
Structured Markovian Performance Modelling
with Automatic Symmetry Exploitation

Markus Siegle

Computer Science Department (IMMD VII), Universität Erlangen-Nürnberg,
Martensstraße 3, 91058 Erlangen, Germany, siegle@informatik.uni-erlangen.de

1. Introduction
Markov models are widely used for the modelling of parallelism and concurrency because they
are amenable to numerical analysis. The major problem in Markovian modelling of complex
real systems is the large number of model states. Memory space needed for the infinitesimal
generator matrix often exceeds the available capacity, and computation time for solving the
Markov chain (i.e. solving the system of linear equations , where is the vector of steady-
state probabilities) can make model analysis prohibitively expensive. The development of efficient
techniques for the modelling of parallel systems is therefore of great importance.

Among the techniques which have been considered in order to overcome the state space explosion
problem are model decomposition [4], model simplification [9] and structured modelling. In this
paper, we present a method and modelling framework following the concept of structured modelling.
In particular, we address the state space explosion problem in the context of models which exhibit
symmetries.

2. Structured Modelling
Structured modelling is based on information about the modular structure of the real system to be
modelled. For each of the modules of the real system there is a corresponding submodel which may
be specified in isolation. During model analysis, the structure of the model is exploited, making
it possible to analyze complex models whose solution would otherwise not be feasible. Among
published approaches to structured modelling, the following are of particular relevance:

• Plateau uses stochastic automata for model specification [6, 7]. The numerical solution of the
model can be carried out in adistributed fashion using a tensor descriptor of. This technique
saves a lot of memory space but does not reduce the number of computation steps.

• Buchholz employs the tensor algebra approach for hierarchical multi-paradigm models [2].

Our own modelling framework combines and extends features of the above mentioned approaches.
While we allow multiple paradigms to be used for submodel specification, we preserve a state-
oriented view. This avoids the restriction of submodel interdependence to the flow of entities,
allowing arbitrary interdependence instead. A new feature is the grouping of submodels into
classes. Submodel classes are introduced in view of automatic symmetry exploitation, which can
lead to significant state space reduction (see Sec. 3). Furthermore, with the notion of submodel
classes, new and flexible synchronization schemes become possible.

In our modelling framework, the overall model consists ofinteracting submodels. Submodels
are grouped in submodel classes. There aresubmodel classes, classcontaining i identical
(symmetric) copies of submodel. Therefore, for the total number of submodels we have

c
i=1 i. The instantaneous state transition of one or more submodels is called an event. Events

are either local, i.e. affecting only one submodel, or synchronizing, to specify the interdependence
of submodels. Let be the set of synchronizing events, ande the rate of the event .
Submodel has i states. The internal and external behaviour of submodelis described by a
set of matrices of dimensioni. Matrix (i)

l contains the rates of the local state transitions of

submodels from class. For a synchronizing event , matrix (i)
e specifies its influence on

the submodels of class. For a synchronizing event there are two possible semantics: Either all
submodels of a class participate in the event, or only one submodel per class participates. This
feature allows to specify different synchronization patterns very elegantly.



The overall tensor descriptor in this modelling framework is given in Eq. (1). The dimension
of (the number of states of the overall model) is equal to the product of the dimensions of

the submodel matrices, i.e. c
i=1

n
i .

c

i=1

n

j=1

(i)
l

e2E
e

c

i=1

n

j=1

(i)
e

c

i=1

n

j=1

(i)
e;n (1)

The form of illustrates that the generator matrix of the overall model is built from three parts: A
part corresponding to the events local to one of thesubmodels (built from matrices of type(i)l ),

a second part corresponding to the synchronizing events (matrices(i)
e ) and a third part which is

needed to correct the diagonal entries with respect to the synchronizing events (matrices(i)
e;n). If

submodels of classare not affected by a particular synchronizing event, the corresponding (i)
e

and (i)
e;n are identity matrices. In the expression for the tensor sum and tensor products are

structured in a class-wise fashion. The symbolis interpreted as either or , depending on
the semantics of the event. If the semantics of is such that all submodels in classparticipate
in the synchronization, is replaced by . If only one submodel of class participates, is
replaced by .

The framework just described constitutes a minimal modelling environment which can be extended
in several ways. For instance, events may be associated with functional rates, i.e. rates which depend
on the current global state of the system. Probabilistic events can be added to ease the modelling
of phenomena such as routing probabilities.

We have introduced a structured modelling framework which can fully take advantage of the
storage savings of the tensor descriptor technique. The most important enhancement with respect
to previous approaches is the notion of submodel class which supports different synchronization
patterns and (in the presence of symmetries) leads to a significant state space reduction.

3. Exploiting Symmetries — Submodel Classes and Markov Chain Lumpability
While structured description and analysis help to make large models tractable, large state spaces
still make analysis expensive, so the aim of reducing the state space remains. Since many modern
parallel and distributed systems consist of a high number of similar components (processors, memory
modules, stations on a network), and since parallel and distributed application programs often
involve replicated processes, models of such systems exhibit symmetries. Therefore symmetry
exploitation is an issue of great practical relevance.

The idea of state space reduction through symmetry exploitation is a technique which has
been used before. Three recent approaches to a general modelling procedure in which symmetry
exploitation is an essential part are the following:
• The concept of symbolic reachability graph (SRG) for coloured stochastic Petri nets [3].
• Stochastic activity networks [8].
• Reduction of hierarchical models [1] in the context of [2].

Our approach to symmetry exploitation is to combine all submodels of a class and replace them
by a single reduced model in order to avoid redundant states. During the construction of the reduced
model, only one state is chosen as a representative for each set of ‘similar’ states.

Let be the state space of the overall model. A state is described by the tuple

11 12 1n 21 22 2n c1 c2 cn . In this tuple, i;k describes the state
of the th submodel of class. We consider two states and symmetric if is a permutation of

, i.e. if there exists a permutation matrixof dimension such that , with the additional
condition that has a block diagonal structure 1 c . The blocks i, in turn, are
permutation matrices of dimensioni. In other words, the permutation by maps a position onto
another position belonging to the same class.

The state space is now partitioned in such a way that all symmetric states are in the same set
of the partition. This partition is clearly an equivalence relation. Its construction guarantees that



the sum of the transition rates from a given state to all states in another set is the same for all
states within the same set of the partition. This is exactly the condition for the Markov process
with state space to be lumpable [5]. A reduced model can then be built which contains only
one state per set of symmetric states.

In general, a formal way to compute the generator matrixof the lumped Markov chain with
respect to a partition is to right-multiply the original generator matrixwith a projection matrix

, and to left-multiply with a selection matrix .

(2)

Matrix is used to sum up the columns of Q which correspond to states which are lumpable. In
the product , all rows corresponding to lumpable states are identical. Matrixis used to select
exactly one such row per set of lumpable states.

A naı̈ve approach to reducing the state space would be to first compute the overall generator
matrix in its tensor descriptor form given in Eq. (1), and then perform the multiplications with

and . However, due to the dimension of this would be impractical. We will now see that
lumping can be carried out at the submodel class level which brings practical advantages. We focus
our attention to class. The combined state spacei of all submodels of classhas n

i states, where
every state is described as ani-tuple. Again, two states 1 n and 1 n

are symmetric if is a permutation of , i.e. if there exists a permutation matrixi of dimension

i such that i. Note that these are the samei as above.
In our framework we have a special case of lumpability. Within each class, states are in

lexicographical ordering as a result of the tensor operations. Therefore, when lumping the combined
state space of submodel class, the structure of the matrices and depends only on i and i.
Thus, these matrices are known a priori, and we will denote themns and n

s . The dimensions
of matrices n

s and n
s are n

s
n
i and n

i
n
s , where n

s is defined as n
s

n +s �1
s �1 .

Lumping symmetric states in the combined stochastic process of classreduces the state space
of this process from n

i to n
s . We define the following three matrices describing the reduced

stochastic process of submodel class.

(i)
l

n
s

n

j=1

(i)
l

n
s

(i)
e

n
s

n

j=1

(i)
e

n
s

(i)
e;n

n
s

n

j=1

(i)
e;n

n
s (3)

Now we will verify that two expressions for the reduced overall Markov chain are the same: The
expression we obtain if we apply lumping after building the overall tensor descriptor of Eq. (1),
and an expression we obtain if lumping is carried out at the class level.

!
c

i=1

(i)
l

e2E
e

c

i=1

(i)
e

c

i=1

(i)
e;n (4)

Due to limited space we only show the equality of the second term. We use the important property
n
i=1 i i

n
i=1 i

n
i=1 i which allows us to write

e2E
�e

c

i=1

Q̂(i)
e =

e2E
�e

c

i=1

Un
s

n

j=1

Q(i)
e V n

s =
e2E

�e

c

i=1

Un
s

c

i=1

n

j=1

Q(i)
e

c

i=1

V n
s

=
e2E

�eU

c

i=1

n

j=1

Q(i)
e V = U

e2E
�e

c

i=1

n

j=1

Q(i)
e V (5)

Here we have used the relations c
i=1

n
s and c

i=1
n
s which can be verified by

examination of the matrices and n
s

n
s . For the first and third term of Eq. (4), similar

reasoning as in Eq. (5) can be applied.



1 2 3 4 5 6
1

10

100

1000

R
ed

uc
tio

n 
F

ac
to

r

s = 10
s = 30
s = 100

ni
Figure 1: Reduction of the State Space with Respect toi for Various i

Lumping at the class level has the advantage that the overall generator matrixdoes not have
to be built in order to take advantage of symmetries. Instead, the matrices describing the lumped
Markov chain are computed independently for each submodel class as a preprocessing step. The
matrices involved at the class level are small compared to the dimension of. An efficient algorithm
for lumping identical submodels will be given in Sec. 4.

In general, the reduction of the state space at the class level is by a factor ofn
i

n
s (The state

space of the overall model is reduced byci=1
n
i

n
s ). This factor is charted in Fig. 1 with respect

to i for submodel classes with varying submodel state space cardinalityi. It can be observed
that the gain of state space reduction is tremendous.

4. Computing the Reduced Generator Efficiently
We now discuss an algorithm to compute matrices of the type(i) n

s
n
j=1

(i) n
s ‘on the

fly’, i.e. directly from the submodel matrix (i) without explicitly computing the tensor product
inside the parentheses. The idea is to compute only those rows of(i) n

j=1
(i) which will be

selected by the left-multiplication with the selector matrixns . Within each row, the projection of
all symmetric states onto each other (usually achieved by the right-multiplication with the projection
matrix n

s ) is carried out immediately. In order to be able to do this, the algorithm keeps track
of the state description of the originator state1 n and of the target state 1 n .
Incrementing the state description is done in a special way by the functionincrement_ordered(),
which follows the lexicographical ordering but skips those states1 n where the condition

1 n is violated. Elements of (i) are given by
(i)

k ;...;k ; l ;...;l

n

j=1

(i)
k l (6)

Therefore the entries of (i) are computed as
(i)

k ;...;k ; l ;...;l
m ;:::;m =P l ;:::;l

n

j=1

(i)
k m (7)

where 1 n denotes a permutation of1 n . A description of the algorithm in
pseudo-code is shown at the top of the next page.

For the complexity analysis of this algorithm we use the scheme on the right hand side, which
indicates the number of computation steps needed for the respective line. We have used the
information that on the averageni

n
s permutations have to be considered for a given target state

1 n . The non-reduced generator matrix(i) can be computed by an algorithm which has
similar structure but uses the ordinary incrementation function and on line (7) employs the expression
of Eq. (6) instead of Eq. (7). Comparing the dominant terms of both complexities, it can be observed
that the construction of the reduced generator is cheaper than the construction of the non-reduced

generator by at least a factor ofni
n
s . The algorithm to compute (i) n

s
n
j=1

(i) n
s

has the same form.



(1) row = 1
(2) 1 n

(3) while 1 n i i

(4) {col = 1
(5) 1 n

(6) while 1 n i i

(7) { (i)
row;col

(i)
(i ;...;i );(j ;...;j )

(8) increment_ordered 1 n

(9) col++
(10) }
(11) increment_ordered 1 n

(12) row++
(13) }

1
+ i

+ n
s *

{1
+ i

+ n
s *

{ i
n
i

n
s

+ i

+ 1
}

+ i

+ 1
}

The analysis of complexity shows that the computation of(i) ‘on the fly’ is already cheaper
than the computation of (i). This is a very important result. It states that we do not have to
pay anything in order to benefit from the reduction of the state space for the subsequent analysis
of the Markov chain.

5. Conclusion
In this note, we have discussed significant advantages which arise if modelling is carried out in a
structured fashion. We have presented a framework which is based on the tensor descriptor approach,
but is extended in such a way that symmetries are recognized and exploited in an automizable
way. Our framework is kept general enough to allow multiple paradigms to be employed for
the specification of submodels. Exact Markov chain lumpability is the theoretical background for
symmetry exploitation, which we show can be carried out at the level of submodel classes. The
degree to which the state space is reduced is predictable — it depends on the number of submodels
within a class and on the cardinality of the state space of these submodels — and a reduction of
the state space of a submodel class implies the reduction of the overall state space by the same
factor. Finally, we have presented and analyzed an algorithm for the efficient computation of the
generator matrices of the reduced model.

References
[1] P. Buchholz. Hierarchical Markovian Models - Symmetries and Reduction. In R. Pooley and J. Hillston, editors,6th

International Conference on Modelling Techniques and Tools for Computer Performance Evaluation, pages 305–319,
Edinburgh, September 1992.

[2] P. Buchholz. Numerical Solution Methods Based on Structured Descriptions of Markovian Models. In G. Balbo and
G. Serazzi, editors,Proceedings of the 5th International Conference on Modelling Techniques and Tools for Computer
Performance Evaluation, pages 242–258. Elsevier Science Publisher B.V., 1992.

[3] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. On Well-Formed Coloured Nets and their Symbolic
Reachability Graph. InProceedings of the 11th International Conference on Application and Theory of Petri Nets,
pages 387–410, Paris, June 1990.

[4] G. Ciardo and K. Trivedi. Solution of Large GSPN Models. In W. Stewart, editor,Numerical Solution of Markov
Chains, pages 565–595. Marcel Dekker, New York, Basel, Hong Kong, 1991.

[5] J. Kemeny and J. Snell.Finite Markov Chains. Springer, 1976.

[6] B. Plateau. On the Synchronization Structure of Parallelism and Synchronization Models for Distributed Algorithms.
In Proceedings of the ACM Sigmetrics Conference on Measurement and Modeling of Computer Systems, pages
147–154, Austin, TX, August 1985.

[7] B. Plateau, J.-M. Fourneau, and K.-H. Lee. PEPS: A Package for Solving Complex Markov Models of Parallel
Systems. InProceedings of the 4th International Conference on Modelling Techniques and Tools for Computer
Performance Evaluation, pages 341–360, Palma (Mallorca), September 1988.

[8] W. Sanders and J. Meyer. Reduced Base Model Construction Methods for Stochastic Activity Networks.IEEE
Journal on Selected Areas in Communications, 9(1):25–36, January 1991.

[9] C. Simone and M. Ajmone-Marsan. The Application of EB-Equivalence Rules to the Structural Reduction of GSPN
Models.Journal of Parallel and Distributed Computing, 15(3):296–302, July 1992.


