
BDD extensions for stochastic transition systems

Markus Siegle
Universiẗat Erlangen-N̈urnberg, IMMD 7,

Martensstraße 3, 91058 Erlangen, Germany
siegle@informatik.uni-erlangen.de

Abstract: A BDD (Binary Decision Diagram) is a compact canonical representation of a Boolean function.
While BDDs are well-established in the area of functional system verification, their use for the purpose of
performance analysis is a new idea.

We use BDDs to represent labelled transition systems which arise from higher-level model specifications such as
stochastic process algebras or structured stochastic Petri nets. BDDs offer a compact representation of transition
systems with very large state space. They are therefore promising candidates for alleviating the problem of state
space explosion. However, as a survey of the relevant literature shows, the question of how to code stochastic
information in a BDD context had not yet been answered satisfactorily.

We offer a new solution to this problem, concentrating on the Markovian case. A new data structure, Decision-
node BDD (DNBDD), is introduced and used to represent stochastic transition systems. It is shown that
DNBDD have important advantages compared to earlier approaches. A DNBDD is structurally identical with
the corresponding ordinary BDD, but some of its nodes — which we call decision nodes — carry additional
information.

Generation and manipulation algorithms for DNBDDs are then discussed. In particular, we show how a DNBDD
can be constructed in a stepwise fashion from a stochastic LTS, and how the parallel composition of two stochastic
transition systems can be performed in the DNBDD context. DNBDD-based bisimulation minimisation (which
corresponds to Markov lumpability) is also discussed.

1. Introduction

A BDD (Binary Decision Diagram) [1] is a compact canonical representation of a Boolean
function. While BDDs are well-established in the area of functional system verification, their
use for the purpose of performance analysis is a new idea.

A simple BDD-example is shown in fig. 1. It corresponds to
the Boolean functiona t a s t. In a BDD, the function value
for a particular set of input values is determined by following
either the one- or zero-edge, starting from the root node and
progressing from node to node. Every node correponds to a
certain input variable. Skipping a node level means that there
is a “don’t care” in that input variabe. We use the following
drawing conventions: One-edges are drawn solid, zero-edges
dashed, and edges leading to the terminal false-node as well
as the false-node itself are omitted.

true

a

s

t

Figure 1:
Simple BDD example

We use BDDs to represent labelled transition systems (LTS) which arise from higher-level
system specifications such as stochastic process algebras (SPA) [2] or structured stochastic
Petri nets (SPN). It is well-known that BDDs offer a compact representation of transition
systems with very large state space. They are therefore promising candidates for alleviating the
problem of state space explosion which is encountered so frequently in analytical performance
analysis. However, as a survey of the relevant literature shows, the question of how to code

to appear in:
Proc. of UKPEW 97, Ilkley, UK, July 1997

09 / 1

stochastic information in a BDD context had not yet been answered satisfactorily.

We offer a new solution to this problem, concentrating on the Markovian case where simply
a rate has to be stored for every transition of the LTS. A new data structure, Decision-
node BDD (DNBDD), is introduced and used to represent stochastic transition systems. It is
shown that DNBDD have important advantages compared to earlier approaches. A DNBDD
is structurally identical with the corresponding ordinary BDD, but some of its nodes — which
we call decision nodes — carry additional information.

The rest of the paper is organised as follows: Sec. 2 contains a survey of previous approaches
to the problem of storing numerical (stochastic) information in a BDD-context. Sec. 3 explains
our new DNBDD data structure. Sec. 4 discusses important algorithms for DNBDDs, and
Sec. 5 contains some concluding remarks.

2. BDD extensions for performance evaluation

We present several possibilities for representing rate information in a BDD through a very
simple common example. Fig. 2, on top, shows a LTS in which each transition carries
information about the action type (a; b) and the rate at which the transition takes place (�; �; �).
Common to all BDD alternatives shown in the figure, states0 and1 are coded in the Boolean
variabless (source state) andt (target state) as0 and 1, respectively. The action type is
coded in the Boolean variableact, wherea maps to0 and b maps to1. The characteristic
Boolean function for this LTS is thus given by the expressionact s t act s t act s t, where
every minterm codes one transition.

The first diagram in fig. 2 shows thepurely functional BDD, disregading all rate information.

Usingsymbolic encoding of rates [3], the rate is coded as a Boolean vector(rn; rn�1; . . . ; r0).
In the presence ofk distinct rate values, the vector has to have at least lengthlog2 k . In the
example, rates�, � and� are coded by00, 01 and10. The advantage of this approach is its
simplicity. But there are the following disadvantages: Extra Boolean variables are needed for
coding the rates. The approach is somewhat inflexible, since more bits may be needed when
new rates are introduced, and it is not clear how rate arithmetic could be done. The size of the
BDD grows, since fewer subgraphs can be shared than in the corresponding functional BDD.

Edge-valued BDDs (EVBDDs) have been introduced by Lai and Sastry [4] for multi-level
hierarchical circuit verification. EVBDDs offer a canonical representation of functions with
Boolean domain and numeric range. In an EVBDD, each one-edge carries a numeric value.
In addition, there is an incoming edge to the root which also carries a numeric value. The
function value for a particular Boolean input vector is given by the sum of the edge values on
the corresponding path through the EVBDD. A LTS with rate information can be represented
by an EVBDD by assigning the correct rate values to the legal transition encodings and0 to all
illegal transition encodings. The advantages of EVBDD are their canonicity, and the fact that
generation and manipulation algorithms are known. However, since every truth assignment
to the input variables is explicitely represented on a path from the root to the terminal node,
the BDD size increases quite dramatically.

Hachtel et al. useMulti-terminal BDDs (MTBDDs) for representing Markov chains [5].
MTBDDs have multiple terminal nodes which carry numeric values. Algorithms for MTBDDs
are available. This straight forward approach has the disadvantage that the size of the BDD
increases because there is less subgraph sharing than in the corresponding BDD with just a
single terminal node.

The last alternative, DNBDD, is discussed in greater detail in the Sec. 3.

09 / 2

0 1

a, λ

b, µ

a, δ

LTS

BDD without
rate information

true

act

s

t

symbolic
encoding
of rates

true

act

s

t

r1

r0

EVBDD

0

act

s

t

0

0

µ

−µ λ
δ

MTBDD

act

s

t

δ µλ

DNBDD

true

act

s

t

µλ,δ

0

Figure 2: Possible BDD extensions for storing rate information

3. Decision-node BDDs

In this section, we introduce a new data structure, calledDecision-node BDD (DNBDD),
which is capable of representing a LTS and storing rate information for every transition of
the LTS, while preserving the basic structure of purely functional BDDs. The last diagram
in fig. 2 shows the DNBDD for the simple common example.

We first define the notion of a BDD node’s zero-subgraph (one-subgraph).

Def: The subgraph which can be reached from a BDD node through its outgoing zero-edge
(one-edge) is called thezero-subgraph (one-subgraph) of that node.

Starting from the BDD without rate information, our task is to assign a rate, a real number,
to every path of the BDD. The idea of DNBDDs is to characterise the path by a set of
decision nodes.

Def: A BDD node is calleddecision node iff the terminal true-node is reachable through both
outgoing edges. Furthermore, by definition, the root node is always a decision node.

Our new DNBDDs have extensions with respect to ordinary BDDs. In addition to the ordinary
BDD edges, a DNBDD contains extra edges (decision edges) linking its decision nodes.

09 / 3

Def: A decision-edge is a bidirectional edge between two decision nodes of a DNBDD. As
with ordinary BDD edges, there are zero-decision-edges and one-decision-deges.

A decision noded contains the following additional information:

1. In the presence of more decision nodes in the zero-subgraph ofd, let d0 be the first such
decision node. In this case, there is a zero-decision-edge fromd to d0.

2. If there is no decision node in the zero-subgraph ofd, the zero-subgraph is simply a
path fromd to the terminal true-node. We then use the expression “zero-path” instead of
“zero-subgraph”. In this case,d contains (a pointer to) a rate list for the zero-path. The
k-th entry of the rate list defines the rate of thek-th LTS-transition sharing this zero-path,
where transitions are ordered lexicographically according to their Boolean encoding.

3. 1. and 2. also apply if “zero” is replaced by “one” andd0 is replaced byd1.

act1

true

act0

s2

s1

s0

t2

t1

t0

λ10,
λ11

λ2

λ3,
λ7

Figure 3: DNBDD with some decision nodes zoomed

Fig. 3 shows a DNBDD which is the result of encoding a LTS with rate information. This
LTS has 17 transitions, some of which are listed in table 1. In the figure, decision nodes
are drawn in black. Three of the decision nodes are shown zoomed. The first of them, the
root, is linked by two decision edges to the first decision nodes in its zero- and one-subgraph.
Regarding the decision node on the level of Boolean variables1, we observe that neither
its zero-subgraph nor its one-subgraph contain any decision nodes. Therefore this decision
node contains a rate list for the transitions corresponding to its zero-path (�10; �11) and a
rate-list for the (single) transition corresponding to its one-path (�2). The third of the zoomed
decision nodes is a combination of the two cases: While there exists a decision node in its
one-subgraph (therefore the one-decision-edge) there does not exist a decision node in its
zero-subgraph (therefore the rate list (�3; �7)).

The advantages of DNBDDs are quite obvious: DNBDDs are a canonical representation for
labelled transition systems enhanced by stochastic rate information. The basic structure of the
corresponding BDD is preserved. As a consequence, known algorithms for BDD generation
and manipulation can be easily extended to the DNBDD case.

09 / 4

action source state target statetrans.
num-
ber

type act1; act0 decimal s2; s1; s0 decimal t2; t1; t0 rate

1 a 00 5 101 2 010 �10

2 a 00 5 101 6 110 �11

3 a 00 7 111 2 010 �2

4 b 01 2 010 2 010 �3

5 c 10 6 110 2 010 �7

6 c 10 7 111 3 011 �8

...
...

Table 1: Some transitions of the LTS coded by the DNBDD of fig. 3

As an example for such an algorithm, fig. 4 illustrates one step during generation of the
DNBDD of fig. 3. The first 5 transitions (see table 1) are already coded in the DNBDD
on the left. Note that every node of a DNBDD has a unique identity, given by an integer
number. In this step, the 6th transition, coded in the DNBDD in the middle, is added, which
requires a Boolean “or”-operation. The resulting DNBDD is shown on the right. The call
tree for this “or”-operation is shown in fig. 5. The arguments to the procedure “or” are node
numbers. On the top level, “or” is called for the root nodes of the operand DNBDDs (nodes
39 and 47). The procedure “makenode” generates a node for the Boolean variable which is
given as its first argument. The numbers of the new nodes generated by “makenode” are
given at the right of fig. 5. The resulting call tree is exactly the same as for constructing
the corresponding BDD without rate information, i.e. the algorithm for an “or”-operation is
basically the same for BDDs and DNBDDs (this is also true for other operations). The only

act1

true

act0

s2

s1

s0

t2

t1

t0

Transitions 1 . . 5

true

Transition 6

42

1

43

44

45

46

47λ8

40

41

1

2

3

4

29

30

31

39

37

36

34

26

16 5

25

λ7

λ3

λ2λ10,λ11

true

Transitions 1 . . 6

1

2

3

4

29

30

31

52

51

50

34

26

16 5

25

λ8

λ3

λ2λ10,λ11

42

48

49

41

40

λ7

or =

Figure 4: Example for DNBDD generation

09 / 5

or(39 [34 | λ7], 47 [λ8])

makenode(act1, or(34 [25 | λ3], 0), or(37 [λ7], 46 [λ8]))

makenode(act0, or(36 [λ7], 45 [λ8]), or(0, 0))

makenode(s2, or(0, 0), or(30 [λ7], 44 [λ8]))

34

0
50

51

52

makenode(s1, or(0, 0), or(29 [λ7], 43 [λ8]))
0

49

makenode(s0, or(4 [λ7], 0), or(0, 42 [λ8]))

4

48
0

42

Figure 5: Call tree for the “or”-operation illustrated in fig. 4

modification necessary is to add the information in brackets []. This is information about
decision nodes and rate lists. When a new node is created (procedure “makenode”) it can
be immediately decided, whether or not the new node is a decision node (the new node is a
decision node iff both its successor nodes are non-0). If this is the case, the information for
that decision node (decision edge(s), rate list(s)) is known.

4. Operations on DNBDDs

4.1. Parallel composition of DNBDDs
For BDDs representing labelled transition systems which originate from process algebras,
an important operation is parallel composition. LetBDDA andBDDB be two BDDs which
correspond to two processesA andB. Let S be the subset of actions on which the two
processes synchronise. This set can also be coded as a BDD, namelyBDDS . The BDD
corresponding to the parallel composition ofA andB, BDDk, can be written as a Boolean
expression:

BDDk = (BDDA BDDS) (BDDB BDDS)

BDDA BDDS StabB

BDDB BDDS StabA

(1)

The term on the first line is for the synchronizing actions in which bothA andB participate.
The term on the second (third) line is for those actions whichA (B) performs independently
of B (A) — these actions are all from the complement ofS. The meaning ofStabA (StabB)
is a BDD which expresses stability, i.e. the fact that the source state of processA (B) equals
the target state.

The result,BDDk, describes all transitions which are possible in the product space of the two
processes. Given a pair of initial states forA andB, only part of the state space may be
reachable due to synchronisation conditions. However, reachability analysis can be performed

09 / 6

on the BDD representation, restrictingBDDk to those transitions which originate in reachable
states.

Parallel composition of DNBDDs can be carried out in much the same manner as described
by eq. (1). One question to be answered is about the result rate of the synchronizing actions.
Depending on the application, different definitions for the result rate may apply. Typical
examples are the maximum, minimum, sum or product of the two partner rates. With DNBDD,
the result rate will be calculated from the two partner rates during an “and”-operation (first
line of eq. (1)), which has a similar call tree as the one shown in fig. 5. The structure of the
call tree does not depend on the chosen alternative (maximum, minimum, . . .) — any of the
listed cases can be incorporated easily at that point, i.e. DNBDDs cover any of those cases.

4.2. Bisimulation minimisation with DNBDDs
Bisimulation [6] is needed to reduce the state space of large transition systems. The idea is
to partition the state space such that every subset contains equivalent states. Informally, two
states are equivalent if they represent the same beaviour, i.e. if they enable the same actions
which must lead to successor states which again are equivalent. The standard algorithm to
compute the bisimulation relation uses iterative refinement.

A bisimulation algorithm which works on BDDs is described in [7] for the non-stochastic
case. Its output is a BDD characterizing pairs of equivalent states. Such an algorithm can
be extended to the stochastic case, i.e. to the case of Markovian bisimulation, working on
DNBDDs. To do this, it is necessary in iterationj to compute the relationEj;a;�(x; y) for
every actiona. A pair of states(x; y) is contained in that relation iff actiona can take place in
statex, leading to a statez which lies in the same equivalence class asy. The rate� associated
with a pair(x; y) is the sum of all the rates ofa-actions from statex to states equivalent toy.

5. Conclusion
The new data structure introduced in this paper, DNBDD, has decisive advantages when
representing stochastic transition systems. Most important, the structure of purely functional
BDDs is preserved, and basic algorithms can be easily adapted. As a next step in our work,
experiments with DNBDDs on real-world examples have to be carried out.

References
[1] R.E. Bryant. Graph-based Algorithms for Boolean Function Manipulation.IEEE ToCS,

C-35(8):677–691, August 1986.
[2] N. Götz, H. Hermanns, U. Herzog, V. Mertsiotakis, and M. Rettelbach.Quantitative

Methods in Parallel Systems, chapter Constructive Specification Techniques – Integrating
Functional, Performance and Dependability Aspects. Springer, 1995.

[3] O. Kluge. Bin̈are Entscheidungsdiagramme für stochastische Prozeßalgebren. Studienar-
beit, Universität Erlangen–Nürnberg, IMMD 7, Dezember 1996.

[4] Y.-T. Lai and S. Sastry. Edge-Valued Binary Decision Diagrams for Multi-Level
Hierarchical Verification. In29th Design Automation Conference, pages 608–613.
ACM/IEEE, 1992.

[5] G.D. Hachtel, E. Macii, A. Pardo, and F. Somenzi. Markovian Analysis of Large Finite
State Machines.IEEE Trans. on CAD, 15(12):1479–1493, Dec. 1996.

[6] R. Milner. Communication and Concurrency. Prentice Hall, London, 1989.
[7] A. Bouali and R. de Simone. Symbolic Bisimulation Minimisation. InComputer Aided

Verification, pages 96–108, 1992. LNCS 663.

09 / 7

