A Stochastic Extension of the
Logic PDL

Matthias Kuntz
Markus Siegle

Report 2004-5
October 2004

University of the Federal Armed Forces Munich

Department of

COMPUTER SCIENCE

Werner-Heisenberg-Weg 39 e D-85577 Neubiberg

Abstract. In this paper we present a stochastic extension of the modal logic PDL
(propositional dynamic logic), SPDL, that is interpreted over labelled continuous
time Markov chains (CTMC). We define the syntax and semantics of SPDL. SPDL
provides, like PDL, powerful means to specify path properties. In general paths
can be characterised by regular expressions, where the executability of a regular
expression can depend on the validity of guard or test formulae. Such regular ex-
pressions enriched with test formulae are called programs. In order to model check
SPDL path formulae it is necessary to derive from the programs a variant of deter-
ministic finite automata and to build the product automaton between the labelled
CTMC and this automaton. We describe two different ways to model check SPDL,
at first via solving an integral equation system and secondly by transient analysis.
We show that a variant of Markov bisimulation preserves the validity of SPDL for-
mulae, finally we give the worst case complexity for model checking SPDL formulae
by means of uniformisation.

1 Motivation and Introduction

It is commonplace that distributed, concurrent hard- and software systems
have become part of our daily life. Because of our high dependency on these
systems, it becomes more and more important to assert that they are working
correctly and that they meet high performance requirements.

To do performance, dependability and reliability analysis it is necessary
to have both a model and a number of measures of interest, like utilisation,
mean number of jobs, mean time to failure and the like. The model is de-
rived, roughly spoken in two steps: At first some specification method like
(stochastic) Petri nets, (stochastic) process algebras, queueing networks, etc.
is employed to obtain a high level specification of the system that is to be
analysed. At second from this high level specification the low level representa-
tion is obtained. This low level representation is normally a continuous time
Markov chain (CTMC). Now, to do performance, dependability or reliability
analysis one has to specify the measures of interest. While for specification
of models powerful means like the one mentioned above are available this is
often not the case for measure specification.

In the realm of functional verification, temporal logics as CTL provide
powerful means to specify complex properties of systems. In the recent years
big efforts have been made to provide similar means for the specification
of measures in the area of performance analysis. Thus, the logic CTL was
extended to express complex measures.

In the sequel we will give a short account of the evolution of extensions of
CTL.

At first we should mention the logic PCTL [10], a probabilistic logic, that
is interpreted over discrete time Markov-chains. In PCTL the CTL path
quantifiers A and E are replaced by a probabilistic operator P, (¢), that
expresses that the probability that the path formula ¢ is satisfied meets the
bounds expressed in 1 p.

Though, more important is the logic CSL, introduced in [1, 2| that is inter-
preted over a CTMC. This logic is extended in [3| by a steady-state operator
Sup (), that allows one to reason about steady-state probabilities, i.e. to
reason about the probability that the system, considered on the long run is
in a certain set of states. CSL provides also timed variants of the until- and
the next-operator, Uf, X!, allowing to make the validity of a formula also
dependent, whether the time at which a satisfying state is reached at a time
point ¢ that is within the specified interval I.

A very important branch of modelling formalisms is that of stochastic
process algebras (SPA). This formalism is action-oriented, i.e. the system
behaviour is specified by actions. In this context, states constitute only an
auxiliary mean within the semantic model of SPA-processes. The determina-
tion of the measures of interests in contrast is state oriented. To avoid this
change of views, i.e. action- vs. state oriented, in [12] an action-based variant
of CSL, aCSL, has been proposed. Similar to aCTL [7] the characterisation
of satisfying paths is done by specifying sets of actions A that have to occur
to satisfy a given path formula.

Though, aCSL has demonstrated its usefulness in several case studies, its
weakness lies in the limited possibibilities to characterise satisfying paths.
Paths satisfy an aCSL-requirement, if an arbitrary sequence of actions from
A ocurred. It is not possible to state that a, b, ¢ have to appear in this order
and each of this actions exactly once. Therefore, aCSL has been extended
to aCSL+ [16] to overcome this problem. In aCSL+, paths are characterised
via regular expressions.

In this paper we give a stochastic extension of the logic PDL, where paths
can not only be specified via regular expressions but also via properties of
states that are visited during the execution of the regular expression spec-
ifying the paths. This is expressed via so called ’tests’ that condition the
execution of the subsequent regular expression. Subsequently, we will call
regular expressions that may or may not contain tests 'programs’.

This paper is organised as follows: In the next section we give a short
overview of PDL. In section 3 we introduce automata that represent PDL
programs. In section 4 the syntax and semantics of our stochastic extension

of PDL, SPDL, is introduced. In section 5 we demonstrate how to construct
automata for PDL. Section 6 is devoted to the introduction of model checking
procedures for SPDL. In section 7 the method of uniformisation is explained
in some detail. In section 8 apply by means of a small example the concepts
introduced so far. In section 9 we show that the validity of SPDL formulae
is preserved by a variant of Markov-AP-Bisimulation and we give a worst
case approximation of the complexity of model checking SPDL probabilistic
path formulae. In section 10 we extend SPDL by real time intervals, i.e.
time intervals of the form [¢,¢], where ¢ # 0 is possible. Finally, we draw a
conclusion and give a short outlook on future work.

2 Propositional Dynamic Logic PDL

PDL is a modal logic that is suited for reasoning about programs. It is inter-
preted over a Kripke structure M, with M := {SM TM} where S is a set of
states and Z an interpretation function. The idea of modal logic, reasoning in
situations where the truth value of a formula can vary over time, is perfectly
suited for program execution. We can interprete the states of M as the set
of all possible execution stages of a program. With any program p we can
associate a binary relation R over M such that (s,t) € R iff there is an ex-
ecution of p that, starting in state s terminates in state . Now, the relation
between modal logic and programs is that the programs p are written inside
the modal operators < and O: (p) and [p], such that PDL is a multi-modal
logic, where each program p is a modality. The intuitive meaning of <p> and
[p] is as follows:

- <p>¢: It is possible to execute p and thereby ending up in a state satisfying
P.

— [p]@: Every terminating execution of p ends in a state satisfying @, where
it is not necessary that there is a terminating execution at all.

2.1 Syntax and Semantics of PDL
In general, one can say that PDL contains elements that stem from propo-

sitional logic, modal logic and the algebra of regular expressions. The three
constituents are composed as described by the following syntax definition.

4

Syntax of PDL: Basically a PDL-expression may consist of expressions of
the following types:

— programs: p, ...
— formulae: @,V ...

To build complex expressions out, of simpler ones, i.e. atomic propositions
and atomic programs, PDL provides a number of operators that can be cat-
egorised as follows:

— logical operators: =, V
— program operators: U, ; *
— mixed operators: < >, ?

PDL-expressions are mutually recursively defined:

Let @ and ¥ be formulae and p; and ps programs, then: @ V¥, —@, <p>q5
are formulae, where formulae of this kind are associated with the states of
the Kripke structure, i.e. state formulae, and pi; p2, p1 U p2, pj and &7 are
programs. Programs are defined as follows:

Definition 1 (Programs). Let Act be a set of atomic programs, which we
may also call actions and TEST be a set of state formulae. Together they
form the alphabet X, for the program p, i.e.

5, = Act UTEST

A program p over an alphabet X, is defined by the following grammar:

p = €lalp; p|lpU p|p*|Z7; p|(p)

Where a € Act and = € TEST.

Semantics of PDL: Instead of giving the formal semantics of PDL, we
will describe the intuitive meaning of some of the PDL-constructs. A more
thorough account of the formal semantics of PDL can be found in 8,11, 14].

— p1; p2: Execute p; and py sequentially

— p1 U pa: Choose nondeterministically p; or p, and execute the chosen
program

— pi: Execute p; a non-deterministically chosen number of times, including
zero times

- <p1>q5: It is possible to execute p; and halt in state satisfying &.
— [p1]@: Although not explicitly present in PDL, the box is the dual of the
diamond and can be expressed as follows:

[0]® = —(p1)—P

This means it is not possible to execute p; and end up in a state that
does not satisfy @.
Equivalently, for every terminating computation of p; it holds that p;
halts or stops in a state satisfying @. Note, that for the satisfaction of a
formula of this kind no terminating computation at all must exist.

— @7; p1: Test, if @ holds in the current state, if so, execute p; otherwise fail.

3 Automata for PDL

We will now introduce how to relate finite executions of programs that are
definable by the syntactical means provided in section 2 with automata.

3.1 Alphabets, Programs and Automata

In this section we give a definition of programs for PDL that is adapted to
our needs. We forbid programs of the form (@7;¢€)*, this will be justified in
the sequel:

In the way we do model checking of SPDL formulae, i.e. by constructing a
product Markov Chain between the system’s original Markov chain and the
automaton of the program defining the satisfying paths, it is not necessary to
have (sub-)programs of the kind (&7;¢€)*, as with a test no transition in the
Markov chain is associated and the program can be executed also zero times,
the validity or non-validity of @ in the actual state of the Markov chain is
without significance for the model checking procedure.

Definition 2 (Programs). Let Act be a set of atomic programs, which we
may also call actions and TEST be a set of state formulae. Together they
form the alphabet X, for the program p, i.e.

Y, = Act UTEST
A program p over an alphabet Y, is defined by the following grammar:

p:=€|p;plp U p|Z7; p|p1|(p)
pr = alpy; pr]p1r U pr|p}| 575 1| (p1)
Where a € Act and = € TEST.

Definition 3 (Program transformation). Let a program p derived by
the grammar from definition 2 be given, we apply to it the following trans-
formation rules, such that the resulting program p’ is equivalent to p.

(T1) Sequences of test formulae with no atomic programs, i.e. elements from
Act, interspersed, i.e. sequences of the kind =17; Z37;...2,7; are trans-
formed into a conjunction of the involved test formulae:

n

=17, 257200 = I\ &2
i=1

This transformation is correct, since it can be shown that the above equiv-
alence relation holds: We show the correctness for ¢+ = 2, the general case
is an easy induction on the number of conjuncts.

I((ENO)p)=I((ENO)7) o L(p)

{(w,u)|u € I((E AN O))}oZ(p)
{(uw,u)|u € (Z(2) N Z(0))} o Z(p)
={(u,u ‘u € (Sat(Z) N Sat(©))} o Z(p)

We have to show that the semantic definition for =7; ©7; p is identical to
the one above:

I(Z7:07p) =Z(=Z7) 0 Z(O7) 0 Z(p)
= {(u,v)’ﬂw(u,w) e I(E?) N (w,v) € Z(O7)} o Z(p)
For the remaining derivations we need the following equivalences:
(u,w) € Z(Z?) <= u=wAu € Sat(2)
(w,v) € Z(O7) <= w=vAw € Sat(O)

Thus, it holds: u =w Aw =v — u =v.
Furthermore, we have:

(u,u) € I(Z?7) <= u € Sat(Z2)
Using the equivalences above, we can deduce:

v)|3w(u, w) € Z(2?) A (w,v) € Z(O?)} o I(p)
—{ u)|u € Sat(Z) Au € Sat(O)} o Z(p)
= {(u, u)|u € (Sat(Z) N Sat(O©)} o Z(p)

(T2) Asa second transformation, we turn each test formula that has no directly
succeeding atomic program, i.e. test formulae in front of a choice operator
(27 (p1 U p2)) or a star (=7;(p1)*) or at the end of a program (p;; =7),
into =7;¢, i.e. a test followed by the empty word. This is correct, since
Va € Yy(a;e = a).

(T3) Atomic programs a, not preceeded by a test formula are transformed into
expressions of the kind true?;a. This is correct, since test formulae are
state formulae and true is assumed to hold in every state this does not
affect the executability of a.

This transformation rules, from here on referred to as (7'1) to (7'3) are needed
for the definition of the semantics of SPDL. In the sequel we will assume
that each program p has been transformed according to (7'1) to (7°3). The
imaginary alphabet X' of such transformed programs is:

2 :=TEST x Act
Note: true € TEST and € € Act.
L.e. each element of the alphabet is a tuple of test and atomic program.

Definition 4 (Program instances, length of program instances). A
finite sequence of elements from the alphabet 3’ := TEST x Act is called
program instance. L.e. each element of this alphabet is a tuple consisting of
a test formula succeeded by an atomic program.

The length of a program instance p denoted by ‘p‘, is the number of ele-
ments from X occuring in it. For example:

p = (true?;a); (Z7;0); (true?; c) = }p‘ =3
For 0 < i < |p| p[i] is the (i + 1)st element of p. For example:
p = (true?;a); (Z7;b); (true?;) = p[l] = =Z7;b

Act(p[i]) is the function that returns the atomic program part of p[i]. T'e F'(p[i])
is the function that returns the test formula part of p[i]. For example:

p = (true?;a); (£7;b); (true?; c) = Act(p[l]) = bATeF(p[l]) = =

Definition 5 (Equivalent program instances). Two program instances
p1 and py are equivalent, p; = po, iff either

— p1 = P2, i.e. they are syntactically equal

or

- }pl} = }Pz}
— Vi((Act(p1]i]) = Act(ps[i])) A (TeF (p1[i]) = true <= TeF (ps[i]) = true))

Two programs p; and p, are equivalent, iff all their program instances are
pairwise equivalent.

Definition 6 (Non-deterministic program automaton NPA). An NPA
N is defined by the quintuple (Zy, Xy, Z3", En, On):

— Zy: a finite set of states

— XYy := TEST x Act: input alphabet

— ZRtart: a set of initial states, Z3/ C Zy

— FEn: a set of accepting states Eny C Zy

— Oy transition function: dy : Zny x Xy — 29V,

Definition 7 (Language of an N PA). The language of N, £L(N) is defined
as the set of all finite sequences of elements of its input alphabet Yy such
that each sequence leads from an initial state to an accepting state:

L(N):={pe E}k\f}(zmp[l]azl)a ooy (Zno1,p[n], 20) € 65 A 29 € ZY A 2, € By}

In this definition we have used the fact, that each n-ary function can be in-
terpreted as (n+1)-ary relation. We have applied it to the transition function
which is binary and the interpretation as transition relation is ternary.!

Definition 8 (Language of a program p). The set of all possible program
instances of a program p is called its language, £(p)>.

For example, let the following program p be given:
p=(Z7;a); ((true?; b); (true?; c))*; (O7;d)*
Then some instances of p are:
=7a ’ (27;a); (true?; b); (true?; c) ’ (E7;a); (true?; b); (true?; ¢); (O7;d)...
As another example let p be the following program:
p = (true?;a); ((£7;b) U (true?; c))

! We will use this interpretation at many places without explicitly stating it
? Note, that we assume that p has been transformed according to (7'1) to (T7'3)

Then the language of p is the following set of program instances:
L(p) ={(true?;a); (£7;b), (true?;a); (true?;c)}

Theorem 1. For each language L(p) there exists an NPA N,, such that
L(p) = L(N,).

The proof follows the same lines as the proof for the common non-deterministic
finite automata.

Definition 9 (Deterministic program automaton DPA). A DPA Ais
defined by the quintuple (Z4, X4, 259 E4,04):

— Z4: a finite set of states

— X4 : TEST x Act: input alphabet

— z5tert: a single initial state, 25t € Z4

— F: a set of accepting states 4 C Z4

— 04: state transition function: 04 : Z4 X X4 — Z4: If a state z possesses
more than one outgoing transitions, then it must hold, that either the
action parts of the labellings of all outgoing transitions are different, or
if there are at least two transitions which action parts are identical, then
the test formula parts of them must fulfill the property that they can’t
be true at the same time.

Theorem 2. For each NPA N an equivalent DPA A can be constructed

This proof can be found in section 5

4 Stochastic PDL

This section presents the syntax and semantics of the stochastic propositional
dynamic logic (SPDL).
4.1 Action- and State-Labelled Continuous-Time-Markov Chains

In this subsection the model that underlies SPDL is introduced.

Definition 10 (Action- and state-labelled continuous-time-Markov
chains, ASMC). An ASMC M is a quadruple (S, A, L, R), where

— S: finite set of states
— A: set of action names: A = Act

10

— L: state labelling function: S — 247
— R: state transition relation : R C .S x (A x R~g) X S

AP is the set of atomic propositions.
Definition 11 (Rates and probabilities).

Ra(s,s') = Z{)\’s LN s'}

a€A

Ra(s,s'): sum of all rates A leading with action a from s to s'.
E(s) := Z Ra(s,s)
s'eS

E(s): sum of all rates of transitions emanating from state s.

Pa(s,s') :=Ra(s,s")/E(s)

P 4(s, s'): probability to reach s’ via s by performing an action a.
It holds:

Py(s,s) =Ry(s,s)=0forall 5,5 € S
For absorbing states:
Pa(s,s') =Rua(s,s") = E(s) = 0 for arbitrary s’ € S

Definition 12 (Paths in M). An infinite path o is a sequence of transitions

of the form s go.tg S1 sty S9...

- s, €8,a;, €A, (si,a,\8.41) €ER

— t; = 7(0,1) € IR~ real sojourn time in s; before passing to s;.

— oli]: (i + 1)st state on path o

— ali]: (i 4+ 1)st action on path o

— 0@t = o[i]: state that is reached at time instant ¢ on path o, it holds that
i is the smallest index for which ¢ <% ¢;.

. ao,to a1,y
A finite path o is a finite sequence of transitions of the form: sy — s —

n—1,tn— .
SoeSmo1 BT g, where R(s;,si41) > 0 for all i < n and R(s,,s’) = 0 for

11

all s € S.

For finite paths o, o[i] and 7(o,) are defined only for i < n, for i < n as for
infinite paths, for i = n it holds 7(0,i) = oo. For t < Zé_:lo t; let 0@t = s,
for all other cases, 0@t is defined as in the case of infinite paths.

The set of all paths with initial state s is called PATH(s)

PATH(s) := {o|o[0] = s}

Action sequences that characterise the set of fulfilling paths are defined in
SPDL over programs. Programs are defined as in section 3.1. We need the
following definition:

4.2 Syntax of SPDL

In this section we present the syntax of the stochastic extension of PDL.
SPDL extends PDL with two probabilistic operators that allow to express
steady state and transient measures. Like in the logic CSL [5,4] SPDL pro-
vides two types of formulae: state formulae that are interpreted over the
states of an ASMC' M and path formulae that are interpreted over paths in
an ASMC.

Definition 13 (Syntax of SPDL). Let p € [0,1], and ¢ € AP an atomic
proposition, where AP is the set of atomic propositions and let e {<, <, >

’Tii.state formulae @ of SPDL are defined as follows:
D = q| PV O|~P| S () | Pocy(10) | (2)
Path formulae are defined by:
=[P
where I is the closed interval [t,¢].3
Expressions of the form p are described by the grammar given in section 3.1.
4.3 Semantics of SPDL

Before we give the formal semantics of SPDL, we provide an informal expla-
nation of the SPDL-formulae.

3 In the sequel it is assumed t = 0

12

Informal semantics: S.,(?) asserts that the steady-state probability, i.e.
the probability to reside in a particular set of states on the long run, satisfies
the boundary as given by > p. P.y,(p) asserts that the probability measure
of the paths that satisfy ¢ is within the bounds as given by > p.

Formal semantics: For the semantics of path formulae we have to define
the notion of words on paths. We need this, because we have to relate the
paths of the DPA of the program 7 and the paths in the ASMC M.

Definition 14 (Words on paths). The word W* of length k, k > 0, over
a path o € PATH is defined as follows:

W (o) :=e
WE(o) := W(0) o alk — 1]

where:
alk — 1] € Aok — 1] 4 o[k
Where W*(o)[i] = p[i] is the i-th action on path o.
We need some notation from probability theory, to define the semantics of :

Definition 15 (Probability vectors, state probabilities, etc.). If an
initial probability distribution « is given, then the probability to be in state
s" at time point t is given by

™ (o, 8',t) = Pro(o € PATHM| oGt = &)

The length of a equals the cardinality of the state space of M. The definition
for steady state probabilities is similar, we only have to take into account that
steady state means 'on the long run’:

M

™(a, s') = limy_oom™(a, 8, 1)

Often it occurs that a unique initial state s exists, i.e. « = {1,0,....,0},
we simply write Pr instead of Pr, and 7(s,s’,t) instead of 7M(c, s, 1)
in case of transient probabilities and analogously 7(s, s') for steady state
probabilities. The definitions can be extended to sets of states: For S’ C S:

™(a, 8') = Z ™ (s,5') i.e.
s'es

™ (a, 8") := limy_oo Pro(o € PATHM‘O'@t €S

13

We are now ready to give the formal semantics of SPDL.

Definition 16 (Semantics of SPDL). The semantics of state formulae is
defined as follows:
M,sEq<qe L(s)
M,sE D<= M,sEP
M,;sE(PVY)<= M,sEPor M,s =¥
M, 8 |= Sup(®) <= (5, Sat(d)) =1 p
M, 5 = Poy(ip) <= Prob™ (s, p) =ap

Prob™ (s, ¢) is the probability measure of all paths o € PATH(s), starting in
s to satisfy ¢:

Prob™(s,¢):= Pr(c € PATHM(S)}M, oE)

7M(s,5") is the stationary state probability to be at time instant — oo in a
state from the set S’ C S, provided that s is the state at time instant zero:

(s, 8") = lim Pr(o € PATHY(s)|M, oGt €)

t—o0

a denotes the given state probability distribution at time instant zero.

The semantics of path formulae is defined as follows:

M, o = 0[p|N = k(M olk] E T A 1 < t) A

(V0 < i < K(M, oli] £) A Gp € L) ((|p| = k) A
V0 < i < k(Act(pli]) = WH(o)[i] A M. oi] | TeF (pli]))))

4.4 Derived Operators

Temporal Operators The only temporal operator presented so far is [p].
We will show, how the operators 'U’, X’ ('next’) and 'F’ (’finally’) can be
derived:

The U-operator can be expressed as follows by [p]’:

oUW = o[3w
PUY = P[X] W

14

The F-operator kann is expressible by the following means:

Flp]'® := true[p]'¥
Flp]¥ := true[p| =W
FIY = true[¥ W
FU := true[X*]~>*¥

whereas X can be derived as follows:

X[E7;a]'¥ := true[Z7; a)'®
X[Z7; a]W¥ = true[Z7; a]~>W
X' .= true| X\ TEST|'¥
XU := true[X\ TEST]~>¥

Modal Operators The modal operators [p] ('necessarily’) and (p) (*possi-
bly’) can be derived using the probabilistic path operater P., and the derived
temporal operator F as follows:

()W = Pso(F[p]*W)
(] = =(p)~¥

5 Automata Construction

For model checking SPDL-path formulae it is necessary to derive a determin-
istic program automaton from the program p. This construction procedure
will be covered in greater detail in this section.

5.1 Constructing the NPA

As we treat atomic programs and tests the same way when construction
an NPA, and again treat them the same way as actions are treated when
deriving a non-deterministic finite automaton NV F'A from a regular expression
the construction process for an NPA N will be the same as for an NFA.
Details are omitted.

15

5.2 Note on the notation

In sections 3 and 4 we have spent some effort on defining the semantics of
SPDL and introduced input alphabets for automata and alphabets for pro-
grams that slightly differed in the way what they regarded as character or
letter. Then we showed, that programs p that are derived by the grammar
from 2 can be equivalently transformed into programs p’ that serve as inputs
for program automata thereby relating programs and program automata.
Furthermore, the transformed program p’ made it easier to define the seman-
tics of SPDL-path formulae, because the relation between words on pahts of
the ASMC and paths in the program automaton derived from p’ was easier
to establish. In this section we will somehow relax this strict notational rules
and use a more sloppy way to handle programs. In the sequel we will use
a as an abbreviation for true?”;a and =7; as an abbreviation for =7;e. This
sloppiness eases a lot the presentation of the subsequent material. Using the
strict notation from sections 3 and 4 would make it necessary to copiously
describe, how elements of the input to an automaton that stem from a pro-
gram instance p that either possess trivial tests as test formula part or the
empty word as atomic program part can be equivalently transformed when
applying rules for constructing automata from program instances. Using a
sloppy notation we circumvent this difficulties.

5.3 Tests and Transitions

In this subsection we will describe how test transitions, i.e. transitions con-
sisting either only of a test formula or a test formula succeeded by an atomic
program, are treated on automata construction.

For reasons that lie in the model-checking procedure of SPDL it is in
most cases, i.e. for internal transitions (z,p[i],2’), where 2z’ & E. necessary
to require that, if p[i] is directly preceeded by a test with the empty word
as its atomic program part, p[i — 1], then we want that p[i — 1]7;p[i] is a

. pli—1]? pld]

single transition, i.e. in the automaton the transitions z; o — 2,1 — 2;
i—1]7;p[d . ..

are replaced by z;_» P17l z;. The exact way to obtain the last transitions

from the two before is topic of the remainder of this subsection.

Program division: We present a basic, stepwise construction procedure to
obtain a deterministic program automaton A, from a given program p.

16

Let program p be given, to derive A,, in a first step p is divided into ¢,
1 <4 < n subprograms, p;, such that each p; contains at most one test, not
equal to true. This eases the description of the treatment of test transitions
while automata construction. The division of p proceeds as follows:

— As long as no tests are encountered, p is divided according to the syntactic
structure of the expression.
— As soon as a test is found, the expression, governed by that test becomes
a ;.
e According to p; internal structure it might be necessary to further
divide p;.
— This division is continued until each sub-program contains at most one
test

Let p1, p2 be subprograms without tests, then the test =7; governs =7; p;
and the test =7; governs =7; (p; U pa).

Treatment of test transitions: On construction of the automaton A,
it might happen that transition are generated that are labelled with tests
having an empty atomic program suffix, i.e. are of the form =7;e. If the
target state of such transitions is not an absorbing and accepting state, such
transitions have to be treated in a special way. In the sequel we will write
shortly =7; for =7; ¢ for all involved test formulae. In the sequel we will use
the following shorthands:

— X is either of the form a or ©7;a.

— Y is either of the form A?; or b or A7;b

— Let zg be the source state of =7;-transitions and Zy the (set of) target
states of Y-transitions.

The following ’rules’ can be applied to remove internal pure test transitions,
i.e. transitions with a labelling that consists only of a test.

1. Let z; be a non-accepting state, possessing loops of the form X, incoming
transitions of the kind =7; and outgoing transitions Y. Replace the =7;-
transition from zg to z; by =Z7; X and add to zg =7;Y-transitions with
target states from Zy-.

2. Let z; be a non-accepting state, with no loops, but with incoming tran-
sitions =7; and outgoing transitions Y. Then, replace in zg each =7-
transition by Z=7;Y-transitions with target states from Zy. The Z=7;-
transition can be deleted.

17

3. Let z; be an accepting state, possessing loops of the kind X, no outgoing
transitions, but incoming transitions of the form =7;. Replace the =7;-
transition by =7; X and add to zg a new Z=7;-transition that leads to
an absorbing and accepting state. This state has possibly to be newly
introduced.

4. Let z; be an accepting state, possessing loops of the form X, incoming
transitions of the kind =7; and outgoing transitions Y. Replace the ingo-
ing =7;-transition by =7; X and add to zg =7;Y-transitions with target
states from Zy. Add to zg a new =7;-transition to an absorbing accepting
state. This state has possibly to be newly introduced.

Example: Given the program p = (¢;aUd; =7;); A?;b. Program p consists
of the following parts:

- p=ca
— pa=d; =7
— p3=A%b

For p; U py and p3 we obtain the automata shown in figure 1.

Fig. 1. Automata for p1 U p2, (a) and ps, (b)

Putting the automata from figure 1 yield the nondeterministic automaton as
shown on top of figure 2. Determinising and application of the transformation
rules for internal test transitions yields the automaton shown on bottom of
figure 2.

Correctness of the Rules: We will now show that the transformation rules
given in this subsection are correct in the sense that the automata that are
generated this way are equivalent to the original ones.

— Correctness of rule 1: An automaton having the form as described in 1
is derived from a program of the form =7; X*; Y. This yields the following

18

Test transition elimination
according to rule 2
—_—

Removing unreachable stat

_

E7A7b

Fig. 2. Stepwise construction of A, from N,

syntactical derivations:

ELXNY =527 (eUX; X7);Y Semantics of Kleene star
Eh(eUX; X"), Y =(27eUE? X, XY); Y Distributivity of 7
(E7eUET X X7, (ZPUEY X5 X7)Y ae=a
(Z7UE? X X7, (7Y UE? X; X" Y) Distributivity of ’)’

Y =
Y

— Correctness of rule 2: An automaton having the form as described in
rule 2 is derived from a program of the form =7;Y. In this case, nothing
has to be proven.

— Correctness of rule 3: An automaton having the form as described in
rule 3 is derived from a program of the form =7; X*. We have the following
syntactic conversions:

EX"=E7(eUX; X") Semantics of Kleene star
Eh(eUX; X)) =E7eUZ7; X; X" Distributivity of '}’
E7eUE X X =270 X XY ae=a

19

— Correctness of rule 4: An automaton having the form as described in
rule 4 is derived from a program of the form =7; X* U =Z7; X*; Y.

ELXTUEL XY =27 (eUX; X UE? (eUX; X)) Y
EL(eUX; XHUEYL (eUX; X)) Y =220 X, X"UEYUEYL X, XN Y
ZPUELX X UELYUEL X XY =270 X XTUEL X XY UEDY
EHUEL X XTUEL XX YUELY =207 X, X (eUY)UEDY

5.4 Determinisation in Case of Ambiguous Tests

The automata constructed by the procedure as described so far, call them
N might be non-deterministic. For model-checking purposes it is necessary
to derive from N its deterministic version, A. Non-determinism here might
stem from two sources and is purged in the following manner:

— Determine N by treating all labellings as action labellings as in the case
of finite automata. This automaton is called N'.

— In N’ ambiguous tests might occur, i.e. for the same state z several outgo-
ing transitions might exist having the same atomic program a but different
test formulae =;, 1 <7 < m. In the model M in which the test formulae
are interpreted it is not necessarily the case that only one of the Zj is
true while all others are false. In such cases where several test formulae
are satisfied the successor state in the model that is to be model-checked
is not uniquely defined, therefore we have to provide means to combat
this problem. The automaton obtained by applying this procedure will
be called A.

Elimination of ambiguous tests: Let =; be the tests that emanate from
z such that the succeeding atomic programs are identical, i.e. Act(=;7;a) =
Act(Z;7; a). The algorithm in figure 3 removes ambiguous transitions.

We will now prove the following theorem from section 3:

Theorem 3. For each NPA N an equivalent DPA A can be constructed

Before we begin with the proof we should state what is meant by “equivalence”
in the context of program automata. By equivalence we do not longer mean
that both automata accept the same language, if we consider tests as being a
part of the action name. By saying for any NPA an equivalent DPA can be

20

(1) Z:=2%w
(2) forall Z € Z
(3) forall a € L(Z)
/*L(Z) is the set of transition labellings, emanating from Z*/

(4) F:={Zla€ L(Z) NTeF(a) = 5

(5) negl .= {-Z|Z € F}

(6) |F|:=n, Con:=0

(7) F'[n] := 2F9me9F /% F'n] is the powerset of F'UnegF, where each element has cardinality n */
(8) F=F'In\{F' € F'[n]|= € F'A-Z € F'}

(9) forall F" € F

(10) Con' := Conj(F") /*Conjunction of elements of F”. */

(11) Con” := Con'\{\[_, 7=}

(12) Con := Con U Con”’

(13) endforall

(14) forall = € Con

(15) 6a(Z,E%a) =, ,{7'|0n' (2, Ei7;a) = 7/, for all subformulae =; € F}
(16) endforall

(17) endforall

(18) endforall

Fig. 3. Ambiguous test elimination algorithm

found, we mean that both are equivalent in a logical sense, i.e. by interpreting
the tests. This means we say that two automata are equivalent, under any
model the same action sequences can occur. At the end of the section we will
explain this in more detail.

5.5 Motivation for our Notion of Equivalence

The special needs of model checking require that the (sub-)automaton as
shown in 4 is nondeterministic, although from a purely syntactical point of
view it can be considered to be deterministic.

Fig. 4. Non-deterministic (sub-)automaton

As already motivated in great detail we have to perform the following trans-
formation on the test formula part of the action labelling of the original NPA
to obtain a DPA. * The desired DPA is shown in figure 5

* This transformation process mixes syntax and semantics of PDL

21

Fig. 5. Deterministic (sub-)automaton

We therefore have to show that both automata are equivalent, although the
languages ppa and ypa recognised by them are different. It suffices to prove
this claim for two transitions @7;a and ¥7; a emanating from a single source
state.

5.6 Proof

1. We apply the semantics of PDL for the given expression, an expression
that generates an NPA of the given form stems from the following PDL
term:

P aUV?a
Given the following semantic definition:
[27aUW?;a] = [P7;a] U¥7?;a]
— ([#7] o [a]) U ([] o [a])
= ({(u,w)|u € [#]} o [a]) U ({(' ') ' € [#]} o [a])
= ({(w,w)u € [P} U{(,u)|u’ € [#]}) o [d]
— {(v,v)[v € [#] U []}) o [a]
={(v,v)|v € [2V¥]})od]
2. Now we observe that a DPA as the one shown in figure 5 stems from a
PDL program that has the following appearance:

(A aU (=AY aU (PA-Y)T;a
Applying to this program the semantic definitions of PDL yields:
(AT aU (@A) aU (@A) a] =
(AT a] U[(~P AW a] U(PA-P)?;a
= .. = {(w,w)|lw e ((AVJU[(= AP U[(@A-)]D}) o [a
= ({(w,w)‘w ENPANT)V (P AE)V (PAN-W)]}) o [a]

= =

22

So, we have to show:
[@VU]=[(AT)V (P AT)V (P AYP)]
This can be accomplished in two different ways:

1. Truth table: Comparing the truth tables of the two respective formulae
yields the desired equivalence result:

PV WD AV[-D AV A —T[(DAT)V (D AT)V (DA D)
0/0] 0 | 0 0 0 0
01 1 | 0 1 0 1
1o 1 | 0 0 1 1
11 1 | 1 0 0 1

2. Syntactic transformations:
(PANV)V(ZPANY) =V AND)V (W N-D)=UN(DPV D)=V
Now applying this result to the third disjunct:
UV(OANW)= U NNV V)=V VP

Thus, we could prove the claim that both automata are in fact equivalent. A
few remarks on the meaning of equivalence in this context are in order.

Meaning of Equivalence in the Context of SPDL Programs Equiv-
alence in the context of PDL deterministic and non-deterministic program
automata cannot be considered to be language equivalence in the sense of
finite automata as known from language theory. If the test formulae are in-
terpreted as part of the action the languages of both automata types are
clearly different.

In our context equivalence has to be interpreted as equivalence with respect
to executability of programs. We have shown in the previous subsection that
DPAs and NPAs are equivalent in this sense. Given a model M over which
the test are interpreted we could show that the programs ppp4 and pypa are
equivalent, i.e. if pppa led to an accepting state in A then pypa also led
to an accepting state in A

PDPA

PNPA"

23

Example: We will now illustrate the functionality of the algorithm from
figure 3 by means of a small example.

Ezample 1. Let p := (Z57;a)*;07;a. Construct A,. The construction of N,
is straightforward, only the final result is displayed in figure 6:

—_—

=7 a
AC O7;a C

Zi Zj

Fig. 6. Automaton N’ for p

The transitions =7;a and ©7; a will be replaced in A by: (EAO)7;a, (-5 A
©)7;a and (= A —O)7; a, all emanating from z;. The successor states for the
respective transitions are as follows:

0a(zi, (2N O a) = {2, 2}
5,4(21‘, (—|E A @)7, a) = {Z]}
5,4(21‘, (E A\ ﬁ@)?; a) = {ZZ}

This yields the following automata graph for A,: The construction of N is
straightforward, only the final result is displayed in figure 7:

(EnO)hp

(EA-0)p (O) {21, 2}

O {2}

Fig. 7. Automaton A for p

24

6 Model Checking SPDL

The model checking procedure we present is an adaption of that of CSL [3]
and aCSL+ [16]. This again is an adaption of that of CTL.

In SPDL the model checking procedure for non-probabilistic formulae is
the same as for CTL. In the sequel we will provide means to model check
probabilistic SPDL-state and -path formulae. Model checking path formulae
as described in this section assumes that [= [0, ¢].

6.1 Computing Stationary State Measures

The model checking procedure for computing stationary state measures is
roughly the same as for CSL, which was described in [3]. The labelling func-
tion of the ASMC is extended by the notion of a 'characteristic state formula’:

Definition 17 (Characteristic state formula). A characteristic state for-
mula ¢, is an atomic, propositional formula, only valid in state s of a specific
ASMC M.

The definition of characteristic state formula can be extended to the notion
of a characteristic state set formula:

Let S’ C S:

57|

qs' ‘= \/ QS;
i=1
This formula is valid in each s’ € S’:
J
s,):q;,_, iff i=
J

15|
= sé): \/qsg7 iff s; € S’
i=1

For the computation of steady state measures no programs are needed. For
P and R one obtains the following generalisations:

Definition 18 (Generalisations of P and R).

— Roa(s, ¢'): total rate to come from s to s’ by executing an arbitrary action
from A. For an a € A for which holds (s, a, A\, s') € R, this rate is zero.

25

— P4(s,'): total probability to reach s via s’ by execution of an arbitrary
action a € A. For a € A for which holds (s, a, A, s") € R, this probability

is zero.

Let BSCC(M) the set of bottom strongly connected components (BSCCs)
of M. For the computation of steady state measures in SPDL we obtain the

following pseudo-algorithm:
The formula ¥ := S.,(®) has to be checked, i.e., to satisfy @ it must hold:

(s, Sat(®)) = p

Compute BSCC(M) = {B1, By, ..., By, }.
Compute the set of states that satisfy &: Sat(P)
Bsay@) (M) := {B; € BSCC(M)|B; N Sat(®) # 0}.

7M(s, Sat(P)) = ZBEB&”@)(M) <Pr06(s, Fag) - Zs’eBﬁSat(@) WB(S/)>
qp is the characteristic state set formula from definition 17. To fulfill Fgp

eventually a state s € B must be reached. 7P(s’) is the stationary state
probability of s’ to be in B. 7P(s) is computed as follows:

==

1 if B={s}

ﬂ-B(SI) = ZsGB,s;és/ WB(S) ' RA<87 8,> =
TP(8") - Y sepspe Rals,s), with 37 p ., 7P(s) =1 otherwise

Prob(s,Fqp) denotes the probability to finally reach B and is computed as
follows:

1 if s = qp
Prob(s, Fgp) = {Zs’ Pa(s,s') - Prob(s',Fqg) otherwise

6.2 Model Checking Probabilistic Path Formulae by Solving
Integral Equations

At first we recall from subsection 4.2 that probabilistic path formulae are of
the form: P, (P[p]'¥), where p is a program. [is the closed interval from 0
to t. From M only those paths are relevant for the measure that generate
program instances on paths that are instances of p, i.e. those instances that
lead in A, from the initial state to an accepting state.

For a state z € Z,, we define its activation set:

26

Definition 19 (Activation set). For an arbitrary state z of Z we define

L(z):={a € ZPHZ' € Z4,(0a,(2,a) = 2)}

i.e. L(z) is the set of all elements from X, that emanate from z.

Furthermore, Prob(s, ®[p|'¥) = W (s, ®[p]'W¥, z5**""), which will be charac-

terised as follows:

W(Sv @[p]fw’ Zp) =

This deserves some words of explanation:

(1 =

U A(BEM,s = 2)A

DAY N Zp ¢ Ep/\
—3= € Sat(s)(0,(z, =7;) € I,A

(1)

t
b[e—E(s).:v . ZaeL(zp) . ZS’ES Ra(s, 8/).
LW (s, [0/ | <150, 5, (25, a))z

S M,sEPNY

— We denote by I © x the following difference: {t — x‘t eI Nt >z}

— Case 1: If the current state s in M is a

state in which ¥ holds and z in

A, is an accepting state then the probability that formula ¢ is satisfied
is equal to one. Alike the probability to satisfy ¢ is equal to one, iff s in
M is a state satisfying ¥ and = and the only transition from the current
state in A, is labelled =7; and leads to an accepting state.

Case 2: If s in M is a state that satisfies neither @ nor ¥, then the
probality to satisfy ¢ is equal to zero. The same holds for a state s that
satisfies =@ AW, but A, is not in an accepting state. Alike, the probability
to satisfy ¢ is zero, iff s is a state satisfying ¥, but not = and the current
A,-state is not accepting and the only transition leaving A, is labelled
with =7;.

Case 3: If s in M is a ®-state then the probability to satisfy ¢ is equal
to the probability to leave s in x time units and reach a state s’. This
probability is taken over all atomic programs for which 4 is defined.

27

This probability is multiplied with the probability to reach within I © x,
or equivalently ¢t — x, time units a successor state s’ in M. As it might be
the case that A, offers several, differently labelled, outgoing transitions
from its current state to some successor states the probabilities have to
be summed up over all these different labellings. p’ is the program that
remains to be executed, after the execution of atomic program a.

When characterising the probabilities via systems of integral equations, a
numerical, approximate procedure to solve them can be used. But the con-
vergency of such methods is not satisfactorily, therefore, like in [3] we propose
the approach to compute path probabilities via transient analysis.

6.3 Model Checking Probabilistic Path Formulae by Transient
Analysis

To be able to do model checking of probabilistic path formulae by transient
analysis, it is necessary to construct a product automaton M*, from the
ASMC M and the deterministic program automaton A,, i.e. M := M x A,.
The construction process roughly proceeds as follows:

The transition labellings a € Act are omitted. Rate informations and state
labellings in M* are taken from M. Let s be the current state in M and
z the current state in A,, then transitions from s having labellings that do
not correspond to any of the labellings of transitions emanating from z are
directed in M™ to an absorbing error state FAIL. Transitions in M* are not
directed to FAIL if the current M-state s satisfies @ and offers a transition
whose labelling corresponds to one of the labellings of the current state z in
the DPA or if state s satisfies @ and = and offers a transition whith labelling
a, and in A, z possesses a transition labelled =7;a. If in M* an accepting
state is reached, i.e. a state which components s and z are states satisfying
¥ respective are an accepting state in the DPA, the procedure stops.

The general idea behind our method is to reduce the model checking prob-
lem for probabilistic path formulae in SPDL to the model checking problem
of CSL. Le. we transform the SPDL formula @[p]/¥ into the CSL formula
F/x¢, where x¢ is a characteristic formula which is attributed to those states
in the product automaton, which ASMC components satisfy ¥ and which au-
tomaton components are accepting states of the program automaton.

The product automaton M* is called ’state-labelled Markov-chain’ which
is defined as follows:

28

Definition 20 (state-labelled Markov-chain, SMC). Let the ASMC
M =(S,A,L,R) and the DPA A, = (Z,, %,, 2" E,,0,) given. The SMC
M* = (S*, R, L*) is defined as follows:

Sg’(tart g SX
B Sz>4<cc g S
- R*C 8" x IR" x §%
— state space: S 1= {(s;,2])|s; € S A 2 € Z,} U {FAIL}
— initial states: Sg,,, == {(si,25"""|s; € S}
— accepting states: S, := {(s;,23) € S*|s; € Sat(¥) A 2 € E,}
— labelling:
1 ¥(si,) € S\S (L (50, 21) = L(s1)
2. V(s) € S5l L (51,23) = {xc})
— transition function: R* C (S x Z) X [R~¢ x (S x Z)

X¢q is a state formula that characterises exactly those states which automaton
part is an accepting state and which Markov chain part is a state in which
the formula ¥ of the path formula &[p|<*¥ holds.

Definition 21. For A,B € 25" *E™5" with B = or |B| = 1, AW B is
defined as follows:

- B=0:AWB=A
~Bl=1AB = {(s,\ 5}

AUB if f Ay e R ((s,7,s) € A)

AT {8 o 0 7+ 0}t

R* is succesively defined as follows:

1. In the SMC no accepting state has been reached. The original state s
in M satisfies . M offers transitions with labelling a, so does A,. The
target state s’ in M satisfies @ or ¥ and at the same time the target state
of A,, 2/ must be accepting.

R W{(s,2)), M, (5, 2))| 5 =5 &/ Az = 2 A
s € Sat(P) A
(8’ ZP) g SZCC A
[s" € Sat(P) Vv (¢, z;) €S}

29

2. In the SMC no accepting state has been reached. The original state s
in M satisfies @. A, offers a test transition with test =7; and atomic
program a. M offers transitions with labelling a and satisfies the test
formula of the corresponding transition in the DPA. The target state of
M satisfies @ or ¥ and at the same time the target state of A,, 2’ must
be accepting.

R* W {(s,2,),\ (¢, z;)} PN Zp Ete z; A
s € Sat(P) A
(8,2p) & Shee N
s € Sat(Z) A
s € Sat(P) V (¢, z'p) € Sh.l}
3. In the SMC no accepting state has been reached. The original state s in M
satisfies @. A, offers in z a transition with labellings from Act, the target
state of this transition offers a transition with a labelling from TEST, say

6. M satisfies in s the test formula of the corresponding z-transition.
The target state of M satisfies ¥ and 6.

R¥ W {(s,2,), A (5, 21)] s 25 &' ANz 5 20 E5 2 A

s € Sat(P) A
s € Sat(Z) A
(5,20) & Shee
s € Sat(O) A
[(s', 2) € Siel}
4. In the SMC no accepting state has been reached. The original state s in

M satisfies . M offers in s a transition labelled with a. A, does not offer
a transition bearing such a labelling.

R* W {(s,2,), \, FAIL| s 25 &' A
s € Sat(P) A
(5,2p) & Shee N
(2p — Z;) Z 6p}

5. In the SMC no accepting state has been reached. The original state s in
M satisfies . Both M and A, offer in s resp. 2z a transition labelled with

30

a. The target state of M does not satisfy @ and the target state of M*
is not accepting.

R*W{(s,z,), A\, FAIL| s L2 8 A 2o — 2 A
s € Sat(P) A
(8,2p) & Shee N
[s" & Sat(@) A (s',2,) & Shecl}
. In the SMC no accepting state has been reached. The original state s in
M satisfies ¢. Both M and A, offer in s resp. z a transition labelled
with a, where in A, a is preceeded by a test. M does not satisfy the test
formula in its current state s.
R* W {(s,2,), A, FAIL} s 22 5 A 2 = 2, A
s € Sat(P) A
(5,2p) & Shee N
s & Sat(Z)}
. In the SMC no accepting state has been reached. The original state s in
M satisfies . Both M and A, offer in s resp. 2 a transition labelled with

a, where in A, a is preceeded by a test. The target state of M does not
satisfy @ and the target state of M* is not accepting.

R*W{(s,z,), A\, FAIL| s L2 A Zp =k EAA

s € Sat(P) A

(87 ZP) g SZCC N

s € Sat(Z) A

[s" & Sat(@) A (s, z,) & Sicl}
. In the SMC no accepting state has been reached. The original state s in
M satisfies @. Both M and A, offer in s resp. z a transition labelled
with a, where in A, a is preceeded by a test. The target state z’p is not

accepting and offers a transiton with labelling from TEST to an accepting
state 2. The target state s’ of M does not satisfy ©.

=7%a 67

B (5,20 A FAIL] (5 2 50 2, 5252 20y 1
(8, 2p) & Shee A
s' & Sat(O) A
4 € B,

31

6.4 Correctness of Model Transformation

In this subsection we will show that our transformation is correct, i.e. we
show that the probability mass of the CSL formula that is checked in model
M* is equal to the probability mass of the original formula @[p]/¥ in the
original model M.

To summarise the idea of section 6.3 we have done the following to perform
transient analysis to check probabilistic SPDL path formulae:

— Transforming M to M*
— thereby transforming @[p]’¥ to Flyq

The following theorem states that the transformation steps are correct:

Theorem 4 (Correctness of model transformation). The transforma-
tion of M into M* is correct. Ie. the probability of satisfying ®[p|'¥ in M
is equal to the probability of reaching xg within timet € I in M*:

Pr{o € Path}" | M, o |= ®p)'W} = Pr{c” € Pathf\gf;) |3t el: M* o0*Qt = F'xg}

Before we can prove theorem 4 we need the following definitions:

Definition 22 (Indicator function). The function Ind(M, s, ¢) indicates,
whether an arbitrary SPDL state formula ¢ is satisfied in a given state s of
a fixed model M:

1 iff M,
Ind(M, s, ¢) = {0 :else e

For the reader’s convenience we repeat definition 19:

Definition 23 (Activation set). For an arbitrary state z of Z we define
L(z):={a € X,|32 € Za,(04,(2,0) = ')}

i.e. L(z) is the set of all elements from X, that emanate from z.

Definition 24 (End condition of a program). Let p be a program and
A its corresponding program automaton. The end conditions of a program p
are those suffixes of form @7; e, where @ = true is possible.

true ifft ze £
Fin,(A) =< false iff z¢ EAVa € L(z2):(6(z,a) € E)
O1V. NV, iff zg EAVI: (D7 € L(2) ANID; : (0(2,P;7;¢) € E)

32

Proof (Theorem /). We will prove theorem 4 by induction on the length of
paths.

Induction start: |o| = |0*| = 1: Using the standard semantics of CSL
(cf. [3]) we obtain:

Pr{c* GPath ’ del:(M* 0c"Qt Exg)} =

(s,20)

/ Z (5, 20), (s, 2)) - e BUE20D2 L Ing(M> (s, 2'), xq)d

(s',2")eS*

As the length of the path is one, Ind(M*, (s, 2'), xg) is either 1 or 0, i.e. x¢
either holds in (¢, ') or does not.

For the original formula, the probability measure can be characterised as
follows:

Pr{c € Path" | M, o = d[p]' v} =

/t > S Ru(s,8) e BT Ind(M, 5", W A Fin(A))de

0 (97,0|07;0€ L(2)AM, sl=d} s'€S

Therefore we will now show that:

t
/ Z Z Ra(s,s) - e BT Ind(M, s, W A Fin.(A))dr =

0 (#7,0|07:a€L(z)AM,s=P} /€S

/ Z Ra(s,s) - e B Ind(M, s, W A Fin.(A))dx =

s'€S {P?;a|P7; aEL(z)/\M s}

/ > R((s. %), (s, 2")) - e BT Ind(M* (', Z), x¢)dx

(s',2")eS*

The last equation holds, since by construction of M* we can conclude that
> (@raracnmmse) B(S,8") = R((s,2), (s,2)). Therefore and by con-
struction it holds that the two outer sums are equal. By construction of M*
from M we conclude E(s) = E((s, 29)). Ind(M*, (5", 2'), x¢) = Ind(M, s', WA
Fin. (A)) by construction, as those states are labelled with x¢ in which
Fin,(A)) and ¥ hold and in A an accepting state has been reached.
Induction step: We assume that for paths of length n the assumption holds,
now we consider paths ¢* resp. o of lenght n + 1:

33

Let 0% resp. o’ be paths of length n, where ¢* is suffix of % and ¢’ is
suffix of o, then

Pr{c* € Path ZO)‘MX o*Qt = xg}t =

/ Z R((s, Zy), (s, Z")) - e B2z priox’ ¢ Path(s 7o) ’MX,OX/@(t —z) E xg}

/ Z/ ESX
Analogously:
Pr{o € Pathilg|M, o |= ®[p]~'W} =

t
/ Z R, (s, s’) —E(s)z P'r{a c PathseS}M’ o = @[p/]gt_xgp}

O {&7,0|07a€L(2) AM, =D}

where p’ is the suffix of p. Using I.H. and the induction start we conclude
that the theorem holds, i.e.

Pr{c* € Path; ZO)}MX o*Qt = xg} = Pr{c € Pathses}/\/l, o = @[~}

7 Details: Numerical Analysis Methods

This section aims to give a quick overview of mathematical methods we re-
ferred to and that are used for verification of path formulae.’ In section 6.2
we gave an integral equation characterisation of the probability measure for
time bounded path formulae. As mentioned earlier, model checking by di-
rectly solving integral equations is not satisfactory, because the numerical
properties are not satisfactory. Therefore, more efficient means have been de-
vised to solve the model checking problem. As the integral characterisation
is only needed in 6.2 we will not go into details and refer to any book on
numerical analysis, e.g. [6].

7.1 Transient Analysis and Uniformisation

Transient Analysis: The numerical properties of direct approaches to solve
the Volterra integral equation system directly are not satisfactory. The trans-
formation of the original ASMC M into SMC M* however, makes it possi-
ble to reduce the model checking problem of time bounded path formulae to
transient analysis of the CTMC at hand.

5 This overview does not claim to be exhaustive!

34

In general, to do transient analysis on CTMCs it is necessary to solve the
Chapman-Kolmogorov differential equation system:

C (0,t) = 7 (01) - Q.
M (a,t) is a vector of length |S*| and its elements are the probability to
be at time instant ¢ in state s € S*, given an initial distribution «.

@ is the infinitesimal generator matrix and is derived from the rate matrix
R, by setting Q(s,s’) = R(s,s), if s # s’. The rate matrix R characterises
the transitions between the states of a CTMC. If R(s,s’) = A, A > 0, then it
is possible to move from s to s’ with rate X\. The diagonal elements of R are
replaced by Q(s,s) = —E(s,s) = —>_ . R(s, s).

The unique solution of the Chapman-Kolmogorov differential equation sys-
tem is given as follows:

M (a,t) = M (,0) - 9

The matrix exponential can be rewritten as follows (Taylor series expansion):

i 1Q-0"

k!
k=0

The attempt to solve the matrix exponential using the Taylor expansion is
not satisfactory, because ([17]):

— the truncation point of the series can not be computed efficiently

— the round-off errors are note negligeable, because () contains both nega-
tive and non-negative entries.

— where @ is sparse, it is the case that (Q -)" becomes non-sparse.

Therefore more appropriate means have to be used to solve the equation.

Uniformisation: For uniformisation we define a stochastic matrix P, i.e. a
matrix having entries that range from 0 to 1. P is derived from Q:

Q
P=I1+=
N

I is the identity matrix. A is chosen as the maximum absolute value of the
diagonal entries of the generator matrix @, i.e. A > max(’Q(z’, 7) }) Therefore
it is obvious, that P is a stochastic matrix. P is a DTMC. We rewrite Q:

Q=A-(P-1)

35

We obtain:

M (a,t) = 7M (@,0) - 9t = 7M (o, 0) - N P-D)E

ﬁMX (O[’ O) . 6_)\~I.t . e—A.P-t —_ ,ﬁ_’./\/lx (O[, O) X 6—)\~t . 6—)\~P-t

Using a series expansion we have

_ M _ =M e - (A-)F- P
70 (o, t) =77 (o,0) - e ;T

e M. ((X-t)*/(k!)) are Poisson probabilities.
This Taylor-series now can be solved more efficiently. We write the equation
above as follows:

0 k. pk 0 ok
M (a,t) = Ze*tu = Ze*“(A b (M (,0) - P)

k! k!
k=0 k=0
ZOO VIO
= € ﬂ-k
!
— k!

7, is the distribution of state probabilities in the DTMC P after k steps and
can be computed recursively:

7?0:7?<Oé,0) ﬁk:ﬁk,1~P

Now, we have reduced the problem to a number of vector-matrix multiplica-
tions. The question is, how large this 'number’ is, i.e. we have to determine
the truncation point of the series. We compute 7,0, instead of 7, because
the series looks like this:

Napprozx k
ﬂé\:pioz(aa t) = Z € AtT >
k=0 '

This trucation point n4pyre. can be computed efficiently. It has to be the least
value for ng,,r., that satisfies the following condition:

Napprox Nk
Z ()\ t) Z (1 o E) . e*)\-t

n!
k=0

36

Where € is the maximum round-off error we allow. The Poisson probabilities
are computed using the Fox-Glynn-algorithm [9]. To check the validity of the
path formula a method like the one described in [4,13] can be employed.

The CTMC M*, on which we check the variant of the original path for-
mula, [T = Puy (@ [p)! ¥), transformed to II' = Py, (true U' SUCC), has
to be uniformised, unif(M*) := U. On U we check whether the probability
bound p holds for IT resp. IT'.

8 Example: System Model and Measures

To illustrate our approach, specifying and checking performability measures
using the logic SPDL, we consider an example, see figure 8.

8.1 The System Model

The model in figure 8 represents a system that receives four data packets and
processes them, this behaviour is repeated indefinitely.

In more detail, an arrival is modelled by action a, each data packet can
be error-free, arrival rate A\, or erroneous, arrival rate . An erroneous data
packet can be corrected (co,y), or can not be corrected, (e,). If it can not be
corrected, the buffer is emptied and all data packets have to be retransmitted,
(rt, k). If all data packets are error-free or correctable, then the received date
can be processed (pre,w) and the system awaits new data.

pre,w

B:a,,u, C:CO,’)/, D26767

Fig. 8. System model - A 4-place buffer with erroneous arrivals

37

8.2 Performability Measures

To fully exploit the power of SPDL in defining performability measures we
have to provide some details about the state labellings, i.e. formulae that are
valid in the states of the system model. The example system has 10 states,
enumerated 1 to 10.

— State 1: {empty}
— State 5: {full}
— State 6-10: {error}

Now, we will give some example measures:

1.

@y := Psoo((—full)[a*; e; rt; a* U a*]1%% (full)): Is the probability to receive
4 data packets without error or with at most one non-correctable error
within 5 time units greater than 0.97

. &y = Poo(—full[a]®>full): Ts the probability to reach a state, in which

the buffer is full with a single arrival greater than zero? &, characterises
state 4, as this is the only state from which it is possible to reach the only
state, state 5, for which it is true that the buffer is full.

@3 := P (true[a*; (P27; a; (coU e))]%®)true): Is the probability that the
fourth packet contains an error, correctable or incorrectable, at most ten
percent, given that all preceedings packets were error-free?

. &y = Pepss((=full)[(aUa; co)*]1(full)): Is the probability to reach state

5 within 10 time units, provided no packet contains incorrectable errors,
at least 85 %7

. &5 = Pegrs(true[a*; D27; a; (e U co); (error?; rt; a* U full?)]1%%true): Ts the

probability to reach state 5 within 25 time units, given the only erroneous
packet arrived was the 4th one and either the packet contains a correctable
or incorrectable error, at most 75 percent?

@ := P<o.o1(true[a*; P,7; a; coll®™true): Is the probability that the buffer
is full after at most 3 time units and that the 4th packet contains a
correctable error, given that all preceeding packets were error free, at
most one percent?

8.3 Building the Product Automaton

Consider the example system M, from figure 8 and the requirement ¢ :=
P<o.o1 (truela*; @,?; a; co]®7ltrue)

38

We want to check whether M satisfies @3, provided the system starts in
state 1. At first, we derive from a*; ($27; a; co a non-deterministic automaton
6 N, (cf. figure 9).

The test @5 forms together with a a single transition. Now, we have to
transform N, into a determininistic automaton A, (cf. figure 10). In figure 10

a

4’/@ ;9452?@ c)—Co @

a

e 20

Fig. 9. Non-deterministic automaton N, for a*; $27; a; co

P27 a P37 a

N\
- —@‘-"a CABC—2—D)

P37 a

Fig. 10. Deterministic automaton A, for a™;P27; a; co

we see that the labels of the transitions emanating from state AB are labelled
with —=®57; a resp. @27; a. (cf. figure 11). The state labelled with SUCC' is an
absorbing goal state in which the path formula functionally holds, the state
labelled with FAIL is an absorbing error state, to which all transitions are
redirected that lead to states that render the path formula unsatisfiable. The
model checking itself, i.e. the check whether M satisfies the path formula,
would be done by transient analysis.
We assign the following numerical values to the rates:

A=04:p:=04:v:=02:w:=0.2:0:=0.001;

Assuming a precision of € = 107% we obtain after 7 computation steps that
this property is violated, since after 7 computation step the probability to
be in state SUCC equals 0.011786.

6 Grey-shaded states indicate the accepting end states

39

suce

Fig. 11. Product automaton M* := M x A,

9 Bisimulation and Worst Case Complexity

In this short section we will prove that a variant of the well-known Markov
bisimulation preserves the validity of SPDL formulae and give a worst case
approximation of model checking probabilistic SPDL path formulae.

9.1 SPDL and Bisimulation

The chosen variant of Markov bisimulation accounts for the fact that beside
rate information also action labels and state labels, i.e. state formulae have to
be taken into account to identify states as being equivalent or not equivalent,
we call this bisimulation relation Markov-AP-bisimulation. We will show by
induction the claimed property, i.e. the preservation of the validity of SPDL
formulae under Markov-AP-bisimulation.

40

Definition 25 (Markov-AP-Bisimulation). Let M = (S, A, L, R) be an
action- and state-labelled CTMC An equivalence relation B on S is a Markov-
AP-bisumulation over M, if for all (s, s’) € B it holds that:

1. L(s) = L(s')
2. VC € S/ B Va € A(R,(s,C) =Ry(s',C))

Where:

- S/ B = {C,..,C,} is the partition of S into equivalence classes C;
induced by B.

— Two states s and s are called Markov-AP-bisimilar, if there is a Markov-
AP-Bisimulation that contains both states.

Theorem 5. Let B be a Markov-AP-Bisimulation, s € M, then we have:

1.VOM,s =P <= M/B,[s]| £
2. Yo (ProbM (s, ¢) = Prob™/ B ([s], ¢)

Let ¢ = @|7|='W and p be an SPDL-program.
The proof is a structural induction over the length &k of formula @

Proof (Theorem 5). We start with formulae of length one, i.e. with atomic
formulae. Let the states s and ¢ be in B:

1. Let & € AP, d.h. & = ¢: Using the preriquisites it holds: (s,t) € B.
Following the definition of B we can conclude: M, s = ¢ <= M,t = q.

This case serves as induction start. As induction hypothesis we assume that
the proposition holds for formulae of length < k.

2. Let & = =W. Following I.H. it is true that M,s E ¥ <= M, t =¥, we
are able to prove:

M, sk E M s ES Mt v ES Mt v

3. Let @ = ¥ v =: Following L.H. gilt M,s | ¥ <= M,t ¥ and
M, s = Z <= M,t = =. Thus, we have as well:

M,s):W\/E’?%:mﬁM,s):WOderM,s):E
L Mt oder Myt =2 28 Mt =w v o

41

4. Let @ = Py, (A[p]='W). For the proof of this case we have to demonstrate
that the probability measures of the paths satisfying path formula ¢ and
emanating from s and ¢ are identical. This requires an induction over the
length n of the paths.

(a) Let the length n = 0: The probability measure of a path satisfying ¢

is either zero or one.

i. Let the measure be one: This is the case iff M,s =¥ Az, € E or
M,sEVAM,s =EENp=Z?Nd(z2,,=7) € E. Using the outer
I.H. these assumptions are also valid for state ¢.

ii. Let the measure be zero: This is the case iff M, s W or M, s =
UAM,slEZENp=Z7ANz, inE. Also in this case we can apply
the outer induction hypothesis to exchange s and t.

(b) Let n # 0: We assume that the claim holds for paths of length < n.
We also assume that the length of the paths is minimal, i.e. for no
path which is shorter than the considered length path formula ¢ is
satisfiable. Let n # 0: We assume the assumption holds for paths of
length < n.

Prob(oc € PFAD(s)|o k= ¢) =

/ Z ZR s,8') - Prob(oc € PFAD(s')|o |= ¢) =

a€L(z,) s€S’

/ Z Z ZR s,8") - Prob(c € PFAD(s' ‘0’):(;5

a€L(zp,) CeM/ B s€C

/ Z Z ZR (t,s") - Prob(c € PFAD(s' ’g):(p

a€L(zp) CeM/ B seC

/ Z ZR t,s") - Prob(c € PFAD(s' ’cr):qb

a€L(z,) s€S’

Prob(c € PFAD(t)|o k= ¢)

= this is true due to the prerequisite that (s,t) € B and the resulting
fact that if s and ¢ are in B they have the same cumulative rates for
every target equivalence class C.

42

5. Let @ = S,y (¥). It remains to show that 7(s, Sat(¥)) = n(t, Sat(¥)):

(s, Sa(¥)) =
Z Z thProEPFAD ‘o@t—s)
s'eS CEC/‘\;/B s'eC
Z Z lim Pr(c € PFAD(t (t)|o@t' = 5') = Zﬂ'(t, {s'}) =
crv gec! % ses
ceM/ B
7(t, Sa(¥))

9.2 Complexity Analysis

Theorem 6 (Worst Case Complexity of SPDL Model Checking).
For an action- and state labelled Markov chain M and an SPDL formula @,
the time and memory complexity of the model checking procedure lies in:

O(|2] - ((2" = n) - 27 - N) - q - tmax + (((2" — n) - 27 - N)>®1)

where N = |S| is the number of states, q the largest transition rate, t,q, the
mazximum time bound of M. (2" —n)-2% is the number of states of the DPA,
where this numbers depend on both the length of the longest program appearing
in any of the subformulae of @, and the maximum number of ambiguous tests
that emanate from a state in the NPA.

Proof. Let p be the longest program in any of the subformulae of &, and
|p| = pm, then an NPA with at most Z = 2 - p); states can be constructed.
The corresponding DPA has at most (2" —n) - (2%) states, where Z = 2%,um,
2" — n stems from the fact that we have to determinise the automaton with
respect to ambiguous tests, n is the maximum number of ambiguous tests
emanating from a state of the NPA, thus 2" —n new states have to be added.
(2" —n) - (2¢) - N is the maximum number of states the product Markov
chain M* thus may have. The rest follows from [3].

10 Extending SPDL with Real Time Intervals

For the sake of completeness we define the syntax of SPDL!.

Definition 26 (Syntax of SPDL'). Let p € [0,1], ¢ € AP and =€ {<, >
,<,>}. SPDL state formulae can be defined by the following grammar:

Di=q| =D | DV D | Sup(D) | Prcp(9))

43

Path formulae ¢ are defined as follows:
¢ = Plp)'d

where [= [t,t'], t € IRy ANt' € IR~(. Programs are defined by the following
grammar:

p = €|p;plp U p|®7; plpi|(p)
pr = alpy; pr]p1 U p1|p}| D7 p1 | (p1)

We have to adapt the original definition of words over paths to the needs of
[t, '] time intervals.

Definition 27 (Words on paths). The word W* of length k, k > 0 over
a path 0 € PATH of length k, k > 0 over a path 0 € PATH is inductively
defined as follows:

W (o) =¢

with:

a[k—l]ﬂfk_l
—_

alk—1] € Anofk—1] olk]

is the action on path o belonging to the last transition, being terminated on
time point t;.

Definition 28 (Semantics of path formulae).

M, o | Pspprilp) Vspprr <=
E|t2 € [((M, O'@tg): LpSPDLI) VAN th € [t, tg)(./\/l, O'@tl): @SPDLI) AN
Jp € (Vi € [t,t5)(|p| = |oQtay| A M, 0@t = TeF (pat,) AW (0)Qt;, = Act(p@t,))))

where |c@Qt,| is defined as the length of the path at time point 5.

44

10.1 Characterisation of Path Formulae by Integral Equations

We now have four cases, the notation is the same as in section 6.2.

W (s, ®[p]"*0, 2,) =

(

1 —=t=0ANM,s =¥ Az, €E,)or
(M,sEUAM,s|E ZEA
0,(2p, =7;) € Ep)

e—E(S)'t_'_

e~ E@s)z ZaeA(zp) . ZS’ES Ra(s, 8/).
W (s, @[p/]~19"0,6,(2,,a))dx <= M, s EPAY,t>0

o, o

t/
Oj’e—E(S)-x . ZaeA(zP) . Zs/eS Ra(S, S/)'
W (s, @[p/]<19W, 6 ,(2,,a))dx = M,sEOANY

0 — (M,s = (=@ A —V)) or
(M, s = (=@ AT)A
—3=5 € Sat(s)(0,(z,, Z7) € I,)A
0,(2p,=7) € E,) or
(M, s = (PANY)AM E-EA

0p(2p, Z7) N L(z,) ={57})

\

Except for the second case this characterisation is identical to the one in
section 6.2. The second case has the following explanation:

The probability to fulfill ¢ is the probability to stay for more than ¢ > 0
time units in state s plus the probability to reach s’ from s within x time
units, z < t and to satisfy @[p'|!*¥ along a path starting in s'.

11 Conclusions

In this technical report, we have presented the definition of a powerful stochas-
tic logic that is capable of concisely and precisely expressing a rich variant
of performability measures. We have also devised an algorithm for model

45

checking probabilistic SPDL path formulae by transforming the underlying
model and thereby reducing it to the model checking problem of CSL, for
which solution efficient algorithms exist. Furthermore we have proven some
theoretical results on SPDL.

For the future we plan to integrate a stochastic model checking engine
into our symbolic performance evaluation tool CASPA [15]. On the theoret-
ical side we plan to extend SPDL by random time intervalls, such that the
upper bound is not necessarily longer a fixed value but can be drawn from
an arbitrary probability dsitribution. Further, we want to allow immediate
transitions, here, we expect various changes in the model checking procedure,
as now untimed transitions in the model can be matched by transitions in the
automata. Additionally we want to compare the expressive powers of various
stochastic logics with that of SPDL.

References

1. A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Verifying continuous time Markov chains.
In R. Alur and T.A. Henzinger, editors, Computer-Aided Verification, volume LNCS 1102,
pages 146-162. Springer, 1996.

2. A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model checking continous time Markov
chains. ACM Transactions on Computational Logic, 1(1):167-170, 2000.

3. C. Baier, B. Haverkort, H. Hermanns, and J.P. Katoen. Model-Checking Algorithms for
Continuous-Time Markov Chains. IEEE Trans. Software Eng., 29(7):1-18, July 2003.

4. C. Baier, B.R. Haverkort, J.-P. Katoen, and H. Hermanns. Model Checking Continuous-Time
Markov Chains by Transient Analysis. In E.A. Emerson and A.P. Sistla, editors, Computer
Aided Verification, volume LNCS 1855, pages 358-372. Springer, 2000.

5. C. Baier, J.-P. Katoen, and H. Hermanns. Approximate Symbolic Model Checking of

Continuous-Time Markov Chains. In J.C.M. Baeten and S. Mauw, editors, Conurrency The-

ory, volume LNCS 1664, pages 146-162. Springer, 1999.

G. Evans. Practical Numerical Analysis. Wiley, 1995.

7. A. Fantechi, S. Gnesi, and G. Ristori. Model checking for action based logics. Formal Methods
in System Design, 4:187-203, 1994.

8. M. Fischer and R. Ladner. Propositional Dynamic Logic of Regular Programs. Journal of
Computer and System Sciences, 1979.

9. B.L. Fox and P. W. Glynn. Computing Poisson probabilities. Communications of the ACM,
31(4):440-445, 1988.

10. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal Aspects
of Computing, 6:512—-535, 1994.

11. D. Harel, D. Kozen, and J.Tiuryn. Dynamic Logic. Cambridge University Press, 2001.

12. H. Hermanns, J.P. Katoen, J. Meyer-Kayser, and M. Siegle. Towards model checking stochas-
tic process algebra. In Integrated Formal Methods, volume LNCS 1945, pages 420-439.
Springer, 2000.

13. Joost-Pieter Katoen, Marta Kwiatkowska, Gethin Norman, and David Parker. Faster and
symbolic CTMC model checking. In Process Algebra and Probabilistic Methods, volume LNCS
2165, pages 23-38, 2001.

o

46

14.

15.

16.

17.

D. Kozen and J. Tiuryn. Handbook of Theoretical Computer Science, Volume B: Formal
Models and Semantics, chapter Logic of Programs. Elsevier, 1990.

M. Kuntz, M. Siegle, and E. Werner. CASPA a performance evaluation tool based on stochas-
tic process algebra and symbolic data structures. In to appear, 2003.

J. Meyer-Kayser. Verifikation stochastischer, prozessalgebraischer Modelle mit aCSL+. Tech-
nical Report IB 01/03, Universitit Erlangen-Niirnberg, Institut fiir Informatik 7, 2003.

C. Moler and C.F. van Loan. Nineteen dubious ways to compute the exponential of a matrix.
SIAM Review, 20(4):801-835, 1978.

47

