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Introduction

In this paper we study a famous conjecture which relates the leading terms at
zero of Artin L-functions attached to a finite Galois extension L/K of num-
ber fields to natural arithmetic invariants. This conjecture is called the Lifted
Root Number Conjecture (LRNC) and has been introduced by K.W. Gruen-
berg, J. Ritter and A. Weiss [GRW]; it depends on a set S of primes of L
which is supposed to be sufficiently large. We formulate a LRNC for small
sets S which only need to contain the archimedean primes. We apply this to
CM-extensions which we require to be (almost) tame above a fixed odd prime
p. In this case the conjecture naturally decomposes into a plus and a minus
part, and it is the minus part for which we prove the LRNC at p for an infinite
class of relatively abelian extensions. Moreover, we show that our results are
closely related to the Rubin-Stark conjecture.

Some history

Let L/K be a finite Galois extension of number fields with Galois group G.
T. Chinburg [Ch1] defined an algebraic invariant Ω(L/K) for the extension
L/K. He conjectured that Ω(L/K), which is an element in K0(ZG), equals
the root number class W (L/K), an analytic invariant defined by Ph. Cassou-
Noguès and A. Fröhlich in terms of Artin root numbers. In [Ch2] he introduced
two further algebraic invariants in K0(ZG), called Ωi(L/K), i = 1, 2, 3, where
Ω3(L/K) = Ω(L/K). These invariants are related by the equation

Ω2(L/K) = Ω1(L/K) · Ω3(L/K).

Chinburg conjectured that Ω1(L/K) = 1, and hence that Ω2(L/K) also equals
the root number class. In addition, he proved the Ω2-conjecture for at most
tamely ramified extensions.

All these conjectures have meanwhile been lifted to corresponding conjec-
tures in K0T (ZG); so the LRNC is Chinburg’s Ω3-conjecture in K0T (ZG)
rather than in K0(ZG), whereas the conjectures in [BB] and [BrB] are the
same concerning Chinburg’s Ω2 and Ω1-conjecture, respectively. The LRNC
assumes the validity of Stark’s conjecture which guarantees the Galois com-
patibility of a certain homomorphism on the characters of G. D. Burns [B1]
defined an element TΩ(L/K, 0) ∈ K0(ZG,R) which lies in K0(ZG,Q) if and
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6 INTRODUCTION

only if Stark’s conjecture is true. He also showed in loc.cit. that TΩ(L/K, 0)
vanishes if and only if the LRNC holds, and that the LRNC is equivalent to the
Equivariant Tamagawa Number Conjecture for the pair (h0(Spec(L))(0),ZG).
In [B3] he has shown that this conjecture implies a whole family of related con-
jectures as the Rubin-Stark conjecture and the refined class number formulas
of Gross, Tate and Aoki, Lee and Tan.

The LRNC is known to be true for abelian extensions L/Q as proved by
D. Burns and C. Greither [BG1] with the exclusion of the 2-primary part;
M. Flach [Fl] extended the argument to cover the 2-primary part as well. If L
is in addition totally real, the LRNC was independently proved in [RW3, RW4].
Some relatively abelian results are due to W. Bley [Bl]. He showed that if L/K
is a finite abelian extension, where K is an imaginary quadratic field which has
class number one, then the LRNC holds for all intermediate extensions L/F
such that [L : F ] is odd and divisible only by primes which split completely in
K/Q.

Outline of the thesis

In the first chapter we give a reformulation of the LRNC for small sets of places
S. If L/K is an abelian CM-extension and one restricts to minus parts, this
has recently been done by C. Greither [Gr3], where the author is interested in
computing the Fitting ideal of the Pontryagin dual of minus class groups via
the LRNC.
The algebraic objects of the LRNC are invariants Ωφ ∈ K0T (ZG) depending
on equivariant maps φ. All these Ωφ are mapped to Chinburg’s Ω3(L/K) via
the natural connecting homomorphism K0T (ZG) → K0(ZG). Let S be a set
of places of L which is large in the sense that it contains all the infinite primes,
all primes which ramify in L/K and enough primes to generate the ideal class
group of L. J. Tate [Ta1] constructed a canonical element τ in Ext2

G(∆S, ES),
where ∆S is the kernel of the augmentation map ZS ³ Z, and ES denotes the
S-units in L. A sequence

ES ½ A → B ³ ∆S,

whose extension class is τ , and where A and B are cohomologically trivial
G-modules, is called a Tate-sequence. The main objects occurring in the defi-
nition of Ωφ are a Tate-sequence and an injection

φ : ∆S ½ ES.

The LRNC now asserts that Ωφ is represented by the homomorphism

χ 7→ Aφ(χ̌)W (L/K, χ̌),

where χ̌ denotes the contragredient of a character χ of G, Aφ is the quotient
of the Stark-Tate regulator and the leading term at zero of the S-truncated
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Artin L-function attached to χ, and W (L/K, χ) is defined in terms of Artin
root numbers.
If S is not large, but still contains the infinite primes, J. Ritter and A. Weiss
[RW1] constructed a Tate-sequence

ES ½ A → B ³ ∇
with an explicitly determined G-module ∇. But in general there do not exist
injections ∇ ½ ES. After a few preliminaries we show how to remedy this
problem and give a definition of Ωφ for small sets S. We prove that the def-
inition is independent of all the choices made during the construction (apart
from φ and S), and hence we can view Ωφ as an arithmetic invariant of L/K.
Then we discuss how Ωφ varies if we change φ or enlarge the set S. This
leads us to the definition of a modified Stark-Tate regulator and a conjectural
representing homomorphism of Ωφ. We call this the LRNC for small sets of
places; of course, it is equivalent to the LRNC for large sets of places.

In the second chapter we apply this reformulation to CM-extensions which
are assumed to be tame above a fixed odd prime p. Actually, we permit a
slightly more general class of extensions. The primary idea was to restrict our-
selves to minus parts and to use the LRNC for the set S∞ of all infinite primes.
In this case, the leftmost term of the corresponding Tate-sequence consists just
of the roots of unity in L which seems easy to handle. The rightmost term,
however, is no longer torsion free and thus becomes more complicated. For
this reason we have to choose a set of places for which both sides are comfort-
able to some degree. This turns out to be a set which contains only totally
decomposed (and thus unramified) primes.
In the first section of this chapter, we prove that the p-part of a certain ray
class group of L is cohomologically trivial on minus parts. We give a definition
of non-abelian Stickelberger elements in section two. These elements can be
viewed as representing homomorphisms of elements in K0T (ZG). In the last
section, we show that the minus part of the LRNC at p holds if and only if
the ray class groups treated in section one are represented by corresponding
Stickelberger elements.

Note that taking minus parts simplifies matters for various reasons. First,
Stark’s conjecture is known to be true for odd characters. Moreover, the infi-
nite primes consist of pairs of complex conjugate embeddings and hence neatly
drop out on minus parts, i.e. (ZS∞)− = 0. At last, when Iwasawa theory comes
into play in chapter three, taking minus parts provides an opportunity of an
easier descent.

In chapter three, we assume the Galois group G to be abelian. In this case
one can translate the minus part of the LRNC at p to the assertion that the
Fitting ideal of the above ray class group is generated by the corresponding
Stickelberger element. We pass to the limit and get the respective statement



8 INTRODUCTION

at infinite level thanks to a result of C. Greither [Gr2] provided that the Iwa-
sawa µ-invariant vanishes. We will remove this hypothesis for a special class
of extensions (including the case p - |G|) in the appendix. Note that the van-
ishing of µ is a long standing conjecture; the most general result is still due to
B. Ferrero and L. Washington [FW] and says that µ = 0 for absolute abelian
extensions.
For the descent we use a method which is due to A. Wiles [Wi2] in the ex-
tended version by C. Greither [Gr1]. For this, we have to assume a slightly
more restrictive hypothesis on the primes above p.

The exclusion of the prime p = 2 has two main reasons; the Iwasawa main
conjecture is not known in this case, and taking minus parts is not exact if 2
is not invertible in the ground ring.

In the last chapter we prove the Rubin-Stark conjecture for the same class
of extensions. The main ingredient is a result of C. Popescu [P3]. He proved
that the Rubin-Stark conjecture follows from the stronger statement that the
Fitting ideal of a certain ray class group of L contains a particular Stickelberger
element. These are not the same ray class groups resp. Stickelberger elements
as in the previous chapters, but they are related to them closely enough.
As already mentioned above, D. Burns [B3] has shown that the LRNC always
implies the Rubin-Stark conjecture. Thus, we have reproved this result for
(almost) tame extensions. Our approach uses more explicit methods and we
indeed prove a stronger result which is called the Strong Brumer-Stark con-
jecture in [P3]. But note that this conjecture does not hold in general, as one
can see from the results in [GK].
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Chapter 1

The Lifted Root Number
Conjecture for small sets of places

1.1 Preliminaries

Duals

Let G be a finite group. For each ZG-module M we write M0 for its Z-dual
HomZ(M,Z) with the G-action formula (gf)(m) = gf(g−1m) = f(g−1m) for
g ∈ G, f ∈ M0 and m ∈ M . Note that there is a natural ZG-isomorphism
ZG ' ZG0 that sends each g ∈ G to the homomorphism h 7→ δgh. Of course,
the δ on the righthand side is Kronecker’s.
Under this identification, the dual of the natural augmentation map ZG ³ Z
is the map Z ½ ZG that sends 1 to NG =

∑
g∈G g. Thus, we get a ZG-

isomorphism
∆G0 ' ZG/NG, (1.1)

where ∆G denotes the kernel of the augmentation map.

Sections

Let R be a (not necessarily commutative) ring with 1. Consider the following
commutative diagram of R-modules with exact rows:

M ′
1

Â Ä ι1 //

g′

²²

M1
π1 // //

g

²²

M ′′
1

g′′

²²
M ′

2
Â Ä ι2 // M2

π2 // // M ′′
2

(1.2)

Definition 1.1.1 Two R-homomorphisms τ1 : M ′′
1 → M1 and τ2 : M ′′

2 → M2

are called commutative sections if πi ◦ τi = id for i = 1, 2 (i.e. both τi are
sections) and gτ1 = τ2g

′′.

9



10 CHAPTER 1. THE LRNC FOR SMALL SETS OF PLACES

We will also refer to R-homomorphisms σ1 : M1 → M ′
1 and σ2 : M2 → M ′

2 as
commutative sections if σiιi = id for i = 1, 2 and g′σ1 = σ2g.

Lemma 1.1.2 Keep the notation of diagram (1.2) and the above definition.

(1) There are commutative sections τ1 and τ2 if and only if there are com-
mutative sections σ1 and σ2.

(2) Assume that the maps g′, g, g′′ are injective and that R is a semisimple
K-algebra over a field K. Then there always exist commutative sections
τ1 and τ2.

Proof.

(1) If τ1 and τ2 are commutative sections, define σi = id − τiπi for i = 1, 2.
It is easy to verify that σ1 and σ2 are commutative sections. Conversely,
if σ1 and σ2 are commutative sections, define τi(m

′′
i ) = mi − σi(mi) for

i = 1, 2, where m′′
i ∈ M ′′

i and mi is any preimage of m′′
i in Mi. Again, it

is easy to see that the definition is independent of the choice of mi and
that τ1 and τ2 in fact are commutative sections.

(2) This is Lemma 1.4 in [B2]. 2

K-theory

Let R be a left noetherian ring with 1 and PMod(R) the category of all finitely
generated projective R-modules. We write K0(R) for the Grothendieck group
of PMod(R), and K1(R) for the Whitehead group of R which is the abelianized
infinite general linear group. If S is a multiplicatively closed subset of the
center of R which contains no zero divisors, 1 ∈ S, 0 6∈ S, we denote the
Grothendieck group of TSMod(R), the category of all S-torsion R-modules of
finite projective dimension, by K0S(R). Writing RS for the ring of quotients
of R with denominators in S we have the Localization Sequence (cf. [CR2], p.
65)

K1(R) → K1(RS)
∂→ K0S(R) → K0(R) → K0(RS). (1.3)

If T is a ring that contains R and M is an R-module, we will often write TM
instead of T ⊗R M . Moreover, if G is a group and M = ∆G is the kernel of
the augmentation map RG ³ R, we set ∆T G := T ⊗R ∆G. In the case R = Z,
T = Zp for a prime p, we write ∆pG instead of ∆ZpG.

Specializing to group rings ZG for finite groups G and S = Z\{0} we write
K0T (ZG) instead of K0S(ZG). So (1.3) reads

K1(ZG) → K1(QG)
∂→ K0T (ZG) → K0(ZG) → K0(QG). (1.4)
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Note that a finitely generated ZG-module has finite projective dimension if
and only if it is a G-c.t. (short for cohomologically trivial) module. Indeed,
the projective dimension is lower or equal to 1 in this case. Further, recall that
the relative K-group K0(ZG,Q) is generated by elements of the form (P1, φ, P2)
with finitely generated projective modules P1 and P2 and a QG-isomorphism
φ : QP1 → QP2, and that there is an isomorphism

iG : K0T (ZG) ' K0(ZG,Q). (1.5)

If a c.t. torsion ZG-module T has projective resolution P1
ι

½ P0 ³ T , this
isomorphism sends the corresponding element [T ] ∈ K0T (ZG) to (P1,Q ⊗
ι, P0) ∈ K0(ZG,Q).
We also shortly explain the map iG◦∂. Any element of K1(QG) can be written
in the form [QGn, φ], where n ∈ N and φ is a QG-automorphism of QGn. Then
iG(∂([QGn, φ])) = (ZGn, φ,ZGn).
If p is a finite rational prime, the local analogue of sequence (1.4) is

K1(ZpG) → K1(QpG)
∂p−→ K0T (ZpG) → 0, (1.6)

and we have an isomorphism

K0T (ZG) '
⊕
p-∞

K0T (ZpG). (1.7)

For later use, we state the following K1-Simplification Lemma which is
taken from [GRW], p.50:

Lemma 1.1.3 Suppose that we have given a diagram of QG-modules

M ′
1

Â Ä //

g′'
²²

M1
// // M ′′

1

g′′'
²²

M ′
2

Â Ä // M2
// // M ′′

2

and QG-isomorphisms g, h : M1 → M2 each of which makes the diagram
commutative.
For any QG-isomorphism γ : M2 → M1 we then have equalities

[M1, γg] = [M1, γh],

[M2, gγ] = [M2, hγ]

in K1(QG).

To give a convenient formulation of the LRNC for small sets of places, we
need to define elements (A, φ,B) ∈ K0(ZG,Q), where A is a finitely generated
c.t. ZG-module, B is ZG-projective and φ : QA → QB is a QG-isomorphism.
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Definition 1.1.4 Let A be a finitely generated c.t. ZG-module, B projective
and φ : QA → QB a QG-isomorphism.
Choose a projective resolution P1 ½ P0 ³ A of A and an isomorphism φ0

making the following diagram commutative:

QP1
Â Ä // QP0

// //

φ0

²²

QA

φ

²²
QP1

Â Ä // Q(P1 ⊕B) // // QB

Here, the lower sequence is the canonical one. Then we define:

(A, φ, B) = −(B, φ−1, A) := (P0, φ0, P1 ⊕B) ∈ K0(ZG,Q).

Of course, we have to check the following:

Lemma 1.1.5 (A, φ,B) is well defined.

Proof.1 Taking another isomorphism φ̃0 : QP0 → Q(P1 ⊕ B) yields a
commutative diagram

QP1
Â Ä //

88
88

88
88

88

88
88

88
88

88
QP0

// //

φ̃0

²²

φ0

¿¿8
88

88
88

88
8 QA

φ

²²

φ

¿¿8
88

88
88

88
8

QP1
Â Ä //

§§
§§

§§
§§

§§

§§
§§

§§
§§

§§
Q(P1 ⊕B)

ψ0

¤¤§§
§§

§§
§§

§§
// // QB

§§
§§

§§
§§

§§

§§
§§

§§
§§

§§

QP1
Â Ä // Q(P1 ⊕B) // // QB

which defines an isomorphism ψ0. Hence, we find that

(P0, φ̃0, P1 ⊕B)− (P0, φ0, P1 ⊕B) = (P1 ⊕B,ψ0, P1 ⊕B) = 0

in K0(ZG,Q). Thus, (A, φ, B) is independent of the choice of φ0.
If we choose a second projective resolution Q1 ½ Q0 ³ A, we define PB to be
the pull-back of the two surjections onto A; thus

Q1Ä _

²²

Q1Ä _

²²
P1

Â Ä // PB // //

²²²²

Q0

²²²²
P1

Â Ä // P0
// // A

1In terms of Euler characteristics we have an equality (A,φ, B) = χZG,QG(C ·, φ−1), where
C · is the perfect complex . . . → 0 → A → B → 0 → . . ., where the position of A is in degree
zero and all maps are zero. Hence, one can alternatively use the results in [B2] to show that
(A, φ,B) is well defined.
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We obtain an exact sequence P1 ⊕Q1 ½ PB ³ A, which again is a projective
resolution of A. Hence, we obtain the front and back faces of the following
diagram:

Q1Ä _

²²

HHHHHHHHHHHHH

HHHHHHHHHHHHH Q1

HHHHHHHHHHHHH

HHHHHHHHHHHHHÄ _

²²

Q1Ä _

²²

Q1Ä _

²²

P1 ⊕Q1
Â Ä //

HHHHHHHHHHHHH

HHHHHHHHHHHHH

²²²²

PB // //

²²²²

φ̃0

##

A

φ

##
P1 ⊕Q1

Â Ä //

²²²²

P1 ⊕Q1 ⊕B // //

²²²²

B

P1
Â Ä //

HHHHHHHHHHHHHH

HHHHHHHHHHHHHH P0
// //

φ0

$$

A

φ

$$
P1

Â Ä // P1 ⊕B // // B

The dotted maps only exist after tensoring with Q. Here, the isomorphism φ
is given; the isomorphism φ̃0 is chosen to make the upper part of the diagram
commute, and then φ̃0 induces the isomorphism φ0.
We find that (P0, φ0, P1 ⊕ B) equals (PB, φ̃0, P1 ⊕ Q1 ⊕ B) and therefore it
equals (Q0, ψ0, Q1 ⊕ B) by symmetry, where ψ0 is constructed in exactly the
same way as φ0. 2

We can calculate with the triples (A, φ, B) as usual:

Lemma 1.1.6 Let A, A′, A′′ be finitely generated c.t. ZG-modules and B, B′,
B′′ projective ZG-modules.

(1) If φ : QA → QB and ψ : QB → QB′ are QG-isomorphisms, then

(A,ψφ,B′) = (A, φ, B) + (B, ψ,B′).

(2) If φ : QB → QA and ψ : QA → QB′ are QG-isomorphisms, then

(B,ψφ, B′) = (B, φ,A) + (A, ψ, B′).

(3) If A′ ½ A ³ A′′ and B′ ½ B ³ B′′ are exact sequences of ZG-modules
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and φ′, φ, φ′′ are QG-isomorphisms such that the diagram

QA′ Â Ä //

φ′

²²

QA // //

φ

²²

QA′′

φ′′

²²
QB′ Â Ä // QB // // QB′′

commutes, then

(A, φ, B) = (A′, φ′, B′) + (A′′, φ′′, B′′).

Proof. (i) and (ii) directly follow from the definition and the correspond-
ing rules in K0(ZG,Q). For (iii) we construct the diagram

P ′
1

Â Ä //

@@
@@

@@
@@

@@
@

@@
@@

@@
@@

@@
@Ä _

²²

P1
// //

@@
@@

@@
@@

@@
@

@@
@@

@@
@@

@@
@Ä _

²²

P ′′
1

@@
@@

@@
@@

@@
@

@@
@@

@@
@@

@@
@Ä _

²²

P ′
1

Â Ä //
Ä _

²²

P1
// //

Ä _

²²

P ′′
1Ä _

²²

P ′
0

Â Ä //

φ′0

ÃÃ

²²²²

P ′
0 ⊕ P ′′

0
// //

φ0

ÃÃ

²²²²

P ′′
0

φ′′0

ÃÃ

²²²²

B′ ⊕ P ′
1

Â Ä //

²²²²

B ⊕ P1
// //

²²²²

B′′ ⊕ P ′′
1

²²²²

A′ Â Ä //

φ′

ÃÃ

A // //

φ

ÃÃ

A′′

φ′′

ÃÃ
B′ Â Ä // B // // B′′

Here, we choose projective resolutions of A′ and A′′ which determine a projec-
tive resolution of A by the Horseshoe Lemma. Again, the dotted maps only
exist after tensoring with Q. We first choose the isomorphism φ0 which induces
appropriate isomorphisms φ′0 and φ′′0. The assertion is now easily read off the
diagram2. 2

2Alternatively, one can again trace back the above properties to the corresponding prop-
erties of refined Euler characteristics.
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Remark.

(1) If A is a c.t. torsion ZG-module, then

QP1
Â Ä ι // QP0

// //

ι−1

²²

QA

'

²²
QP1 QP1

// 0

shows that iG([A]) = −(A, 0, 0) = (0, 0, A) in K0(ZG,Q).

(2) We can replace K0(ZG,Q) by K0(ZpG,Qp) for any prime p. Everything
remains the same except for the obvious modifications.

Hom description

Let G be a finite group, p a finite rational prime and R(G) (resp. Rp(G)) the
ring of virtual characters of G with values in Qc (resp. Qc

p), an algebraic closure
of Q (resp. Qp). Choose a number field F , Galois over Q with Galois group Γ,
which is large enough such that all representations of G can be realized over
F . Let ℘ be a prime of F above p. Then there is an isomorphism (for this and
the following cf. [GRW], Appendix A)

Det : K1(QpG)
'−→ HomΓ℘(Rp(G), F×

℘ )
[X, g] 7→ [χ 7→ det(g|HomF℘G(Vχ, F℘ ⊗Qp X))],

where Vχ is a F℘G-module with character χ. Combined with the localization
sequence (1.6) this gives the local Hom description

K0T (ZpG) ' HomΓ℘(Rp(G), F×
℘ )/Det (ZpG

×). (1.8)

One globally has

K0T (ZG) ' Hom+
Γ (R(G), JF )/Det U(ZG), (1.9)

where JF denotes the idèle group of F and U(ZG) the unit idèles of ZG. The
+ indicates that a homomorphism φ ∈ Hom+

Γ (R(G), JF ) takes values in R+

for symplectic characters.

1.2 Outline of the construction
Let L/K be a finite Galois extension of number fields with Galois group G and
S a finite G-invariant set of places of L which contains the set S∞ of all the
archimedean primes. In [RW1] the authors derive an exact sequence of finitely
generated ZG-modules

ES ½ A → B ³ ∇, (1.10)
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which has a uniquely determined extension class in Ext2
G(∇, ES). Note that

the sequence itself is not unique. We will refer to a sequence (1.10) as a Tate-
sequence for S. Here, ES is the group of S-units of L, A is c.t., B projective
and ∇ fits into an exact sequence of G-modules

clS ½ ∇ ³ ∇.

Indeed, the S-class group of L is the torsion submodule of ∇, hence ∇ is a
ZG-lattice. To give a description of ∇, we have to introduce some further
notation:
For a prime P of L we write p = P ∩K for the prime below P, GP for the de-
composition group attached to P and IP for the inertia subgroup. We denote
the Frobenius generator of the Galois group GP = GP/IP of the corresponding
residue field extension by φP.

The inertial lattice of the local extension LP/Kp is defined to be the ZGP-
lattice (cf. [GW] or [We] p. 42)

WP = {(x, y) ∈ ∆GP ⊕ ZGP : x = (φP − 1)y}, (1.11)

where ∆GP is the kernel of the augmentation map ZGP → Z. Note that
WP ' ZGP if the local extension LP/Kp is unramified. Projecting on the first
component yields an exact sequence of GP-modules

Z ½ WP ³ ∆GP. (1.12)

The Z-dual of this sequence induces a surjection W 0
P ³ Z0 = Z. If we combine

these surjections and the augmentation map ZS ³ Z, we get an exact sequence

∇ ½ ZS ⊕
⊕

P∈S∗ram\(S∩Sram)∗
ind G

GP
(W 0

P) ³ Z (1.13)

where the sum runs over a fixed set of representatives of all ramified primes
which are not in S, one for each orbit of the action of G on the primes of L.
Due to this characterization of ∇ we have

Lemma 1.2.1 Let L/K be a finite Galois extension of number fields with
Galois group G and S a finite G-invariant set of places of L which contains
all the archimedean primes. Moreover, let ∇ be as in (1.13) and C a free
ZG-module of rank |S∗ram \ (S ∩ Sram)∗|.
Then there exist QG-isomorphisms Q∇ ' // Q(ES ⊕ C) .

Proof. We have the following commutative diagram:
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∆S
Â Ä //

Ä _

²²

ZS
aug // //

Ä _

²²

Z

∇ Â Ä //

²²²²

ZS ⊕⊕
ind G

GP
(W 0

P) // //

²²²²

Z

⊕
ind G

GP
(W 0

P)
⊕

ind G
GP

(W 0
P)

where all direct sums are taken over the primes P ∈ S∗ram \ (S ∩ Sram)∗, and
where the middle sequence is (1.13). The left column of the diagram gives an
isomorphism Q∇ ' Q(∆S ⊕⊕

ind G
GP

(W 0
P)). Since the Dirichlet map

λS : ES −→ ∆RS
e 7→ −∑

P∈S log |e|PP
(1.14)

induces an RG-isomorphism R⊗ES → ∆RS, there also exist QG-isomorphisms
∆QS → QES by the Noether-Deuring Theorem. Finally, (1.12) shows that
QG ' Qind G

GP
(WP) ' Qind G

GP
(W 0

P). 2

In order to get an element Ωφ ∈ K0(ZG,Q) analogously to the Ωφ of [GRW],
we split sequence (1.10) into two parts:

ES ½ A ³ W and W ½ B ³ ∇ (1.15)

We will refer to it as the left and the right part of the Tate-sequence. From
the construction of the Tate-sequence for small sets S one gets the following
diagram, which we can take for a definition of the ZG-lattice R:

W
Â Ä //

Ä _

i

²²

B // // ∇

²²²²
R

Â Ä //

²²²²

B // // ∇

clS

(1.16)

We now choose QG-automorphisms α of QW and β of QR as well as QG-
isomorphisms α̃ and β̃ making the following diagrams commutative:

Q(ES ⊕ C) Â Ä // Q(ES ⊕ C ⊕W ) // //

α̃

²²Â
Â
Â
Â

QW

α

²²
Q(ES ⊕ C) Â Ä // Q(A⊕ C) // // QW

(1.17)
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QR Â Ä //

β

²²

QB // //

β̃

²²Â
Â
Â
Â Q∇

QR Â Ä // Q(R⊕∇) // // Q∇

(1.18)

In diagram (1.17) C is a free ZG-module as in Lemma 1.2.1. The lower se-
quence derives from adding C to the left part of the Tate-sequence. The upper
sequence is the canonical one as well as the lower sequence in (1.18). The
upper sequence in (1.18) is extracted from (1.16).
Given a QG-isomorphism φ : Q∇ → Q(ES ⊕ C) as in Lemma 1.2.1 we define
a QG-isomorphism φ̃ to be the composite map

φ̃ : QB
β̃ // Q(R⊕∇)

idR⊕φ // Q(R⊕ ES ⊕ C)

i−1⊕idES⊕C // Q(W ⊕ ES ⊕ C) α̃ // Q(A⊕ C).

(1.19)

We define

Ωφ := (B, φ̃, A⊕ C)− ∂[QW,α]− ∂[QR, β] ∈ K0(ZG,Q). (1.20)

Remark.

(1) One can choose the isomorphisms α and β to be the identity on QW
and QR, respectively. Sometimes, however, it may be useful to choose
injections W ½ W and R ½ R, since we can actually build ZG-diagrams
corresponding to those in (1.17) and (1.18) in this case. These injections
automatically become isomorphisms after tensoring with Q. This also
shows the analogy to the construction in [GRW].

(2) If S is large in the sense that all ramified primes lie in S and clS = 1,
our construction yields the Ωφ of [GRW] if we choose α and β to be
ZG-injections homotopic to 0. We will see in the next section that the
definition of Ωφ is independent of the choice of α, β, α̃ and β̃.

(3) The natural homomorphism K0(ZG,Q) → K0(ZG) sends Ωφ to Chin-
burg’s Ω3(L/K) (cf. [Ch2], p. 357 or [We]).
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1.3 Independence of choices

In the preceding section we have defined an element Ωφ attached to the fol-
lowing data (D):

• a finite Galois extension L/K of number fields with Galois group G,

• a finite G-invariant set S of places of L which contains all the infinite
primes,

• a QG-isomorphism φ : Q∇ → Q(ES ⊕ C), where ∇ is the kernel of the
sequence (1.13) and C is a free ZG-module of rank |S∗ram \ (S ∩ Sram)∗|
as in Lemma 1.2.1.

We have made some choices during the construction, so the aim of this section
will be to prove the following theorem.

Theorem 1.3.1 The data (D) uniquely determine an element Ωφ ∈ K0(ZG,Q).

We divide the proof into two lemmas.

Lemma 1.3.2 The definition of Ωφ is independent of the choices of α, β, α̃
and β̃.

Proof. If we take other isomorphisms α′, β′, α̃′, β̃′ and set τ = α−1 ◦ α′,
σ = β′ ◦ β−1 and accordingly τ̃ = α̃−1 ◦ α̃′, σ̃ = β̃′ ◦ β̃−1, we get equalities

[QW,α′]− [QW,α] = [QW, τ ] = [Q(W ⊕ ES ⊕ C), τ̃ ] (1.21)

and
[QR, β′]− [QR, β] = [QR, σ] = [Q(R⊕∇), σ̃] (1.22)

in K1(QG) as follows from the commutative diagrams

Q(ES ⊕ C) Â Ä //

AA
AA

AA
AA

AA
A

AA
AA

AA
AA

AA
A

Q(W ⊕ ES ⊕ C) // //

α̃′

²²

τ̃

ÃÃA
AA

AA
AA

AA
AA

QW

α′

²²

τ

ÃÃA
AA

AA
AA

AA
AA

A

Q(ES ⊕ C) Â Ä //

}}
}}

}}
}}

}}
}

}}
}}

}}
}}

}}
}

Q(W ⊕ ES ⊕ C)

α̃
~~}}

}}
}}

}}
}}

}
// // QW

α

~~}}
}}

}}
}}

}}
}}

Q(ES ⊕ C) Â Ä // Q(A⊕ C) // // QW

and
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QR Â Ä //

β′

²²

β

ÃÃ@
@@

@@
@@

@@
@@

@ QB // //

β̃′

²²

β̃

ÃÃ@
@@

@@
@@

@@
@@

Q∇

@@
@@

@@
@@

@@
@

@@
@@

@@
@@

@@
@

QR Â Ä //

σ

~~~~
~~

~~
~~

~~
~~

Q(R⊕∇)

σ̃
~~~~

~~
~~

~~
~~

~

// // Q∇

~~
~~

~~
~~

~~
~

~~
~~

~~
~~

~~
~

QR Â Ä // Q(R⊕∇) // // Q∇

Let Ψ = (B, φ̃, A⊕ C) and Ψ′ = (B, φ̃′, A⊕ C), where φ̃ arises from α̃ and β̃,
and φ̃′ from α̃′ and β̃′. We have to show that

Ψ′ −Ψ = ∂[QW,α′] + ∂[QR, β′]− ∂[QW,α]− ∂[QR, β]
= ∂[Q(W ⊕ ES ⊕ C), τ̃ ] + ∂[Q(R⊕∇), σ̃].

by (1.21) and (1.22). For this, let

γ = (i−1 ⊕ idES⊕C) ◦ (idR ⊕ φ) ◦ β̃ : QB → Q(W ⊕ ES ⊕ C),

so φ̃ = α̃ ◦ γ and φ̃′ = α̃′ ◦ γ ◦ β̃−1 ◦ β̃′ by (1.19). Now,

Ψ′ −Ψ = (B, φ̃−1 ◦ φ̃′, B)

= ∂[QB, φ̃−1 ◦ φ̃′]
= ∂[QB, γ−1 ◦ α̃−1 ◦ α̃′ ◦ γ ◦ β̃−1 ◦ β̃′]
= ∂[QB, γ−1 ◦ τ̃ ◦ γ] + ∂[QB, β̃−1 ◦ σ̃ ◦ β̃]
= ∂[Q(W ⊕ ES ⊕ C), τ̃ ] + ∂[Q(R⊕∇), σ̃],

as desired. 2

Secondly, we have to check:

Lemma 1.3.3 The definition of Ωφ is independent of the choice of the Tate-
sequence.

Proof. It will be necessary to go through the details of the construction of
Tate-sequences for small S (cf. [RW1]). Therefore, we review that construction
and indicate all the choices made. Hereafter, we will discuss each of them
separately.
Let S ′ be a finite set of places of L which contains S∪Sram and is large enough
to generate the ideal class group of L, and such that

⋃
P∈S′ GP = G (1st

choice). We fix a choice ∗ of a representative for each orbit of the action of G
on the primes of L (2nd choice).
Let us denote the S-idèles of L by JS, and the idèle class group of L by CL.
Choose an exact sequence

CL ½ V ³ ∆G
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of ZG-modules whose extension class maps to the global fundamental class
uL/K via the isomorphism Ext1

G(∆G,CL) ' H2(G,CL). Locally, for each
P ∈ S ′∗ there are analogous exact sequences

L×P ½ VP ³ ∆GP

of ZGP-modules whose extension classes map to the local fundamental classes
uLP/Kp

via the isomorphisms Ext1
GP

(∆GP, L×P) ' H2(GP, L×P). We define ZG-
modules

VS′ =
⊕

P∈S′∗ ind G
GP

VP ×
∏

P6∈S′ UP

WS′ =
⊕

P∈S∗ ind G
GP

∆GP ⊕
⊕

P∈S′∗\S∗ ind G
GP

WP,
(1.23)

where UP are the units of LP, and WP is the inertial lattice of the exten-
sion LP/Kp (see (1.11)). Starting with the local sequence above, the pushout
along the normalized valuation vP : L×P ³ Z yields the commutative diagram
(cf. [We], p. 42):

UPÄ _

²²

UPÄ _

²²
L×P

Â Ä //

vP

²²²²

VP
// //

²²²²

∆GP

Z Â Ä // WP
// // ∆GP

(1.24)

Thus, we locally get exact sequences UP ½ VP ³ WP, and hence an exact
sequence

JS ½ VS′ ³ WS′ (1.25)

of ZG-modules. By Theorem 1 in [RW1] we find a surjective ZG-homomorphism
θ (3rd choice) which fits into the diagram

JS
Â Ä //

²²

VS′ // //

θ

²²²²Â
Â
Â
Â WS′

c

²²²²
CL

Â Ä // V // // ∆G

(1.26)

where c is induced by the inclusions ∆GP ⊂ ∆G for P ∈ S∗ and by

WP ³ ∆GP ⊂ ∆G

for P ∈ S ′∗ \ S∗.

There are no further choices made in the construction; nevertheless, we
continue with its description for later use.
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Since the left vertical map JS → CL has kernel ES and cokernel clS, the S-class
group of L, the Snake Lemma produces an exact sequence

ES ½ Aθ → RS′ ³ clS (1.27)

of ZG-modules, where Aθ is c.t. and RS′ is a ZG-lattice. Now we combine
various diagrams for three types of primes P ∈ S ′∗ (see [RW1], p. 157 or
Proposition 1.5.4 for the first, the others are clear).
Type 1: P ∈ S∗ram \ (S ∩ Sram)∗

WP
Â Ä //

²²

ZG2
P

// //

²²

W 0
P

²²
∆G

Â Ä // ZG // // Z

(1.28)

Type 2: P ∈ S∗

∆GP
Â Ä //

²²

ZGP
// //

²²

Z

²²
∆G

Â Ä // ZG // // Z

(1.29)

Type 3: P ∈ S ′∗ \ (S∗ ∪ S∗ram)

WP
' //

0

²²

ZGP
//

0

²²

0

²²
∆G

Â Ä // ZG // // Z

(1.30)

If we define

NS′ =
⊕

P of type 1
ind G

GP
(ZG2

P)⊕
⊕

P of type 2 or 3
ind G

GP
ZGP,

M∗ =
⊕

P of type 1
ind G

GP
W 0

P ⊕
⊕

P of type 2
ind G

GP
Z,

the three diagrams above yield

RS′
Â Ä //

Ä _

²²

BS′ // //
Ä _

²²

∇∗
Ä _

²²
WS′

Â Ä //

²²²²

NS′ // //

²²²²

M∗

²²²²
∆G

Â Ä // ZG // // Z

(1.31)
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Observe that BS′ is projective, since NS′ is ZG-free. As a last step we take
the pushout of the upper sequence in (1.31) along the surjection RS′ ³ clS in
(1.27):

RS′
Â Ä //

²²²²

BS′ // //

²²²²

∇∗

clS
Â Ä // ∇θ

// // ∇∗

(1.32)

Together with (1.27) this yields a Tate-sequence for S:

ES ½ Aθ → BS′ ³ ∇θ

Before we go into the discussion of choices, we insert the following propo-
sition, which will be useful in the following.

Proposition 1.3.4 Underlying the data (D), assume that there are two Tate-
sequences for S as shown in the diagram:

ES
Â Ä // A //

Ä _

a

²²

B // //
Ä _

b

²²

∇
h'

²²
ES

Â Ä // A′ //

²²²²

B′ // //

²²²²

∇′

P P

Suppose that P is ZG-projective and the isomorphism h fits into a diagram

clS
Â Ä // ∇ // //

h'
²²

∇
h'

²²
clS

Â Ä // ∇′ // // ∇

(1.33)

Then we have an equality
Ωφ = Ω′

φh
−1 ,

where Ωφ and Ω′
φh
−1 arise from the upper and the lower Tate-sequence, respec-

tively.
In particular, if h = id∇, we have Ωφ = Ω′

φ.

Remark. In [RW1] an isomorphism h as in diagram (1.33) satisfying h = id∇
is called admissible (cf. Theorem 4 in loc. cit.).
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Proof. Since P is projective, we have compatible isomorphisms A′ '
A⊕ P and B′ ' B ⊕ P . Replace the upper Tate-sequence by

ES ½ A⊕ P → B ⊕ P ³ ∇.

This clearly leaves Ωφ unchanged, since we may replace the isomorphisms
α, α̃, β, β̃ by α ⊕ idP , α̃ ⊕ idP , β ⊕ idP , β̃ ⊕ idP . Hence, we may assume
P = 0.
We get a commutative diagram, in which all modules are invisibly tensored
with Q:

B //

b

²²

φ̃

++
R⊕∇ idR⊕φ //

r⊕h

²²

R⊕ ES ⊕ C //

r⊕idES⊕C

²²

W ⊕ ES ⊕ C //

w⊕idES⊕C

²²

A⊕ C

a⊕idC

²²
B′ //

˜
φh
−1

33R′ ⊕∇idR′⊕φh
−1

// R′ ⊕ ES ⊕ C // W ′ ⊕ ES ⊕ C // A′ ⊕ C

The ZG-lattices R, W and R′, W ′ are those of diagram (1.16) for the upper
and lower Tate-sequence, respectively. The isomorphisms r and w are induced
by b and h. Since the isomorphisms b and a ⊕ idC already exist at ZG-level,
we are done. 2

For the proof of Lemma 1.3.3 we have to go through the proofs in [RW1].

Assertion 1.3.5 Ωφ is independent of the choice of the surjection θ.

Assume that we have taken another surjection θ′. We indicate the modules
involved by subscripts θ resp. θ′ if they occur in the construction via θ resp. θ′.
In [RW1], p. 171 it is shown that there is a commutative diagram

ES
Â Ä // A+

θ′
//

'
²²

B′+
S′

// //

'
²²

∇+
θ′

'
²²

ES
Â Ä // A+

θ
// B+

S′
// // ∇+

θ

where the rows are Tate-sequences, and we have adopted the local notation.
∇+

θ is isomorphic to ∇θ via an admissible isomorphism, and the difference
between the corresponding Tate-sequences is described via a commutative di-
agram as in Proposition 1.3.4. Since the same is true for ∇+

θ′ and ∇θ′ , Propo-
sition 1.3.4 implies Assertion 1.3.5.

Assertion 1.3.6 Ωφ is independent of the choice of S ′.
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Let S ′′ be another set of places of L which satisfies the conditions as described
at the beginning of Lemma 1.3.3. We may assume that S ′ ⊂ S ′′. Hence, there
is an exact sequence of ZG-modules

WS′ ½ WS′′ ³ P =
⊕

P∈S′′∗\S′∗
ind G

GP
WP,

where P is ZG-free. As one learns from [RW1], p. 174, this gives rise to a
diagram as in Proposition 1.3.4 with an admissible isomorphism.

We are left we the dependence on the choice of ∗. Let 3 be a second choice
of G-orbit representatives of primes of L. For each P distinguished by ∗ let
xP ∈ G have the property that xPP = P′ is distinguished by 3. As described
in [RW1] such a system X of elements of G induces a transport ∗ → 3 and
natural ZG-module transport maps

X : W ∗ → W3, ∇∗ → ∇3
.

Hence, an isomorphism φ∗ : Q∇∗ → Q(ES ⊕ C) induces an isomorphism

φ3 = φ∗ ◦X−1 : Q∇3 → Q(ES ⊕ C).

Assertion 1.3.7 With the above notation we have: Ωφ∗ = Ωφ3
.

As shown in [RW1], p. 176 et seq. one has a commutative diagram

ES
Â Ä // A∗ //

'
²²

B∗ // //

'
²²

∇∗

'h

²²
ES

Â Ä // A3 // B3 // ∇3

where the isomorphism h is X-admissible, i.e. it fits into a diagram

clS
Â Ä // ∇∗ // //

h

²²

∇∗

X

²²
clS

Â Ä // ∇3 // // ∇3

Hence, we have ZG-isomorphisms B∗ ' B3 and A∗ ⊕ C ' A3 ⊕ C, which
commute with φ̃∗ and φ̃3 after tensoring with Q:

QB∗ φ̃∗ //

'
²²

Q(A∗ ⊕ C)

'
²²

QB3 φ̃3 // Q(A3 ⊕ C)

Thus, Ωφ∗ = Ωφ3
by Lemma 1.1.6. 2
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1.4 Basic properties of Ωφ

In this section we discuss variance of the isomorphism φ and of the set of places
S. The most interesting (and most complicated) case is, how Ωφ varies if S
is enlarged by ramified primes. Before going into this, however, we give an
alternative definition of Ωφ.

Keeping the notation of the preceding section we start with aQG-isomorphism
φ′ : Q∇ → Q(ES ⊕ C), which exists due to the exact sequence

clS
Â Ä //∇ π∇ // //∇

and Lemma 1.2.1. We choose QG-automorphisms α and βW of QW , where
W is the ZG-lattice defined via splitting the Tate-sequence into two parts
(cf. (1.15)). Choose α̃ as in (1.17) and a QG-isomorphism β̃W such that the
following diagram commutes:

QW Â Ä //

βW

²²

QB // //

β̃W

²²Â
Â
Â
Â Q∇

QW Â Ä // Q(W ⊕∇) // // Q∇

We now define the QG-isomorphism φ̃′ : QB → Q(A⊕C) to be the composite
map

φ̃′ : QB
β̃W // Q(W ⊕∇)

idW⊕φ′ // Q(W ⊕ ES ⊕ C) α̃ // Q(A⊕ C)

(1.34)

Finally, we define

Ω̂φ′ := (B, φ̃′, A⊕ C)− ∂[QW,α ◦ βW ].

Proposition 1.4.1 Assume that we have given a set of data (D), where φ =
φ′ ◦ π−1

∇ for a QG-isomorphism φ′ : Q∇ → Q(ES ⊕ C). Then we have an
equality

Ωφ = Ω̂φ′ .
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Proof. We have the following commutative diagram:

W
Â Ä //

βW

²²

³ p

i

ÃÃA
AA

AA
AA

AA
AA

A B // //

AA
AA

AA
AA

AA
A

AA
AA

AA
AA

AA
A

β̃W

²²

∇
π∇

ÃÃ ÃÃA
AA

AA
AA

AA
AA

R
Â Ä //

βR

²²

B // //

β̃R

²²

∇

W
Â Ä //³ p

i

ÃÃA
AA

AA
AA

AA
AA

A W ⊕∇ // //

i⊕π∇

ÃÃA
AA

AA
AA

AA
AA

∇
π∇

ÃÃ ÃÃA
AA

AA
AA

AA
AA

R
Â Ä // R⊕∇ // // ∇

Here, βR = i ◦ βW ◦ i−1 and β̃R = (i⊕ π∇) ◦ β̃W . The dotted arrows only exist
after tensoring with Q; the top face is the main part of diagram (1.16). All
vertical maps as well as i and π∇ become isomorphisms after tensoring with
Q. Hence, we have [QR, βR] = [QW,βW ] in K1(QG). Moreover, we have a
commutative diagram, in which all occurring modules are invisibly tensored
with Q:

B
β̃W

//

φ̃′

++
W ⊕∇ idW⊕φ′ //

i⊕π∇

²²

W ⊕ ES ⊕ C

i⊕idES⊕C

²²

W ⊕ ES ⊕ C
α̃

// A⊕ C

B
β̃R //

φ̃

33R⊕∇ idR⊕φ // R⊕ ES ⊕ C
i−1

⊕idES⊕C

// W ⊕ ES ⊕ C
α̃ // A⊕ C

Therefore

Ωφ = (B, φ̃, A⊕ C)− ∂[QW,α]− ∂[QR, βR]

= (B, φ̃′, A⊕ C)− ∂[QW,α]− ∂[QW,βW ]

= Ω̂φ′ .

This proves the proposition. 2

Remark.

(1) The above definition has the advantage that one does not need the ZG-
lattice R, but the disadvantage that one cannot work at ZG-level: In
general there do not exist injections ∇ ½ ES ⊕ C. By contrast, we can
always find injections ∇ ½ ES ⊕ C, since ∇ has no Z-torsion.
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(2) Proposition 1.4.1 shows that we can describe Ωφ via refined Euler char-
acteristics (but we will make no use of this fact): Consider the perfect
complex

C · : . . . → 0 → A → B → 0 → . . .

where the position of A is in degree zero and the map A → B is taken
from the Tate sequence. Then Ωφ = Ω̂φ′ = χZG,QG(C ·, (φ′)−1).

The following proposition describes variance with φ and is the analogue to
Proposition 1 in [GRW].

Proposition 1.4.2 Fix a set of data (D), and let φ′ : Q∇ → Q(ES ⊕ C) be
another QG-isomorphism. Then

Ωφ′ − Ωφ = ∂[Q∇, φ−1 ◦ φ′].

In particular, Ωφ′ − Ωφ has representing homomorphism

χ 7→ det(φ−1 ◦ φ′|HomCG(Vχ,C∇)),

where Vχ is a CG-module with character χ.

Proof. If we build φ̃ and φ̃′ using the same maps α, β, α̃, β̃, there is a
commutative diagram

B
β̃

//

φ̃

++
R⊕∇ idR⊕φ

// R⊕ ES ⊕ C // W ⊕ ES ⊕ C // A⊕ C

B
β̃ //

β̃−1◦γ◦β̃

OO

φ̃′
33R⊕∇ idR⊕φ′ //

γ

OO

R⊕ ES ⊕ C // W ⊕ ES ⊕ C // A⊕ C

where γ = idR⊕(φ−1 ◦φ′) and all modules are invisibly tensored with Q. Now,

Ωφ′ − Ωφ = (B, φ̃′, A⊕ C)− (B, φ̃, A⊕ C)

= (B, φ̃−1 ◦ φ̃′, B)

= ∂[QB, φ̃−1 ◦ φ̃′]
= ∂[QB, β̃−1 ◦ γ ◦ β̃]
= ∂[Q(R⊕∇), γ]
= ∂[Q∇, φ−1 ◦ φ′],

as desired. 2

Our next task is to enlarge S by a ramified prime P0, i.e. P0 ∈ Sram, but
P0 6∈ S. We may assume P0 ∈ S∗ram.
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Note that some of the ideas in what follows are taken from [Gr3], where the
author assumes the validity of the LRNC for an abelian CM-extension L/K
to compute the Fitting ideal of (cl−L)∨, the Pontryagin dual of the minus class
group of L. For this, he connects a Tate-sequence for a large set S of places of
L to a Tate-sequence for S∞. In what follows here, some of the maps between
Tate-sequences are inspired by the corresponding maps in [Gr3]. But some of
the diagrams in loc. cit. only commute on minus parts owing to the purpose
of this paper; so we have to modify the construction in order to achieve com-
mutative diagrams in general. Moreover, the author does not introduce an
element like Ωφ, nor he gives a definition of a modified Stark-Tate regulator,
as we intend to do in the next section. Indeed, it considerably simplifies mat-
ters if one restricts to minus parts, since the infinite primes pleasantly drop out.

We set S0 := S∪GP0 and we intend to indicate each module by a subscript
S resp. S0 (or simply a subscript 0) if it is not clear to which (construction of
a) Tate-sequence it belongs.

The dual of the sequence (1.12) for the prime P0, namely

∆G0
P0

½ W 0
P0

³ Z0 = Z,

yields the following commutative diagram:

ind G
GP0

∆G0
P0Ä _

²²

ind G
GP0

∆G0
P0Ä _

²²

∇S
Â Ä //

²²²²

ZS ⊕⊕
p∈S∗ram\(S∩Sram)∗ ind G

GP
W 0

P
// //

²²²²

Z

∇S0

Â Ä // ZS0 ⊕
⊕

p∈S∗ram\(S0∩Sram)∗ ind G
GP

W 0
P

// // Z

We extract the left column and use (1.1) to get an exact sequence

ZG/NGP0

Â Ä //∇S

π∇ // //∇S0 . (1.35)

Let hL = |clL| be the class number of L and choose a positive integer h such
that hL|h. Then Ph

0 is principal, and we find an S0-unit uP0 which satisfies
vP0(uP0) = h and vP(uP0) = 0 for all non-archimedean primes P 6= P0. Here,
vP denotes the normalized valuation at P. Let us define a map (which is the
map β in [Gr3])

u0 : ZG → ES0 , 1 7→ uP0 .

Then we have a left exact sequence

∆GP0 · ZG Â Ä (−u0,id) //ES ⊕ ZG
(id,u0) //ES0 , (1.36)
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since ux
P0
∈ ES if and only if x ≡ 0 mod GP0 . We have a QG-isomorphism

φ′ : QG/NGP0
→ ∆GP0 ·QG,

1 mod NGP0
7→ 1− 1

|GP0 |
NGP0

. (1.37)

Let C0 be a free ZG-module of rank |S∗ram \ (S0 ∩ Sram)∗|, and start with
a QG-isomorphism φ0 : Q∇S0 → Q(ES0 ⊕ C0). Then one can always find a
QG-isomorphism φ fitting in a commutative diagram

QG/NGP0

φ′ //
Ä _

²²

∆GP0 ·QGÄ _

(−u0,id,0)

²²
Q∇S

φ //

²²²²

Q(ES ⊕ ZG⊕ C0)

(id,u0,idC0
)

²²²²
Q∇S0

φ0 // Q(ES0 ⊕ C0)

(1.38)

Here, the two columns derive from the sequences (1.35) and (1.36), since the
second map in (1.36) has finite cokernel.

We are ready to prove

Theorem 1.4.3 Fix a set of data (D). Let P0 be a prime not in S which
ramifies in L/K and h an integral multiple of hL, the class number of L.
Assume that there is a QG-isomorphism φ0 that fits into diagram (1.38).Then
we have an equality

Ωφ0 − Ωφ = ∂[ind G
GP0
Q,−h|GP0|].

In particular, Ωφ0 − Ωφ has representing homomorphism

χ 7→ (−h|GP0|)dim V
GP0
χ ,

where Vχ is a CG-module with character χ.

Proof. It is unavoidable to go through the whole construction of Tate
sequences for small sets of places. We expand the notation of the proof of
Lemma (1.3.3).
For this, let S ′ be a finite set of places of L which contains S0∪Sram and is large
enough to generate the ideal class group of L, and such that

⋃
P∈S′ GP = G.

According to the definition of WS′ let

WS′,0 =
⊕

P∈S∗0

ind G
GP

∆GP ⊕
⊕

P∈S′∗\S∗0

ind G
GP

WP.
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Due to (1.12) we have an exact sequence

ind G
GP0
Z Â Ä //WS′ // //WS′,0.

The first step in the construction now yields a commutative diagram:

ind G
GP0
Z

¶ s

&&LLLLLLLLLLL

ES
Â Ä //

Ä _

²²

µ r

$$JJJJJJJJJJJJ AθÄ _

²²

JJJJJJJJJJJJJ

JJJJJJJJJJJJJ
// RÄ _

²²

$$ $$JJJJJJJJJJJJJJ

ind G
GP0
Z

µ r

JJJJ

$$JJJ
JJJES0Ä _

²²

Â Ä // AθÄ _

²²

// R0Ä _

²²

JS
Â Ä //¶ s

&&LLLLLLLLLLLLL

²²

VS′ // //

²²²²

LLLLLLLLLLLL

LLLLLLLLLLLL WS′

&& &&LLLLLLLLLLL

²²²²

JS0

Â Ä //

²²

VS′ // //

²²²²

WS′,0

²²²²

CL
Â Ä //

LLLLLLLLLLLL

LLLLLLLLLLLL

²²²²

V // //

LLLLLLLLLLLLLL

LLLLLLLLLLLLLL ∆G

LLLLLLLLLLLL

LLLLLLLLLLLL

CL
Â Ä //

²²²²

V // // ∆G

clS

&& &&LLLLLLLLLLLL

clS0

(1.39)
Due to the Snake Lemma we can extract from this the following diagram,

where we split the two four-term sequences into short exact sequences:

ind G
GP0
Z

Ä _

²²

// // ker πclÄ _

²²

ker πWÄ _

²²

( ©
55kkkkkkkk

ES
Â Ä //

Ä _

²²

Aθ
//

(( ((RRRRRRRRRRR R // //

²²²²

clS

πcl

²²²²

W
' ¨

44jjjjjjjjjjjjjj

πW

²²²²

ES0

Â Ä // Aθ
//

(( ((QQQQQQQQQQ R0
// // clS0

W0

' ¨

55jjjjjjjjjjjjj

(1.40)
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In analogy to the modules M and NS′ we define

M0 =
⊕

P∈S∗0

ind G
GP
Z⊕

⊕

P∈S∗ram\(S0∩Sram)∗
ind G

GP
W 0

P,

NS′,0 =
⊕

P∈(S′\Sram)∗∪S∗0

ind G
GP
ZGP ⊕

⊕

P∈S∗ram\(S0∩Sram)∗
ind G

GP
(ZG2

P)

and the second step in the construction yields a commutative diagram

ind G
GP0
Z Â Ä //
µ r

$$HHH
HHH

ind G
GP0
ZGP0

// //
µ r

$$HHH
HHH

ind G
GP0

∆G0
P0µ r

$$HH
HH

H

R
Â Ä //

$$ $$IIIIIIIÄ _

²²

B // //

$$ $$IIIIIIIÄ _

²²

∇S

$$ $$III
III

Ä _

²²

R0
Â Ä //

Ä _

²²

B0
// //

Ä _

²²

∇S0Ä _

²²

ind G
GP0
Z Â Ä //
µ r

$$III
II

ind G
GP0
ZGP0

// //
µ r

$$III
II

ind G
GP0

∆G0
P0µ r

$$IIIII

WS′
Â Ä //

%% %%KKK
KK

²²²²

NS′ // //

%% %%KKKKK

²²²²

M

%% %%KKKKKK

²²²²

WS′,0
Â Ä //

²²²²

NS′,0 // //

²²²²

M0

²²²²

∆G
Â Ä //

MMMMM
MMMMM ZG // //

MMM
MMM

MMM
MMM

Z
MMMMMMMM

MMMMMMMM

∆G
Â Ä // ZG // // Z

(1.41)
We choose the endomorphism β in diagram (1.18) and the endomorphism

β0 corresponding to R0 to be the identity. We get the following commutative
diagram in which we have invisibly tensored with Q, and whose roof is the
same as in the diagram above:

ind G
GP0

Z Â Ä //
µ r

%%JJJJJJ
ind G

GP0
ZGP0

// //
µ r

%%JJJJJJ

β̃′

²²

ind G
GP0

∆G0
P0µ r

%%JJJ
JJJ

R
Â Ä i //

%% %%KKKKKKKK B // //
πB

%% %%KKKKKKKK

β̃

²²

∇S

%% %%KKKKKK

R0
Â Ä i0 // B0

// //

β̃0

²²

∇S0

ind G
GP0

Z Â Ä //
µ r

%%JJJJJJ
ind G

GP0
(Z⊕∆G0

P0
) // //

µ r

%%JJJ
JJ

ind G
GP0

∆G0
P0µ r

%%JJJ
JJJ

R
Â Ä //

πR %% %%KKKKKKKK R⊕∇S
// //

%% %%KKKKK ∇S

π∇ %% %%KKKKKK

R0
Â Ä // R0 ⊕∇S0

// // ∇S0
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Note that we have labelled some of the maps in the above diagram.

We choose the isomorphisms β̃ and β̃0 such that the projection R⊕∇S ³
R0 ⊕ ∇S0 is given by πR ⊕ π∇. This is possible by Lemma 1.1.2, since we
may define these isomorphisms via commutative sections σ : B → R and
σ0 : B0 → R0 of the injections i and i0, respectively.

We also choose the automorphisms α of QW and α0 of QW0 to be the
identity. Let us abbreviate the map (id, u0, idC0) : ES ⊕ ZG⊕ C0 → ES0 ⊕ C0

by δ and set C := ZG ⊕ C0. Furthermore, let us write ι for the inclusion
ES0 ½ A := Aθ and define πA := (idA + ιu0, idC0) : A ⊕ C → A ⊕ C0. Then
we have a commutative diagram, where we have once more invisibly tensored
with Q:

ES ⊕ C Â Ä //

δ

##GG
GG

GG
GG

GG
GG

G ES ⊕ C ⊕W // //

##

α̃

²²

W

πW

## ##GGGGGGGGGGGGG

ES0 ⊕ C0
Â Ä // ES0 ⊕ C0 ⊕W0

// //

α̃0

²²

W0

ES ⊕ C Â Ä ι⊕idC //

δ

##GG
GG

GG
GG

GG
GG

G A⊕ C // //

πA

## ##GGGGGGGGGGGGG W

πW

## ##GGGGGGGGGGGGG

ES0 ⊕ C0
Â Ä ι⊕idC0 // A⊕ C0

// // W0

(1.42)

Lemma 1.1.2 again implies that we may choose isomorphisms α̃ and α̃0 such
that the dotted arrow in the diagram above is given by δ ⊕ πW . The bottom
surface even exists before tensoring with Q. Hence, the Snake Lemma yields
an exact sequence

∆GP0 · ZG ½ ZG
π′−→ ker πW ³ cok δ. (1.43)

The cokernel cok δ is finite, but in general not zero.

Now we can put everything together in the following large commutative
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diagram which defines an automorphism ψ of QG.

QG

β̃′

²²

Â Ä //

ψ

¸¸

QB

β̃

²²

// // QB0

β̃0

²²
ind G

GP0
Q⊕QG/NGP0

id⊕φ′

²²

Â Ä // QR⊕Q∇S

id⊕φ

²²

πR⊕π∇ // // QR0 ⊕Q∇S0

id⊕φ0

²²
ind G

GP0
Q⊕∆GP0 ·QG

²²

Â Ä // QR⊕Q(ES ⊕ C)

²²

πR⊕δ // // QR0 ⊕Q(ES0 ⊕ C0)

²²
Q ker πW ⊕∆GP0 ·QG

α̃′

²²

Â Ä // QW ⊕Q(ES ⊕ C)

α̃

²²

πW⊕δ // // QW0 ⊕Q(ES0 ⊕ C0)

α̃0

²²
QG Â Ä // Q(A⊕ C) // // Q(A⊕ C0)

Since the upper and bottom exact sequences already exist at ZG-level, we get

Ωφ0 − Ωφ = −(ZG,ψ,ZG)
= −∂[QG,ψ].

(1.44)

To have full knowledge of the automorphism ψ it suffices to compute ψ(1).
For this, we have to start with the map β̃′ which locally derives from

Q Â Ä // QGP0
// //

(β̃′)loc

²²

QGP0/NGP0

Q Â Ä // Q⊕QGP0/NGP0
// // QGP0/NGP0

,

where we again identify ∆G0
P0

with ZGP0/NGP0
. By the K1-Simplification

Lemma 1.1.3 we may assume that

(β̃′)loc(1) = (
1

|GP0|
, 1 mod NGP0

).

The map φ′ is already known and we can neglect the inclusion i : ker πW ½
ind G

GP0
Z. The map α̃′ derives from the commutative diagram

∆GP0 ·QG Â Ä // Q ker πW ⊕∆GP0 ·QG // //

α̃′

²²

Q ker πW

∆GP0 ·QG Â Ä // QG // // Q ker πW
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By Proposition 4.1 of [Gr3] the map QG → Q ker πW is multiplication by
−h · 1

|GP0 |
NGP0

. To motivate this a little, note that we surely have to multiply
by the idempotent ε0 := 1

|GP0 |
NGP0

since ker πW ⊂ ind G
GP0
Z. Moreover, h

annihilates cok δ (cf. sequence (1.43)).

Again by K1-Simplification (Lemma 1.1.3) we may assume that

α̃′(x⊗ 1, y) = y − h−1ε0 · x,

where x⊗ 1 ∈ ker πW ⊂ ind G
GP0
Z = ZG⊗ZGP0

Z and y ∈ ∆GP0 · ZG.

We compute

ψ(1) = α̃′(i−1 ⊕ id)(id⊕ φ′)β̃′(1)
= α̃′(i−1 ⊕ id)(id⊕ φ′)( 1

|GP0 |
⊗ 1, 1 mod NGP0

)

= α̃′(i−1 ⊕ id)( 1
|GP0 |

⊗ 1, 1− ε0)

= 1− ε0 − 1
h|GP0 |

ε0.

Therefore, we get

Ωφ0 − Ωφ = ∂[ind G
GP0
Q,−h|GP0|]

by (1.44). This proves Theorem 1.4.3. 2

To complete this paragraph, we have to discuss how Ωφ varies if S is en-
larged by the orbit of a non-ramified prime P0. As before let S0 := S ∪ GP0.
The exact sequence (1.13) for the sets S and S0 together with the natural exact
sequence ZS ½ ZS0 ³ ind G

GP0
Z yield an exact sequence

∇S ½ ∇S0 ³ ind G
GP0
Z.

On the other hand, the map

ES0 → Z[G/GP0 ] = ind G
GP0
Z, u 7→

∑

g∈G/GP0

vP0(u
g)g

has kernel ES and finite cokernel. Thus, for each isomorphism φ : Q∇S →
Q(ES ⊕ C), where C is ZG-free of rank |S∗ram \ (S ∩ Sram)∗|, there is an iso-
morphism φ0 fitting in a commutative diagram
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Q∇S

φ //
Ä _

²²

Q(ES ⊕ C)Ä _

²²
Q∇S0

φ0 //

²²²²

Q(ES0 ⊕ C)

²²²²

ind G
GP0
Q ind G

GP0
Q

(1.45)

The result corresponding to Theorem 1.4.3 is exactly the same as for large
sets S (cf. [GRW], p. 60):

Theorem 1.4.4 Fix a set of data (D) and let P0 be a prime not in S which
does not ramify in L/K. Given a QG-isomorphism φ0 that fits in diagram
(1.45) we have an equality

Ωφ0 − Ωφ = ∂[QG, η].

Here, η ist the QG-automorphism given by

η(1) = |GP0|ε0 +
1

|GP0|
|GP0 |−1∑

i=0

iφi
P0

(1− ε0),

where ε0 = 1
|GP0 |

NGP0
and φP0 is the Frobenius automorphism at P0.

In particular, Ωφ0 − Ωφ has representing homomorphism

χ 7→ (|GP0|)dim V
GP0
χ · det(φP0 − 1|Vχ/V

GP0
χ )−1,

where Vχ is a CG-module with character χ.

Proof. Due to Theorem 1.4.3 and Proposition 1.4.2 we may assume that
S (and thus also S0) contains all the ramified primes. Hence, ∇S = ∆S and
∇S0 = ∆S0.
As before let S ′ be a finite set of places of L which contains S = S ∪ Sram

and is large enough to generate the ideal class group of L, and such that⋃
P∈S′ GP = G. But this time we insist in the additional property that P0 6∈ S ′

and set S ′0 := S ′ ∪ GP0. The first step in the construction of Tate sequences
then gives rise to the commutative diagram
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ES
Â Ä //
´ q

##FFFFFFÄ _

²²

A //´ q

##FFFFFFFÄ _

²²

R ´ q

##FFFFFFFÄ _

²²

ES0

Â Ä //

!!DD
DD

DD
Ä _

²²

A0
//

!! !!DD
DD

DD
Ä _

²²

R0

!! !!DD
DD

DD
Ä _

²²

ind G
GP0
Z Â Ä // ind G

GP0
WP0

// // ind G
GP0

∆GP0

JS
Â Ä //
´ q

""FF
FF

FF
F

²²

VS′ // //
´ q

""FFFFFF

²²²²

WS′ ´ q

""FF
FF

FF

²²²²

JS0

Â Ä //

!! !!CC
CC

CC

²²

VS′0
// //

!! !!CC
CC

CC

²²²²

WS′0

!! !!CC
CC

CC

²²²²

ind G
GP0
Z Â Ä // ind G

GP0
WP0

// // ind G
GP0

∆GP0

CL
Â Ä //

GGGGGG

GGGGGG

²²²²

V // //

GG
GG

GG
GG

GG
GG

GG
GG ∆G

GG
GG

GG
G

GG
GG

GG
G

CL
Â Ä //

²²²²

V // // ∆G

clS

## ##FFFFFF

clS0

(1.46)
Recall that WP0 ⊂ ∆GP0 × ZGP0 = ∆GP0 × ZGP0 since P0 is unramified

in L/K. The projection to the second component induces an isomorphism
pry : WP0 ' ZGP0 . Hence, the sequence

A ½ A0 ³ ind G
GP0

WP0

is an exact sequence of c.t. ZG-modules. Furthermore, the roof of the above
diagram consists of exact rows and columns after tensoring with Q:

QES
Â Ä //

Ä _

²²

QA // //
Ä _

²²

QRÄ _

²²
QES0

Â Ä //

²²²²

QA0
// //

²²²²

QR0

²²²²

ind G
GP0
Q Â Ä // ind G

GP0
QWP0

// // ind G
GP0

∆QGP0

(1.47)
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If we identify ind G
GP0
QWP0 with ind G

GP0
QGP0 , the injection of the bottom

sequence in (1.47) is induced by 1 7→ NGP0
.

The second step in the construction of Tate sequences yields a commutative
diagram

R
Â Ä //¶ s

%%KKK
KKK

KÄ _

²²

B // //¶ s

%%KKK
KKK

Ä _

²²

∆S ¶ s

%%KKK
KKÄ _

²²

R0
Â Ä //

## ##HHH
HHÄ _

²²

B0
// //

## ##HHH
HHÄ _

²²

∆S0

## ##HHH
HHÄ _

²²

ind G
GP0

∆GP0

Â Ä // ind G
GP0
ZGP0

// // ind G
GP0
Z

WS′
Â Ä //
µ r

$$III
II

²²²²

NS′ // //

²²²²

µ r

$$III
II

ZS µ r

$$III
III

²²²²

WS′0
Â Ä //

## ##GGGG

²²²²

NS′0
// //

## ##GGGG

²²²²

ZS0

## ##GGG
GG

²²²²

ind G
GP0

∆GP0

Â Ä // ind G
GP0
ZGP0

// // ind G
GP0
Z

∆G
Â Ä //

LLLLL
LLLLL ZG // //

LLLLL
LLLLL Z

LLLLLLL

LLLLLLL

∆G
Â Ä // ZG // // Z

(1.48)
As before, we choose the automorphisms β of QR and β0 of QR0 to be the

identity. We get a diagram whose top is that of diagram (1.48) tensored with
Q:

QR Â Ä //
´ q

""EE
EE

EE
E QB

π // //
´ q

ιB ""EE
EE

EE
E

' β̃

²²

∆QS ´ q

""EE
EE

EE

QR0
Â Ä //

!! !!CC
CC

CC
QB0

π0 // //

!! !!CC
CC

CC

' β̃0

²²

∆QS0

!! !!CC
CC

CC

ind G
GP0

∆QGP0

Â Ä // ind G
GP0
QGP0

// //

' β̃′

²²

ind G
GP0
Q

QR Â Ä //
³ p

ιR ""DD
DD

DD
D Q(R⊕∆S) // //

³ p

""

∆QS³ p

ι∆ ""DD
DD

DD

QR0
Â Ä //

!! !!CC
CC

CC
Q(R0 ⊕∆S0) // //

!! !!CC
CC

CC
∆QS0

!! !!CC
CC

CC

ind G
GP0

∆QGP0

Â Ä // ind G
GP0

(∆QGP0 ⊕Q) // // ind G
GP0
Q

As on earlier occasions, Lemma 1.1.2 implies that we can choose β̃ and
β̃0 such that the dotted injection Q(R ⊕ ∆S) ½ Q(R0 ⊕ ∆S0) in the above
diagram is ιR ⊕ ι∆.
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We also choose the automorphisms α and α0 to be the identity and get a
diagram

QES
Â Ä //
´ q

ιE

##GG
GG

GG
G Q(ES ⊕R) // //

´ q

##
' α̃

²²

QR ´ q

ιR

##GG
GG

GG
G

QES0

Â Ä // Q(ES0 ⊕R0) // //

' α̃0

²²

QR0

QES
Â Ä //
µ r

##HHH
HHH

H QA // //
µ r

ιA

##HHH
HHH

H QR µ r

##HHH
HHH

H

QES0

Â Ä // QA0
// // QR0

in which the maps α̃ and α̃0 are taken via Lemma 1.1.2 such that the dotted
arrow is just ιE ⊕ ιR.

Putting things together, we get the following commutative diagram which
defines an isomorphism η:

QB Â Ä //

β̃

²²

QB0
// //

β̃0

²²

ind G
GP0
QGP0

β̃′

²²

η

ªª

Q(R⊕∆S) Â Ä //

id⊕φ

²²

Q(R0 ⊕∆S0) // //

id⊕φ0

²²

ind G
GP0

(∆QGP0 ⊕Q)

Q(R⊕ ES) Â Ä //

α̃

²²

Q(R0 ⊕ ES0) // //

α̃0

²²

ind G
GP0

(∆QGP0 ⊕Q)

α̃′

²²

QA Â Ä // QA0
// // ind G

GP0
QWP0

pry

²²

QA Â Ä // QA0
// // ind G

GP0
QGP0

Note that the upper and bottom sequence already exist at ZG-level, and
so does the isomorphism pry. Hence, by Lemma 1.1.6

Ωφ0 − Ωφ = (ZG, η,ZG) = ∂[QG, η].

We are left with the computation of η(1). By the K1-simplification Lemma
1.1.3 and the definition of β̃′ we may assume that

β̃′(1) = (1− ε0, 1).
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The isomorphism pry ◦ α̃′ fits into a diagram

ind G
GP0
Q Â Ä // ind G

GP0
(∆QGP0 ⊕Q) // //

pryα̃′

²²

ind G
GP0

∆QGP0

ind G
GP0
Q Â Ä

1 7→NGP0 // ind G
GP0
QGP0

1 7→φP0−1
// // ind G

GP0
∆QGP0

and again by K1-simplification we may assume that

pryα̃
′(x, q) = NGP0

q + (1− ε0)


 1

|GP0|
|GP0 |−1∑

i=0

iφi
P0


 x.

Hence, we finally get

η(1) = pryα̃
′β̃′(1)

= pryα̃
′(1− ε0, 1)

= NGP0
+ (1− ε0)

1
|GP0 |

∑|GP0 |−1

i=0 iφi
P0

as desired. 2

1.5 The conjecture
Thanks to the results of the last paragraph we are now able to state the LRNC
for small sets of places. But before doing so we recall the basic ingredients of
this conjecture apart from the element Ωφ.

So let us fix a finite Galois extension L/K of number fields with Galois
group G and a finite G-invariant set S of places of L, which contains all the
archimedean primes. Then there are QG-isomorphisms

φ : ∆QS
'−→ QES,

and the Stark-Tate regulator is defined to be

Rφ : R(G) → C×
χ 7→ det(λSφ|HomG(Vχ̌, ∆CS)),

where λS is the Dirichlet map (1.14) and Vχ̌ is a CG-module whose character
is contragredient to χ. Furthermore, let S(K) := {P∩K|P ∈ S} and cS(χ) be
the leading coefficient of the Taylor expansion of the S-truncated L-function
LS(L/K, χ, s) at s = 0. For <(s) > 1 this is the function

LS(L/K, χ, s) =
∏

p 6∈S(K)

det(1− φPN(p)−s|V IP

χ ).
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One defines
Aφ : R(G) → C×

χ 7→ Rφ(χ)/cS(χ).

If we fix an algebraic closure Qc of Q, there is the following conjecture of Stark:

Conjecture 1.5.1 (Stark) Aφ(χ
σ) = Aφ(χ)σ for all σ ∈ Gal(Qc/Q).

Alternatively, one can choose a number field F , Galois over Q with Galois
group Γ, which is large enough such that all representations of G can be re-
alized over F . Then conjecture 1.5.1 is equivalent to Aφ(χ

σ) = Aφ(χ)σ for all
σ ∈ Γ, i.e. Aφ ∈ HomΓ(R(G), F×).

Let us denote by W (χ) the Artin root number of the character χ. Then it
holds (cf. [We], Prop. 7(b), p.57):

Proposition 1.5.2 If χ is an irreducible symplectic character of G, then
Aφ(χ)W (χ) ∈ R+.

Now we fix an embedding F ½ C and denote the corresponding infinite prime
by ℘∞. Define W (L/K, ·) ∈ HomΓ(R(G), JF ) by

W (L/K, χ)℘ =

{
W (χγ−1

) if χ is symplectic and ℘ = ℘γ
∞

1 otherwise

such that the homomorphism χ 7→ Aφ(χ)W (L/K, χ) is in Hom+
Γ (R(G), JF ) if

Stark’s conjecture holds.

For large S the LRNC now states

Conjecture 1.5.3 (LRNC for large S) The element Ωφ ∈ K0T (ZG) has
representing homomorphism χ 7→ Aφ(χ̌)W (L/K, χ̌).

In the construction of Ωφ for small sets S, the module ∆S has been replaced
by ∇S. We aim to define a modified Dirichlet map

λmod
S : ES ⊕ C −→ R⊗∇S,

where C is a free ZG-module of rank |S∗ram \ (S ∩ Sram)∗|. For this, we have to
take a closer look at the modules W 0

P, especially for ramified primes P.

Let us write φP for the Frobenius automorphism at P as well as for a fixed
lift of it. Recall the definition of the inertial lattice (cf. (1.11))

WP = {(x, y) ∈ ∆GP ⊕ ZGP : x = (φP − 1)y}.
Obviously, WP is the kernel of the map

∆GP × ZGP −→ ZGP

(g − 1, h) 7→ g − 1 + (1− φP)h.
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Hence, using the identifications concerning Z-duals explained in the prelimi-
naries, we achieve a description of W 0

P as the cokernel of the map (cf. [Gr3],
p.20)

ZGP −→ ZGP/NGP
× ZGP

1 7→ (NIP
, 1− φ−1

P ).

Proposition 1.5.4 Let κ denote the canonical epimorphism from ZG2
P onto

W 0
P and define

q : WP −→ ZG2
P

(x, y) 7→ (NIP
y, φ−1

P x).

Then it holds:

(1) The kernel of κ is generated by z = (NIP
, 1− φ−1

P ) and 0×∆(GP, GP),
where ∆(GP, GP) is the kernel of the canonical projection ZGP ³ ZGP.

(2) The diagram

Z Â Ä
17→NGP //

Ä _

²²

ZGP
// //

Ä _

ι1

²²

ZGP/NGPÄ _

ι1

²²
WP

Â Ä q //

prx

²²²²

ZG2
P

κ // //

φP·pr2

²²²²

W 0
P

(0,aug
GP

)

²²²²
∆GP

Â Ä // ZGP
// // Z

commutes and has exact rows and columns.

Proof. The diagram is taken from [GW], Lemma 4.1, but see [Gr3], p.20
et seq., where the full proposition is proved and wherefrom we have adopted
most of the notation. 2

We now set
dP :=

1

|GP|κ(|GP|, NGP
) ∈ QW 0

P.

Observe that this definition differs from the corresponding element dp in [Gr3].

Lemma 1.5.5 dP is a QGP-generator of QW 0
P.

Proof. It suffices to show that κ(0, 1) ∈ QGP · dP, since in this case
also κ(1, 0) ∈ QGP · dP and these two generate W 0

P. Let us set eP = |IP| and
fP = |GP|. By means of Proposition 1.5.4 we may compute

NIP
dP = κ(NIP

, f−1
P NGP

)
= κ(0, f−1

P NGP
+ φ−1

P − 1)
= κ(0, f−1

P NGP
+ (φ−1

P − 1)e−1
P NIP

+ 1− e−1
P NIP

)
= hPκ(0, 1),
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where hP = f−1
P NGP

+ (φ−1
P − 1)e−1

P NIP
+ 1 − e−1

P NIP
∈ QG×

P. Indeed, if we
decompose 1 into central idempotents, namely

1 = |GP|−1NGP
+ e−1

P NIP
(1− |GP|−1NGP

) + 1− e−1
P NIP

,

we find out that

h−1
P = e−1

P |GP|−1NGP
+ f−1

P

fP−1∑
i=0

iφ−i
P e−1

P NIP
(1− |GP|−1NGP

) + 1− e−1
P NIP

.

Hence, κ(0, 1) = h−1
P NIP

dP ∈ QGP · dP. 2

Let 1P, P ∈ S∗ram \ (S∩Sram)∗ be a ZG-basis of the free ZG-module C. We
choose a positive multiple h of hL, the class number of L, and uP ∈ L such
that vP(uP) = h and vQ(uP) = 0 for all finite primes Q 6= P. We define

λC : C −→ R⊗
⊕

P∈S∗ram\(S∩Sram)∗
ind G

GP
W 0

P ⊕ RS∞

1P 7→
(

h log N(P)
1

|GP|NGP
+ 1− 1

|GP|NGP

)
dP −

∑

Q|∞
log |uP|QQ.

By the second part of Proposition 1.5.4 we have

(0, aug GP
)(dP) = aug (φPpr2(1,

1

|GP|NGP
)) = 1.

Hence, the projection in sequence (1.13) sends λC(1P) to

h log N(P)−
∑

Q|∞
log |uP|Q = −

∑

all Q

log |uP|Q = 0.

Thus, the image of λC lies in R∇, and we may define a modified Dirichlet map
by

λmod
S : ES ⊕ C −→ R∇

(e, c) 7→ λS(e) + λC(c),
(1.49)

where λS is the usual Dirichlet map (1.14). Note that λmod
S depends on the

choices of h and the elements uP.

Definition 1.5.6 We call the map

Rmod
φ : R(G) −→ C×

χ 7→ det(λmod
S φ|HomG(Vχ̌,C∇S))

∏
P∈S∗ram\(S∩Sram)∗(−h|GP|)dim V

GP
χ̌

the modified Stark-Tate regulator and set

Amod
φ : R(G) −→ C×

χ 7→ Rmod
φ (χ)

cS∪Sram(χ)
.
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Remark. If the set S already contains all the ramified primes, we obviously
have Rmod

φ = Rφ and Amod
φ = Aφ.

Unfortunately, the above definition is not independent of the choices of h
and the uP. Nevertheless, we have the following

Proposition 1.5.7 The maps Rmod
φ , Amod

φ ∈ Hom(R(G),C×) are well defined
modulo Det (U(ZG)).

Proof. Let P ∈ S∗ram \ (S ∩ Sram)∗ and assume that we have defined
λ̃mod

S by another choice ũP ∈ L× such that vP(ũP) = h and vQ(ũP) = 0 for
all finite primes Q 6= P. Then there is a unit eP ∈ o

×
L with the property that

ePũP = uP. We have a commutative square

ES ⊕ C
λmod

S //

ψ

²²

C∇S

ES ⊕ C
λ̃mod

S // C∇S

where ψ is the ZG-automorphism which is the identity on ES and maps 1P to
(eP, 1P) ∈ ES ⊕ C. Indeed,

λ̃mod
S (eP, 1P) = −

∑

all Q

log |eP|QQ + d′P −
∑

Q|∞
log |ũP|QQ

= d′P −
∑

Q|∞
log |ePũP|QQ

= d′P −
∑

Q|∞
log |uP|QQ

= λmod
S (1, 1P),

where d′P =
(
h log N(P) 1

|GP|NGP
+ 1− 1

|GP|NGP

)
dP. Thus

det(λmod
S φ|HomG(Vχ̌,C∇S))

det(λ̃mod
S φ|HomG(Vχ̌,C∇S))

= det(λmod
S (λ̃mod

S )−1|HomG(Vχ̌,C∇S))

= det(ψ|HomG(Vχ̌,C(ES ⊕ C))),

and the map χ 7→ det(ψ|HomG(Vχ,C(ES ⊕C))) is the representing homomor-
phism of ∂[Q(ES ⊕C),Q⊗ ψ] and lies in Det (U(ZG)), since ψ already exists
at ZG-level (cf. (1.9)).

For the dependance on the integer h, suppose that we have made another
choice h̃ to define λ̃mod

S . We may assume that h | h̃ and even that |GP| divides
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m = h̃/h. Write εP for the idempotent 1
|GP|NGP

and choose the ũP to be u
mεP

P .
As verified below, we have a commutative square

Q(ES ⊕ C)
λ̃mod

S //

ψ

²²

C∇S

Q(ES ⊕ C)
λmod

S // C∇S

where the QG-automorphism ψ is the identity on QES and is given on QC by

1P 7→ (u
εP−1
P , (mεP + 1− εP)1P).

For the commutativity we compute

λmod
S (ψ(1P)) = λmod

S (u
εP−1
P , (mεP + 1− εP)1P)

= −
∑

Q|∞
log |uεP−1

P |QQ + (mh log N(P)εP + 1− εP)dP

−(mεP + 1− εP)
∑

Q|∞
log |uP|QQ

= (h̃ log N(P)εP + 1− εP)dP −mεP

∑

Q|∞
log |uP|QQ

= λ̃mod
S (1P).

We get

det(λ̃mod
S φ|HomG(Vχ̌,C∇S))

det(λmod
S φ|HomG(Vχ̌,C∇S))

= det(ψ|HomG(Vχ̌,C(ES ⊕ C)))

=
∏

P∈S∗ram\(S∩Sram)∗
mdim V

GP
χ̌

as desired. 2

The properties of the homomorphism Amod
φ are summarized in the following

Theorem 1.5.8 Fix a set of data (D). Let F be a number field, Galois over
Q with Galois group Γ, which is large enough such that all representations of
G can be realized over F . Then the following holds:

(1) Amod
φ (χσ) = Amod

φ (χ)σ for all σ ∈ Γ if and only if Stark’s conjecture
(1.5.1) holds.

(2) If χ is an irreducible symplectic character of G, then Amod
φ (χ)W (χ) ∈ R+.
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(3) If φ′ : Q∇ → Q(ES ⊕ C) is another QG-isomorphism, then

Amod
φ′ (χ)

Amod
φ (χ)

≡ det(φ−1φ′|HomG(Vχ̌,C∇)) mod Det (U(ZG)).

(4) Let P0 be a prime not in S which ramifies in L/K. Given an integral
multiple h of hL, the class number of L, and QG-isomorphisms φ and φ0

as in diagram (1.38) we have an equality

Amod
φ0

(χ)

Amod
φ (χ)

≡ (−h|GP0|)dim V
GP0
χ̌ mod Det (U(ZG)).

(5) Let P0 be a prime not in S which does not ramify in L/K. Given QG-
isomorphisms φ and φ0 as in diagram (1.45) we have an equality

Amod
φ0

(χ)

Amod
φ (χ)

≡ (|GP0|)dim V
GP0
χ̌ · det(φP0 − 1|Vχ̌/V

GP0
χ̌ )−1 mod Det (U(ZG)).

Before proving the theorem, we now point out how to state the LRNC for
small sets of places.
Assume that Stark’s conjecture holds. By (1), (2) and Proposition 1.5.7 we
can view the map

χ 7→ Amod
φ (χ̌)W (L/K, χ̌)

as a representing homomorphism of an element in K0T (ZG) via the isomor-
phism (1.9). Since Theorem 1.5.8 together with Proposition 1.4.2, Theorem
1.4.3 and Theorem 1.4.4 show that this homomorphism exactly behaves like
Ωφ, it is now evident to state the

Conjecture 1.5.9 (LRNC for small S) The element Ωφ ∈ K0T (ZG) has
representing homomorphism χ 7→ Amod

φ (χ̌)W (L/K, χ̌).

Theorem 1.5.8 now implies the

Corollary 1.5.10 The Lifted Root Number Conjecture for small sets of places
is equivalent to the Lifted Root Number Conjecture for large sets of places.

For this reason we refer to conjecture 1.5.9 as well as to conjecture 1.5.3 as
the Lifted Root Number Conjecture.

The element Ωφ decomposes into p-parts Ω
(p)
φ via the isomorphism (1.7). If

we choose a prime ℘ in F above p and an embedding jp : F ½ F℘ for each p,
Stark’s conjecture asserts that the map

(Amod
φ )(p) : χ 7→ jp(A

mod
φ (j−1

p (χ)))

lies in HomΓ℘(Rp(G), F×
℘ ). Conjecture 1.5.9 localizes to
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Conjecture 1.5.11 (LRNC for small S at the prime p) The element Ω
(p)
φ ∈

K0T (ZpG) has representing homomorphism χ 7→ (Amod
φ )(p)(χ̌).

We obviously have the

Corollary 1.5.12 The Lifted Root Number Conjecture is true for L/K if and
only if Conjecture 1.5.11 is true for L/K and all primes p.

We conclude this section with the
Proof of Theorem 1.5.8. Because of the commutative triangle

Q∇
φ−1φ′

}}||
||

||
||

||
|

φ′

²²

Q∇ φ // Q∇
assertion (3) is clear, and since the map

χ 7→ det(φ−1φ′|HomG(Vχ̌,C∇))

commutes with the action of Γ, (1) is independent of the choice of φ. Hence,
we may take an arbitrary embedding φS : ∆S ½ ES and choose φ = φ∇ fitting
in a diagram

∆QS
φS //

Ä _

²²

QESÄ _

²²
Q∇ φ∇ //

²²²²

Q(ES ⊕ C)

²²²²⊕
P∈S∗ram\(S∩Sram)∗

ind G
GP
QW 0

P
φC // QC

where φC sends 1 ⊗ dP to 1P. After tensoring with C we can extend the
above diagram to

∆CS
φS //

Ä _

²²

CESÄ _

²²

λS // ∆CSÄ _

²²

C∇ φ∇ //

²²²²

C(ES ⊕ C)

²²²²

λmod
S // C∇

²²²²⊕
P∈S∗ram

P6∈S∗

ind G
GP
CW 0

P φC // CC
λC //

⊕
P∈S∗ram

P 6∈S∗

ind G
GP
CW 0

P
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where λC is the map λC above composed with the canonical projection
onto

⊕
ind G

GP
CW 0

P, hence

λC(1P) =

(
h log N(P)

1

|GP|NGP
+ 1− 1

|GP|NGP

)
dP.

Thus, we get

Rmod
φ∇ (χ)

RφS
(χ)

=
det(λCφC |HomG(Vχ̌,

⊕
ind G

GP
CW 0

P))
∏

P∈S∗ram\(S∩Sram)∗(−h|GP|)dim V
GP
χ̌

=
∏

P∈S∗ram\(S∩Sram)∗

det(h log N(P) 1
|GP|NGP

+ 1− 1
|GP|NGP

|Vχ̌)

(−h|GP|)dim V
GP
χ̌

=
∏

P∈S∗ram\(S∩Sram)∗

(− log N(P)

|GP|
)dim V

GP
χ̌

.

By Proposition 6 in [We], p. 50 we have

cS∪Sram(χ)

cS(χ)
=

∏

P∈S∗ram\(S∩Sram)∗
log N(p)dim V

GP
χ̌ det(1− φP| dim V

IP

χ̌ /V
GP

χ̌ ),

where p is the prime in K below P. Writing eP/p for the ramification index of
P over p, we end up with

AφS
(χ)

Amod
φ∇ (χ)

=
∏

P∈S∗ram\(S∩Sram)∗
(−eP/p)

dim V
GP
χ̌ det(1− φP| dim V

IP

χ̌ /V
GP

χ̌ ).

Since the right hand side commutes with the action of Γ this completes the
proof of (1).

If χ is an irreducible symplectic character one knows that W (χ)/cS(χ) ∈
R+ for any set S and likewise RφS

(χ) ∈ R+ (cf. [We], Lemma 11c, p.50 and
Proposition 7b, p. 57 resp. its proof). Since dim V

GP

χ̌ is even in this case, we
get (2). For (4) we consider the diagram

∆GP0 · RG Â Ä //

'φ′−1

²²

R(ES ⊕ C) δ // //

λmod
S

²²

R(ES0 ⊕ C0)

λmod
S0

²²
RG/NGP0

Â Ä // R∇S

π∇ // // R∇S0

where the upper sequence derives from (1.36) and the lower sequence from
(1.35). The isomorphism φ′ has been defined in (1.37). We have to check
commutativity.
For the right hand square it suffices to show that

λmod
S0

(δ(1P0)) = π∇(λmod
S (1P0)).
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The projection π∇ is induced from W 0
P0

³ Z which maps dP0 to 1. Hence

π∇(λmod
S (1P0)) = π∇

((
h log N(P0)

1

|GP0|
NGP0

+ 1− 1

|GP0|
NGP0

)
dP0

−
∑

Q|∞
log |uP0|QQ




= h log N(P0)P0 −
∑

Q|∞
log |uP0|QQ

= λmod
S0

(uP0 , 0)

= λmod
S0

(δ(1P0))

as desired. For the left hand square let α ∈ ∆GP0 and x ∈ RG. We have
to verify that λmod

S (u−αx
P0

, αx · 1P0) = αx · κ(1, 0), where κ is the epimorphism
from Proposition 1.5.4 for the prime P0. But this is true, since

λmod
S (u−αx

P0
, αx · 1P0) = −

∑

Q|∞
log |u−αx

P0
|QQ + αx(dP0 −

∑

Q|∞
log |uP0|QQ)

= αxdP0

= αx

(
1− 1

|GP0|
NGP0

)
dP0

and

κ(1, 0) = κ

(
1,

1

|GP0|
NGP0

)
− κ

(
0,

1

|GP0|
NGP0

)

= dP0 −
1

|GP0|
NGP0

h−1
P0

NIP0
dP0

=

(
1− 1

|GP0|
NGP0

)
dP0 ,

where hP0 has been defined in the proof of Lemma 1.5.5.
Now we can glue the above diagram and diagram (1.38):

CG/NGP0

φ′ //
Ä _

²²

∆GP0 · CG
φ′−1

//
Ä _

²²

CG/NGP0Ä _

²²

C∇S

φ //

²²²²

C(ES ⊕ C)
λmod

S //

²²²²

C∇S

²²²²

C∇S0

φ0 // C(ES0 ⊕ C0)
λmod

S0 // C∇S0

Thus, we get

det(λmod
S φ|HomG(Vχ̌,C∇S)) = det(λmod

S0
φ0|HomG(Vχ̌,C∇S0))
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and cS∪Sram(χ) = cS0∪Sram(χ), since P0 ramifies in L/K. Now (4) is clear.
For (5) we may assume that S contains all the ramified primes. Hence, by
Proposition 5 in [GRW] or Proposition 8(b), p.11 in [We] (but observe that
the Dirichlet map there is the negative of ours) we get

Amod
φ0

(χ)

Amod
φ (χ)

= (|GP0|)dim V
GP0
χ · det(1− φP0|Vχ/V

GP0
χ )−1.

Furthermore, dim V
GP0
χ = dim V

GP0
χ̌ and

[χ 7→ det(φP0 − 1|Vχ̌/V
GP0
χ̌ ) det(1− φP0|Vχ/V

GP0
χ )−1] = [χ 7→ det(φ−1

P |Vχ)],

which lies in Det (U(ZG)). This completes the proof of (5) and the theorem. 2

In the next chapter we will give an application of conjecture 1.5.9 in the
context of tame CM-extensions.



Chapter 2

Tame CM-extensions

In this chapter we apply the results of the previous section to CM-extensions
of number fields which will soon assumed to be tame above a fixed rational
prime p 6= 2.
So let L/K be a CM-extension, i.e. K is totally real and L is a totally imagi-
nary quadratic extension of a totally real number field. Complex conjugation
on C induces an automorphism on L which is independent of the embedding
into C (cf. [Wa], p. 38). We denote this automorphism by j and refer to it
as complex conjugation as well. If L/K is Galois with Galois group G, this
automorphism lies in the center of G.

For any G-module M we define submodules

M+ := {m ∈ M : jm = m} ,

M− := {m ∈ M : jm = −m} .

M+ is a module over the ring ZG+ := ZG/(1 − j) = Z[G/〈j〉], whereas M−

has a ZG− := ZG/(1 + j) action, but ZG− is not a ring, since 1−j
2
6∈ ZG−.

Examples.

(1) For M = ZG we have ZG− = (1 − j)ZG and multiplication by (1 − j)
induces an isomorphism

ZG− ' ZG−.

(2) If we apply the + functor to M = L, we get the uniquely determined
maximal real subfield L+ of L.

(3) If M = o
×
L , the global units of L, the minus part of M is just the kernel of

the Dirichlet map, which consists of the roots of unity in L. We denote
these by µL and thus

(o×L)− = µL.

51
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(4) Let us denote the set of all infinite primes of L by S∞. Since j acts on
S∞ as the identity, we have

(∆S∞)− = (ZS∞)− = 0.

(5) If M is any 〈j〉-module and M(1) is the twisted 〈j〉-module, i.e. M =
M(1) as sets and j acts on M(1) such as −j on M , we have

M− = M(1)+.

Let R be a number field or (a localization of) the ring of integers of a
number field. An exact sequence A ½ B ³ C of RG-modules gives rise to a
long exact sequence

A− ½ B− → C− → H0(〈j〉, A) → H0(〈j〉, B) → H0(〈j〉, C)

→ H1(〈j〉, A) → · · · ,

where we make the convention that all occurring cohomology groups are Tate
cohomology groups if not otherwise stated. Indeed, by example (5) we get a
long exact sequence

A− ½ B− → C− → H1(〈j〉, A(1)) → H1(〈j〉, B(1)) → H1(〈j〉, C(1))

→ H2(〈j〉, A(1)) → · · ·

and for any G-module M and for all i ∈ Z we have isomorphisms

H i(〈j〉,M) ' H i+1(〈j〉,M(1)).

Since 〈j〉 is cyclic and M(1)(1) = M it suffices to check this for i = −1, and
in fact

H−1(〈j〉,M) = M−/(1− j)M = M(1)+/(1 + j)M(1) = H0(〈j〉,M(1)).

Hence, the minus functor is left exact, and even exact if 2 is invertible in R.

If a finitely generated G-module M decomposes in

M = M+ ⊕M−,

the natural maps
H i(U,M+) → H i(U,M)+,

H i(U,M−) → H i(U,M)−

are isomorphisms for all subgroups U of G of odd order, i ∈ Z. Indeed, the
composite map

H i(U,M) ' H i(U,M+)⊕H i(U,M−) → H i(U,M)+⊕H i(U,M)− ' H i(U,M)
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is the identity, Here, the rightmost isomorphism exists, because H i(U,M) is
finite of odd order and hence also decomposes in a plus and a minus part.

If p 6= 2 and M is a ZpG-module, there is a natural decomposition

M = M+ ⊕M−

which induces an isomorphism

K0T (ZpG) ' K0T (ZpG+)⊕K0T (ZpG−). (2.1)

These isomorphisms combine to an isomorphism

K0T (Z[1
2
]G) ' K0T (Z[1

2
]G+)⊕K0T (Z[1

2
]G−).

We recall some notation to describe the isomorphism (2.1) in terms of repre-
senting homomorphisms. Let F be a number field which is large enough such
that all representations of G can be realized over F and which is Galois over
Q with Galois group Γ. Choose a prime ℘ in F above p and denote the ring
of virtual characters of G with values in Qc

p by Rp(G). By (1.8) the elements
in K0T (ZpG) are represented by homomorphisms in HomΓ℘(Rp(G), F×

℘ ).
A character χ is called even if χ(j) = χ(1), and it is called odd if χ(j) = −χ(1).
Let us define R+

p (G) and R−
p (G) to be the subrings of Rp(G) generated by

even and odd characters, respectively. The Hom description and the above
isomorphism now give

HomΓ℘(Rp(G), F×
℘ )

Det (ZpG×)
' HomΓ℘(R+

p (G), F×
℘ )

Det (ZpG
×
+)

⊕ HomΓ℘(R−
p (G), F×

℘ )

Det (ZpG
×
−)

,

induced by the canonical restriction maps.

We denote the image of Ω
(p)
φ in K0T (ZpG+) and K0T (ZpG−) by Ω

(p),+
φ and

Ω
(p),−
φ , respectively. Accordingly, the LRNC at p decomposes into a plus part

and a minus part:

Proposition 2.0.13 Let p 6= 2 be a rational prime and L/K a Galois CM-
extension with Galois group G. The LRNC at p (Conjecture 1.5.11) is true if
and only if the following two assertions hold

(1) Ω
(p),+
φ has representing homomorphism

[χ 7→ (Amod
φ )(p)(χ̌)] ∈ HomΓ℘(R+

p (G), F×
℘ ).

(2) Ω
(p),−
φ has representing homomorphism

[χ 7→ (Amod
φ )(p)(χ̌)] ∈ HomΓ℘(R−

p (G), F×
℘ ).
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In the following, we only deal with the minus part of the LRNC.

For later use we state the following Lemma, which is taken from [Ch2],
p.369.

Lemma 2.0.14 Let L/K be a tame Galois extension of number fields and P a
finite prime of L. Then the inertia group IP is cyclic and we choose a generator
a of IP. Let b ∈ GP be a lift of the automorphism φ−1

P ∈ GP/IP which is of
maximal order among all such elements. Define eP = |IP|, fP = |GP/IP| and
qp = |oK/p|, where p = P ∩K.
Then GP is generated by a and b, and

ab = baqp

bfP = acP

for some integer cP | eP.

2.1 Ray class groups
Let L/K be a Galois CM-extension with Galois group G. The class group
clL occurs in the construction of a Tate-sequence for S∞, as it is the torsion
submodule of ∇. Hence, one expects a relation between the LRNC and clL.
But clL rarely is c.t.; so we intend to replace it by an appropriate c.t. ray class
group.

If T is a finite G-invariant set of non-archimedean places of L we write clTL
for the ray class group to the ray MT :=

∏
P∈T P. Let S be a second finite

G-invariant set of places of L which contains all the archimedean primes and
satisfies S ∩T = ∅. We write Sf for the set of all finite primes in S. There is a
natural map ZSf → clTL which sends each prime P ∈ Sf to the corresponding
class [P] ∈ clTL. We denote the cokernel of this map by clTS . Further, define

ET
S := {x ∈ ES : x ≡ 1 mod MT} .

Since the sets S and T are both G-invariant, all these modules are equipped
with a natural G-action. Hence, we have the following exact sequences of
G-modules

ET
S∞ ½ ET

S
v−→ ZSf → clTL ³ clTS , (2.2)

where v(x) =
∑

P∈Sf
vP(x)P for x ∈ ET

S , and

ET
S ½ ES → (oS/MT )×

ν−→ clTS ³ clS, (2.3)

where the map ν lifts an element x ∈ (oS/MT )× to x ∈ oS and sends it to the
ideal class [(x)] ∈ clTS of the principal ideal (x). We define

AT
S := (clTS )−.
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If S = S∞, we also write AT
L and ET

L instead of AT
S∞ and ET

S∞ .

Since (o×L)− = µL, one can always find primes P of L such that (ET
L )− = 1

for all sets of places T with P ∈ T . One only has to check if 1−ζ 6∈ ∏
g∈G/GP

Pg

for all ζ ∈ µL, ζ 6= 1; this is true for all but finitely many primes of L.

The main result of this section is

Theorem 2.1.1 Let L/K be a Galois CM-extension with Galois group G,
p 6= 2 a rational prime and Sp = {P ⊂ L : P | p}. Assume that for all P ∈
Sp ∩ Sram the ramification is tame or j ∈ GP. Choose a prime P0 of L such
that 1− ζ 6∈ ∏

g∈G/GP0
P

g
0 for all ζ ∈ µL, ζ 6= 1.

Then AT
L ⊗Zp is a c.t. G-module for each finite G-invariant set T of places of

L that contains P0 and all the ramified primes which are not in Sp.

Remark. If L/K is tame above p and G is abelian, the above theorem follows
from the proof of Proposition 7 in [Gr2]. The condition j ∈ GP is technical;
but it sometimes is useful that j acts on local objects. The following proof is
a good example.

Proof. It suffices to show that H i(P,AT
L ⊗ Zp) = 1 for i ∈ Z and all

q-Sylow subgroups P of G. This is clear for q 6= p. So let P be a p-Sylow
subgroup.
For any prime P of L we write U0

P for the group of local units of the completion
LP of L at P. Furthermore, we denote the group of local units congruent to
1 mod Pn by Un

P. Let us define an idèle subgroup

JT
L :=

∏
P∈T

U1
P ×

∏

P 6∈T

U0
P.

The following exact sequences define CT
L :

ET
L ½ JT

L ³ CT
L , (2.4)

CT
L ½ CL ³ clTL. (2.5)

For both sequences we take the long exact sequence in homology with respect
to P . Thereafter, we apply the minus functor, which is exact in this case,
since all the occurring homology groups are finite of odd order. The fact that
P0 ∈ T forces

H i(P,ET
L )− = H i(P, (ET

L )−) = H i(P, 1) = 1,

and hence sequence (2.4) implies

H i(P, JT
L )− ' H i(P, CT

L )−.
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Global class field theory admits a similar argument for sequence (2.5):

H i(P, CL)− ' H i−2(P,Z)− = H i−2(P,Z−) = H i−2(P, 0) = 1

and we therefore get isomorphisms

H i+1(P,CT
L )− ' H i(P, clTL)− = H i(P, clTL ⊗ Zp)

− = H i(P, AT
L ⊗ Zp).

Hence, it suffices to show that H i(P, JT
L )− = 1 for all i ∈ Z. The unit groups

Un
P are c.t. PP-modules if P does not ramify in L/K. Even before taking minus

parts, we thus get an isomorphism

H i(P, JT
L ) '

∏

p∈Sram(K)

H i(P,
∏

P|p
U

nP

P ),

where nP is equal to 1 or 0 depending on wether P ∈ T or not. If p lies over a
rational prime q 6= p, we have nP = 1 for all P | p by assumption. But in this
case the unit groups U1

P are pro-q-groups and thus H i(P,
∏

P|p U1
P) = 1.

We are left with the case P ∈ Sram ∩ Sp. For this, let F be the fixed field of
P , and indicate the primes in F by a subscript F . We have

H i(P,
∏

P|p
U

nP

P ) '
∏

pF |p
H i(P,

∏

P|pF

U
nP

P ) =
∏

pF |p
H i(PP, U

nP

P ).

If P is tamely ramified, it cannot ramify in L/F , since PP is a p-group.
Hence, we get H i(PP, U

nP

P ) = 1 in this case. If otherwise j ∈ GP, the ac-
tion of j commutes with the above isomorphism, and we have to show that
H i(PP, U

nP

P )− = 1, nP ∈ {0, 1}. By local class field theory

H i(PP, L×P)− ' H i−2(PP,Z)− = H i−2(PP,Z−) = H i−2(PP, 0) = 1

and hence the short exact sequence

UP ½ L×P ³ Z

implies H i(PP, UP)− = 1. Finally, the sequence

U1
P ½ UP ³ (o/P)×

forces H i(PP, U1
P)− = H i(PP, UP)− = 1, since the order of (o/P)× is relatively

prime to p, and hence H i(PP, (o/P)×) = 1. 2

2.2 L-series and Stickelberger elements
In this section we fix, as before, a Galois CM-extension L/K of number fields
with Galois group G and denote the complex conjugation on L by j. Let
wL = |µL| be the number of roots of unity in L and

Q := [o×L : µLo
×
L+ ] ∈ {1, 2} .
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For the fact that Q equals 1 or 2 see [Wa], Theorem 4.12. By loc.cit. Theorem
4.10 the class number of L+ divides the class number of L. The quotient h−L
is called the relative class number.
For any finite set S of places of L and any character χ of G we denote the
S-truncated L-function associated to χ by LS(L/K, χ, s). Furthermore, the
completed Artin L-series is defined to be

Λ(L/K, χ, s) = c(L/K, χ)s/2
L∞(L/K, χ, s)LS∞(L/K, χ, s),

where

c(L/K, χ) = |dK |χ(1)N(f(χ))

L∞(L/K, χ, s) =

{
LR(s)

|S∞(K)|χ(1) if χ is even
LR(s + 1)|S∞(K)|χ(1) if χ is odd

LR(s) = π−s/2Γ(s/2).

Here, dK is the discriminant of the number field K, f(χ) the Artin conductor of
the character χ and Γ(s) the usual complex Gamma function. The completed
Artin L-series satisfies the functional equation

Λ(L/K, χ, s) = W (χ)Λ(L/K, χ̌, 1− s), (2.6)

where W (χ) is the Artin root number of the character χ and has absolute
value 1 (cf. [Neu], Kap. VII, Theorem (12.6)).
Let Irr (G) be the set of irreducible characters of G and denote the trivial
character by 1G.

We now prove the following result:

Proposition 2.2.1 Let L/K be a Galois CM-extension of number fields with
Galois group G. Keeping the above notation we have

∏

χ∈Irr (G)

χ odd

LS∞(L/K, χ, 0)χ(1) = ±2|S∞| · h−L
Q · wL

,

where the product runs through all the odd irreducible characters of G.

Proof. Let us denote the Riemann zeta function of a number field F by
ζF (s). We have (cf. [Neu], Kap. VII, Korollar (10.5))

ζL(s) = ζK(s)
∏

1G 6=χ∈Irr (G)

LS∞(L/K, χ, s)χ(1)

ζL+(s) = ζK(s)
∏

1G 6=χ∈Irr (G)

χ even

LS∞(L/K, χ, s)χ(1)
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Taking residuals at s = 1 of both sides in these equations yields

(2π)|S∞| · hLRL

wL

√
|dL|

= res s=1ζK(s)
∏

1G 6=χ∈Irr (G)

LS∞(L/K, χ, 1)χ(1)

2|S∞| · hL+RL+

2
√
|dL+| = res s=1ζK(s)

∏

1G 6=χ∈Irr (G)

χ even

LS∞(L/K, χ, 1)χ(1),

where RL and RL+ are the regulators of L and L+, respectively. If we divide
the first by the second equation, we get by [Wa], Proposition 4.16

(2π)|S∞| · h−L
QwL

√
|dL/dL+ | =

∏

χ∈Irr (G)

χ odd

LS∞(L/K, χ, 1)χ(1).

Specializing the functional equation (2.6) at s = 1 for odd characters χ,

c(L/K, χ)1/2π−|S∞(K)|χ(1)LS∞(L/K, χ, 1) = W (χ)LS∞(L/K, χ̌, 0),

gives

(2π)|S∞| · h−L
QwL

√
|dL/dL+ | =

∏

χ∈Irr (G)

χ odd

(
LS∞(L/K, χ̌, 0)W (χ)c(L/K, χ)−1/2π|S∞(K)|χ(1)

)χ(1)

(1)
=

π|S∞|√
|dK ||G|/2

∏

χ∈Irr (G)

χ odd

(
LS∞(L/K, χ, 0)W (χ)N(f(χ))−1/2

)χ(1)

(2)
= ± π|S∞|√

|dK ||G|/2

∏

χ∈Irr (G)

χ odd

(
LS∞(L/K, χ, 0)N(f(χ))−1/2

)χ(1)

Equality (1) holds, since
∑

χ odd χ(1)2 = |G|/2 and |S∞(K)| · |G|/2 = |S∞|. As
the product

∏
χ odd W (χ) is real and has absolute value 1, it equals ±1 and we

get (2).

Let us write δE/F for the relative discriminant of an extension E/F of
number fields, in particular δE/Q = (dE). We now compute

∏
χ∈Irr (G)

χ odd

N(f(χ))χ(1) =

∏
χ∈Irr (G)

N(f(χ))χ(1)

∏

χ∈Irr (G)

χ even

N(f(χ))χ(1)

(1)
=

N(δL/K)

N(δL+/K)

(2)
= N(δL+/K)N(δL/L+)

(2)
= N(δL+/K) |dL|

|dL+ |2
(2)
= |dL|

|dL+ |·|dK ||G|/2 .
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Equality (1) follows from the "Führerdiskriminantenproduktformel" (cf. [Neu],
Kap. VII, (11.9)). For the equalities (2) note that in any tower F ⊂ E ⊂ M

of number fields we have δM/F = δ
[M :E]
E/F NE/F (δM/E).

If we put this in the previous equation, we obtain the desired result. 2

For each irreducible character χ of G define

εχ :=
χ(1)

|G|
∑
g∈G

χ(g−1)g.

The εχ are orthogonal central idempotents of CG. Each generates one of the
minimal ideals of the center of CG, hence

Z(CG) =
⊕

χ∈Irr (G)

Cεχ.

We define the following variant of a Stickelberger element which is closely
related to the non-abelian Stickelberger-functions defined in [Ha]:

ω :=
∑

χ∈Irr (G)

LS∞(L/K, χ̌, 0)εχ ∈ Z(CG) (2.7)

Each C-valued function on G extends to a C-linear function on CG. In par-
ticular, this applies to the irreducible characters of G, and obviously

χ(ω) = χ(1)LS∞(L/K, χ̌, 0).

This property uniquely defines ω. If G is abelian, this element coincides with
the element ω defined in [Gr3]. A priori, ω is an element of the group ring CG,
but we actually have

Proposition 2.2.2 ω ∈ Z(QG), and even ω ∈ Z(QG−)× if |S∞| > 1.

Proof. Note that the vanishing order of LS∞(L/K, χ, s) in s = 0 equals

rS∞(χ) =
∑

P∈S∞

dim V GP

χ − dim V G
χ

by [Ta2], Proposition 3.4, p. 24. Hence, LS∞(L/K, χ, 0) 6= 0 if and only if χ is
odd or χ is the trivial character and |S∞| = 1. This shows ω ∈ Z(CG−)× if
|S∞| > 1. The coefficient of ω at g ∈ G equals

∑

χ∈Irr (G)

LS∞(L/K, χ̌, 0)
χ(1)

|G| χ(g−1)

which is invariant under Galois action, since LS∞(L/K, χ̌, 0)σ = LS∞(L/K, χ̌σ, 0)
for all σ ∈ Gal(Qc/Q) by Stark’s conjecture, which is a theorem for odd char-
acters and the trivial character (cf. [Ta2] Th. 1.2, p. 70 and Prop. 1.1, p. 44). 2

Note that the proof also shows that in any case 1−j
2

ω ∈ Z(QG−)×.
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Definition 2.2.3 Let L/K be a Galois CM-extension with Galois group G
and S, T be G-invariant sets of places of L. We define a Stickelberger element
θT

S ∈ Z(CG) by

χ(θT
S ) = χ(ω)

∏
P∈T ∗

det(1− φ−1
P qp|V IP

χ )
∏

P∈S∗
det(1− φ−1

P |V IP

χ /V GP

χ ),

where p = P ∩K and qp = N(p).

Since χ(θT
S ) differs from χ(ω) by a factor which commutes with Galois

action for each odd irreducible character χ, it follows from Proposition 2.2.2
that 1−j

2
θT

S ∈ Z(QG−)×. This enables us to make the following

Definition 2.2.4 Let F/Q be a finite Galois extension with Galois group Γ
such that each odd character of G can be realized over F . Then we define
ΘT

S ∈ HomΓ(R−(G), F×) by declaring

ΘT
S (χ) = χ(1)−1χ(θT

S )

on irreducible odd characters χ.

To afford an easier reading we will refer to the following setting as (∗):
• L/K is a Galois CM-extension with Galois group G.

• p 6= 2 is a rational prime.

• Sp = {P ⊂ L : P | p}
• Each P ∈ Sp ∩ Sram is at most tamely ramified or j ∈ GP.

• P0 is a prime of L, unramified in L/K such that 1 − ζ 6∈ ∏
g∈G/GP0

P
g
0

for all ζ ∈ µL, ζ 6= 1.

• T is a finite G-invariant set of places of L that contains P0 and all the
ramified primes which are not in Sp; T ∩ Sp = ∅.

• S1 is the set of all wildly ramified primes above p.

There is the following correspondence between the Stickelberger elements
and the ray class groups AT

L ⊗ Zp as defined in Theorem 2.1.1.

Proposition 2.2.5 Fix a setting (∗). Then there exists an α ∈ Z×p such that

|AT
L ⊗ Zp| = α ·

∏

χ∈Irr (G)

χ odd

(ΘT
S1

(χ))χ(1).

Moreover, if G is abelian, we have 1−j
2

θT
S1
∈ ZpG

− and

|AT
L ⊗ Zp| = |(ZpG)−/θT

S1
(ZpG)−|.
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Proof. For an integer m ∈ Z let mp := pvp(m). Then the minus part of
sequence (2.3) for S = S∞ tensored with Q, namely

µL ⊗ Zp ½ (oL/MT )×,− ⊗ Zp → AT
L ⊗ Zp ³ cl−L ⊗ Zp, (2.8)

implies the equality

|AT
L ⊗ Zp| = |AT

L|p =
h−L,p

wL,p

|(oL/MT )×,−|p. (2.9)

Let us write a ∼ b if ab−1 ∈ Z×p . Then
∏

χ∈Irr (G)

χ odd

(χ(1)−1χ(ω))χ(1) =
∏

χ∈Irr (G)

χ odd

LS∞(L/K, χ, 0)χ(1) ∼ h−L,p

wL,p

by Proposition 2.2.1. For P ∈ T we compute
∏

χ∈Irr (G)

χ odd

det(1− φ−1
P qp|V IP

χ ) = det(1− φ−1
P qp|

⊕

χ odd

χ(1)V IP

χ )

= det(1− φ−1
P qp|C[G/IP]−)

= det(1− φ−1
P qp|Z[G/IP]−)

∼ |Zp[G/IP]−/1− φ−1
P qp|

= |Zp[G/IP]−/qp − φP|
(1)
= |(oL/

∏

g∈G/GP

P
g)×,−|p.

Here, equation (1) derives from the exact sequence

Zp[G/IP] ½ Zp[G/IP] ³ (oL/
∏

g∈G/GP

P
g)× ⊗ Zp,

where the first map is 1 7→ qp − φP and the second sends 1 to a generator of
(oL/P)×. Since j ∈ GP for all primes P ∈ S1, we have

∏

χ∈Irr (G)

χ odd

det(1− φ−1
P |V IP

χ /V GP

χ ) ∼ 1.

Indeed, if actually j ∈ IP, the determinant equals 1. Otherwise it is a product
of some 1−ζ2m, where ζ2m are roots of unity of even order, and hence relatively
prime to p. Thus, we get

∏

χ∈Irr (G)

χ odd

(ΘT
S1

(χ))χ(1) ∼ h−L,p

wL,p

∏
P∈T ∗

|(oL/
∏

g∈G/GP

P
g)×,−|p = |AT

L|p
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by (2.9).

Now let G be abelian. If 1−j
2

θT
S1
∈ ZpG

−, the left hand side of the above
equation equals |(ZpG)−/θT

S1
(ZpG)−|. Finally, the integrality of 1−j

2
θT

S1
follows

from [Ca] p. 49. More precisely, define for each prime P a local module MP by

MP = 〈NIP
, 1− |IP|−1NIP

φ−1
P 〉ZIP

⊂ QIP. (2.10)

Let A = AnnZG(µL) be the annihilator of the roots of unity in L. In [Gr3] the
author defines the Sinnott-Kurihara ideal to be

SKu(L/K) = A
∏

P∈S∗ram

MP · ωZG ⊂ ZG.

The proof of Proposition 2.2.5 gets completed by means of the following

Lemma 2.2.6 Fix a setting (∗) and let G be abelian. Then

1− j

2
θT

S1
∈ SKu(L/K)− · ZpG.

Proof. We have

1− j

2
θT

S1
=

1− j

2
ω

∏
P∈T ∗

(1− |IP|−1NIP
φ−1

P qp)
∏

P∈S∗1

(1− |IP|−1NIP
φ−1

P ).

The condition on the prime P0 ∈ T causes 1−NIP0
φ−1

P0
qp0 ∈ A. Let P ∈ S∗ram∩

T ∗ and q ∈ Z the rational prime below P. If we denote the q-Sylow subgroup
of the inertia group IP by RP, the intermediate extension corresponding to
GP/RP is tame at P. Therefore, by Lemma 2.0.14, the ramification index
eP = |IP| divides qp − 1 up to a power of q, since G is abelian. Hence

1− |IP|−1NIP
φ−1

P qp = 1− |IP|−1NIP
φ−1

P − φ−1
P

qp − 1

eP

NIP
∈ MP · ZpG.

For the tamely ramified primes above p the element

eP = (eP −NIP
)(1− |IP|−1NIP

φ−1
P ) + NIP

∈ MP

lies in ZpG
×, since p - eP. Therefore, we get MP · ZpG = ZpG in this case.

Finally, we obviously have (1− |IP|−1NIP
φ−1

P ) ∈ MP for the primes P ∈ S1. 2

In the next section we are going to show that the minus part of the LRNC
for L/K at p 6= 2 can be restated in terms of a representing homomor-
phism for AT

L ⊗ Zp. The homomorphism involved is just the image of ΘT
S1

in HomΓ℘(R−
p (G), F×

℘ ). Hence, Proposition 2.2.5 will give some evidence of
the conjecture by means of the following



2.2. L-SERIES AND STICKELBERGER ELEMENTS 63

Proposition 2.2.7 Let G be a finite group, p a finite rational prime and Rp =
ZpG (or Rp = ZpG+, ZpG− if p 6= 2). If a finite c.t. Rp-module A has
representing homomorphism χ 7→ f(χ), there exists an α ∈ Z×p such that

|A| = α ·
∏

χ∈Irr (G)

f(χ)χ(1),

where we set f(χ) = 1 if Rp = ZpG+ and χ is odd or if Rp = ZpG− and χ is
even.

Proof. We only treat the case where Rp = ZpG; the others are similar.
Since | · | is multiplicative on short exact sequences of finite modules, we get a
well defined map

| · | : K0T (ZpG) → Z.

Since a c.t. ZpG-module has projective dimension at most 1, there is an injec-
tion φ : ZpG

n ½ ZpG
n such that A = cok φ.

Choose a local number field F℘, Galois over Qp with Galois group Γ℘, which is
large enough such that all representations of G can be realized over F℘. Then
cok φ has representing homomorphism

χ 7→ det(φ|HomΓ℘(Vχ, F℘Gn)).

We compute
∏

χ∈Irr (G)

det(φ|HomΓ℘(Vχ, F℘Gn))χ(1) = det(φ|HomΓ℘(
⊕

χ∈Irr (G)

χ(1)Vχ, F℘Gn))

= det(φ|HomΓ℘(F℘G,F℘Gn))

= det(φ|F℘Gn)

= det(φ|ZpG
n)

= α · |cok φ|

with an appropriate element α ∈ Z×p . 2

Remark. If G is abelian, the elements in K0T (Rp) can be described in terms
of Fitting ideals. In this context Proposition 2.2.7 simply repeats the well
known fact that

|A| = |Rp/FittRp(A)|
for each finite c.t. Rp-module A.
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2.3 A restatement of the LRNC on minus parts

The aim of this section is to prove

Theorem 2.3.1 Fix a setting (∗), where

T = Sram \ (Sram ∩ Sp) ∪ {Pg
0 : g ∈ G} .

Then ΘT
S1
∈ HomΓ℘(R−

p (G), F×
℘ ) is the representing homomorphism of the class

of AT
L⊗Zp in K0T (ZpG−) if and only if the minus part of the LRNC at p holds

for L/K.

Once again, it seems to be unavoidable to go through the construction of
Tate-sequences. This time we choose a set S of places of L which is small
in the sense that S contains no ramified primes. More precisely, we choose
S = Sf ∪ S∞, where Sf is a set of totally decomposed primes such that the
ray class group clTL is generated by these primes and Sf ∩ T = ∅. Hence, ZSf

is ZG-free of rank s∗ = |S∗f | and sequence (2.2) reads

ET
S∞ ½ ET

S → ZSf ³ clTL.

In particular, the S-class group clS is trivial, and ∇S = ∇S.

Tensoring with Zp and taking minus parts of the above sequence gives

ET,−
S ⊗ Zp ½ ZpS

− ³ AT
L ⊗ Zp. (2.11)

Since ZpS
− = ZpS

−
f is ZpG−-free and AT

L is c.t. by Theorem 2.1.1, we have
proven

Lemma 2.3.2 The ZpG−-module ET,−
S ⊗ Zp is cohomologically trivial.

Let P be a finite prime of L. Take an exact sequence

L×P ½ VP ³ ∆GP

whose extension class in Ext1
GP

(∆GP, L×P) ' H2(GP, L×P) is the local funda-
mental class of LP/Kp. Recall that the inertial lattice WP is the push-out
along the normalized valuation vP : L×P ³ Z (cf. diagram (1.24)). We are
going to repeat this process once more.
We have exact sequences

UP ½ VP ³ WP,

U1
P ½ UP ³ (oL/P)×
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and define TP to be the push-out of the upper sequence along the projection
of the lower sequence as shown in the following commutative diagram

U1
PÄ _

²²

U1
PÄ _

²²
UP

Â Ä //

²²²²

VP
// //

²²²²

WP

(oL/P)× Â Ä // TP
// // WP

(2.12)

Lemma 2.3.3 (1) The G-module ind G
GP

TP ⊗ Zp is cohomologically trivial
for each finite prime P - p of L and for each finite prime P which is at
most tamely ramified in L/K.

(2) The G-module (ind G
GP

TP)−⊗Zp is cohomologically trivial for each finite
prime P | p.

Proof. Let P be a p-Sylow subgroup of G. We denote the p-completion
of any module M by M̂ ; especially, if M is finitely generated as Z-module, we
have M̂ = M ⊗ Zp.
We start with the case P - p. Then Û1

P vanishes, since U1
P is a pro-q-group for

a prime q 6= p. The exact sequence

U1
P ½ VP ³ TP

now implies that for all i ∈ Z we have

H i(P, ind G
GP

TP ⊗ Zp) = H i(PP, TP ⊗ Zp) ' H i(PP, V̂P) = 1,

since V̂P is c.t. by [GW], p. 282.
Now let P be a prime above p. Then the bottom sequence of diagram (2.12)
implies that TP ⊗ Zp = WP ⊗ Zp. The canonical projection GP ³ GP induces
an exact sequence

∆(GP, IP) ½ ZGP ³ ZGP.

The projection onto the second component of WP ⊂ ∆GP×ZGP yields a quite
similar exact sequence

∆(GP, IP) ½ WP ³ ZGP.

If P is at most tamely ramified in L/K, the GP-module ZpGP is projective,
since the corresponding idempotent lies in ZpGP. Therefore, the p-completed
versions of the above two sequences show that WP⊗Zp ' ZpGP. In particular,
WP ⊗ Zp and hence TP ⊗ Zp are c.t. GP-modules.
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We are left with the case P | p and j ∈ GP. Then j already acts on GP-
modules, and the two exact sequences

Z ½ WP ³ ∆GP, ∆GP ½ ZGP ³ Z

imply that T−
P ⊗ Zp = W−

P ⊗ Zp ' ZpG
−
P, since Z− and likewise Z−p are zero.

This completes the proof. 2

As required for the construction of Tate-sequences, we now choose a finite
set S ′ of places of L which contains S ∪ Sram and is large enough to generate
the ideal class group of L, and such that

⋃
P∈S′ GP = G. In addition, we may

assume that T ⊂ S ′. We set

TS′ =
⊕
P∈T ∗

ind G
GP

TP ⊕
⊕
P∈S∗

ind G
GP

∆GP ⊕
⊕

P∈S′∗\(S∗∪T ∗)

ind G
GP

WP.

Let MT =
∏

P∈T P as before, and define an idèle subgroup

JT
S :=

∏
P∈T

U1
P ×

∏
P∈S

L×P ×
∏

P 6∈S∪T

U0
P.

The diagrams (2.12) for P ∈ T together with the first step in the construction
of Tate-sequences give rise to the commutative diagram

(oL/MT )×³ p

!!B
BB

BB
BB

BB
B

ET
S

Â Ä //
Ä _

²²

³ p

!!CC
CC

CC
CC

CC
AÄ _

²²

CC
CC

CC
CC

CC
C

CC
CC

CC
CC

CC
C

// // RT
Ä _

²²

!! !!CC
CC

CC
CC

CC

ESÄ _

²²

Â Ä //

ÁÁ ÁÁ<
<<

<<
<<

<<
<<

< AÄ _

²²

// // RÄ _

²²

(oL/MT )×± n

ÀÀ;
;;

;;
;;

;;
;;

;

(oL/MT )×

JT
S

Â Ä //
³ p

!!CC
CC

CC
CC

CC

²²²²

VS′ // //

²²²²

CC
CC

CC
CC

CC

CC
CC

CC
CC

CC
TS′

!! !!CC
CC

CC
CC

CC

²²²²

JS
Â Ä //

²²²²

!! !!CC
CC

CC
CC

CC
VS′ // //

²²²²

WS′

²²²²

(oL/MT )×

CL
Â Ä //

DD
DD

DD
DD

DD

DD
DD

DD
DD

DD
V // //

DD
DD

DD
DD

DD
D

DD
DD

DD
DD

DD
D ∆G

DD
DD

DD
DD

DD

DD
DD

DD
DD

DD

CL
Â Ä // V // // ∆G
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If we take the direct sum of the exact sequences

∆GP ½ ZGP ³ Z for P ∈ S∗

WP ½ ZG2
P ³ W 0

P for P ∈ (Sram ∩ Sp)
∗

TP ½ TP ⊕ ZG2
P ³ ZG2

P for P ∈ (T ∩ Sram)∗

TP

=
½ TP ³ 0 for P = P0

WP

'
½ ZGP ³ 0 for P ∈ (S ′ \ (S ∪ Sram ∪ T ))∗,

we get an exact sequence
TS′ ½ NT

S′ ³ MT
∗ ,

where NT
S′ and MT

∗ are the direct sums of the middle and the right-hand
modules of the above sequences.

Note that the exact sequence

WS′ ½ NS′ ³ M∗

of diagram (1.31) derives from a similar construction. We have only modified
the exact sequences for the primes P ∈ T ∗. The relation is comprised in the
following two obviously commutative diagrams:

(oL/P0)
×

Ä _

²²

(oL/P0)
×

Ä _

²²
TP0

²²²²

TP0

²²²²
WP0

' // ZGP0

for the prime P0 ∈ T ∗, and

(oL/P)× Â Ä −id //
Ä _

²²

TP
// //

Ä _

−id⊕τP

²²

WPÄ _

²²
TP

Â Ä //

tP

²²²²

TP ⊕ ZG2
P

// //

τP⊕id

²²²²

ZG2
P

²²²²
WP

Â Ä // ZG2
P

// // W 0
P

for the primes P ∈ (T ∩ Sram)∗, where the map τP : TP → ZG2
P is the compo-

sition of the surjection tP : TP ³ WP and the inclusion WP ½ ZG2
P.
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Hence, we get the commutative diagram

(oL/MT )× Â Ä //
¶ s

%%KKKKK
P0 ⊕ T // //

¶ s

%%KKK
KKK

W ¶ s

%%KKKKKK

RT Â Ä //

&& &&LLLLLLLÄ _

²²

BT // //

&& &&LLL
LLL

LÄ _

²²

∇T

&& &&LLL
LLL

LÄ _

²²

R
Â Ä //

Ä _

²²

B // //
Ä _

²²

∇Ä _

²²

(oL/MT )× Â Ä //
µ r

$$JJJ
JJJ

P0 ⊕ T // //
µ r

$$JJJ
JJJ

W µ r

$$JJJJJJ

TS′
Â Ä //

%% %%JJJ
JJJ

²²²²

NT
S′

// //

%% %%JJJ
JJJ

²²²²

MT
∗

%% %%JJJ
JJJ

²²²²

WS′
Â Ä //

²²²²

NS′ // //

²²²²

M∗

²²²²

∆G
Â Ä //

MMMMM
MMMMM ZG // //

MMM
MMM

MMM
MMM

Z
MMMMMMMM

MMMMMMMM

∆G
Â Ä // ZG // // Z

where we have defined

P0 = ind G
GP0

(oL/P0)
×,

T =
⊕

P∈(Sram∩T )∗
ind G

GP
TP,

W =
⊕

P∈(Sram∩T )∗
ind G

GP
WP.

The roofs of the last two three-dimensional diagrams fit together as shown
in the following diagram:

(oL/MT )×Ä _

²²

(oL/MT )× Â Ä //
Ä _

²²

P0 ⊕ T // //
Ä _

²²

WÄ _

²²
ET

S
Â Ä //

Ä _

²²

A // // RT

²²²²

RT Â Ä //

²²²²

BT

²²²²

// // ∇T

²²²²
ES

Â Ä //

²²²²

A // // R R
Â Ä // B // // ∇

(oL/MT )×

(2.13)
We point out the following

Lemma 2.3.4 The G-modules BT ⊗ Zp, ∇T,− ⊗ Zp and RT,− ⊗ Zp are coho-
mologically trivial.
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Proof. The G-module NT
S′⊗Zp is c.t. by Lemma 2.3.3 and its definition.

Therefore, BT ⊗ Zp is also c.t., since BT is the kernel of NT
S′ ³ ZG.

Once more by Lemma 2.3.3 and the choice of the set S the module ∇T,−⊗Zp =
MT,−
∗ ⊗Zp is c.t. For this, note that TP⊗Zp = WP⊗Zp for all primes P above

p, and that the cohomology of WP and W 0
P are closely related by means of the

exact sequence
WP ½ ZG2

P ³ W 0
P.

Finally, the exact sequence

RT ½ BT ³ ∇T

implies the corresponding result for RT,− ⊗ Zp. 2

We now intend to define an isomorphism φ as required for the construction
of the element Ωφ. Since the cokernel of the injection ET

S ½ ES is finite, we
can choose an injection φT

S : ∆S ½ ET
S . Hence, we get an injection φS as

shown in the diagram:

∆S
Â Ä φT

S //³ p

φS

ÃÃB
BB

BB
BB

BB
BB

B ET
SÄ _

²²
ES

Recall that for each finite prime P of L the element dP = |GP|−1κ(|GP|, NGP
)

is a QGP-generator of QW 0
P. Hence, we can define isomorphisms

δP : QW 0
P −→ QGP

dP 7→ 1,

and set d :=
∑

P∈S∗ram
ind δP. Let C be a ZG-free module of rank |S∗ram| with

basis 1P, P ∈ S∗ram, and define φ to be the QG-isomorphism

φ : Q∇ ' Q(∆S ⊕⊕
P∈S∗ram

ind G
GP

W 0
P)

Q⊗φS ⊕ d //Q(ES ⊕ C)

Here, the first isomorphism is induced by the natural inclusion on minus
parts, whereas we have to choose a splitting of sequence (1.13) on plus parts
(after tensoring with Q). But this choice will play no decisive role, since we
are going to deal with minus parts only.

In analogy to the elements dP, we define QGP-generators cP of QWP by

cP := (1− 1

|GP|NGP
, NGP

+ (φP − 1)−1(1− 1

|GP|
NGP

)), (2.14)

where GP = GP/IP as before, and

(φP − 1)−1 =
1

|GP|
|GP|−1∑

i=0

iφi
P.
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We establish a connection between the generators cP and dP by means of
the commutative diagram

QGP

1 7→cP //
Ä _

ι1

²²

QWPÄ _

q

²²
QG2

P

gP //

π2

²²²²

QG2
P

κ

²²²²
QGP

17→dP // QW 0
P

where the maps of the left column are the natural inclusion into the first and
the projection onto the second component. The isomorphism gP is defined to
be

gP : QG2
P −→ QG2

P

(1, 0) 7→ q(cP)

= (NGP
+ (φP − 1)−1(NIP

− 1

|GP|
NGP

), φ−1
P (1− 1

|GP|NGP
))

(0, 1) 7→ (1,
1

|GP|NGP
)

Let us split the free ZG-module C into

C = Cp′ ⊕ Cp,

where Cp is free of rank |(Sram∩Sp)
∗|. If we combine the above diagram for all

primes P ∈ S∗ram which do not lie above p, we get the following commutative
diagram on minus parts:

W− c //
Ä _

²²

C−
p′Ä _

²²

∇T,− //

²²²²

(ES ⊕ C2
p′ ⊕ Cp)

−

²²²²

∇− φ // (ES ⊕ C)−

Here, the dotted maps only exist after tensoring with Q, and we have defined

c :=
∑

P∈(Sram∩T )∗
ind (cP 7→ 1P).
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The map g :=
∑

P∈(Sram∩T )∗ ind gP is incorporated in the middle dotted arrow.

We now go into the construction of the element Ω
(p),−
φ involved in the

LRNC. First of all, we choose an automorphism β of QR and an isomorphism
β̃ as shown in the diagram

QR Â Ä ι //

β

²²

QB
π // //

β̃

²²

Q∇

QR Â Ä // Q(R⊕∇) // // ∇

If σ : QB → QR is a section of ι, we may take β̃ = βσ + π. Let us tensor the
righthand part of diagram (2.13) with Q, namely

QRT Â Ä ιT //

πR'
²²

QBT πT
// //

πB

²²²²

Q∇T

²²²²
QR Â Ä ι // QB

π // // Q∇

We define a section of ιT to be

σT := π−1
R σπB : QBT → QRT ,

and set βT := π−1
R βπR and β̃T := βT σT + πT such that

QRT Â Ä //

βT

²²

πR

'
!!CC

CC
CC

CC
CC

C QBT // //

πB

!! !!CC
CC

CC
CC

CC
C

β̃T

²²

Q∇T

π∇

!! !!CC
CC

CC
CC

CC
C

QR Â Ä //

β

²²

QB // //

β̃

²²

Q∇

QRT Â Ä //

πR

'
ÃÃB

BB
BB

BB
BB

BB
B

Q(RT ⊕∇T ) // //

πR⊕π∇

ÃÃ ÃÃB
BB

BB
BB

BB
BB

Q∇T

π∇

ÃÃ ÃÃB
BB

BB
BB

BB
BB

B

QR Â Ä // Q(R⊕∇) // // Q∇

commutes. Note that

[QR, β] = [QRT , βT ] ∈ K1(QG). (2.15)
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Correspondingly, we choose an automorphism α of QR and get a commu-
tative diagram

QET
S

Â Ä //

'ιE

²²

BB
BB

BB
BB

BB
B

BB
BB

BB
BB

BB
B

Q(ET
S ⊕RT ) // //

α̃T

ÃÃ ÃÃB
BB

BB
BB

BB
BB

B

²²

QRT

αT

ÃÃB
BB

BB
BB

BB
BB

πR '

²²

QET
S

Â Ä //

'ιE

²²

QA // // QRT

πR '

²²

QES
Â Ä //

CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

Q(ES ⊕R) // //

α̃

!!CC
CC

CC
CC

CC
C

QR

α

!!CC
CC

CC
CC

CC
CC

QES
Â Ä // QA // // QR

and an equality
[QR, α] = [QRT , αT ] ∈ K1(QG). (2.16)

It turns out to be helpful to write the isomorphism φ̃ defined in (1.19) in
the following more complicated way.

φ̃ : QB− β̃ // Q(R⊕∇)−
π−1

R ⊕id
// Q(RT ⊕∇)−

' // Q(RT ⊕∆S ⊕⊕
P∈S∗ram

ind G
GP

W 0
P)−

id⊕d // Q(RT ⊕∆S ⊕ C)−
id⊕φT

S⊕id
// Q(RT ⊕ ET

S ⊕ C)−

πR⊕ιE⊕id // Q(R⊕ ES ⊕ C)−
α̃⊕id // Q(A⊕ C)−

Since (RT ⊕∆S ⊕C)− ⊗Zp and (RT ⊕ET
S ⊕C)−⊗Zp are c.t. G-modules

by Lemma 2.3.2, Lemma 2.3.4 and the choice of the set S, we have

Ω
(p),−
φ = (B− ⊗ Zp, φ̃, (A⊕ C)− ⊗ Zp)− ∂[QpR

−, αβ]

= (B− ⊗ Zp, (id⊕ d)(π−1
R ⊕ id)β̃, (RT ⊕∆S ⊕ C)− ⊗ Zp)

+ iG(cok φT
S ⊗ Zp)

+ ((RT ⊕ ET
S )− ⊗ Zp, α̃(πR ⊕ ιE), A− ⊗ Zp)

− ∂[QpR
−, αβ]

(2.17)

Note that the G-module cok φT
S ⊗ Zp is c.t. and finite, and therefore defines

an element in K0T (ZpG) which is isomorphic to K0(ZpG,Qp) via the p-adic
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version of the isomorphism iG defined in (1.5), which we also denote by iG.

Since α̃(πR ⊕ ιE) = α̃T , equation (2.16) and the corresponding diagram
prior to it imply

∂[QpR
−, α] = ∂[QpR

T,−, αT ]

= ((RT ⊕ ET
S )− ⊗ Zp, α̃

T , A− ⊗ Zp)

= ((RT ⊕ ET
S )− ⊗ Zp, α̃(πR ⊕ ιE), A− ⊗ Zp).

Thus, equation (2.17) reduces to

Ω
(p),−
φ = (B− ⊗ Zp, (id⊕ d)(π−1

R ⊕ id)β̃, (RT ⊕∆S ⊕ C)− ⊗ Zp)

+ iG(cok φT
S ⊗ Zp)− ∂[QpR

−, β].
(2.18)

For a better understanding of the first summand we make use of the fol-
lowing commutative diagram in which the dotted maps only exist (and are
isomorphisms) after tensoring with Qp; we have also invisibly taken minus
parts:

P0 ⊕ T Â Ä //

t

²²

BT // //

β̃T

²²

B

β̃

²²
(oL/MT )× ⊕W Â Ä //

²²

RT ⊕∇T
πR⊕π∇ // // R⊕∇

π−1
R ⊕id

²²
W Â Ä // RT ⊕∇T

id⊕π∇ // //

'

²²

RT ⊕∇
'

²²

W Â Ä //

c

²²

RT ⊕ ⊕
P∈(T∩Sram)∗

indZG2
P

⊕ ⊕
P∈(Sram∩Sp)∗

ind W 0
P ⊕∆S

// //

id⊕g−1⊕dp⊕id

²²

RT⊕⊕
P∈S∗ram

ind W 0
P

⊕ ∆S

id⊕d⊕id

²²
Cp′

Â Ä // RT ⊕ C2
p′ ⊕ Cp ⊕∆S // // RT ⊕ C ⊕∆S

The isomorphism t : QpT ' QpW is induced by the projection T ³ W
which appears in diagram (2.13). Note that the direct summands P0 and
(oL/MT )× vanish after tensoring with Qp. The map dp is the restriction of d
to

⊕
P∈(Sram∩Sp)∗ ind W 0

P.

By Lemma 1.1.6, the above diagram implies that the first summand of the
righthand side of equation (2.18) equals

(BT,− ⊗ Zp, (idRT,− ⊕ g−1 ⊕ dp ⊕ id∆S−)β̃T , (RT ⊕ C2
p′ ⊕ Cp ⊕∆S)− ⊗ Zp)

−((P0 ⊕ T )− ⊗ Zp, ct, C
−
p′ ⊗ Zp)
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(1)
= ∂[QpR

T,−, βT ] + (∇T,− ⊗ Zp, g
−1 ⊕ dp ⊕ id∆S− , (C2

p′ ⊕ Cp ⊕∆S)− ⊗ Zp)

+iG(P−0 ⊗ Zp)

−
∑

P∈(Sram∩T )∗
((ind TP)− ⊗ Zp, ind (cP 7→ 1P)tP, indZpG

−
P)

(2)
= ∂[QpR

−, β] + iG(P−0 ⊗ Zp) +
∑

P∈(Sram∩T )∗
∂[ind (QpG

2
P)−, ind g−1

P ]

+
∑

P∈(Sram∩Sp)∗
((ind W 0

P)− ⊗ Zp, ind δP, (indZpGP)−)

−
∑

P∈(Sram∩T )∗
((ind TP)− ⊗ Zp, ind (cP 7→ 1P)tP, indZpG

−
P).

We need to explain the equalities (1) and (2). Due to Lemma 2.3.4, the
middle column of the above diagram shows that we can isolate the term
∂[QpR

T,−, βT ] = (BT,− ⊗ Zp, β̃
T , (RT ⊕∇T )− ⊗ Zp). Since

((P0 ⊕ T )− ⊗ Zp, ct, C
−
p′ ⊗ Zp) = −iG(P−0 ⊗ Zp) + (T − ⊗ Zp, ct, C

−
p′ ⊗ Zp)

by the first remark following Lemma 1.1.6, we get (1), where we have used the
definition of the maps c and t. (2) follows from (2.15) and the definition of the
maps g and dp.

Now let P ∈ (Sram ∩ Sp)
∗ be wildly ramified. Since by assumption j ∈ GP

for these primes, the exact sequences

Z ½ ZGP ³ ZGP/NGP
,

ZGP/NGP
½ W 0

P ³ Z

induce an isomorphism ZpG
−
P ' (W 0

P)−⊗Zp, which maps (1− j)/2 to dP. All
this can be extracted from the diagram of Proposition 1.5.4. Hence, the isomor-
phism δP derives, locally at p and on minus parts, from a ZpGP-isomorphism.
Therefore

((ind W 0
P)− ⊗ Zp, ind δP, (indZpGP)−) = 0

for all wildly ramified primes above p.

Altogether, we get the following description of Ω
(p),−
φ :

Ω
(p),−
φ = iG(cok φT

S ⊗ Zp) + iG(P−0 ⊗ Zp)

+
∑

P∈(Stram∩Sp)∗
((ind W 0

P)− ⊗ Zp, ind δP, (indZpGP)−)

− ∑
P∈(Sram∩T )∗

∂[ind (QpG
2
P)−, ind gP]

− ∑
P∈(Sram∩T )∗

((ind TP)− ⊗ Zp, ind (cP 7→ 1P)tP, indZpG
−
P),

(2.19)
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where we have defined Stram ⊂ Sram to be the set of all primes of L which are
tamely ramified in L/K.

The representing homomorphisms of most of these terms can be computed:

Proposition 2.3.5 Keeping the notation of the current paragraph the follow-
ing holds:

(1) iG(P−0 ⊗ Zp) has representing homomorphism

χ 7→ det(q0 − φP0|Vχ),

where q0 = N(p0) and p0 = P0 ∩K.

(2) Let P ∈ (Sram ∩ Sp)
∗ be at most tamely ramified in L/K.

Then ((ind W 0
P)− ⊗ Zp, ind δP, (indZpGP)−) has representing homomor-

phism
χ 7→ (−eP)− dim V

GP
χ · det(1− φ−1

P |V IP

χ /V GP

χ )−1,

where eP = |IP| is the ramification index of the prime P in L/K.

(3) Let P be any finite prime of L. Then ∂[ind (QpG
2
P)−, ind gP] has repre-

senting homomorphism

χ 7→ (−|GP|)dim V
GP
χ .

(4) Let P ∈ (Sram ∩ T )∗. Then ((ind TP)− ⊗ Zp, ind (cP 7→ 1P)tP, indZpG
−
P)

has representing homomorphism

χ 7→ (fP(1− qp))
− dim V

GP
χ · det(

1− φP

qp − φP

|V IP

χ /V GP

χ ),

where fP = |GP| is the degree of the corresponding residue field extension,
qp = N(p) and p = P ∩K.

Proof. Recall that P0 = ind G
GP0

(oL/P0)
×. Since P0 is unramified in

L/K, the decomposition group GP0 is cyclic with generator φP0 , which acts
as q0 on (oL/P0)

×. So (1) is clear.
For (2) let P ∈ (Sram ∩ Sp)

∗ be tamely ramified. Then the idempotent εP =
e−1

P NIP
lies in ZpGP, and we claim that we have an isomorphism

ZpGP

wP−→ W 0
P ⊗ Zp

1 7→ κ(1− εP, 1),

where we once again identify the module W 0
P with a certain cokernel as in

Proposition 1.5.4. Indeed wP(εP) = κ(0, 1) and

wP(1− εP + e−1
P (φ−1

P − 1)εP) = κ(1− εP, e−1
P (φ−1

P − 1)) = κ(1, 0).
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Therefore, wP is surjective and hence bijective, since both modules are torsion
free of the same rank. We have

((W 0
P)− ⊗ Zp, δP, (ZpGP)−) = −((ZpGP)−, δ−1

P , (W 0
P)− ⊗ Zp)

= −((ZpGP)−, δ−1
P wP, (ZpGP)−).

Since wP(1 − εP + e−1
P (φ−1

P − 1)εP + |GP|−1NGP
) = dP, the representing ho-

momorphism in demand is

χ 7→ det(e−1
P (φ−1

P − 1)|V IP

χ /V GP

χ )−1.

But the desired homomorphism differs from this by

[χ 7→ det((−eP)εP + 1− εP|Vχ)] ∈ Det ((ZpG
−)×).

Hence, we have proved (2).
Now let P be any finite prime of L. The map gP defines an element in
K1(QpGP), which is represented by the matrix

(
NGP

+ (φP − 1)−1(NIP
− f−1

P NGP
) 1

1− |GP|−1NGP
|GP|−1NGP

)

If we subtract |GP|−1NGP
times the first row from the second row and exchange

the two columns, we obtain a matrix
(

1 NGP
+ (φP − 1)−1(NIP

− f−1
P NGP

)
0 1− |GP|−1NGP

−NGP

)

Since we have only used matrix operations which does not affect the image in
K0(ZpG,Qp), we get (3).
Finally, let P ∈ (Sram ∩ T )∗, i.e. P is a ramified prime not above p. It directly
follows from the definition that TP is the push-out of the local fundamental
class along the canonical projection L×P ³ L×P/U1

P as shown in the commutative
diagram

U1
PÄ _

²²

U1
PÄ _

²²
L×P

Â Ä //

²²²²

VP
// //

²²²²

∆GP

L×P/U1
P

Â Ä ιP // TP
// // ∆GP

(2.20)

We see that L̂×P = L×P/U1
P ⊗ Zp and TP ⊗ Zp = V̂P. Actually before taking

minus parts, −(ind TP⊗Zp, ind (cP 7→ 1P)tP, indZpGP) is induced by applying
the Ω-construction to the two-extension

L̂×P ½ V̂P → ZpG ³ Zp
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and an isomorphism Qp → QpL̂
×
P which maps 1 to an element that has P-adic

valuation equal to 1. Therefore, (4) follows from Theorem D in [RW2]. If P is
at most tamely ramified in L/K, we can alternatively use Theorem 4.3, p. 563
in [BB]. 2

Now we have computed all the representing homomorphisms for the terms
of the right hand side of equation (2.19) apart from iG(cok φT

S ⊗ Zp).
Due to the choice of the set S, we can fix an isomorphism

ρS : ∆S− '−→ (ZG−)s∗ .

We build the following commutative diagram which defines a monomorphism
ψ:

∆S−
ρS

'
//

Ä _

φT
S

²²

(ZG−)s∗
Ä _

ψ

²²
ET,−

S
Â Ä //

²²²²

(ZG−)s∗ // //

²²²²

AT
L

cok φT
S

Â Ä // cok ψ // // AT
L

Here, the middle row is sequence (2.11) before tensoring with Zp. We obviously
have an equality

iG(cok φT
S ⊗ Zp) = iG(cok ψ ⊗ Zp)− iG(AT

L ⊗ Zp) (2.21)

in K0(ZpG−,Qp).

Lemma 2.3.6 The element iG(cok ψ ⊗ Z[1
2
]) ∈ K0(Z[1

2
]G−,Q) has represent-

ing homomorphism

χ 7→ RφS
(χ̌)∏

p∈S(K)(− log N(p))dim Vχ
,

where S(K) := {P ∩K|P ∈ S}.

Proof. Let us denote the inclusion ET,−
S ½ (ZG−)s∗ by µ. Define a map

Log : (ZG−)s∗ −→ R⊗ (ZG−)s∗

(x1, . . . , xs∗) 7→ (− log N(p1)⊗ x1, . . . ,− log N(ps∗)⊗ xs∗),

where we have numbered the primes in S(K) = {p1, . . . , ps∗}. Then

ψ = µ ◦ φS ◦ ρ−1
S ,

λ−S = ρ−1
S ◦ Log ◦ µ,
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where λ−S is the restriction of the Dirichlet map to minus parts. Hence, λ−S φS =
ρ−1

S ◦ Log ◦ ψ ◦ ρS, and iG(cok ψ ⊗ Z[1
2
]) has representing homomorphism

χ 7→ det(ψ|HomCG(Vχ, (CG−)s∗))

=
RφS

(χ̌)

det(Log|HomCG(Vχ, (CG−)s∗))

=
RφS

(χ̌)∏
p∈S(K)(− log N(p))dim Vχ

.

This completes the proof. 2

Note that the Stark-Tate regulator occurring in the representing homo-
morphism of iG(cok ψ ⊗ Z[1

2
]) is closely related to the modified Stark-Tate

regulator; more precisely, we have (cf. the proof of Theorem 1.5.8)

Rmod
φ (χ)

RφS
(χ)

=
∏

P∈S∗ram

(
− log N(P)

|GP|
)dim V

GP
χ

.

If we now combine the equations (2.19) and (2.21) with the above Lemma and
Proposition 2.3.5, we get Theorem 2.3.1 by an easy computation. 2



Chapter 3

Iwasawa theory

As an application of Theorem 2.3.1 we are going to prove the minus part of
the LRNC at a prime p 6= 2 if L/K is an abelian CM-extension fulfilling the
assumptions of the theorem; actually, we need to work under a slightly more
restrictive hypothesis on the primes above p. We additionally require the van-
ishing of the µ-invariant of the standard Iwasawa module (all this will be made
explicit below). But we will see in the appendix how to remove this assumption
for some special cases, including the case p - |G|. The main ingredient of the
proof turns out to be the validity of the Iwasawa main conjecture for abelian
extensions.

3.1 Passing to the limit
Let L/K be an abelian CM-extension with Galois group G and p 6= 2 a finite
rational prime such that all primes p ⊂ K above p are tamely ramified in L/K
or j ∈ Gp. Here, we write Gp instead of GP, since the decomposition group
only depends on the prime p in K if G is abelian. We will accordingly write Ip,
φp etc. As it is required for the use of Theorem 2.3.1, we choose a finite prime
P0 of L such that 1 − ζ 6∈ ∏

g∈G/GP0
P

g
0 for all roots of unity ζ 6= 1 in L. We

may assume that P0 is unramified in L/K and does not divide p. Indeed, it
would suffice to ask for a corresponding condition on P0 for all p-power roots
of unity in L, since we tensor with Zp. Hence, any prime which lies not above
p will do.
As before we define a finite set of places of L

T = Sram \ (Sram ∩ Sp) ∪ {Pg
0|g ∈ G} , (3.1)

and set AT
L = clT,−

L . Then AT
L ⊗ Zp is c.t. by Theorem 2.1.1.

Let L∞ and K∞ be the cyclotomic Zp-extensions of L and K, respectively.
We denote the Galois group of K∞/K by ΓK . Hence, ΓK is isomorphic to
Zp, and we fix a topological generator γK . Furthermore, we denote the n-th
layer in the cyclotomic extension K∞/K by Kn such that Kn/K is cyclic of

79
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order pn. Accordingly, we set ΓL = Gal(L∞/L) with a topological generator
γL whose restriction to K∞ is γa

K for an appropriate integer a. We enumerate
the intermediate fields starting with L = La such that Ln/L is cyclic of order
pn−a. This is because then Ln is the smallest intermediate field of L∞/L which
lies above Kn. It may also be convenient to define Ln = L if n ≤ a. Let

Tn := {Pn ⊂ Ln|Pn ∩ L ∈ T} ,

so T0 = T and ATn
Ln
⊗Zp is Gal(Ln/Kn)-c.t., since each of the extensions Ln/Kn

inherits the required properties from the extension L/K. We define

X−
T := lim

←
ATn

Ln
⊗ Zp.

We denote the Galois group of L∞/K by G, hence
G = G̃× ΓK ,

where G̃ is a subgroup of G. Then the completed group ring Zp[[G]] is isomor-
phic to Λ[G̃], where Λ is the Iwasawa algebra Zp[[T ]]. Since we are going to
use some of the results in [Gr2], we set γK = 1− T as in loc.cit.
There is an exact sequence of type (2.8) for each layer n. In the limit this
yields an exact sequence (cf. [Gr2], Proposition 6)

Zp(1) ½
⊕

p∈T (K)

Zp(1)− → X−
T ³ X−

std (3.2)

if ζp ∈ L, and without the Zp(1) term if ζp 6∈ L. Here, Xstd is the standard
Iwasawa module which is the projective limit of the p-parts of the class groups
in the cyclotomic tower over L, and Zp(1) is the first Tate twist of

Zp = ind G
Gp
Zp = Zp[[ΓK × G̃/Ĩp]]/(1− φp),

where we now write φp for the Frobenius automorphism at p in the Galois
group G. The basic facts about the Iwasawa module X−

T are summarized in
the following Proposition.

Proposition 3.1.1 The Iwasawa module X−
T is a finitely generated, torsion

Zp[[G]]−-module, which has no non-trivial finite submodules and

pdZp[[G]]−(X−
T ) ≤ 1.

Proof. This is Proposition 7 in [Gr2], where the ramification above p is
assumed to be tame. But what is needed is just the cohomological triviality
of the ray class groups ATn

Ln
⊗ Zp. 2

The Fitting ideal of X−
T is described in terms of p-adic L-functions. To

make this explicit we have to introduce some further notation. Let κ : G → Z×p
denote the cyclotomic character and define u = κ(γK). Any character ψ of G
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with open kernel can be written as ψ = χ⊗ ρ, where χ is a character of G̃ and
ρ is trivial on G̃ (so χ is of type S and ρ is of type W in the terminology of
[Wi1]). If χ is an odd character and S a set of places of K containing all the
primes above p, there exists a well-defined element fχ,S(T ) ∈ Quot(Zp(χ)[[T ]])
determined by

fχ,S(us − 1) = Lp,S(s, ωχ−1), s = 1, 2, 3, . . .

where ω is the Teichmüller character1 on L(ζp)/K. This definition of fχ,S

follows the convention of Washington’s book [Wa], and is used in [Gr2]. It is
also usual to replace the argument s on the right hand side by 1− s, but this
makes no essential difference.
For all χ of type S and ρ of type W we have (cf. [Gr2], Lemma 7)

fχ⊗ρ,S(T ) = fχ,S(ρ(γK)(1 + T )− 1). (3.3)

For this, note that in the notation of [Wi1] we have an equality

fχ⊗ρ,S(T ) =
Gωχ−1⊗ρ,S(u(1 + T )−1 − 1)

Hωχ−1⊗ρ,S(u(1 + T )−1 − 1)

and a similar formula holds for the right hand side. The Iwasawa series
fχ⊗ρ,S(T ) glue together for varying characters, i.e. there exists a unique el-
ement ΦS ∈ Quot(Zp[[G]])− such that for all odd characters ψ = χ⊗ ρ of G we
have (cf. [Gr2], Proposition 11)

ψ(ΦS) = fχ,S(ρ(γK)− 1).

Let p - p be a finite prime of K. Put

ξp =
κ(φp)− φp

1− φp

εp + 1− εp ∈ Quot(Zp[[G]]), (3.4)

where εp = |Ip|−1NIp
∈ QpG̃ ⊂ Qp[[G]]. If T is a finite set of primes of L which

contains no prime above p, define

ΨT =


 ∏

p∈T (K)

ξp


 · ΦT (K)∪Sp .

If T is the set of places defined in (3.1), we have (cf. [Gr2], Proposition 9)

1− j

2
ΨT ∈ Zp[[G]]−.

The Iwasawa main conjecture is the main ingredient in proving
1Do not confuse with the group ring element ω occurring in Proposition 2.2.2. ω will

always denote the Teichmüller character in what follows.
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Theorem 3.1.2 Let T be the set of places of L defined in (3.1) and µ− the
µ-invariant of the standard Iwasawa module X−

std. Then it holds:

(1) The Fitting ideal of QpX
−
T is generated by ΨT .

(2) If µ− = 0, we actually have

FittZp[[G]]−(X−
T ) = (ΨT ).

Proof. If the ramification above p is almost tame, this is Proposition 8
and Theorem 6 in [Gr2]. But once more the condition on the ramification is
only needed to guarantee the cohomological triviality of AT

L ⊗ Zp. 2

Remark. If we denote the total ring of fractions of Zp[[G]]− by Q(Zp[[G]]−),
there is the Localization Sequence (cf. (1.3))

K1(Zp[[G]]−) → K1(Q(Zp[[G]]−))
∂→ K0T (Zp[[G]]−) → K0(Zp[[G]]−).

Since the determinant yields an isomorphism

K1(Q(Zp[[G]]−)) ' (Q(Zp[[G]]−))×,

we can view 1−j
2

ΨT as an element of K1(Q(Zp[[G]]−)). So (2) of the above
theorem means that µ− = 0 implies ∂(1−j

2
ΨT ) = [X−

T ]. Indeed, one should
think of the claim in (2) as a reformulation of the equivariant Iwasawa main
conjecture (for the case at hand) which is known to be true if G is abelian and
µ = 0 by Theorem 11 in [RW3].

Lemma 3.1.3 Let ψ be a character of G with open kernel and S a set of places
of K that contains all the p-adic places. Put

Sψ = {p ∈ S|Ip 6⊂ ker(ψ)} ∪ Sp

and write the Frobenius automorphism at a prime p as φp = σpγ
cp

K , where
σp ∈ G̃ and cp ∈ Zp.

(1) Let χ be a character of G̃. Then

Lp,S(s, ωχ−1) = Lp,Sχ(s, ωχ−1)
∏

p∈S\Sχ

(1− χ−1(σp)u
−s·cp).

(2) We have an equality

fψ,S(T ) = fψ,Sψ
(T )

∏

p∈S\Sψ

(1− ψ−1(φp)(1 + T )−cp).
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Proof. (1) is well known and follows by evaluating both sides of the
equation at s = 1−n, where n ≡ 0 mod (p− 1). (2) is an easy consequence of
(1) using formula (3.3) for the character ψ = χ⊗ ρ with a G̃-character χ. 2

The following corollary will be important in the sequel.

Corollary 3.1.4 Let T be the set of places of L defined in (3.1) and S1 be the
set of places of L which are wildly ramified in L/K. Each character χ of G
can be viewed as a character of G and, if χ is odd,

χ(ΨT ) = χ(θT
S1

) ·
∏

p∈Sp∩Stram

(1− χ(εpφ
−1
p )),

where the product runs over all p-adic places of K which are at most tamely
ramified.

Proof. Write χ = χ′⊗ρ, where χ′ is a character of G̃ and ρ is of type W .
Since only p-adic primes ramify in the cyclotomic towers over K and L, we have
Σχ = Σχ′ , where Σ = T (K) ∪ Sp. At first, we determine χ′(ΨT ) ∈ Zp(χ

′)[[T ]].
With the notation of Lemma 3.1.3 we have

χ′(ΨT ) =
∏

p∈T (K)

κ(φp)− χ′(σp)γ
cp

K

1− χ′(σp)γ
cp

K

fχ′,Σ(−T )

(∗)
=


 ∏

p∈T (K)

κ(φp)− χ′(σp)γ
cp

K

1− χ′(σp)γ
cp

K

(1− χ′(σp)
−1γ

−cp

K )


 fχ′,Σχ′ (−T )

=
∏

p∈T (K)

(1− χ′(σp)
−1γ

−cp

K κ(φp))fχ′,Σχ′ (−T ),

where (*) holds by means of (2) of Lemma 3.1.3. Since

ρ(fχ′,Σχ′ (−T )) = fχ′,Σχ′ (ρ(γK)− 1) = fχ,Σχ(0) = LSχ(0, χ−1),

we get

χ(ΨT ) = ρ(χ′(ΨT ))

=
∏

p∈T (K)

(1− χ(φp)
−1κ(φp))LSχ(0, χ−1)

=
∏

p∈T (K)

(1− χ(φp)
−1qp)

∏
p∈Sp

(1− χ(εpφ
−1
p ))LS∞(0, χ−1)

= χ(θT
S1

) ·
∏

p∈Sp∩Stram

(1− χ(εpφ
−1
p )),

where as before qp = N(p). 2
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3.2 The descent
We are going to use an idea, which originates from [Wi2], in the extended
version of [Gr1], where the author proves Brumer’s conjecture for a special class
of CM-extensions. Note that the class of CM-extensions treated here includes
the class of loc. cit. The same approach is also used in [Ku] to compute the
Fitting ideals of minus class groups of absolute abelian CM-fields. But before
we go for this, we look at a special case, where a rather restrictive condition
forces the Euler factors at p to become units in ZpG−.

Proposition 3.2.1 Let L/K be an abelian CM-extension with Galois group G
and p 6= 2 a rational prime. Let T be the set of places of L defined in (3.1) and
S1 be the set of all wildly ramified primes. Suppose that µ− = 0 and j ∈ Gp

for all primes p of K above p.
Then θT

S1
generates the Fitting ideal FittZpG−(AT

L ⊗ Zp). In particular, the
minus part of the LRNC at p is true.

Proof. The canonical restriction map X−
T → AT

L⊗Zp is an epimorphism,
since the cokernel is a quotient of ΓL which has trivial j-action. By general
properties of Fitting ideals we have

FittZpG−(X−
T /γL − 1) ⊂ FittZpG−(AT

L ⊗ Zp),

and the Fitting ideal on the left hand side is generated by ΨT mod (γL − 1)
by Theorem 3.1.2. Corollary 3.1.4 now implies that

ΨT mod (γL − 1) = θT
S1

∏
p∈Sp∩Stram

(1− εpφ
−1
p ).

But the product on the right hand side is a unit in ZpG−, since j ∈ Gp for
these primes. Hence θT

S1
∈ FittZpG−(AT

L ⊗ Zp). Finally, Proposition 2.2.5 and
2.2.7 imply that θT

S1
has to be a generator of the Fitting ideal.

The minus part of the LRNC at p now follows from Theorem 2.3.1. 2

Now we use the method in [Gr1] to prove the minus part of the LRNC
at p without the additional assumption of Proposition 3.2.1. But this works
only for primes p such that Lcl 6⊂ (Lcl)+(ζp), where Lcl denotes the normal
closure of L over Q, which is again a CM-field. This condition particularly
forces ζp 6∈ L. But note that this condition holds for almost all primes p, since
each prime for which it fails has to ramify in Lcl/Q. Our main result is

Theorem 3.2.2 Let L/K be an abelian CM-extension with Galois group G
and p 6= 2 a rational prime. Let T be the set of places of L defined in (3.1)
and S1 be the set of all wildly ramified primes. Suppose that µ− = 0 and that
each prime p above p ramifies at most tame or j ∈ Gp. Moreover, assume that
j ∈ Gp for all primes p of K above p whenever Lcl ⊂ (Lcl)+(ζp).
Then θT

S1
generates the Fitting ideal FittZpG−(AT

L ⊗ Zp). In particular, the
minus part of the LRNC at p is true.
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Remark. The vanishing of µ− is only required for computing the Fitting
ideal of X−

T (cf. Theorem 3.1.2). As already mentioned, we will show in the
appendix that we can remove this hypothesis for some special cases, including
the case p - |G|.

Proof. The assertion follows from Proposition 3.2.1 if Lcl ⊂ (Lcl)+(ζp).
Hence, we may assume that this is not the case in the following.
We state the following result, which is Proposition 4.1 in [Gr1].

Proposition 3.2.3 Let p be a prime such that Lcl 6⊂ (Lcl)+(ζp) and N ∈ N.
Then there exist infinitely many primes r such that

• r ≡ 1 mod pN

• j ∈ Gr for each prime r in K above r

• the Frobenius automorphism at p in the extension Q(ζr)/Q generates
Gal(E/Q), where E is the subfield of Q(ζr) such that [E : Q] = pN .

Let N be a large integer to be chosen later, and choose a prime r as in
the Proposition which does not ramify in Lcl/Q. The extension E/Q is cyclic
of degree pN , and we denote the corresponding Galois group by CN . It is
generated by the Frobenius automorphism Frobp ∈ CN . Let L′ = LE and
K ′ = KE. Then L′/K is an abelian extension with Galois group G′ = G×CN ,
and the only new ramification occurs above r. Moreover, the primes r above r
satisfy both of our standard conditions: They are tamely ramified and j ∈ Gr.
Set T ′ = {P′ ⊂ L′ : P′ ∩ L ∈ T} and T ′

0 = T ′ ∪ {R′ ∈ L′ : R′ | r}. There is an
exact sequence


oL′/

∏

R′|r
R
′



×,−

⊗ Zp ½ A
T ′0
L′ ⊗ Zp ³ AT ′

L′ ⊗ Zp.

We claim that the leftmost term is trivial, and hence AT ′
L′ ⊗ Zp ' A

T ′0
L′ ⊗ Zp is

c.t. by Theorem 2.1.1. To see this let r be a prime in K above r, and R′ a prime
in L′ above r. Since j ∈ Gr, it acts on the corresponding residue field extension
of degree fr, say. Therefore, (oL′/R′)×,− has exactly qfr/2

r + 1 elements, where
qr = N(r) is a power of r. But thanks to the first condition on r we have
qfr/2

r + 1 ≡ 2 6≡ 0 mod p. Hence, the leftmost term vanishes, since we are only
dealing with p-parts.

For the same reasons as in Proposition 3.2.1 the natural restriction map
AT ′

L′ ⊗ Zp ³ AT
L ⊗ Zp is surjective. The composite map

AT ′
L′ ⊗ Zp

res−→ AT
L ⊗ Zp → AT ′

L′ ⊗ Zp

is given by the norm NCN
, and the kernel of the norm is just ∆CN ·AT ′

L′ ⊗ Zp.
Therefore, the restriction map induces an isomorphism

(AT ′
L′ ⊗ Zp)CN

'−→ AT
L ⊗ Zp. (3.5)
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As before, we build the cyclotomic tower over L′ and set ΓL′ = Gal(L′∞/L′)
and G ′ = Gal(L′∞/K) = G×CN . We define the projective limit of the ray class
groups A

T ′n
L′n
⊗ Zp to be X−

T ′ , which is a finitely generated, torsion Zp[[G ′]]−-
module of projective dimension at most 1 by Proposition 3.1.1. Since we
assume µ− = 0 for the cyclotomic Zp-extension L∞/L, the same holds for the
cyclotomic Zp-extension over L′ by Theorem 11.3.8 in [NSW]. Theorem 3.1.2
implies

FittZp[[G′]]−(X−
T ′) = (ΨT ′0).

Set up =
∏

p∈Sp∩Stram
(1−εpφ

−1
p |L′) ∈ ZpG

′. As in Proposition 3.2.1, the canon-
ical restriction map X−

T ′ → AT ′
L′ ⊗ Zp is an epimorphism, and therefore the

Fitting ideal of AT ′
L′ ⊗ Zp contains up · θT ′0

S′1
using Corollary 3.1.4. Here, S ′1 are

the primes in L′ above those in S1, i.e. S ′1 contains all the wildly ramified
primes of the extension L′/K.
Let M be a natural number, M ≤ N , and ν =

∑pM−1
i=0 FrobipN−M

p ∈ ZpCN .

Lemma 3.2.4 Let f be the least common multiple of the residual degrees fp

of all p ∈ Sp corresponding to the extension K/Q. If N−M ≥ vp(|G| ·f), then
the element up is a nonzerodivisor in ZpG

′/νZpG
′.

Proof. The proof of Proposition 4.6 in [Gr1] carries over to the present
situation. 2

Corollary 3.2.5 Under the same hypothesis concerning ν as in Lemma 3.2.4
we have:

(1) up · θT ′0
S′1

is a nonzerodivisor in R′ := ZpG
′
−/νZpG

′
−.

(2) (X−
T ′)ΓL′/ν has projective dimension at most 1 over R′, and its Fitting

ideal is generated by up · θT ′0
S′1

mod ν.

Proof. Again the proof of Corollary 4.7 in [Gr1] remains unchanged.
But note that (1) is clear by Lemma 3.2.4, since ν is a zerodivisor in ZpG

′
−,

but θ
T ′0
S′1

is not. 2

We claim that there is an exact sequence
⊕
p∈Sp

Zp[G
′/G′

p]
− → (X−

T ′)ΓL′ ³ AT ′
L′ ⊗ Zp (3.6)

of ZpG
′-modules, where we can replace the set Sp by Sp∩Stram, since Zp[G

′/G′
p]
−

vanishes if j ∈ G′
p. Note that an analogous sequence is well known if we replace

the ray class groups by ordinary class groups (see [Gr1], p. 530 or [Wa]). We
postpone the proof and first continue with the proof of Theorem 3.2.2. We
need the following result about Fitting ideals (cf. Lemma 7.1 in [Ku]).
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Lemma 3.2.6 Let R be a commutative ring and M1 → M2 ³ M3 an exact
sequence of R-modules. Then

FittR(M1)FittR(M3) ⊂ FittR(M2).

If we tensor the exact sequence (3.6) with R′ and apply the above Lemma,
we get

FittR′(A
T ′
L′ ⊗ Zp/ν) · FittR′(

⊕
p∈Sp∩Stram

R′/(1− εpφ
−1
p |L′)) ⊂ FittR′((X

−
T ′)ΓL′/ν).

Hence, FittR′(A
T ′
L′ ⊗ Zp/ν) ⊂ (θ

T ′0
S′1

mod ν) by Corollary 3.2.5. The augmenta-
tion map aug G′

G : ZpG
′ ³ ZpG induces the first isomorphism in

(AT ′
L′ ⊗ Zp/ν)⊗ ZpG− ' (AT ′

L′ ⊗ Zp)CN
/aug G′

G (ν) ' AT
L ⊗ Zp/p

M ,

whereas the second isomorphism derives from (3.5). Since the Fitting ideal
behaves well under base change, we get

FittZpG−/pM (AT
L ⊗ Zp/p

M) ⊂ (aug G′
G (θ

T ′0
S′1

) mod pM).

But aug G′
G (θ

T ′0
S′1

) =
∏

r∈Sr
(1 − φ−1

r |Lqr) · θT
S1

and the product over the primes
above r is a unit in ZpG−. Therefore

FittZpG−(AT
L ⊗ Zp) ⊂ (θT

S1
) + pM · ZpG−,

and since we can choose M arbitrarily large, we actually get

FittZpG−(AT
L ⊗ Zp) ⊂ (θT

S1
).

As in the proof of Proposition 3.2.1, θT
S1

now has to be a generator of the
Fitting ideal by Proposition 2.2.5 and 2.2.7.
The minus part of the LRNC at p again follows from Theorem 2.3.1. 2

We are left with the existence of sequence (3.6). Indeed, we prove a more
general result.

Proposition 3.2.7 Let L/K be a Galois CM-extension with Galois group G,
p 6= 2 a rational prime and T a finite G-invariant set of places of L such that
T ∩Sp = ∅. If X−

T denotes the projective limit of the ray class groups ATn
Ln
⊗Zp,

where Tn consists of all primes in the n-th layer Ln of the cyclotomic Zp-
extension above the primes in T , there is an exact sequence of ZpG−-modules

⊕
P∈S∗p

Zp[G/GP]− → (X−
T )ΓL

³ AT
L ⊗ Zp.
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Proof. For the same reasons as in Proposition 3.2.1, the canonical re-
striction map X−

T → AT
L ⊗ Zp is an epimorphism and clearly factors through

(X−
T )ΓL

.
By class field theory, each ray class group clTn

Ln
⊗Zp is the Galois group of a finite

abelian p-extension Mn/Ln. Then the projective limit XT of these ray class
groups is the Galois group of the extension M∞/L∞, where M∞ =

⋃
n∈NMn.

We put X = Gal(M∞/L).
Let P1, . . . , Ps be the primes in L above p. Exactly these primes ramify
in L∞/L, and we denote the finitely many primes in L∞, which lie above
P1, . . . , Ps, by P∞ik , 1 ≤ i ≤ s. Moreover, we choose above each P∞ik a prime
P̃ik in M∞, and denote its inertia group in M∞/L by Iik ≤ X .
We obviously have an isomorphism X/XT ' ΓL. So we can pick a preimage
γ ∈ X of γL, and thus

X = XT · 〈γ〉. (3.7)

The elements in G act on X via group conjugation, and we may assume that
γj = γ by replacing γ by γ(1−j)/2. The condition on the set T forces that the
extension M∞/L∞ does not ramify above p. Therefore Iik ∩XT = 1, and we
get inclusions

Iik ½ X /XT = ΓL.

Hence, each Iik is isomorphic to Γpnik

L for an appropriate integer nik. We fix
a topological generator σik of Iik which maps to γpnik

L via the above inclusion.
But for fixed i, each two of these inertia groups are conjugate to each other, and
hence nik = ni1 =: ni for all k. Corresponding to (3.7) we write σik = aikγ

pni

with aik ∈ XT .
Because of the obvious exact sequence

Gal(M∞/M0) ½ X ³ clTL ⊗ Zp

we are interested in the Galois group Gal(M∞/M0). We claim that it equals
the subgroup N of X generated by the closure X ′ of the commutator subgroup
of X and the inertia groups Iik. For this, let N be the intermediate field of
the extension M∞/L fixed by N . Then N is the largest subfield of M∞ which
is abelian over L and unramified above p. Thus M0 ⊂ N . If we assume that
M0 6= N , we find an intermediate field N0 of finite degree over L such that
M0 ( N0 ⊂ N . Let N be the conductor of N0/L. Then the primes which
divide N are exactly the primes in T . Recall our definition MT =

∏
P∈T P.

The commutative diagram

oL // (oL/N)× //

²²²²

clNL
// //

²²²²

clL

oL // (oL/MT )× // clTL
// // clL

now implies that the order of the kernel of the surjection clNL ³ clTL is prime to
p, since the only occurring primes are below the primes in T . What we have
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shown is N0 ⊂ M0, in contradiction to our assumption.

Lemma 3.2.8 Let X ′ be the closure of the commutator subgroup of X . Then

X ′ = XγL−1
T .

Proof. The proof of Lemma 13.14 in [Wa] nearly remains unchanged.
We only have to replace the inertia subgroup I1 in loc.cit. by 〈γ〉. 2

Since γj = γ, the above Lemma implies that we get an isomorphism on
minus parts

AT
L ⊗ Zp '

(
XT 〈γ〉/〈XγL−1

T , Iik〉
)−

' X−
T /〈(X−

T )γL−1, aik〉.

As already mentioned, the inertia groups Iik are conjugate for fixed i, hence
σik ≡ σi1 mod X ′ and likewise aij ≡ ai1 mod X ′ for all k. Hence

AT
L ⊗ Zp ' X−

T /〈(X−
T )γL−1, a1, . . . , as〉,

where we have defined ai := ai1. Since X−
T /(X−

T )γL−1 = (X−
T )ΓL

, Proposition
3.2.7 follows from the following lemma.

Lemma 3.2.9 If Pj = P
g
i for an element g ∈ G, then aj ≡ ag

i mod (X−
T )γL−1.

Proof. Let τ ∈ Gal(M∞/K) be a lift of g. Then g acts on (X−
T )ΓL

via
conjugation by τ . P̃τ

i1 is a prime in M∞ above Pj, hence there exists an x ∈ X
such that P̃τ

i1 = P̃x
j1. Replacing τ by x−1τ we may assume that x = 1. Hence

〈σj1〉 = Ij1 = Iτ
i1 = 〈στ

i1〉.

Since the restriction to L∞ induces an isomorphism Ij1 ' Γpnj

L and

στ
i1|L∞ = (γpni

L )τ = (γpni

L )g = γpni

L ,

we have ni = nj and σj1 = στ
i1, i.e.

aj = (aiγ
pnj

)τ · γ−pnj
.

But γτ |L∞ = γL implies that γτ = xτ · γ for an element xτ ∈ XT . We even
have xτ ∈ X+

T , since j trivially acts on γ and commutes with τ . Hence, the
assertion follows from the above equation by taking minus parts. 2



Chapter 4

On the Rubin-Stark conjecture

D. Burns [B3] has shown that the LRNC implies certain congruences of abelian
L-functions at s = 0. These congruences in turn imply, among other things,
the Rubin-Stark conjecture. We will reprove this result for the case at hand
by a different method.

4.1 The conjecture
Let L/K be a finite abelian extension of number fields with Galois group G.
Let S be a finite G-invariant set of primes of L, containing all the infinite
primes and all the primes which ramify in L/K. If T is a second G-invariant,
finite, nonempty set of primes of L, disjoint from S, we define for each character
χ of G a complex-analytic function δT (χ, s) =

∏
P∈T ∗(1−N(p)1−sχ(φP)). The

(S, T )-modified L-function associated to χ is defined to be

LS,T (L/K, χ, s) = δT (χ, s) · LS(L/K, χ, s).

Set δT (s) =
∑

χ∈Irr (G) δT (χ̌, s)εχ for all s ∈ C. The S-Stickelberger and respec-
tively (S, T )-Stickelberger functions1 are defined by

ΘS(s) = ΘS(L/K, s) :=
∑

χ∈Irr (G)

LS(L/K, χ̌, s)εχ,

ΘS,T (s) = ΘS,T (L/K, s) := δT (s) ·ΘS(s) =
∑

χ∈Irr (G)

LS,T (L/K, χ̌, s)εχ.

We now fix a set of data (L/K, S, T, r), where r ≥ 0 is an integer, and which
satisfies the following hypotheses (H):

• S contains all the infinite primes of L and all primes of L which ramify
in L/K.

• S∗ contains at least r primes which split completely in L/K.
1Do not confuse with the representing homomorphism ΘT

S defined in 2.2.4.

90



4.1. THE CONJECTURE 91

• |S∗| ≥ r + 1.

• T 6= ∅, S ∩ T = ∅, ET
S ∩ µL = 1.

Since the common vanishing order rS(χ) of LS(L/K, χ, s) and LS,T (L/K, χ, s)
at s = 0 is at least r by [Ta2], Proposition 3.4, p. 24, we may define

Θ
(r)
S,T (0) := lim

s→0
s−rΘS,T (s) ∈ CG.

Here we think of ΘS,T (s) as a holomorphic function in s = 0. Note that
Θ

(0)
S,T (0) = θT

S if j ∈ GP for all P ∈ S.

Now let us choose an r-tuple W = (P1, . . . , Pr) of r distinct primes of
S∗ which split completely in L/K. We denote the r-th exterior power of a
ZG-module M by ∧r

GM . One defines a regulator map

C ∧r
G ET

S

RW−→ CG

e1 ∧ . . . ∧ er 7→ det
1≤i,j≤r

(
−

∑
g∈G

log |ej|Pg
i
g

)

for e1, . . . , er ∈ ET
S , and then extending by C-linearity. If R is a subring of C

and M an RG-module without R-torsion, we define

Mr,S = {x ∈ M |x · εχ = 0 ∈ CM ∀χ ∈ Irr (G) such that rS(χ) > r} .

As proved in [Ru], RW is a CG-morphism, which induces an isomorphism

(C ∧r
G ET

S )r,S
'−→ CGr,S.

For each Φ = (φ1, . . . , φr−1) ∈ (HomZG(ET
S ,ZG))r−1 one can define a CG-

morphism
∧Φ : C ∧r

G ET
S → CET

S ,

such that for all e1, . . . , er ∈ CET
S one has

∧Φ(e1 ∧ . . . ∧ er) =
r∏

k=1

(−1)k+1 det
1≤i≤r−1

1≤j≤r, j 6=k

(φi(ej)) · ek.

One defines a ZG-submodule of Q ∧r
G ET

S by

ΛS,T =

{ {ε ∈ (Q ∧r
G ET

S )r,S| ∧ Φ(ε) ∈ ET
S ∀Φ ∈ (HomG(ET

S ,ZG))r−1}, r ≥ 1
ZG0,S, r = 0.

We are now ready to state the Rubin-Stark conjecture as formulated by Rubin
[Ru].

Conjecture 4.1.1 Assume that the data (L/K, S, T, r) satisfies (H). Then
for any choice of W as above there exists a unique εS,T,W ∈ ΛS,T such that
RW (εS,T,W ) = Θ

(r)
S,T (0).
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We will refer to this conjecture as B(L/K, S, T, r). Note that the conjec-
ture is independent of the choice of W , and that the uniqueness is automatic
(cf. [P2], Remark 2 and 3). Further, B(L/K, S, T, 1) for varying S and T im-
plies the Brumer-Stark conjecture as shown in [P2], Proposition 3.4.

Let p be a rational prime. If we replace ΛS,T by Z(p)ΛS,T in the above con-
jecture, we get a localized conjecture which we denote by Z(p)B(L/K, S, T, r).
One has

B(L/K, S, T, r) ⇐⇒ Z(p)B(L/K, S, T, r) ∀p.
Our main tool in proving parts of the Rubin-Stark conjecture is the following
theorem, which is Theorem 3.2.2.3 in [P3].

Theorem 4.1.2 Assume that (L/K, S, T, r) satisfies (H) and let p 6= 2 be a
rational prime. Choose r distinct primes P1, . . . , Pr ∈ S∗ which split completely
in L/K, and set S0 := S \ (GP1 ∪ . . . ∪GPr). Then it holds:

ΘS0,T (0) ∈ FittZpG−(AT
L ⊗ Zp) =⇒ Z(p)B(L/K, S, T, r).

Moreover, we will need the following results which are taken from Propo-
sition 2.3 in [P2].

Proposition 4.1.3 Let p be a rational prime, and assume that the set of data
(L/K, S, T, r) satisfies (H). Then it holds:

(1) If S ⊂ S ′ and (L/K, S ′, T, r) also satisfies (H), then

Z(p)B(L/K, S, T, r) =⇒ Z(p)B(L/K, S ′, T, r)

(2) If T ⊂ T ′ and (L/K, S, T ′, r) also satisfies (H), then

Z(p)B(L/K, S, T, r) =⇒ Z(p)B(L/K, S, T ′, r)

4.2 The tamely ramified case
We apply the results of the previous chapter to prove

Theorem 4.2.1 Let L/K be an abelian Galois CM-extension with Galois
group G and p 6= 2 a prime. Assume that for each prime p above p the ram-
ification is at most tame or j ∈ Gp. Then the minus part of the LRNC at p
implies the Rubin-Stark conjecture Z(p)B(L/K, S, T, r) for each sets of places
S, T and each integer r such that (L/K, S, T, r) satisfies (H).

We immediately get from Theorem 3.2.2:

Corollary 4.2.2 Assume that L/K additionally satisfies j ∈ Gp for all primes
p above p, whenever Lcl ⊂ (Lcl)+(ζp), and that µ− = 0. Then Z(p)B(L/K, S, T, r)
holds whenever (L/K, S, T, r) satisfies (H).
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Note that we can again remove the condition µ− = 0 if p - |G|.

Proof of Theorem 4.2.1. It follows from Theorem 4.1.2 and Propo-
sition 4.1.3 that it suffices to show that ΘSram,T0(0) ∈ FittZpG−(AT0

L ⊗ Zp) for
minimal sets T0. Hence, let T0 = {Pg

0|g ∈ G} for an unramified prime P0 such
that ET0

Sram
∩ µL = 1. This is equivalent to the statement on earlier occasions

that 1 − ζ 6∈ ∏
g∈G/GP0

P
g
0 for all 1 6= ζ ∈ µL. As before, define S1 to be the

set of all wildly ramified primes above p and set T = T0 ∪ (Sram \ (Sram ∩ Sp)).
By Theorem 2.3.1 the minus part of the LRNC at p implies (and is indeed
equivalent to)

FittZpG−(AT
L ⊗ Zp) = (θT

S1
). (4.1)

We have two exact sequences

oL/

∏

P∈T\T0

P



×,−

⊗ Zp ½ AT
L ⊗ Zp ³ AT0

L ⊗ Zp, (4.2)


oL/

∏

P∈T\T0

P



×

⊗ Zp ½
⊕

P∈T ∗\T ∗0

ind G
GP

TP ⊗ Zp ³
⊕

P∈T ∗\T ∗0

ind G
GP

WP ⊗ Zp.

The first follows from sequence (2.8) for the sets T and T0, whereas the second
derives from diagram (2.12). We want to apply the following Lemma, which
is a special case of Lemma 5 in [BG2].

Lemma 4.2.3 Let M1 ½ P1 → P2 ³ M2 be an exact sequence of finite ZpG−-
modules, where P1 and P2 are c.t. Then Fitt(Pi) is invertible for i = 1, 2
and

Fitt(M2) = Fitt(M∨
1 ) · Fitt(P1)

−1 · Fitt(P2),

where M∨
1 = Hom(M1,Q/Z) denotes the Pontryagin dual of M1.

We have to modify the above two exact sequences slightly. For each prime
P we have an exact sequence

KP ½ (ind G
GP
ZpGP/(N(P)− 1))− ³

(
ind G

GP
(oL/P)

)×,− ⊗ Zp,

where the second map is induced by mapping 1 to a generator of (oL/P)×.
These sequences glue together and give

K ½ P ³


oL/

∏

P∈T\T0

P



×,−

⊗ Zp, (4.3)

where K and P are the direct sums of the KP and the middle terms in the
above sequence, respectively. Note that K and P are finite, and P is c.t. Define

c′P := (|GP|(1− 1

|GP|NGP
) +

1

|GP|NGP
) · cP ∈ WP,
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where cP was defined in (2.14). Moreover, let t′P be a preimage of c′P in TP.
The maps ZpGP → WP ⊗ Zp, 1 7→ c′P and ZpGP → TP ⊗ Zp, 1 7→ t′P are
injective and become isomorphisms after tensoring with Qp. Hence, the direct
sum

T :=
⊕

P∈T ∗\T ∗0

ind G
GP

TP/t′P ⊗ Zp

is finite and c.t. by Lemma 2.3.3. Therefore, the sequences (4.2) and (4.3) give
two exact sequences

K ½ P → AT
L ⊗ Zp ³ AT0

L ⊗ Zp,

K ½ P → T − ³ W−,

where W is the direct sum of the ind G
GP

WP/c′P ⊗ Zp. We can apply Lemma
4.2.3 to these sequences and get

Fitt(AT0
L ⊗ Zp) = Fitt(AT

L ⊗ Zp) · Fitt(T −)−1 · Fitt(W−). (4.4)

Proposition 2.3.5 (4) implies

Fitt(T −) =
∏

P∈T ∗\T ∗0

(τP), (4.5)

τP = fP(1− qp)
1

|GP|NGP
+ (|GP| −NGP

)(
qp − φP

1− φP

εP + 1− εP),

where as before εP = |IP|−1NIP
, qp = N(p), and fp is the degree of the

corresponding residue field extension.

Lemma 4.2.4 Let P 6∈ Sp be a finite prime of L. Then

FittZpGp
(WP/c′P ⊗ Zp) = 〈NGp

− |Gp|, NGp
+ ep(fpNIp

−NGp
)(φp − 1)−1〉ZpGp

.

Proof. Since P lies not above p, we may assume that P is at most
tamely ramified. We keep the notation of [Ch2], Lemma 6.2. So choose a
generator a of Ip and let b ∈ Gp be a lift of φ−1

p which is of maximal order |b|
among all such elements. Set ep = |Ip|; then b−fp = acp for a divisor cp of ep.
Define a map

π : ZGpe1 ⊕ ZGpe2 ³ WP

by π(e1) = (b−1 − 1, 1) and π(e2) = (a − 1, 0). We claim that the kernel is
generated by NIp

e2 and (a− 1)e1 + (1− b−1)e2. For this, assume that

π(x1e1 + x2e2) = (x1(b
−1 − 1) + x2(a− 1), x1) = 0 ∈ WP.

By Lemma 6.6 in [Ch2] x1 = (a − 1)x′1 for an appropriate x′1 ∈ ZGp. By the
same Lemma in loc.cit. we get x′1(b

−1 − 1) + x2 = y ·NIp
for a y ∈ ZGp, since
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the left-hand side is annihilated by (a− 1). This proves the claim. Define two
group ring elements

δ1 :=

fp−1∑
i=0

b−i + (fpNIp
−NGp

)(b−1 − 1)−1 ∈ ZpGp,

δ2 :=

cp−1∑
i=0

ai + fp ·
ep−1∑
i=1

i−1∑
j=0

aj ∈ ZpGp.

An easy computation shows that π(δ1e1− δ2e2) = c′P. Hence, the kernel of the
epimorphism

ZpGpe1 ⊕ ZpGpe2 ³ WP/c′P ⊗ Zp

induced by π is generated by the kernel of π and δ1e1 − δ2e2. From this one
can compute the desired Fitting ideal. 2

Recall the definitions (2.7) and (2.10) of ω and the modules MP. The above
Lemma together with (4.4), (4.1), (4.5) now yields

Corollary 4.2.5

FittZpG−(AT0
L ⊗ Zp) = (qp0 − φP0)ω

∏
P∈S∗ram

MP ⊂ SKu(L/K)− · ZpG.

In particular, this implies

ΘSram,T0(0) = (qp0 − φP0) · ω
∏

P∈S∗ram

(1− εPφ−1
P ) ∈ FittZpG−(AT0

L ⊗ Zp),

which proves Theorem 4.2.1. 2

Remark. As one can see from the results in [GK], it is not true in general
that ΘSram,T0(0) lies in the Fitting ideal of AT0

L ⊗ Zp. But note that all the
counterexamples in loc.cit. are wildly ramified above p. Thus, we have actually
shown a stronger result (which is called the Strong Brumer-Stark Conjecture
in [P3]).



Appendix A

Removing µ− = 0

We combine methods used by J. Ritter and A. Weiss [RW5], A. Wiles [Wi1]
and C. Greither [Gr1] to remove the hypothesis µ− = 0 in Theorem 3.1.2 (2)
for a special class of cases, including the case p - |G|. More precisely, we prove

Theorem A.0.6 Let T be the set of places of L defined in (3.1). Suppose that
for each prime p ∈ T (K) at least one of the following conditions is satisfied:

• j ∈ Ip

• j 6∈ Ip, but j ∈ Gp and N(p)fp/2 6≡ −1 mod p

• p - |Ip|

Then we have
FittZp[[G]]−(X−

T ) = (ΨT ).

Remark. In the proof of Theorem 3.2.2 we have enlarged the extension L/K
to L′/K. But if L/K satisfies the hypotheses of the above theorem, then so
does L′/K.

Proof. Since the projective dimension of X−
T as a Zp[[G]]−-module is at

most 1 by Proposition 3.1.1, the Fitting ideal in demand is principal, generated
by Ψ̃T , say. The integral closure of Zp[[G]]− is R :=

∑
χ Zp[χ][[T ]], where the

sum runs over all odd irreducible characters of G̃. Since Zp[[G]]− ∩ R× =
(Zp[[G]]−)×, it suffices to show

(1) RΨ̃T = RΨT

(2) (Ψ̃T ) ⊂ (ΨT ).

If χ is an odd irreducible character of G̃ and X is any Zp[[G]]−-module, we
define Zp[χ][[T ]]-modules

Xχ := X ⊗Zp[[G]]− Zp[χ][[T ]],

96
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Xχ :=
{

x ∈ Zp[χ]⊗Zp X|gx = χ(g)x ∀g ∈ G̃
}

= HomZp[χ]G̃(Zp[χ],Zp[χ]⊗Zp X).

To prove (1) we have to show that FittZp[χ][[T ]]((X
−
T )χ) is generated by χ(ΨT ).

By (1) of Theorem 3.1.2 this holds apart from the µ-invariants. By Lemma 3.3
in [Gr1] there is an isomorphism (X−

T )χ ' Xχ
T , since X−

T is c.t. over G̃. More-
over, the epimorphism X−

T ³ X−
std has a kernel C which is finitely generated

as Zp-module (cf. (3.2)), and thus it induces an exact sequence

Cχ ½ Xχ
T → Xχ

std ³ H1(G̃, HomZp[χ](Zp[χ],Zp[χ]⊗Zp C)),

where the rightmost term is finite. Hence, µ(Xχ
T ) = µ(Xχ

std), and the latter
equals the µ-invariant of χ(ΨT ) by Theorem 1.4 in [Wi1] if χ is of order prime
to p. For the general result one has to adjust the (second part of the) proof of
Theorem 16 in [RW5]. As already mentioned earlier, one should think of the
claim of Theorem A.0.6 as a reformulation of the equivariant Iwasawa main
conjecture; hence equation (1) states that the conjecture is true over the max-
imal order R, which is Theorem 6 in [RW3].

It remains to prove (2). Write G̃ = G′ × G̃p, where G̃p is the p-Sylow
subgroup of G̃, and thus p - |G′|. We have a natural decomposition

Zp[[G]]− =
⊕

χ′∈Irr (G′)

χ′ odd

R(χ′),

where R(χ′) = Zp[χ
′][[G̃p × ΓK ]] is a local ring. Its maximal ideal mχ′ is

generated by p and the augmentation ideal ∆[[G̃p × ΓK ]]. We define a prime
ideal Pχ′ := (p, ∆G̃p) ( mχ′ .

Lemma A.0.7 For each p ∈ T (K) the element ξp defined in (3.4) becomes a
unit in R(χ′)Pχ′ .

Proof. Recall the definition Zp = ind G
Gp
Zp. As one can learn from the

proof of Proposition 8 in [Gr2], we have

(ξp) = FittQp[[G]]−(QpZp(1)−)FittQp[[G]]−(QpZ
−
p )−1.

But Z−
p = 0 if j ∈ Gp. Moreover, Zp(1) = Zp[[G]]/〈qp−φp, τ−1, τ ∈ Ip〉, where

as before qp = N(p). Hence, Zp(1)− = 0 if j ∈ Ip. Now assume that j 6∈ Ip,
but j ∈ Gp and q

fp/2
p 6≡ −1 mod p. Then φ

fp/2
p − q

fp/2
p ≡ j − q

fp/2
p mod T , and

j − q
fp/2
p becomes a unit on minus parts. This means that φ

fp/2
p − q

fp/2
p is a

unit in Zp[[G]]−, and hence Zp(1)− = 0 in this case, too. We have proven so
far that ξp is actually a unit in Zp[[G]]− if p satisfies the first or the second
condition of the theorem. We are left with the case p - |Ip|.
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It suffices to show that (1− φ−1
p qp)εp + 1− εp and (1− φp)εp + 1− εp become

units at Pχ′ . We only treat the first element, the other case is similar.
For this, we have to prove that χ′((1 − φ−1

p qp)εp + 1 − εp) 6∈ Pχ′ . Assume
that this is false. Since 1 6∈ Pχ′ , we must have χ′(εp) = 1. Let us write
φ−1

p = σ′ · σp · γc
K , where σ′ ∈ G′, σp ∈ G̃p, 0 6= c ∈ Zp. Since σp − 1 ∈ Pχ′ ,

we have 1 − χ′(σ′)γc
Kqp = 1 − χ′(σ′)qp(1 − T )c ∈ Pχ′ . Since Pχ′ contains no

unit, we must have p|(1 − χ′(σ′)qp), and hence 1 − (1 − T )c ∈ Pχ′ . If we
write c = pn · α, α ∈ Z×p , we find out that 1 − (1 − T pn

)α ∈ Pχ′ . Finally,
1 − (1 − T pn

)α = T pn · g(T ) with a power series g(T ) with g(0) = −α, hence
g(T ) is a unit. This implies T ∈ Pχ′ , a contradiction. 2

We now return to the proof of Theorem A.0.6. The epimorphism X−
T ³

X−
std implies the first inclusion in

FittR(χ′)((X
−
T )χ′) ⊂ FittR(χ′)((X

−
std)χ′) ⊂ (G(χ′)−1ω,Sram∪Sp

(T )),

whereas the second inclusion is (10), p. 562 in [Wi2]. Localizing at Pχ′ gives

(χ′(Ψ̃T ))Pχ′ ⊂ (G(χ′)−1ω,Sram∪Sp
(T ))Pχ′ = (χ′(ΨT ))Pχ′ ,

since all the ξp become units at Pχ′ . Therefore, there is an element r′ ∈
R(χ′) \ Pχ′ such that r′ · χ′(Ψ̃T ) ∈ (χ′(ΨT )). We already know from Theorem
3.1.2 that one can find a positive integer i such that pi · χ′(Ψ̃T ) ∈ (χ′(ΨT )).
Hence

(pi, r′)(χ′(Ψ̃T )) ⊂ (χ′(ΨT ))

and the ideal (pi, r′) has finite index in R(χ′).
Thus, (χ′(Ψ̃T ))+(χ′(ΨT ))/(χ′(ΨT )) is a submodule of R(χ′)/(χ′(ΨT )) of finite
cardinality. Now the proof following (10.5) in [Wi1] shows that the only such
module is trivial. We obtain (χ′(Ψ̃T )) ⊂ (χ′(ΨT )), and thus we get (2). This
completes the proof of the theorem. 2
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