
Transformation of LARES performability models
to continuous-time Markov reward models

Alexander Gouberman, Martin Riedl, Markus Siegle
Institut für Technische Informatik

Universität der Bundeswehr München
Werner-Heisenberg-Weg 39, 85579 Neubiberg, Germany

firstname.lastname@unibw.de

This paper describes the newest version of LARES, a language that allows modellers to specify the behaviour of
systems which are dependable, fault-tolerant and reconfigurable. In particular, the language now provides means
to express state and transition rewards, as well as different types of related performability measures of interest.
The transformation of the highly structured (i.e. modular and hierarchic) user-level model to a flat continuous-
time Markov reward model is discussed, including semantical issues such as guarded behaviour, forwarding of
information between levels of the model hierarchy, and different forms of synchronisation between submodels. As
the reward extension is fully orthogonal to the transformation of the behavioural aspects, the standard LARES
reachability defined by the execution semantics and the calculation of reward measures are completely decoupled.

1. INTRODUCTION

The LARES formalism serves as a description language
for dependable, fault-tolerant and reconfigurable
systems. It has first been described in (Gouberman
et al. 2009). LARES provides means to define
individual abstract behaviour (Behavior definition)
based on states (State statement) and transitions
(Transitions statement) and self-contained modules
(Module definition) comprising behaviour or submodule
instantiations and a specification of their interaction.
Furthermore, each definition may include named
statements which can be addressed by the environment:
e.g. to select a provided initial configuration of an
instance (Initial statement), to refer to a boolean
variable that asserts about the (composed) state of
the addressed instance (Condition statement), or to
trigger a specific reaction if a composed state satisfies
a certain condition (guards statement). The reaction is
specified in terms of a reactive expression and allows
for different forms of synchronisations. The triggered
reactions may successively be refined in the addressed
subcomponents (forward statements). The ability to
give abstract definitions of behaviours or modules,
which allow subinstantiations, enable the modeller to
specify clearly structured (i.e. modular and hierarchic)
models. For hierarchical LARES models, these features
can be used to capture highly combinatoric interaction
behaviours by just a few simple statements. The
transformation semantics of LARES to a stochastic

process algebra (SPA) has been partially sketched in
(Riedl and Siegle 2012).

The contribution of this paper is threefold: Firstly,
we present an extension of the LARES formalism
for specifying state and transition rewards. Secondly,
an alternative semantics is defined which maps via
some form of reachability analysis to labelled transition
systems (LTS). Thirdly, it is discussed how reward
measures can be calculated based on the obtained
reachability graph. The LTS semantics presented in this
paper is defined in such a way that it complies with the
semantics given by the stochastic process algebra (which
again is defined by means of LTS).

Among earlier approaches to the modelling of rewards
in a Markovian context we mention Stochastic Reward
Nets (Muppala et al. 1994), Stochastic Activity
Networks (Qureshi et al. 1996) and the models accepted
by the model checker MRMC (Katoen et al. 2011). In
comparison with these, LARES models are at a higher
level of abstraction, which offers much more structure
and flexibility and thus eases modelling. LARES and its
reward extension are intended to be used as engineering
formalisms on a similar level as, for instance, AltaRica
(Point 2000) or the SLIM language (Bozzano et al.
2009).

The paper is organised as follows. Subsequent to the
introduction, Section 2 briefly outlines continuous-time
Markov reward models (CTMRMs) and introduces the



reward extension LARES.re with a running example.
In Section 3 we present the LTS semantics to
construct the reachable state space. Section 4 shows the
CTMRM semantics of LARES.re and discusses model
properties and compositionality aspects. Finally, Section
5 concludes the paper.

2. REWARD EXTENSION

2.1. Continuous Time Markov Reward Models

A continuous-time Markov reward model (CTMRM) is a
structure (S,Q, i, r) with finite state space S, generator
matrix Q : S × S → R, impulse reward i : S × S → R
and rate reward r : S → R.

Let E(s) := −Q(s, s) ≥ 0 be the exit rate in s. Consider
the case E(s) > 0. Then if in a state s the sojourn time
up to transition is τs ≥ 0 and the next visited state is s′

then the reward accumulated in s is given by i(s, s′) +
τsr(s). Therefore the expected accumulated reward in s
is given by Rew(s) :=

∑
s′∈S P (s, s

′)i(s, s′)+ 1
E(s)r(s).

In case E(s) = 0 the state s is absorbing, thus no
impulse reward for transition is gained and Rew(s) can
be 0 or ±∞ depending on whether r(s) = 0 or not.
Note that a CTMRM can be transformed into a
CTMRM (S,Q, r) without impulse rewards. The reason
is, that any impulse reward i can be continuized into a
rate reward and merged with r:

r(s) :=
∑
s′ 6=s

i(s, s′)Q(s, s′) + r(s). (1)

Let R denote the rate matrix, i.e. the off-diagonal entries
of Q. Then Eq. (1) can be written in vector notation as

r = diag(R iT ) + r, (2)

where diag is the diagonal of a matrix.
We will stick to the CTMRM structure with impulse
rewards, since it is more natural to distinguish
time-based rewards from time-independent rewards,
especially in the context of modular model specification.
In order to analyze a CTMRM one has to choose a
reward measure, which maps a CTMRM model into a
value function V : S → R. In the following we shortly
outline the most important reward measures (Guo and
Hernandez-Lerma 2009).
(i) The total reward measure V∞(s) is the expectation
over all paths from s of all rewards accumulated along
these paths. If this accumulation process converges, then
V∞ is a solution to

QV∞ = −r. (3)

By setting the value V (s) = 0 for all recurrent states s,
V∞ is the unique solution to Eq. (3).
(ii) The α-discounted reward measure V α with α > 0
is the accumulation of rewards along all paths where
rewards gained in the future are continuously discounted

with rate α. It holds that the accumulation process
converges for all α > 0 and V α is the unique solution
to

(Q− αI)V α = −r. (4)

(iii) The average reward measures the accumulated
reward over all paths averaged over time. Let P (t) =
eQt be the probability distribution matrix at time point
t > 0, i.e. P (t)(s, s′) is the probability to be in state s′

at time point t, when starting in s at time point 0. Let
P ∗ := limt→∞ P (t) be the limiting distribution matrix
of the CTMC (S,Q), i.e. the row corresponding to the
s-th state is the stationary distribution of the CTMC
when starting in s. (In case the CTMC is ergodic, P ∗

has identical rows.) Then

g = P ∗r. (5)

2.2. Parallel Composition of CTMRMs

As a motivation for the LARES reward extension
in Section 2.3, we shortly present here the parallel
composition of CTMRM models. Let (Si, Qi, ri), i =
1, 2 denote two CTMRMs representing the independent
components of a system. Typically the CTMRM
(S,Q, r) with S = S1 × S2 representing the composed
system is constructed by parallel composition of the
component CTMRMs by

Q := Q1 ⊕Q2, r := r1 ⊗ 1|S2| + 1|S1| ⊗ r2, (6)

where ⊕ is the Kronecker sum, ⊗ the Kronecker product
and 1n ∈ Rn a vector of 1’s (Buchholz 1994; Markovski
et al. 2009). Although the generator Q of a CTMC
with independent components can be constructed by
the Kronecker sum, such a parallel composition of
rewards restricts the possible definitions for typical
reward structures arising in the field of performance
evaluation. As an example, consider a system consisting
of two identical components which can be active (state
1) or fail into the failed state 2 with rate λ. Thus the
generator of the components is given by

Q1 = Q2 =

(
−λ λ
0 0

)
The MTTF of a component can be computed by
applying the total reward measure on the rate reward

ri =
(
1 0

)T
. Equivalently, the MTTF of the whole

parallel system can be computed by defining r =(
1 1 1 0

)T
. However, the parallel composition as in

Eq. (6) returns r = r1⊗12+12⊗r2 =
(
2 1 1 0

)T
.

Even worse, it is not possible to define a rate reward

ri =
(
ai bi

)T
for the components, s.t. the parallel

composition yields the desired MTTF reward measure
for the whole system. Therefore, even if the system
consists of independent components for the system
behavior, a desired performance measure can make them
in a certain way “dependent”. We show in the next



1 Behav ior B(mu) {
State a c t i v e , f a i l e d , inRep
T r a n s i t i o n s from a c t i v e

i f 〈 t r u e 〉 → f a i l e d , d e l a y e x p o n e n t i a l 0 .1
T r a n s i t i o n s from f a i l e d

6 i f 〈 r ep 〉 → inRep , weight 1 .0
T r a n s i t i o n s from inRep

i f 〈 t r u e 〉 → a c t i v e , d e l a y e x p o n e n t i a l mu
}

11 Module Component : B(mu=2.0) {
I n i t i a l i n i t = B. a c t i v e
C o n d i t i o n f a i l e d = !B . a c t i v e
fo rward 〈 r ep 〉 to B. 〈 r ep 〉

16 StateReward ene rgy = 2 . 5∗ [B . a c t i v e ]
Trans i t ionReward r s t = 5∗ [B . inRep → B. a c t i v e ]

}

Module Conta i n e r {
21 I n s t a n c e SC1 o f Component

I n s t a n c e SC2 o f Component
I n i t i a l i n i t = SC1 . i n i t , SC2 . i n i t
C o n d i t i o n f a i l e d = SC1 . f a i l e d | SC2 . f a i l e d
fo rward 〈 r ep 〉 to maxsync{SC1 . 〈 r ep 〉 , SC2 . 〈 r ep 〉}

26
StateReward cEnergy = SC1 . ene rgy + SC2 . ene rgy
StateReward ene rgy = 0.9∗ cEnergy + 0 .5
Trans i t ionReward r s t = 6∗ [ f a i l e d → ! f a i l e d ]

}
31

System main {
I n s t a n c e C1 o f Component
I n s t a n c e C2 o f Conta i n e r
I n i t i a l i n i t = C1 . i n i t , C2 . i n i t

36 C o n d i t i o n f a i l e d = C1 . f a i l e d & C2 . f a i l e d
C1 . f a i l e d guards {

C1 . 〈 r ep 〉
C2 . 〈 r ep 〉 i f C2 . f a i l e d

}
41

StateReward ene rgy = C1 . ene rgy + C2 . ene rgy
RewardMeasure M1 = ene rgy d i s c o u n t e d 0 .01

Trans i t ionReward r s t = C1 . r s t + C2 . r s t +
46 10 . 0∗ [ f a i l e d → ! f a i l e d ]

RewardMeasure M2 = ( energy , r s t ) average
}

Figure 1: Example: LARES.re model

section, how this problem can be addressed with LARES.
Roughly speaking, the modeller can specify, how to
combine reward structures in order to return the desired
performance measure.

2.3. LARES.re (Reward Extension)

In order to be able to define a reward structure in
LARES we extend the set of statements inside a
Module definition: a rate reward can be modelled by
a StateReward statement, whereas an impulse reward is
specified by a TransitionReward statement. Furthermore
a RewardMeasure statement assigns to a state reward or
a transition reward (or a tuple consisting of both) one of
the reward measure analysis types total, discounted or
average.

2.3.1. Running Example
Figure 1 provides the specification of the running
example used throughout this paper. It shows a system
main (line 32) which consists of two instances C1 and
C2 representing the components of the system. The

container component C2 contains two subcomponents
SC1 and SC2 (line 20). Each of these basic components
C1, SC1 and SC2 inherits from a behavior B (line
11) which describes that from an active state the
component fails with rate 0.1, can then be turned via
the <rep> guard label immediately into the inRep

state denoting an ongoing repair process and finally get
active with rate mu (lines 1..9). The repair rate mu is set
to the value 2.0 for every basic component. In contrast
to the basic components which fail if their behavior is
not active (defined by the condition failed, line 13)
the container component C2 is a series circuit which
fails if some of its subcomponents fail (line 24). The
whole system is a parallel circuit of C1 and C2 (line 36).

The guards statement (lines 37-40) is responsible for the
repair process, which is triggered only if the condition
C1.failed is satisfied. The reactive part C1.<rep>

triggers the forward label <rep> in the Component

module, which in turn triggers the <rep> guard label
in the behavior B. In case, if C2 has also already failed,
the repair is processed in form of a choice: C2.<rep>
triggers in parallel to C1.<rep> the forward label <rep>
in the Container module which is responsible for the
repair of both of its subcomponents SC1 and SC2 in a
maximal synchronisation way: all subcomponents which
are failed are assumed to be put to repair synchronously,
i.e. all of them move to the inRep state immediately
in one transition. With the Initial statements the initial
state for each instantiated behavior is set to active.

We assume that every component consumes energy and
we want to measure the global energy consumption of
the system. A basic component continuously consumes
2.5 units of energy per time unit if it is active (line
16). If the repair process of a component is successful,
an impulse reward of 5.0 energy units for the restart is
consumed (line 17). The Container module describes
in cEnergy the energy of its components consumed over
time, and the total energy which decreases the energy
consumption of its components by 10% and adds its own
consumption of 0.5. Furthermore when restarting the
Container there is only energy cost for the container
itself but not for its subcomponents (line 29). Finally, in
the System definition we define the total energy of its
components (line 42).

The reward measure M1 specifies all the ingredients
which are necessary in order to compute the discounted
consumption of the continuous energy for the whole
system with a discount rate of 0.01. This discount
rate can be interpreted as a rate for an exponential
distribution which describes the random time length
(horizon) in which the rewards are accumulated.
Therefore the expected horizon length for reward
accumulation is 100 time units. Note that since the
system can get repaired, the total energy consumption
over the whole infinite horizon without discounting



System main {
2 I n s t a n c e C1 o f Component

I n s t a n c e C2 o f Conta i n e r
I n i t i a l i n i t = C1 . i n i t , C2 . i n i t
C o n d i t i o n f a i l e d = C1 . f a i l e d & C2 . f a i l e d
f a i l e d guards maxsync{C1 . 〈 s top 〉 , C2 . 〈 s top 〉}

7 ! f a i l e d guards {
C1 . 〈 r ep 〉 i f C1 . f a i l e d
C2 . 〈 r ep 〉 i f C2 . f a i l e d

}

12 StateReward ene rgy = C1 . ene rgy + C2 . ene rgy
StateReward energyUF = ene rgy ∗ [ ! f a i l e d ]
RewardMeasure M3 = energyUF t o t a l

}

17 Behav ior B(mu) {
. . .
T r a n s i t i o n s from inRep

i f 〈 s top 〉 → f a i l e d , weight 1 .0
}

22
Module Component : B(mu=2.0) {

. . .
fo rward 〈 s top 〉 to B. 〈 s top 〉

}
27

Module Conta i n e r {
. . .
fo rward 〈 s top 〉 to

maxsync{SC1 . 〈 s top 〉 , SC2 . 〈 s top 〉}
32 }

Figure 2: Example: alternative model for specification of
total reward measure. The dots indicate the same statements
as in the corresponding definitions in the original model in
Figure 1.

would lead to a value function which diverges to ∞.
Therefore, Figure 2 shows an alternative model in which
repair is only processed as long as the system has not yet
failed (line 7). All ongoing repair processes are stopped
synchronously by applying the maxsync operator and
forwarding the <stop> labels. In this way, one can assert
absorbing states reachable from the initial state, which
allows to measure the total energy consumption up
to system failure. The energyUF reward restricts the
energy reward to non-failed states by multiplying it with
the indicator [!failed], s.t. an absorbing state is not
rewarded and thus the total reward measure is finite.
Back to Figure 1, the reward measure M2 specifies
the average reward measure for the complete
energy consumption, which consists of the continuous
components energy and some restart energy for the
components and the system.

2.3.2. Syntax description for LARES.re
A StateReward statement consists of a state reward
expression, which is an arithmetic expression and
extends arithmetic atoms (number value or reference
to some parameter) by state reward atoms. A
state reward atom can be an indicator over
conditions (e.g. [!failed]) or a reference to another
state reward statement (within the LARES scope).
Similarly, a TransitionReward statement differs from a
StateReward statement only in the type of the indicator,
which needs both a precondition and a postcondition
(e.g. [failed -> !failed]). In this way, the LARES

modularity and hierarchy concepts nicely integrate the
reward extension.
As usual, an indicator is evaluated to either 1 or 0.
Therefore, in a reward expression, we do not allow
to divide through other reward expressions, since the
indicators can be evaluated to 0.
For the complete transformational semantics of
LARES.re (described in Section 4) we need to introduce
the behavioral semantics first.

3. THE LTS SEMANTICS OF LARES

A LARESFLAT model is obtained by a number of
transformations applied to standard LARES to construct
the instance tree (resolve parameters, Condition,
forward and guards statements, cf. (Riedl and Siegle
2012)) and perform a flattening process from LARES
to obtain a planar representation of a system. A
LARESFLAT model

(B,G,M) ∈ P(B)×multiset(G)× P(M) (7)

comprises a set of instantiated behaviours B, a multiset1

of guards statements G denoting the interaction
between the instantiated behaviours and a set of
probability measure statements M . A behaviour
instance b ∈ B can be denoted as a tuple
(S, TU , TG, s

0), where S is the set of states, TG is
the multiset of guarded transitions (its underlying set is
given by TG), TU is the multiset of unguarded transitions
(with the underlying set TU ) and s0 denotes the initial
state. The universal set of unguarded transitions is a
cartesian product between source and target states and
the possible distributions D:

TU = S × S ×D

where a distribution d ∈ D is either an exponential or a
discrete distribution comprising a weight. The universal
set of guarded transitions is a cartesian product between
source and target states and the possible distributions D
but comprises in addition to the unguarded transitions
a guard label l ∈ L:

TG = S × S ×D × L

Let the set of behaviour instances B contain n ∈ N
distinguishable elements b1, b2, ... , bn ∈ B. Each
behaviour instance bi (with i ∈ IB , where IB :=
{1, ..., n} denotes the index set of the behaviours) is
represented by a tuple (Si, TU i, TGi, s

0
i ) = bi. For two

behaviour instances bi and bj , where i 6= j, the elements
are disjoint, i.e. Si ∩ Sj = ∅, TU i ∩ TUj = ∅ and
TGi ∩ TGj = ∅. We define the potential state space
S := S1 × ... × Sn and denote a composed state
s ∈ S as the tuple (s1, s2, ... , sn) = s. For each system

1in this paper, multisets are employed whenever there is a choice
between identical interaction patterns, their multiplicity has to be
taken into account
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Figure 3: Example: Composed Initial State

of instantiated behaviours the initial composed state
s0 ∈ S is given by s0 := (s01, ..., s

0
n). The goal is

to define the semantics of how the system behaves to
construct the reachability graph in terms of an LTS.

3.1. Semantics: Unguarded Transitions

If one of the instantiated behaviours bi can perform an

unguarded immediate transition
w
99K from state si into

the state s′i then also the composed state s comprising si
changes corresponding the given Structural Operational
Semantics (SOS) rule as defined in Plotkin (2004). The
SOS rule for an unguarded immediate transition is

si
w
99K s′i

s
w
99K s′

s′ = ({s′i}, s) (8)

where s′ is obtained from s by substituting the ith
element of the tuple s by s′i, denoted by s′ = ({s′i}, s).

A similar rule describes the case for si comprising an

unguarded Markovian transition
λ→ into the state s′i:

si
λ→ s′i

s
λ→ s′

s′ = ({s′i}, s) (9)

For illustration, the example model given in Figure 1 is
revisited, for which the composed initial state of the
example model (cf. Figure 3) is derived. For brevity,
the identifiers of the states are renamed, i.e. a, f and
iR instead of active, failed and inRep. As one can
see, only a Markovian transition can take place from
each of the initial states of the behaviour instances. In
order to determine the next reachable composed state,
the matching SOS rule (9) is applied (cf. Figure 4) for
each behaviour instance and each unguarded transition
leaving the associated initial state to construct the first
three reachable composed states.

3.2. Semantics: Guarded Transitions (informally)

It remains to define the semantics for the guarded
transitions controlled by guards statements. As depicted
by Figure 3, transitions with the guard label 〈rep〉 may
take place from the failed states f if triggered by the
environment. The events to do so are generated by the
guards statement specified in Figure 1 in lines 37..40,
which denotes how the behaviour instances interact: as
long as C1 is not failed, the SOS rules for the unguarded
transitions can be safely used to further construct the
state space (cf. Figure 4). If C1 and C2 are failed,
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Figure 4: Example: Recurring Application of Rule (9)

sync{<a>,<b>,<c>}

maxsync{<a>,<b>,<c>}

choose{<a>,<b>,<c>}

<a>
<b>
<c>

<a>
<b>

<a>

Figure 5: Reactive Operator Semantics

the choices C1.〈rep〉 and C2.〈rep〉 as reactions may
be triggered, whereas only the reaction C1.〈rep〉 is
available if C2 has not failed.

Up to now, nothing has been said about the internals
of the container component C2. It is considered to
be failed if either subcomponent SC1 or SC2 has
failed. Whenever the container instance is triggered
from the environment via 〈rep〉, a repair reaction
within its behaviour instances is initiated. Due to the
delay introduced by the environment, waiting for C1

to fail before a repair event is generated, it might
be the case that both subcomponents SC1 or SC2

have already failed. Using the maxsync operator to
denote the repair reaction, both subcomponents are
repaired at once if needed or else just a single one.
The synchronisation semantics of the operators available
to define reactive expressions is denoted in Figure 5. It
depicts the cooperation among the behaviour instances
from the viewpoint of the current composed state. The
operands refer to transition guard labels of the behaviour
instances. The content of the table depicts for each
operator and the currently available addressed guard
labels if the transitions into the next composed state can
be performed simultaneously. As an example from the
figure, the choose operator with the operands a, b and
c lead to a composed transition, since a minterm abc
in the disjunctive normal form of the choose operator
abc ∨ abc ∨ abc is fulfilled.

Due to the transformation and flattening process to
obtain a LARESFLAT model from a user level LARES



specification, the guards statement is resolved to

not C1.B.a guards {
C1.〈rep〉
maxsync{
C2.SC1.〈rep〉, C2.SC1.〈rep〉
} if (not C2.SC1.B.a) or (not C2.SC2.B.a)

}

As an example, in Figure 4 the state (fC1, fSC1, fSC2)
could be reached. As one might see, the generative part
of the guards statement is thereby satisfied:

(fC1, fSC1, fSC2) � not C1.B.a

As a consequence the reactive part has to be considered.
Two reactive expressions have been defined, i.e.
C1.〈rep〉 and the conditional reactive comprising the
maxsync operator. Since (fC1, fSC1, fSC2) satisfies also
the by-condition (not C2.SC1.B.a) or (not C2.SC2.B.a),
a choice between both reactions C1.〈rep〉 and
maxsync{C2.SC1.〈rep〉, C2.SC1.〈rep〉} is possible.

This case corresponds to the second row first column of
Figure 5, i.e. all guard labels referred to by the operands
of the maxsync operator are available in the current
state (fC1, fSC1, fSC2). As a result a composed successor
state is (fC1, iRSC1, iRSC2) as the addressed transitions
with guard label 〈rep〉 of SC1 and SC2 are performed
synchronously.

Based on the application of the yet informally described
semantic rule, the whole state space can be generated
as indicated in Figure 6. The labelling of transitions
originated from the guards statement is not further
detailed. Actually, the labelling relies on the enumeration
of guards statement inside a specific instance and the
enumeration of arising combinations thereof. In Figure
6 however, these labels are denoted as 〈rep〉 for the sake
of convenience.

3.3. Semantics: Guarded Behavior (formally)

Let a guards statement g be represented as a tuple
(c0, [(c1, r

′
1), ..., (cl, r

′
l)]) of a generative condition

expression c0 and a multiset of conditional reactives
comprising l objects represented by the tuples (ck, r

′
k)

with k ≤ l.

From the viewpoint of universal algebra, the algebraic
structure of a reactive expression r′k is given by the
tuple R = (A,maxsync, choose, sync,>,⊥), where A
is a set of atomic assertions on transitions comprising
the corresponding guard label and maxsync, choose and
sync represent a number of n-ary operators, all mapping
into the boolean domain {>,⊥}. Following the
semantics illustrated in Figure 5, the reactive part is
translated into its boolean algebra equivalent rk with
the structure B = (A,∧,∨,¬,>,⊥), that instead
of maxsync, choose and sync comprises two binary
operators ∧ and ∨ and the unary operator ¬ beyond
A, > and ⊥.
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Figure 6: Generated State Space

A new multiset of conditional reactive tuples can be
constructed, each comprising c0 ∧ ck and rk:

[(c0 ∧ c1, r1), ..., (c0 ∧ cl, rl)]

Let the set cmtk comprise all minterms arising from
c0 ∧ ck and rmtk comprise all canonical minterms
originating from rk. All combinatorial cases can be
considered when a composed state satisfies the specified
condition/reactive expressions of a guards statement.

3.3.1. Reactive Minterm Synchronisation Semantics
Let C1.〈rep〉 ∧ SC1.〈rep1〉 ∧ SC1.〈rep2〉 be a
reactive minterm mtgr ∈ rmtk arising from the
expression sync{C1.〈rep〉, SC1.〈rep1〉, SC1.〈rep2〉}
of a guards statement g (as an isolated example, in
order to consider a special case not captured by the
example given in Figure 1). The reactive minterm
is considered if the composed state (fC1, fSC1, aSC2)
satisfies a generative minterm mtgc ∈ cmtk . The reactive
minterm is satisfied if C1 in the composed state exhibits
the repair behaviour 〈rep〉 and SC1 exhibits the repair
behaviours 〈rep1〉 and 〈rep2〉.

f C1

f SC1

aSC2

<rep1>

<rep2>

<rep>

iR'   SC1

iR''   SC1

iR   C1

Figure 7: Addressed Guarded Transitions

As SC1 allows a choice between two kinds of repairs
denoted by 〈rep1〉 and 〈rep2〉 (cf. Figure 7), the
semantics in such a situation is not obvious. A
synchronous execution of the transitions labelled by
〈rep1〉 and 〈rep2〉 contradicts the intuition of a choice.
If both transitions end up in different states (as depicted
by Figure 7), no unambiguous composed state can



be reached. From a number of different kinds of
semantics we decided to evaluate the availability of
the required guard labels by the reactive minterm, such
that the exhibited behaviour satisfies the minterm, and
preserves the choice such that the possible synchronous
combinations are allowed to perform synchronously. As
a result, a choice within a guards statement behaves
consistent to a choice within a sequential behaviour
and thus preserves compositionality (as a substitution
of subcomponents may not lead to invalid models
contrary to other semantics). In the following, the
chosen semantics will be detailed formally and argued
how to deal with the presence of choices.

For each minterm mtr in rmtk and each behaviour
instance bi (i ∈ IB), the sets Tmtri are constructed
(using the multiset builder notation) comprising the
guarded transitions available in a current component
state si (denoted by TGi|si) and referred to by the
minterm literals l ∈ mtr:

Tmtri = [(si, s
′
i, d, l) ∈m TGi|si : l ∈ mtr]

As TGi is a multiset, the multiplicity m of elements is
preserved in the construction.

Let Imtr ⊆ IB denote the index set of behaviour
instances bi addressed by mtr. We define the set of
sets of transitions as Tmtr := {Tmtri | i ∈ Imtr}.
Each Tmtri ∈ Tmtr contains the enabled local choices
of a behaviour instance corresponding to a minterm
mtr. Due to the chosen semantics, only one choice
can be performed resulting in a number of simultaneous
transition combinations declared by

Tmtrsync =
∏

Tmtr
i ∈Tmtr

Tmtri

representing a multiset of synchronising transition
tuples, where each tuple solely consists of transitions
of distinct behaviour instances.

To illustrate, again Figure 7 is considered. Let mtr
be the reactive minterm C1.〈rep〉 ∧ SC1.〈rep1〉 ∧
SC1.〈rep2〉, then

Tmtr =

{
[fC1 99K iRC1],
[fSC1 99K iR′SC1, fSC1 99K iR

′′
SC1]

}
and the thereof arising synchronising transition tuples

Tmtrsync =

[
(fC1 99K iRC1, fSC1 99K iR′SC1),
(fC1 99K iRC1, fSC1 99K iR′′SC1)

]
As mentioned, a tuple in Tmtrsync consists of a number
of transitions, each from a different behaviour instance.
Let tmtrsync denote the tuple’s set of elements. A composed
transition can be derived that moves those component
states si into their successor states s′i, where i ∈ Imtr .
The notation to determine the composed successor state
is given by s′ = ({s′i | i ∈ Imtr}, s), as Figure 8 depicts
for the current example.
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Figure 8: Reachable Composed States

3.3.2. SOS for Conditional Reactives
The semantics described so far can be completed and
used by SOS rules. At current, LARES provides two
kinds of transitions, i.e. timed (exponential distribution)
and immediate (discrete distribution). By definition,
it is not allowed to synchronise different types of
distributions. Due to this distinction two SOS rules for
immediate transition synchronisation and for Markovian
transition synchronisation arise.

Both rules share common features. We assume that
a rule applies for each tmtrsync constructed from the
generative/reactive minterm combinations originated
from the guards statements g ∈ G:

• The Precondition requires a combination of a
generative and reactive minterms to be satisfied
in a composed state s = (s1, ..., sn):

s � mtgc ⇐⇒

∀v ∈ mtgc

{
@i ∈ IB : v

∧
= si if v negated

∃i ∈ IB : v
∧
= si else.

s � mtgr ⇐⇒

∀v ∈ mtgr
{

@i ∈ IB : χ(si, v, TGi) if v neg.
∃i ∈ IB : χ(si, v, TGi) else,

where χ : (si, v, T ) 7→ ∃(si, s′i, d, v) ∈ T

Further, each of the composed transitions t ∈
tmtrsync must have the same distribution type.

• The Side-conditions determines the rate r rsp.
weight w and the composed successor state s′ for
a composed transition tuple tmtrsync. Furthermore,
the label l of the composed transition is
constructed using a function enc.

• The Consequence combines the current com-
posed state s and the reachable state s′ by a
composed transition labelled by l (depending on
the instance namespace, the enumeration of the
guards statement and the minterm combination)
with the specific distribution.

In the following, the rule considering immediate
distribution type synchronisations is given, relocating
the side-conditions into the subsequent explanation for
clarity:

s�mtgc ∧ s�mt
g
r ∧ ∀t∈t

mtr
sync:t

∧
=99K

s
l,w
99K s′

(10)



It is assumed that the rule is applicable for each
guards statement and for all originating generative/re-
active minterm combinations that are satisfied. Due to
choices in a single instantiated behaviour, a number
of composed transition tuples might arise. For each
composed transition tuple tmtrsync, where all transitions
have the same distribution type, the rule determines the
composed transition. The target state is given by

s′ = (

{
s′i | si

li,wi
99K s′i ∈ tmtrsync

}
, s)

The associated weight of the composed transition is

w =
∏{

wi | si
li,wi
99K s′i ∈ tmtrsync

}
and the label l = enc(mtgc ,mt

g
r).

Similary to the SOS rule (10) to construct a composed
immediate transition, a rule is defined to capture the
Markovian case:

s�mtgc ∧ s�mt
g
r ∧

∀t∈tmtr
sync:t

∧
=−→

s
l,r−→ s′

l=enc(mtgc ,mt
g
r)

r=
∏{

ri | si
li,ri−→s′i∈t

mtr
sync

}
s′=(

{
s′i | si

li,ri−→s′i∈t
mtr
sync

}
,s)

(11)

3.4. Performing Reachability Analysis

Taking the initial composed state s0, the recurring
application of the SOS rules (8), (9), (10) and
(11) explores all reachable states as partially done
in Figure 6 for the example model. If the maximum
progress assumption is applied to assure that immediate
transitions will always take place before a Markovian
transition, the rules can be prioritised, i.e. if due the
the application of the immediate rules (8) and (10)
an immediate composed transition is obtained from
a composed state, the rules to address Markovian
transitions can be neglected. The generated reachability
graph is represented by a transition system E =
(S,L, , , s0) with reachable composed state space
S, a set of labels L, weighted immediate transitions
⊆ multiset(S×S×R+×L), Markovian transitions
⊆ multiset(S × S × R+ × L) and initial state s0.

4. ANALYSIS OF LARES REWARD MODELS

In Section 2.3 we introduced LARES.re as an extension
to LARES and described its syntax and informal
semantics. We now define formal semantics for
LARES.re which allows to analyse reward measures. For
that purpose we first introduce a planar representation
of LARES.re models by extending the LARESFLAT

formalism presented in Section 3. The semantics is then
defined through model transformation into a CTMRM
by performing a reachability analysis as outlined in
Section 3.4.

4.1. Planar Representation of LARES.re

The planar representation for LARES.re models builds
up on the LARESFLAT formalism as defined in Eq. (7).
The set of measures M comprises reward measures
MRE in addition to the probability measures MPR of
LARES, i.e. M := MPR ∪ MRE . A reward measure
M ∈ MRE is a structure (SE, TE, type) where SE is
a state reward expression, TE is a transition reward
expression and type is the specified reward analysis
type, i.e. total, average or discounted(α) (cf. Section
2.3). The difference between user-level LARES.re and its
planar representation is that parameters and hierarchy
are resolved, s.t. all reward expressions consist of atoms
which are either number values or indicators over
conditions which directly point to states of instantiated
behaviors (by their namespace). Note that if in the
textual specification of the RewardMeasure statement
one of the state reward or the transition reward
expressions is not referenced it is set to the value 0.
As an example the reward measure M1 defined in Figure
1 by C1.energy + C2.energy discounted 0.01 is
resolved to an element (SE, TE, type) ∈MRE , where

SE = (2.5 ∗ [C1.B.active])+
(0.9 ∗ (2.5 ∗ [C2.SC1.B.active]+

2.5 ∗ [C2.SC2.B.active]) + 0.5),

TE = 0 and type = discounted 0.01.

(12)

4.2. Reachability: Reward Expression Evaluation

The reachability analysis performed on a LARESFLAT

model as described in Section 3.4 provides a transition
system E = (S,L, , , s0). Denote by {s→ s′} the
set of all immediate and Markovian transitions from
s to s′. For the reachability analysis of the planar
representation of LARES.re, we extend E for a fixed
reward measure (SE, TE, type) ∈MRE to a structure
(E ,R), where R = (sr, tr, type) with sr : S → R
and tr : S × S → R. The functions sr and tr
are defined as follows: For s ∈ S evaluate SE to a
real number by evaluating state indicators [A] with a
condition expression A by

eval([A], s) :=

{
1, s � A

0, else.

For every state s′ reachable from s, i.e. {s→ s′} 6= ∅
evaluate TE to a real number by taking an arbitrary
transition from {s→ s′} and evaluating transition
indicators [A→ B] by

eval([A→ B], (s, s′)) :=

{
1, s � A ∧ s′ � B
0, else.

Note that eval([A → B], (s, s′)) does not depend on
the chosen transition in {s→ s′} but only on its source
and target states, s.t. tr is well-defined on S×S. It holds



preconditionpostcondition

Figure 9: Overlapping pre- and postcondition of a transition
indicator

that eval([A→ B], (s, s′)) = eval([A], s)·eval([B], s′),
i.e. a transition indicator describes only a state tuple
(s, s′) satisfying the pre- and postconditions and does
not provide any information, whether there is some
transition from s to s′ in the transition system.

Remark 1. In a transition indicator [A -> B] the pre-
and postconditions can overlap (Figure 9). This means
that as long as both conditions are satisfied along a
path, the reward for transition is gained. If such a reward
accumulation is not intended by the modeller it can be
overcome by making the pre- and postcondition disjoint,
e.g. by defining [A -> !A & B] for leaving states A
into B or [!B & A -> B] for entering B for the first
time from A. We will discuss this issue in more detail in
the context of compositionality in Section 4.7.

4.3. Normalization

The state reward resp. transition reward expressions
in the planar representation can be transformed (e.g.
for efficiency reasons) into a normal form, which is
a sum of multiplications and each multiplication is a
weighted indicator, i.e. consists of a number value and
an indicator. As an example, the state reward expression
from Eq. (12) is normalized to
2.5 * [C1.B.active] + 2.25 * [C2.SC1.B.active] +

2.25 * [C2.SC2.B.active] + 0.45

In general, the normalization of a state reward expression
can be computed by performing the following rules:
Let SE(i), AE(i) and CE(i) denote some state reward,
arithmetic resp. condition expression.

(1) Resolve all divisions and modulo expressions, e.g.

SE/AE −→ SE ∗ eval(1/AE)

(2) Apply distributivity, e.g.

SE1 ∗ (AE1−SE2) −→ SE1 ∗ AE1−SE1 ∗ SE2

As a result, a multiplication consists of factors
which are either numbers or indicators.

(3) In each multiplication, multiply all number factors
together and merge all indicators by conjuncting
their conditions, e.g.

[CE1] ∗ 2 ∗ [CE2] ∗ (−3) −→ (−6)∗[CE1∧CE2]

For a transition reward expression, rules (1) and (2) are
equivalent and in rule (3) two indicators [CE1 → CE2]
and [CE3 → CE4] in a multiplication are merged to

[CE1 ∧ CE3 → CE2 ∧ CE4].

Thus the normalization of reward expressions partially
resolves arithmetic expressions and modifies state
reward expressions. We will use the normalization in
Section 4.7.

4.4. Transformation to CTMRM

In Section 4.2 the semantics of a planar LARES.re
representation was defined by performing a reachability
transformation into a structure (E ,R), where
E = (S,L, , , s0) is the transition system
and R = (sr, tr, type) a reward structure on E . In order
to complete the semantics of LARES.re, we transform
(E ,R) into a CTMRM upon which the specified reward
measure can be finally evaluated to a real valued
function as described in Section 2.1.
In a CTMRM all states have only Markovian outgoing
transitions, while in E there are also immediate
transitions available. In order to get rid of these
immediate transitions, we eliminate them by applying
the “maximum progress assumption”, which states
that an immediate transition takes no time and fires
before any Markovian transition can fire. In analogy
with generalized stochastic Petri nets (Ajmone Marsan
et al. 1984) we thus define the notion of vanishing
states and discuss how these states can be eliminated.

Definition 1. A state s ∈ S is vanishing if there exists
s′ ∈ S \ {s} s.t. (s, a, w, s′) ∈ for some a ∈ L and
w ∈ R+. Otherwise s is called tangible.

Our goal is to eliminate all vanishing states, s.t. the
resulting CTMRM consists only of tangible states.
However, as we will see, not every rewarded transition
system (E ,R) can be transformed by elimination into a
meaningful CTMRM. For this reason we restrict the set
of all LARES.re models to valid models, which fulfill the
following assumptions:

(1) the initial state s0 is not vanishing

(2) there are no timeless traps, i.e. for all s ∈ S
there exists a finite path from s which leads into
a tangible state t

(3) the value function for the reward measure is finite.

We will mention in Section 4.6, how some of these
assumptions can be relaxed.

Elimination:
During the elimination process, all Markovian transitions
from vanishing states are neglected due to the maximum
progress assumption. Figure 10 shows by example the
elimination of a vanishing state t. All incoming
Markovian and immediate transitions into t are
redirected to those target states t′ which are reached
by an immediate outgoing transition from t. Since
t is vanishing, the sojourn time in t is 0 and thus



Figure 10: Elimination of vanishing states in a reward model.
An incoming Markovian transition with rate λ > 0 is split
into Markovian transitions by the probability distribution
ptt′ = wtt′w

−1, ptt′′ = wtt′′w
−1, where w = wtt′ + wtt′′

is the total outgoing weight. (A self-loop does no affect the
transition probabilities ptt′ and ptt′′ .) The impulse rewards
are accumulated by expectation.

the rate reward rt does not contribute to the reward
accumulation process. However, impulse rewards are
accumulated independent of the sojourn time. The
transformed impulse rewards are given by expectation
of the accumulation of impulse rewards along paths
consisting of immediate transitions. As an example, the
outgoing impulse reward itt′ and the self-loop impulse
reward itt (weighted by the expected number of cycles)
are summed up into the impulse reward ist for the
incoming transition.
Due to the multiset nature of transitions in the
transition system E , there can be several Markovian
transitions from a source to the same target state
which are merged together, i.e. their rates are summed
up (race condition of exponential distributions).
The elimination process stops when there are no
more vanishing states in the model. Note that
during elimination, cycles of immediate transitions
can end up in self-loops. A state s with only one
immediate transition, which is a self-loop is not
regarded as vanishing due to Definition 1. Assumption
(2) guarantees that when the elimination process
stops, there are no vanishing states and no immediate
transitions left. This is due to the absence of timeless
traps, s.t. each cycle consisting of immediate transitions
can be left and thus will not shrink to an immediate
self-loop at the end of the elimination process.
Therefore, the result of the elimination finally provides
a CTMRM model (Ŝ, Q, r, i) consisting of tangible
states Ŝ ⊆ S, generator matrix Q ∈ Rn×n given by
the remaining Markovian transitions, a rate reward
function r : Ŝ → R s.t. r(s) = sr(s) and an expected
accumulated impulse reward function i : Ŝ × Ŝ → R as
a described in the elimination process.

4.5. Analysis of Running Example

In Section 2.3 we introduced the running example
(Figure 1, referred by Lorig) and its modification (Figure
2, referred by Lalt), for which we now present the

evaluation of the specified reward measures M1, M2 and
M3. Both models consist of 3 instances of Behavior B,
s.t. the composed potential state space consists of 27
states.
In the transition system for Lorig all 27 states are
reachable, from which 13 states in the eliminated
CTMRM are tangible. Table 1 shows the value function
V α for the discounted reward measure M1 with discount
rate α = 0.01 (Eq. (4)). Since the CTMRM for Lorig
is ergodic (has only one recurrent class) the stationary
distribution is independent on the initial state, s.t.
P ∗ has constant rows (Eq. (5)). Therefore, the value
function g = P ∗r for average reward measure M2 is
constant on S with value g = 6.729.
In the transition system for Lalt only 18 states are
reachable and the eliminated CTMRM consists of 8
tangible states. Table 2 shows the value function V∞
for the total reward measure M3 as specified in the
alternative model (computed by Eq. (3) with value 0
for the absorbing states).

In the following sections we discuss several aspects
regarding LARES reward extension as a specification
language for CTMRMs. Section 4.6 deals with
restrictions on models, whereas Section 4.7 mainly
discusses compositionality issues of LARES.re. In
Section 4.8 we shortly outline how the reward extension
can be used in order to specify target functions for
optimization of Markov Decision Processes.

4.6. Relaxation of Model Restrictions

In this section, we briefly outline what might happen, if
the LARES.re model assumptions made in Section 4.4
are relaxed. We assume that our model is not trivial, in
the sense that it shall have at least one tangible state.
Assumption (1): A vanishing inital state s0 ∈ S can
also be eliminated, which provides an initial distribution
over tangible states (reached from s0 by only immediate
transitions) instead of a unique initial tangible state.
The value function V : Ŝ → R returns the value V (s)
over tangible states s ∈ Ŝ. As long as there are no
transition rewards from the vanishing state s0 to all
tangible states, this elimination has no effect on the
reward measures. However, if there is an accumulation
of transition rewards along paths from s0 to tangible
states, an initial reward value Rinit : Ŝ → R has to be
added to the total and discounted reward measures, i.e.
V̂∞ = Rinit + V∞ and V̂ α = Rinit + V α.
Assumption (2): We do not want to analyze models
with timeless traps, since the elimination procedure as
described in Section 4.4 can not eliminate states s with
only outgoing immediate self-loops. Such a state can
not be assumed as vanishing, because it is absorbing.
For this case several natural but different semantics can
be applied and we do not want to distinguish between
them in the scope of this paper.
Assumption (3): Since the state space is finite, the
only reward measure (from the introduced measures)



(a,a,a) (a,f,a) (a,a,f) (iR,a,a) (a,iR,a) (a,a,iR) (a,f,f) (a,f,iR) (a,iR,f) (iR,iR,a) (iR,a,iR) (a,iR,iR) (iR,iR,iR)
525.71 514.60 514.60 525.50 525.13 525.13 503.49 514.02 514.02 524.67 524.67 524.55 523.84

Table 1: Evaluation of reward measure M1 for the CTMRM of the original LARES.re model Lorig (Figure 1). The composed
states are encoded in the order (C1, SC1, SC2), e.g. (a,a,a) means (aC1, aSC1, aSC2).

(a,a,a) (iR,a,a) (a,iR,a) (a,a,iR) (f,f,a) (f,a,f) (a,iR,iR) (f,f,f)
437.13 399.66 418.36 418.36 0.00 0.00 408.89 0.00

Table 2: Evaluation of reward measure M3 for the CTMRM of the alternative LARES.re model Lalt (Figure 2)

which can lead to a non-convergent value function is
the total reward measure. A sufficient condition for its
finiteness is, that all reachable recurrent states in the
CTMRM do not contribute rewards. Furthermore, this
assumption is not completely independent of assumption
(2). One possibility would be to use as target models the
recently introduced discontinuous CTMRM formalism
(Markovski et al. 2009), which allows to deal with
absorbing states comprising immediate self-loops (resp.
timeless traps). While residing in such an absorbing
state, time is moving on. However, if such an immediate
self-loop has a non-zero impulse reward defined, an
infinite reward is accumulated even for the discounted
and average reward measures.

4.7. Compositionality

As already mentioned in Section 2.2 the rate rewards in
CTMRM models are typically composed by summing
up the rate rewards of the components (cf. Eq. (6)).
This type of composition can of course be specified
in LARES.re by manually defining a state reward as a
sum of state rewards over its components (as it is done
with the state reward energy in the running example in
Figure 1). We say informally, that two LARES models
L1 and L2 are parallely composed to a LARES model
L, if all Condition, guards and forward statements in
L belonging to L1 are independent of the statements
belonging to L2 and vice versa. This means, that if all
Instance statements in L belonging to L1 or L2 are
removed, the result is still a valid LARES model.
Note that if there is such a dependency between
instances it can influence the value function of a
reward measure, even if some of these instances do not
contribute to the definition of the reward measure M .
Even more important to note is, that if instances are
indeed independent (i.e. the LARES model is parallely
composed as described above) the reward measure
which comprises a transition indicator can also be
influenced as shown in Figure 11. Here in the original
model with state space {s, s′, s′′} two transitions s→ s′

and s′ → s′′ are rewarded, while after composition with
a further instance with state space {t, t′} the number
of rewarded transitions gets enlarged. For this reason,
we have to restrict the parallel composition to a subset
of models, as proposed in Definition 2.

A

B

A

B

Figure 11: Composition of two instances with overlapping
pre- and postcondition of a transition indicator [A -> B]

Definition 2 (Parallel composition of LARES.re
models). We call a LARES.re model parallely
composable if for all reward measures (se, te, type) ∈M
in its planar representation L = (B,G,M) holds that
for all transition indicators [A → B] in te the pre- and
postconditions are disjoint, i.e. A ∩B = ∅.
A LARES.re model L = (B,G,M) is the
parallel composition of two LARES.re models Lk =
(Bk, Gk,Mk) if L1 and L2 are parallely composable,
B = B1∪B2,G = G1∪G2 and for all (se, te, type) ∈M
holds that se and te are additively separable (after
normalization, cf. Section 4.3), i.e. se = se1 + se2 and
te = te1 + te2, s.t. sek and tek are expressions on Lk.

The following theorem now states, that a parallel
composition of user-level parallely composable
LARES.re models is reflected as a parallel composition
of the corresponding CTMRMs on the state-space level.

Theorem 1. Let L = (B1 ∪ B2, G1 ∪ G2,M) be a
parallel composition of L1 and L2 and consider the
additive separation of a reward measure rm = (se1 +
se2, te1 + te2, type) ∈ M . Let C denote the CTMRM
induced by evaluating rm on L and Ck the CTMRMs
induced by evaluating (sek, tek, type) on Lk. Further
let Cc and Cck denote the continuized CTMRMs. Then
Cc = Cc1 || Cc2.

Proof. The reachability on the union of
guards statements G1 and G2 is performed in
form of a choice, thus representing the parallel
composition of the induced Markov chains. We focus
in this proof on the sufficiency of the disjointness of



the pre- and postconditions in transition indicators.
For simplicity let herefore se = u1 · [U1] + u2 · [U2]
and te = v1 · [V1 → W1] + v2 · [V2 → W2] with
uk, vk ∈ R and Uk, Vk,Wk condition expressions on
Lk, s.t. sek = uk · [Uk] and tek = vk · [Vk → Wk].
Let Sk be the composed state space of Lk and
S = S1 × S2 the composed state space of L.

For sk, s
′
k ∈ Sk and denote by 1

(k)
Uk

∈ R|Sk|

the column vector and 1
(k)
Vk×Wk

∈ R|Sk|×|Sk|

the matrix representing the indicators [Uk] resp.

[Vk → Wk], i.e. 1
(k)
Uk

(sk) = eval([Uk], sk) and

1
(k)
Vk×Wk

(sk, s
′
k) = eval([Vk → Wk], (sk, s

′
k)). Thus

it holds rk = uk1
(k)
Uk

for the rate reward and

ik = vk1
(k)
Vk×Wk

for the impulse reward on Ck. Note

that 1
(k)
Vk×Wk

= 1
(k)
Vk

(1
(k)
Wk

)T . In analogy let 1U ∈ R|S|

and 1V×W = 1V (1W )T ∈ R|S|×|S| denote the
indicator representations over conditions U, V,W on
the composed state space S = S1 × S2 of model L.
Then r = u11U1+r21U2 and i = v11V1×W1+v21V2×W2

are the rate reward resp. the impulse reward in C.
Now let Rk denote the rate matrix (off-diagonal entries
of Qk). By Eq. (2) it holds for the continuized rate
rewards rk = diag(Rki

T
k ) + rk and r = diag(RiT ) + r.

The rate matrix of C is given by R = R1 ⊕ R2 since
Q = Q1 ⊕Q2. We have to show Eq. (6), i.e.

r
!
= r1 ⊗ 1

(2)
> + 1

(1)
> ⊗ r2, (13)

where > is the condition expression representing ’true’,

s.t. 1
(k)
> is constantly 1 on Sk.

An indicator on the composed state space splits into
indicators of its components by

1U1
= 1

(1)
U1
⊗ 1

(2)
> and 1U2

= 1
(1)
> ⊗ 1

(2)
U2
.

Therefore r is composed out of rk as expected:

r = u11U1
+ u21U2

= u1(1
(1)
U1
⊗ 1

(2)
> ) + u2(1

(1)
> ⊗ 1

(2)
U2

)

= r1 ⊗ 1
(2)
> + 1

(1)
> ⊗ r2

Now it remains to show an according splitting of the
continuized impulse reward i. First note that

1V1×W1
= 1V1

(1W1
)T =

(
1
(1)
V1
⊗ 1

(2)
>

)(
1
(1)
W1
⊗ 1

(2)
>

)T
=
(
1
(1)
V1

(1
(1)
W1

)T
)
⊗
(
1
(2)
> (1

(2)
> )T

)
= 1

(1)
V1×W1

⊗ 1
(2)
>×>

and equivalently 1V2×W2 = 1
(1)
>×>⊗1

(2)
V2×W2

. Therefore

i =
(
v11

(1)
V1×W1

)
⊗ 1

(2)
>×> + 1

(1)
>×> ⊗

(
v21

(2)
V2×W2

)
= i1 ⊗ 1

(2)
>×> + 1

(1)
>×> ⊗ i2.

It follows

RiT = (R1i
T
1 )⊗ 1

(2)
>×> + 1

(1)
>×> ⊗ (R2i

T
2 ) +

(R11
(1)
>×>)⊗ i

T
2 + iT1 ⊗ (R21

(2)
>×>).

In order to deduce the splitting of i we have to simplify
diag(RiT ). Note that diag(A ⊗ B) = diag(A) ⊗
diag(B). Now since Lk are parallelly composable by
assumption, the pre- and postconditions of all transition
indicators are disjoint, i.e. Vk ∩ Wk = ∅. Therefore

diag(ik) = vk · diag(1(k)
Vk×Wk

) = 0. Combing all
together Eq. (13) follows, since

r = diag(RiT ) + r

=
(
diag(R1i

T
1 )⊗ 1

(2)
> + 1

(1)
> ⊗ diag(R2i

T
2 )
)
+(

r1 ⊗ 1
(2)
> + 1

(1)
> ⊗ r2

)
= r1 ⊗ 1

(2)
> + 1

(1)
> ⊗ r2.

As a corollary, we deduce that for parallely composable
LARES.re models, the composition problem as shown
in Figure 11 can not occur.

Corollary 2. Let L1 = (B1, G1,M1) be a valid
LARES.re model with composed state space S1 and
value function V1 : S1 → R. Consider a further set of
Behavior instances B2 = {bk | k = n+ 1, . . . , N} (s.t.
B1 ∩ B2 = ∅) and interactions G2 independent on G1

(i.e. all condition expressions and reactive expressions
in G2 consider only instances B2). If L1 is enhanced
with B2 and G2 to a valid LARES.re model L :=
(B1 ∪ B2, G1 ∪ G2,M1) this has no influence on the
value function: If S2 is the composed state space of
the instances B2 s.t. S1 × S2 is the composed state
space of L with value function V : S1 × S2 → R then
V (s, t) = V1(s) for all s ∈ S1 and t ∈ S2.

Proof. The proof is obvious, since the reward measure
M1 in L1 is left unchanged: applying Theorem 1 yields
the reward expressions se2 = 0 and te2 = 0 on L2.

Therefore r2 = 0 and r = r1 ⊗ 1
(2)
> is not modified on

states S1. From Q = Q1 ⊕ Q2 an analogous splitting
holds for the time-dependent transition probabilitiy
matrix P (t) = eQt and its limiting distribution matrix
P ∗ = limt→∞ P (t). Together with Eqs. (3), (4) and (5)
it follows that the value functions V∞, V α and g are not
modified on states S1.

4.8. Outlook: Combination with LARES.de

In (Gouberman et al. 2013) the LARES Decision
Extension (LARES.de) has been introduced which
allows to model Markov Decision Processes (MDP)
in a modular and hierarchical way. The MDP control
actions can be created locally on the level of
a Module as conditional reactives inside guards and
forward statements. In this way it is possible to define
both controllable and concurrent reactions. In order to
provide optimization criteria for the MDP, the reward
measures as defined in LARES.re can be used as
target functions. An optimal policy of an MDP can be



computed by solving the non-linear Bellman equations
which maximize the value function (Guo and Hernandez-
Lerma 2009).

5. CONCLUSION

We have presented LARES.re as an extension to
standard LARES, which allows to specify performance
measures for dependable, fault-tolerant and configurable
systems. Beside the user-level language we have
defined a planar representation for LARES.re models.
The behavioral semantics for standard LARES was
defined by a model transformation into a state-
based LTS formalism, which finally was transformed
into a Markov chain. We have also shown the
transformation of reward measures into the CTMRM
formalism, which finally allows to compute the value
functions corresponding to the measure. Furthermore,
we discussed several important modelling issues,
like synchronisation semantics, model restrictions and
compositionality of LARES.re models. As future work,
it is planned to employ LARES.re in industrial real-world
case studies.
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