
Analysis of Markov Reward Models using Zero-suppressed
Multi-terminal BDDs

K. Lampka and M. Siegle
University of the Federal Armed Forces Munich, Institute for Computer Engineering

{kai.lampka,markus.siegle}@unibw.de

ABSTRACT
High-level stochastic description methods such as stochas-
tic Petri nets, stochastic UML statecharts etc., together with
specifications of performance variables (PVs), enable a com-
pact description of systems and quantitative measures of in-
terest. The underlying Markov reward models (MRMs) of-
ten exhibit a significant blow-up in size, commonly known as
the state space explosion problem. In this paper we employ
our recently developed type of symbolic data structure, zero-
suppressed multi-terminal binary decision diagram (ZDD).
In addition to earlier work [12] the following innovations
are introduced: (a) new algorithms for efficiently generating
ZDD-based representation of user-defined PVs, (b) a new
ZDD-based variant of the approach of [17] for computing
state probabilities, and (c) a new ZDD-based algorithm for
computing moments of the PVs. These contributions yield
a ZDD-based framework which allows the computation of
complex performance and reliability measures of high-level
system specifications, whose underlying MRMs consist of
more than 108 states. The proposed algorithms for generat-
ing user-defined PVs and computing their moments are in-
dependent of the employed symbolic data type. Thus they
are highly suited to fit into other symbolic frameworks as
realized in popular performance evaluation tools. The ef-
ficiency of the presented approach, which we incorporated
into the Möbius modeling framework [16], is demonstrated
by analyzing several benchmark models from the literature
and comparing the obtained run-time data to other tech-
niques.

Keywords
Discrete Event Systems, Markov Chain, Numerical Solution, Sym-

bolic Data Structure, Performance Evaluation Tool

1. INTRODUCTION
(A) Motivation: High-level stochastic model description
methods, such as stochastic Petri nets (SPN), stochastic
UML statecharts or stochastic process algebras, etc., have

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ValueTools'06, October 11-13, 2006, Pisa, Italy
Copyright 2006 ACM 1-59593-504-5/06/10 ...$5.00

shown to be powerful tools for describing and analyzing
distributed hardware and software systems. Performance
variables (PV) enable the modeler to define complex per-
formance and reliability (performability) measures on the
level of the high-level model description, rather than on the
level of its semantic model. A high-level model description
together with its user-defined PVs can be mapped to a con-
tinuous time Markov chain (CTMC) and a set of rate and
impulse rewards for each state and / or transition, such that
one obtains a (low-level) Markov reward model (MRM). The
numerical solution of the latter allows one to determine com-
plex performability measures for the system under study.
However, the interleaving semantics of standard high-level
model description methods often leads to an exponential
blow-up in the number of states of the low-level MRM (state
space explosion), where standard approaches require the ex-
plicit evaluation of the user-defined PVs for each state. This
hampers the analysis of complex and large systems, if not
making it impossible. In this paper, we present a framework
for the analysis of very large MRMs using a new type of sym-
bolic data structure, called zero-suppressed multi-terminal
binary decision diagram (ZDD). Our framework allows us
to solve MRMs consisting of more than 108 states on a com-
modity PC and to efficiently compute performability mea-
sures of interest. Since this framework is independent of the
employed symbolic data type, as long as algorithms for its
efficient manipulation exist, it is also highly suited to fit into
other symbolic performance evaluation tools such as Prism
[18], Caspa [10] and Smart [21], to name only a few of them.

(B) Contributions and related work: In addition to
earlier work [11, 12], where we discussed the efficient con-
struction of symbolically represented CTMCs, we present
here new algorithms for generating and solving symbolically
represented MRMs. In contrast to standard techniques,
these algorithms for generating symbolic representations of
user-defined PVs exploit locality, such that the explicit eval-
uation of reward functions can be limited to fractions of
states of the MRM.
Reduced ordered Binary Decision Diagrams (BDDs) [2, 3]
are state-of-the-art when it comes to state-based system ver-
ification. In the context of stochastic modeling, the most
prominent decision diagrams (DDs) are multi-terminal or
algebraic BDDs (ADDs) [1], multi-valued decision diagrams
[9] and matrix diagrams [15]. ZDDs, which are the multi-
terminal extensions of zero-suppressed BDDs [14] and which
we introduced in [12], are employed here for the first time for
representing user-defined PVs, computing the state proba-

bilities of the MRM and finally for computing moments of
the PVs.
Our new ZDD-based solvers for computing state probabili-
ties are based on the hybrid solution method developed in
[17] for ADDs, where details on the implementation can
be found in [24, 7]. Based on the computed state proba-
bilities, as well as the ZDD-based representations of user-
defined PVs, we finally introduce a new ZDD-based algo-
rithm, which allows the efficient computation of their mo-
ments, giving one the performability measures of the system
under study. The discussion is limited to the computation
of mean and variance of instant-of-time PVs [19], where an
extension to (time-averaged) interval-of-time PVs is straight
forward. For simplification we will restrict ourselves to the
handling of pure Markovian models. A slightly extended
scheme can handle high-level models containing not only
Markovian activities, but also prioritized immediate ones.

(C) Organization: The paper is organized as follows: Sec. 2
introduces the model world and provides basic definitions.
Sec. 3 introduces ZDDs and the general idea of employ-
ing them for the compact representation of activity-labeled
CTMCs. Sec. 4 introduces the ZDD-based scheme for ef-
ficiently generating a symbolic representation of a low-level
MRM. Based on the ZDD-based representations this section
also introduces the basic idea of the new ZDD-based numer-
ical solvers, as well as a new algorithm for efficiently com-
puting moments of user-defined PVs. A detailed empirical
evaluation of the ZDD-based framework, which we imple-
mented within the Möbius modeling framework [16], is pre-
sented in Sec. 5. Sec. 6 concludes the paper by summarizing
the achieved innovations and mentioning future steps.

2. MODEL WORLD
(A) Static properties: A high-level model M consists of
a finite ordered set of discrete state variables (SVs) si ∈
S , where each can take values from a finite subset of the
naturals. Each state of the model is thus given as a vector
�s ∈ S ⊂ N

|S|. Concerning the high-level model description
methods, the current value of a SV may describe the number
of tokens in a place, the current state of a process, or the
value of a process parameter. A model has a finite set of
activities (Act). Analogously to the Petri Net based model
description methods, SVs and activities are assumed to be
connected through a connection relation Con ⊆ (S ×Act)∪
(Act × S), such that the enabling and the execution of an
activity l depends on a set of SVs:

SD
l := {si ∈ S | (si, l) ∈ Con ∨ (l, si) ∈ Con}, (1)

where SI
l = S \ SD

l . Two activities are defined to be de-
pendent if their sets of dep. SVs are not disjoint. We also
define a projection function

χ : (SD
l , N|S|) −→ N

|SD
l | (2)

which yields the sub-vector consisting of the dependent SVs
only. We use the shorthand notation �sdl

:= χ(SD
l , �s), where

�sdl
is called the activity-local marking of state �s with respect

to activity l.

(B) Dynamic properties: When an activity is executed,
the model evolves from one state to another. For each ac-
tivity l ∈ Act we have a transition function δl : S −→ S,
whose specific implementation depends on the model de-
scription method. Concerning the target state of a transi-
tion, we use the superscript of a state descriptor to indicate
the sequence of activities leading to that state. I.e. for
an activity execution sequence ω := (ω1, . . . , ω|ω|) ∈ Act∗

we write �s ω := δω|ω|(. . . δω2(δω1(�s, ω1), ω2), . . . , ω|ω|). The
set of all activities enabled in a state �s will be denoted as
Enabled�s. For each activity l ∈ Act we also define a rate
function ηl : S × S −→ R

≥0, which yields the rate at which
the model moves from source to target state under activity
l. Hereby it is assumed, that the computation of δl and ηl

depends solely on those positions of �s referring to the SVs
contained in SD

l . By state graph (SG) exploration one can
construct the successor-state relation as a set of quadruples
T ⊆ (S×Act×R

>0 × S), which is the set of transitions of a
stochastic labeled transition system (SLTS), i.e. the under-
lying activity-labeled CTMC. If activity labels are removed,
transitions between the same pair of states are aggregated
via summation of the individual rates.

(C) Performance variables: PVs enable the modeler to
define complex performability measures on the basis of the
high-level model, rather than on the level of the underlying
CTMC [19]. A performance variable consists of a rate re-
ward and/or an impulse reward definition. A rate reward
defines the reward gained by the model in a specific state.
In contrast, an impulse reward defines the reward as ob-
tained by completing the execution of a specific activity in
a specific state. This gives us the following setting:

1. A rate reward r defined on a high-level model is spec-
ified by the rate reward returning function Rr : S →
R

≥0, and where SD
r ⊆ S is the set of SVs on which the

computation of r actually depends. Analogously to
activity-local markings we will also employ the short-
hand notation �sdr := χ(SD

r , �s). The set of all rate
rewards defined for a given high-level model will be
denoted as R.

2. An impulse reward i is received each time an activity k
from the impulse reward’s set of activities Acti is exe-
cuted, where the reward may also be state-dependent,
yielding Ii

k : S → R
≥0. This allows us to define the

impulse reward returning function Ii : S → R
≥0, for

impulse reward i as follows:

Ii(�s) :=
X

k∈Acti∩Enabled�s

Ii
k(�s) · ηk(�s,�s k)

Hereby we restrict the computation of Ii
k to those posi-

tions of �s referring to SVs of SD
k . The set of all impulse

rewards defined for a given high-level model will be de-
noted as I.

3. SYMBOLICALLY REPRESENTING CTMCS
In the following, we briefly explain how ZDDs can be em-
ployed for representing activity-labeled CTMCs.

3.1 Zero-suppressed multi-terminal BDDs
A Binary Decision Tree (BDT) is a binary tree B := {V, K,
value, var, then, else}, where:

1. V is a finite set of Boolean variables,

2. K = KT ∪ KNT is a finite non-empty set of nodes,
consisting of the disjoint sets of terminal nodes KT

and non-terminal nodes KNT ,

3. and where the following functions are defined:

(a) value : KT �→ B with B := {0, 1},
(b) var : KNT �→ V,

(c) else, then : KNT �→ K, and

(d) getRoot : B �→ K for extracting the dedicated
root node.

A BDD is a modified BDT, such that: (a) on all paths from
the root to a terminal node the Boolean variables obey a
fixed ordering, which allows to organize BDDs such that
each level is associated with a specific Boolean variable. (b)
Isomorphic subgraphs are merged: Within a shared BDD-
environment this means, that each BDD node within the
different but shared graphs represents a unique function. (c)
Non-terminal nodes whose 1- and 0-successors are identical
(commonly denoted as don’t care nodes) are eliminated. A
BDD [2, 3] over < V, π > is known to be a canonical repre-
sentation of Boolean function.
If one shifts the range of the function represented by a BDD
from B to D, where D is a finite set, one ends up with
multi terminal BDDs, also called algebraic BDDs (ADDs)
[1]. DDs of this type are known to be canonical representa-
tions of (pseudo-Boolean) functions fM : B

n �→ D.

In zero-suppressed BDDs (z-BDDs) [14], instead of elimi-
nating don’t-care nodes, one eliminates those non-terminal
nodes whose 1-successor is the terminal 0-node. Analogously
to ADDs, we allow z-BDDs to have more than two termi-
nal nodes and obtain ZDDs for representing pseudo-Boolean
functions. Since the ideas developed in the following also ap-
ply to ADDs, we will often generically speak of Mt-DDs and
only refer to the specific variant (ZDD or ADD) if necessary.
Standard arithmetic operators can be applied to Mt-DDs
efficiently with the help of Bryant’s [3] Apply-algorithm or
variants thereof. Since for a ZDD it is important to know
the set of Boolean variables on which it depends, we were
forced to extend each decision diagram by the set of vari-
ables on which it depends. Furthermore, this required a
new Apply-algorithm for efficiently manipulating partially
shared ZDDs, denoted as pZApply-algorithm. Hereby we de-
fine ZDDs to be partially shared if they do not necessarily
have identical sets of Boolean variables, leading to different
semantics of skipped levels while traversing the ZDDs. We
also implemented the operation Restrict(Z, v, b) which re-
stricts the ZDD Z to those paths where the variable v takes
the value b ∈ {0, 1}. Furthermore, we implemented the op-
eration Abstract(Z, v, op), which gives Restrict(Z, v, 0) op

Restrict(Z, v, 1). For converting a ZDD Z to a z-BDD eZ
by replacing all non-zero terminal nodes with the terminal
one-node, we employ the function ZDD2zBDD().

3.2 ZDD-based representation of CTMCs
Each transition within an activity-labeled CTMC T is en-
coded by applying a binary encoding scheme which repre-

sents the transition (�s
l,λ−→ �s l) as the bit-vector: (EAct(l),

ES(�s), ES(�s l)). The rate λ is hereby unaccounted, since it
will be stored in a terminal node of the Mt-DD. The indi-
vidual bit positions of the obtained vectors correspond to
the Boolean variables of the Mt-DD. Hereby we use the vec-
tors �a, �s and �t of Boolean variables, such that �a holds the
encodings of activity labels (e.g. l), �s holds the encodings of
the source states (e.g. �s), and �t holds the encodings of the
target states (e.g. �s l) of the elements of T [20]. In the se-
quel we assume that the Mt-DD variables are ordered in the
following way: a1 ≺ . . . ≺ anAct ≺ s1 ≺ t1 ≺ . . . ≺ sn ≺ tn.
I.e. at the first nAct levels from the root are the variables ai

encoding the activity labels, and on the remaining 2n levels
we have the variables si and ti encoding source and target
states of each transition in an interleaved fashion. Such an
interleaved ordering of source and target bits is a commonly
accepted heuristics for obtaining small BDD sizes [6] which
also works well for ZDDs. For convenience we will use the
somewhat sloppy notation Z := E(�s) to denote, that the
symbolic encoding of a certain state �s is assigned to ZDD Z.
The notation Z \Z′ states, that the set of states represented
by ZDD Z′ is removed from the set of states represented by

ZDD Z. The notation Zl
�s←− ZU expresses that Zl := E(�s),

where �s is an arbitrary state as contained in the set of states
represented by ZDD ZU .

3.3 Example
Part (A) and (B) of Fig. 1.I show a simple SPN and its
underlying activity labeled CTMC, where for the moment
the regular and dashed arrows have the same meaning (cf.
Sec. 4.2.A). The Boolean encodings of the transitions of the
CTMC as produced by function EAct and ES are specified
in table (C), where activity labels are encoded by a-bits,
source states by s-bits and target states by t-bits. The 5 in-
teger SVs of S are encoded by 6 Boolean variables, since only
SV s5, which represents the marking of place p5, can take a
value other than 0 or 1. Part (D) shows the corresponding
ADD M, where the Boolean s-variables and the Boolean t-
variables are ordered in an interleaved fashion. The rates of
the transitions are stored in the terminal nodes. The ADD
is ordered, i.e. on all paths from the root to a terminal node
we have the same variable ordering, and it is reduced, i.e. all
isomorphic substructures have been merged. In the ADD, a
dashed (solid) arrow indicates the value assignment 0 (1) to
the corresponding Boolean variable on the respective path.
The nodes printed in dotted lines are those which get elimi-
nated when applying the zero-suppressing reduction rule for
ZDDs, which is applicable here in a straight-forward man-
ner, since incidently the ADD M has no don’t care nodes.

3.4 ZDD-based representation of matrices
A real-valued (2n × 2n) matrix M is a (finite) discrete func-
tion, such that a pair of indices (r, c) is mapped to a real
number ar,c ∈ R. If one encodes each pair of indices as a bit
vector one obtains a pseudo-Boolean function. For repre-
senting (m× m) matrices, where m
= 2n, one simply needs
to add an adequate number of rows and columns, contain-
ing zeroes only. Thus a Mt-DD M represents a real-valued

(2
|V|
2 × 2

|V|
2) matrix M (M ≡ M) iff ∀(r, c) ∈ R × C :

(I) From a SPN to the symbolic representation of its underlying CTMC

(A) A stochastic Petri net

2

d, µ

p4p3

p1 p2 p5

c, λ

e, ρ

a, λ
b, µ

(B) The corresponding SLTS

01 01 0 10 00 1

10 01 0

01 00 1

01 10 0

00 00 2

00 10 1

00 01 1

10 10 0

a,λ

a,λ

a,λ

c,λ

c,λ

c,λ

b,µ

b,µ

b,µ
d,µ

d,µ

d,µ

e,ρ

(C) Binary encodings of the SLTS

�a �s �t
l a1a2a3 s1s2s3s4s5s6 t1t2t3t4t5t6

fM

101000 011000
a 000 100100 010100 λ

100001 010001
101000 100100

c 001 011000 010100 λ
001001 000101
011000 001001

b 010 010100 000101 µ
010001 000010
100100 100001

d 011 010100 010001 µ
000101 000010

e 100 000010 101000 ρ

a1

a2

a3

s1

s2

s3

s4

s5

s6

t1

t2

t3

t4

t5

t6

λ µ ρ

(D) ADD representing the SLTS

s1

s1

s2

s2

s3

s3

s4

s4

s5

s5

s6

s6

(1)

(1)

(2)

(2)

(3)

(3)

2

1

1111

111

Rr

ZDD Zs at the
i’th iteration

ZDD Ztmp at the
i’th iteration

ZR

(II) From the set of reachable
states, to the symbolic
rate reward function Rr

Figure 1: From a SPN to the symbolic representation of its underlying MRM

fM(E(c),E(r)) = M(r, c), where C, R is the set of column-
and row-indices and fM is the pseudo-Boolean function rep-
resented by Mt-DD M. Given an Mt-DD-based represen-
tation of an activity-labeled CTMC, one simply has to ab-
stract over the binary encoded activity labels, in order to
obtain a symbolic representation of the corresponding tran-
sition rate matrix. I.e. by applying the Abstract-operation
on M for all variables of �a one obtains the desired result
(Abstract(M,�a, +)). In case of the example of Fig. 1.I one
simply needs to abstract from the first three levels and ob-
tains a symbolic representation of a (64×64) matrix. Within
this matrix only 9 rows and 9 columns contain elements dif-
ferent from 0, addressing the set of reachable states. The
remaining 55 dummy entries (55 columns and 55 rows) refer
to encodings of unreachable states.

4. ZDD-BASED GENERATION AND
SOLUTION OF MRMS

The ZDD-based scheme for analyzing MRMs consists of two
stages: First one needs to generate a ZDD-based represen-
tation of the MRM as defined by the high-level model de-
scription and its user-defined PVs. Secondly one needs to
compute the desired performability measures. This latter
stage is realized by computing a probability for each system
state of the MRM and by computing the moments of the
PVs, where both steps are carried out on the basis of the

ZDD-based representations as generated at the first stage.

4.1 Preliminaries
Based on the definition of sets of dependent and indepen-

dent SVs (cf. eq. (1)), and based on the encoding scheme of
Sec. 3.2, we define the sets of dependent Boolean variables,
and the sets of their independent counterparts for each ac-
tivity:

VDl := {�s i,�t i|si ∈ SD
l } V Il := {�s i,�t i|si ∈ SI

l } (3)

In this equation, �s i and �t i denote those Boolean variables
which encode the value of the dependent SV si in the source
and target state of a transition (�s, l, λ,�s l). For convenience
we gather now the dependent and independent variables
in different sets, i.e. we distinguish whether they encode
parts of the source states (s−variable) or target states (t-
variables), yielding:

• dep. s−vars.: VDl
s := {�s i|�s i ∈ VDl}

• dep. t−vars.: VDl
t := {�t i|�t i ∈ VDl}

• indep. s−vars.: V Il
s := {�s i|�s i ∈ V Il}

• indep. t−vars.: V Il
t := {�t i|�t i ∈ V Il}

Analogously to activities, it is now assumed, that each rate
reward r also has its set of dependent and independent
Boolean SVs, denoted VDr and V Ir . For impulse rewards
this is not necessary, since as one may recall, each impulse
reward function Ii

l was defined to be limited to the set of

(A) Top level algorithm

GenerateSymbolicMRM()
(1) do
(2) do
(3) ExploreStates()
(4) EncodeTransitions()
(5) until LocalF ixedPointIsReached

(6) ZT := ComposeActLocalSLTS()

(7) ZR := SymbolicReachability()
(8) InitiateNewRound()
(9) until GlobalF ixedPointIsReached
(10) ZT = ZT · ZR

(11) Zo
R := OffsetLabel(ZR)

(12) prob := ComputeStateProbabilities(Zo
R, ZT)

(13) MakeRateRewards(ZR)
(14) MakeImpulseRewards(ZR)
(15) for p ∈ PV

(16) Zrate :=
P

r∈Rp Rr

(17) Zimp :=
P

i∈Ip Ii

(18) n := getRoot(Zrate), r := getRoot(Zo
R)

(19) ComputeRew(n, r, 0, p.r mean, p.r var)
(20) n := getRoot(Zimp)
(21) ComputeRew(n, r, 0, p.i mean, p.i var)
(22) p.r var := p.r var − p.r mean2

(23) p.i var := p.i var − p.i mean2

(24) end for

(D) Computing Rewards

ComputeRew(n, r, off, m, v)
(1) if n ∈ KT then
(2) m := m + prob[off] ∗ value(n)
(3) v := v + prob[off] ∗ value(n)2

(4) else if var(n) π> var(r) then
(5) ComputeRew(n, else(r), off, m, v)
(6) else
(7) ComputeRew(then(n), then(r),

r.offset + off, m, v)
(8) ComputeRew(else(n), else(r),

off, m, v)

(B) Generating symbolic rate reward functions

MakeRateRewards(ZR)
(1) for r ∈ R
(2) Rr := ∅, ZU := ZR

(3) while ZU �= ∅
(4) Ztmp

�s←− ZU

(5) Zs := Abstract(Ztmp,V Ir
s , +)

(6) rew := Rr(�s)
(7) if (rew �= 0) then
(8) Rr := Rr + rew · (Zs · ZU)
(9) ZU := ZU \ Zs

(10) end while
(11) end for

(C) Generating symbolic impulse reward functions

MakeImpulseRewards(ZR)

(1) for i ∈ I: fZT := ZDD2zBDD(ZT)
(2) for k ∈ Acti

(3) Iik := ∅
(4) ZU := Abstract(fZT · Zk,Vt, +)
(5) while ZU �= ∅
(6) Ztmp

�s←− ZU

(7) Zs := Abstract(Ztmp, V Ik
s , +)

(8) imp := Ii
k(�s)

(9) if (imp �= 0) then

(10) Iik := Iik + imp · (Zs · ZU)
(11) ZU := ZU \ Zs

(12) end while
(13 end for

(14) Ii :=
P

k∈Acti
Iik

(15) end for

Figure 2: Algorithms for generating and solving a symbolic representation of a MRM

the dependent variables of the reward inducing activity l (cf.
last paragraph of Sec. 2).

4.2 Constructing a ZDD-based representation
of a MRM

(A) Constructing the representation of the CTMC:
The scheme, denoted as activity-local SG generation scheme,
for generating a ZDD-based representation of a CTMC from
a high-level model description was already introduced in
[12]. For a better understanding it is roughly recapitu-
late now. The main idea of the activity-local SG generation
scheme is the partitioning of the SLTS T to be generated,
into sets of transitions with label l ∈ Act, where each state
is reduced to the activity-dependent markings:

T l := {(�sdl
, l, λ,�s l

dl
) | (�s, l, λ,�s l) ∈ T} (4)

During SG generation the activity-local transitions T l are
successively generated, where each is encoded by its own
(activity-local) ZDD Zl, which solely depends on the Boolean

variables of VDl = VDl
s ∪VDl

t . However, instead of a standard
search scheme, we follow a selective breadth-first-search strat-
egy, i.e. for a detected state �s l, which was reached by firing
action l in state �s , one generates the set of successor states
by executing those enabled activities k ∈ Act, which are
also dependent on l (VDl ∩ VDk
= ∅), and which have not
already been tested on the activity-local marking of state
�s l. This functionality is realized by the routines Explore-
States, EncodeTransitions, ComposeActLocalSLTS, Symbolic-
Reachability and InitiateNewRound as called in the top-level
algorithm of Fig. 2.A. Hereby the procedures ExploreStates
and EncodeTransitions are called in an alternating fashion
in order to carry out explicit SG exploration and the en-
coding of the detected transitions. If a local fixed point is

reached, i.e. if from a given set of states all sequences of de-
pendent activities are extracted explicitly, symbolic compo-
sition (line 6) and symbolic reachability (line 7) take place,
yielding the set of reachable states generated so far. Since
this might result in states which may trigger new model
behavior, InitiateNewRound is called. This procedure tests
states for new model behavior and may therefore trigger
new rounds of explicit SG exploration and encoding. Sev-
eral rounds of explicit SG generation, symbolic composition,
symbolic reachability analysis and re-initialization may be
required until a complete representation of the user-defined
CTMC is constructed. After reaching a global fixed point,
the procedure is complete and one simply needs to restrict
the set of potential transitions to the reachable ones by mul-
tiplying the respective ZDDs (line 10 of Fig. 2.A).
For exemplification we return once again to Fig. 1.I.B. The
transitions explicitly generated and encoded are depicted
as regular arrows, in contrast the transitions resulting from
symbolic composition are given as dashed arrows. Conse-
quently, states (01 00 1) and (00 01 1) are only generated on
the level of the symbolic SG representation, however they
trigger new explicit model behavior, state (01 00 1) for ac-
tivity b and state (00 01 1) for activity d. This is detected by
procedure InitiateNewRound, so that a new round of explicit
SG exploration follows until the complete activity-labeled
CTMC is generated.

(B) Generating ZDD-based representations of PVs:
As pointed out in Sec. 2.C, user-defined PVs consist of a set
of rate reward - and / or impulse reward definitions. Conse-
quently at first one generates the symbolic representations
of the underlying rate and impulse reward functions (line
13-14 of top-level algorithm of Fig. 2.A). Hereby the main

idea is once again to exploit locality, so that the explicit
evaluation of each reward function is limited to a fraction
of states of the CTMC, rather than evaluating the reward
functions for each state.

(i) Generating ZDD-based representations of rate rewards:
Algorithm MakeRateRewards as specified in Fig. 2.B con-
sists of two nested loops. The outer for-loop processes each
rate reward definition as contained in a user-defined PV,
whereas in the inner while-loop sets of states are processed.
I.e. at first one pops an arbitrary state from the set of reach-
able states (line 4). This state is reduced to the positions
referring to the rate reward-dependent SVs by simply ab-
stracting Ztmp from those Boolean variables referring to the
rate reward’s set of independent SVs (line 5). Now one sim-
ply calculates r’s rate reward for the popped state vector
by executing the respective rate reward function Rr(�s) (line
6). In case the obtained reward rew is not equal to 0, one
multiplies Zs, ZR and rew. The newly obtained pairs of full
(!) states and rate rewards are then added to the previously
computed pairs as represented by Mt-DD Rr (line 8). Now
one removes all states from the set of states represented by
ZU , containing the rate reward-dependent state marking as
encoded by Zs, which might remove a whole set of states
form ZU . The whole procedure is repeated until all rate
reward-dependent partitions of ZR are processed, i.e. until
ZU is empty. At termination a ZDD-based representation
for each rate reward function as contained within a PV is
generated.
For exemplification, assume that rate reward r is defined as
the number of tokens contained in place p5 of the SPN of
Fig. 1.I.A. ZDD ZR of Fig. 1.II encodes the set of reachable
states, which is the initial value of ZU . Let us further as-
sume, that the states popped from the ZDD ZU in the inner
for loop are the following: (00 00 2), (00 01 1) and (01 01
0). The corresponding ZDDs Ztmp and Zs, as obtained af-
ter executing line 4 and 5 of algorithm MakeRateRewards for
the three states are also depicted in Fig. 1.II. The final en-
coded rate reward function obtained at termination is given
as ZDD Rr. Rather than computing and encoding the rate
reward r for each of the 9 states, this is only done 3 times,
namely once for the states where p5 = 2, once for the states
where p5 = 1, and once for the states where p5 = 0.

(ii) Generating ZDD-based representations of impulse re-
wards: The algorithm MakeImpulseRewards for calculating
impulse reward functions is specified in Fig. 2.C. Since each
activity may generate different impulse rewards for different
impulse reward definitions, one needs to iterate over three
nested loops. The outer two for-loops process each impulse
reward definition and its respective sets of activities. The
inner while-loop processes one state for each activity-local
marking in which the respective activity is enabled and cal-
culates the respective impulse reward (line 5-12). In case
the obtained impulse reward for a state is not equal to 0,
one multiplies the ZDD-based representation of all states
being equivalent (concerning the activity-local marking) to
the currently processed state with the previously computed
impulse reward imp (imp · Zs · ZU) (line 10). However, due
to the construction of ZU (line 4), the obtained pairs of
states and impulse rewards are automatically weighed by
the execution rate of the activity under process. The newly
obtained pairs of full states and weighed impulse rewards
are then added to the set of previously computed impulse

rewards. This procedure is repeated until all “activity-local”
markings are processed, i.e. until ZDD ZU is empty. This
yields a ZDD for each impulse reward function as contained
within a user-defined PV.

4.3 Computing the performability measures
(A) Computing state probabilities After a symbolic

representation of the MRM is generated, the ZDD represent-
ing the set of reachable states is augmented by offset-labels
(line 11 of algorithm of Fig. 2.A). Steady state or transient
state probabilities are subsequently computed by applying
the ZDD-based variant of the numerical solution method as
incorporated into routine ComputeStateProbabilities (line 12
of algorithm of Fig. 2.A).
The iterative solvers considered in this paper employ an
approach in which the generator matrix is represented by
a symbolic data structure and the probability vectors are
stored as arrays. If n Boolean variables are used for state
encoding, there are 2n potential states, of which only a
small fraction may be reachable. Allocating entries for un-
reachable states in the vectors would be a waste of memory
space and would severely restrict the applicability of the al-
gorithms (as an example, storing probabilities as doubles,
a vector with about 134 million entries already requires 1
GByte of RAM). Therefore a dense enumeration scheme for
the reachable states has to be implemented. This is achieved
via the concept of offset-labeling, as had been first suggested
in [17] for the ADD data structure. In an offset-labeled
ADD, each node is equipped with an offset value. While
traversing the ADD representation of a matrix, in order to
extract a matrix entry, the row and column index in the
dense enumeration scheme can be determined from the off-
sets, basically by adding the offsets of those nodes where the
then-Edge is taken. In other words, the offsets are used to
map the �s and �t vectors to a pair (r, c) of row and column
indices. Using ZDDs we had to adapt the concept of offset-
labeling:

• With ADDs, skipped nodes (corresponding to don’t
cares) must be reinserted, because they carry an off-
set (which is relevant if their then-edge is followed).
With ZDDs, skipped nodes correspond to zero-valued
variables for which the offset is irrelevant. Therefore,
in the ZDD case, skipped nodes do not have to be
reinserted, which keeps the symbolic data structure
compact.

• Similar to the ADD case, a ZDD node may have to be
duplicated if the offset of a shared node is different on
different paths (also called “offset clash”).

The space efficiency of ZDD-based matrix representation
comes at the cost of computational overhead, caused by the
recursive traversal of the Mt-DD during access to the matrix
entries. Analogously to [17], we replace the lower levels of
the ZDDs by explicit sparse matrix representations, which
works particularly well for block-structured matrices. We
call the resulting data structure hybrid offset-labeled Mt-DD
(HO Mt-DD), where a Mt-DD is either an ADD or ZDD.
The level at which one replaces the remaining Mt-DD-levels
with a sparse matrix representation is called sparse level. It
depends on the available memory space, i.e. there is a typi-
cal time/space tradeoff. In the following we will refer to this
level by the ratio s, such that sparse level := �|V|(1 − s)�.

N states trans N states trans N states trans N states trans

Kanban [4] Courier [23] FMS [5] Polling [8]
5 2.5464E6 2.4460E7 3 2.3812E6 1.31037E7 6 5.3777E5 4.2057E6 15 7.3728E5 6.144E6
6 1.1261E7 1.1571E8 4 9.7102E6 5.7005E7 8 4.4595E6 3.8534E7 18 7.0779E6 6.9599E7
7 4.1645E7 4.5046E8 5 3.2405E7 1.9983E8 10 2.5398E7 2.3452E8 20 3.1457E7 3.4078E8

6 9.3302E7 5.9818E8 12 1.11415E8 1.07892E9 21 6.6060E7 7.4868E8

Kanban: Kanban Manufacturing System, Courier: Courier Protocol,
FMS: Flexible Manufacturing System, Polling: Cyclic Server Polling System

Table 1: Model specific data for the various case studies

For numerical analysis, it is well-known that the Gauss-
Seidel (GS) scheme and its over-relaxed variant typically
exhibit much better convergence than the Jacobi (JAC),
Jacobi-Over-relaxation (JOR) or power method. However,
Gauss-Seidel requires row-wise access to the matrix entries,
which, unfortunately, cannot be realized efficiently with Mt-
DD-based representations. As a compromise we adapted the
so-called pseudo-Gauss-Seidel (PGS) iteration scheme [17]
to the case of HO ZDDs. For doing so the overall matrix
is partitioned into blocks (not necessarily of equal size, due
to unreachable states). Within each block, access to matrix
entries is in arbitrary order, but the blocks are accessed in
ascending order. PGS requires one complete iteration vec-
tor and an additional vector whose size is determined by the
maximal block size. Given a HO Mt-DD which represents
the matrix, each inner node at a specific level corresponds
to a block. Pointers to these nodes can be stored in a sparse
matrix, which means that effectively the top levels of the
HO Mt-DD have been replaced by a sparse matrix of block
pointers. The level at which the root nodes of the matrix
blocks reside is called block level. In the sequel we will refer
to this level by the ratio b, such that block level := �|V|b�.
Overall, this yields a memory structure in which some lev-
els from the top and some levels from the bottom of the
HO Mt-DD have been replaced by sparse matrix structures.
We call such a memory structure a block-structured hybrid
offset-labeled Mt-DD (BHO Mt-DD), where Mt-DD is once
again either an ADD or a ZDD. The choice of an adequate
s and an adequate b is an optimization problem. In general,
increasing b improves convergence of the PGS scheme, and
replacing more Mt-DD levels by sparse structures improves
speed of access. Since ZDDs are often more compact, their
processing requires less CPU-time, if compared to ADDs.
Due to their lower memory requirements they furthermore
allow larger values of b and s, yielding an additional speed-
up, since the number of nodes to be traversed is reduced. If
the block-level meets the sparse-level, as has been described
in [13] and [24], all Mt-DD levels have disappeared and the
PGS scheme becomes a proper GS scheme, but in most in-
teresting cases this situation cannot be realized since mem-
ory is at a premium. Our experiments, carried out in [24],
showed that using BHO-ZDDs an optimal choice for b lies
often beyond 1

2
, where the heuristic developed in [17] for

ADDs suggests b := 1
3
.

(B) Computing PVs Routine ComputeStateProbabilities
delivers the vector prob, containing either steady state or
transient state probabilities (line 12 of algorithm of Fig. 2.A).
What follows next is the generation of the ZDD-based rep-
resentations of rate and impulse reward functions (line 13
and 14), as well as their aggregation as specified by each

user-defined PV p (line 16-17). Given the resulting sym-
bolic representations Zrate, Zimp and the probability vector,
one is enabled to compute the first and second moment of
PV p by simultaneously traversing the offset-labeled Z-BDD
Zo

R and Zrate or Zimp, which is the idea behind the algorithm
of Fig. 2.D. While traversing the ZDDs, the state index of
the traversed path is obtained by summing over the offsets
of nodes left via then-edge (line 7-8 of algorithm of Fig.2.D).
In case one reaches a terminal non-zero node, the index of
the current state is determined. Now one may successively
compute mean and second moment of the reward, as we do
in line 2-3, where the respective steady state or transient
state probability is stored within the probability vector at
the position given by off . After calculating the variance of
the impulse and rate reward of PV p (line 22-23 of algorithm
of Fig.2.A) the process is complete and one may resume with
the next PV.

5. EMPIRICAL EVALUATION
We implemented the presented Mt-DD-based framework within
the Möbius modeling tool [16], where the implementation
consists of four modules:

1. A module for the explicit generation of states, which
constitutes the interface between the symbolic engine
and Möbius (algo. ExploreStates).

2. The symbolic SG generation engine (mainly algo. Encode-
Transitions, ComposeActLocalSLTS, SymbolicReachability
and InitiateNewRound) which generates a Mt-DD-based
representation of the CTMC of the low-level MRM.

3. A ZDD-library, which is based on the CUDD-package
[22]. This library mainly contains the C++ class defi-
nition of partially shared ZDDs, the new recursive algo-
rithms for manipulating them and the operator-caches.
In case of ADDs we employ the C++ classes, algo-
rithms and operator caches as provided by the CUDD-
package.

4. A library for computing the user-defined performance
variables. I.e. this module contains (a) algorithm
ComputeStateProbabilities by implementing the new
ZDD-based solver and our versions of the ADD-based
solvers of [17], (b) the new algorithms MakeRateRewards
and MakeImpulseRewards for efficiently generating sym-
bolic representations of rate and impulse reward func-
tions and (c) the new algorithm ComputeRew for com-
puting first and second moment of user-defined PVs
via Mt-DD-traversal (Fig. 2.B-D).

In order to evaluate the proposed innovations, we analyzed

FMS
JAC with HO Mt-DDs PGS with BHO Mt-DDs Uniform. with HO Mt-DDs

N titer in sec. titer in sec. tstep in sec.# iter
ADD ZDD

riter # iter
ADD ZDD

riter # step
ADD ZDD

rstep

6 845 0.1878 0.0945 1.99 569 0.2083 0.0753 2.77 1,508 0.09695 0.0557 1.7406
8 1,127 1.5520 0.6445 2.41 737 1.6935 0.5439 3.11 1,864 1.55200 0.8768 1.7701
10 1,415 8.7106 4.3969 1.98 892 9.6432 3.8183 2.53 2,217 8.71055 5.3400 1.6312
12 1,038 39.831 23.405 1.70

Kanban
JOR with HO Mt-DDs PGS with BHO Mt-DDs Uniform. with HO Mt-DDs

N titer in sec. titer in sec. tstep in sec.# iter
ADD ZDD

riter # iter
ADD ZDD

riter # step
ADD ZDD

rstep

5 1977 0.6849 0.3233 2.12 1542 0.8345 0.2878 2.90 1,157 0.52530 0.3060 1.7167
6 2785 3.2299 1.4929 2.16 2176 3.8845 1.3681 2.84 1,157 2.48796 1.4700 1.6925
7 3724 10.9477 5.0642 2.16 2913 15.0764 5.1502 2.93 1,157 9.47386 5.5929 1.6939

(A) Steady state analysis, b := 0.35 and s := 0.35 (B) Transient analysis, s := 0.7

Table 2: ADD- and ZDD-based solution of CTMCs, with relative convergence criterion and accuracy ε = 10−9

four models which are commonly employed as benchmarks
in the literature. Table 1 gives the sizes of their CTMCs,
i.e. the number of states (states) and number of transi-
tions (trans). The experiments of Table 2.A (except FMS
12) were carried out on a Pentium IV with 3 GHz, 1 GByte
RAM and a Linux OS. All other results, i.e. the experiments
of Table 2.B and 3 and the FMS 12 model of Table 2, were
collected on a Pentium IV 2.88 GHz, equipped with 3 GByte
of RAM and a Linux OS. Since current Linux kernels limit
the memory space of a single process to 3 GByte, the MRM
to be solved are limited to models where the probability vec-
tor, iteration vector and vector of diagonal matrix elements
is at most ∼ 2 GByte. In order to simplify the compari-
son, we decided to present also ratios, where the respective
figures are always normed to the figures of the proposed
innovations. Ratios > 1 indicate an advantage of the inno-
vations developed in this work, and ratios < 1 indicate their
disadvantage. CPU times are given in seconds and memory
consumption is given in MByte.

5.1 ADD and ZDD data structures
[12] already reported that the use of ZDDs may reduce space
and time for generating activity-labeled CTMCs for differ-
ent high-level models by a factor of 2-3, if compared to
ADDs. A similar picture can be drawn when it comes to
the computation of steady state and transient state proba-
bilities. Table 2.A shows the run-time data when computing
steady state probabilities for FMS and Kanban under dif-
ferent scaling parameters (N). Here we restrict ourselves
to applying JAC or JOR and the backward PGS method.
Furthermore, we converted approx. the lower third of the
index-labeled Mt-DDs into sparse matrices, i.e. s := 0.35.
In case of the PGS method also the upper third of the Mt-
DDs was removed, i.e. b := 0.35. Given the higher sparse-
ness of ZDDs, one is enabled to choose the block-level at
a lower level than under the BHO ADD-based layout and
gain even more advantage of the good convergence behavior
of the PGS method. However, doing so increases the num-
ber of blocks, so that a sparse-matrix layout for administer-
ing them often requires more memory than available. We
eliminated this drawback by employing a linked list for ad-
ministering the root nodes of the HO Mt-DDs representing
non-empty block entries. As it turns out, such a layout re-
duces not only the memory space but also computation time

(for the PGS method only!), since empty blocks can simply
be ignored. But due to fairness we removed under ADDs
and ZDDs only the upper third of Mt-DD levels, which is
the heuristic suggested in [17].
From Table 2 one may conclude, that the employment of
ZDDs yields clear runtime advantages, which stems from the
maintenance of their compactness under the offset-labeling
scheme. Under the PGS method this speed-up could be
even more improved, since the compactness of ZDDs allows
to choose the block-level at a lower level than under the
BHO ADD-based layout. I.e. in terms of absolute numbers
one only needs 4.17 hours for solving the Kanban system for
N = 7, rather than 12.20 hours under the PGS-method in
case of BHO ADDs. If block- and sparse level are chosen
in such a way that ZDD- and ADD-based BHO-Mt-DDs
consume almost the same size of memory (for the BHO-
ZDD-based we have b := 0.5 and s := 0.4), the compu-
tation of steady state probabilities for the FMS 12 model
requires only 3.83 (≈ 16.86 ∗ 821/3600) hours of CPU time
(cf. table 3.A col. each iter.), where the original ADD-
based variant with b := 0.35 and s := 0.35 requires 11.48
(≈ 39.83 ∗ 1038/3600) hours (cf. table 2.A col. titer, for the
FMS 12 model).

Table 2.B shows the run-time data when computing tran-
sient state probabilities, where we employed the uniformiza-
tion method and the Fox-Glynn method for computing the
values of the Poisson distribution. Here we decided to set
s := 0.7, since memory space was available and doing so
speeds up the solution. As a consequence of this, the sparse-
ness of HO ZDDs is less significant over their ADD-based
counterparts. Given also the fact, that the actual amount
of CPU time spent for computing new vector entries (not
traversing the Mt-DD-structures but computing the Pois-
son probabilities) is also higher than in case of the iterative
methods for computing steady state probabilities, it is not
surprising, that ZDDs realize here smaller speed-ups.

5.2 ZDD and sparse matrix layouts
Table 3 gives empirical results as obtained from steady state
analysis for the benchmark models, where typical perfor-
mance measures such as the mean value of a set of SVs
had to be computed. For obtaining steady state solutions,
the Gauss-Seidel method for the sparse matrix layouts and

Symbolic solver: MByte of Sparse solver: MByte of
N memory consumed for memory consumed for

ratios for

overall exec. matrix rep. overall exec. matrix overall mem. matrices

6 21 1.743 80 56.336 3.810 32.332
8 96 5.248 688 509.032 7.167 96.992
10 458 16.146 xxx xxx xxx xxxF

M
S

12 1876 43.485 xxx xxx xxx xxx

5 49 0.835 451 318.778 9.204 381.657
6 191 1.809 xxx xxx xxx xxx

K
a
n
b
a
n

7 670 3.600 xxx xxx xxx xxx

3 60 1.805 323 186.294 5.383 103.210
4 195 6.581 1190 800.535 6.103 121.640
5 571 13.449 xxx xxx xxx xxx

C
o
u
ri

e
r

6 1551 24.756 xxx xxx xxx xxx

15 16 0.501 121 81.562 7.563 162.640
18 117 1.345 xxx xxx xxx xxx
20 495 3.129 xxx xxx xxx xxx

(B
)

M
em

o
ry

co
n
su

m
p
ti
o
n

o
f
so

lv
er

s

P
o
ll
in

g

21 1052 3.220 xxx xxx xxx xxx

Symbolic solver: CPU time Sparse solver: CPU time
N in sec. consumed for in sec. consumed for

ratios for

SG gen. each iter. PV calc. file reading each iter. PV calc. iter. time PV time

6 0.29 0.073728 0.11 15.02 0.0562 6.47 1.14 0.76 69.17
8 0.79 0.61602 0.71 137.58 0.509 56.05 15.57 0.83 100.88
10 1.64 3.595877 4.15 xxx xxx xxx xxx xxx xxxF

M
S

12 3.92 16.8645 17.71 xxx xxx xxx xxx xxx xxx

5 0.51 0.347 0.26 102.86 0.249 30.36 5.6 0.718 138.32
6 0.58 1.578 1.22 xxx xxx xxx xxx xxx xxx

K
a
n
b
a
n

7 1.17 6.170 4.27 xxx xxx xxx xxx xxx xxx

3 1.78 0.241 0.18 53.36 0.178 29.33 7.16 0.737 202.70
4 2.92 1.003 0.76 316.53 0.751 118.72 35.11 0.749 202.41
5 4.54 3.415 2.62 xxx xxx xxx xxx xxx xxx xxx

C
o
u
ri

e
r

6 6.61 9.948 7.25 xxx xxx xxx xxx xxx xxx

15 0.03 0.085 0.03 27.21 0.065 8.76 1.5 0.772 341.89
18 0.06 0.937 0.31 xxx xxx xxx xxx xxx xxx
20 0.08 4.445 1.39 xxx xxx xxx xxx xxx xxx

(A
)

C
P

U
ti
m

e
co

n
su

m
p
ti
o
n

o
f
so

lv
er

s

P
o
ll
in

g

21 0.09 9.603 2.91 xxx xxx xxx xxx xxx xxx

Table 3: Computing performability measures

the PGS method for the ZDD-based matrix layout were ap-
plied. As a consequence, the ZDD-based solver had to exe-
cute sometimes a clearly increased number of iterations (fac-
tor 1.77 up to 6.23). However, as illustrated by Table 3, this
is justified, since the employment of a ZDD-based engine
within the Möbius modeling environment allows the anal-
ysis of models, which were not analyzable under Möbius’
conventional schemes for constructing and solving a MRM.1

This limitation has to do with the fact that Möbius stores
the generated CTMC and its reward information in a non-
compact ASCII format on hard drive, limiting the size of
MRMs to be handled (∼ 5 ∗ 106 states). Not enough, this
information must be reloaded into RAM before the iterative
solution process can be initiated (cf. col. “file reading” in
Table 3.A, which we did not include in the CPU time con-
sumed for each iteration as given in col. “each iter.”). In
addition to these tool-specific disadvantages, conventional
schemes also have the following problems: (a) the sparse
matrix format is hampered by its memory requirements as
illustrated in col. “matrix” of Table 3.B. (b) computation
of PVs for each state during SG exploration (cf. left fig-

1In Table 3 columns filled with xxx correspond to experi-
ments which could not be solved by the sparse matrix-based
solver due to memory limitations.

ure of col. “PV calc.” of Table 3.A), as well as reading
the PVs from an ASCII-file, allocating a respective PV vec-
tor of appropriate size and finally computing the moments
and variance of the PV (right figure col. “PV calc.” of Ta-
ble 3.A), induce a run-time overhead.
In contrast, the proposed ZDD-based scheme generates a
symbolic representation of the MRM each time the solver is
started. Hereby the times for generating a ZDD-based rep-
resentation of the CTMC as well as generating ZDD-based
representations of the reward functions and computing mean
and variance of the user-defined PVs, once steady state or
transient state probabilities have been computed, is obvi-
ously negligible (cf. col. “SG gen.” and “PV calc.” of
Table 3.A). Furthermore, the compactness of the (B)HO-
ZDD-based representation speaks to the advantage of the
here presented approach, since it is still superior even though
we employed a setting which improves the CPU time con-
sumption per iteration at the disadvantage of space com-
plexity (b := 0.5 and s := 0.4). This might explain why
the ZDD-based solvers are not significantly slower than the
standard sparse matrix ones. Since the matrix representa-
tion under such a choice is still very compact, it is clear that
the memory space for storing the probability vectors is the
limiting factor as the low-level MRMs become larger. This

also exhibits another advantage of the ZDD-based scheme.
The proposed scheme for generating and computing PVs (al-
gorithm of Fig. 2.B and 2.C in combination with algorithm
of Fig. 2.D) allows not only the efficient construction of a
ZDD-based representation and a ZDD-based computation
of reward functions (cf. columns “PV calc.” and col. “PV
time.” of Table 3.A), it also avoids to employ additional vec-
tors for storing the individual reward values of each state as
realized by the standard Möbius solver module. This also
explains why Möbius’ sparse matrix solver modules require
significant more memory for the overall process (cf. columns
“overall exec.” of Table 3.B).

6. SUMMARY AND FUTURE WORK
This paper presented a ZDD-based framework for analyz-
ing high-level MRMs, containing the following three inno-
vations: (a) a scheme for efficiently generating a symbolic
representation of a low-level MRM, including ZDD-based
representations of user-defined PVs, (b) ZDD-based solvers
for computing steady state and transient probabilities, re-
sulting in a reduction in computation time, and (c) an al-
gorithm for efficiently computing moments of user-defined
PVs once their ZDD-based representation and a vector of
state probabilities is given.
Since we develop our implementations in the context of Möbius,
we are currently implementing an efficient symbolic realiza-
tion of the “Replicate” feature, such that the lumping theo-
rem for MRMs can be applied in a straight forward manner.
In addition, aggregation methods for the approximate so-
lution of ZDD-represented MRMs seem to be a promising
candidate for future research.

Acknowledgment: We thank the Möbius developer group
for their support, and our students D. Zimmermann and S.
Harwarth for contributing to the ZDD-based solvers.

7. REFERENCES
[1] Formal Methods in System Design: Special Issue on

Multi-terminal Binary Decision Diagrams, Volume 10,
No. 2-3, April - May 1997.

[2] S.B. Akers. Binary Decision Diagrams. IEEE
Transactions on Computers, C-27(6):509–516, June
1978.

[3] R.E. Bryant. Graph-based Algorithms for Boolean
Function Manipulation. IEEE ToC, C-35(8):677–691,
August 1986.

[4] G. Ciardo and M. Tilgner. On the use of Kronecker
operators for the solution of generalized stochastic
Petri nets. ICASE Report 96-35, 1996.

[5] G. Ciardo and K. Trivedi. A decomposition approach
for stochastic reward net models. Performance
Evaluation, 18(1):37–59, 1993.

[6] R. Enders, T. Filkorn, and D. Taubner. Generating
BDDs for symbolic model checking in CCS.
Distributed Computing, 6(3):155–164, 1993.

[7] S. Harwarth. Computation of transient state
probabilities and implementing Möbius’ “state-level
abstract functional interface” for the data structure
ZDD, 2006. Masters Thesis. University of the Federal
Armed Forces Munich (Germany).

[8] O. Ibe and K. Trivedi. Stochastic Petri net models of
polling systems. IEEE Journal on Selected Areas in

Communications, 8(9):1649–1657, 1990.

[9] T. Kam, T. Villa, R. Brayton, and
A. Sangiovanni-Vincentelli. Multi-valued decision
diagrams: theory and applications. Multiple-Valued
Logic, 4(1-2):9–62, 1998.

[10] M. Kuntz, M. Siegle, and E. Werner. Symbolic
Performance and Dependability Evaluation with the
Tool CASPA. In Proc. of EPEW, pages 293–307.
Springer, LNCS 3236, 2004.

[11] K. Lampka and M. Siegle. MTBDD-based
activity-local State Graph Generation. In Proc. of
PMCCS 6, pages 15–18, 2003.

[12] K. Lampka and M. Siegle. Activity-Local Symbolic
State Graph Generation for High-Level Stochastic
Models. In Proc. of 13’th GI/ITG Conference
Measuring, Modelling and Evaluation of
Communication and Computer Systems (MMB),
pages 245–263. VDE-Verlag, 2006.

[13] R. Mehmood. Disk-based techniques for efficient
solution of large Markov chains, Ph.D. Thesis,
University of Birmingham (U.K.), 2005.

[14] S. Minato. Zero-Suppressed BDDs for Set
Manipulation in Combinatorial Problems. In Proc. of
DAC, pages 272–277, Dallas (Texas), USA, June 1993.
ACM Press.

[15] A. S. Miner. Efficient solution of GSPNs using
Canonical Matrix Diagrams. In Proc. of the 9’th Int.
Workshop on Petri Nets and Performance Models
(PNPM’01), pages 101–110, Aachen, Germany,
September 2001.

[16] Möbius web page. http://www.mobius.uiuc.edu/.

[17] D. Parker. Implementation of Symbolic Model
Checking for Probabilistic Systems, Ph.D. Thesis,
University of Birmingham (U.K.), 2002.

[18] PRISM web page.
http://www.cs.bham.ac.uk/∼dxp/prism/.

[19] W. H. Sanders and J. F. Meyer. A unified Approach
for specifying Measures of Performance,
Dependability, and Performability. In Dependable
Computing for Critical Applications, Vol. 4, pages
215–237. Springer-Verlag, 1991.

[20] M. Siegle. Behaviour analysis of communication
systems: Compositional modelling, compact
representation and analysis of performability
properties. Shaker Verlag Aachen, 2002.

[21] SMART web page.
http://www.cs.ucr.edu/∼ciardo/SMART.

[22] F. Somenzi. CUDD Package, Release 2.4.x.
http://vlsi.colorado.edu/˜fabio.

[23] M. Woodside and Y. Li. Performance Petri net
analysis of communications protocol software by
delay-equivalent aggregation. In Proc. of 4’th PNPM,
pages 64–73, 1991.

[24] D. Zimmermann. Implementierung von Verfahren zur
Lösung dünn besetzter linearer Gleichungssysteme auf
Basis von Zero-suppressed Multi-terminalen Binären
Entscheidungsdiagramme, 2005. Masters Thesis (in
German), University of the Federal Armed Forces
Munich (Germany).

