) then

(X @ p) = p((FOODK) )i () = pley )i (),
where ¢, is any generator of the ideal f(x)@}g(l).

Proof. For any group G we write 14 for the trivial character. By a strengthened version
of Brauer’s induction theorem (see [Ser77, Exercise 10.6]) there are subgroup U of G and
linear characters Ay of U such that

(32) X — X(1>]]-G = Z U 1nd§(/\U - ]]_U),

U
where the zy are suitable integers. As Galois Gauss sums are inductive in degree 0 and
Tr(lg) = v (1y) = 1 for all U, equation (3.2) implies that

(3.3) me(x) = [ [ 7o Qo).

By [CR81, Corollary 10.20] we likewise have
(3.4) X®@p—x(Dp=>_ zindi((h @ pv) — pv),
U

where we put py := restp. Note that py = po N /i by local class field theory (use the
left diagram (3.1)). For the Artin conductor we compute

fix) = flx —x(Dig)
= H f(lndg()\(] — 1U>)ZU

— H N (FOw — 1))
U

= HNLU/K(f()\U))ZU-

Here, the first and the last equality follow from the fact that the conductor of the trivial
character is trivial, whereas the other two equalities follow from the fundamental prop-
erties of the Artin conductor (see [Mar77, Chapter II, §1]). We thus obtain an equality

(3.5) p(F(x)) = [ [ pv GFOAw))7

For the Galois Gauss sums we then have

c(x @ p)ie(p) Y =[] 700 v @ pu) V0 (p0) ™
= TTolO0) 0 ()™
U

= p(F0)) " 7 (0)-
As Galois Gauss sums are inductive in degree 0, the first equality follows from (3.4). The
second is Proposition 3.4 and the equality 7,v(pr) = pu(D ) (see Remark 3.2), whereas
the third is (3.3) and (3.5). As 7x(p) = p(D%') we are done. O
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If K/F is a field extension and y is a character of G, then we also write indf} (x) for
the induced character indgf( (x). By [Fré83, Remark 3, p. 109] one has

7, (Ind? (x)) = 7 (x)7a, (ind? (1) )XV
In fact, this is easily deduced from inductivity in degree 0. Now Proposition 3.6 obviously
implies the following.

Corollary 3.7. Let x, p € Irre(G) be two irreducible characters of G. If p is unramified
then

o, (indy? (x ® p)) = p(ey e, (nd? ().
Let k be the p-adic cyclotomic character
k:Gg— 1),
defined by w(¢) = ¢*“) for every w € Ggq and every p-power root of unity (.

Theorem 3.8. Let x be a character of G with open kernel. Then for every w € Ggq one
has

W™ (T (w o X)) = T (X) - dety (K(w)).
Proof. This is [Mar77, Chapter 1I, Theorem 5.1], for instance. 0

3.4. Galois Gauss sums in unramified 7,-extensions. In this subsection p is as-
sumed to be odd. For a p-adic field K we let K, be the unique unramified Z,-extension.
Then ' := Gal(K«/K) ~ Z, is topologically generated by the Frobenius automorphism
oKk € I'k.

Now let L/K be a finite Galois extension of p-adic fields with Galois group G. Then
Lo /K is a p-adic Lie extension of dimension 1 and we put G := Gal(L./K) and H :=
Gal(Ly/Ks). By the argument given in [RW04, §1] the short exact sequence

l—H —§G—Tg—1

splits. We may therefore write G as a semi-direct product G ~ H xI', where I' ~ 'y ~ Z,,.
Note that I'x now plays the same role as I in §2.5 and §2.6.

The maximal abelian extension Q;b of Qp is the compositum of the maximal unramified
extension Q)" of Q, and the totally ramified abelian extension Q;*" := Q,({p~) which is
obtained by adjoining all p-power roots of unity. For w € Gg, we define w"* € Gfg; by

declaring w™|qu = wlqu and W™
W™ |gram = w|gram and W™
Each w € Gg, acts on the finite set of left cosets Gg,/Gx by left multiplication and
we let €x/q,(w) € {£1} be the signature of this permutation. Then [Mar77, Chapter II,
Proposition 3.2] states that for any character y of G with open kernel one has

(3.6) detind%,(x) (w) = ex/q, (W)XD - det, (Verg g, (w)).

gam = id. Similarly, we define w™" € G?;; by declaring

Theorem 3.9. Choose an isomorphism j : C ~ C,.
(i) The map

T T RG) — (Q @z, A(Tk))™
v o 6O (o, (ind (571 0 X))

belongs to Hom" (R,(G), (Q;®z,A(Tk))*), where ¢y is a generator of f(x)D%EN).
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(i) If 5/ : C ~ C, is a second choice of isomorphism, then
. N
e (7)) € Det(Ki(A@)).

(ili) For every w € Gg, we have

ram )

w (Tﬁl/x(w—l ° X)) = TéZ/K(X) : detind?{p(x) (w

Proof. Let p be a character of type W. Then p factors through ' and thus it is unram-
ified. We compute

o x@p) = 0 (1o, (i (7 o (x @ )
= 0. p(c) (7o, (ind (7 0 X))
= 6" (70, (indZ (7 0 1))
= pf (Tﬁi/K(x)),

where the second equality follows from Corollary 3.7. The third equality holds as p(¢x) =
p(mk) by local class field theory. This proves (i). For (ii) we write j'|qe = j|ge © w with
w € Ggq. Then Theorem 3.8 implies that

1 -/ -1 ]
Téjo)o/K(X) . (Tgoo)/K(X)> =7 <detind${p(jflox)(’%(w)))

detind?{p (x) (CU),

where @ = (k(w),Q,) € G%‘Z. Let F := Lo, N K* and choose any § € G such that
g|r = Verg/q,(@)|r. Then we have that det, () = det,(Verg/q,(@)) and
Ik = Verko,(@)|x.

= Vergyg, ((k(w), Qp))| k..

= (k(w), K)|k.

— idg
by local class field theory (use the right diagram (3.1)). It now follows from Example 2.5
that

[x > dety (Verg g, (@))] = Det(g) € Det(K7(A(G))).

As Homgqgm(Vy, Q°(9)) is a Q°(I'k)-vector space of dimension x(1) (see the proof of
[RW04, Proposition 6]), we also have that

[x = ex/e, (@] = Det(ex, (@) € Det(K1(A(G))).
Now (3.6) implies (ii). Finally, (iii) is also deduced from Theorem 3.8 once we note that

W = (K(w), Q)" for every w € GP. O

3.5. Functorialities. Let N be a finite normal subgroup of G and let H be an open
subgroup of G. There are canonical maps (see [RW04, §3])

quotgy : Hom" (R,(G), Q“(Tx)*) — Hom" (R,(G/N), Q°(I'x)"),
resfy : Hom" (R,(G), Q°(Tk)*) — Hom"™ (R,(H), Q°(Tx1)),
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where K’ = L?; here for f € Hom" (R,(G), Q°(I'x)*) we have (quotg/Nf)(X) =
f(inﬂg/Nx) and (res, f)(x') = f(indfx’) for x € R,(G/N) and ' € R,(H). Note that
we view Q°(T'k) as a subfield of Q°(T'x) via ¢ — ¢§?,/K.

Proposition 3.10. Choose an isomorphism j : C ~ C,. Then the following statements
hold.

(i) Let N be a finite normal subgroup of G and put L' := LY. Then

g () _ )
quotg/N (TLJOO/K> = TLJ’OO/K‘

(ii) Let H be an open subgroup of G and put K' := L. Then
resy, <T£Z/K) = T]EZ/K,.
Proof. Part (i) is easy so that we only prove part (ii). Let x' € R,(H). We have
to show that TEQ/K(ind%(X’)) = Téjol/K,(X’). We clearly have ind ¥ (j~! o ind$,(x')) =
ind%”, (771 o x/) so that it suffices to show that
TUK N\ Gind, (! —vper|Cyr
(3.7) br ( d’H(X)) _ ¢K/K (ex )
For this we compute (see [Mar77, p. 23] for the first equality)

flindS, (O NDY O = N (JOODIER) - DEOE
= Niogw (JOODRER D)
= Ngyk <f(X’)@?§fg(X’)) :
As vk o Ngiyk = frryi - vk it follows that vK(cmd%(X,)) = froyk - ks (¢y). Since

Q(’/K = ¢xr we get (3.7). O

4. THE COHOMOLOGICAL AND THE UNRAMIFIED TERM

4.1. Galois cohomology. If F'is a field and M is a topological Gp-module, we write
RI'(F, M) for the complex of continuous cochains of Gp with coeflicients in M and
H(F, M) for its cohomology in degree i. Similarly, we write H;(F, M) for the i-th
homology group of Gp with coefficients in M. If F' is an algebraic extension of Q,
and M is a discrete or compact Gp-module, then for » € Z we denote the r-th Tate
twist of M by M (r). For any abelian group A we write A for its p-completion, that is
A=lim A/p"A.

Now let L/K be a finite Galois extension of p-adic fields with Galois group G. We
recall that

O3 = RI(L, Z,(1)[1] € D(Z,[G))

is a perfect complex of Z,[G]-modules which is acyclic outside degrees 0 and 1 and that
there are canonical isomorphisms of Z,|G]-modules

(4.1) HO(C3) ~ L%, HYC}) ~1Z,.
We note that local Tate duality induces an isomorphism
(4.2) C} ~ RI(L,Q,/Z,)"[~1]
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in D(Z,|G]), where we write (C*)¥ for RHom(C*, Q,/Z,) for any complex C*.

Now let Lo be an arbitrary Z,-extension of L with Galois group I'z, and for each n € N
let L, be its n-th layer. We assume that L., /K is again a Galois extension with Galois
group G := Gal(Ly/K). We let X, denote the Galois group over L., of the maximal
abelian pro-p-extension of L.,. We put

Yi. = A(Gk)g,, = Zp@A(GLm)A(GK)

and observe that pd,g)(Yz..) < 1 by [NSWO08, Theorem 7.4.2]. As H;(Lo, Z,) canoni-
cally identifies with X __, taking GG__-coinvariants of the obvious short exact sequence

(4.3) 0 — A(Gg) — A(Gk) — Z, — 0
yields an exact sequence
(4.4) 0— X, — Y, —AG) —2Z,—0

of A(G)-modules (this should be compared to the sequence constructed by Ritter and
Weiss [RW02, §1]). The middle arrow thus defines a perfect complex of A(G)-modules

cl i —0—=Y, —AG) —0— ...,

where we place Y7__ in degree 0. This complex obviously is acyclic outside degrees 0 and
1 and we have isomorphisms

(4.5) HYCY )~ X,., H'(C})~7,
The following is a variant of [OV02, Corollary 4.16] and [Nic13, Theorem 2.4].
Proposition 4.1. With the above notation, we have isomorphisms
Cl.. = RI(Lo,Qy/Z,)"[1]
~ @nC'n
in D(A(G)).

Proof. Tate duality (4.2) and [Mil80, Chapter III, Lemma 1.16] imply that we have iso-
morphisms

l'glcin = I'LHRF(LM(QP/ZP)V[_H
= (hﬂRr(Lme/ZP))v[_l]

~ RI(Leo, Qp/Z,)"[-1]

in D(A(G)). This gives the second isomorphism of the theorem. In particular, the complex
RI' (Lo, Qp/Z,)Y is acyclic outside degrees —1 and 0 (see also [NSW08, Theorem 7.1.8(i)]).

For any compact right A(GL_)-module M and any discrete left A(Gp_ )-module N
(considered as complexes in degree 0) there is an isomorphism

~L
M®A(GLOO)N\/ ~ RHomyq,_)(M, N)Y

in D(A(G)) by [NSWO08, Corollary 5.2.9]. We note that RI'(Le, N) ~ RHompa,_)(Zp, N)
and so specializing M = Z, and N = Q,/Z,, yields an isomorphism

~L
(4.6) Zp®A(GLOO)Zp =~ RT(Loo, Qp/Z,)"
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in D(A(G)). Therefore Zp®k(GLm)Zp is also acyclic outside degrees —1 and 0. We now

apply the functor ZP®A(GLOO)_ to sequence (4.3) and obtain a long exact sequence in
homology which coincides with (4.4). In particular, we derive from this that

Hi{(Leo, A(Gk)) = Hi(Loo, AM(Gg)) =0 for all i > 1.
Hence the exact triangle
~L ~L ~L
ZyR@p G, VAGK) — Ly®p i, YAMGK) — L@y, Ly

implies that the complex C}_[1] is isomorphic to Zp(/}ék(GL yZp in D(A(G)). The result
follows from this and (4.6). O

We now specialize to the case, where L, is the unramified Z,-extension of L. We put
U'(Leo) »=lim U | where the transition maps are given by the norm maps.

Corollary 4.2. The complex C}__ is a perfect complex of A(G)-modules which is acyclic
outside degrees 0 and 1. If Lo is the unramified Z,-extension of L, then we have canonical
isomorphisms of A(G)-modules

H(Cy ) ~U'(Leo) ~ Xr.,, HYCp_)=~1Z,
In particular, H'(C}_) has no non-trivial finite submodule for each i € Z.

Proof. After taking p-completions, the valuation map L — Z induces an exact sequence
of Z,|Gal(L,/K)]-modules

0— U} — L — 7, —0.
Taking inverse limits, where the transition maps on the left and in the middle are the norm
maps and on the right are multiplication by p, induces an isomorphism U (L) ~ l&nn Lx

(see also [NSWO08, Theorem 11.2.4(iii)]). Moreover, we have Jm EE ~ X _ by local class

field theory. We also note that U'(Ls,) has no non-trivial finite submodule by [NSWO08,
Theorem 11.2.4(ii)]. Now Proposition 4.1 and (4.5) imply the result. O

4.2. Modified Galois cohomology. We write (L) for the set of all embeddings L —
Q, fixing Q, and define
H,= @ z,

ceX(L)
If L/K is an extension of p-adic fields, then the restriction map (L) — 3(K), 0 — 0|k
induces an epimorphism H;, — Hg. If L/K is a Galois extension with Galois group
G, then Hy, is a free Z,[G]-module of rank [K : Q,). More precisely, if we choose a lift
7 € 3(L) for every 7 € 3(K), then the set {7 | 7 € ¥(K)} constitutes a Z,[G]-basis of
Hj. Following Breuning [Bre04, §2.4] we define a perfect complex
K} = RI(L,Z,(1))[1] ® H[-1] = C; & HL[-1]

in D(Z,[G]). Let Lo be an arbitrary Z,-extension of L such that L./K is a Galois
extension with Galois group G. We put Hy :=lim Hy, whichis a free A(G)-module of
rank [K : Q,]. We define a complex of A(G)-modules

KZOO = RF(Loov Qp/zp)v[_l] ® Hp,, [_1]
~ C7_®Hp [-1],

where the isomorphism in D(A(G)) has been established in Proposition 4.1. The following
is immediate from Corollary 4.2.
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Corollary 4.3. The complex K} __ is a perfect complex of A(G)-modules which is acyclic
outside degrees 0 and 1. If Lo, 1s the unramified Z,-extension of L, then we have canonical
isomorphisms of A(G)-modules

HY K} )~U"(Loo) ~ X, H'(K} )~Z,®H_.
In particular, H'(K}_) has no non-trivial finite submodule for each i € Z.

4.3. Normal bases in unramified Z,-extensions. If L, /L is the unramified Z,-
extension, the ring of integers O, is free (of rank 1) as a module over the group
ring Or[Gal(L,/L)] for each n. Thus we may choose a normal integral basis genera-
tor b, € Op,, that is Or, = OL[Gal(L,,/L)] - b,. In fact, more is true.

Lemma 4.4. There exists b € @n Oq,.. such that for every p-adic field F' we have
Or, = Op|Gal(F,/F)] - b, if we write b = (b,), € l&ln Op,.

Proof. Let F,, and F denote the residue fields of F}, and F, respectively. Let b, € O r, and
write b, for its image in F,,. Then Of, = Op[Gal(F,/F)]-b, if and only if TIE/F<E) #0
by [Johlh, Propositions 2.2 and 5.1] (see also [Johl5, Remark 2.3]). Since F,1/F),
is unramified, the trace maps Trg, /g, @ OF,,, — Op, are surjective. Therefore the
canonical map @n Op, — Op is also surjective. Let b = (3,), € an Og,.. be a pre-
image of 1 € Z, (i.e. such that §y = 1). Then Trm/Q—p(E) = By = 1 is non-zero for all
n > 0. Now let m > 0 be such that FNQ, .« = Qpm- Then we have b = (b,),, € lér_nn Op,,

where b, = B,1m. It follows that

Ter /7 (b) = Togy /gy (Batm) = B # 0
as desired. O

As before let L/ K be a finite Galois extension of p-adic fields with Galois group G and
put G, := Gal(L,/K), n > 0. Then we have Im G, ~G~HxTI and we let L' be
the fixed field under I'. Then L[ identifies with L, and we may suppose that L = L,
for some integer ng > 0. Note that now G, may be written as G,, ~ H x Gal(L,,/L’),
where Gal(L, /L") is a cyclic group of order p"*"°. By Lemma 4.4 we have Hm O, ~
Im O ~ A®(T') as A(T')-modules. In particular, hm Oy, is a free A(T")-module of
rank [L': Q).

Proposition 4.5. There is an a = (a, ), € Im Oy, with the following properties:
(i) each a,, generates a normal basis for L, /K ;
(ii) the A9%(G)-linear map
A9%(G) — 1m0y,

1 = a

is injective and its cokernel is a finitely generated A(I')-torsion module whose
A-tnvariant vanishes.

Proof. Choose b = (b,),, € lgln Op, as in Lemma 4.4 with F' = L'. Let ¢ € O, generate
a normal basis for L/K and put a;, := Try,p(c)-b, € Or, and a, := aj,,,,, € Of,. Then
a := (a,), belongs to Mn Oy, . In order to verify the first property we have to show that
al, generates a normal basis for L /K for n > ng. For this let x € L/, be arbitrary. Let ~,

be a generator of the cyclic group Gal(L! /L"). Then we may write x = Zia Yyt (bn)
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with y; € L', 0 < i < p". As L' C L we may likewise write y; = > 2i49(c) with
zig € K, g € G for each i. Since y; is invariant under Gal(L/L’) we find that z; , = z; o4
whenever ¢’ € Gal(L/L’), and so we may write y; = Y, -y zinh(Trr 1 (c)). As Trp i (c)
is invariant under Gal(L!,/L’) and b, is invariant under H by Lemma 4.4, we find that
pr—1
=) Y zahvi(ay)
=0 heH

as desired. Moreover, if x € Op, then we may choose each y; € Op,. If p™ is the index of
Ok|G] - cin Op then p"z; ), € Ok for all h € H, 0 < i < p". Let C, be the cokernel of
the injection Ok[G,] — Op, that maps 1 to a,. Then p™C,, = 0 for all n > 0. For each
n > 0 we now have a commutative diagram

0 — Ok|Gpy1] —Op,,, — Cpyy —0

L l TanJrl/Ln l

0 e OK [Gn] OLn Cn 0

with exact rows and surjective vertical maps. Taking inverse limits is therefore exact and
we obtain an exact sequence of A% (G)-modules

0 — A9%(G) — imOp, — Coe — 0,

where Uy = lim C\,. As A9%(G) and m Oy, are free A(T")-modules of the same (finite)
rank, the cokernel C, is a finitely generated A(I')-torsion module. Since p™ annihilates
Cs, its A-invariant vanishes. Thus the second property holds as well. U

4.4. The logarithm in unramified Z,-extensions. For any p-adic field L we let log; :
L* — L denote the p-adic logarithm, normalized as usual such that log; (p) = 0. If Lo /L
is the unramified Z,-extension of L with n-th layer L,, then we simply write log,, for log;, .

Proposition 4.6. The maps log,, : Uin — L, induce a well defined injective map

loge : U' (L) — @ 2, lim Oy,

and an isomorphism of Q, ®z, A(G)-modules

log, : Q, ®7, U'(Loo) — Q, ®2, im0y,

Proof. Let us put e := vy (p). Then e is the ramification index of L,,/Q, for each n > 0.
For each such n and each z € p;, and k > 1 we therefore have

o
vL, <?) = kv, () —ev,(k) > k —e

Therefore the denominators of log, (U} ) are bounded independently of n and thus log,,
is well defined.

The kernel of log, consists of the p-power roots of unity pu,(L,) in L,. As U'(Ls)
contains no non-trivial elements of finite order by [NSW08, Theorem 11.2.4(ii)] (see also
Corollary 4.2), the map log., is injective.

We have shown that there is a (negative) integer ¢ such that log, : U} — p§ for each
n > 0. Let C, be the cokernel of this map. As L, /L is unramified, we may choose an
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integer m > 1, independent of n, such that log, induces an isomorphism U}" =~ p7' for
all n. We thus have exact sequences

0 — pp(Ly) — UL JU — p5 /o] — Cy — 0

for all n > 0. Choose a natural number N such that pp$ /p7 vanishes. Then pV
annihilates pg /p7 and thus C,, for each n > 0. Therefore lim C, is a finitely generated
Iwasawa torsion module with vanishing A-invariant and hence Q, ®z, lgln C, =0 as
desired. U

4.5. Embeddings in unramified Z,-extensions. As before let L/K be a finite Galois
extension of p-adic fields with Galois group G. The various embeddings of L into Q;
induce a Q;[G]-isomorphism

pL:Q;C)(X)QpL — QIC7®ZP Hy, = @ QC

ceX(L)
@1 = (20(]))ses(r)-

We now study the behaviour of the maps pr along the unramified tower. To lighten
notation we simply write p, for pz,. For any 7 € X(K) we choose a lift 7 : Lo, — Q5.
We define

K, :=7(K), L;:=7(L), L;,=7(Ly),

where 0 < n < oo, and note that these definitions do not depend on the particular choice
of 7 because the fields L and L,, 0 < n < oo are all Galois over K. Recall that

Q, ®z, Hy,, =~ @ QG
TEX(K)

We let p,, be the composition of p, and the projection onto the 7-component, that is
Prn() = Y e, Tg(x)g~" for every o € Ly,. It is clear that

IOT,n(OLn) C OLT,H[Gn]'

However, we will need a slightly finer result. For this let ¢ € I' < G be the unique element
such that ¢ maps to ¢, under the natural projection G — G/H ~T'x. As in §4.3 we let
L’ be the fixed field LL,. Then Lo = L.  and we may suppose that L = L/ for some
integer ng > 0.

Fix an integer n > 0 and an embedding 7 € ¥(K). Let E, be either L., for some
n < m < oo or the completion of L, ... We let ¢ act on E, via 7¢7~ 1. Then we have

(4.7) EY =V = B = 1L = #(L).

We point out that this may depend upon the choice of 7 for small n. Let Og_ be the ring
of integers in F.. Then ¢ ® 1 acts on the coefficients of

Ok, [Gn] = Or, ®z, 7,[G,],
and 1 ® ¢ acts via right multiplication by ¢|.,, € G,. Inspired by [Venl3, §2], we define
Op. [Ghlp =={y € O, [Gi] | (9@ 1)y =y(1® ¢)}

which is easily seen to be an Oy, [G,,]-submodule of Op_[G,]. As 1@ ¢ ™ acts trivially
on Og_[G,], equation (4.7) implies that in fact

OET [Gn]ga = OLT,n [GH]W
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Lemma 4.7. For every integer n > 0 and every T € ¥(K) we have

prn(OL,) € Or_ |Gl

Proof. For x € Op, we compute

(0@ Dpra(z) = (p@1) Y #gla)g™

g€Gp,

= ) #pg(x)g!

geGp

= ) Fgla)g o

9€Gn

= pra(@)(1®¢)

as desired. O

We now consider the Oy, [G,]-module Oy [G,], in more detail. Let us put I',, :=
/(T ~ Gal(L,/L’'). Recall that L,,, = L' so that Op_, is a O [[4ne)-module

T,n+ngo
in a natural way.

Proposition 4.8. For every integer n > 0 and every 7 € X(K) there is a natural
isomorphism of Op, [Gy]-modules

5T,n : OLTm [Gn]<p i> OL;_ [Gn] ®OLQ_ r ] OLT,n'

n+n0

Proof. Let y =3_ . Y49 € Or,,[Gy] be arbitrary. Then we have

(4.8) (7RSS OLT,n[Gn]@ <~ ¢(yg) = Ygpi! Vg € G,

where we set ¢, := ¢|r, € ['nin, < Gp. Suppose that (4.8) holds for y. Let C' C G, be
a set of left coset representatives of G,, /T4, Define a map

57—7” : OLT,n [Gn]‘P — OL;— [Gn] ®OL{I_ [Fn+n0] OLT,n

y =Y ey

ceC

where unadorned tensor products denote tensor products over Op/ [[';1p,] in this proof.
This map does actually not depend on the choice of C'. Let C’ be a second choice of left
coset representatives. Then for each ¢ € C’ there is a unique ¢ € C and an integer j such
that ¢ = c¢’/. We thus have

C/ ® Yo = Cﬁb% X ¢_j(yc) =c® Ye

by (4.8) as desired. We now show that 0., is Gp-equivariant. For this let ¢’ € G, and
¢ € C be arbitrary. Then there is a unique ¢ € C' and an integer j such that g'c = é@?.
We compute

J(c®@y) = Pl @y =@ ¢ (ye)
= ¢c® yc(ﬁ;j =Cc® YgHh—1é
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where the third equality is (4.8). As y(y)-1; is the coefficient at ¢ of g'y, we see that
indeed 0,,,(¢'y) = ¢'0,,(y). Finally, it is easily checked that

OL’T [GTL] ®OL/T [FnJrno} OLT,n — OLT,n [GTLLP

pn+n0_l
> c®z = Y Y 7 (),
ceC ceC =0
is an inverse of 4, ,. Il

Corollary 4.9. For every integer n > 0 and every 7 € X(K) the Op [G,]-module
Or, . |Gy, is free of rank 1. In fact, any choice of b € Mn Og,.. as in Lemma 4.4
defines (non-canonical) isomorphisms B, : O, |Gy, >~ O, [Gr] such that the follow-
ing two diagrams commute for alln >0 and all 7,7 € X(K):

BT,’VLJrl

OLT,n+1 [Gn+1]<P

|

OLT,n [Gn]@

Or, [Gr]

|

57’,71
OL{,_ [Gn]a

where the vertical arrows are induced by the canonical projection G,1 — G, and

BTJL

OLT,n [Gn]go OLQ— [Gn]

L

OLT/’n [Gn]ap OL:_, [Gn]a

1

where the vertical arrows are induced by applying 7" o 7~ on the coefficients.

Proof. Choose b € lim Og, , as in Lemma 4.4 and write b = (bn)n € fm Op, . For each
T € X(K) we put b, := (byp)n € lgln Or, ., where b, = 7(b,). Then we have for each
7 € X(K) and each n > 0 that Oy, L =0u [I's] - 7. This induces an isomorphism of
Op: [y, )-modules
BT,n . OLT,n ~ OL{r [Fn-i-no]
which maps b; 4, to 1. We let
/67',71 : OL‘r,n [Gn]go — OL’T [Gn]

be the map which is the composition of 4., and 1 ® B,,. Then 3, is an isomorphism
of O, [G,]-modules by Proposition 4.8.
With the above choices, the first diagram of the corollary commutes because

Br,n+1
OLT,n+1 OL’T [Fn+no+1]
TrLr,n-H/LT,n j lpr
BT,n
OLT,n OL’T [Fn—f—no]
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commutes by construction, and the diagram

57’,’I’L+1
OLT,R+1 [Gn+1:|‘10 OL;— [Gn+1] ®OL§. [Fn+n0+1} OLT,n+1
prj Lpr@TrLT,n-H/LT,n
Or,n
OLT,TL [Gn]@ OLI,- [Gn] ®OL; [Fn+n0] OL.,—yn

also commutes, where the maps pr are induced by the natural projection maps G,,11 - G,
and 'y 1po+1 = [hgn,, respectively. Finally, the second diagram commutes as we have
by = 7'77 (b, ,) again by construction. O

Corollary 4.10. Let 7 € X(K). Then A-(G), = lim O, [G.], is a free A% (G)-
module of rank 1.

For each n € N we have by Lemma 4.7 that p,, induces an injective map
pTL : OLn — @ OLT,TL [Gn]ﬂo
TeEX(K)

Taking projective limits yields an embedding

i mos, — @ A,

TEX(K)

As we have shown above, each choice of b € lim Og,, as in Lemma 4.4 defines an
isomorphism of A(G )—modules

: EB A(G), — 6]9 A° (G
TEX(K TEL(K)

The composite map oo © Poo mduces an isomorphism of Q7 ®z, A(G)-modules
(4.9) Qo : Q) ®z, Im O, — Q ®z, Hi...

To see this, it suffices to note that ay is the composite of the following QF ®z, A(T')-
module isomorphisms:

Q) ®z, Im Oy, = Q) @7, A% (M) = ) Q5 ©z, MT) > Q; @z, Hyy = Q5 @z, Hy...
n a'ex(L’)

The map ao depends on the choices of b € lim Og, , and of the lifts 7 of 7 € Y(K).

Lemma 4.11. Let b € lgln Og,.. be a second choice of system of normal integral basis

generators as in Lemma 4.4. Let 7 : Log — Q5 be lifts of T € X(K). These choices define
an isomorphism of Q5 ®z, A(G)-modules é as in (4.9) above. Then

[Q; ®z, Hi.,ds 00| € K1(Q, ®z, AG))
maps to zero in Ko(A(G), Q) ®z, A(G)).

Proof. Fix an integer n > 0 and let 7 € 3(K). The inverse of the isomorphism 3, ,, is
given by the Oy, [G),]-linear map

’y n - OLQ— [Gn} — OLT,n [Gn]ﬂo

pn+n0 1

1 = Z ¢ Tn+no
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where we have used the notation of the proof of Corollary 4.9. Then we have for suffi-
ciently large m > n that

’77771(1) € OQp,m[Fn+n0]X
by [Fré83, Proposition 4.3, p. 30]. Let w € Gg, be arbitrary. We may write w7 = 7w,
for some 7/ € ¥(K) and some w, € Gx. We then have an equality

W(ra(1)) = 3D,

where z,(w) € Z is an integer such that wT| Kning = = 7@, ings We let z(w) =
ZTGE(K) ZT( ) so that VerK/Qp( >|Kn+n0 - (bK ‘Kn+n0' We deﬁne
(410) H ’YTn G Ome[ n+no]
TEX(K
so that we have an equality
(4.11) w(vp) = vy - 2.

Replacing b by b and 7 by 7 for each 7 € ¥ (K) we obtain in a similar way for each n > 0
an element 7, € Og,,[['nine)” such that (4.11) holds with v, replaced by #,. It now
follows from (4.11) that 7, ' - v, is invariant under the action of Gg, and thus

(4.12) v, € ZpDning)”
for each n. It follows that

lim (7, " v,) € M) € A(G)"

n

is a pre-image of [QC ®z, Hr,, 00 0 ] under the composite map

AG)" — Ki(M9)) — Ki(Q; ®z, A(9)).

The long exact sequence of relative K-theory now implies the claim. U

4.6. The unramified term. Let us denote the ring of integers in the maximal tamely
ramified extension of Q, in Q by (9;). For a finite group G we let ¢ be the scalar extension

map Ko(Z,[G],Q;) — Ko(ot[ 1, Qp)-
Now let L/K be a Galms extension of p-adic fields with Galois group G. Then by
[Bre04, Proposition 2.12] there exists a unique Up/x € Ko(Z,[G], Q;) satisfying the fol-

lowing two properties (U k is called the unramified term attached to L/K).
(i) Ifu = (uy)yenr(e) € erlrr(g)(Qg)X is any pre-image of Uy x under d, o Nrdqgg[G],
then w(uy-10y) = uydet, deX(wur) for every w € Gq, .
1n K

Now recall the setting and notation of subsection 4.5. We again assume that ¢ € T’
maps to ¢ under G — I'x. We let u,, be a pre-image of Uy, /x as in (ii) above, which by
(i) actually belongs to Nrdge(g,](Op[Gn]*). Recall the definition (4.10) of v,. We define

Uy, = un - Nrdggie,)(va) ™" € Nrdage,)(O[Gal ).
= (’u/

We write u!, o xen(Gy) and let w € Gg,. Then (ii) above, the Galois action (4.11)
on v, and (2.12) imply the first equality of

u;z,xdetindgg’x (w™)det, (¢Z(w) ) -1

U;MXEK/QP (wur)x(l)detx (verK/Qp (Wur)QS;Z(w)),

W(U;L,wflox) =
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The second equality is (3.6). It is clear from the definition of z(w) that the map
GQp — I

gy W ngZ(w) is actually a group homomorphism that only depends upon

w". Moreover, the restriction of Vergq, (W) ) 4o K4, 1s trivial. It follows that

there is a positive integer k, independent of n, such that u/, is invariant under w* for all
w € Gy, (for instance we may take k = 2|H|). The following result is now implied by
Theorem 2.1.

Lemma 4.12. There is a finite unramified extension F of Q, such that u), belongs to
Nrdpie, | (Op[GL]*) for all n.

We now define a variant of the unramified term by
UL,/ = 0y o Nrdy, 1[G}( n) € Ko(Z,[Gn], Q)

p

and note that this only depends upon L, /K by (4.12). It follows from [Bre04, Lemma
2.13] and the definition of v, that we have quo’cg:Jrl (UL, ../x) = UL, /k for all n. Moreover,

Uy, /x maps to zero in Ko(Or[G,], Q) by Lemma 4.12 and thus has a pre-image ﬁin/K
in Ko(Z,|Gr], Or|G,]) by Lemma 2.2. As SKl(OF[G ]) is finite for all n, we may choose
these pre-images such that quotG”“(Uz +1/K) ULn/K for all n. Via Proposition 2.7 we
now define

Ui = 1m U7, i € Ko(A(G), A (G))

which is well-defined up to an element in the image of SK;(A°7(G)). We let Uj i be
the image of ﬁlLoo/K under the natural map Ko(A(G), A97(G)) = Ko(A(G), QS ®z, A(G)).
The following is now an immediate consequence of Lemma 2.8.

Lemma 4.13. The element U}, € Ko(A(G), Q) ®z, A(G)) is well-defined up to the
image of an element v € K,(Q; ®z, A(G)) such that Nrdge(g)(z) = 1.

Remark 4.14. As follows from Remark 2.9, the map Nrdge(g) conjecturally is injective
on K;(Q°(G)). We have already observed that the natural map K;(Q; ®z, A(G)) —
K1(Q°(G)) is injective. Thus the element U; _ /i 1s at least conjecturally well-defined.

4.7. Definition of the cohomological term. By Proposition 4.6 and (4.9) the com-
posite map ¢oo 1= foo © Poo © l0g,,, induces and isomorphism of Q5 ®z, A(G)-modules

(413) (boo : Q; ®Zp UI(LOO> i> Q; ®Zp HLOO'
By Corollary 4.3 it likewise induces an isomorphism of Q¢(G)-modules
o0 1 Q%(G) @) HO(K7.) — Q°(G) ®a) H' (K]

Definition 4.15. Let L/K be a finite Galois extension of p-adic fields. Let L., be the
unramified Z,-extension of L and let G = Gal(L/K). We define the cohomological term
attached to the extension L., /K to be

Cro/k = XA@),000) (K], o) € Ko(A(G), Q°(G)).
Now Lemmas 4.11 and 4.13 and the definition of U} __ /K imply the following.
Lemma 4.16. The element
Cro/x + ULk € Ko(AG), Q°(9))

is well-defined up to the image of an element v € K;(Q;®z,A(G)) such that Nrdge(g)(z) =
1.
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The following result should be compared with Theorem 3.9 (iii).

Theorem 4.17. Let £ € K1(Q%(G)) be any pre-image of Crjx +U}_ . Then for every
w € Gq, we have

w (Det(€) (™ o)) = Det(€)(x) - det, o, (™)™

Proof. Let us choose an a = (a,), € ILmn Oy, asin Proposition 4.5. Then each a,, gener-
ates a normal basis for L, /K. Let £ C im Op, be the full A®% (G)-sublattice generated
by a. We put X := log(£) which is contained in Q, ®z, U'(Ls) by Proposition 4.6.
We may and do choose an a such that X is actually a A(G)-submodule of U'(L,,). We
consider the map of complexes

N XOH [-1] — K _

which on cohomology induces the natural embeddings X «— U'(Ls) ~ H°(K}_) and
H_ — 72,® H_ ~ H'(K}_). The cone of X is a perfect complex of A(G)-modules
whose cohomology groups are torsion as A(I')-modules. It therefore defines an element

XA@G),0(6)(Cone(N),0) € Ko(A(G), Q(9))

which has a pre-image in K;(Q(G)). As the image of K;(Q(G)) under Det is Galois-
invariant and we have equalities

Cro/k = [Hio,d5, X]+ xa9),0(9)(Cone()),0
(4.14) = —[L, oo, Hr ] + Xa(g),0(6)(Cone(A), 0),

we may replace £ by a pre-image & of
UL/ = £, ooy Hi ] € Ko(A(G), Q, ®z, A(G)).

Then Det(¢') belongs to Hom" (R,(G), (Q5®z,A(I'x))*) and thus by Lemma 2.4 it suffices
to show that

o (o (Det(€) (w0 ))) = augr, (Det(€)(x) - dety o, (&)

for all x € Irrge(G). As in Example 2.5, one can now use [Nicl0, (8)] to deduce this from
the following results on finite level. Fix a character x € Irr%(g) and choose a sufficiently
large n such that y factors through G,,. By Proposition 4.5 the embedding £ — 1@@,1 Oy,
yields an embedding

L, :=Lr, = O,
by taking I',-coinvariants. Choose &, = (&, 4)v € [Iyem(q,)(Qp)™ such that

0p(N1dg/ i 1(€1)) = Up,yxc — (Lo n, H,
= Up.x = [Lns pns Hi,]

where «, is induced by ... Now the Galois-action on a pre-image of the unramified term
(see §4.6 (ii)) and [Bre04, Lemma 2.8] imply that
ram)—l

W& wmtop) = &y - detind?{p(d)) (w

for every w € Gg, and every ¢ € Irr(Gy,). Taking 1) = x completes the proof. O



30 ANDREAS NICKEL

4.8. The correction term. Let I be the inertia subgroup of G and let ¢ € G be a
lift of the Frobenius automorphism in G/I. Then [ is a finite normal subgroup of G so
that ey := |I|7' >, ;@ is a central idempotent in Q(G). Recall the notation introduced
at the end of §2.2 and denote the cardinality of the residue field of K by qx. We let
mr./k € K1(Q(G)) be the image of

(L= ogier)
(L =07 Yer)

under the canonical maps ((Q(G))* — Q(G)* — K;1(Q(G)). We put
Mr k= Ong),00) (ML x) € Ko(A(G), Q(F))

and call My, i the correction term.

€ ((Q(9)"

4.9. Functorialities. Let N be a finite normal subgroup of G and let H be an open
subgroup of G. There are canonical maps

quotgy : Ko(A(G), Q°(9)) — Ko(A(G/N), Q°(G/N)),
I‘GS%Z Ko(A<g)7QC(g)) — KO(A(%)7QC<H))

induced from scalar extension along A(G) — A(G/N) and restriction of scalars along
A(H) — A(G). Likewise, there are restriction and quotient maps between the respective
Ki-groups.

Proposition 4.18. The following statements hold.
(i) Let N be a finite normal subgroup of G and put L' := LY. Then we have
qUOtg/N(MLOO/K) =My /K,

and up to an element x € K1(Q) ®z, A(G/N)) such that Nrdgeg/n(z) = 1 we
have an equality

quotg/N(CLoo/K + Uioo/K) = CLQ,O/K + U/Lgo/K'
(ii) Let H be an open subgroup of G and put K' := L*. Then we have
TGS%(MLOO/K) = My k'

and up to an element v € K(Q;, ®z, A(H)) such that Nrdge)(z) = 1 we have
an equality

reSr}g_L(CLOO/K + Uioo/K) - CLOO/K/ + ULOO/K/

Proof. A straightforward calculation shows that indeed quotg /N(mLoo IK) = my_/x and

res (mr/x) = Mz k. For the sum of the cohomological and the unramified term, the
result follows as in [Bre04, §2.4 and §2.5]. The main ingredient is that in case (i) we have
an isomorphism

A(G/N) &) K1, =~ K1,
in D(A(G/N)) by [FK06, Proposition 1.6.5]. We leave the details to the reader. 0
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5. THE MAIN CONJECTURE

5.1. Statement of the main conjecture. As before let L/K be a finite Galois exten-
sion of p-adic local fields and let Lo, be the unramified Z,-extension of L. Then L., /K
is a one-dimensional p-adic Lie extension with Galois group G. Choose an isomorphism
j:C~C,. Lemma 4.16 implies that the following conjecture is well-posed.

Conjecture 5.1. There exists QZ/K € K1(Q(9)) such that

aA(QLQC(Q)(Cgl/K) = —CrLo/k — ULM/K + My /x
and
Det(C(szo/K) = Tg))o/K.
The following observation is immediate from Theorem 3.9 (ii).
Lemma 5.2. Conjecture 5.1 does not depend on the choice of j : C ~ C,.

Remark 5.3. It follows from sequence (2.8) that —Cp_/x — U’LOO/K + M /k always has
a pre-image in K;(Q°(G)).

Remark 5.4. Tt is expected that the reduced norm Nrdge(gy : K1(Q(G)) — ((Q°(G))* is
injective. If this is true, then the element QJO)O/K € K1(Q°(G)) is unique (if it exists).

Remark 5.5. In subsequent work we will show that Conjecture 5.1 for L., /K implies the
equivariant local e-constant conjecture of Breuning [Bre04, Conjecture 3.2] and, more
generally, for unramified twists of Z,(1).

Remark 5.6. Suppose that G is abelian. Then Det induces an isomorphism
Det : K1(Q%(G)) ~ Hom" (R,(G), Q°(Tx)™).

This follows from triangle (2.9) and Wedderburn’s theorem (see the proof of [RW02,
Lemma 5a]). We therefore may define

Ty = Ong). o) (Dot (7)) € Ko(A(G), 2(G))
which indeed does not depend on j by Theorem 3.9 (ii). We put
Rix =Trx +Crox +Up_jx — Mi k.

Then Conjecture 5.1 asserts that R;__/x vanishes, and the analogy to Breuning’s conjec-
ture [Bre04, Conjecture 3.2] becomes more apparent.

5.2. Functorialities. The following result is immediate from Propositions 3.10 and 4.18.

Proposition 5.7. Suppose that Conjecture 5.1 holds for the extension Ly, /K.
i) Let N be a finite normal subgroup of G and put L' := LY. Then Conjecture 5.1
( ) [o.¢] o
holds for the extension L' /K.
(ii) Let H be an open subgroup of G and put K’ := LIt. Then Conjecture 5.1 holds
for the extension Lo /K.

Remark 5.8. Suppose that G is abelian. Then Propositions 3.10 and 4.18 indeed show
that

quotg/N(RLoo/K) =Ry s,k and TGS%(RLOO/K) = Rp /K-
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5.3. First evidence. We first consider the Galois action on the occurring objects. By
definition my_,x € K1(Q(G)) is a pre-image of M _/k and Det(my_ k) is Galois-
invariant. Now Theorem 3.9 (iii) and Theorem 4.17 imply the following analogue of
[Bre04, Proposition 3.4].

Proposition 5.9. For every x;_ x € K1(Q°(G)) such that

OnG),0:(0)(TLoe/i) = —Croyx — Ui + Mr
we have

Det(vr. )" 71 ), € Hom"(R,(G), Q°(Tk)*).

We now prove the following strengthening of Proposition 5.9 which has no analogue at
finite level.

Proposition 5.10. For every x;_/x € K1(Q%(G)) such that

OnG),0°0)(PLo/k) = —Cro/x — Ui + Mp /i

we have
Detmwm)-l ) i € Hom"(R,(G), (Q; ®z, A(T'x))").

Proof. We know that 7 /K belongs to Hom" (R,(G), (Q; ®z, A(T'k))*) by Theorem 3.9

(i). By Proposition 5. 9 it therefore suffices to show that z;_,k lies in the image of
Ki(Qy ®z, A(G)). This is true if and only if —Cr_/x — Uy 5 + M. /x maps to zero
under the canonical scalar extension map

s; : Ko(A(G), Q°(G9)) — KO(QIC, Xz, A(G), Q°(9)).
As UI’LOO/K lies in Ko(A(G), Q; ®z, A(G)), we clearly have s;(U]’:oo/K) = 0. The following
computation then finishes the proof:
$p(CLe/k) = Xagez,A9).29(0) (Q ®z, U'(Leo) ® Q5 ®z, Hp, [-1] & Q[-1],05))
= Xagez,A9).2:0) (Q[—1],0)
~0g07,0(0),0:() ("((1 — 0 Ver))
= s;(MLOO/K).

Here, the first equality follows from the definition of the cohomological term and the fact
that the cohomology of Q; ®%p Cr./i is perfect. The second equality is a consequence

of (4.13). The third equality results from the short exact sequence
0— Q,®z, AM(G) = Q, ®z, A(G) = Q, — 0,

where the second arrow is multiplication by *((1 — 0=!)er). The last equality holds as
*((1 — ogx')er) belongs to ((Q, ®z, A(G))*. d

Remark 5.11. Suppose that G is abelian. Then Proposition 5.9 asserts that
Rk € Ko(A(G), Q(9)),

whereas Proposition 5.10 in fact shows that

RLOQ/K € KO(A(g)7 Qp ®Zp A(g)>
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6. THE MAXIMAL ORDER CASE

6.1. Principal units. Let m > 1 be an integer. As L., is the unramified Z,-extension
of L, we may define U™ (L) = @n Ur' where the transition maps are given by the
norm maps. For any integer m we likewise define P,, := @n p7’ where the transition
maps are given by the trace maps. Note that in particular Py = lér_nn Or,,.

Proposition 6.1. Let L/K be at most tamely ramified and let m be an integer.

(i) Then P, is a free A°%(G)-module of rank 1.

(ii) For m > 1 the A(G)-module U™(Ls) is of projective dimension at most 1.

(iii) If m is sufficiently large, then U™(Ls) is indeed a free A(G)-module of rank

(K : Q).

Proof. For sufficiently large m the p-adic logarithm induces isomorphisms of Z,[G,]-
modules U ~ p7' for all n > 0. As L, /K is tamely ramified, the ideal p7' is a free
Ok[Gr]-module of rank 1 for every integer m. Since the transition maps are surjective,
we obtain (i) and (iii). For m > 1 we consider the exact sequences

(6.1) 0 — U (Leo) — U™(Log) — P/ Ppms1 — 0.
Now (i) and (iii) imply (ii) by downwards induction. O

Remark 6.2. Let I be the inertia subgroup of G. If L/ K is tamely ramified, then p does not
divide |/| by definition. Note that I is actually a subgroup of H and that G/I ~ H/I x T
is abelian. Since I' is the Galois group of the maximal unramified pro-p-extension of K,
we see that p does actually not divide |H|. Thus A(G) is a maximal R-order in Q(G),
where we recall from §2.5 that R = A(I'g) for some central subgroup I'y ~ Z,, of G (this
can be deduced from either of [Nic14, Theorem 3.5] or [JN18, Proposition 3.7 or Theorem
3.12]). If we assume in addition that G ~ H x I", then [NSWO08, Theorem 11.2.4(iii) and
Proposition 11.2.1] show that U'(L,,) is a A(G)-module of projective dimension at most
1. This gives an alternative proof of Proposition 6.1 (ii) in a special case.

6.2. Tamely ramified extensions. We now prove the main conjecture for tamely ram-
ified extensions.

Theorem 6.3. Let L/ K be a tamely ramified Galois extension of p-adic local fields. Then
Congecture 5.1 holds for Lo/ K.

Proof. Let m > 1 be an integer. We consider the following maps of complexes
At U™(Loo) ® Hp  [—1] — K7 __

which on cohomology induces the natural embeddings U™(Le) < U'(Lo) ~ H(K} )
and H — Z,®H;  ~ H'(K}_). If mis sufficiently large, the p-adic logarithm induces
an isomorphism of A(G)-modules U™ (L) =~ Pp,. We now apply (4.14) with £ = P, and
obtain the first equality in

CLow = Xa@).06)(Cone(Ay),0) — [P, oo, Hr.,]

XA(6).0()(Cone(A1),0) — [P1, aee, Hr.]
= —Orgro0 (" (1 =0 Naxer)) = [Po, ae, Hy..]
The second equality follows from the short exact sequences (6.1). For the last equality we

first observe that Cone(\;) ~ Z,[—1]. As L/K is tamely ramified, the central idempotent
er actually belongs to A(G) so that

0— A(G) =D AG) 7, — 0
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is a free resolution of Z,. Thus we have an equality

—0n@),00) (" (1 =0 Yer)) = xa),o(6)(Cone(A),0).

Moreover, the quotient Py/P; identifies with the inverse limit of the residue fields of the
L,, n > 0. We therefore have isomorphisms of A(G)-modules

Po/P1 = im K[G, /1] = K[G/1] ~ F,[G/ 1]/,

where we recall that gx = |K| = p/%/% . Hence there is a free resolution

0 — A(G) xrew “ Dy N(G)IxI0w s Py P, — 0.
We conclude that
[Po, ooy Hro ] = [P1, 0o, Hio ] = —On9),0(9) ("(axcer)) -
This shows the last equality. It follows that
Mk = Croyxk = [Po, oo, Hp ] 4 On(g),000) (" ((qx — 0)er))
= [P0, @oos Hi ] + Ong),009) ("(—0er)) -

Here, the second equality holds, since we have

BT (1 g er) € A(G)

Let ¢ € Ki(Q, ®z, A(G)) be a pre-image of U}, x — [Po, oo, Hr ] as in the proof of
Theorem 4.17. By the above considerations we have to show that

77 Det(€ - *(—a7"er)) € Det(Ki(A(G))).

As we have an isomorphism K;(A(G)) ~ lm K,(Z,|Gy]) by [FKO06, Proposition 1.5.1],
Lemma 2.4 (see also Remark 2.6) and Proposition 5.10 imply that it suffices to show the
following claim on finite level. Let n > 0 be an integer. Then we have an equality

7)1 - Nedgi, (€, - (=0~ "er)) € Nrdoga, (K1 (Z,[Gh])),
where we put
Tgl)/K = (j ((TQP(in%fl o X))))
and &, € K1(Q5[G,]) is a pre-image of

Uin/K B [(PD)F"’ Qs HLn] = ULn/K - [OLn7pna HLn]

However, this claim actually is a main step in the proof of the local epsilon constant
conjecture for tamely ramified extensions [Bre04, Theorem 3.6]; apply [Bre04, Lemma
2.7 and (3.4)] and Taylor’s fixed point theorem [Tay81] (see Theorem 2.1). Note that in
the notation of [Bre04] one has Nrdgg(q,)("(—oer)) = (y(K, X)) O

XGIer;c7 (Gn)

XGIHQI‘; (Gn)*

Remark 6.4. If G is abelian, then Theorem 6.3 is the local analogue of Wiles’ result
[Wil90] on the main conjecture for totally real fields.
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6.3. Maximal orders. Choose z,_/x € Ki(Q°(G)) such that Ong)oc0) (L. /k) =
—Cr./k — U/LOO/K + My k. Then Conjecture 5.1 asserts that

Det(zr.. /i)' 7} i € Det(K1(A(G))).
Recall from (2.11) that we have an inclusion
Det(K1(A(9))) € Hom™ (R, (G), A(I'x)”).

If M(G) is a maximal R-order in Q(G) containing A(G) (where R ~ Z,[T] is as in
§2.5), then by [RW04, Remark H| the bottom isomorphism in triangle (2.10) induces an
isomorphism

((M(G))" = Hom™(R,(G), A°(Tk)™).

The following result may therefore be seen as the main conjecture ‘over the maximal
order’.

Theorem 6.5. For every xp_/x € K1(Q°(G)) such that

Or©G),026) (TLo /) = —Croyx — Uy + Mp /i

we have
Det (v, k)" 71 i € Hom*(R,(G), A“(Tk)*).

Proof. This follows from Theorem 6.3 by a reduction argument which mainly uses the
functorial properties of the conjecture (see [RW04, Theorem 16] for the analogue in the
case of the main conjecture for totally real fields). We sketch the proof for convenience of
the reader. Let us put f := Det(zy_ k)" -Tgol
for every x € Irrge(G) we have f(x) € A°(I'x)*. By Brauer induction we may assume
that G is abelian. In particular, we have a decomposition G = H x ['x with an abelian
finite group H. As we have f(x ® p) = p*(f(x)) for all characters p of type W, we may
in addition assume that y is a character of type S, i.e. x actually factors through H.
Since we already know that f(x) € (Q,®z, A(I'x))* by Proposition 5.10, there is a prime
element 7 in some finite extension of Q, such that f(x) = 7*xg(x) for some p, € Z and
g(x) € A°(T'k)*. We have to show that the p-invariant u, of f(x) vanishes. Let us put
Qo(x) = Qu(x(h) | h € H) and let U be the Galois group of the extension Q,(x)/Q,.
Recall that U acts on y via 7x := o o x. Since f is invariant under Galois action, we
may actually choose m € Q,(x) and the p-invariants p, and po, coincide. Let V' be the
inertia subgroup of U. By the claim in the proof of [RW97, Proposition 11] there is an
integer m # 0 such that the character

X i=m) x

can be written as a sum of characters induced from cyclic subgroups of H of order prime
to p. Since these subgroups correspond to tamely ramified subextensions, Theorem 6.3
implies that p,, vanishes. The equality p,, = m|V|u, now gives the result. U

K for simplicity. We have to show that

Remark 6.6. Theorems 6.3 and 6.5 are the Iwasawa-theoretic analogues of [Bre04, The-
orem 3.6] and [Bre04, Corollary 3.8], respectively. Theorem 6.5 might also be seen as
the local analogue of [JN18, Theorem 4.12] (see also [RW05, Example 2] if Iwasawa’s
p-invariant vanishes).
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6.4. Consequences. We now prove a reduction step which also appears in the proof of
the main conjecture for totally real fields (see [RWO05]). This result has no analogue at
finite level. We let A,)(G) be the Iwasawa algebra A(G) localized at the height 1 prime
ideal (p) of R ~ Z,[T7.

Corollary 6.7. Choose x;__ x € K1(Q°(G)) such that

OnG),0¢(0)(TLo/k) = —Croyx — ULy + Mr .
Then Conjecture 5.1 holds if and only if we have
Det(zr_ /)" - Tgi/K € Det(K 1 (A (G))).
Proof. By [RWO05, Theorem B| we have an inclusion
Hom™ (R, (G), A°“(T'k)™) N Det(K1(A)(9))) € Det(K1(A(G))).
Now the result follows from Theorem 6.5. O

Remark 6.8. In fact, [RWO05, Theorem B] shows that one may replace Ay (G) by its

(p)-adic completion in the statement of Corollary 6.7. Then this is the local analogue of
[RW05, Theorem A].

Working over A,)(G) rather than A(G) has the big advantage that the cohomology
groups of the complex A, (G) ®k(g) K} __ are free A, (G)-modules.

Proposition 6.9. The A,)(G)-modules H'(Ay)(G) @} g K7.) are free of rank [K : Q)]
for i =0,1 and vanish otherwise.

Proof. The cohomology vanishes outside degrees 0 and 1 by Corollary 4.3. Furthermore,
we have H'(K}_) ~7,® Hj__. The A(G)-module 7, vanishes after localization at (p),
whereas H;,_ already is a free A(G)-module of rank [K : Q,]. Finally, the A(,)(G)-module
H(Ap)(9) @6y K1) = U (Loo)(p) s free of the same rank by [Nic18, Corollary 4.4] (we
point out that the results established in §4.1 at least show that the projective dimension
has to be less or equal to 1; this shows the slightly weaker result that the cohomology

groups are perfect). Il
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