
A Stohasti Extension of the

Logi PDL

Matthias Kuntz

Markus Siegle

Report 2004-5

Otober 2004

University of the Federal Armed Fores Munih

Department of

COMPUTER SCIENCE

Werner-Heisenberg-Weg 39 • D-85577 Neubiberg

Abstrat. In this paper we present a stohasti extension of the modal logi PDL

(propositional dynami logi), SPDL, that is interpreted over labelled ontinuous

time Markov hains (CTMC). We de�ne the syntax and semantis of SPDL. SPDL

provides, like PDL, powerful means to speify path properties. In general paths

an be haraterised by regular expressions, where the exeutability of a regular

expression an depend on the validity of guard or test formulae. Suh regular ex-

pressions enrihed with test formulae are alled programs. In order to model hek

SPDL path formulae it is neessary to derive from the programs a variant of deter-

ministi �nite automata and to build the produt automaton between the labelled

CTMC and this automaton. We desribe two di�erent ways to model hek SPDL,

at �rst via solving an integral equation system and seondly by transient analysis.

We show that a variant of Markov bisimulation preserves the validity of SPDL for-

mulae, �nally we give the worst ase omplexity for model heking SPDL formulae

by means of uniformisation.

1 Motivation and Introdution

It is ommonplae that distributed, onurrent hard- and software systems

have beome part of our daily life. Beause of our high dependeny on these

systems, it beomes more and more important to assert that they are working

orretly and that they meet high performane requirements.

To do performane, dependability and reliability analysis it is neessary

to have both a model and a number of measures of interest, like utilisation,

mean number of jobs, mean time to failure and the like. The model is de-

rived, roughly spoken in two steps: At �rst some spei�ation method like

(stohasti) Petri nets, (stohasti) proess algebras, queueing networks, et.

is employed to obtain a high level spei�ation of the system that is to be

analysed. At seond from this high level spei�ation the low level representa-

tion is obtained. This low level representation is normally a ontinuous time

Markov hain (CTMC). Now, to do performane, dependability or reliability

analysis one has to speify the measures of interest. While for spei�ation

of models powerful means like the one mentioned above are available this is

often not the ase for measure spei�ation.

In the realm of funtional veri�ation, temporal logis as CTL provide

powerful means to speify omplex properties of systems. In the reent years

big e�orts have been made to provide similar means for the spei�ation

of measures in the area of performane analysis. Thus, the logi CTL was

extended to express omplex measures.

In the sequel we will give a short aount of the evolution of extensions of

CTL.

2

At �rst we should mention the logi PCTL [10℄, a probabilisti logi, that

is interpreted over disrete time Markov-hains. In PCTL the CTL path

quanti�ers A and E are replaed by a probabilisti operator P⊲⊳p(ϕ), that
expresses that the probability that the path formula ϕ is satis�ed meets the

bounds expressed in ⊲⊳ p.
Though, more important is the logi CSL, introdued in [1, 2℄ that is inter-

preted over a CTMC. This logi is extended in [3℄ by a steady-state operator

S⊲⊳p(Φ), that allows one to reason about steady-state probabilities, i.e. to

reason about the probability that the system, onsidered on the long run is

in a ertain set of states. CSL provides also timed variants of the until- and

the next-operator, UI
, XI

, allowing to make the validity of a formula also

dependent, whether the time at whih a satisfying state is reahed at a time

point t that is within the spei�ed interval I.
A very important branh of modelling formalisms is that of stohasti

proess algebras (SPA). This formalism is ation-oriented, i.e. the system

behaviour is spei�ed by ations. In this ontext, states onstitute only an

auxiliary mean within the semanti model of SPA-proesses. The determina-

tion of the measures of interests in ontrast is state oriented. To avoid this

hange of views, i.e. ation- vs. state oriented, in [12℄ an ation-based variant

of CSL, aCSL, has been proposed. Similar to aCTL [7℄ the haraterisation

of satisfying paths is done by speifying sets of ations A that have to our

to satisfy a given path formula.

Though, aCSL has demonstrated its usefulness in several ase studies, its

weakness lies in the limited possibibilities to haraterise satisfying paths.

Paths satisfy an aCSL-requirement, if an arbitrary sequene of ations from

A ourred. It is not possible to state that a, b, c have to appear in this order

and eah of this ations exatly one. Therefore, aCSL has been extended

to aCSL+ [16℄ to overome this problem. In aCSL+, paths are haraterised

via regular expressions.

In this paper we give a stohasti extension of the logi PDL, where paths

an not only be spei�ed via regular expressions but also via properties of

states that are visited during the exeution of the regular expression spe-

ifying the paths. This is expressed via so alled 'tests' that ondition the

exeution of the subsequent regular expression. Subsequently, we will all

regular expressions that may or may not ontain tests 'programs'.

This paper is organised as follows: In the next setion we give a short

overview of PDL. In setion 3 we introdue automata that represent PDL

programs. In setion 4 the syntax and semantis of our stohasti extension

3

of PDL, SPDL, is introdued. In setion 5 we demonstrate how to onstrut

automata for PDL. Setion 6 is devoted to the introdution of model heking

proedures for SPDL. In setion 7 the method of uniformisation is explained

in some detail. In setion 8 apply by means of a small example the onepts

introdued so far. In setion 9 we show that the validity of SPDL formulae

is preserved by a variant of Markov-AP-Bisimulation and we give a worst

ase approximation of the omplexity of model heking SPDL probabilisti

path formulae. In setion 10 we extend SPDL by real time intervals, i.e.

time intervals of the form [t, t′], where t 6= 0 is possible. Finally, we draw a

onlusion and give a short outlook on future work.

2 Propositional Dynami Logi PDL

PDL is a modal logi that is suited for reasoning about programs. It is inter-

preted over a Kripke struture M, with M := {SM, IM}, where S is a set of

states and I an interpretation funtion. The idea of modal logi, reasoning in

situations where the truth value of a formula an vary over time, is perfetly

suited for program exeution. We an interprete the states of M as the set

of all possible exeution stages of a program. With any program ρ we an

assoiate a binary relation R over M suh that (s, t) ∈ R i� there is an ex-

eution of ρ that, starting in state s terminates in state t. Now, the relation
between modal logi and programs is that the programs ρ are written inside

the modal operators ✸ and ✷:
〈

ρ
〉

and [ρ], suh that PDL is a multi-modal

logi, where eah program ρ is a modality. The intuitive meaning of

〈

ρ
〉

and

[ρ] is as follows:

�

〈

ρ
〉

Φ: It is possible to exeute ρ and thereby ending up in a state satisfying
Φ.

� [ρ]Φ: Every terminating exeution of ρ ends in a state satisfying Φ, where
it is not neessary that there is a terminating exeution at all.

2.1 Syntax and Semantis of PDL

In general, one an say that PDL ontains elements that stem from propo-

sitional logi, modal logi and the algebra of regular expressions. The three

onstituents are omposed as desribed by the following syntax de�nition.

4

Syntax of PDL: Basially a PDL-expression may onsist of expressions of

the following types:

� programs: ρ, ...
� formulae: Φ, Ψ, ...

To build omplex expressions out of simpler ones, i.e. atomi propositions

and atomi programs, PDL provides a number of operators that an be at-

egorised as follows:

� logial operators: ¬,∨
� program operators: ∪, ; ,∗

� mixed operators:

〈 〉

, ?

PDL-expressions are mutually reursively de�ned:

Let Φ and Ψ be formulae and ρ1 and ρ2 programs, then: Φ ∨ Ψ , ¬Φ,
〈

ρ
〉

Φ
are formulae, where formulae of this kind are assoiated with the states of

the Kripke struture, i.e. state formulae, and ρ1; ρ2, ρ1 ∪ ρ2, ρ∗
1 and Φ? are

programs. Programs are de�ned as follows:

De�nition 1 (Programs). Let Act be a set of atomi programs, whih we

may also all ations and TEST be a set of state formulae. Together they

form the alphabet Σρ for the program ρ, i.e.

Σρ := Act ∪ TEST

A program ρ over an alphabet Σρ is de�ned by the following grammar:

ρ := ǫ
∣

∣a
∣

∣ρ; ρ
∣

∣ρ ∪ ρ
∣

∣ρ∗
∣

∣Ξ?; ρ
∣

∣(ρ)

Where a ∈ Act and Ξ ∈ TEST.

Semantis of PDL: Instead of giving the formal semantis of PDL, we

will desribe the intuitive meaning of some of the PDL-onstruts. A more

thorough aount of the formal semantis of PDL an be found in [8, 11, 14℄.

� ρ1; ρ2: Exeute ρ1 and ρ2 sequentially

� ρ1 ∪ ρ2: Choose nondeterministially ρ1 or ρ2 and exeute the hosen

program

� ρ∗
1: Exeute ρ1 a non-deterministially hosen number of times, inluding

zero times

5

�

〈

ρ1

〉

Φ: It is possible to exeute ρ1 and halt in state satisfying Φ.
� [ρ1]Φ: Although not expliitly present in PDL, the box is the dual of the

diamond and an be expressed as follows:

[ρ1]Φ ≡ ¬
〈

ρ1

〉

¬Φ

This means it is not possible to exeute ρ1 and end up in a state that

does not satisfy Φ.
Equivalently, for every terminating omputation of ρ1 it holds that ρ1

halts or stops in a state satisfying Φ. Note, that for the satisfation of a

formula of this kind no terminating omputation at all must exist.

� Φ?; ρ1: Test, if Φ holds in the urrent state, if so, exeute ρ1 otherwise fail.

3 Automata for PDL

We will now introdue how to relate �nite exeutions of programs that are

de�nable by the syntatial means provided in setion 2 with automata.

3.1 Alphabets, Programs and Automata

In this setion we give a de�nition of programs for PDL that is adapted to

our needs. We forbid programs of the form (Φ?; ǫ)∗, this will be justi�ed in

the sequel:

In the way we do model heking of SPDL formulae, i.e. by onstruting a

produt Markov Chain between the system's original Markov hain and the

automaton of the program de�ning the satisfying paths, it is not neessary to

have (sub-)programs of the kind (Φ?; ǫ)∗, as with a test no transition in the

Markov hain is assoiated and the program an be exeuted also zero times,

the validity or non-validity of Φ in the atual state of the Markov hain is

without signi�ane for the model heking proedure.

De�nition 2 (Programs). Let Act be a set of atomi programs, whih we

may also all ations and TEST be a set of state formulae. Together they

form the alphabet Σρ for the program ρ, i.e.

Σρ := Act ∪ TEST

A program ρ over an alphabet Σρ is de�ned by the following grammar:

ρ := ǫ
∣

∣ρ; ρ
∣

∣ρ ∪ ρ
∣

∣Ξ?; ρ
∣

∣ρ1

∣

∣(ρ)

ρ1 := a
∣

∣ρ1; ρ1

∣

∣ρ1 ∪ ρ1

∣

∣ρ∗
1

∣

∣Ξ?; ρ1

∣

∣(ρ1)

Where a ∈ Act and Ξ ∈ TEST.

6

De�nition 3 (Program transformation). Let a program ρ derived by

the grammar from de�nition 2 be given, we apply to it the following trans-

formation rules, suh that the resulting program ρ′
is equivalent to ρ.

(T1) Sequenes of test formulae with no atomi programs, i.e. elements from

Act, interspersed, i.e. sequenes of the kind Ξ1?; Ξ2?; ...Ξn?; are trans-

formed into a onjuntion of the involved test formulae:

Ξ1?; Ξ2?; ...Ξn?;≡
n

∧

i=1

Ξi?;

This transformation is orret, sine it an be shown that the above equiv-

alene relation holds: We show the orretness for i = 2, the general ase
is an easy indution on the number of onjunts.

I((Ξ ∧ Θ)?; ρ) = I((Ξ ∧ Θ)?) ◦ I(ρ)

= {(u, u)
∣

∣u ∈ I((Ξ ∧ Θ))} ◦ I(ρ)

= {(u, u)
∣

∣u ∈ (I(Ξ) ∩ I(Θ))} ◦ I(ρ)

= {(u, u)
∣

∣u ∈ (Sat(Ξ) ∩ Sat(Θ))} ◦ I(ρ)

We have to show that the semanti de�nition for Ξ?; Θ?; ρ is idential to

the one above:

I(Ξ?; Θ?; ρ) = I(Ξ?) ◦ I(Θ?) ◦ I(ρ)

= {(u, v)
∣

∣∃w(u, w) ∈ I(Ξ?) ∧ (w, v) ∈ I(Θ?)} ◦ I(ρ)

For the remaining derivations we need the following equivalenes:

(u, w) ∈ I(Ξ?) ⇐⇒ u = w ∧ u ∈ Sat(Ξ)

(w, v) ∈ I(Θ?) ⇐⇒ w = v ∧ w ∈ Sat(Θ)

Thus, it holds: u = w ∧ w = v → u = v.
Furthermore, we have:

(u, u) ∈ I(Ξ?) ⇐⇒ u ∈ Sat(Ξ)

Using the equivalenes above, we an dedue:

{(u, v)
∣

∣∃w(u, w) ∈ I(Ξ?) ∧ (w, v) ∈ I(Θ?)} ◦ I(ρ)

= {(u, u)
∣

∣u ∈ Sat(Ξ) ∧ u ∈ Sat(Θ)} ◦ I(ρ)

= {(u, u)
∣

∣u ∈ (Sat(Ξ) ∩ Sat(Θ)} ◦ I(ρ)

7

(T2) As a seond transformation, we turn eah test formula that has no diretly

sueeding atomi program, i.e. test formulae in front of a hoie operator

(Ξ?; (ρ1 ∪ ρ2)) or a star (Ξ?; (ρ1)
∗
) or at the end of a program (ρ1; Ξ?),

into Ξ?; ǫ, i.e. a test followed by the empty word. This is orret, sine

∀a ∈ Σρ(a; ǫ ≡ a).
(T3) Atomi programs a, not preeeded by a test formula are transformed into

expressions of the kind true?; a. This is orret, sine test formulae are

state formulae and true is assumed to hold in every state this does not

a�et the exeutability of a.

This transformation rules, from here on referred to as (T1) to (T3) are needed
for the de�nition of the semantis of SPDL. In the sequel we will assume

that eah program ρ has been transformed aording to (T1) to (T3). The
imaginary alphabet Σ of suh transformed programs is:

Σ := TEST × Act

Note: true ∈ TEST and ǫ ∈ Act.

I.e. eah element of the alphabet is a tuple of test and atomi program.

De�nition 4 (Program instanes, length of program instanes). A

�nite sequene of elements from the alphabet Σ := TEST × Act is alled

program instane. I.e. eah element of this alphabet is a tuple onsisting of

a test formula sueeded by an atomi program.

The length of a program instane p denoted by

∣

∣p
∣

∣

, is the number of ele-

ments from Σ ouring in it. For example:

p = (true?; a); (Ξ?; b); (true?; c) ⇒
∣

∣p
∣

∣ = 3

For 0 ≤ i ≤
∣

∣p
∣

∣ p[i] is the (i + 1)st element of p. For example:

p = (true?; a); (Ξ?; b); (true?; c) ⇒ p[1] = Ξ?; b

Act(p[i]) is the funtion that returns the atomi program part of p[i]. TeF (p[i])
is the funtion that returns the test formula part of p[i]. For example:

p = (true?; a); (Ξ?; b); (true?; c) ⇒ Act(p[1]) = b ∧ TeF (p[1]) = Ξ

De�nition 5 (Equivalent program instanes). Two program instanes

p1 and p2 are equivalent, p1 ≡ p2, i� either

8

� p1 = p2, i.e. they are syntatially equal

or

�

∣

∣p1

∣

∣ =
∣

∣p2

∣

∣

� ∀i((Act(p1[i]) = Act(p2[i])) ∧ (TeF (p1[i]) = true ⇐⇒ TeF (p2[i]) = true))

Two programs ρ1 and ρ2 are equivalent, i� all their program instanes are

pairwise equivalent.

De�nition 6 (Non-deterministi program automaton NPA). An NPA
N is de�ned by the quintuple (ZN , ΣN , ZStart

N , EN , δN):

� ZN : a �nite set of states

� ΣN := TEST × Act: input alphabet

� ZStart
N : a set of initial states, ZStart

N ⊆ ZN

� EN : a set of aepting states EN ⊆ ZN

� δN : transition funtion: δN : ZN × ΣN → 2ZN
.

De�nition 7 (Language of an NPA). The language of N , L(N) is de�ned
as the set of all �nite sequenes of elements of its input alphabet ΣN suh

that eah sequene leads from an initial state to an aepting state:

L(N) := {p ∈ Σ∗
N

∣

∣(z0, p[1], z1), ..., (zn−1, p[n], zn) ∈ δN ∧ z0 ∈ ZStart
N ∧ zn ∈ EN}

In this de�nition we have used the fat, that eah n-ary funtion an be in-

terpreted as (n+1)-ary relation. We have applied it to the transition funtion

whih is binary and the interpretation as transition relation is ternary.

1

De�nition 8 (Language of a program ρ). The set of all possible program
instanes of a program ρ is alled its language, L(ρ)2.

For example, let the following program ρ be given:

ρ = (Ξ?; a); ((true?; b); (true?; c))∗; (Θ?; d)∗

Then some instanes of ρ are:

Ξ?; a
∣

∣ (Ξ?; a); (true?; b); (true?; c)
∣

∣ (Ξ?; a); (true?; b); (true?; c); (Θ?; d)...

As another example let ρ be the following program:

ρ = (true?; a); ((Ξ?; b) ∪ (true?; c))

1

We will use this interpretation at many plaes without expliitly stating it

2

Note, that we assume that ρ has been transformed aording to (T1) to (T3)

9

Then the language of ρ is the following set of program instanes:

L(ρ) = {(true?; a); (Ξ?; b), (true?; a); (true?; c)}

Theorem 1. For eah language L(ρ) there exists an NPA Nρ, suh that

L(ρ) = L(Nρ).

The proof follows the same lines as the proof for the ommon non-deterministi

�nite automata.

De�nition 9 (Deterministi program automaton DPA). A DPA A is

de�ned by the quintuple (ZA, ΣA, zStart, EA, δA):

� ZA: a �nite set of states

� ΣA : TEST × Act: input alphabet

� zStart
A : a single initial state, zStart

A ∈ ZA

� EA: a set of aepting states EA ⊆ ZA

� δA: state transition funtion: δA : ZA × ΣA → ZA: If a state z possesses

more than one outgoing transitions, then it must hold, that either the

ation parts of the labellings of all outgoing transitions are di�erent, or

if there are at least two transitions whih ation parts are idential, then

the test formula parts of them must ful�ll the property that they an't

be true at the same time.

Theorem 2. For eah NPA N an equivalent DPA A an be onstruted

This proof an be found in setion 5

4 Stohasti PDL

This setion presents the syntax and semantis of the stohasti propositional

dynami logi (SPDL).

4.1 Ation- and State-Labelled Continuous-Time-Markov Chains

In this subsetion the model that underlies SPDL is introdued.

De�nition 10 (Ation- and state-labelled ontinuous-time-Markov

hains, ASMC). An ASMC M is a quadruple (S, A, L, R), where

� S: �nite set of states
� A: set of ation names: A = Act

10

� L: state labelling funtion: S → 2AP

� R: state transition relation : R ⊆ S × (A × IR>0) × S

AP is the set of atomi propositions.

De�nition 11 (Rates and probabilities).

RA(s, s′) :=
∑

a∈A

{λ
∣

∣s
a,λ
−→ s′}

RA(s, s′): sum of all rates λ leading with ation a from s to s′.

E(s) :=
∑

s′∈S

RA(s, s′)

E(s): sum of all rates of transitions emanating from state s.

PA(s, s′) := RA(s, s′)/E(s)

PA(s, s′): probability to reah s′ via s by performing an ation a.
It holds:

P∅(s, s
′) = R∅(s, s

′) = 0 for all s, s′ ∈ S

For absorbing states:

PA(s, s′) = RA(s, s′) = E(s) = 0 for arbitrary s′ ∈ S

De�nition 12 (Paths inM). An in�nite path σ is a sequene of transitions

of the form s0
a0,t0
−→ s1

a1,t1
−→ s2...

� si ∈ S, ai ∈ A, (si, a, λ, si+1) ∈ R
� ti = τ(σ, i) ∈ IR>0: real sojourn time in si before passing to si+1.

� σ[i]: (i + 1)st state on path σ
� a[i]: (i + 1)st ation on path σ
� σ@t = σ[i]: state that is reahed at time instant t on path σ, it holds that

i is the smallest index for whih t ≤
∑i

j=0 tj .

A �nite path σ is a �nite sequene of transitions of the form: s0
a0,t0
−→ s1

a1,t1
−→

s2...sn−1
an−1,tn−1
−→ sn, where R(si, si+1) > 0 for all i < n and R(sn, s

′) = 0 for

11

all s′ ∈ S.
For �nite paths σ, σ[i] and τ(σ, i) are de�ned only for i ≤ n, for i < n as for

in�nite paths, for i = n it holds τ(σ, i) = ∞. For t <
∑l−1

j=0 tj let σ@t = sn

for all other ases, σ@t is de�ned as in the ase of in�nite paths.

The set of all paths with initial state s is alled PATH(s)

PATH(s) := {σ
∣

∣σ[0] = s}

Ation sequenes that haraterise the set of ful�lling paths are de�ned in

SPDL over programs. Programs are de�ned as in setion 3.1. We need the

following de�nition:

4.2 Syntax of SPDL

In this setion we present the syntax of the stohasti extension of PDL.

SPDL extends PDL with two probabilisti operators that allow to express

steady state and transient measures. Like in the logi CSL [5, 4℄ SPDL pro-

vides two types of formulae: state formulae that are interpreted over the

states of an ASMC M and path formulae that are interpreted over paths in

an ASMC.

De�nition 13 (Syntax of SPDL). Let p ∈ [0, 1], and q ∈ AP an atomi

proposition, where AP is the set of atomi propositions and let ⊲⊳∈ {≤, <,≥
, >}.
The state formulae Φ of SPDL are de�ned as follows:

Φ := q
∣

∣Φ ∨ Φ
∣

∣¬Φ
∣

∣S⊲⊳p(Φ)
∣

∣P⊲⊳p(ϕ)
∣

∣(Φ)

Path formulae are de�ned by:

ϕ := Φ[ρ]IΦ

where I is the losed interval [t, t′].3

Expressions of the form ρ are desribed by the grammar given in setion 3.1.

4.3 Semantis of SPDL

Before we give the formal semantis of SPDL, we provide an informal expla-

nation of the SPDL-formulae.

3

In the sequel it is assumed t = 0

12

Informal semantis: S⊲⊳p(Φ) asserts that the steady-state probability, i.e.
the probability to reside in a partiular set of states on the long run, satis�es

the boundary as given by ⊲⊳ p. P⊲⊳p(ϕ) asserts that the probability measure

of the paths that satisfy ϕ is within the bounds as given by ⊲⊳ p.

Formal semantis: For the semantis of path formulae we have to de�ne

the notion of words on paths. We need this, beause we have to relate the

paths of the DPA of the program π and the paths in the ASMC M.

De�nition 14 (Words on paths). The word Wk
of length k, k ≥ 0, over

a path σ ∈ PATH is de�ned as follows:

W0(σ) := ǫ

Wk(σ) := Wk−1(σ) ◦ a[k − 1]

where:

a[k − 1] ∈ A ∧ σ[k − 1]
a[k−1],λ
−→ σ[k]

Where Wk(σ)[i] = p[i] is the i-th ation on path σ.

We need some notation from probability theory, to de�ne the semantis of :

De�nition 15 (Probability vetors, state probabilities, et.). If an

initial probability distribution α is given, then the probability to be in state

s′ at time point t is given by

πM(α, s′, t) = Prα(σ ∈ PATHM
∣

∣σ@t = s′)

The length of α equals the ardinality of the state spae of M. The de�nition

for steady state probabilities is similar, we only have to take into aount that

steady state means 'on the long run':

πM(α, s′) = limt→∞πM(α, s′, t)

Often it ours that a unique initial state s exists, i.e. α = {1, 0,, 0},
we simply write Pr instead of Prα and πM(s, s′, t) instead of πM(α, s′, t)
in ase of transient probabilities and analogously πM(s, s′) for steady state

probabilities. The de�nitions an be extended to sets of states: For S ′ ⊆ S:

πM(α, S ′) :=
∑

s′∈S′

πM(s, s′) i.e.

πM(α, S ′) := limt→∞Prα(σ ∈ PATHM
∣

∣σ@t ∈ S ′)

13

We are now ready to give the formal semantis of SPDL.

De�nition 16 (Semantis of SPDL). The semantis of state formulae is

de�ned as follows:

M, s |= q ⇐⇒ q ∈ L(s)

M, s |= ¬Φ ⇐⇒M, s 6|= Φ

M, s |= (Φ ∨ Ψ) ⇐⇒M, s |= Φ or M, s |= Ψ

M, s |= S⊲⊳p(Φ) ⇐⇒ πM(s, Sat(Φ)) ⊲⊳ p

M, s |= P⊲⊳p(ϕ) ⇐⇒ ProbM(s, ϕ) ⊲⊳ p

ProbM(s, ϕ) is the probability measure of all paths σ ∈ PATH(s), starting in
s to satisfy ϕ:

ProbM(s, ϕ) := Pr(σ ∈ PATHM(s)
∣

∣M, σ |= ϕ)

πM(s, S ′) is the stationary state probability to be at time instant → ∞ in a

state from the set S ′ ⊆ S, provided that s is the state at time instant zero:

πM(s, S ′) = lim
t→∞

Pr(σ ∈ PATHM(s)
∣

∣M, σ@t ∈ S ′)

α denotes the given state probability distribution at time instant zero.

The semantis of path formulae is de�ned as follows:

M, σ |= Φ[ρ][0,t]Ψ ⇐⇒ ∃k((M, σ[k] |= Ψ ∧
k

∑

i=0

ti ≤ t) ∧

(∀0 ≤ i < k(M, σ[i] |= Φ)) ∧ (∃p ∈ L(ρ)((
∣

∣p
∣

∣ = k) ∧

∀0 ≤ i < k(Act(p[i]) = Wk(σ)[i] ∧M, σ[i] |= TeF (p[i]))))

4.4 Derived Operators

Temporal Operators The only temporal operator presented so far is [ρ]I .
We will show, how the operators 'U', 'X' ('next') and 'F' ('�nally') an be

derived:

The U-operator an be expressed as follows by [ρ]I :

ΦUIΨ := Φ[Σ∗
ρ]

IΨ

ΦUΨ := Φ[Σ∗
ρ]

<∞Ψ

14

The F-operator kann is expressible by the following means:

F[ρ]IΨ := true[ρ]IΨ

F[ρ]Ψ := true[ρ]<∞Ψ

FIΨ := true[Σ∗]IΨ

FΨ := true[Σ∗]<∞Ψ

whereas X an be derived as follows:

X[Ξ?; a]IΨ := true[Ξ?; a]IΨ

X[Ξ?; a]Ψ := true[Ξ?; a]<∞Ψ

XIΨ := true[Σ\TEST]IΨ

XΨ := true[Σ\TEST]<∞Ψ

Modal Operators The modal operators

[

ρ
]

('neessarily') and

〈

ρ
〉

('possi-

bly') an be derived using the probabilisti path operater P⊲⊳p and the derived

temporal operator F as follows:

〈

ρ
〉

Ψ := P>0(F[ρ]∞Ψ)
[

ρ
]

Ψ := ¬
〈

ρ
〉

¬Ψ

5 Automata Constrution

For model heking SPDL-path formulae it is neessary to derive a determin-

isti program automaton from the program ρ. This onstrution proedure

will be overed in greater detail in this setion.

5.1 Construting the NPA

As we treat atomi programs and tests the same way when onstrution

an NPA, and again treat them the same way as ations are treated when

deriving a non-deterministi �nite automatonNFA from a regular expression

the onstrution proess for an NPA N will be the same as for an NFA.
Details are omitted.

15

5.2 Note on the notation

In setions 3 and 4 we have spent some e�ort on de�ning the semantis of

SPDL and introdued input alphabets for automata and alphabets for pro-

grams that slightly di�ered in the way what they regarded as harater or

letter. Then we showed, that programs ρ that are derived by the grammar

from 2 an be equivalently transformed into programs ρ′
that serve as inputs

for program automata thereby relating programs and program automata.

Furthermore, the transformed program ρ′
made it easier to de�ne the seman-

tis of SPDL-path formulae, beause the relation between words on pahts of

the ASMC and paths in the program automaton derived from ρ′
was easier

to establish. In this setion we will somehow relax this strit notational rules

and use a more sloppy way to handle programs. In the sequel we will use

a as an abbreviation for true?; a and Ξ?; as an abbreviation for Ξ?; ǫ. This
sloppiness eases a lot the presentation of the subsequent material. Using the

strit notation from setions 3 and 4 would make it neessary to opiously

desribe, how elements of the input to an automaton that stem from a pro-

gram instane p that either possess trivial tests as test formula part or the

empty word as atomi program part an be equivalently transformed when

applying rules for onstruting automata from program instanes. Using a

sloppy notation we irumvent this di�ulties.

5.3 Tests and Transitions

In this subsetion we will desribe how test transitions, i.e. transitions on-

sisting either only of a test formula or a test formula sueeded by an atomi

program, are treated on automata onstrution.

For reasons that lie in the model-heking proedure of SPDL it is in

most ases, i.e. for internal transitions (z, p[i], z′), where z′ 6∈ E, neessary

to require that, if p[i] is diretly preeeded by a test with the empty word

as its atomi program part, p[i − 1], then we want that p[i − 1]?; p[i] is a

single transition, i.e. in the automaton the transitions zi−2
p[i−1]?
−→ zi−1

p[i]
−→ zi

are replaed by zi−2
p[i−1]?;p[i]
−→ zi. The exat way to obtain the last transitions

from the two before is topi of the remainder of this subsetion.

Program division: We present a basi, stepwise onstrution proedure to

obtain a deterministi program automaton Aρ from a given program ρ.

16

Let program ρ be given, to derive Aρ, in a �rst step ρ is divided into i,
1 ≤ i ≤ n subprograms, ρi, suh that eah ρi ontains at most one test, not

equal to true. This eases the desription of the treatment of test transitions

while automata onstrution. The division of ρ proeeds as follows:

� As long as no tests are enountered, ρ is divided aording to the syntati
struture of the expression.

� As soon as a test is found, the expression, governed by that test beomes

a ρi.

• Aording to ρi internal struture it might be neessary to further

divide ρi.

� This division is ontinued until eah sub-program ontains at most one

test

Let ρ1, ρ2 be subprograms without tests, then the test Ξ?; governs Ξ?; ρ1

and the test Ξ?; governs Ξ?; (ρ1 ∪ ρ2).

Treatment of test transitions: On onstrution of the automaton Aρ

it might happen that transition are generated that are labelled with tests

having an empty atomi program su�x, i.e. are of the form Ξ?; ǫ. If the
target state of suh transitions is not an absorbing and aepting state, suh

transitions have to be treated in a speial way. In the sequel we will write

shortly Ξ?; for Ξ?; ǫ for all involved test formulae. In the sequel we will use

the following shorthands:

� X is either of the form a or Θ?; a.
� Y is either of the form Λ?; or b or Λ?; b
� Let zQ be the soure state of Ξ?;-transitions and ZY the (set of) target

states of Y -transitions.

The following 'rules' an be applied to remove internal pure test transitions,

i.e. transitions with a labelling that onsists only of a test.

1. Let zj be a non-aepting state, possessing loops of the form X, inoming

transitions of the kind Ξ?; and outgoing transitions Y . Replae the Ξ?;-
transition from zQ to zj by Ξ?; X and add to zQ Ξ?; Y -transitions with

target states from ZY .

2. Let zj be a non-aepting state, with no loops, but with inoming tran-

sitions Ξ?; and outgoing transitions Y . Then, replae in zQ eah Ξ?-
transition by Ξ?; Y -transitions with target states from ZY . The Ξ?;-
transition an be deleted.

17

3. Let zj be an aepting state, possessing loops of the kind X, no outgoing

transitions, but inoming transitions of the form Ξ?;. Replae the Ξ?;-
transition by Ξ?; X and add to zQ a new Ξ?;-transition that leads to

an absorbing and aepting state. This state has possibly to be newly

introdued.

4. Let zj be an aepting state, possessing loops of the form X, inoming

transitions of the kind Ξ?; and outgoing transitions Y . Replae the ingo-

ing Ξ?;-transition by Ξ?; X and add to zQ Ξ?; Y -transitions with target

states from ZY . Add to zQ a new Ξ?;-transition to an absorbing aepting

state. This state has possibly to be newly introdued.

Example: Given the program ρ = (c; a ∪ d; Ξ?;); Λ?; b. Program ρ onsists

of the following parts:

� ρ1 = c; a
� ρ2 = d; Ξ?
� ρ3 = Λ?; b

For ρ1 ∪ ρ2 and ρ3 we obtain the automata shown in �gure 1.

d

c
a

Λ?;b

Ξ?;

(a)

(b)

Fig. 1. Automata for ρ1 ∪ ρ2, (a) and ρ3, (b)

Putting the automata from �gure 1 yield the nondeterministi automaton as

shown on top of �gure 2. Determinising and appliation of the transformation

rules for internal test transitions yields the automaton shown on bottom of

�gure 2.

Corretness of the Rules: We will now show that the transformation rules

given in this subsetion are orret in the sense that the automata that are

generated this way are equivalent to the original ones.

� Corretness of rule 1: An automaton having the form as desribed in 1

is derived from a program of the form Ξ?; X∗; Y . This yields the following

18

a

d

c
a

Determinisation

d

c
a

c

d

a

Test transition elimination
according to rule 2

c

d

a
Removing unreachable states

Ξ?;
Ξ?;

Λ?;b

Ξ?;

Λ?;b

Λ?;b

Λ?;b

Λ?;b

Ξ?;Λ?;b

Λ?;b

Ξ?; Λ?;b

Fig. 2. Stepwise onstrution of Aρ from Nρ

syntatial derivations:

Ξ?; X∗; Y ≡ Ξ?; (ǫ ∪ X; X∗); Y Semantis of Kleene star

Ξ?; (ǫ ∪ X; X∗); Y ≡ (Ξ?; ǫ ∪ Ξ?; X; X∗); Y Distributivity of ';'

(Ξ?; ǫ ∪ Ξ?; X; X∗); Y ≡ (Ξ? ∪ Ξ?; X; X∗); Y a; ǫ ≡ a

(Ξ? ∪ Ξ?; X; X∗); Y ≡ (Ξ?; Y ∪ Ξ?; X; X∗; Y) Distributivity of ';'

� Corretness of rule 2: An automaton having the form as desribed in

rule 2 is derived from a program of the form Ξ?; Y . In this ase, nothing

has to be proven.

� Corretness of rule 3: An automaton having the form as desribed in

rule 3 is derived from a program of the form Ξ?; X∗
. We have the following

syntati onversions:

Ξ?; X∗ ≡ Ξ?; (ǫ ∪ X; X∗) Semantis of Kleene star

Ξ?; (ǫ ∪ X; X∗) ≡ Ξ?; ǫ ∪ Ξ?; X; X∗
Distributivity of ';'

Ξ?; ǫ ∪ Ξ?; X; X∗ ≡ Ξ?;∪Ξ?; X; X∗ a; ǫ ≡ a

19

� Corretness of rule 4: An automaton having the form as desribed in

rule 4 is derived from a program of the form Ξ?; X∗ ∪ Ξ?; X∗; Y .

Ξ?; X∗ ∪ Ξ?; X∗; Y ≡ Ξ?; (ǫ ∪ X; X∗) ∪ Ξ?; (ǫ ∪ X; X∗); Y

Ξ?; (ǫ ∪ X; X∗) ∪ Ξ?; (ǫ ∪ X; X∗); Y ≡ Ξ? ∪ Ξ?; X; X∗ ∪ Ξ?; Y ∪ Ξ?; X; X∗; Y

Ξ? ∪ Ξ?; X; X∗ ∪ Ξ?; Y ∪ Ξ?; X; X∗; Y ≡ Ξ?;∪Ξ?; X; X∗ ∪ Ξ?; X; X∗; Y ∪ Ξ?; Y

Ξ?;∪Ξ?; X; X∗ ∪ Ξ?; X; X∗; Y ∪ Ξ?; Y ≡ Ξ?;∪Ξ?; X; X∗; (ǫ ∪ Y) ∪ Ξ?; Y

5.4 Determinisation in Case of Ambiguous Tests

The automata onstruted by the proedure as desribed so far, all them

N might be non-deterministi. For model-heking purposes it is neessary

to derive from N its deterministi version, A. Non-determinism here might

stem from two soures and is purged in the following manner:

� Determine N by treating all labellings as ation labellings as in the ase

of �nite automata. This automaton is alled N ′
.

� In N ′
ambiguous tests might our, i.e. for the same state z several outgo-

ing transitions might exist having the same atomi program a but di�erent
test formulae Ξi, 1 ≤ i ≤ m. In the model M in whih the test formulae

are interpreted it is not neessarily the ase that only one of the Ξi is

true while all others are false. In suh ases where several test formulae

are satis�ed the suessor state in the model that is to be model-heked

is not uniquely de�ned, therefore we have to provide means to ombat

this problem. The automaton obtained by applying this proedure will

be alled A.

Elimination of ambiguous tests: Let Ξi be the tests that emanate from

z suh that the sueeding atomi programs are idential, i.e. Act(Ξi?; a) =
Act(Ξj?; a). The algorithm in �gure 3 removes ambiguous transitions.

We will now prove the following theorem from setion 3:

Theorem 3. For eah NPA N an equivalent DPA A an be onstruted

Before we begin with the proof we should state what is meant by �equivalene�

in the ontext of program automata. By equivalene we do not longer mean

that both automata aept the same language, if we onsider tests as being a

part of the ation name. By saying for any NPA an equivalent DPA an be

20

(1) Z := 2Z
N′

(2) forall Z ∈ Z
(3) forall a ∈ L(Z)

/*L(Z) is the set of transition labellings, emanating from Z*/

(4) F := {Ξ
˛

˛a ∈ L(Z) ∧ TeF (a) = Ξ}
(5) negF := {¬Ξ

˛

˛Ξ ∈ F}
(6)

˛

˛F
˛

˛ := n, Con := ∅
(7) F ′[n] := 2F∪negF

/*F ′[n] is the powerset of F ∪ negF , where eah element has ardinality n */

(8) F := F ′[n]\{F ′ ∈ F ′[n]
˛

˛Ξ ∈ F ′ ∧ ¬Ξ ∈ F ′}
(9) forall F ′′ ∈ F
(10) Con′ := Conj(F ′′) /*Conjuntion of elements of F ′′

. */

(11) Con′′ := Con′\{
Vn

i=1 ¬Ξi}
(12) Con := Con ∪ Con′′

(13) endforall

(14) forall Ξ ∈ Con

(15) δA(Z, Ξ?; a) :=
S

z∈Z{z
′
˛

˛δN′(z, Ξi?; a) = z′, for all subformulae Ξi ∈ F}
(16) endforall

(17) endforall

(18) endforall

Fig. 3. Ambiguous test elimination algorithm

found, we mean that both are equivalent in a logial sense, i.e. by interpreting

the tests. This means we say that two automata are equivalent, under any

model the same ation sequenes an our. At the end of the setion we will

explain this in more detail.

5.5 Motivation for our Notion of Equivalene

The speial needs of model heking require that the (sub-)automaton as

shown in 4 is nondeterministi, although from a purely syntatial point of

view it an be onsidered to be deterministi.

Ψ?; a

Φ?; a

Fig. 4. Non-deterministi (sub-)automaton

As already motivated in great detail we have to perform the following trans-

formation on the test formula part of the ation labelling of the original NPA

to obtain a DPA.

4

The desired DPA is shown in �gure 5

4

This transformation proess mixes syntax and semantis of PDL

21

(Φ ∧ ¬Ψ)?; a

(Φ ∧ Ψ)?; a

(¬Φ ∧ Ψ)?; a

Fig. 5. Deterministi (sub-)automaton

We therefore have to show that both automata are equivalent, although the

languages DPA and NPA reognised by them are di�erent. It su�es to prove

this laim for two transitions Φ?; a and Ψ?; a emanating from a single soure

state.

5.6 Proof

1. We apply the semantis of PDL for the given expression, an expression

that generates an NPA of the given form stems from the following PDL

term:

Φ?; a ∪ Ψ?; a

Given the following semanti de�nition:

[[Φ?; a ∪ Ψ?; a]] = [[Φ?; a]] ∪ [[Ψ?; a]]

= ([[Φ?]] ◦ [[a]]) ∪ ([[Ψ]] ◦ [[a]])

= ({(u, u)
∣

∣u ∈ [[Φ]]} ◦ [[a]]) ∪ ({(u′, u′)
∣

∣u′ ∈ [[Ψ]]} ◦ [[a]])

= ({(u, u)
∣

∣u ∈ [[Φ]]} ∪ {(u′, u′)
∣

∣u′ ∈ [[Ψ]]}) ◦ [[a]]

= {(v, v)
∣

∣v ∈ [[Φ]] ∪ [[Ψ]]}) ◦ [[a]]

= {(v, v)
∣

∣v ∈ [[Φ ∨ Ψ]]}) ◦ [[a]]

2. Now we observe that a DPA as the one shown in �gure 5 stems from a

PDL program that has the following appearane:

(Φ ∧ Ψ)?; a ∪ (¬Φ ∧ Ψ)?; a ∪ (Φ ∧ ¬Ψ)?; a

Applying to this program the semanti de�nitions of PDL yields:

[[(Φ ∧ Ψ)?; a ∪ (¬Φ ∧ Ψ)?; a ∪ (Φ ∧ ¬Ψ)?; a]] =

[[(Φ ∧ Ψ)?; a]] ∪ [[(¬Φ ∧ Ψ)?; a]] ∪ [[(Φ ∧ ¬Ψ)?; a]]

= ... = ({(w, w)
∣

∣w ∈ ([[(Φ ∧ Ψ)]] ∪ [[(¬Φ ∧ Ψ)]] ∪ [[(Φ ∧ ¬Ψ)]])}) ◦ [[a]]

= ({(w, w)
∣

∣w ∈ [[(Φ ∧ Ψ) ∨ (¬Φ ∧ Ψ) ∨ (Φ ∧ ¬Ψ)]]}) ◦ [[a]]

22

So, we have to show:

[[Φ ∨ Ψ]] ≡ [[(Φ ∧ Ψ) ∨ (¬Φ ∧ Ψ) ∨ (Φ ∧ ¬Ψ)]]

This an be aomplished in two di�erent ways:

1. Truth table: Comparing the truth tables of the two respetive formulae

yields the desired equivalene result:

Φ Ψ Φ ∨ Ψ Φ ∧ Ψ ¬Φ ∧ Ψ Φ ∧ ¬Ψ (Φ ∧ Ψ) ∨ (¬Φ ∧ Ψ) ∨ (Φ ∧ ¬Ψ)
0 0 0 0 0 0 0

0 1 1 0 1 0 1

1 0 1 0 0 1 1

1 1 1 1 0 0 1

2. Syntati transformations:

(Φ ∧ Ψ) ∨ (¬Φ ∧ Ψ) = (Ψ ∧ Φ) ∨ (Ψ ∧ ¬Φ) = Ψ ∧ (Φ ∨ ¬Φ) = Ψ

Now applying this result to the third disjunt:

Ψ ∨ (Φ ∧ ¬Ψ) = (Ψ ∨ Φ) ∧ (Ψ ∨ ¬Ψ) = Ψ ∨ Φ

Thus, we ould prove the laim that both automata are in fat equivalent. A

few remarks on the meaning of equivalene in this ontext are in order.

Meaning of Equivalene in the Context of SPDL Programs Equiv-

alene in the ontext of PDL deterministi and non-deterministi program

automata annot be onsidered to be language equivalene in the sense of

�nite automata as known from language theory. If the test formulae are in-

terpreted as part of the ation the languages of both automata types are

learly di�erent.

In our ontext equivalene has to be interpreted as equivalene with respet

to exeutability of programs. We have shown in the previous subsetion that

DPAs and NPAs are equivalent in this sense. Given a model M over whih

the test are interpreted we ould show that the programs ρDPA and ρNPA are

equivalent, i.e. if ρDPA led to an aepting state in AρDPA
then ρNPA also led

to an aepting state in AρNPA
.

23

Example: We will now illustrate the funtionality of the algorithm from

�gure 3 by means of a small example.

Example 1. Let ρ := (Ξ?; a)∗; Θ?; a. Construt Aρ. The onstrution of N ′
ρ

is straightforward, only the �nal result is displayed in �gure 6:

Ξ?; a

zi

Θ?; a

zj

Fig. 6. Automaton N ′
for ρ

The transitions Ξ?; a and Θ?; a will be replaed in A by: (Ξ ∧Θ)?; a, (¬Ξ ∧
Θ)?; a and (Ξ ∧ ¬Θ)?; a, all emanating from zi. The suessor states for the

respetive transitions are as follows:

δA(zi, (Ξ ∧ Θ)?; a) = {zi, zj}

δA(zi, (¬Ξ ∧ Θ)?; a) = {zj}

δA(zi, (Ξ ∧ ¬Θ)?; a) = {zi}

This yields the following automata graph for Aρ: The onstrution of N ′
ρ is

straightforward, only the �nal result is displayed in �gure 7:

{zi}

(¬Ξ ∧ Θ)?; p

(Ξ ∧ Θ)?; p

(Ξ ∧ ¬Θ)?; p

(¬Ξ ∧ Θ)?; p

(Ξ ∧ Θ)?; p

{zi, zj}

{zj}

(Ξ ∧ ¬Θ)?; p

Fig. 7. Automaton A for ρ

24

6 Model Cheking SPDL

The model heking proedure we present is an adaption of that of CSL [3℄

and aCSL+ [16℄. This again is an adaption of that of CTL.

In SPDL the model heking proedure for non-probabilisti formulae is

the same as for CTL. In the sequel we will provide means to model hek

probabilisti SPDL-state and -path formulae. Model heking path formulae

as desribed in this setion assumes that I = [0, t′].

6.1 Computing Stationary State Measures

The model heking proedure for omputing stationary state measures is

roughly the same as for CSL, whih was desribed in [3℄. The labelling fun-

tion of the ASMC is extended by the notion of a 'harateristi state formula':

De�nition 17 (Charateristi state formula). A harateristi state for-

mula qs is an atomi, propositional formula, only valid in state s of a spei�

ASMC M.

The de�nition of harateristi state formula an be extended to the notion

of a harateristi state set formula:

Let S ′ ⊆ S:

qS′ :=

|S′|
∨

i=1

qs′i

This formula is valid in eah s′ ∈ S ′
:

s′i 6|= q′s′j , i� i 6= j

s′i |= q′s′j , i� i = j

⇒ s′i |=

|S′|
∨

i=1

qs′i
, i� si ∈ S ′

For the omputation of steady state measures no programs are needed. For

P and R one obtains the following generalisations:

De�nition 18 (Generalisations of P and R).

� RA(s, s′): total rate to ome from s to s′ by exeuting an arbitrary ation

from A. For an a ∈ A for whih holds (s, a, λ, s′) 6∈ R, this rate is zero.

25

� PA(s, s′): total probability to reah s via s′ by exeution of an arbitrary

ation a ∈ A. For a ∈ A for whih holds (s, a, λ, s′) 6∈ R, this probability

is zero.

Let BSCC(M) the set of bottom strongly onneted omponents (BSCCs)

of M. For the omputation of steady state measures in SPDL we obtain the

following pseudo-algorithm:

The formula Ψ := S⊲⊳p(Φ) has to be heked, i.e., to satisfy Φ it must hold:

πM(s, Sat(Φ)) ⊲⊳ p

1. Compute BSCC(M) = {B1, B2, ..., Bm}.
2. Compute the set of states that satisfy Φ: Sat(Φ)
3. BSat(Φ)(M) := {Bi ∈ BSCC(M)

∣

∣Bi ∩ Sat(Φ) 6= ∅}.

4. πM(s, Sat(Φ)) =
∑

B∈BSat(Φ)(M)

(

Prob(s, FqB) ·
∑

s′∈B∩Sat(Φ) πB(s′)
)

qB is the harateristi state set formula from de�nition 17. To ful�ll FqB

eventually a state s ∈ B must be reahed. πB(s′) is the stationary state

probability of s′ to be in B. πB(s′) is omputed as follows:

πB(s′) =

1 if B = {s′}
∑

s∈B,s 6=s′ π
B(s) · RA(s, s′) =

πB(s′) ·
∑

s∈B,s 6=s′ RA(s, s′), with

∑

s∈B,s 6=s′ π
B(s) = 1 otherwise

Prob(s, FqB) denotes the probability to �nally reah B and is omputed as

follows:

Prob(s, FqB) =

{

1 if s |= qB
∑

s′ PA(s, s′) · Prob(s′, FqB) otherwise

6.2 Model Cheking Probabilisti Path Formulae by Solving

Integral Equations

At �rst we reall from subsetion 4.2 that probabilisti path formulae are of

the form: P⊲⊳p(Φ[ρ]IΨ), where ρ is a program. I is the losed interval from 0
to t. From M only those paths are relevant for the measure that generate

program instanes on paths that are instanes of ρ, i.e. those instanes that
lead in Aρ from the initial state to an aepting state.

For a state z ∈ ZAρ we de�ne its ativation set:

26

De�nition 19 (Ativation set). For an arbitrary state z of Z we de�ne

L(z) := {a ∈ Σρ

∣

∣∃z′ ∈ ZAρ(δAρ(z, a) = z′)}

i.e. L(z) is the set of all elements from Σρ that emanate from z.

Furthermore, Prob(s, Φ[ρ]IΨ) = W (s, Φ[ρ]IΨ, zStart
ρ), whih will be hara-

terised as follows:

W (s, Φ[ρ]IΨ, zρ) =

1 ⇐⇒ (M, s |= Ψ ∧ zρ ∈ Eρ) or
(M, s |= Ψ ∧ (∃Ξ(M, s |= Ξ))∧
δρ(zρ, Ξ?;) ∈ Eρ

0 ⇐⇒ (M, s |= ¬Φ ∧ ¬Ψ) or
(M, s |= ¬Φ ∧ Ψ ∧ zρ 6∈ Eρ∧
¬∃Ξ ∈ Sat(s)(δρ(z, Ξ?;) ∈ δρ∧
δρ(z, Ξ?;) ∈ Eρ)) or
(M, s |= (Φ ∧ Ψ) ∧M, s |= ¬Ξ∧
δρ(zρ, Ξ?;) ∈ Eρ

∧L(zρ) = {Ξ?})
t
∫

0

e−E(s)·x ·
∑

a∈L(zρ) ·
∑

s′∈S Ra(s, s
′)·

W (s′, Φ[ρ′]<I⊖xΨ, δρ(zρ, a))dx ⇐⇒M, s |= Φ ∧ ¬Ψ

(1)

This deserves some words of explanation:

� We denote by I ⊖ x the following di�erene: {t − x
∣

∣t ∈ I ∧ t ≥ x}.
� Case 1: If the urrent state s in M is a state in whih Ψ holds and z in

Aρ is an aepting state then the probability that formula ϕ is satis�ed

is equal to one. Alike the probability to satisfy ϕ is equal to one, i� s in

M is a state satisfying Ψ and Ξ and the only transition from the urrent

state in Aρ is labelled Ξ?; and leads to an aepting state.

� Case 2: If s in M is a state that satis�es neither Φ nor Ψ , then the

probality to satisfy ϕ is equal to zero. The same holds for a state s that

satis�es ¬Φ∧Ψ , but Aρ is not in an aepting state. Alike, the probability

to satisfy ϕ is zero, i� s is a state satisfying Ψ , but not Ξ and the urrent

Aρ-state is not aepting and the only transition leaving Aρ is labelled

with Ξ?;.
� Case 3: If s in M is a Φ-state then the probability to satisfy ϕ is equal

to the probability to leave s in x time units and reah a state s′. This
probability is taken over all atomi programs for whih δA is de�ned.

27

This probability is multiplied with the probability to reah within I ⊖ x,
or equivalently t−x, time units a suessor state s′ in M. As it might be

the ase that Aρ o�ers several, di�erently labelled, outgoing transitions

from its urrent state to some suessor states the probabilities have to

be summed up over all these di�erent labellings. ρ′
is the program that

remains to be exeuted, after the exeution of atomi program a.

When haraterising the probabilities via systems of integral equations, a

numerial, approximate proedure to solve them an be used. But the on-

vergeny of suh methods is not satisfatorily, therefore, like in [3℄ we propose

the approah to ompute path probabilities via transient analysis.

6.3 Model Cheking Probabilisti Path Formulae by Transient

Analysis

To be able to do model heking of probabilisti path formulae by transient

analysis, it is neessary to onstrut a produt automaton M×
, from the

ASMC M and the deterministi program automaton Aρ, i.e. M := M×Aρ.

The onstrution proess roughly proeeds as follows:

The transition labellings a ∈ Act are omitted. Rate informations and state

labellings in M×
are taken from M. Let s be the urrent state in M and

z the urrent state in Aρ, then transitions from s having labellings that do

not orrespond to any of the labellings of transitions emanating from z are

direted in M×
to an absorbing error state FAIL. Transitions in M×

are not

direted to FAIL if the urrent M-state s satis�es Φ and o�ers a transition

whose labelling orresponds to one of the labellings of the urrent state z in

the DPA or if state s satis�es Φ and Ξ and o�ers a transition whith labelling

a, and in Aρ z possesses a transition labelled Ξ?; a. If in M×
an aepting

state is reahed, i.e. a state whih omponents s and z are states satisfying

Ψ respetive are an aepting state in the DPA, the proedure stops.

The general idea behind our method is to redue the model heking prob-

lem for probabilisti path formulae in SPDL to the model heking problem

of CSL. I.e. we transform the SPDL formula Φ[ρ]IΨ into the CSL formula

FIχG, where χG is a harateristi formula whih is attributed to those states

in the produt automaton, whih ASMC omponents satisfy Ψ and whih au-

tomaton omponents are aepting states of the program automaton.

The produt automaton M×
is alled 'state-labelled Markov-hain' whih

is de�ned as follows:

28

De�nition 20 (state-labelled Markov-hain, SMC). Let the ASMC
M = (S, A, L, R) and the DPA Aρ = (Zρ, Σρ, z

start
ρ , Eρ, δρ) given. The SMC

M× = (S×, R×, L×) is de�ned as follows:

� S×
Start ⊆ S×

� S×
Acc ⊆ S×

� R× ⊆ S× × IR+ × S×

� state spae: S× := {(si, z
j
ρ)

∣

∣si ∈ S ∧ zj
ρ ∈ Zρ} ∪ {FAIL}

� initial states: S×
Start := {(si, z

Start
ρ

∣

∣si ∈ S}

� aepting states: S×
Acc := {(si, z

j
ρ) ∈ S×

∣

∣si ∈ Sat(Ψ) ∧ zj
ρ ∈ Eρ}

� labelling:

1. ∀(si, z
j
ρ) ∈ S×\S×

Acc(L
×(si, z

j
ρ) = L(si))

2. ∀(si, z
j
ρ) ∈ S×

Acc(L
×(si, z

j
ρ) = {χG})

� transition funtion: R× ⊆ (S × Z) × IR>0 × (S × Z)

χG is a state formula that haraterises exatly those states whih automaton

part is an aepting state and whih Markov hain part is a state in whih

the formula Ψ of the path formula Φ[ρ]≤tΨ holds.

De�nition 21. For A, B ∈ 2S××IR+×S×
with B = ∅ or |B| = 1, A ⊎ B is

de�ned as follows:

� B = ∅: A ⊎ B = A
� |B| = 1 ∧ B = {(s, λ, s′)}:

A ⊎ B =

{

A ∪ B iff 6 ∃γ ∈ IR+((s, γ, s′) ∈ A)
(A\{(s, γ, s′)} ∪ {(s, γ + λ, s′)} otherwise

R×
is suesively de�ned as follows:

1. In the SMC no aepting state has been reahed. The original state s
in M satis�es Φ. M o�ers transitions with labelling a, so does Aρ. The

target state s′ in M satis�es Φ or Ψ and at the same time the target state

of Aρ, z′ must be aepting.

R× ⊎ {(s, zρ), λ, (s′, z′ρ)
∣

∣ s
a,λ
−→ s′ ∧ zρ

a
−→ z′ρ ∧

s ∈ Sat(Φ) ∧

(s, zρ) 6∈ S×
Acc ∧

[s′ ∈ Sat(Φ) ∨ (s′, z′ρ) ∈ S×
Acc]}

29

2. In the SMC no aepting state has been reahed. The original state s
in M satis�es Φ. Aρ o�ers a test transition with test Ξ?; and atomi

program a. M o�ers transitions with labelling a and satis�es the test

formula of the orresponding transition in the DPA. The target state of
M satis�es Φ or Ψ and at the same time the target state of Aρ, z′ must

be aepting.

R× ⊎ {(s, zρ), λ, (s′, z′ρ)
∣

∣ s
a,λ
−→ s′ ∧ zρ

Ξ?;a
−→ z′ρ ∧

s ∈ Sat(Φ) ∧

(s, zρ) 6∈ S×
Acc ∧

s ∈ Sat(Ξ) ∧

[s′ ∈ Sat(Φ) ∨ (s′, z′ρ) ∈ S×
Acc]}

3. In the SMC no aepting state has been reahed. The original state s inM
satis�es Φ. Aρ o�ers in z a transition with labellings from Actρ the target

state of this transition o�ers a transition with a labelling from TEST, say

Θ. M satis�es in s the test formula of the orresponding z-transition.
The target state of M satis�es Ψ and Θ.

R× ⊎ {(s, zρ), λ, (s′, z′′ρ)
∣

∣ s
a,λ
−→ s′ ∧ zρ

Ξ?;a
−→ z′ρ

Θ?
−→ z′′ρ ∧

s ∈ Sat(Φ) ∧

s ∈ Sat(Ξ) ∧

(s, zρ) 6∈ S×
Acc ∧

s′ ∈ Sat(Θ) ∧

[(s′, z′′ρ) ∈ S×
Acc]}

4. In the SMC no aepting state has been reahed. The original state s in

M satis�es Φ. M o�ers in s a transition labelled with a. Aρ does not o�er

a transition bearing suh a labelling.

R× ⊎ {(s, zρ), λ, FAIL
∣

∣ s
a,λ
−→ s′ ∧

s ∈ Sat(Φ) ∧

(s, zρ) 6∈ S×
Acc ∧

(zρ
a

−→ z′ρ) 6∈ δρ}

5. In the SMC no aepting state has been reahed. The original state s in

M satis�es Φ. Both M and Aρ o�er in s resp. z a transition labelled with

30

a. The target state of M does not satisfy Φ and the target state of M×

is not aepting.

R× ⊎ {(s, zρ), λ, FAIL
∣

∣ s
a,λ
−→ s′ ∧ zρ

a
−→ z′ρ ∧

s ∈ Sat(Φ) ∧

(s, zρ) 6∈ S×
Acc ∧

[s′ 6∈ Sat(Φ) ∧ (s′, z′ρ) 6∈ S×
Acc]}

6. In the SMC no aepting state has been reahed. The original state s in

M satis�es Φ. Both M and Aρ o�er in s resp. z a transition labelled

with a, where in Aρ a is preeeded by a test. M does not satisfy the test

formula in its urrent state s.

R× ⊎ {(s, zρ), λ, FAIL
∣

∣ s
a,λ
−→ s′ ∧ zρ

Ξ?;a
−→ z′ρ ∧

s ∈ Sat(Φ) ∧

(s, zρ) 6∈ S×
Acc ∧

s 6∈ Sat(Ξ)}

7. In the SMC no aepting state has been reahed. The original state s in

M satis�es Φ. Both M and Aρ o�er in s resp. z a transition labelled with

a, where in Aρ a is preeeded by a test. The target state of M does not

satisfy Φ and the target state of M×
is not aepting.

R× ⊎ {(s, zρ), λ, FAIL
∣

∣ s
a,λ
−→ s′ ∧ zρ

Ξ?;a
−→ z′ρ ∧

s ∈ Sat(Φ) ∧

(s, zρ) 6∈ S×
Acc ∧

s ∈ Sat(Ξ) ∧

[s′ 6∈ Sat(Φ) ∧ (s′, z′ρ) 6∈ S×
Acc]}

8. In the SMC no aepting state has been reahed. The original state s in

M satis�es Φ. Both M and Aρ o�er in s resp. z a transition labelled

with a, where in Aρ a is preeeded by a test. The target state z′ρ is not

aepting and o�ers a transiton with labelling from TEST to an aepting

state z′′ρ . The target state s′ of M does not satisfy Θ.

R× ⊎ {(s, zρ), λ, FAIL
∣

∣ (s
a,λ
−→ s′ ∧ zρ

Ξ?;a
−→ z′ρ

Θ?
−→ z′′ρ) ∧

(s, zρ) 6∈ S×
Acc ∧

s′ 6∈ Sat(Θ) ∧

z′′ρ ∈ Eρ}

31

6.4 Corretness of Model Transformation

In this subsetion we will show that our transformation is orret, i.e. we

show that the probability mass of the CSL formula that is heked in model

M×
is equal to the probability mass of the original formula Φ[ρ]IΨ in the

original model M.

To summarise the idea of setion 6.3 we have done the following to perform

transient analysis to hek probabilisti SPDL path formulae:

� Transforming M to M×

� thereby transforming Φ[ρ]IΨ to FIχG

The following theorem states that the transformation steps are orret:

Theorem 4 (Corretness of model transformation). The transforma-

tion of M into M×
is orret. I.e. the probability of satisfying Φ[ρ]IΨ in M

is equal to the probability of reahing χG within time t ∈ I in M×
:

Pr{σ ∈ PathM
s

∣

∣ M, σ |= Φ[ρ]IΨ} = Pr{σ× ∈ PathM×

(s,z0)

∣

∣ ∃t ∈ I : M×, σ×@t |= FIχG}

Before we an prove theorem 4 we need the following de�nitions:

De�nition 22 (Indiator funtion). The funtion Ind(M, s, φ) indiates,
whether an arbitrary SPDL state formula φ is satis�ed in a given state s of

a �xed model M:

Ind(M, s, φ) =

{

1 i� M, s |= φ
0 else

For the reader's onveniene we repeat de�nition 19:

De�nition 23 (Ativation set). For an arbitrary state z of Z we de�ne

L(z) := {a ∈ Σρ

∣

∣∃z′ ∈ ZAρ(δAρ(z, a) = z′)}

i.e. L(z) is the set of all elements from Σρ that emanate from z.

De�nition 24 (End ondition of a program). Let ρ be a program and

A its orresponding program automaton. The end onditions of a program ρ
are those su�xes of form Φ?; ǫ, where Φ = true is possible.

Finz(A) =

true i� z ∈ E
false i� z 6∈ E ∧ ∀a ∈ L(z) : (δ(z, a) 6∈ E)
Φ1 ∨ ... ∨ Φn i� z 6∈ E ∧ ∀i : (Φi?; ǫ ∈ L(z)) ∧ ∃Φi : (δ(z, Φi?; ǫ) ∈ E)

32

Proof (Theorem 4). We will prove theorem 4 by indution on the length of

paths.

Indution start: |σ| = |σ×| = 1: Using the standard semantis of CSL

(f. [3℄) we obtain:

Pr{σ× ∈ PathM×

(s,z0)

∣

∣ ∃t ∈ I : (M×, σ×@t |= χG)} =
∫ t

0

∑

(s′,z′)∈S×

R((s, z0), (s
′, z′)) · e−E((s,z0))·x · Ind(M×, (s′, z′), χG)dx

As the length of the path is one, Ind(M×, (s′, z′), χG) is either 1 or 0, i.e. χG

either holds in (s′, z′) or does not.
For the original formula, the probability measure an be haraterised as

follows:

Pr{σ ∈ PathM
s

∣

∣ M, σ |= Φ[ρ]IΨ} =
∫ t

0

∑

{Φ?;a|Φ?;a∈L(z)∧M,s|=Φ}

∑

s′∈S

Ra(s, s
′) · e−E(s)·x · Ind(M, s′, Ψ ∧ Finz′(A))dx

Therefore we will now show that:

∫ t

0

∑

{Φ?;a|Φ?;a∈L(z)∧M,s|=Φ}

∑

s′∈S

Ra(s, s
′) · e−E(s)·x · Ind(M, s′, Ψ ∧ Finz′(A))dx =

∫ t

0

∑

s′∈S

∑

{Φ?;a|Φ?;a∈L(z)∧M,s|=Φ}

Ra(s, s
′) · e−E(s)·x · Ind(M, s′, Ψ ∧ Finz′(A))dx =

∫ t

0

∑

(s′,Z′)∈S∗

R((s, Z0), (s
′, Z ′)) · e−E((s,Z))·x · Ind(M×, (s′, Z ′), χG)dx

The last equation holds, sine by onstrution of M×
we an onlude that

∑

{Φ?;a|Φ?;a∈L(z)∧M,s|=Φ} R(s, s′) = R((s, z0), (s
′, z′)). Therefore and by on-

strution it holds that the two outer sums are equal. By onstrution of M×

fromM we onludeE(s) = E((s, z0)). Ind(M×, (s′, z′), χG) = Ind(M, s′, Ψ∧
Finz′(A)) by onstrution, as those states are labelled with χG in whih

Finz′(A)) and Ψ hold and in A an aepting state has been reahed.

Indution step:We assume that for paths of length n the assumption holds,

now we onsider paths σ×
resp. σ of lenght n + 1:

33

Let σ×′
resp. σ′

be paths of length n, where σ×′
is su�x of σ×

and σ′
is

su�x of σ, then

Pr{σ× ∈ PathM×

(s,Z0)

∣

∣M×, σ×@t |= χG} =

∫ t

0

∑

(s′,Z′)∈S×

R((s, Z0), (s
′, Z ′)) · e−E((s,Z0))·x · Pr{σ×′

∈ PathM×

(s,Z0)

∣

∣M×, σ×′

@(t − x) |= χG}

Analogously:

Pr{σ ∈ PathM
s∈S

∣

∣M, σ |= Φ[ρ]≤tΨ} =

∫ t

0

∑

{Φ?;a|Φ?;a∈L(z)∧M,s|=Φ}

Ra(s, s
′) · e−E(s)·x · Pr{σ′ ∈ PathM

s∈S

∣

∣M, σ′ |= Φ[ρ′]≤t−xΨ}

where ρ′
is the su�x of ρ. Using I.H. and the indution start we onlude

that the theorem holds, i.e.

Pr{σ× ∈ PathM×

(s,Z0)

∣

∣M×, σ×@t |= χG} = Pr{σ ∈ PathM
s∈S

∣

∣M, σ |= Φ[ρ]≤tΨ}

7 Details: Numerial Analysis Methods

This setion aims to give a quik overview of mathematial methods we re-

ferred to and that are used for veri�ation of path formulae.

5

In setion 6.2

we gave an integral equation haraterisation of the probability measure for

time bounded path formulae. As mentioned earlier, model heking by di-

retly solving integral equations is not satisfatory, beause the numerial

properties are not satisfatory. Therefore, more e�ient means have been de-

vised to solve the model heking problem. As the integral haraterisation

is only needed in 6.2 we will not go into details and refer to any book on

numerial analysis, e.g. [6℄.

7.1 Transient Analysis and Uniformisation

Transient Analysis: The numerial properties of diret approahes to solve

the Volterra integral equation system diretly are not satisfatory. The trans-

formation of the original ASMC M into SMC M×
however, makes it possi-

ble to redue the model heking problem of time bounded path formulae to

transient analysis of the CTMC at hand.

5

This overview does not laim to be exhaustive!

34

In general, to do transient analysis on CTMCs it is neessary to solve the

Chapman-Kolmogorov di�erential equation system:

d

dt
~ρM×

(α, t) = ~ρM×

(α, t) · Q.

~ρM×
(α, t) is a vetor of length

∣

∣S×
∣

∣

and its elements are the probability to

be at time instant t in state s ∈ S×
, given an initial distribution α.

Q is the in�nitesimal generator matrix and is derived from the rate matrix

R, by setting Q(s, s′) = R(s, s′), if s 6= s′. The rate matrix R haraterises

the transitions between the states of a CTMC. If R(s, s′) = λ, λ > 0, then it

is possible to move from s to s′ with rate λ. The diagonal elements of R are

replaed by Q(s, s) = −E(s, s) = −
∑

s 6=s′ R(s, s′).
The unique solution of the Chapman-Kolmogorov di�erential equation sys-

tem is given as follows:

~πM×

(α, t) = ~πM×

(α, 0) · eQ·t

The matrix exponential an be rewritten as follows (Taylor series expansion):

eQ·t =

∞
∑

k=0

(Q · t)k

k!

The attempt to solve the matrix exponential using the Taylor expansion is

not satisfatory, beause ([17℄):

� the trunation point of the series an not be omputed e�iently

� the round-o� errors are note negligeable, beause Q ontains both nega-

tive and non-negative entries.

� where Q is sparse, it is the ase that (Q · t)i
beomes non-sparse.

Therefore more appropriate means have to be used to solve the equation.

Uniformisation: For uniformisation we de�ne a stohasti matrix P , i.e. a

matrix having entries that range from 0 to 1. P is derived from Q:

P := I +
Q

λ

I is the identity matrix. λ is hosen as the maximum absolute value of the

diagonal entries of the generator matrix Q, i.e. λ ≥ max(
∣

∣Q(i, i)
∣

∣). Therefore
it is obvious, that P is a stohasti matrix. P is a DTMC. We rewrite Q:

Q = λ · (P − I)

35

We obtain:

~πM×

(α, t) = ~πM×

(α, 0) · eQ·t = ~πM×

(α, 0) · e(λ·(P−I))·t

= ~πM×

(α, 0) · e−λ·I·t · e−λ·P ·t = ~πM×

(α, 0) · e−λ·t · e−λ·P ·t

Using a series expansion we have

~πM×

(α, t) = ~πM×

(α, 0) · e−λ·t ·
∞

∑

k=0

(λ · t)k · P k

k!

e−λ·t · ((λ · t)k/(k!)) are Poisson probabilities.

This Taylor-series now an be solved more e�iently. We write the equation

above as follows:

~πM×

(α, t) =
∞

∑

k=0

e−λ·t (λ · t)k · P k

k!
=

∞
∑

k=0

e−λ·t (λ · t)k

k!
· (~πM×

(α, 0) · P n)

=
∞

∑

k=0

e−λ·t (λ · t)k

k!
· ~πk

~πk is the distribution of state probabilities in the DTMC P after k steps and

an be omputed reursively:

~π0 = ~π(α, 0) ~πk = ~πk−1 · P

Now, we have redued the problem to a number of vetor-matrix multiplia-

tions. The question is, how large this 'number' is, i.e. we have to determine

the trunation point of the series. We ompute ~πapprox instead of ~π, beause
the series looks like this:

~πM×

approx(α, t) =

napprox
∑

k=0

e−λ·t (λ · t)k

k!
· ~πk

This truation point napprox an be omputed e�iently. It has to be the least

value for napprox that satis�es the following ondition:

napprox
∑

k=0

(λ · t)k

n!
≥ (1 − ǫ) · e−λ·t

36

Where ǫ is the maximum round-o� error we allow. The Poisson probabilities

are omputed using the Fox-Glynn-algorithm [9℄. To hek the validity of the

path formula a method like the one desribed in [4, 13℄ an be employed.

The CTMC M×
, on whih we hek the variant of the original path for-

mula, Π = P⊲⊳p(Φ [ρ]I Ψ), transformed to Π ′ = P⊲⊳p(true UI SUCC), has
to be uniformised, unif(M×) := U . On U we hek whether the probability

bound p holds for Π resp. Π ′
.

8 Example: System Model and Measures

To illustrate our approah, speifying and heking performability measures

using the logi SPDL, we onsider an example, see �gure 8.

8.1 The System Model

The model in �gure 8 represents a system that reeives four data pakets and

proesses them, this behaviour is repeated inde�nitely.

In more detail, an arrival is modelled by ation a, eah data paket an

be error-free, arrival rate λ, or erroneous, arrival rate µ. An erroneous data

paket an be orreted (co, γ), or an not be orreted, (e, δ). If it an not be

orreted, the bu�er is emptied and all data pakets have to be retransmitted,

(rt, κ). If all data pakets are error-free or orretable, then the reeived date

an be proessed (prc, ω) and the system awaits new data.

21 3 4 5

7 9

10

6 8

PSfrag replaements

BBBB

C

CCC

D

D

D

D

a, λa, λa, λa, λ

B = a, µ, C = co, γ, D = e, δ,

rt, κ

prc, ω

Fig. 8. System model - A 4-plae bu�er with erroneous arrivals

37

8.2 Performability Measures

To fully exploit the power of SPDL in de�ning performability measures we

have to provide some details about the state labellings, i.e. formulae that are

valid in the states of the system model. The example system has 10 states,

enumerated 1 to 10.

� State 1: {empty}
� State 5: {full}
� State 6-10: {error}

Now, we will give some example measures:

1. Φ1 := P≥0.9((¬full)[a∗; e; rt; a∗ ∪ a∗][0,5](full)): Is the probability to reeive

4 data pakets without error or with at most one non-orretable error

within 5 time units greater than 0.9?

2. Φ2 := P>0(¬full[a][0,∞)full): Is the probability to reah a state, in whih

the bu�er is full with a single arrival greater than zero? Φ2 haraterises

state 4, as this is the only state from whih it is possible to reah the only

state, state 5, for whih it is true that the bu�er is full.

3. Φ3 := P≤0.1(true[a∗; (Φ2?; a; (co∪ e))][0,∞)true): Is the probability that the

fourth paket ontains an error, orretable or inorretable, at most ten

perent, given that all preeedings pakets were error-free?

4. Φ4 := P≤0.85((¬full)[(a∪a; co)∗][0,10](full)): Is the probability to reah state

5 within 10 time units, provided no paket ontains inorretable errors,

at least 85 %?

5. Φ5 := P≤0.75(true[a∗; Φ2?; a; (e ∪ co); (error?; rt; a∗ ∪ full?)][0,25]true): Is the
probability to reah state 5 within 25 time units, given the only erroneous

paket arrived was the 4th one and either the paket ontains a orretable

or inorretable error, at most 75 perent?

6. Φ6 := P≤0.01(true[a∗; Φ2?; a; co][0,7.3]true): Is the probability that the bu�er
is full after at most 3 time units and that the 4th paket ontains a

orretable error, given that all preeeding pakets were error free, at

most one perent?

8.3 Building the Produt Automaton

Consider the example system M, from �gure 8 and the requirement ϕ :=
P≤0.01(true[a∗; Φ2?; a; co][0,7.3]true)

38

We want to hek whether M satis�es Φ3, provided the system starts in

state 1. At �rst, we derive from a∗; (Φ2?; a; co a non-deterministi automaton

6 Nρ (f. �gure 9).

The test Φ2 forms together with a a single transition. Now, we have to

transform Nρ into a determininisti automaton Aρ (f. �gure 10). In �gure 10

; B CA

A

Dco

B C D
coPSfrag replaements

a

a

a

Φ2?; a

Φ2?; a

Fig. 9. Non-deterministi automaton Nρ for a∗; Φ2?; a; co

DABCAB
co

PSfrag replaements

Φ2?; a

Φ2?; a¬Φ2?; a

¬Φ2?; a

Fig. 10. Deterministi automaton Aρ for a∗; Φ2?; a; co

we see that the labels of the transitions emanating from state AB are labelled

with ¬Φ2?; a resp. Φ2?; a. (f. �gure 11). The state labelled with SUCC is an

absorbing goal state in whih the path formula funtionally holds, the state

labelled with FAIL is an absorbing error state, to whih all transitions are

redireted that lead to states that render the path formula unsatis�able. The

model heking itself, i.e. the hek whether M satis�es the path formula,

would be done by transient analysis.

We assign the following numerial values to the rates:

λ := 0.4 : µ := 0.4 : γ := 0.2 : ω := 0.2 : δ := 0.001;

Assuming a preision of ǫ = 10−6
we obtain after 7 omputation steps that

this property is violated, sine after 7 omputation step the probability to

be in state SUCC equals 0.011786.

6

Grey-shaded states indiate the aepting end states

39

2,AB

3,AB

6,AB

8,AB

7,AB

1,AB

4,AB

9,ABC 5,ABC

SUCC

FAIL

PSfrag replaements

λ

λ

λ

λ

µ

µ

µ

µ

γ

ω

γ + δ

γ + δ

γ + δ

Fig. 11. Produt automaton M× := M× Aρ

9 Bisimulation and Worst Case Complexity

In this short setion we will prove that a variant of the well-known Markov

bisimulation preserves the validity of SPDL formulae and give a worst ase

approximation of model heking probabilisti SPDL path formulae.

9.1 SPDL and Bisimulation

The hosen variant of Markov bisimulation aounts for the fat that beside

rate information also ation labels and state labels, i.e. state formulae have to

be taken into aount to identify states as being equivalent or not equivalent,

we all this bisimulation relation Markov-AP-bisimulation. We will show by

indution the laimed property, i.e. the preservation of the validity of SPDL

formulae under Markov-AP-bisimulation.

40

De�nition 25 (Markov-AP-Bisimulation). Let M = (S, A, L, R) be an
ation- and state-labelled CTMC An equivalene relation B on S is a Markov-

AP-bisumulation over M, if for all (s, s′) ∈ B it holds that:

1. L(s) = L(s′)
2. ∀C ∈ S/ B ∀a ∈ A(Ra(s, C) = Ra(s

′, C))

Where:

� S/ B = {C1, ..., Cn} is the partition of S into equivalene lasses Ci

indued by B .

� Two states s and s′ are alled Markov-AP-bisimilar, if there is a Markov-

AP-Bisimulation that ontains both states.

Theorem 5. Let B be a Markov-AP-Bisimulation, s ∈ M, then we have:

1. ∀Φ(M, s |= Φ ⇐⇒ M/ B , [s] |= Φ
2. ∀φ(ProbM(s, φ) = ProbM/ B ([s], φ)

Let φ = Φ[π]≤tΨ and ρ be an SPDL-program.

The proof is a strutural indution over the length k of formula Φ

Proof (Theorem 5). We start with formulae of length one, i.e. with atomi

formulae. Let the states s and t be in B :

1. Let Φ ∈ AP, d.h. Φ = q: Using the preriquisites it holds: (s, t) ∈ B .

Following the de�nition of B we an onlude: M, s |= q ⇐⇒ M, t |= q.

This ase serves as indution start. As indution hypothesis we assume that

the proposition holds for formulae of length < k.

2. Let Φ = ¬Ψ . Following I.H. it is true that M, s |= Ψ ⇐⇒ M, t |= Ψ , we
are able to prove:

M, s |= ¬Ψ
Sem.
⇐⇒ M, s 6|= Ψ

I.H.
⇐⇒ M, t 6|= Ψ

Sem.
⇐⇒ M, t |= ¬Ψ

3. Let Φ = Ψ ∨ Ξ : Following I.H. gilt M, s |= Ψ ⇐⇒ M, t |= Ψ and

M, s |= Ξ ⇐⇒ M, t |= Ξ . Thus, we have as well:

M, s |= Ψ ∨ Ξ
Sem.
⇐⇒ M, s |= Ψ oder M, s |= Ξ

I.H.
⇐⇒ M, t |= Ψ oder M, t |= Ξ

Sem.
⇐⇒ M, t |= Ψ ∨ Φ

41

4. Let Φ = P⊲⊳p(∆[ρ]≤tΨ). For the proof of this ase we have to demonstrate

that the probability measures of the paths satisfying path formula φ and

emanating from s and t are idential. This requires an indution over the

length n of the paths.

(a) Let the length n = 0: The probability measure of a path satisfying φ
is either zero or one.

i. Let the measure be one: This is the ase i� M, s |= Ψ ∧ zρ ∈ E or

M, s |= Ψ ∧M, s |= Ξ ∧ ρ = Ξ? ∧ δ(zρ, Ξ?) ∈ E. Using the outer

I.H. these assumptions are also valid for state t.
ii. Let the measure be zero: This is the ase i� M, s 6|= Ψ or M, s |=

Ψ ∧M, s 6|= Ξ ∧ ρ = Ξ? ∧ zρ 6 inE. Also in this ase we an apply

the outer indution hypothesis to exhange s and t.

(b) Let n 6= 0: We assume that the laim holds for paths of length < n.
We also assume that the length of the paths is minimal, i.e. for no

path whih is shorter than the onsidered length path formula φ is

satis�able. Let n 6= 0: We assume the assumption holds for paths of

length < n.

Prob(σ ∈ PFAD(s)
∣

∣σ |= φ) =
∫ t

0

eE(s)·x
∑

a∈L(zρ)

∑

s∈S′

Ra(s, s
′) · Prob(σ ∈ PFAD(s′)

∣

∣σ |= φ) =

∫ t

0

eE(s)·x
∑

a∈L(zρ)

∑

C∈M/ B

∑

s∈C

Ra(s, s
′) · Prob(σ ∈ PFAD(s′)

∣

∣σ |= φ)
∗
=

∫ t

0

eE(t)·x
∑

a∈L(zρ)

∑

C∈M/ B

∑

s∈C

Ra(t, s
′) · Prob(σ ∈ PFAD(s′)

∣

∣σ |= φ) =

∫ t

0

eE(t)·x
∑

a∈L(zρ)

∑

s∈S′

Ra(t, s
′) · Prob(σ ∈ PFAD(s′)

∣

∣σ |= φ) =

Prob(σ ∈ PFAD(t)
∣

∣σ |= φ)

∗
= this is true due to the prerequisite that (s, t) ∈ B and the resulting

fat that if s and t are in B they have the same umulative rates for

every target equivalene lass C.

42

5. Let Φ = S⊲⊳p(Ψ). It remains to show that π(s, Sat(Ψ)) = π(t, Sat(Ψ)):

π(s, Sa(Ψ)) =
∑

s′∈S

π(s, {s′}) =
∑

C|=Ψ
C∈M/ B

∑

s′∈C

lim
t′→∞

Pr(σ ∈ PFAD(s)
∣

∣σ@t′ = s′) =

∑

C|=Ψ
C∈M/ B

∑

s′∈C

lim
t′→∞

Pr(σ ∈ PFAD(t)
∣

∣σ@t′ = s′) =
∑

s′∈S

π(t, {s′}) =

π(t, Sa(Ψ))

9.2 Complexity Analysis

Theorem 6 (Worst Case Complexity of SPDL Model Cheking).

For an ation- and state labelled Markov hain M and an SPDL formula Φ,
the time and memory omplexity of the model heking proedure lies in:

O(|Φ| ·
(

(2n − n) · 2Z · N
)

· q · tmax + (((2n − n) · 2Z · N)2.81)

where N = |S| is the number of states, q the largest transition rate, tmax the

maximum time bound of M. (2n−n) ·2Z
is the number of states of the DPA,

where this numbers depend on both the length of the longest program appearing

in any of the subformulae of Φ, and the maximum number of ambiguous tests

that emanate from a state in the NPA.

Proof. Let ρ be the longest program in any of the subformulae of Φ, and
|ρ| = ρm, then an NPA with at most Z = 2 · ρM states an be onstruted.

The orresponding DPA has at most (2n − n) · (2Z) states, where Z = 22·ρM
.

2n − n stems from the fat that we have to determinise the automaton with

respet to ambiguous tests, n is the maximum number of ambiguous tests

emanating from a state of the NPA, thus 2n−n new states have to be added.

(2n − n) · (2Z) · N is the maximum number of states the produt Markov

hain M×
thus may have. The rest follows from [3℄.

10 Extending SPDL with Real Time Intervals

For the sake of ompleteness we de�ne the syntax of SPDLI
.

De�nition 26 (Syntax of SPDLI
). Let p ∈ [0, 1], q ∈ AP and ⊲⊳∈ {<, >

,≤,≥}. SPDL state formulae an be de�ned by the following grammar:

Φ := q
∣

∣ ¬Φ
∣

∣ Φ ∨ Φ
∣

∣ S⊲⊳p(Φ)
∣

∣ P⊲⊳p(φ)

43

Path formulae φ are de�ned as follows:

φ := Φ[ρ]IΦ

where I = [t, t′], t ∈ IR0 ∧ t′ ∈ IR>0. Programs are de�ned by the following

grammar:

ρ := ǫ
∣

∣ρ; ρ
∣

∣ρ ∪ ρ
∣

∣Φ?; ρ
∣

∣ρ1

∣

∣(ρ)

ρ1 := a
∣

∣ρ1; ρ1

∣

∣ρ1 ∪ ρ1

∣

∣ρ∗
1

∣

∣Φ?; ρ1

∣

∣(ρ1)

We have to adapt the original de�nition of words over paths to the needs of

[t, t′] time intervals.

De�nition 27 (Words on paths). The word Wk
of length k, k ≥ 0 over

a path σ ∈ PATH of length k, k ≥ 0 over a path σ ∈ PATH is indutively

de�ned as follows:

W0(σ) = ǫ

. . .

Wk(σ) = Wk−1(σ) ◦ a[k − 1]

with:

a[k − 1] ∈ A ∧ σ[k − 1]
a[k−1],tk−1
−−−−−−→ σ[k]

Wk(σ)@ti = p@ti

is the ation on path σ belonging to the last transition, being terminated on

time point ti.

De�nition 28 (Semantis of path formulae).

M, σ |= ΦSPDLI [ρ]IΨSPDLI ⇐⇒

∃t2 ∈ I((M, σ@t2 |= ΨSPDLI) ∧ ∀t1 ∈ [t, t2)(M, σ@t1 |= ΦSPDLI) ∧

∃p ∈ ρ(∀t1 ∈ [t, t2](|p| = |σ@t2| ∧M, σ@t1 |= TeF (p@t1) ∧W |σ|(σ)@t1 = Act(p@t1))))

where |σ@t2| is de�ned as the length of the path at time point t2.

44

10.1 Charaterisation of Path Formulae by Integral Equations

We now have four ases, the notation is the same as in setion 6.2.

W (s, Φ[ρ][t,t
′]Ψ, zρ) =

1 ⇐⇒ t = 0 ∧ (M, s |= Ψ ∧ zρ ∈ Eρ) or
(M, s |= Ψ ∧M, s |= Ξ∧
δρ(zρ, Ξ?;) ∈ Eρ)

e−E(s)·t+
t
∫

0

e−E(s)·x ·
∑

a∈A(zρ) ·
∑

s′∈S Ra(s, s
′)·

W (s, Φ[ρ′]<I⊖xΨ, δρ(zρ, a))dx ⇐⇒M, s |= Φ ∧ Ψ, t > 0

t′
∫

0

e−E(s)·x ·
∑

a∈A(zρ) ·
∑

s′∈S Ra(s, s
′)·

W (s, Φ[ρ′]<I⊖xΨ, δρ(zρ, a))dx ⇐⇒M, s |= Φ ∧ ¬Ψ

0 ⇐⇒ (M, s |= (¬Φ ∧ ¬Ψ)) or
(M, s |= (¬Φ ∧ Ψ)∧
¬∃Ξ ∈ Sat(s)(δρ(zρ, Ξ?) ∈ δρ)∧
δρ(zρ, Ξ?) ∈ Eρ) or
(M, s |= (Φ ∧ Ψ) ∧M |= ¬Ξ∧
δρ(zρ, Ξ?) ∧ L(zρ) = {Ξ?})

Exept for the seond ase this haraterisation is idential to the one in

setion 6.2. The seond ase has the following explanation:

The probability to ful�ll ϕ is the probability to stay for more than t > 0
time units in state s plus the probability to reah s′ from s within x time

units, x ≤ t and to satisfy Φ[ρ′]I⊖xΨ along a path starting in s′.

11 Conlusions

In this tehnial report, we have presented the de�nition of a powerful stohas-

ti logi that is apable of onisely and preisely expressing a rih variant

of performability measures. We have also devised an algorithm for model

45

heking probabilisti SPDL path formulae by transforming the underlying

model and thereby reduing it to the model heking problem of CSL, for

whih solution e�ient algorithms exist. Furthermore we have proven some

theoretial results on SPDL.

For the future we plan to integrate a stohasti model heking engine

into our symboli performane evaluation tool CASPA [15℄. On the theoret-

ial side we plan to extend SPDL by random time intervalls, suh that the

upper bound is not neessarily longer a �xed value but an be drawn from

an arbitrary probability dsitribution. Further, we want to allow immediate

transitions, here, we expet various hanges in the model heking proedure,

as now untimed transitions in the model an be mathed by transitions in the

automata. Additionally we want to ompare the expressive powers of various

stohasti logis with that of SPDL.

Referenes

1. A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Verifying ontinuous time Markov hains.

In R. Alur and T.A. Henzinger, editors, Computer-Aided Veri�ation, volume LNCS 1102,

pages 146�162. Springer, 1996.

2. A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model heking ontinous time Markov

hains. ACM Transations on Computational Logi, 1(1):167�170, 2000.

3. C. Baier, B. Haverkort, H. Hermanns, and J.P. Katoen. Model-Cheking Algorithms for

Continuous-Time Markov Chains. IEEE Trans. Software Eng., 29(7):1�18, July 2003.

4. C. Baier, B.R. Haverkort, J.-P. Katoen, and H. Hermanns. Model Cheking Continuous-Time

Markov Chains by Transient Analysis. In E.A. Emerson and A.P. Sistla, editors, Computer

Aided Veri�ation, volume LNCS 1855, pages 358�372. Springer, 2000.

5. C. Baier, J.-P. Katoen, and H. Hermanns. Approximate Symboli Model Cheking of

Continuous-Time Markov Chains. In J.C.M. Baeten and S. Mauw, editors, Conurreny The-

ory, volume LNCS 1664, pages 146�162. Springer, 1999.

6. G. Evans. Pratial Numerial Analysis. Wiley, 1995.

7. A. Fantehi, S. Gnesi, and G. Ristori. Model heking for ation based logis. Formal Methods

in System Design, 4:187�203, 1994.

8. M. Fisher and R. Ladner. Propositional Dynami Logi of Regular Programs. Journal of

Computer and System Sienes, 1979.

9. B.L. Fox and P. W. Glynn. Computing Poisson probabilities. Communiations of the ACM,

31(4):440�445, 1988.

10. H. Hansson and B. Jonsson. A logi for reasoning about time and reliability. Formal Aspets

of Computing, 6:512�535, 1994.

11. D. Harel, D. Kozen, and J.Tiuryn. Dynami Logi. Cambridge University Press, 2001.

12. H. Hermanns, J.P. Katoen, J. Meyer-Kayser, and M. Siegle. Towards model heking stohas-

ti proess algebra. In Integrated Formal Methods, volume LNCS 1945, pages 420�439.

Springer, 2000.

13. Joost-Pieter Katoen, Marta Kwiatkowska, Gethin Norman, and David Parker. Faster and

symboli CTMC model heking. In Proess Algebra and Probabilisti Methods, volume LNCS

2165, pages 23�38, 2001.

46

14. D. Kozen and J. Tiuryn. Handbook of Theoretial Computer Siene, Volume B: Formal

Models and Semantis, hapter Logi of Programs. Elsevier, 1990.

15. M. Kuntz, M. Siegle, and E. Werner. CASPA a performane evaluation tool based on stohas-

ti proess algebra and symboli data strutures. In to appear, 2003.

16. J. Meyer-Kayser. Veri�kation stohastisher, prozessalgebraisher Modelle mit aCSL+. Teh-

nial Report IB 01/03, Universität Erlangen-Nürnberg, Institut für Informatik 7, 2003.

17. C. Moler and C.F. van Loan. Nineteen dubious ways to ompute the exponential of a matrix.

SIAM Review, 20(4):801�835, 1978.

47

