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Introduction

In this paper we study a famous conjecture which relates the leading terms at
zero of Artin L-functions attached to a finite Galois extension L/K of num-
ber fields to natural arithmetic invariants. This conjecture is called the Lifted
Root Number Conjecture (LRNC) and has been introduced by K.W. Gruen-
berg, J. Ritter and A. Weiss [GRW]; it depends on a set S of primes of L
which is supposed to be sufficiently large. We formulate a LRNC for small
sets S which only need to contain the archimedean primes. We apply this to
CM-extensions which we require to be (almost) tame above a fixed odd prime
p. In this case the conjecture naturally decomposes into a plus and a minus
part, and it is the minus part for which we prove the LRNC at p for an infinite
class of relatively abelian extensions. Moreover, we show that our results are
closely related to the Rubin-Stark conjecture.

Some history

Let L/K be a finite Galois extension of number fields with Galois group G.
T. Chinburg [Chl| defined an algebraic invariant Q(L/K) for the extension
L/K. He conjectured that Q(L/K), which is an element in Ky(ZG), equals
the root number class W(L/K), an analytic invariant defined by Ph. Cassou-
Nogués and A. Frohlich in terms of Artin root numbers. In [Ch2| he introduced
two further algebraic invariants in Ko(ZG), called ;(L/K), i = 1,2, 3, where
Q3(L/K) = Q(L/K). These invariants are related by the equation

Ou(L/K) = (L/K) - Q4(L/K).

Chinburg conjectured that €;(L/K) = 1, and hence that Q(L/K) also equals
the root number class. In addition, he proved the {2s-conjecture for at most
tamely ramified extensions.

All these conjectures have meanwhile been lifted to corresponding conjec-
tures in K(T(ZG); so the LRNC is Chinburg’s 3-conjecture in KoT(ZG)
rather than in Ky(ZG), whereas the conjectures in [BB] and |[BrB] are the
same concerning Chinburg’s {25 and €);-conjecture, respectively. The LRNC
assumes the validity of Stark’s conjecture which guarantees the Galois com-
patibility of a certain homomorphism on the characters of G. D. Burns |B1]
defined an element TQ(L/K,0) € Ko(ZG,R) which lies in Ko(ZG,Q) if and
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6 INTRODUCTION

only if Stark’s conjecture is true. He also showed in loc.cit. that TQ(L/K,0)
vanishes if and only if the LRNC holds, and that the LRNC is equivalent to the
Equivariant Tamagawa Number Conjecture for the pair (h°(Spec(L))(0), ZG).
In [B3| he has shown that this conjecture implies a whole family of related con-
jectures as the Rubin-Stark conjecture and the refined class number formulas

of Gross, Tate and Aoki, Lee and Tan.

The LRNC is known to be true for abelian extensions L/Q as proved by
D. Burns and C. Greither [BG1| with the exclusion of the 2-primary part;
M. Flach [F1] extended the argument to cover the 2-primary part as well. If L
is in addition totally real, the LRNC was independently proved in [RW3, RW4].
Some relatively abelian results are due to W. Bley |Bl|. He showed that if L/ K
is a finite abelian extension, where K is an imaginary quadratic field which has
class number one, then the LRNC holds for all intermediate extensions L/F
such that [L : F] is odd and divisible only by primes which split completely in

K/Q.

Outline of the thesis

In the first chapter we give a reformulation of the LRNC for small sets of places
S. If L/K is an abelian CM-extension and one restricts to minus parts, this
has recently been done by C. Greither [Gr3], where the author is interested in
computing the Fitting ideal of the Pontryagin dual of minus class groups via
the LRNC.

The algebraic objects of the LRNC are invariants 0y € K¢T(ZG) depending
on equivariant maps ¢. All these 0 are mapped to Chinburg’s Q3(L/K) via
the natural connecting homomorphism K T'(ZG) — Ky(ZG). Let S be a set
of places of L which is large in the sense that it contains all the infinite primes,
all primes which ramify in L/K and enough primes to generate the ideal class
group of L. J. Tate [Tal] constructed a canonical element 7 in ExtZ,(AS, Es),
where AS is the kernel of the augmentation map ZS — Z, and Eg denotes the
S-units in L. A sequence

Eg— A — B — AS,

whose extension class is 7, and where A and B are cohomologically trivial
G-modules, is called a Tate-sequence. The main objects occurring in the defi-
nition of €2y are a Tate-sequence and an injection

(b : AS — Es.
The LRNC now asserts that €24 is represented by the homomorphism
X = As(OW (L/ K, X),

where ¥ denotes the contragredient of a character x of G, A, is the quotient
of the Stark-Tate regulator and the leading term at zero of the S-truncated
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Artin L-function attached to x, and W(L/K, ) is defined in terms of Artin
root numbers.

If S is not large, but still contains the infinite primes, J. Ritter and A. Weiss
[RW1]| constructed a Tate-sequence

E3>—>A—>B—»V

with an explicitly determined G-module V. But in general there do not exist
injections V — FEg. After a few preliminaries we show how to remedy this
problem and give a definition of €2y for small sets S. We prove that the def-
inition is independent of all the choices made during the construction (apart
from ¢ and S), and hence we can view {2, as an arithmetic invariant of L/K.
Then we discuss how 2, varies if we change ¢ or enlarge the set S. This
leads us to the definition of a modified Stark-Tate regulator and a conjectural
representing homomorphism of 4. We call this the LRNC for small sets of
places; of course, it is equivalent to the LRNC for large sets of places.

In the second chapter we apply this reformulation to CM-extensions which

are assumed to be tame above a fixed odd prime p. Actually, we permit a
slightly more general class of extensions. The primary idea was to restrict our-
selves to minus parts and to use the LRNC for the set S, of all infinite primes.
In this case, the leftmost term of the corresponding Tate-sequence consists just
of the roots of unity in L which seems easy to handle. The rightmost term,
however, is no longer torsion free and thus becomes more complicated. For
this reason we have to choose a set of places for which both sides are comfort-
able to some degree. This turns out to be a set which contains only totally
decomposed (and thus unramified) primes.
In the first section of this chapter, we prove that the p-part of a certain ray
class group of L is cohomologically trivial on minus parts. We give a definition
of non-abelian Stickelberger elements in section two. These elements can be
viewed as representing homomorphisms of elements in KT (ZG). In the last
section, we show that the minus part of the LRNC at p holds if and only if
the ray class groups treated in section one are represented by corresponding
Stickelberger elements.

Note that taking minus parts simplifies matters for various reasons. First,
Stark’s conjecture is known to be true for odd characters. Moreover, the infi-
nite primes consist of pairs of complex conjugate embeddings and hence neatly
drop out on minus parts, i.e. (ZS)~ = 0. At last, when Iwasawa theory comes
into play in chapter three, taking minus parts provides an opportunity of an
easier descent.

In chapter three, we assume the Galois group G to be abelian. In this case
one can translate the minus part of the LRNC at p to the assertion that the
Fitting ideal of the above ray class group is generated by the corresponding
Stickelberger element. We pass to the limit and get the respective statement
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at infinite level thanks to a result of C. Greither [Gr2| provided that the Iwa-
sawa p-invariant vanishes. We will remove this hypothesis for a special class
of extensions (including the case p { |G|) in the appendix. Note that the van-
ishing of i is a long standing conjecture; the most general result is still due to
B. Ferrero and L. Washington [FW]| and says that u = 0 for absolute abelian
extensions.

For the descent we use a method which is due to A. Wiles [Wi2] in the ex-
tended version by C. Greither |[Grl]. For this, we have to assume a slightly
more restrictive hypothesis on the primes above p.

The exclusion of the prime p = 2 has two main reasons; the Iwasawa main
conjecture is not known in this case, and taking minus parts is not exact if 2
is not invertible in the ground ring.

In the last chapter we prove the Rubin-Stark conjecture for the same class

of extensions. The main ingredient is a result of C. Popescu [P3|. He proved
that the Rubin-Stark conjecture follows from the stronger statement that the
Fitting ideal of a certain ray class group of L contains a particular Stickelberger
element. These are not the same ray class groups resp. Stickelberger elements
as in the previous chapters, but they are related to them closely enough.
As already mentioned above, D. Burns [B3| has shown that the LRNC always
implies the Rubin-Stark conjecture. Thus, we have reproved this result for
(almost) tame extensions. Our approach uses more explicit methods and we
indeed prove a stronger result which is called the Strong Brumer-Stark con-
jecture in [P3|. But note that this conjecture does not hold in general, as one
can see from the results in [GK].
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Chapter 1

The Lifted Root Number
Conjecture for small sets of places

1.1 Preliminaries

Duals

Let G be a finite group. For each ZG-module M we write MY for its Z-dual
Homgz (M, Z) with the G-action formula (gf)(m) = gf(g~'m) = f(g~'m) for
g€ G, fe M®and m € M. Note that there is a natural ZG-isomorphism
7.G ~ 7.G° that sends each ¢ € G to the homomorphism h — dgn. Of course,
the 0 on the righthand side is Kronecker’s.

Under this identification, the dual of the natural augmentation map ZG — Z
is the map Z — ZG that sends 1 to Ng = > _.g. Thus, we get a ZG-
isomorphism

geG

AG® ~ 7ZG /Ng, (1.1)

where AG denotes the kernel of the augmentation map.

Sections

Let R be a (not necessarily commutative) ring with 1. Consider the following
commutative diagram of R-modules with exact rows:

M2 My — " MY (1.2)
Jlgl ‘/g J/gll
My—2— M, —"= MY

Definition 1.1.1 Two R-homomorphisms 1 : M{ — My and 1 : My — M,
are called commutative sections if m;o1; =id fori = 1,2 (i.e. both 7; are
sections) and gm = 129" .
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We will also refer to R-homomorphisms o1 : My — M and o9 : My — M), as
commutative sections if o;u; = id fori = 1,2 and g'oy = 03g9.

Lemma 1.1.2 Keep the notation of diagram (1.2) and the above definition.

(1) There are commutative sections 7 and T if and only if there are com-
mutative sections o1 and 0.

(2) Assume that the maps ¢',g,q" are injective and that R is a semisimple
K-algebra over a field K. Then there always exist commutative sections
71 and 7.

PRrROOF.

(1) If 7y and 7» are commutative sections, define o; = id — 7ym; for i = 1, 2.
It is easy to verify that o; and o, are commutative sections. Conversely,
if o7 and o9 are commutative sections, define 7;(m}) = m; — o;(m;) for
i = 1,2, where m! € M!" and m; is any preimage of m; in M;. Again, it
is easy to see that the definition is independent of the choice of m; and
that 7 and 75 in fact are commutative sections.

(2) This is Lemma 1.4 in [B2]. O

K-theory

Let R be a left noetherian ring with 1 and PMod(R) the category of all finitely
generated projective R-modules. We write Ky(R) for the Grothendieck group
of PMod(R), and K;(R) for the Whitehead group of R which is the abelianized
infinite general linear group. If S is a multiplicatively closed subset of the
center of R which contains no zero divisors, 1 € S, 0 ¢ S, we denote the
Grothendieck group of TsMod(R), the category of all S-torsion R-modules of
finite projective dimension, by KyS(R). Writing Rg for the ring of quotients
of R with denominators in S we have the Localization Sequence (cf. [CR2], p.
65)

Ki(R) — Ki(Rs) 2 KyS(R) — Ko(R) — Ko(Rs). (1.3)
If T is a ring that contains R and M is an R-module, we will often write T'M
instead of T'®gr M. Moreover, if G is a group and M = AG is the kernel of

the augmentation map RG — R, we set ArG :=T @ AG. In the case R = 7Z,
T = 7, for a prime p, we write A,G instead of Az G.

Specializing to group rings ZG for finite groups G and S = Z\ {0} we write
KT (ZG) instead of KyS(ZG). So (1.3) reads

K(ZG) — K,(QG) 2 KyT(ZG) — Ko(ZG) — Ko(QG).  (1.4)
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Note that a finitely generated ZG-module has finite projective dimension if
and only if it is a G-c.t. (short for cohomologically trivial) module. Indeed,
the projective dimension is lower or equal to 1 in this case. Further, recall that
the relative K-group Ko(ZG, Q) is generated by elements of the form (P, ¢, P;)
with finitely generated projective modules P; and P, and a QG-isomorphism
¢ : QP; — QP,, and that there is an isomorphism

ic : KT (ZG) ~ Ko(ZG, Q). (1.5)

If a c.t. torsion ZG-module T has projective resolution P; L Py T, this
isomorphism sends the corresponding element [T] € K T(ZG) to (P,Q ®
L, Po) S Ko(ZG7 @)

We also shortly explain the map igod. Any element of K;(QG) can be written
in the form [QG", ¢], where n € N and ¢ is a QG-automorphism of QG". Then
ic(9(1QG", 9])) = (ZG", ¢, ZLG").

If p is a finite rational prime, the local analogue of sequence (1.4) is

K\(Z,G) — K1(Q,G) 2 KoT(Z,G) — 0, (1.6)
and we have an isomorphism
KoT(ZG) ~ P KoT(Z,G). (1.7)
pfoo

For later use, we state the following K;-Simplification Lemma which is

taken from [GRW], p.50:

Lemma 1.1.3 Suppose that we have given a diagram of QG-modules

/ "
~ g/ ~ gl/
M M, My

2 2 2

and QG-isomorphisms g,h : My — M, each of which makes the diagram
commutative.
For any QG-isomorphism ~ : My — My we then have equalities

[My,vg] = [My,vh],
[My, g7] = [Ma, hv]
in K1(QG).

To give a convenient formulation of the LRNC for small sets of places, we
need to define elements (A, ¢, B) € Ko(ZG,Q), where A is a finitely generated
c.t. ZG-module, B is ZG-projective and ¢ : QA — QB is a QG-isomorphism.



12 CHAPTER 1. THE LRNC FOR SMALL SETS OF PLACES

Definition 1.1.4 Let A be a finitely generated c.t. ZG-module, B projective
and ¢ : QA — QB a QG-isomorphism.

Choose a projective resolution Py — Py — A of A and an isomorphism ¢
making the following diagram commutative:

QP————QhR QA
%0 ]
QP “—Q(P, ® B) QB

Here, the lower sequence is the canonical one. Then we define:
(4,6,B) = —(B, 6™, A) i= (P, 60, P, & B) € Ko(ZG, Q).

Of course, we have to check the following:

Lemma 1.1.5 (A, ¢, B) is well defined.

PROOF.! Taking another isomorphism ¢, : QPy — Q(P, & B) yields a
commutative diagram

QP ——Qh QA

N

QP——|-Q(Pr®B)—|—=QB

amans

QP ——Q( @ B) QB
which defines an isomorphism 9. Hence, we find that
(Po, g0, P ® B) — (Py, ¢, P @ B) = (P, ® B, by, Py ® B) =0
in Ko(ZG,Q). Thus, (A, ¢, B) is independent of the choice of ¢y.

If we choose a second projective resolution @ — @y - A, we define PB to be
the pull-back of the two surjections onto A; thus

Q=—=0Q
PiC PB Qo
P,C P, A

n terms of Euler characteristics we have an equality (A, ¢, B) = xz¢.06(C", 1), where
C" is the perfect complex ... = 0 — A — B — 0 — ..., where the position of A is in degree
zero and all maps are zero. Hence, one can alternatively use the results in [B2] to show that
(A, ¢, B) is well defined.
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We obtain an exact sequence P; @ Q1 — PB — A, which again is a projective
resolution of A. Hence, we obtain the front and back faces of the following

diagram:

QA \ Qfl \
o Q,
P, & Q¢ PB A
\ b0 @
. .
Py @ Q€ PoQ ®B B
P, B - A
Pi€ P& B B

The dotted maps only exist after tensoring with Q. Here, the isomorphism ¢
is given; the isomorphism ¢y is chosen to make the upper part of the diagram
commute, and then ¢y induces the isomorphism ¢y.

We find that (P, ¢o, P1 & B) equals (PB, b0, PL B Q1 D B) and therefore it
equals (Qo, Yo, @1 ® B) by symmetry, where vy is constructed in exactly the
same way as ¢@q. a

We can calculate with the triples (A, ¢, B) as usual:

Lemma 1.1.6 Let A, A’, A” be finitely generated c.t. ZG-modules and B, B’,
B" projective ZG-modules.

(1) If o : QA — QB and ¢ : QB — QB’ are QG-isomorphisms, then
(A, 99, B') = (A, ¢, B) + (B, v, B').
(2) If p: QB — QA and ¢ : QA — QB’ are QG-isomorphisms, then

(B,v¢, B') = (B, ¢, A) + (A, 4, B).

(8) If A/ — A - A" and B' — B — B” are exact sequences of ZG-modules
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and ¢, ¢, ¢" are QG-isomorphisms such that the diagram

QAI( @A QAI/
@' ¢ @
QB QB QB"

commutes, then

(A7 QS? B) = (A,7 ¢/? B/) + (A//7 ¢//7 B//)'

PROOF. (i) and (ii) directly follow from the definition and the correspond-
ing rules in Ko(ZG,Q). For (iii) we construct the diagram

B Py \ P

Py Py Py
Py P& Ry 4

b b e
A EN 7' RN
B @ PI’C—> B P B"® P1”

A A- A"

B/( B B//

Here, we choose projective resolutions of A" and A” which determine a projec-
tive resolution of A by the Horseshoe Lemma. Again, the dotted maps only
exist after tensoring with Q. We first choose the isomorphism ¢ which induces
appropriate isomorphisms ¢; and ¢;. The assertion is now easily read off the
diagram?. O

2 Alternatively, one can again trace back the above properties to the corresponding prop-
erties of refined Euler characteristics.
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REMARK.

(1) If Ais a c.t. torsion ZG-module, then

QP—— QPR QA

1

QP QP

shows that ig([A]) = —(A4,0,0) = (0,0, A) in Ko(ZG, Q).

12

0

(2) We can replace Ko(ZG,Q) by Ky(Z,G,Q,) for any prime p. Everything
remains the same except for the obvious modifications.

Hom description

Let G be a finite group, p a finite rational prime and R(G) (resp. R,(G)) the
ring of virtual characters of G with values in Q° (resp. Qf), an algebraic closure
of Q (resp. Q). Choose a number field F', Galois over Q with Galois group I',
which is large enough such that all representations of G can be realized over
F. Let p be a prime of F' above p. Then there is an isomorphism (for this and
the following cf. [GRW|, Appendix A)

Det : K1(Q,G) — Homr, (R,(G), FY)
[X.g] =[x det(g/Homp a(Vy, F, ®q, X))],

where V) is a F,G-module with character xy. Combined with the localization
sequence (1.6) this gives the local Hom description

KoT'(Z,G) ~ Homy (R,(G), F,)) /Det (Z,G*). (1.8)
One globally has
KyT(ZG) ~ Hom{ (R(G), Jr)/Det U(ZG), (1.9)

where Jr denotes the idéle group of F' and U(ZG) the unit idéles of ZG. The
+ indicates that a homomorphism ¢ € Homj (R(G), Jr) takes values in R*
for symplectic characters.

1.2 QOutline of the construction

Let L/K be a finite Galois extension of number fields with Galois group G and
S a finite G-invariant set of places of L which contains the set S, of all the
archimedean primes. In [RW1] the authors derive an exact sequence of finitely
generated ZG-modules

E¢— A— B -V, (1.10)
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which has a uniquely determined extension class in Ext%(V, Eg). Note that
the sequence itself is not unique. We will refer to a sequence (1.10) as a Tate-
sequence for S. Here, Eyg is the group of S-units of L, A is c.t., B projective
and V fits into an exact sequence of G-modules

C15>—>V—»v.

Indeed, the S-class group of L is the torsion submodule of V, hence V is a
ZG-lattice. To give a description of V, we have to introduce some further
notation:

For a prime P of L we write p = BN K for the prime below B, Gy for the de-
composition group attached to P and Iy for the inertia subgroup. We denote
the Frobenius generator of the Galois group Gy = G /I of the corresponding
residue field extension by ¢g.

The inertial lattice of the local extension Lg /K, is defined to be the ZGy-
lattice (cf. [GW] or [We] p. 42)

Wy = {(z,y) € AGy ® 20y : T = (6 — Dy}, (1.11)

where AGy is the kernel of the augmentation map ZGy — Z. Note that
Wy o~ ZGyp if the local extension Ly /K, is unramified. Projecting on the first
component yields an exact sequence of Gy-modules

7 — Wy — AGy. (1.12)

The Z-dual of this sequence induces a surjection Wg — 7% = 7. If we combine
these surjections and the augmentation map ZS — Z, we get an exact sequence

V7S & b ind &, (W) - Z (1.13)
‘pesli‘am\(sm‘s’ram)*

where the sum runs over a fixed set of representatives of all ramified primes
which are not in S, one for each orbit of the action of G on the primes of L.
Due to this characterization of V we have

Lemma 1.2.1 Let L/K be a finite Galois extension of number fields with
Galois group G and S a finite G-invariant set of places of L which contains

all the archimedean primes. Moreover, let ¥V be as in (1.13) and C a free
ZG-module of rank |S%,, \ (S N Sram)*|-

Then there exist QG-isomorphisms QV ——— Q(Es @ C) .

PrROOF. We have the following commutative diagram:
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aug

ASC 7.9 Z

Ve ZS @& @indg, (Wy)

Dindg, (Wy) ———=@ind g, (Wy)

where all direct sums are taken over the primes P € S\ (SN Spam)*, and
where the middle sequence is (1.13). The left column of the diagram gives an
isomorphism QV ~ Q(AS @ @ ind gm (W3)). Since the Dirichlet map

/\S . ES — ARS
e = = pesloglelyP
induces an RG-isomorphism R® Es — Ag.S, there also exist QG-isomorphisms
AgS — QFEg by the Noether-Deuring Theorem. Finally, (1.12) shows that
QG ~ Qind g, (Wy) ~ Qind g, (W3). O

(1.14)

In order to get an element Q, € Ky(ZG, Q) analogously to the Q, of [GRW],
we split sequence (1.10) into two parts:

Es—A-WandW — B~V (1.15)

We will refer to it as the left and the right part of the Tate-sequence. From
the construction of the Tate-sequence for small sets S one gets the following
diagram, which we can take for a definition of the ZG-lattice R:

We B \Y (1.16)
R B \Y
Cls

We now choose QG-automorphisms « of QW and (3 of QR as well as QG-
isomorphisms & and ( making the following diagrams commutative:

QEs ® C)—>Q(Es ® C & W) QW (1.17)
|
\

Q(Es & C)———Q(A& C) QW
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QRC QB QV (1.18)
|
B B
Y
QR——Q(R& V) QV

In diagram (1.17) C is a free ZG-module as in Lemma 1.2.1. The lower se-
quence derives from adding C' to the left part of the Tate-sequence. The upper
sequence is the canonical one as well as the lower sequence in (1.18). The
upper sequence in (1.18) is extracted from (1.16).

Given a QG-isomorphism ¢ : QV — Q(Eg @ C) as in Lemma 1.2.1 we define
a QG-isomorphism gg to be the composite map

@

¢:QB

— idr®¢
—_—

QRa V)

QReEs®C) (1.19)

i71®idES@C

QW @ Es®(C) —2—=Q(A® ).

We define

Q4 := (B, o, A® C) — 9[QW, a] — J[QR, 8] € Ko(ZG,Q). (1.20)

REMARK.

(1) One can choose the isomorphisms a and [ to be the identity on QW
and QR, respectively. Sometimes, however, it may be useful to choose
injections W »— W and R — R, since we can actually build ZG-diagrams
corresponding to those in (1.17) and (1.18) in this case. These injections
automatically become isomorphisms after tensoring with Q. This also
shows the analogy to the construction in [GRW].

(2) If S is large in the sense that all ramified primes lie in S and clg = 1,
our construction yields the Q, of [GRW] if we choose a and [ to be
ZG-injections homotopic to 0. We will see in the next section that the
definition of (24 is independent of the choice of o, 3, & and B )

(3) The natural homomorphism Ky(ZG,Q) — Ky(ZG) sends Q4 to Chin-
burg’s Q3(L/K) (cf. [Ch2], p. 357 or [We]).
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1.3 Independence of choices

In the preceding section we have defined an element ()4 attached to the fol-
lowing data (D):

e a finite Galois extension L/K of number fields with Galois group G,

e a finite G-invariant set S of places of L which contains all the infinite
primes,

e a QG-isomorphism ¢ : QV — Q(Eg @ '), where V is the kernel of the
sequence (1.13) and C' is a free ZG-module of rank [S%,  \ (S N Sram)*|
as in Lemma 1.2.1.

We have made some choices during the construction, so the aim of this section
will be to prove the following theorem.

Theorem 1.3.1 The data (D) uniquely determine an element Q4 € Ko(ZG, Q).
We divide the proof into two lemmas.

Lemma 1.3.2 The definition of Q4 is independent of the choices of a, 3, &
and (3.

PROOF. If we take other isomorphisms o/, 3, &, (' andset 7 =~ o o/,

o=/ 03" and accordingly 7 = &' o &, 5 =303, we get equalities
QW,of] ~ [QW,a] = [QW,7] = [QW & Es @ 0), 7] (1.21)

and
[QR, 3] —[QR, ] = [QR,0] = [Q(R® V), 5] (1.22)

in K,(QG) as follows from the commutative diagrams

QEsdC)——QWd Es® C)

and
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QR QB v
B
ﬁ’/@RC QRaV) /@V
QRC QRaV) QV

Let U = (B,QNS,A © C) and V' = (B,gz;’,A @ (), where  arises from & and f3,
and ¢ from @ and (. We have to show that

V=¥ = 9[QW, o]+ 0[QR, §] — 0[QW,a] — J[QR, f]
= QW e Esa® (), 7]+ 0[Q(R® V),d].
by (1.21) and (1.22). For this, let
v=(i"' @idggec) o (idr ® ¢) 0 3: QB — QW @ Es @ C),
sop=daovand ¢ =& ovyo B Lof by (1.19). Now,
V-V = (B¢ od, B)
— 0[QB, ¢ 0] o
QB,y " odlod oyo o ]

9
JQB,y toTon]+ O[QB,B_I o&_o B]
QW @ Es @ C), 7|+ 0[Q(R® V), 5],

as desired. O

Secondly, we have to check:

Lemma 1.3.3 The definition of €y is independent of the choice of the Tate-
sequence.

PrROOF. It will be necessary to go through the details of the construction of
Tate-sequences for small S (cf. [RW1]). Therefore, we review that construction
and indicate all the choices made. Hereafter, we will discuss each of them
separately.

Let S’ be a finite set of places of L which contains SU S, and is large enough
to generate the ideal class group of L, and such that Umes, Gy = G (1st
choice). We fix a choice * of a representative for each orbit of the action of G
on the primes of L (2nd choice).
Let us denote the S-idéles of L by Jg, and the idéle class group of L by Cp.
Choose an exact sequence

Cr — 90— AG
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of ZG-modules whose extension class maps to the global fundamental class
ur/kx via the isomorphism Ext;(AG,CL) ~ H*(G,Cp). Locally, for each
$ € S™ there are analogous exact sequences

L5 — Vi — AGy

of Z(Gx-modules whose extension classes map to the local fundamental classes
UL, /K, Via the isomorphisms Exthm (AGy, L) ~ H*(Gy, Ly). We define ZG-
modules

. G

| _ 1.23

where Uy are the units of Ly, and Wy is the inertial lattice of the exten-
sion Ly /K, (see (1.11)). Starting with the local sequence above, the pushout
along the normalized valuation vy : Ly — Z yields the commutative diagram
(cf. [We], p. 42):

Uy Uy (1.24)
Ly¢ Vg AGy

U
A Wy AGy

Thus, we locally get exact sequences Uy — Vi — Wy, and hence an exact
sequence

JS — VS’ —» WS/ (125)

of ZG-modules. By Theorem 1 in [RW1] we find a surjective ZG-homomorphism
6 (3rd choice) which fits into the diagram

JsC Ve W (1.26)
|
| P c
|
¥
ol v AG

where c is induced by the inclusions AGy C AG for P € S* and by
Wy - AGy C AG

for g € 5™\ S*.

There are no further choices made in the construction; nevertheless, we
continue with its description for later use.
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Since the left vertical map Jg — C'f, has kernel E5 and cokernel clg, the S-class
group of L, the Snake Lemma produces an exact sequence

ES — Ag — RS’ —» ClS (127)

of ZG-modules, where Ay is c.t. and Rg is a ZG-lattice. Now we combine
various diagrams for three types of primes § € S™ (see [RW1], p. 157 or
Proposition 1.5.4 for the first, the others are clear).

Type 1: g€ Sk, \ (SN Siam)*

ram

Wpt—— ZG?B Wg (1.28)
AG© 7.G Y/
Type 2: ¢ € §*
AGp——ZGy Y/ (1.29)
AG© 7.G Y/
Type 3: g€ 5™\ (S*USL,L)
Wy ———=ZGy 0 (1.30)
0 0
AG© 7G /
If we define
No= P mdd (zGhe P  ind§ ZGy,
p of type 1 3 of type 2 or 3
M= € mdgWpe  ndg Z
g of type 1 p of type 2
the three diagrams above yield
Rﬁ’( Bg Vj (1.31)
W€ Ng/ M*

AGS 7G Z
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Observe that By is projective, since Ng is ZG-free. As a last step we take
the pushout of the upper sequence in (1.31) along the surjection Rgr — clg in
(1.27):

R~ Bg A (1.32)

Cls( VQ v*
Together with (1.27) this yields a Tate-sequence for S:

Eg — Ag — Bg - Vy

Before we go into the discussion of choices, we insert the following propo-
sition, which will be useful in the following.

Proposition 1.3.4 Underlying the data (D), assume that there are two Tate-
sequences for S as shown in the diagram:

B¢ A B v

a b ~|h

ES( Al BI v/
P=———P

Suppose that P is ZG-projective and the isomorphism h fits into a diagram

clg® \Y v (1.33)
~|n ~|n
clg® A% v
Then we have an equality
Q, = Q;; -1

where Qg and Q;%,l arise from the upper and the lower Tate-sequence, respec-
tively. B
In particular, if h = idg, we have Qg = Q.

REMARK. In [RW1] an isomorphism & as in diagram (1.33) satisfying h = ids
is called admissible (cf. Theorem 4 in loc. cit.).
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PROOF. Since P is projective, we have compatible isomorphisms A’ ~
A® P and B’ ~ B ® P. Replace the upper Tate-sequence by

Es— AP —-B&P V.

This clearly leaves ), unchanged, since we may replace the isomorphisms
a, & B, by a®idp, @ ®idp, 3@ idp, B ® idp. Hence, we may assume
P=0.
We get a commutative diagram, in which all modules are invisibly tensored
with Q:

é
B RepV——RaeEsaC Wee Esa C ApC
b r&h réldpgoc whidggac a®idgo
_idR/®¢E_1 , , ,
B’ R/@V—>R@ESEP_\Q W'e Egd C Aol

T & —

The ZG-lattices R, W and R, W' are those of diagram (1.16) for the upper
and lower Tate-sequence, respectively. The isomorphisms r and w are induced
by b and h. Since the isomorphisms b and a @ ide already exist at ZG-level,
we are done. O

For the proof of Lemma 1.3.3 we have to go through the proofs in [RW1].
Assertion 1.3.5 (2, is independent of the choice of the surjection 6.

Assume that we have taken another surjection . We indicate the modules
involved by subscripts 6 resp. 8’ if they occur in the construction via 6 resp. 6.
In [RW1], p. 171 it is shown that there is a commutative diagram

Es¢ Ag Bg Vi

~

~

~

Jo A B, Vi

where the rows are Tate-sequences, and we have adopted the local notation.
V4 is isomorphic to V, via an admissible isomorphism, and the difference
between the corresponding Tate-sequences is described via a commutative di-
agram as in Proposition 1.3.4. Since the same is true for V, and Vy, Propo-
sition 1.3.4 implies Assertion 1.3.5.

Assertion 1.3.6 Q, is independent of the choice of S'.
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Let S” be another set of places of L which satisfies the conditions as described
at the beginning of Lemma 1.3.3. We may assume that S’ C S”. Hence, there
is an exact sequence of ZG-modules

WS’ — Wsn —- P = @ ind g‘ﬁ qu,
g‘BES//*\S/*

where P is ZG-free. As one learns from [RW1], p. 174, this gives rise to a
diagram as in Proposition 1.3.4 with an admissible isomorphism.

We are left we the dependence on the choice of x. Let < be a second choice
of G-orbit representatives of primes of L. For each 9 distinguished by x* let
zq € G have the property that xyP = 9’ is distinguished by <. As described
in [RW1] such a system X of elements of G induces a transport * — < and
natural ZG-module transport maps

X W= Wwe, ¥V -V
Hence, an isomorphism ¢, : QV — Q(Es @ C) induces an isomorphism
bo = 0 X T Qvo — Q(Es® C).
Assertion 1.3.7 With the above notation we have: Qy, = Qg .

As shown in [RW1], p. 176 et seq. one has a commutative diagram

ES( A* B* V*
~ ~ h|l>~
ES( A<> B<> v<>

where the isomorphism A is X-admissible, i.e. it fits into a diagram

C15< V* v*
h X
clg© Ve v

Hence, we have ZG-isomorphisms B* ~ B and A* ® C' ~ A® @ C, which
commute with ¢, and ¢ after tensoring with Q:

QB — - QA& C)

QB°® —>Q(A° & C)

Thus, €24, = 4, by Lemma 1.1.6. a
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1.4 Basic properties of ()

In this section we discuss variance of the isomorphism ¢ and of the set of places
S. The most interesting (and most complicated) case is, how € varies if S
is enlarged by ramified primes. Before going into this, however, we give an
alternative definition of €2.

Keeping the notation of the preceding section we start with a QG-isomorphism
¢ QV — Q(Es @ C), which exists due to the exact sequence

CIS C V ik v

and Lemma 1.2.1. We choose QG-automorphisms « and Gy, of QW , where
W is the ZG-lattice defined via splitting the Tate-sequence into two parts
(cf. (1.15)). Choose @& as in (1.17) and a QG-isomorphism fy such that the
following diagram commutes:

QW« QB Qv
|
Bw : Bw
QWt—— Q(Wv@ V) Qv

We now define the QG-isomorphism ¢ : QB — Q(A@® C) to be the composite
map

~ Bw

¢ QB

QW e V) (1.34)

WO QW @ Es ®C) —2~Q(A® C)

Finally, we define

Qy = (B, ¢/, A& C) — 0[QW, a0 fiy].

Proposition 1.4.1 Assume that we have given a set of data (D), where ¢ =
¢ o g for a QG-isomorphism ¢ 1 QV — Q(Es @ C). Then we have an
equality
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PrROOF. We have the following commutative diagram:

We B Y

ﬁ\ a& \
R B v
o B

We Wev v

N S
; v !
RC RV \Y%

Here, Bz =io0 By oi~! and BR =(i®7y)o BW. The dotted arrows only exist
after tensoring with Q; the top face is the main part of diagram (1.16). All
vertical maps as well as ¢ and 7y become isomorphisms after tensoring with
Q. Hence, we have [QR, Og| = [QW, Bw] in K;1(QG). Moreover, we have a
commutative diagram, in which all occurring modules are invisibly tensored

with Q:

(gl
B— WeV——=WaoeEsdC WoEbseC——AaC
w
i@ﬂv i@idESGBC
3 — idgr®e i—1 &
B ReV——ROEsC ——=WOEsdC AeC

R i
Sidpgpc
¢

Therefore

Q.
This proves the proposition. a
REMARK.

(1) The above definition has the advantage that one does not need the ZG-
lattice R, but the disadvantage that one cannot work at ZG-level: In
general there do not exist injections V ~— FEg @ C. By contrast, we can
always find injections V — Eg @ C, since V has no Z-torsion.
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(2) Proposition 1.4.1 shows that we can describe €2 via refined Euler char-
acteristics (but we will make no use of this fact): Consider the perfect

complex
cC:...-0—-A—-B—-=0—...

where the position of A is in degree zero and the map A — B is taken
from the Tate sequence. Then Qy = Qy = xz6.06(C, (¢')7h).

The following proposition describes variance with ¢ and is the analogue to
Proposition 1 in [GRW].

Proposition 1.4.2 Fiz a set of data (D), and let ¢/ : QV — Q(Es @ C) be
another QG-isomorphism. Then

Qp — Qs =0[QV, 97" 0 ¢].
In particular, Qg — €y has representing homomorphism
X = det(¢™" o ¢'|[Homeq(Vy, CV)),
where V), is a CG-module with character x.

PROOF. If we build ¢ and ¢/ using the same maps «, 3, &, 3, there is a
commutative diagram

//_f__\
B F R@VWR@Es@C WoEsoC A C
Friored |7
" v W o EsaC AaC

RpV——ROEspC
W
where v = idg @ (¢~ o¢’) and all modules are invisibly tensored with Q. Now,

Oy —Qy = (B,¢,A®C)— (B,¢,AaC)
= (B,¢7'0¢,B)

0[QB, ¢~ o ¢

0[QB,3 " ovyo ]

IQR® V), 1]

O[QV, o~ o ¢'],

as desired. O

Our next task is to enlarge S by a ramified prime g, i.e. Bg € Siam, but
Bo € S. We may assume Py € S},
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Note that some of the ideas in what follows are taken from |Gr3|, where the
author assumes the validity of the LRNC for an abelian CM-extension L/K
to compute the Fitting ideal of (cl;)Y, the Pontryagin dual of the minus class
group of L. For this, he connects a Tate-sequence for a large set S of places of
L to a Tate-sequence for S,,. In what follows here, some of the maps between
Tate-sequences are inspired by the corresponding maps in [Gr3|. But some of
the diagrams in loc. cit. only commute on minus parts owing to the purpose
of this paper; so we have to modify the construction in order to achieve com-
mutative diagrams in general. Moreover, the author does not introduce an
element like €24, nor he gives a definition of a modified Stark-Tate regulator,
as we intend to do in the next section. Indeed, it considerably simplifies mat-
ters if one restricts to minus parts, since the infinite primes pleasantly drop out.

We set Sy := SUGP, and we intend to indicate each module by a subscript
S resp. Sy (or simply a subscript 0) if it is not clear to which (construction of
a) Tate-sequence it belongs.

The dual of the sequence (1.12) for the prime 9§y, namely
0 0 0
AGy, — Wy, - 27 =17,

yields the following commutative diagram:

. G 0 : G 0
ind GmomAG‘BO ind ano,\AG‘Bo

__ . G
Vs> ZS D D,csr\(5n8umm)+ DA Gy W ——17

J— . G
vSO ZSO @ @PGSE‘am\(SOHSram)* 1nd G‘ﬁ W‘g Z

We extract the left column and use (1.1) to get an exact sequence

ZG/Ng, € Vs —Y>Vs,. (1.35)

Let hy, = |clz| be the class number of L and choose a positive integer h such
that hp|h. Then g} is principal, and we find an Sp-unit ug, which satisfies
Ugso (U, ) = h and vg(uy,) = 0 for all non-archimedean primes P # B,. Here,
vy denotes the normalized valuation at . Let us define a map (which is the
map [ in |Gr3|)

Uy 1 LG — Egy, 11— ug,.

Then we have a left exact sequence

Cold) gy ze g | (1.36)

AGly, - ZGC
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since ug, € Eg if and only if 2 =0 mod Gg,. We have a QG-isomorphism

¢: QG/Ng, — AGy, -QG,

1 mod NG«,pO — 11— = (1.37)

Let Co be a free ZG-module of rank [Sy,., \ (So N Sram)*|, and start with
a QG-isomorphism ¢y : QVg, — Q(Eg, & Cp). Then one can always find a
QG-isomorphism ¢ fitting in a commutative diagram

QG/Ney, a AGy, - QG (1.38)
(—uo,id,0)
QVs —— Q(Es ® ZG & Cy)
(iduo,idcy)
QVs, ® s Q(Es, ® Co)

Here, the two columns derive from the sequences (1.35) and (1.36), since the
second map in (1.36) has finite cokernel.

We are ready to prove

Theorem 1.4.3 Fiz a set of data (D). Let Py be a prime not in S which
ramifies in L/K and h an integral multiple of hp, the class number of L.
Assume that there is a QG-isomorphism ¢q that fits into diagram (1.38). Then
we have an equality

Q¢o - Q(b = 8[ind g%@’ _h|G‘130”'

In particular, Qg4, — 2y has representing homomorphism

dim VG‘BO
X (_h|G‘J30|) X
where V) is a CG-module with character x.

PROOF. It is unavoidable to go through the whole construction of Tate
sequences for small sets of places. We expand the notation of the proof of
Lemma (1.3.3).

For this, let S’ be a finite set of places of L which contains SoU S;am and is large
enough to generate the ideal class group of L, and such that Uepe oGy =G.
According to the definition of Wy let

Woo= P ind AGye P indg Wy
peSE PES*\SE
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Due to (1.12) we have an exact sequence

: G
lHd G‘Bo ZC WS’ WS’,O .

The first step in the construction now yields a commutative diagram:

e
ind ¢, 7

™

Eg A
\ {\ a2 S
By Ay AN < Ry
JS Vg We
Js, Vg | Wsr
Cr© i] AG
(O i AG
clg
\ clg,
(1.39)

Due to the Snake Lemma we can extract from this the following diagram,
where we split the two four-term sequences into short exact sequences:

ind g% Z ker )
ker Ty
B Ae \ / 0 Cls
W Tel
W
ESOC A9 \ RO CIS()

(1.40)
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In analogy to the modules M and Ng we define

My = ind§,Za & ind & Wy,
PesSg PESEam\(SoNSram)*

Ngig = P indf zGpe ay) ind§, (ZG3)
mE(Sl\Sram)*USS s:|3E»S’;«kb”n\(S()ﬁsram)*

and the second step in the construction yields a commutative diagram

e G
ind ¢, Z¢ ind ¢, ZGgp,

.

Bf

G 0
ind g, AGy,

4

' 'Y

Ry© By Vso

ind§, Ze—|———|>ind§, ZGy, —|———=ind§ AGY

AGS G Z

AG© 7.G Z

(1.41)

We choose the endomorphism 3 in diagram (1.18) and the endomorphism

By corresponding to Ry to be the identity. We get the following commutative

diagram in which we have invisibly tensored with Q, and whose roof is the
same as in the diagram above:

e . .
ind ¢, Z¢ ind g‘no ZGsp, ind g‘no AGOq30
RC ¢ B vs
\ E \i \
Ro¢ - By Vs,
g
ind @, Z— ind @, (Z®AGY,) >indg, AGY,
Bo
RS R& Vg Vs
k \ %&

Ry¢ Ry ® vSo Vs,
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Note that we have labelled some of the maps in the above diagram.

We choose the isomorphisms 3 and [, such that the projection R @ Vg —
Ry @ Vs, is given by 7z ® mg. This is possible by Lemma 1.1.2, since we
may define these isomorphisms via commutative sections ¢ : B — R and
09 : By — Ry of the injections i and 7, respectively.

We also choose the automorphisms « of QW and ag of QW to be the
identity. Let us abbreviate the map (id, ug,id¢,) : Es @ ZG & Cy — Es, ® Cy
by 6 and set C' := ZG @& Cy. Furthermore, let us write ¢ for the inclusion
Es, — A := Ay and define 74 := (id4 + tug,id¢,) : A® C — A® Cy. Then
we have a commutative diagram, where we have once more invisibly tensored

with Q:

Es @ CC ES@C@W %%
N
ESO@COC ESO@CO@WO Wo
Qo
Es @ CC e A C W
1Did
Es, ® Co—— " Ae Gy W

(1.42)

Lemma 1.1.2 again implies that we may choose isomorphisms & and &g such
that the dotted arrow in the diagram above is given by d & 7. The bottom
surface even exists before tensoring with Q. Hence, the Snake Lemma yields
an exact sequence

AGy, - ZG — TG = ker my — coké. (1.43)

The cokernel cok 9 is finite, but in general not zero.

Now we can put everything together in the following large commutative
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diagram which defines an automorphism 1 of QG.

QG QB QBy
g 5 o
ind§, Q& QG/Ngy, QR & QVs — = QR, & QVj,
idpe’ id®o id®eo

v ind§, Q& AGy, - QG QR & Q(Es ® C) — 2%~ QR, & Q(Es, & Cy)

Qker T @ AGy, - QG—> QW & Q(Es & C) —°% QW, ® Q(Es, ® Co)

a’ a Qg

QG© QAa ) QA Co)

Since the upper and bottom exact sequences already exist at ZG-level, we get
Qpo — Qp = —(ZG,¢,ZG)

1.44

— —9QC, v (144

To have full knowledge of the automorphism ¢ it suffices to compute 9 (1).
For this, we have to start with the map " which locally derives from

Q———QGy, QG /Nay,
(B/)loc
Q——— Qe QG‘BO/NGQBO QGmo/NGchJ?

where we again identify AG%O with ZG%/NG%. By the K;-Simplification
Lemma 1.1.3 we may assume that

(B/)loc(l) — (@, 1 mod NGmO)‘

The map ¢’ is already known and we can neglect the inclusion i : ker 7y, —
ind g%Z. The map &' derives from the commutative diagram

AGg, - QG——— Qkermyy & AGy, - QG Qker my,

&/

AGy, - QGC QG Q ker my



1.4. BASIC PROPERTIES OF Q, 35

By Proposition 4.1 of [Gr3] the map QG — Qkermy is multiplication by
—h- @NG%. To motivate this a little, note that we surely have to multiply
0

by the idempotent gy := ‘G |NGmO since kermy C de Z Moreover, h
annihilates cok § (cf. sequence (1.43)).

Again by Kj-Simplification (Lemma 1.1.3) we may assume that
d(z@1,y)=y—h"'e -z,
where x ® 1 € ker myy C ind g%Z = LG Qzay, L and y € AGy, - ZG.

We compute

(1) = a(-laam)(ldew’)ﬂ’()
= &/(i7' @id)(id & ¢/) (1557 @ 1,1 mod Ng,, )
1 -

V(i EBld)(lG |®11 £0)

€0 7 RGg, <0
Therefore, we get
Qg = Qy = 0lind g, Q, —h|Gay]
by (1.44). This proves Theorem 1.4.3. O

To complete this paragraph, we have to discuss how (2, varies if S is en-
larged by the orbit of a non-ramified prime Py. As before let Sy := S U GPy.
The exact sequence (1.13) for the sets S and Sy together with the natural exact
sequence ZS — 7Sy — ind ngZ yield an exact sequence

vs — vso — ind g%Z.
On the other hand, the map

Es, — Z[G/Gy,] = nd ¢, Z, urs > g, (uf)g
QEG/GWKQ

has kernel Eg and finite cokernel. Thus, for each isomorphism ¢ : QVg —
Q(Es @ C), where C is ZG-free of rank [Sf .\ (S N Siam)*|, there is an iso-
morphism ¢q fitting in a commutative diagram
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¢

QVs QEs & C) (1.45)
QvSO % Q(‘ESO S O)
ind g% Q———ind g% Q

The result corresponding to Theorem 1.4.3 is exactly the same as for large

sets S (cf. [GRW], p. 60):

Theorem 1.4.4 Fiz a set of data (D) and let Py be a prime not in S which
does not ramify in L/K. Given a QG-isomorphism ¢qo that fits in diagram
(1.45) we have an equality

Q¢>0 - Q¢ = a[QG, 77]'

Here, n ist the QG-automorphism given by

|G‘¥30|_1
77(1) = |G‘130|50+—|G | Z qu?ﬁo(l —8()),
Pol =0
where £y = ‘G;‘BMNGQ}O and ¢y, is the Frobenius automorphism at Py.

In particular, Qg4, — 2y has representing homomorphism

dim V.0 Gpoy—1
X ([Gayo )T - det(gg, — VA /W),

where V) is a CG-module with character x.

PROOF. Due to Theorem 1.4.3 and Proposition 1.4.2 we may assume that
S (and thus also Sp) contains all the ramified primes. Hence, Vg = AS and
vso — ASO
As before let S’ be a finite set of places of L which contains S = S U S;am
and is large enough to generate the ideal class group of L, and such that
Uypes Gp = G. But this time we insist in the additional property that % ¢ S’
and set S| := 5" U GPy. The first step in the construction of Tate sequences
then gives rise to the commutative diagram
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E»? (\ A\\ B«\
ESOC A,Q Rf(\]
\ N N
ind&_ 7c ind gm Wy, ind g% AGgy,
Js(\ VS/\ WS/\
S5, VS{) WS()
\ N N
ind&_ 7c ind gmo Wy, ind Gy AGy,
CrS by AG
Crf by AG
clg
\

cl So

(1.46)

Recall that Wy, C AGg, X ZGyp, = AGy, X ZGy, since P is unramified

in L/K. The projection to the second component induces an isomorphism
pr, : Wy, = ZGy,. Hence, the sequence

A— AO — ind g‘ﬁo qu()

is an exact sequence of c.t. ZG-modules. Furthermore, the roof of the above
diagram consists of exact rows and columns after tensoring with Q:

QEs¢ QA QR (1.47)
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If we identify ind gmo QWy, with ind gmo QG,, the injection of the bottom
sequence in (1.47) is induced by 1+ Ng,, .

The second step in the construction of Tate sequences yields a commutative

diagram

~

ASy

indg, 7

AGS
N

AGS

N

e
ind ¢, Z

Z,
(1.48)

As before, we choose the automorphisms 3 of QR and (3, of QR to be the
identity. We get a diagram whose top is that of diagram (1.48) tensored with

Q:
QR QB T AgS
QR © QB = AgSo
N | \ N\
ind g, AgGy,c———=ind g, QGy, indg, Q
=~ 3o
QRS >Q(R® AS) | ————=AgS
k EN = B/ LA
QRy — Q(Ry & ASy) - AgSo
ind g, AgGy,——indg, (AgGy, ®Q) indg, Q

~ As on earlier occasions, Lemma 1.1.2 implies that we can choose B and
Bo such that the dotted injection Q(R & AS) — Q(Rg @ ASp) in the above

diagram is tg @ ta.
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We also choose the automorphisms « and g to be the identity and get a

diagram

QEs——Q

QESS QA QR
AN N .

QEg— QA

in which the maps & and g are taken via Lemma 1.1.2 such that the dotted
arrow is just (g B tg.

Putting things together, we get the following commutative diagram which
defines an isomorphism 7:

QB QB ind g, QGy,
38 Bo B’l
Q(R® AS)C Q(Ro ® ASy) — ind ¢ Go (AgGy, © Q)

idd e id®¢o
Q(R® Es)S Q(Ro ® Eg,) —=ind g, (AgGy, ®Q) [0
QAC QAo ind g, QW
QAC Q4o ind g, QGsy,

Note that the upper and bottom sequence already exist at ZG-level, and
so does the isomorphism pr,. Hence, by Lemma 1.1.6

Qg — Qy = (2G, 1, ZG) = 9[QG, n].

We are left with the computation of n(1). By the K;-simplification Lemma
1.1.3 and the definition of 3’ we may assume that

B'(1) = (1 —&p,1).
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The isomorphism pr, o &' fits into a diagram

indg, Q———=indg, (AgGyp, ® Q) ind ¢, AgGay,

~ /!
pr, &

l—=¢gp,—1

1~Ng
e Po_ .1 G . 1G
ind g, Q———>ind¢, QGg, ind &, AgGy,

and again by Ki-simplification we may assume that

|G‘J30‘ 1

pr, & (z,q) = Ny, g+ (1 — &) |Gm0 > il |

=0

Hence, we finally get

n(l) = pryo:/ﬁ’(l)

= pr a(l—go,l)

G . i
= Noy, + (1 - 20) gy T idy,

as desired. O

1.5 The conjecture

Thanks to the results of the last paragraph we are now able to state the LRNC
for small sets of places. But before doing so we recall the basic ingredients of
this conjecture apart from the element 2.

So let us fix a finite Galois extension L/K of number fields with Galois
group G and a finite G-invariant set S of places of L, which contains all the
archimedean primes. Then there are QG-isomorphisms

¢: AgS — QEg,
and the Stark-Tate regulator is defined to be

R,: R(G) — C*
x — det(Agp|Home(Vy, AcS)),

where \g is the Dirichlet map (1.14) and V} is a CG-module whose character
is contragredient to x. Furthermore, let S(K) := {NK|P € S} and cg(x) be
the leading coefficient of the Taylor expansion of the S-truncated L-function
Ls(L/K,x,s)at s =0. For R(s) > 1 this is the function

Ls(L/K,x,s) = ] det(1—¢uN(p)~*|V;).

p&S(K)
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One defines
Ay R(G) — C~¥

X = Re(x)/es()-
If we fix an algebraic closure Q¢ of Q, there is the following conjecture of Stark:

Conjecture 1.5.1 (Stark) A,(x?) = As(x)? for all o € Gal(Q°/Q).

Alternatively, one can choose a number field F', Galois over Q with Galois
group I', which is large enough such that all representations of G can be re-
alized over F'. Then conjecture 1.5.1 is equivalent to A,(x7) = Ay(x)? for all
oel, ie Ay € Homp(R(G), F).

Let us denote by W(x) the Artin root number of the character x. Then it
holds (cf. [Wel|, Prop. 7(b), p.57):

Proposition 1.5.2 If x is an irreducible symplectic character of G, then
Ay (X)W (x) € RT.

Now we fix an embedding F' — C and denote the corresponding infinite prime
by ©eo. Define W(L/K,-) € Homr(R(G), Jr) by

[ W(x") if y is symplectic and p = @)
WIL/K, X)o = { 1 otherwise

such that the homomorphism y — A, ()W (L/K, x) is in Hom{ (R(G), Jr) if
Stark’s conjecture holds.

For large S the LRNC now states

Conjecture 1.5.3 (LRNC for large S) The element Q, € K T'(ZG) has
representing homomorphism x — As(X)W (L/K, X).

In the construction of {2, for small sets .5, the module AS has been replaced
by Vg. We aim to define a modified Dirichlet map

Aped: B C — R® Vg,

where C'is a free ZG-module of rank [S?  \ (S N Siam)*|. For this, we have to

take a closer look at the modules Wg, especially for ramified primes .

Let us write ¢y for the Frobenius automorphism at 9 as well as for a fixed
lift of it. Recall the definition of the inertial lattice (cf. (1.11))

Wy = {(2,y) € AGy ® LGy : T = (¢g — L)y}
Obviously, Wy is the kernel of the map

AGy x LGy — LGy B
(g—Lh) — G—=1+(1—oy)h
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Hence, using the identifications concerning Z-duals explained in the prelimi-
naries, we achieve a description of Wy as the cokernel of the map (cf. [Gr3],
p.20)
ZGy — ZGy/Ng, x LGy
1 = (Np,1—o¢g).
Proposition 1.5.4 Let k denote the canonical epimorphism from ZG%3 onto
VVQIO3 and define
q: Wy — LG}
(x,y) = (Npy, ég'2).
Then it holds:
(1) The kernel of k is generated by z = (Np,,, 1 — ¢5') and 0 x A(Gg,Gy),
where A(Gy, Giy) is the kernel of the canonical projection ZGy — ZGsy.

(2) The diagram

1>—>NGEp
7 ZGy ZGy/Ne,
Wyt ZG%, - Wy
pr, o DTy (O,aug@)
AGp—— = TGy Z

commutes and has exact rows and columns.

PROOF. The diagram is taken from [GW], Lemma 4.1, but see [Gr3], p.20
et seq., where the full proposition is proved and wherefrom we have adopted
most of the notation. O

We now set

1
dm = _’G;‘B’H(

Observe that this definition differs from the corresponding element d, in [Gr3|.

’G‘B’a NG‘B) € QW;%

Lemma 1.5.5 dy is a QGy-generator of QWy.

PROOF. It suffices to show that x(0,1) € QGy - dy, since in this case
also £(1,0) € QGy; - dy and these two generate Wi. Let us set e = |Iy| and
fx = |Gy|. By means of Proposition 1.5.4 we may compute

N[mdsp = K’(Nl‘ﬁilf‘glNGm) )
= ’KV(Oaf‘B NGq; +¢m _1)
= K(0, fg'Nay + (d5" — Deg' Np, + 1 — e Np,)
- hm"{(oa 1)7
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where hy = j‘}gl]\f&B + (%}1 — 1)6%1]\[[% +1-— ecglNL_p € QGg. Indeed, if we
decompose 1 into central idempotents, namely

1 =|Gy| "' Ney + 6" Nipy (1 — |G| ' Ney) + 1 — e' Ni,,
we find out that

fp—1
hy' = e3'|Gul ' Noy + fy' Y idg'en Niy(1 = |Gy 'Ney) + 1 — e Ny,
=0
Hence, k(0,1) = hilNLﬁdm € QGy - dyp. a

Let 1y, B € S50\ (SN Siam)* be a ZG-basis of the free ZG-module C. We
choose a positive multiple i of Ay, the class number of L, and ugp € L such
that vp(uy) = h and vq(uy) = 0 for all finite primes O # 9P. We define

Ao:C — Re P indf WyaRS,
mes;kam\(sms’ram)*
1
1 hlog N(P) = Ne, +1— 1 Q.
b (Pon N oy 1 - e, )b "2 lelle

By the second part of Proposition 1.5.4 we have

(0, aug ;) (dy) = aug (dppry(l, ;5= Ney)) = 1.

|Gan\
Hence, the projection in sequence (1.13) sends Ac(1y) to
hlog N() — Zlog lugpla = — Z log |ugp|q = 0.
Qoo all o

Thus, the image of A¢ lies in RV, and we may define a modified Dirichlet map
by
aed: BseC — RV
(e,c) +—  As(e)+ Ac(o),

where Ag is the usual Dirichlet map (1.14). Note that A\°? depends on the
choices of h and the elements uy.

(1.49)

Definition 1.5.6 We call the map
Rg“’d ' R(G) — C~
det(A2°d¢|Homg (Vy, CV5))
1m r,p
[pest(snSuamy (—RIGR) ™
the modified Stark-Tate regulator and set
Agmd R(G) — C~
Rgo4(x)

CSUSram (X))

X

XI—)
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REMARK. If the set S already contains all the ramified primes, we obviously
have Rj°! = Ry and AL = A,.

Unfortunately, the above definition is not independent of the choices of h
and the ug. Nevertheless, we have the following

Proposition 1.5.7 The maps ngd, Ag“’d € Hom(R(G),C*) are well defined
modulo Det (U(ZQG)).

PrROOF. Let g € Sf., \ (SN Swam)* and assume that we have defined
Aod by another choice iy € L* such that vy (iy) = h and ve(iy) = 0 for
all finite primes 9 # P. Then there is a unit ey € o with the property that
epliy = ugp. We have a commutative square

mod

ES S¥ C z CVS

(4

Agod - 1
ES e C CVS

where 9 is the ZG-automorphism which is the identity on Es and maps 1y to
(eq, 1y) € Eg @ C. Indeed,

Agep,1y) = — ) loglepla +dy — Y logliy[a9
all o Qoo
= dy — Zlog |eqplip|aQ
0loo

= dy — Zlog |upla

Qoo
= N§"(L 1p),

where djy = (hlog N() g Ny, + 1= 6 Ny, ) dys. Thus

det(A2°d¢[Homg (Vy, CV5y))
det(A\2°d¢|Home(Vy, CV))

= det(AZd (A2~ Homg(Vy, CVs))
= det(¢|Homg(Vy<, C<ES ¥ C)))?

and the map y +— det(¢|Homg(V,, C(Es @ C))) is the representing homomor-
phism of J[Q(Fs & C),Q ® ¢| and lies in Det (U(ZG)), since ¢ already exists
at ZG-level (cf. (1.9)).

For the dependance on the integer h, suppose that we have made another
choice h to define X2°¢. We may assume that h | h and even that |Gy divides
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m = h/h. Write e for the idempotent a7 NG,, and choose the dy to be uy ™.

As verified below, we have a commutative square

S\mod

Q(Es ® C) ——= (V4

‘w
Amod

Q(Es® C) ——=CVy4

where the QG-automorphism v is the identity on QFEs and is given on QC' by
L = (ugt ™, (meg + 1 — ) 1)
For the commutativity we compute

AR P(lg)) = NN ugd T (meg + 1 —ep)ly)
= — Zlog |u§3‘”—1|QQ + (mhlog N(P)eg + 1 — eq)dy

oo
—(mep + 1 —eg) Zlog |ugp|aQ
oo
= (hlog N(P)ey + 1 — ey)dy — mey » _log |uglaf
9Q|oo
= A5(1y).

We get

det(&§°d¢|H0mG(Vg CVs))
det(Agodg|Home (Vy, CVs))

= det(¢|H0mG(Vx, (C(ES S¥ O)))

Gy
_ H mdlm Vi

PES am \(SNSram)*

as desired. O

The properties of the homomorphism Agwd are summarized in the following

Theorem 1.5.8 Fiz a set of data (D). Let F' be a number field, Galois over
Q with Galois group ', which is large enough such that all representations of
G can be realized over F'. Then the following holds:

(1) Agwd(x“) = Ag“’d(x)" for all o € T if and only if Stark’s conjecture
(1.5.1) holds.

(2) If x is an irreducible symplectic character of G, then AP (x)W (x) € R*.
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(3) If ¢ : QV — Q(Es @ C) is another QG-isomorphism, then

mod
A¢/—d(X) = det(¢ ' ¢'|Homg(Vy, CV)) mod Det (U(ZG)).
AZ4(x)

(4) Let By be a prime not in S which ramifies in L/K. Given an integral
multiple h of hr, the class number of L, and QG-isomorphisms ¢ and ¢q
as in diagram (1.38) we have an equality

Aped(x)

. Gy
—20 20 = (—h|Gy, )™ mod Det (U(ZG)).
A$Od(X) ( ‘ B ))

(5) Let Py be a prime not in S which does not ramify in L/K. Given QG-
isomorphisms ¢ and ¢g as in diagram (1.45) we have an equality

Aped(x)

A4 (x)

- Gxg
(|G )TV - det (¢, — 1[Vi/ V™0

X

)~' mod Det (U(ZQ)).

Before proving the theorem, we now point out how to state the LRNC for
small sets of places.
Assume that Stark’s conjecture holds. By (1), (2) and Proposition 1.5.7 we
can view the map

X — AP (XOW(L/K, X)

as a representing homomorphism of an element in KyT(ZG) via the isomor-
phism (1.9). Since Theorem 1.5.8 together with Proposition 1.4.2, Theorem
1.4.3 and Theorem 1.4.4 show that this homomorphism exactly behaves like
2y, it is now evident to state the

Conjecture 1.5.9 (LRNC for small S) The element Q, € K T(ZG) has
representing homomorphism x — AS°Y (X)W (L/K, X).

Theorem 1.5.8 now implies the

Corollary 1.5.10 The Lifted Root Number Conjecture for small sets of places
is equivalent to the Lifted Root Number Conjecture for large sets of places.

For this reason we refer to conjecture 1.5.9 as well as to conjecture 1.5.3 as
the Lifted Root Number Conjecture.

The element 2, decomposes into p-parts Qg’ ) via the isomorphism (1.7). If
we choose a prime g in I’ above p and an embedding j, : F' — F|, for each p,
Stark’s conjecture asserts that the map

(AoN®) 2y = 5, (AT, (X))

lies in Hompr (R,(G), FY). Conjecture 1.5.9 localizes to
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Conjecture 1.5.11 (LRNC for small S at the prime p) The element bep) €
KoT(Z,G) has representing homomorphism x +— (Ag“’d)(p)(i().
We obviously have the

Corollary 1.5.12 The Lifted Root Number Conjecture is true for L/ K if and
only if Conjgecture 1.5.11 is true for L/K and all primes p.

We conclude this section with the
PrOOF OF THEOREM 1.5.8. Because of the commutative triangle

ov
¢y ¢/
QV ——QV

assertion (3) is clear, and since the map
x + det(¢ ' ¢'|[Homg (Vy, CV))
commutes with the action of T', (1) is independent of the choice of ¢. Hence,

we may take an arbitrary embedding ¢g : AS »— Eg and choose ¢ = ¢y fitting
in a diagram

AgS % QEs

m

Qv A Q(Es® C)

D ind ngW‘g __ % QC
‘BES;‘am\(Seram)*

where ¢¢ sends 1 ® dy to 1g. After tensoring with C we can extend the
above diagram to

AcS o CEs % AcS

— v Aged —

CV C(Es @ C) CV
ind% CWQ X ind&_ CW?
‘Beé.éam nd g, P oo co Ao ‘ng?am 1nd Gy, P

PES* PES*
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where A¢ is the map A¢ above composed with the canonical projection
onto @ ind & CW3, hence

1 1
)\0(1;43) = hlog N(‘B)—NGm —+ 1— —]\/VGQ8 d‘n'
|Gyl |Gl

Thus, we get
Rpel(x)  det(Acge[Homg (Vy, @ind G, CWy))
Ry (X)

im F"w
[lipest\(snSuamy (—RIGE) ™
_ i det(hlog N(B) g Nay + 1 — 5 Naw | V5)
N . G
PESam\(SNSram)* (—h|Gy| )2 V™

- I

PESHm \(SNSram)*

By Proposition 6 in [We|, p. 50 we have

. G
CusanX) _ [T log N det(1 — gy dim Vi /VEY),
CS(X) PESKm (Sﬂsmm)*

where p is the prime in K below . Writing ey, for the ramification index of
B over p, we end up with

A .
Arfjd(X) - [T (ew)™" " det(l — dy|dim Vi /VE®).
¢>v (X) ‘ABGS:am\(Seram)*

Since the right hand side commutes with the action of I' this completes the
proof of (1).

If y is an irreducible symplectic character one knows that W(x)/cs(x) €
R* for any set S and likewise Ry, (x) € R (cf. [We|, Lemma 11c, p.50 and
Proposition 7b, p. 57 resp. its proof). Since dim VXG“B is even in this case, we
get (2). For (4) we consider the diagram

AGy, - RG——=R(Es & C) — = R(Es, & Cp)

¢/—1 ‘/N )\glod )\g']oOd
RG/Ng,, € RV N - RV,

where the upper sequence derives from (1.36) and the lower sequence from
(1.35). The isomorphism ¢’ has been defined in (1.37). We have to check
commutativity.

For the right hand square it suffices to show that

)‘g'loOdw(l‘Bo)) = Wﬁ(/\gmd(l‘ﬁo))'
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The projection 7y is induced from Wg , — Z which maps dgy, to 1. Hence

1 1
Wﬁ()\gwd(l‘ﬁo)) = Ty ((hlog N(‘ﬁo) ‘qu |]\7G330 +1— ‘Gm ’NG%) dqgo

— Zlog [ty |09

Qoo
= hlog N(mo)mo — Zlog ’Uqgo‘gg
0Q|oo
= )‘mOd(u‘BovO)
Ny (0(13o))
as desired. For the left hand square let o« € AGy, and z € RG. We have

to verify that A3°(uyo®, - 1g,) = az - £(1,0), where & is the epimorphism
from Proposition 1.5.4 for the prime 9y. But this is true, since

AN ug® - 1gy,) = — Z log [uge“|aQ + ax(dyg, — Z log |ug,[29)
0loo Qoo
= axdy,

1
- (1 |G%ING‘“‘)> o

and

1 1
~(1,0) = ( |G%|NG%)‘ ( |G%|NG*0)

1
G |Ng,¥0h ONI%ngO
Po

1
= 1— —N, d
( |Gipo G%) Ho

where hyg, has been defined in the proof of Lemma 1.5.5.
Now we can glue the above diagram and diagram (1.38):

- d‘ﬁo

CG/Ney,, AGy, - CG CG/Nay,,
A @ Aed .
(CVS (C(ES S¥ C) (CVS
v ¢ )\mod v
CVs, C(Es, @ Cy) CVs,

Thus, we get
det(AF°!¢|Home(Vy, CVs)) = det(AG°¢o|Home(Vy, CVs,))
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and csug,m(X) = CsoUSwam (X), since Py ramifies in L/K. Now (4) is clear.
For (5) we may assume that S contains all the ramified primes. Hence, by
Proposition 5 in [GRW] or Proposition 8(b), p.11 in [We| (but observe that
the Dirichlet map there is the negative of ours) we get

A (x) v Gy~
W = (|G )™ - det (1 — o |V/ Vi)

Furthermore, dim VXG"130 = dim VXG"’30 and

[X = det(, — Ve /Ve ™) det(1 — oy |V /i ™) 7] = [x = det (0 [13)],

which lies in Det (U(ZG)). This completes the proof of (5) and the theorem. O

In the next chapter we will give an application of conjecture 1.5.9 in the
context of tame CM-extensions.



Chapter 2

Tame CM-extensions

In this chapter we apply the results of the previous section to CM-extensions
of number fields which will soon assumed to be tame above a fixed rational

prime p # 2.

So let L/ K be a CM-extension, i.e. K is totally real and L is a totally imagi-
nary quadratic extension of a totally real number field. Complex conjugation
on C induces an automorphism on L which is independent of the embedding
into C (cf. [Wa|, p. 38). We denote this automorphism by j and refer to it
as complex conjugation as well. If L/K is Galois with Galois group G, this
automorphism lies in the center of G.

For any G-module M we define submodules
Mt :={meM:jm=m},

M :={meM:jm=—m}.

M™ is a module over the ring ZG, := ZG /(1 — j) = Z|G/(j)], whereas M~
has a ZG_ := ZG /(1 + j) action, but ZG_ is not a ring, since 52 ¢ ZG_.

EXAMPLES.

(1) For M = ZG we have ZG~ = (1 — j)ZG and multiplication by (1 — j)
induces an isomorphism

7G_ ~7G".

(2) If we apply the 4+ functor to M = L, we get the uniquely determined
maximal real subfield L™ of L.

(3) If M = o}, the global units of L, the minus part of M is just the kernel of
the Dirichlet map, which consists of the roots of unity in L. We denote
these by py and thus

(05)" =z

o1
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(4) Let us denote the set of all infinite primes of L by S,,. Since j acts on
Ss as the identity, we have

(ASw)™ = (ZSs)~ = 0.

(5) If M is any (j)-module and M(1) is the twisted (j)-module, i.e. M =
M (1) as sets and j acts on M(1) such as —j on M, we have

M~ = M(1)".

Let R be a number field or (a localization of) the ring of integers of a
number field. An exact sequence A — B — C of RG-modules gives rise to a
long exact sequence

AT— B —(C° — HO<<]>,A)_>HO(<.7>7B>_>H0(<j>70)
- H1(<]>7A)_>7

where we make the convention that all occurring cohomology groups are Tate
cohomology groups if not otherwise stated. Indeed, by example (5) we get a
long exact sequence

AT = BT = C" = H'({(j), A1) — H'({(j), B(1)) — H'((j),C(1))
— H((j), A1) — -

and for any G-module M and for all ¢« € Z we have isomorphisms
H'((j), M) = H"((5), M(1)).

Since (j) is cyclic and M(1)(1) = M it suffices to check this for i = —1, and
in fact

HY((g), M) = M~ /(1= 5)M = M(1)"/(1+ j)M(1) = H((j), M(1)).
Hence, the minus functor is left exact, and even exact if 2 is invertible in R.

If a finitely generated G-module M decomposes in
M=M"®dM",

the natural maps
H(U,M") — H' (U, M)",
H(U,M") — H (U M)~

are isomorphisms for all subgroups U of G of odd order, ¢ € Z. Indeed, the
composite map

HY(U, M)~ HUMYOH UM )— HU M) ®H (U M) ~ H (U M)
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is the identity, Here, the rightmost isomorphism exists, because H(U, M) is
finite of odd order and hence also decomposes in a plus and a minus part.

If p# 2 and M is a Z,G-module, there is a natural decomposition
M=M"® M
which induces an isomorphism
KoT(Z,G) ~ K T(Z,G+) & KoT(Z,G_). (2.1)
These isomorphisms combine to an isomorphism
KoT(ZIG) = KoT(Z2G) & KT (ZI3)G).

We recall some notation to describe the isomorphism (2.1) in terms of repre-
senting homomorphisms. Let F' be a number field which is large enough such
that all representations of G’ can be realized over F' and which is Galois over
Q with Galois group I'. Choose a prime g in F' above p and denote the ring
of virtual characters of G with values in Q; by R,(G). By (1.8) the elements
in KoT'(Z,G) are represented by homomorphisms in Homr (R, (G), ).
A character x is called even if x(j) = x(1), and it is called odd if x(j) = —x(1).
Let us define Rf(G) and R, (G) to be the subrings of R,(G) generated by
even and odd characters, respectively. The Hom description and the above
isomorphism now give

Homr (R, (G), F) N Homr (RS (G), Fy) Homr (R, (G), Fy)
Det (Z,G*) Det (Z,G%) Det (Z,G*)

induced by the canonical restriction maps.

We denote the image of Qfﬁp) in KoT'(Z,G+) and K T'(Z,G_) by Q((ﬁp)& and

Qé)p )’_, respectively. Accordingly, the LRNC at p decomposes into a plus part
and a minus part:

Proposition 2.0.13 Let p # 2 be a rational prime and L/K a Galois CM-
extension with Galois group G. The LRNC at p (Conjecture 1.5.11) is true if
and only if the following two assertions hold

(1) Qgﬁp)ﬂr has representing homomorphism

[x = (A5°Y)P ()] € Homr, (R} (G), Fy).

&

(2) Q((ﬁp)’_ has representing homomorphism

[x = (A7) ()] € Homr (R, (G), ).
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In the following, we only deal with the minus part of the LRNC.

For later use we state the following Lemma, which is taken from [Ch2],
p.369.

Lemma 2.0.14 Let L/K be a tame Galois extension of number fields and g a
finite prime of L. Then the inertia group Iy is cyclic and we choose a generator
a of Iy. Let b € Gy be a lift of the automorphism %_31 € Gy /Iy which is of
mazimal order among all such elements. Define ex = |Iy|, fp = |Gp/Ig| and
qp = |ox/p|, where p = PN K.

Then Gy is generated by a and b, and

ab = ba®
bfsn = q°®

for some integer cy | eg.

2.1 Ray class groups

Let L/K be a Galois CM-extension with Galois group G. The class group
cly, occurs in the construction of a Tate-sequence for S, as it is the torsion
submodule of V. Hence, one expects a relation between the LRNC and cl;.
But clj, rarely is c.t.; so we intend to replace it by an appropriate c.t. ray class

group.

If T is a finite G-invariant set of non-archimedean places of L we write cl.
for the ray class group to the ray My = HmeT B. Let S be a second finite
G-invariant set of places of L which contains all the archimedean primes and
satisfies SNT = (). We write Sy for the set of all finite primes in S. There is a
natural map ZS; — le which sends each prime g € S to the corresponding
class [] € cl7. We denote the cokernel of this map by cl}. Further, define

EY ={r € Es:2z=1mod mr}.

Since the sets S and T are both G-invariant, all these modules are equipped
with a natural G-action. Hence, we have the following exact sequences of
G-modules

EY — EL -5 7S — cl] - clf, (2.2)

where v(z) = } g cq, vp(z)® for z € EF, and
EY — Eg — (og/mp)* % clf - clg, (2.3)

where the map v lifts an element T € (og/M7)* to x € og and sends it to the
ideal class [(2)] € cl§ of the principal ideal (). We define

AL = (i)™
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If S = S, we also write A] and ET instead of Ay and E_.

Since (o)) = pz, one can always find primes § of L such that (ET)” =1
for all sets of places T" with ¢ € T'. One only has to check if 1 —( & ngG/qu P
for all { € pur, ¢ # 1; this is true for all but finitely many primes of L.

The main result of this section is

Theorem 2.1.1 Let L/K be a Galois CM-extension with Galois group G,
p # 2 a rational prime and S, = {P C L : P | p}. Assume that for all P €
Sp N Sram the ramification is tame or j € Gg. Choose a prime By of L such
that 1 — ¢ & [ L ecyay, B0 for all ¢ € pr, ¢ # 1.

Then AT ® Z,, is a c.t. G-module for each finite G-invariant set T of places of
L that contains Py and all the ramified primes which are not in S,.

REMARK. If L/K is tame above p and G is abelian, the above theorem follows
from the proof of Proposition 7 in [Gr2|. The condition j € Gy is technical;
but it sometimes is useful that j acts on local objects. The following proof is
a good example.

PROOF. Tt suffices to show that H'(P, AL ® Z,) = 1 for i € Z and all
g-Sylow subgroups P of G. This is clear for ¢ # p. So let P be a p-Sylow
subgroup.

For any prime B of L we write U% for the group of local units of the completion
Ly of L at . Furthermore, we denote the group of local units congruent to
1 mod P" by Uy. Let us define an idele subgroup

J=1Tvs = [ Vs
peT PET
The following exact sequences define C7 :
ET — Jl = Cf, (2.4)

For both sequences we take the long exact sequence in homology with respect
to P. Thereafter, we apply the minus functor, which is exact in this case,
since all the occurring homology groups are finite of odd order. The fact that
Po € T forces

H'(P,E])” = H(P,(E])")=H'(P,1) =1,
and hence sequence (2.4) implies

H'(P,Jy)” ~ H'(P,Cy)".
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Global class field theory admits a similar argument for sequence (2.5):
H'(P,C)” ~H"*P,Z) =H*PZ )=H?P0) =1
and we therefore get isomorphisms
H*Y(P,CT)y- ~ H(P,d)y" = H(P,dY @ 7,)” = H(P, AL ® Z,).

Hence, it suffices to show that H* (P, JI')~ =1 for all i € Z. The unit groups
Uy are c.t. Py-modules if P does not ramify in L/ K. Even before taking minus
parts, we thus get an isomorphism

gH@PJ)~ ] H@®]]Us,
pESram (K) PBlp

where ny is equal to 1 or 0 depending on wether 8 € 1" or not. If p lies over a
rational prime g # p, we have ng = 1 for all 8 | p by assumption. But in this
case the unit groups Uqg are pro-g-groups and thus H*(P, H‘ﬁln Uq13) =1

We are left with the case P € Siam N Sp. For this, let F' be the fixed field of
P, and indicate the primes in F' by a subscript F'. We have

H (P vy ~ [[H P [] Us®) = [[ B (Pp. UR®).
PBlp prlp Blpr prlp

If ¢ is tamely ramified, it cannot ramify in L/F, since Py is a p-group.
Hence, we get Hi(Pm,U;g‘”) = 1 in this case. If otherwise j € Gg, the ac-
tion of j commutes with the above isomorphism, and we have to show that
H'(Py,Uy®)” =1, ny € {0,1}. By local class field theory

Hi(Pm,Lé)_ ~ H"*(Py,Z)” = H *(Pp,Z") = H ?(Py,0) =1
and hence the short exact sequence
Up — Ly~ Z
implies H'(Py,Uy)~ = 1. Finally, the sequence
Ul — Uy — (o/%)"

forces H'(Py,Uy)™ = H'(Py,Uy)™ = 1, since the order of (o/9)* is relatively
prime to p, and hence H*(Py, (o/%)*) = 1. O

2.2 L-series and Stickelberger elements

In this section we fix, as before, a Galois CM-extension L/K of number fields
with Galois group GG and denote the complex conjugation on L by j. Let
wy, = |pr| be the number of roots of unity in L and

Q = [o] : pros] € {1,2}.
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For the fact that @ equals 1 or 2 see [Wal, Theorem 4.12. By loc.cit. Theorem
4.10 the class number of LT divides the class number of L. The quotient h}
is called the relative class number.

For any finite set S of places of L and any character y of G we denote the
S-truncated L-function associated to x by Ls(L/K,x,s). Furthermore, the
completed Artin L-series is defined to be

AML/K,x,8) = c(L/K,x)**¢(L/ K, X, 8)Ls.. (L/K, X, 5),
where

c(L/K,x) = |dxe]*VN(i(x))
[ Lg(s)S= @ if x is even
Soo(L/K7X7 8) - { LR(S+ 1)|Soo(K)‘X(1) 1fX is odd

Lr(s) = n*/*T(s/2).
Here, dg is the discriminant of the number field K, f(x) the Artin conductor of

the character x and I'(s) the usual complex Gamma function. The completed
Artin L-series satisfies the functional equation

AL/K,x,s) =W(x)AL/K, x,1—s), (2.6)

where W () is the Artin root number of the character y and has absolute
value 1 (cf. [Neu|, Kap. VII, Theorem (12.6)).

Let Irr (G) be the set of irreducible characters of G and denote the trivial
character by 14.

We now prove the following result:

Proposition 2.2.1 Let L/K be a Galois CM-extension of number fields with
Galois group G. Keeping the above notation we have

H Lo (LJIK O)X(l) _ :]:2|Soo| hy
Soo » X - Q wp, )
x€Irr (G)
x odd

where the product runs through all the odd irreducible characters of G.

PROOF. Let us denote the Riemann zeta function of a number field F' by
Cr(s). We have (cf. [Neu], Kap. VII, Korollar (10.5))

Cls) = Cu(s) ]  Lsw(L/K,x, )W
lg#x€hr (G)
Cr(s) = Cx(s) H Ls (LJK, x, sV

1g#xehr (G)

X even
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Taking residuals at s = 1 of both sides in these equations yields

2 ‘Sool
Cr)™ Mo s ls) [T Lsw (B DM

wry/|di] 1g#xel (G)

ol5<l . h, R
= = resilr(s) [ Be(B/K )XY,

24/|d
‘ L+’ lg#xehr (G)

X even

where Ry and Rp+ are the regulators of L and L™, respectively. If we divide
the first by the second equation, we get by [Wa|, Proposition 4.16

o)1=l b7
(2m) L H Ls.(L/K, ¥, 1)x(1)_

Qup/|dpjdp+|
x€lrr (G)

x odd

Specializing the functional equation (2.6) at s = 1 for odd characters ¥,
C(L/K7 X)1/27T_|SOO(K)|X(1)LS<>0 (L/K7 X 1) - W(X)LSoo<L/K7 )Za 0)7

gives
(2m)l=! -y IT X —1/2__|Seo () x(1) ) X(1)
= Ls. (L/K, %, 0)W (x)e(L/ K, x) /2% F)x)
dr/d
QwLm x€lIrr (G)
x odd
[Scol
B il - 1)
N PICE [l (Lsc(Z/K x, 00W()N(G(0)) )"
K x€lrr (G)
x odd
[Sool
2 T - 1)
=t I s/ ONGo0) ™)
. x€EIrr (G)
x odd

Equality (1) holds, since 3, 49 X(1)* = |G]/2 and [Seo(K)| - |G|/2 = [Sal. As
the product [, ,qq W(x) is real and has absolute value 1, it equals £1 and we
get (2).

Let us write dg/p for the relative discriminant of an extension E/F of
number fields, in particular 6z = (dg). We now compute

[T NG

1 x€lrr (@) (1) N@Or/k)
[T NG = I NGoO® N(6L+//K)
x€lrr (G) x€lrr (G)
xodd X even
@) @) ldr |
— N(6L+/K)N(5L/L+) — N((SL"'/K)W
(2 £

[yt [ IET2
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Equality (1) follows from the "Fiihrerdiskriminantenproduktformel" (cf. [Neu],
Kap. VII, (11.9)). For the equalities (2) note that in any tower F' C E C M

of number fields we have 0y/p = 5%}E]NE/F(5M/E).
If we put this in the previous equation, we obtain the desired result. a

For each irreducible character x of G define
x(1) -
Ex = i€l ZX(Q Yg.
geG

The ¢, are orthogonal central idempotents of CG. Each generates one of the
minimal ideals of the center of CG, hence

We define the following variant of a Stickelberger element which is closely
related to the non-abelian Stickelberger-functions defined in [Hal:

w:= Y Ls. (L/K % 0) € Z(CG) (2.7)
x€lrr (G)

Each C-valued function on G extends to a C-linear function on CG. In par-
ticular, this applies to the irreducible characters of GG, and obviously

X(w) = X(1>LSOO(L/K’ X: O)

This property uniquely defines w. If G is abelian, this element coincides with
the element w defined in [Gr3]. A priori, w is an element of the group ring CG,
but we actually have

Proposition 2.2.2 w € Z(QG), and even w € Z(QG™)* if |Sw| > 1.

PROOF. Note that the vanishing order of Lg _(L/K, x,s) in s = 0 equals

rs. (x) = Z dim VXGqB — dim VXG
PESoo
by [Ta2|, Proposition 3.4, p. 24. Hence, Ls_(L/K, x,0) # 0 if and only if x is

odd or y is the trivial character and |Sy| = 1. This shows w € Z(CG™)* if
|Seo| > 1. The coefficient of w at g € G equals

Coaxd) oo
> e t/E 0 )
x€lrr (G)
which is invariant under Galois action, since Lg__(L/K, x,0) = Ls__(L/K, x?,0)
for all o € Gal(Q°/Q) by Stark’s conjecture, which is a theorem for odd char-
acters and the trivial character (cf. [Ta2| Th. 1.2, p. 70 and Prop. 1.1, p. 44). O

Note that the proof also shows that in any case %w € Z(QG)*.
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Definition 2.2.3 Let L/K be a Galois CM-extension with Galois group G
and S, T be G-invariant sets of places of L. We define a Stickelberger element
0L € Z(CG) by

X(08) = x(w) [T det(1 = o5’ aqulV;®) T det(1 — ¢3' V> /V,E»),
pET* PeS*

where p = PN K and g, = N(p).

Since x(0%) differs from y(w) by a factor which commutes with Galois
action for each odd irreducible character x;, it follows from Proposition 2.2.2
that 1520% € Z(QG™)*. This enables us to make the following

Definition 2.2.4 Let F/Q be a finite Galois extension with Galois group T
such that each odd character of G can be realized over F. Then we define
O% € Homp (R (G), F*) by declaring

05 (x) = x(1)~'x(605)
on irreducible odd characters x.

To afford an easier reading we will refer to the following setting as (x):

e L/K is a Galois CM-extension with Galois group G.

e p # 2 is a rational prime.

e S,={BCL:B|p}
Each B € S, N Siam is at most tamely ramified or j € Gy.

PBo is a prime of L, unramified in L/K such that 1 — ( & ngG/G% iy
for all ¢ € up, ¢ # 1.

T is a finite G-invariant set of places of L that contains Py and all the
ramified primes which are not in S,; 7N S, = 0.

e S is the set of all wildly ramified primes above p.

There is the following correspondence between the Stickelberger elements
and the ray class groups AT ® Z,, as defined in Theorem 2.1.1.

Proposition 2.2.5 Fiz a setting (x). Then there exists an o € Z) such that
AL @Z)=a- J] (0500

x€lrr (G)
x odd

Moreover, if G is abelian, we have *520% € Z,G~ and

AL ® Zy| = |(Z,G)- /05, (2,G) |-
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PROOF. For an integer m € Z let m, := p*»(™ Then the minus part of
sequence (2.3) for S = S, tensored with Q, namely

pr ® Ly — (o1, /Mr)*~ @ Ly — AL ® Ly — clf @ Zy, (2.8)
implies the equality
T T hZ,p .-
|AL ®Zp| = |ALl, = |(or./97) lp- (2.9)
WL,p

Let us write a ~ b if ab™! € Z¥. Then

H (X(l)_1X(W))X(1) = H LSOO(L/K,%())X(D -~ hL,p

Wr,p

x€lrr (G) x€lrr (G)
x odd x odd

by Proposition 2.2.1. For g € T we compute
H det(1 — ¢;31qp‘v><fm) = det(l - ¢§1Qp’ @ X(l)VXIm)

x€lrr (G) xodd

x odd
= det(1 — ¢y, |CIG/Ip]")
= det(l — ¢y’ qu|Z[G/Ip]7)
~ |Zy|G /1y /1 ¢<§1‘Jp|
= |Z,|G/Ip]" /ay — &l
m X,—
= e/ JI 07
g€G /Gy
Here, equation (1) derives from the exact sequence
ZP[G/I‘-B] — ZP[G/I%] - (UL/ H mg)x ® Zp,
gE€G /Gy

where the first map is 1 — ¢, — ¢y and the second sends 1 to a generator of
(or/%)*. Since j € Gy for all primes g € Sy, we have

II  det( =o' V> / Vo) ~ 1.
x€lrr (G)

x odd

Indeed, if actually j € Iy, the determinant equals 1. Otherwise it is a product
of some 1—(s,,, where (5, are roots of unity of even order, and hence relatively
prime to p. Thus, we get

hy -
[T ©500) W~ ] e/ [T #9771 =147
XElr (G) " wer 9eG/ Gy

x odd
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by (2.9).

Now let G be abelian. If %0?;1 € Z,G~, the left hand side of the above
equation equals |(Z,G)_ /0% (Z,G)_|. Finally, the integrality of 5520% follows
from [Ca| p. 49. More precisely, define for each prime P a local module My by

Mg = (Np,,, 1 — [Ig| "' Ny oy Vzr,, © Qly. (2.10)

Let 2 = Annge(pz) be the annihilator of the roots of unity in L. In [Gr3| the
author defines the Sinnott-Kurihara ideal to be

SKu(L/K) =2 [[ My wZG C ZG.
PESFam

The proof of Proposition 2.2.5 gets completed by means of the following

Lemma 2.2.6 Fiz a setting () and let G be abelian. Then
LIy e SKu(L/K) 2,6
0L € SKu(L/K) 2,6
Proor. We have

1— 1— B _ _ ~
205 = 2w T (= sl Niya'ay) TT (1 s Ny o).
peT™ pes;

The condition on the prime By € T" causes 1 — NI% qb;;;qpo eA Letpe SN
T* and g € 7Z the rational prime below B. If we denote the ¢-Sylow subgroup
of the inertia group Iy by Rgyp, the intermediate extension corresponding to
Gy /Ry is tame at . Therefore, by Lemma 2.0.14, the ramification index
ep = |Iy| divides ¢, — 1 up to a power of ¢, since G is abelian. Hence

Qp_l
e

1= Ip| ' N1y o'ay = 1 — | Iy N — o' N, € My - Z,G.

For the tamely ramified primes above p the element
ey = (e — Npp ) (1 — [ I 7' Nyydys') + Niy, € My

lies in Z,G*, since p { ep. Therefore, we get My - Z,G = Z,G in this case.
Finally, we obviously have (1 — |Ip| ™' Ny, ¢5') € My for the primes g € S;. O

In the next section we are going to show that the minus part of the LRNC
for L/K at p # 2 can be restated in terms of a representing homomor-
phism for A7 ® Z,. The homomorphism involved is just the image of ©F
in Homr, (R, (G), FY). Hence, Proposition 2.2.5 will give some evidence of
the conjecture by means of the following
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Proposition 2.2.7 Let G be a finite group, p a finite rational prime and R, =
Z,G (or R, = Z,G, Z,G_ if p # 2). If a finite c.t. R,-module A has

representing homomorphism x — f(x), there exists an o € Z such that

Al=a- JT fix

x€Elrr (G)

where we set f(x) =1 if R, = Z,G+ and x is odd or if R, = Z,G_ and x is

even.

PrROOF. We only treat the case where R, = Z,G’; the others are similar.
Since | - | is multiplicative on short exact sequences of finite modules, we get a

well defined map
|| KoT(Z,G) —

Since a c.t. Z,G-module has projective dimension at most 1, there is an injec-
tion ¢ : Z,G" — Z,G" such that A = cok ¢.

Choose a local number field F,,, Galois over Q, with Galois group I',, which is
large enough such that all representations of G can be realized over F|,. Then
cok ¢ has representing homomorphism

x — det(¢|Homp  (Vy, F,G™)).
We compute

I det(¢/Homr, (Vy, F,G")X = det(g[Homr ( € x(1)Vi, F,G™))

x€lrr (G) x€lrr (G)
= det(¢|Homr (F,G, F,G"))
— det(¢|FpG")
— det(6[Z,G")
— a-Jeokd|
with an appropriate element o € Z. O

REMARK. If G is abelian, the elements in K(T'(R,) can be described in terms
of Fitting ideals. In this context Proposition 2.2.7 simply repeats the well
known fact that

|Al = |R,/Fittg,(A)]
for each finite c.t. R,-module A.
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2.3 A restatement of the LRINC on minus parts

The aim of this section is to prove

Theorem 2.3.1 Fix a setting (), where
T = Sram \ (Sram N'Sy) U{B] : g € G}.

Then ©§, € Homr (R, (G), F) is the representing homomorphism of the class

of AT®Z, in KoT(Z,G-) if and only if the minus part of the LRNC at p holds
for L/K.

Once again, it seems to be unavoidable to go through the construction of
Tate-sequences. This time we choose a set S of places of L which is small
in the sense that S contains no ramified primes. More precisely, we choose
S = 5S¢ U Sy, where Sy is a set of totally decomposed primes such that the
ray class group cl{ is generated by these primes and Sy N'T = (). Hence, ZS;
is ZG-free of rank s* = |S7| and sequence (2.2) reads

E{ — E{ — 7Sy - cl].
In particular, the S-class group clg is trivial, and Vg = V.
Tensoring with Z, and taking minus parts of the above sequence gives
Ey” ®2,— 2,8 - AL ®17,. (2.11)

Since Z,S™ = ZpS; is ZpG_-free and AT is c.t. by Theorem 2.1.1, we have
proven

Lemma 2.3.2 The Z,G_-module Eg’_ ® Zy, is cohomologically trivial.

Let 9 be a finite prime of L. Take an exact sequence
L% — Vgp - AG;,B

whose extension class in EXtém (AGy, Ly) ~ H?*(Gy, Ly) is the local funda-
mental class of Ly/K,. Recall that the inertial lattice Wy is the push-out
along the normalized valuation vy : Ly — Z (cf. diagram (1.24)). We are
going to repeat this process once more.

We have exact sequences

ng HVm%Wm,

Uy — Up — (or/%)"
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and define T to be the push-out of the upper sequence along the projection
of the lower sequence as shown in the following commutative diagram

Uy ———1U, (2.12)
Uy Vi Wiy
(or/B)*C Ty Wy

Lemma 2.3.3 (1) The G-module ind ngm ® Zy, is cohomologically trivial
for each finite prime P+ p of L and for each finite prime P which is at
most tamely ramified in LK.

(2) The G-module (ind gm Ty)~ ®Zy, is cohomologically trivial for each finite
prime B | p.

PROOF. Let P be a p-Sylow subgroup of G. We denote the p-completion
of any module M by M; especially, if M is finitely generated as Z-module, we
have M = M ® Z,.

We start with the case 9t p. Then Uql3 vanishes, since U;}B is a pro-g-group for
a prime g # p. The exact sequence

Uy — Vg — Ty
now implies that for all i € Z we have
H(P,ind§, Ty ® Z,) = H' (P, Ty ® Z,) ~ H'(Py, V) = 1,

since ‘//; is c.t. by [GW], p. 282,

Now let 8 be a prime above p. Then the bottom sequence of diagram (2.12)
implies that Ty ® Z, = Wy ® Z,. The canonical projection Gy — Gy induces
an exact sequence

A(Go, I) — TGy — LG,

The projection onto the second component of Wy C AGy x ZGy yields a quite
similar exact sequence

A(Go, I) — Wy — ZGip.

If P is at most tamely ramified in L/K, the Gyg-module Z,Gy is projective,
since the corresponding idempotent lies in Z,Gy. Therefore, the p-completed
versions of the above two sequences show that Wy ®Z, ~ Z,Gy. In particular,
Wy ® Z,, and hence Ty ® Z,, are c.t. Gg-modules.
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We are left with the case P | p and j € Gy. Then j already acts on G-
modules, and the two exact sequences

imply that Ty, ® Z, = Wy ® Z), ~ Z,G, since Z~ and likewise Z, are zero.
This completes the proof. O

As required for the construction of Tate-sequences, we now choose a finite
set S’ of places of L which contains S U S, and is large enough to generate
the ideal class group of L, and such that Uspe o Gy = G. In addition, we may
assume that T C S’'. We set

Ty = @ indg Tye P indg AGye P indG Wy
PeT* pes* PES\(S*UT*)
Let mp = HmeT B as before, and define an idéle subgroup
Ji=Jlvax 1L > ] Us
peT pes BLSUT

The diagrams (2.12) for € T together with the first step in the construction
of Tate-sequences give rise to the commutative diagram

@L/ﬁ@ii;\\
# \ 4\ 3 L
By A | B
(or/M7)
(or./M7)
JEC Vs T

=
>
=

(o /9m7)*

CrL

Crf b AG
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If we take the direct sum of the exact sequences

AGy — LGy - Z  for PeS”
Wy — ZGoy — Wy for P € (Sram N S,)*
Ty — Ty ® ZGy — LGy for P € (T'N Spam)*
Ty — Ty —0 for P=9P,
Wy = ZGy - 0 for P e (S\ (SUSumUT)),

we get an exact sequence
Ts — N2y — MT,

*

where NI, and M are the direct sums of the middle and the right-hand
modules of the above sequences.
Note that the exact sequence

Wy — Ngi — M*

of diagram (1.31) derives from a similar construction. We have only modified
the exact sequences for the primes ¢ € 7. The relation is comprised in the
following two obviously commutative diagrams:

(01./%P0)* === (or/P0)"

W‘RO = ZG‘BO
for the prime P, € T, and

—id

(or/P)*C Ty Wy
—idEBqu
Ty Ty & ZG2, 7G4
tq} ’Tq3 @ld
Wyl TG, we

for the primes P € (7' N Spam)*, where the map 7y : Ty — ZG?B is the compo-
sition of the surjection ty : Ty — Wy and the inclusion Wy — ZG5,.
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Hence, we get the commutative diagram

(or,/Mp)*C PodT w
~ N s
i e

N

0 | “
(or,/MMp) —|———|—Po®T W
- N .
Ts“ N MY
s 5% .
AGC 7.G Z
AN N
o~ AG© \ 7G \Z

where we have defined

Py = ind§, (or/F0)",

T = P indg Ty,
SBE(SrammT)*
PE(SramNT)*

The roofs of the last two three-dimensional diagrams fit together as shown
in the following diagram:

(o0/Mr)* = (op/M1)*—Po & T 144
Eg A RT RTS BT v
EC A R RS B \Y
(or/m7)*
(2.13)

We point out the following

Lemma 2.3.4 The G-modules BT ® Z,, V"~ ® Z,, and R""~ ® Z, are coho-
mologically trivial.
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PROOF. The G-module N, ® Z, is c.t. by Lemma 2.3.3 and its definition.
Therefore, BT ® Z, is also c.t., since B is the kernel of NI, — ZG.
Once more by Lemma 2.3.3 and the choice of the set S the module V"~ ®Z, =
MI'~®7Z, is c.t. For this, note that Ty ® Z, = Wy ® Z, for all primes P above
p, and that the cohomology of Wy and W% are closely related by means of the
exact sequence

Wy — LGy — Wy,
Finally, the exact sequence
R" — B - V"

implies the corresponding result for R"~ ® Z,. a

We now intend to define an isomorphism ¢ as required for the construction
of the element . Since the cokernel of the injection EL — Eg is finite, we
can choose an injection ¢% : AS — FEZL. Hence, we get an injection ¢g as
shown in the diagram:

b5
AS———EL
¢s
Es

Recall that for each finite prime 9 of L the element dy = |Gy| *5(|Ggp|, Ne,, )
is a QGg-generator of QW%. Hence, we can define isomorphisms
dp QW;% — QGgy
dqg — 1,

and set d 1=} ;cq. inddy. Let C be a ZG-free module of rank [Sy,,| with
basis 1y, P € S}, and define ¢ to be the QG-isomorphism

am’?

Qeés ©d

¢:QV ~ QAS & PByeg. indg, W3)

Here, the first isomorphism is induced by the natural inclusion on minus
parts, whereas we have to choose a splitting of sequence (1.13) on plus parts
(after tensoring with Q). But this choice will play no decisive role, since we
are going to deal with minus parts only.

Q(Es @ C)

In analogy to the elements dy, we define QGyg-generators ¢y of QWy by
1 1

ey = (1 — ——Ng., Ne— + (¢ — 1) 711 — —=N=)), 2.14
wi= (1= g Noy Nag + (00— )7 (01— =Na) (214
where Gy = Gy /Iy as before, and
1 Gul-1
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We establish a connection between the generators cy and dy by means of
the commutative diagram

l—cyp

QGy —=2- QW
L1 q
00} —**—~ 06}

T K

1!—>d<p

QGy

QW

where the maps of the left column are the natural inclusion into the first and
the projection onto the second component. The isomorphism gy is defined to

be

(1,0) = qley)

B -t _ 1 1 1
- (NG‘J,! + ((biB 1) (qus |G_<;3| Nqu)J(bsp (1 |Gm’NGm))
1
0,1) — (1, —Ng,
01~ (g )

Let us split the free ZG-module C' into
C=CydC,,

where C), is free of rank |(Siam NSp)*|. If we combine the above diagram for all
primes B € Sy which do not lie above p, we get the following commutative
diagram on minus parts:

W: G CQ?

vT— RPN ">(ES @Cp/ @Cp)i
- ¢ -

vt (Bse C)

Here, the dotted maps only exist after tensoring with @, and we have defined

ci= Z ind (cp — 1gy).

PE(SramNT)*
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The map g := Zm € (SeamNT)* ind gy is incorporated in the middle dotted arrow.
We now go into the construction of the element sz)p )~ involved in the

LRNC. First of all, we choose an automorphism 3 of QR and an isomorphism
[ as shown in the diagram

QR————QB———QV

B B

QR——Q(R® V)

\Y

If 0 : QB — QR is a section of +, we may take B = [Bo + w. Let us tensor the
righthand part of diagram (2.13) with Q, namely

T

QRT—“—QB" Qv”
QR————QB——QV

We define a section of T to be
ol = WEIUTFB : QBT — QRT,

and set A7 = ﬂglﬂwR and 37 := 3767 + 77 such that

QRT( QBT QVT

S N N

s QR- QB QV

B B

QRT——|— QR & V') — QV”

TR w;wv \X

QRS QR&V) Qv

commutes. Note that

[QR, 5] = [QR", 3"] € K1(QG). (2.15)
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Correspondingly, we choose an automorphism « of QR and get a commu-
tative diagram

QE{——Q(E§ @ RT)

N L%, P

g |~ Q E’SCC QA Q RT
QES(\ @(ES NP R) QR\WR ~
QEsC QA QR

and an equality

[QR, o] = [QR", "] € K1(QG). (2.16)

It turns out to be helpful to write the isomorphism ¢ defined in (1.19) in
the following more complicated way.

g ®id

5: QB : QR® V)" QR ® V)"
= Q(RT & AS & @y, indgG W)~
dod QRT & AS & C) B Q(RT & BT @ 0)-
TRGLE®Id QR® Es @ C)- adid QA®C)

Since (RT @ AS® C)~ ® Z, and (RT ® El & C)~ ® Z,, are c.t. G-modules
by Lemma 2.3.2, Lemma 2.3.4 and the choice of the set S, we have

OV = (B”9Z,, (A0 C)” ®Z,) — QR af]
= (B~ ®2%Z,,(i[dod)(rs' ®id)§,(RT @ AS® C)~ ®Z,)
+ ig(cok ¢oF @ Z,) (2.17)
+ (R @ E§)” ® L, a(mr @ 1p), A~ ® Zp)
— J[Q,R,af)

Note that the G-module cok ¢f @ Z,, is c.t. and finite, and therefore defines
an element in K(T'(Z,G) which is isomorphic to Ky(Z,G,Q,) via the p-adic
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version of the isomorphism i¢ defined in (1.5), which we also denote by ig.

Since a(mr @ tg) = &', equation (2.16) and the corresponding diagram
prior to it imply
QR ,a] = 9Q,R",a"]
= ((RT ® E§)7 ® Ly, &Tu A" ®Zp)
)™ ®

(R" @ EL Zp, (TR ® 1p), A~ ®Z,).
Thus, equation (2.17) reduces to
OV = (B~ 9L, ([ded)(rg' @id)j, (R @ AS @ C)” © Z,)

: 2.18
+ ig(cok ¢f ® Z,) — 0[Q,R™, (). (2.18)

For a better understanding of the first summand we make use of the fol-
lowing commutative diagram in which the dotted maps only exist (and are
isomorphisms) after tensoring with Q,; we have also invisibly taken minus
parts:

PO a5 T( BT B
t BT B
v v o v
(or./M7)* & WS RT & VT nemy ROV
ﬂ-gl@idé
v id@mr v
W RT & VT o RT&V
RTe @ indZGh R'®
W PE(TNSram)* @ indWy
® p mdWgeAS PESam
PE(SramNSp)* o AS
‘ id@gfleadp@id idoddid
v
CpC RT®CLoC,mAS RT&CaoAS

The isomorphism ¢ : Q,7 ~ Q,W is induced by the projection 7 — W
which appears in diagram (2.13). Note that the direct summands Py and
(or/Mr)* vanish after tensoring with @Q,. The map d, is the restriction of d

- 0
t0 Dy (sumns,)- ind Wi.

By Lemma 1.1.6, the above diagram implies that the first summand of the
righthand side of equation (2.18) equals

(BT~ ® Zy, (idpr- ® g7 @ dp, & idas-)F7, (RT & C2 & C, & AS)” ® Z,)
_((PO ©® T)_ ® Zp? ct, C]; ® ZP)
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Y o[Q,R", 87 + (VI ®Zy, g7 @ dy @ idas-, (C% @ Cp & AS)” @ Z,)
+ic(Py ® Zy)
— ) ((indTy)” ®@Z,,ind (cp — Ly)ty, ind Z,Gy)
PE(SramNT)*
@) - ; — : 2\— -1
= QR B +ic(Py ®Z,)+ Y, dlind(Q,Gy) ,ind gy']
‘BE(SramﬂT)*
+ ) ((indWy)” @Z,,ind by, (ind Z,Gy) ")
PE(SramNSp)*
— Y ((IndTy)” @ Z,,ind (cy = Lyp)ty, ind Z,Gy).
PE(SramNT)*

We need to explain the equalities (1) and (2). Due to Lemma 2.3.4, the
middle column of the above diagram shows that we can isolate the term
DIQ, BT, 7] = (BT~ @ Z,, A7, (RT @ VT)" @ Z,). Since

(Po®T)” ®Zy,ct, Cy® Zy) = —ic(Py ® Lp) + (T~ ® Ly, ct, Cy ® Zy)

by the first remark following Lemma 1.1.6, we get (1), where we have used the
definition of the maps ¢ and ¢. (2) follows from (2.15) and the definition of the
maps ¢ and d,,.

Now let P € (Sram N Sp)* be wildly ramified. Since by assumption j € Gy
for these primes, the exact sequences

ZGy/Nay — WS - Z

induce an isomorphism Z,Gy ~ (Wg)~ ® Z,, which maps (1 —7)/2 to dy. All
this can be extracted from the diagram of Proposition 1.5.4. Hence, the isomor-
phism dg derives, locally at p and on minus parts, from a Z,Gyg-isomorphism.
Therefore

((ind W)~ ® Zy, ind 0y, (ind Z,Gy) ") = 0

for all wildly ramified primes above p.

Altogether, we get the following description of Qép )=

QP = ig(eok ¢f ®Z,) +ic(Py © )

+ > (ind WR)~ ® Zy, ind by, (ind Z,Gy) ")
PE(StramNSp)*

— Y Olind(Q,G%),ind gy
PE(SramNT)*

— > ((indTy)” ® Zy,ind (cq — 1g)ty,ind Z,Gy),
PE(SramNT)*

(2.19)
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where we have defined Si;am C Sram to be the set of all primes of L which are
tamely ramified in L/K.

The representing homomorphisms of most of these terms can be computed:

Proposition 2.3.5 Keeping the notation of the current paragraph the follow-
ing holds:

(1) ic(Py ®Z,) has representing homomorphism

X = det(qo - ¢mO|VX)7
where qo = N(po) and po = Po N K.

(2) Let B € (Sram N Sp)* be at most tamely ramified in L/K.
Then ((ind W)~ ® Zy, ind dgs, (ind Z,Gy) ™) has representing homomor-
phism
. G
X (o)™ T det(1— oV V)T
where ey = |Iy| is the ramification index of the prime P in L/K.

(8) Let P be any finite prime of L. Then Olind (Q,G%,)~, ind gg] has repre-
senting homomorphism

im &y
X = (=[G )

(4) Let P € (Sram NT)*. Then ((indTy)~ ® Zy, ind (cy = Ly)tg, ind Z,Gy)
has representing homomorphism

— dim ¢ 1_¢
X = (fp(1 = gp)" W L det(——2 |V jVGw),
Qp_qb‘ﬁ

where fp = |G_q3| 15 the degree of the corresponding residue field extension,
¢ =N(p) andp =PN K.

PROOF. Recall that Py = ind g%(UL/‘BO)X- Since Py is unramified in
L/K, the decomposition group Gy, is cyclic with generator ¢g,, which acts
as qo on (or,/Po)*. So (1) is clear.

For (2) let B € (Sram N Sp)* be tamely ramified. Then the idempotent e =
e;lN 1, lies in Z,Gy, and we claim that we have an isomorphism

Z,Gy — Wp®LZ,
1 = k(l—eg,1),

where we once again identify the module Wq% with a certain cokernel as in
Proposition 1.5.4. Indeed wg(eq) = £(0,1) and

wp(1—ep +eg (0" — Deg) = k(1 —eq,eq' (05" — 1)) = x(1,0).
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Therefore, wgy is surjective and hence bijective, since both modules are torsion
free of the same rank. We have

(W)™ ©Zp, by, (Z,Gy)") = —((ZpGy)™, 05", (W)~ @ Zy)
= —((Zme)fafsqfslwm,(ZpG&B)f)'

Since wy(1 — ey + ey’ (0" — L)eg + |G| Ng,,) = dy, the representing ho-
momorphism in demand is

X — det(ey' (o5 — 1)V V&)~
But the desired homomorphism differs from this by
[x = det((—ep)ep +1 —eplVy)] € Det ((Z,G7)7).

Hence, we have proved (2).
Now let P be any finite prime of L. The map gy defines an element in
K;1(Q,Gy), which is represented by the matrix

( Ny, + (g — 1>—1<11v1m — f5'Ney) L )
L= |G‘I‘|_ NGm ‘G‘S‘_ NGqB

If we subtract |G| ™' N, times the first row from the second row and exchange
the two columns, we obtain a matrix

( 1 NG‘B + ((ﬁ‘ﬁ - 1)_1(N1m _f‘glNGsp) )
0 1-— |G‘B|_1NG‘JA _Nqu

Since we have only used matrix operations which does not affect the image in
Ky(Z2,G,Q,), we get (3).

Finally, let B € (Stam NT)*, i.e. P is a ramified prime not above p. It directly
follows from the definition that T3 is the push-out of the local fundamental
class along the canonical projection Lg — Lg /Uy, as shown in the commutative
diagram

Uy =——=Uy (2.20)
LxC Vs AGy
Ly /UL Ty AGy

We see that [/,;XB = Ly /Uy ® Zy and Ty ® Z,, = ‘//;3. Actually before taking
minus parts, —(ind Ty ®Z,, ind (¢ — 1g)tg,ind Z,Gy) is induced by applying
the (2-construction to the two-extension

ZéH‘//;_)ZPGH)ZP
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—

and an isomorphism @Q, — Q,Lg which maps 1 to an element that has P-adic
valuation equal to 1. Therefore, (4) follows from Theorem D in [RW2|. If 3 is
at most tamely ramified in L/ K, we can alternatively use Theorem 4.3, p. 563
in [BB]. O

Now we have computed all the representing homomorphisms for the terms
of the right hand side of equation (2.19) apart from ig(cok ¢k ® Z,).
Due to the choice of the set S, we can fix an isomorphism

ps: AST = (ZG_)*.

We build the following commutative diagram which defines a monomorphism
P
A§-—=~(2G )"

o& (4
Bl (2G_) ——= AY
cok L —— cok ¢ AT

Here, the middle row is sequence (2.11) before tensoring with Z,. We obviously
have an equality

ic(cok ok ® Z,) = ig(cok @ Z,) — iq(AL @ Z,) (2.21)
in Ko(Z,G_,Q,).

Lemma 2.3.6 The element ic(cok ) ® Z[3]) € Ko(Z[1]G-,Q) has represent-
img homomorphism

R¢s ()2)
X = ~ ;
HpeS(K) (—log IV (p))dim Vx

where S(K) == {pNK|P e S}.

PROOF. Let us denote the inclusion Eg’f — (ZG_)*" by p. Define a map

Log: (ZG_)* — R® (ZG_)"
(xlw"axs*) = (—logN(pl)®:L’1,...,—logN(p5*)®:zc5*),

where we have numbered the primes in S(K) = {p1,...,ps+}. Then
1/) = po ¢S © p,§17

s =ps oLogop,
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where Ay is the restriction of the Dirichlet map to minus parts. Hence, Ag¢gs =
ps' o Logo 1 o pg, and ig(cok ¢ @ Z[1]) has representing homomorphism

X+ det(y[Homea(Vy, (CG-)T))
_ Rtﬁs(f()
det(Log|Homeg(Vy, (CG-)*"))
Rqﬁs()a
[Thesq) (= log N(p))

This completes the proof. O

Note that the Stark-Tate regulator occurring in the representing homo-
morphism of ig(coky @ Z[3]) is closely related to the modified Stark-Tate
regulator; more precisely, we have (cf. the proof of Theorem 1.5.8)

Rzed(y) H (_log N(%))dimvxcm |

Ros(x) |Gl

If we now combine the equations (2.19) and (2.21) with the above Lemma and
Proposition 2.3.5, we get Theorem 2.3.1 by an easy computation. O



Chapter 3

Iwasawa theory

As an application of Theorem 2.3.1 we are going to prove the minus part of
the LRNC at a prime p # 2 if L/K is an abelian CM-extension fulfilling the
assumptions of the theorem; actually, we need to work under a slightly more
restrictive hypothesis on the primes above p. We additionally require the van-
ishing of the p-invariant of the standard Iwasawa module (all this will be made
explicit below). But we will see in the appendix how to remove this assumption
for some special cases, including the case p t |G|. The main ingredient of the
proof turns out to be the validity of the Iwasawa main conjecture for abelian
extensions.

3.1 Passing to the limit

Let L/K be an abelian CM-extension with Galois group G and p # 2 a finite
rational prime such that all primes p C K above p are tamely ramified in L/K
or j € G,. Here, we write GG, instead of Gy, since the decomposition group
only depends on the prime p in K if G is abelian. We will accordingly write I,,
¢, etc. As it is required for the use of Theorem 2.3.1, we choose a finite prime
PBo of L such that 1 —( & ngG/G% P for all roots of unity ¢ # 1 in L. We
may assume that 9y is unramified in L/K and does not divide p. Indeed, it
would suffice to ask for a corresponding condition on B, for all p-power roots
of unity in L, since we tensor with Z,. Hence, any prime which lies not above
p will do.

As before we define a finite set of places of L

T = Sram \ (Sram N Sp) U {‘Bg|g € G} ) (31>

and set AL =cll’". Then AL ® Z,, is c.t. by Theorem 2.1.1.

Let Lo, and K., be the cyclotomic Z,-extensions of L and K, respectively.
We denote the Galois group of K. /K by I',. Hence, 'k is isomorphic to
Z.,, and we fix a topological generator vyx. Furthermore, we denote the n-th
layer in the cyclotomic extension K.,/K by K, such that K,/K is cyclic of

79
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order p". Accordingly, we set I', = Gal(L./L) with a topological generator
~vr, whose restriction to K is 7% for an appropriate integer a. We enumerate
the intermediate fields starting with L = L, such that L, /L is cyclic of order
p"~®. This is because then L, is the smallest intermediate field of L., /L which
lies above K. It may also be convenient to define L,, = L if n < a. Let

so Ty = T and A]" ®Z, is Gal(L,/K,)-c.t., since each of the extensions L, /K,
inherits the required properties from the extension L/K. We define

X7 =1lm A" @ Z,.
We denote the Galois group of L../K by G, hence
G =G xTg,

where G is a subgroup of G. Then the completed group ring Z,[[G]] is isomor-
phic to A[G], where A is the Iwasawa algebra Z,[[T]]. Since we are going to
use some of the results in [Gr2|, we set yx =1 — T as in loc.cit.

There is an exact sequence of type (2.8) for each layer n. In the limit this
yields an exact sequence (cf. |Gr2|, Proposition 6)

Z,(1) ~ @ 2,(1)” — X7 - X5, (3.2)
)

peT(K

if ¢, € L, and without the Z,(1) term if ¢, ¢ L. Here, Xgq is the standard
Iwasawa module which is the projective limit of the p-parts of the class groups
in the cyclotomic tower over L, and Z,(1) is the first Tate twist of

Zy = indgpzp = Zp[[FK X é/—fp]]/(l - ¢p)=

where we now write ¢, for the Frobenius automorphism at p in the Galois
group G. The basic facts about the Iwasawa module X are summarized in
the following Proposition.

Proposition 3.1.1 The Iwasawa module X s a finitely generated, torsion
Z,[[G]] - -module, which has no non-trivial finite submodules and

pdz, gy (X7) < 1.

PROOF. This is Proposition 7 in [Gr2|, where the ramification above p is
assumed to be tame. But what is needed is just the cohomological triviality
of the ray class groups Aﬁ ® Zy. O

The Fitting ideal of X is described in terms of p-adic L-functions. To
make this explicit we have to introduce some further notation. Let k : G — Z;
denote the cyclotomic character and define u = k(7). Any character ¢ of G
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with open kernel can be written as ¢y = x ® p, where Y is a character of G and
p is trivial on G (so x is of type S and p is of type W in the terminology of
[Wil]). If x is an odd character and S a set of places of K containing all the
primes above p, there exists a well-defined element f, s(T") € Quot(Z,(x)[[T]])
determined by

frs@® —1)= Lp,s(s,wx_l), s=1,2,3,...

where w is the Teichmiiller character' on L((,)/K. This definition of f, s
follows the convention of Washington’s book [Wal, and is used in [Gr2]. It is
also usual to replace the argument s on the right hand side by 1 — s, but this
makes no essential difference.

For all x of type S and p of type W we have (cf. [Gr2|, Lemma 7)

fxops(T) = frs(ply) (1 +T) = 1). (3-3)

For this, note that in the notation of [Wil] we have an equality

Goy-1eps(u(l+T) 1 —1)
wafl®p’5(u<1 + T)_l — 1)

f xX®p,S (T) =

and a similar formula holds for the right hand side. The Iwasawa series
frop.s(T) glue together for varying characters, i.e. there exists a unique el-
ement ®g € Quot(Z,[[G]])~ such that for all odd characters 1) = x ® p of G we
have (cf. |Gr2|, Proposition 11)

P(Ps) = frs(plyx) —1).

Let p { p be a finite prime of K. Put

§ ="l o b1 € Quana, 9)) (3.4

where e, = |I,|7'N;, € Q,G C Q,[[G]]. If T is a finite set of primes of L which
contains no prime above p, define

Ur = H & | - Prxus, -
)

peT(K
If T is the set of places defined in (3.1), we have (cf. [Gr2|, Proposition 9)

1-3J
2

Vr € Z,[[9]]"

The Iwasawa main conjecture is the main ingredient in proving

Do not confuse with the group ring element w occurring in Proposition 2.2.2. w will
always denote the Teichmiiller character in what follows.
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Theorem 3.1.2 Let T be the set of places of L defined in (3.1) and p_ the

p-ivariant of the standard Iwasawa module X ,. Then it holds:

(1) The Fitting ideal of Q,X+ is generated by Vr.
(2) If p_ =0, we actually have

Fittzp[[g”_ (XE) = (\IJT)

PROOF. If the ramification above p is almost tame, this is Proposition 8
and Theorem 6 in [Gr2|. But once more the condition on the ramification is
only needed to guarantee the cohomological triviality of AT @ Z,. O

REMARK. If we denote the total ring of fractions of Z,[[G]]- by Q(Z,[[G]]-),
there is the Localization Sequence (cf. (1.3))

KA(Z[G])-) = Ki(Q(Z,[[9]]-)) > KoT(2,[[9]]-) — Ko(Z,[[G]]-).

Since the determinant yields an isomorphism

K1(Q(Z[[9]]-)) = (Q(Z,[[G11-)) ",

we can view 12Uz as an element of K1(Q(Z,[[G]]-)). So (2) of the above

theorem means that g = 0 implies (52¥7) = [X;]. Indeed, one should

think of the claim in (2) as a reformulation of the equivariant Iwasawa main
conjecture (for the case at hand) which is known to be true if G is abelian and
g =0 by Theorem 11 in [RW3].

Lemma 3.1.3 Let ) be a character of G with open kernel and S a set of places
of K that contains all the p-adic places. Put

Sy = {p € S|I, & ker(y)} U S,

and write the Frobenius automorphism at a prime p as ¢, = oY, where
o, € G and ¢, € Z,.

(1) Let x be a character of G. Then

Lys(s,wx™) = Lys (s,0ox) J[ (0= x""(op)u™).
peS\Sy

(2) We have an equality

fos(T) = fus,(T) T @=L +T)7).

PES\Sw
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PROOF. (1) is well known and follows by evaluating both sides of the
equation at s = 1 —n, where n = 0 mod (p—1). (2) is an easy consequence of
(1) using formula (3.3) for the character ¢ = x ® p with a G-character y. O

The following corollary will be important in the sequel.

Corollary 3.1.4 Let T be the set of places of L defined in (3.1) and Sy be the
set of places of L which are wildly ramified in L/K. Each character x of G
can be viewed as a character of G and, if x is odd,

X(Wr)=x(608) - J[ (1—x(es,"),

pespnstram

where the product runs over all p-adic places of K which are at most tamely
ramified.

PROOF. Write y = X’ ® p, where X’ is a character of G and p is of type W.
Since only p-adic primes ramify in the cyclotomic towers over K and L, we have
Yy =Xy, where ¥ =T(K)US,. At first, we determine x'(Vr) € Z,(x")[[T]].
With the notation of Lemma 3.1.3 we have

, k(dp) = X' (0p)VR
\Ij = / —T
X ( T) peTl (lK) 1 — X,(Up)/YE(E fX ,E( )

) H K(pp) — X’(%)V? ( ' —1_—c
= Cp 1 —x'(o,) Tk ") fxCZX/(_T)
beT(K) 1 - X'(UP)”YK

= I 0 =X@) k@) fes, (-T),

peT(K)

where (*) holds by means of (2) of Lemma 3.1.3. Since
p(fx’7le(_T)) = fx’,EX/ (p('YK) - 1) = fx,EX (O) = LSX (Oa X_1)7
we get

xX(Ur) = p(x'(¥r))
=TI 0~ x(6) 'K(6,)Ls, (0,x7)

peT(K)

= I 0 =x@) %) [T = x(e6y)) Lo (047
pET(K) PESyp

SN | BCENE)

p ESpmStram

where as before ¢, = N(p). O
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3.2 The descent

We are going to use an idea, which originates from [Wi2|, in the extended
version of [Grl|, where the author proves Brumer’s conjecture for a special class
of CM-extensions. Note that the class of CM-extensions treated here includes
the class of loc. cit. The same approach is also used in [Ku| to compute the
Fitting ideals of minus class groups of absolute abelian CM-fields. But before
we go for this, we look at a special case, where a rather restrictive condition
forces the Euler factors at p to become units in Z,G_.

Proposition 3.2.1 Let L/K be an abelian CM-extension with Galois group G
and p # 2 a rational prime. Let T be the set of places of L defined in (3.1) and
Sy be the set of all wildly ramified primes. Suppose that p_ =0 and j € G,
for all primes p of K above p.

Then 0% generates the Fitting ideal Fitty ¢ (A} ® Z,). In particular, the
minus part of the LRNC' at p is true.

PROOF. The canonical restriction map X, — AT ®Z, is an epimorphism,
since the cokernel is a quotient of I';, which has trivial j-action. By general
properties of Fitting ideals we have

FitthG, (XE/’}/L — 1) C FitthG’, (AE X Zp),

and the Fitting ideal on the left hand side is generated by ¥r mod (v, — 1)
by Theorem 3.1.2. Corollary 3.1.4 now implies that

U7 mod (v — 1) = 0%, H (1—ep0, ).

pESpmStram

But the product on the right hand side is a unit in Z,G_, since j € G, for
these primes. Hence 0§ € Fittz,¢_(A] ® Z,). Finally, Proposition 2.2.5 and
2.2.7 imply that 051 has to be a generator of the Fitting ideal.

The minus part of the LRNC at p now follows from Theorem 2.3.1. O

Now we use the method in [Grl| to prove the minus part of the LRNC
at p without the additional assumption of Proposition 3.2.1. But this works
only for primes p such that L9 ¢ (L9)*((,), where L denotes the normal
closure of L over Q, which is again a CM-field. This condition particularly
forces ¢, ¢ L. But note that this condition holds for almost all primes p, since
each prime for which it fails has to ramify in L¢/Q. Our main result is

Theorem 3.2.2 Let L/K be an abelian CM-extension with Galois group G
and p # 2 a rational prime. Let T be the set of places of L defined in (3.1)
and Sy be the set of all wildly ramified primes. Suppose that u_ = 0 and that
each prime p above p ramifies at most tame or j € G,. Moreover, assume that
j € G, for all primes p of K above p whenever L% C (L%)*((,).

Then 0% generates the Fitting ideal Fittz,¢_(A] ® Zy,). In particular, the
manus part of the LRNC' at p is true.
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REMARK. The vanishing of p_ is only required for computing the Fitting
ideal of X, (cf. Theorem 3.1.2). As already mentioned, we will show in the
appendix that we can remove this hypothesis for some special cases, including
the case p 1 |G].

PROOF. The assertion follows from Proposition 3.2.1 if L9 C (L)*(¢,).
Hence, we may assume that this is not the case in the following.
We state the following result, which is Proposition 4.1 in [Grl].

Proposition 3.2.3 Let p be a prime such that L ¢ (L)% ((,) and N € N.
Then there exist infinitely many primes r such that

e r =1 mod pV
e j € G, for each prime v in K above r

e the Frobenius automorphism at p in the extension Q((.)/Q generates

Gal(E/Q), where E is the subfield of Q(¢.) such that [E : Q] = p.

Let N be a large integer to be chosen later, and choose a prime r as in
the Proposition which does not ramify in L% /Q. The extension E/Q is cyclic
of degree p", and we denote the corresponding Galois group by Cy. It is
generated by the Frobenius automorphism Frob, € Cy. Let L' = LE and
K' = KE. Then L'/K is an abelian extension with Galois group G’ = G x Cl,
and the only new ramification occurs above r. Moreover, the primes v above r
satisfy both of our standard conditions: They are tamely ramified and j € G..
Set 7" ={p' CL :¥NLeT}and T) =T U{R® € L' : % | r}. There is an
exact sequence

X,—

o/ [[®] ©z,- A7 ©Z, ~ AT © 1,

R/ |r

We claim that the leftmost term is trivial, and hence AL, ® Z, ~ A:Lpé ® Zy is
c.t. by Theorem 2.1.1. To see this let ¢ be a prime in K above r, and R’ a prime
in L' above t. Since j € G,, it acts on the corresponding residue field extension
of degree f., say. Therefore, (or,/®')*~ has exactly ¢/*/? + 1 elements, where
¢. = N(v) is a power of r. But thanks to the first condition on r we have
qf /241 =220 mod p. Hence, the leftmost term vanishes, since we are only
dealing with p-parts.

For the same reasons as in Proposition 3.2.1 the natural restriction map
AT ® Z, - AT ® Z, is surjective. The composite map

res

Aoz, ™ ATe7, - AT 07,

is given by the norm N, , and the kernel of the norm is just ACy - AL, ® Zy.
Therefore, the restriction map induces an isomorphism

(AL ® Zp) oy — AL ® Z,, (3.5)
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As before, we build the cyclotomic tower over L’ and set I'ry = Gal(L._ /L)
and G’ = Gal(L._/K) = G x C. We define the projective limit of the ray class
groups Af’,ll ® Z, to be X, which is a finitely generated, torsion Z,[[G']]--
module ofnprojective dimension at most 1 by Proposition 3.1.1. Since we
assume p_ = 0 for the cyclotomic Z,-extension L., /L, the same holds for the
cyclotomic Z,-extension over L' by Theorem 11.3.8 in [NSW/|. Theorem 3.1.2
implies

Fittz, g (X7) = (¥ry).
Set up = [],cs,ns0m (1 = @5 1) € Zp,G'. As in Proposition 3.2.1, the canon-
ical restriction map X, — AE ® Z, is an epimorphism, and therefore the
Fitting ideal of A:LF,' ® Z,, contains u,, - 6’?? using Corollary 3.1.4. Here, S| are
the primes in L’ above those in Si, i.e. S| contains all the wildly ramified
primes of the extension L'/K.
Let M be a natural number, M < N, and v = ZpMo_l Frob;pN7M € Z,Chy.

1=

Lemma 3.2.4 Let f be the least common multiple of the residual degrees f,
of allp € S, corresponding to the extension K/Q. If N—M > v,(|G|- f), then
the element w, is a nonzerodwisor in Z,G' [vZ,G'.

PROOF. The proof of Proposition 4.6 in [Grl]| carries over to the present
situation. O

Corollary 3.2.5 Under the same hypothesis concerning v as in Lemma 3.2.4
we have:

(1) u, - 0:‘551/’ is a nonzerodivisor in R' .= 7,G"_/vZ,G"_.

(2) (Xp)r,, /v has projective dimension at most 1 over R', and its Fitting

ideal is generated by u, - 9?{’ mod v.

PROOF. Again the proof of Corollary 4.7 in |Grl| remains unchanged.
But note that (1) is clear by Lemma 3.2.4, since v is a zerodivisor in Z,G"_,

T .
but 659 is not. O
1

We claim that there is an exact sequence

D zl¢'/G] — (Xp)r, — AL © L, (3.6)

pESH

of Z,G'-modules, where we can replace the set .S, by SpNSiram, since Z,[G' /G ]~
vanishes if j € G,. Note that an analogous sequence is well known if we replace
the ray class groups by ordinary class groups (see [Grl], p. 530 or [Wal). We
postpone the proof and first continue with the proof of Theorem 3.2.2. We
need the following result about Fitting ideals (cf. Lemma 7.1 in [Ku]).



3.2. THE DESCENT 87

Lemma 3.2.6 Let R be a commutative ring and My, — My — M3 an exact
sequence of R-modules. Then

FlttR(M1>FlttR(M3) C FittR(Mg).

If we tensor the exact sequence (3.6) with R’ and apply the above Lemma,
we get

Fittp (AL ® Z,/v) -Fittp( @  R'/(1— ¢, ")) C Fittr (Xp)r,, /v).

pespmstram

Hence, Fittp (AL, ® Z,/v) C (0?3 mod v) by Corollary 3.2.5. The augmenta-

tion map aug g/ : Z,G'" — Z,G induces the first isomorphism in
(Aijg ® Zp/v) @ LyG - =~ (AE: ® Zp)cy [aug g,(y) = Ai£ ® Zp/pMa

whereas the second isomorphism derives from (3.5). Since the Fitting ideal
behaves well under base change, we get

Fittz, ¢ v (AL ® Z,/p™) C (aug ¢ (Og(f) mod p*).
But aug g(@g’) = [Les (1 — ¢ 2a.) - 05, and the product over the primes
above 7 is a unit in Z,G_. Therefore

Fittz,qa_ (Af ® Zyp) C (951) + pM LpG -,
and since we can choose M arbitrarily large, we actually get
Fittng7 (AE & Zp> C (9;)

As in the proof of Proposition 3.2.1, Ggl now has to be a generator of the
Fitting ideal by Proposition 2.2.5 and 2.2.7.
The minus part of the LRNC at p again follows from Theorem 2.3.1. O

We are left with the existence of sequence (3.6). Indeed, we prove a more
general result.

Proposition 3.2.7 Let L/K be a Galois CM-extension with Galois group G,
p # 2 a rational prime and T a finite G-invariant set of places of L such that
TNS, =10. If X, denotes the projective limit of the ray class groups Af’; ® Ly,
where T, consists of all primes in the n-th layer L, of the cyclotomic Z,-
extension above the primes in T', there is an exact sequence of Z,G_-modules

@ Ly|G/Gyp]” — (X7)r, — Ag ® L.
PES;
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PROOF. For the same reasons as in Proposition 3.2.1, the canonical re-
striction map X — A? ® Z, is an epimorphism and clearly factors through
(X; )FL‘

By class field theory, each ray class group clﬁ ®Z,, is the Galois group of a finite
abelian p-extension M, /L,. Then the projective limit X7 of these ray class
groups is the Galois group of the extension M., /Ly, where My = U, ey M.
We put X = Gal(M/L).
Let PB1,...,Ps be the primes in L above p. Exactly these primes ramify
in L./L, and we denote the finitely many primes in L.,, which lie above
B1,- -, Bs, by Py, 1 < i < s. Moreover, we choose above each Py a prime
Pir in M., and denote its inertia group in My /L by I;; < X.
We obviously have an isomorphism X /X7 ~ I';. So we can pick a preimage
v € X of v, and thus .

X =Xr- (7). (3.7)
The elements in G act on X via group conjugation, and we may assume that
79 = 7 by replacing v by y(1=9/2. The condition on the set T forces that the
extension My, /Lo does not ramify above p. Therefore I;; N X7 = 1, and we
get inclusions

Ly — X/ Xy =Tp.

Hence, each I;; is isomorphic to F‘znik for an appropriate integer n;.. We fix
a topological generator o;; of I;; which maps to ,ng via the above inclusion.
But for fixed 7, each two of these inertia groups are conjugate to each other, and
hence n;, = n;; =: n; for all k. Corresponding to (3.7) we write oy, = ag P
with A € XT.

Because of the obvious exact sequence

Gal(My, /M) — X — clf @ Z,

we are interested in the Galois group Gal(M.,/M,). We claim that it equals
the subgroup NV of X generated by the closure X’ of the commutator subgroup
of X and the inertia groups I;;. For this, let NV be the intermediate field of
the extension M, /L fixed by N. Then N is the largest subfield of M., which
is abelian over L and unramified above p. Thus My C N. If we assume that
My # N, we find an intermediate field Ny of finite degree over L such that
My ¢ Ny C N. Let % be the conductor of Ny/L. Then the primes which
divide : are exactly the primes in 7. Recall our definition 9y = HsneT L.
The commutative diagram

or, (op/M)" cl} cly,
o — (UL/DJTT)X Clz cly,

now implies that the order of the kernel of the surjection cl} — clf is prime to
p, since the only occurring primes are below the primes in 7. What we have
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shown is Ny C My, in contradiction to our assumption.

Lemma 3.2.8 Let X' be the closure of the commutator subgroup of X. Then
X=X

PROOF. The proof of Lemma 13.14 in [Wa| nearly remains unchanged.
We only have to replace the inertia subgroup I; in loc.cit. by (7). a

Since 4/ = 7, the above Lemma implies that we get an isomorphism on
minus parts

AL @ Ly = (Xr)/(XF T L)) = X /(X)) aa),

As already mentioned, the inertia groups I, are conjugate for fixed i, hence
oir = o; mod X' and likewise a;; = a;; mod X" for all k. Hence

AT @ Zy ~ X7 J(( X)) ay, ... a,),

where we have defined a; := a;;. Since X7 /(X7)*"t = (X7 )r,, Proposition
3.2.7 follows from the following lemma.

Lemma 3.2.9 Ifp; =%/ for an element g € G, then a; = af mod (X5 )=t

PROOF. Let 7 € Gal(My/K) be a lift of g. Then ¢ acts on (X7 )r, via
conjugation by 7. P is a prime in M., above $;, hence there exists an z € X
such that g7, = 533”1 Replacing 7 by z7'7 we may assume that x = 1. Hence

(oj1) = Ijy = I}, = (o).
Since the restriction to L induces an isomorphism /;; ~ I",:nj and
Ol = (0 ) =01 =4,
we have n; = n; and 0j; = 07}, i.e.
a; = (a;y"" ) 7P

But 77|, = 7z implies that v = z, - v for an element z, € X;. We even
have z, € X, since j trivially acts on v and commutes with 7. Hence, the
assertion follows from the above equation by taking minus parts. O



Chapter 4

On the Rubin-Stark conjecture

D. Burns [B3] has shown that the LRNC implies certain congruences of abelian
L-functions at s = 0. These congruences in turn imply, among other things,
the Rubin-Stark conjecture. We will reprove this result for the case at hand
by a different method.

4.1 The conjecture

Let L/K be a finite abelian extension of number fields with Galois group G.
Let S be a finite G-invariant set of primes of L, containing all the infinite
primes and all the primes which ramify in L/K. If T is a second G-invariant,
finite, nonempty set of primes of L, disjoint from S, we define for each character
x of G a complex-analytic function dr(x, ) = [[ger-(1—N(p)'"*x (o)) The
(S, T)-modified L-function associated to x is defined to be

Lsr(L/K,x,s)=06r(x,s) - Ls(L/K,x,s).

Set 07(s) = 3, crr (@) OT(X, 8)ey for all s € C. The S-Stickelberger and respec-
tively (S, T)-Stickelberger functions® are defined by

Os(s) = Os(L/K,s) == > Lg(L/K,X,5)zy,

x€lrr (G)
Os1(s) = Osr(L/K, s) = 6r(s) - Os(s) = > Lsr(L/K, ¥, 5)ey.
x€Irr (G)

We now fix a set of data (L/K,S,T,r), where r > 0 is an integer, and which
satisfies the following hypotheses (H):

e S contains all the infinite primes of L and all primes of L which ramify

in L/K.

e S* contains at least r primes which split completely in L/K.

Do not confuse with the representing homomorphism @g defined in 2.2.4.

90
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o |S*|>r+1.

e T#0, SNT=0, EXnu,=1.

Since the common vanishing order rg(x) of Lg(L/K, x, s) and Lgr(L/K, X, $)
at s = 0 is at least r by [Ta2|, Proposition 3.4, p. 24, we may define

0 (0) := lim s "O51(s) € CG.

s—0

Here we think of Ogr(s) as a holomorphic function in s = 0. Note that
O (0) = 0L if j € Gy for all P € S.

Now let us choose an r-tuple W = ($4,...,%,) of r distinct primes of
S* which split completely in L/K. We denote the r-th exterior power of a
ZG-module M by Az M. One defines a regulator map

cALET B ce

eaN...Ne 1531:9 (—Zlog|ej|mgg)

geG

for ey,...,e, € EL, and then extending by C-linearity. If R is a subring of C
and M an RG-module without R-torsion, we define

M,s={r e Mlx-e, =0¢€ CM Vy € Irr (G) such that rg(x) > r}.
As proved in [Ru|, Ry is a CG-morphism, which induces an isomorphism
(CAL EL), s — CG,s.

For each ® = (¢1,...,¢,.1) € (Homzg(FL, ZG))"™! one can define a CG-
morphism

A : C N ELY — CEE,
such that for all ey, ..., e, € CEYL one has

AO(er A Ne) = [J(=DF det  (diley)) - ex

1<i<r—1
k=1 1<j<r, j#k

One defines a ZG-submodule of Q A7, EL by

Aer — {e € (QAL EL),.s| A ®(c) € EL V® € (Homg(FL, ZG)) '}, r>1
ST = ZG075, r=0.

We are now ready to state the Rubin-Stark conjecture as formulated by Rubin
[Rul.

Conjecture 4.1.1 Assume that the data (L/K,S,T,r) satisfies (H). Then
for any choice of W as above there exists a unique esrw € Agr such that

R (es;rw) = ©41(0).



92 CHAPTER 4. ON THE RUBIN-STARK CONJECTURE

We will refer to this conjecture as B(L/K,S,T,r). Note that the conjec-
ture is independent of the choice of W, and that the uniqueness is automatic
(cf. [P2], Remark 2 and 3). Further, B(L/K,S,T,1) for varying S and 7" im-
plies the Brumer-Stark conjecture as shown in [P2|, Proposition 3.4.

Let p be a rational prime. If we replace Agr by Z,)Agsr in the above con-
jecture, we get a localized conjecture which we denote by ZyB(L/K,S,T,r).
One has

B(L/K,S,T,r) <= ZpB(L/K,S,T,r) Vp.

Our main tool in proving parts of the Rubin-Stark conjecture is the following
theorem, which is Theorem 3.2.2.3 in [P3].

Theorem 4.1.2 Assume that (L/K,S,T,r) satisfies (H) and let p # 2 be a
rational prime. Chooser distinct primes B, ..., B, € S* which split completely
in L/K, and set Sy := S\ (GP1U...UGDP,). Then it holds:

Os,,7(0) € Fittz,¢ (A] ® Z,) = Z,B(L/K, S, T,r).

Moreover, we will need the following results which are taken from Propo-
sition 2.3 in [P2].

Proposition 4.1.3 Let p be a rational prime, and assume that the set of data
(L/K,S,T,r) satisfies (H). Then it holds:

(1) If S € S" and (L/K,S",T,r) also satisfies (H), then

Z(p)B(L/K, S, T, T’) — Z@)B(L/K, S,, T, 7”)

(2) If T CT" and (L/K,S,T",r) also satisfies (H), then
Z(mB(L/K, S, T, 7”) - Z@)B(L/K, S, T/,T)

4.2 The tamely ramified case
We apply the results of the previous chapter to prove

Theorem 4.2.1 Let L/K be an abelian Galois CM-extension with Galois
group G and p # 2 a prime. Assume that for each prime p above p the ram-
ification is at most tame or j € G,. Then the minus part of the LRNC at p
implies the Rubin-Stark conjecture Z,B(L/K,S,T,r) for each sets of places
S, T and each integer r such that (L/K,S,T,r) satisfies (H).

We immediately get from Theorem 3.2.2:

Corollary 4.2.2 Assume that L/ K additionally satisfies j € G, for all primes
p above p, whenever L C (L) ((,), and that u_ = 0. ThenZy,)B(L/K, S, T,r)
holds whenever (L/K,S,T,r) satisfies (H).
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Note that we can again remove the condition p_ = 0if p 1 |G|.

PROOF OF THEOREM 4.2.1. It follows from Theorem 4.1.2 and Propo-
sition 4.1.3 that it suffices to show that ©g,, 7,(0) € Fittz ¢ (A}° ® Z,) for
minimal sets 7. Hence, let Ty = {$]|g € G} for an unramified prime P, such
that ngam N pr = 1. This is equivalent to the statement on earlier occasions
that 1 — ¢ ¢ ngG/G% P for all 1 # ¢ € up. As before, define S; to be the

set of all wildly ramified primes above p and set 1" = Tt U (Sram \ (Sram N'Sp))-
By Theorem 2.3.1 the minus part of the LRNC at p implies (and is indeed
equivalent to)
Fittz, ¢ (A} ® Z,) = (6%). (4.1)
We have two exact sequences
o
T T
or/ H B @ Ly — AL @ Lp — A’ @ Ly, (4.2)
PeT\To
X
oo/ [ ®| ®2,~ P mdf T4eZ,~ P ndf WyoZ,
PET\To PET\Ty PET\T;

The first follows from sequence (2.8) for the sets T and Tj, whereas the second
derives from diagram (2.12). We want to apply the following Lemma, which
is a special case of Lemma 5 in [BG2].

Lemma 4.2.3 Let My, — P, — P, - M, be an exact sequence of finite Z,G _-
modules, where Py and P, are c.t. Then Fitt(P;) is invertible for i = 1,2
and

Fitt(My) = Fitt(M,') - Fitt(P) " - Fitt(Py),
where My = Hom(M;,Q/Z) denotes the Pontryagin dual of M.

We have to modify the above two exact sequences slightly. For each prime
P we have an exact sequence

Ky — (ind @, Z,Ga/(N(F) = 1) — (ind§, (o1/F)) " ©Z,,
where the second map is induced by mapping 1 to a generator of (or/9)*.
These sequences glue together and give
.

K—P- o/ [] % ® Zp, (4.3)

peT\To

where K and P are the direct sums of the Ky and the middle terms in the
above sequence, respectively. Note that K and P are finite, and P is c.t. Define

1 1
¢y = (|Gg|(1 = ——Ng,,) + ——Ng,,) - ¢p € Wi,
B RY |qu| P |G‘J3| P B P
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where cy was defined in (2.14). Moreover, let t3; be a preimage of cj, in T.
The maps Z,Gy — Wy ® Zy, 1 ¢y and Z,Gy — Ty @ Zy, 1 Ly are
injective and become isomorphisms after tensoring with Q,. Hence, the direct
sum

T:= P indf, Ty/th©Z,
PET\Tg

is finite and c.t. by Lemma 2.3.3. Therefore, the sequences (4.2) and (4.3) give
two exact sequences

K—P—Al®Z,» A ®7Z,,

K—P—T W,

where W is the direct sum of the ind g(ﬁ Wy /¢y ® Zy,. We can apply Lemma
4.2.3 to these sequences and get

Fitt(A]° ® Z,) = Fitt(A? ® Z,) - Fitt(7 )" - Fitt(OW™). (4.4)

Proposition 2.3.5 (4) implies

Fitt(7) = [ (), (4.5)

PET*\Ty

. _
Tp = fp(l— CIP)|G—NG"3 + (Gl = NGQG)(%

3|
where as before ey = [Ip|"'Ny,, ¢ = N(p), and f, is the degree of the
corresponding residue field extension.

ep +1—eg),

Lemma 4.2.4 Let B ¢ S, be a finite prime of L. Then
Fittz,q, (Wy/cy ® Zy) = (Ng, — |G|, Na, + ¢,(f, N1, = Ng, ) (6, — 1)z, -

PROOF. Since P lies not above p, we may assume that P is at most
tamely ramified. We keep the notation of [Ch2|, Lemma 6.2. So choose a
generator a of I, and let b € G, be a lift of ¢, ' which is of maximal order ||
among all such elements. Set e, = |I,|; then b=/ = a% for a divisor ¢, of e,.
Define a map

m: LGpey © LGpes - Wy

by m(e;) = (b7' — 1,1) and 7(ez) = (a — 1,0). We claim that the kernel is
generated by Ny e; and (a — 1)e; + (1 — b~ !)ey. For this, assume that

7T(.731€1 + 33262) = ($1<bil — 1) + IQ(CL — 1),T1> =0 € qu.

By Lemma 6.6 in [Ch2| x; = (a — 1)z for an appropriate x| € ZG,. By the
same Lemma in loc.cit. we get (b~ — 1) + a9 =y - N, for a y € ZG,, since



4.2. THE TAMELY RAMIFIED CASE 95

the left-hand side is annihilated by (a — 1). This proves the claim. Define two
group ring elements

fo—1
1= Y b+ (fuN, = Ng,)(b' = 1) € Z,G,,
1=0

cp—1 ep—1 i1
Gpi=Y a'+ [ > Y a €Z,G,

i=0 i=1 j=0
An easy computation shows that 7(d1e; — deeq) = cﬁp. Hence, the kernel of the
epimorphism

ZpGyer ® LypGpeg — Wy [y @ Ly,

induced by 7 is generated by the kernel of m and d,e; — dse5. From this one
can compute the desired Fitting ideal. O

Recall the definitions (2.7) and (2.10) of w and the modules My. The above
Lemma together with (4.4), (4.1), (4.5) now yields

Corollary 4.2.5

Fittz,c_ (A7 ® Zy) = (qo — dpo)w || My € SKu(L/K)™ - Z,G.

5;3 6 S:al’l’]

In particular, this implies

®Sram7TO (O> = (qpo - gb‘ﬁo) tw H (1 - 6‘J3¢‘;§1> 6 FltthG7 (A,EO ® Z’P)7
mesfam

which proves Theorem 4.2.1. O

REMARK. As one can see from the results in [GK], it is not true in general
that Og,,, 7,(0) lies in the Fitting ideal of A7° ® Z,. But note that all the
counterexamples in loc.cit. are wildly ramified above p. Thus, we have actually

shown a stronger result (which is called the Strong Brumer-Stark Conjecture
in [P3]).



Appendix A

Removing u— =0

We combine methods used by J. Ritter and A. Weiss [RW5|, A. Wiles [Wil]
and C. Greither [Grl] to remove the hypothesis g— = 0 in Theorem 3.1.2 (2)
for a special class of cases, including the case p 1 |G|. More precisely, we prove

Theorem A.0.6 Let T be the set of places of L defined in (3.1). Suppose that
for each prime p € T(K) at least one of the following conditions is satisfied:

e jcl,
e j &1, butj€ G, and N(p)f»/? # —1 mod p
e pt|l]

Then we have
Fittz, gy (Xz) = (Wr).

REMARK. In the proof of Theorem 3.2.2 we have enlarged the extension L/K
to L'/K. But if L/K satisfies the hypotheses of the above theorem, then so
does L'/ K.

PROOF. Since the projective dimension of X as a Z,[[G]]--module is at
most 1 by Proposition 3.1.1, the Fitting ideal in demand is principal, generated
by Wr, say. The integral closure of Z,[[G]]- is R := > Z,[x][[T]], where the

sum runs over all odd irreducible characters of G. Since Z,[[G]]. N R* =
(Z,[|G]]-)*, it suffices to show

(1) RUp = RUp
(2) (Ir) C (Vg).

If x is an odd irreducible character of G and X is any Z,[[G]]_-module, we
define Z,[x|[[T]]-modules

Xy = X @,10)- Zp[X[[T]],

96
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XY= {l‘ € Zy[x] ®z, X|gr = x(9)z Vg € G}
= Homzp[x](;(zp[X]a Zp(X] ®z, X).

To prove (1) we have to show that Fittz, (X7 )y) is generated by x(Vr).
By (1) of Theorem 3.1.2 this holds apart from the p-invariants. By Lemma 3.3
in [Grl] there is an isomorphism (X; ), =~ XX, since X7 is c.t. over G. More-
over, the epimorphism X — X, has a kernel C' which is finitely generated
as Z,-module (cf. (3.2)), and thus it induces an exact sequence

C% s X} — X34 — H(G, Homz, ) (Z,[x]. Z,[x] 2, C)),

where the rightmost term is finite. Hence, u(X3) = u(XZ,), and the latter
equals the p-invariant of x(¥7) by Theorem 1.4 in [Wil] if x is of order prime
to p. For the general result one has to adjust the (second part of the) proof of
Theorem 16 in [RW5|. As already mentioned earlier, one should think of the
claim of Theorem A.0.6 as a reformulation of the equivariant Iwasawa main
conjecture; hence equation (1) states that the conjecture is true over the max-
imal order R, which is Theorem 6 in [RW3].

It remains to prove (2). Write G = G' x G, where G, is the p-Sylow
subgroup of G, and thus p { |G'|. We have a natural decomposition

Z,(G]-= @ RN

x'€lrr (G7)
x' odd

where R(x') = Z,[X'][[G, x Tk]] is a local ring. Its maximal ideal m, is
generated by p and the augmentation ideal A[[G), x I'k]]. We define a prime
ideal P,/ := (p, AG)p) € my.

Lemma A.0.7 For eachp € T(K) the element &, defined in (3.4) becomes a
unit in R(X')p,, -

PROOF. Recall the definition Z, = ind gp Z,. As one can learn from the
proof of Proposition 8 in |Gr2|, we have

(&) = Fittg, gy (QpZ,(1)")Fittg,an_ (QpZ, ).

But Z; = 0if j € G,. Moreover, Z,(1) = Z,[[G]]/{q, — ¢y, T— 1,7 € I,), where
as before ¢, = N(p). Hence, Z,(1)~ = 0 if j € I,. Now assume that j & I,,
but j € G, and qp"/2 % —1 mod p. Then ngp"/Z — q,{*’/Q =j— q‘{"/? mod 7', and
7 — q,{‘“/ ? becomes a unit on minus parts. This means that ¢{:"/ - q,f‘“/ ’is a
unit in Z,[[G]]-, and hence Z,(1)~ = 0 in this case, too. We have proven so
far that ¢, is actually a unit in Z,[[G]]— if p satisfies the first or the second

condition of the theorem. We are left with the case p{|I,|.
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It suffices to show that (1 — ¢, 'q,)e, +1—¢, and (1 — ¢,)e, + 1 — €, become
units at P,». We only treat the first element, the other case is similar.

For this, we have to prove that x'((1 — ¢, 'g,)e, + 1 —¢,) & Py. Assume
that this is false. Since 1 ¢ P,,, we must have x'(¢,) = 1. Let us write
¢! =o' 0,7, where 0’ € G, 0, € ép, 0# c € Z, Since o, —1¢€ Py,
we have 1 — x'(6")v%¢q, = 1 — X' (0')g,(1 — T)¢ € P,s. Since P,, contains no
unit, we must have p|[(1 — x'(0')g,), and hence 1 — (1 — T)¢ € Py. If we
write ¢ = p" - o, a € Z, we find out that 1 — (1 — T%")* € Py. Finally,
1—(1—=TP") =T7" . g(T) with a power series g(T') with g(0) = —a, hence
g(T) is a unit. This implies 7" € P/, a contradiction. O

We now return to the proof of Theorem A.0.6. The epimorphism X, —
X q implies the first inclusion in

Fittpi) (X7 )y) C Fittreo) (Xga)v) € (Goy-10,8mmus, (1)),

whereas the second inclusion is (10), p. 562 in [Wi2|. Localizing at P,/ gives

(X' (¥1))p, € (Cioyre8mus,(D)py = (X (Y1) p,,

X

since all the £, become units at P,. Therefore, there is an element 7’ €
R(X') \ Py such that 7' - x'(¥U7) € (X' (¥7)). We already know from Theorem
3.1.2 that one can find a positive integer i such that p’ - \'(¥r) € (X' (V7).
Hence ~
(', ™) (X' (¥r)) € (X' (Y1)

and the ideal (p’,r’) has finite index in R(x).

Thus, (X' (U7)) 4+ (' (7)) /(X' (¥7)) is a submodule of R(x")/(x'(¥7)) of finite
cardinality. Now the proof following (10.5) in [Wil] shows that the only such
module is trivial. We obtain (x'(¥r)) € (X'(¥7)), and thus we get (2). This
completes the proof of the theorem. O
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