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Abstra
t. In this paper we present a sto
hasti
 extension of the modal logi
 PDL

(propositional dynami
 logi
), SPDL, that is interpreted over labelled 
ontinuous

time Markov 
hains (CTMC). We de�ne the syntax and semanti
s of SPDL. SPDL

provides, like PDL, powerful means to spe
ify path properties. In general paths


an be 
hara
terised by regular expressions, where the exe
utability of a regular

expression 
an depend on the validity of guard or test formulae. Su
h regular ex-

pressions enri
hed with test formulae are 
alled programs. In order to model 
he
k

SPDL path formulae it is ne
essary to derive from the programs a variant of deter-

ministi
 �nite automata and to build the produ
t automaton between the labelled

CTMC and this automaton. We des
ribe two di�erent ways to model 
he
k SPDL,

at �rst via solving an integral equation system and se
ondly by transient analysis.

We show that a variant of Markov bisimulation preserves the validity of SPDL for-

mulae, �nally we give the worst 
ase 
omplexity for model 
he
king SPDL formulae

by means of uniformisation.

1 Motivation and Introdu
tion

It is 
ommonpla
e that distributed, 
on
urrent hard- and software systems

have be
ome part of our daily life. Be
ause of our high dependen
y on these

systems, it be
omes more and more important to assert that they are working


orre
tly and that they meet high performan
e requirements.

To do performan
e, dependability and reliability analysis it is ne
essary

to have both a model and a number of measures of interest, like utilisation,

mean number of jobs, mean time to failure and the like. The model is de-

rived, roughly spoken in two steps: At �rst some spe
i�
ation method like

(sto
hasti
) Petri nets, (sto
hasti
) pro
ess algebras, queueing networks, et
.

is employed to obtain a high level spe
i�
ation of the system that is to be

analysed. At se
ond from this high level spe
i�
ation the low level representa-

tion is obtained. This low level representation is normally a 
ontinuous time

Markov 
hain (CTMC). Now, to do performan
e, dependability or reliability

analysis one has to spe
ify the measures of interest. While for spe
i�
ation

of models powerful means like the one mentioned above are available this is

often not the 
ase for measure spe
i�
ation.

In the realm of fun
tional veri�
ation, temporal logi
s as CTL provide

powerful means to spe
ify 
omplex properties of systems. In the re
ent years

big e�orts have been made to provide similar means for the spe
i�
ation

of measures in the area of performan
e analysis. Thus, the logi
 CTL was

extended to express 
omplex measures.

In the sequel we will give a short a

ount of the evolution of extensions of

CTL.
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At �rst we should mention the logi
 PCTL [10℄, a probabilisti
 logi
, that

is interpreted over dis
rete time Markov-
hains. In PCTL the CTL path

quanti�ers A and E are repla
ed by a probabilisti
 operator P⊲⊳p(ϕ), that
expresses that the probability that the path formula ϕ is satis�ed meets the

bounds expressed in ⊲⊳ p.
Though, more important is the logi
 CSL, introdu
ed in [1, 2℄ that is inter-

preted over a CTMC. This logi
 is extended in [3℄ by a steady-state operator

S⊲⊳p(Φ), that allows one to reason about steady-state probabilities, i.e. to

reason about the probability that the system, 
onsidered on the long run is

in a 
ertain set of states. CSL provides also timed variants of the until- and

the next-operator, UI
, XI

, allowing to make the validity of a formula also

dependent, whether the time at whi
h a satisfying state is rea
hed at a time

point t that is within the spe
i�ed interval I.
A very important bran
h of modelling formalisms is that of sto
hasti


pro
ess algebras (SPA). This formalism is a
tion-oriented, i.e. the system

behaviour is spe
i�ed by a
tions. In this 
ontext, states 
onstitute only an

auxiliary mean within the semanti
 model of SPA-pro
esses. The determina-

tion of the measures of interests in 
ontrast is state oriented. To avoid this


hange of views, i.e. a
tion- vs. state oriented, in [12℄ an a
tion-based variant

of CSL, aCSL, has been proposed. Similar to aCTL [7℄ the 
hara
terisation

of satisfying paths is done by spe
ifying sets of a
tions A that have to o

ur

to satisfy a given path formula.

Though, aCSL has demonstrated its usefulness in several 
ase studies, its

weakness lies in the limited possibibilities to 
hara
terise satisfying paths.

Paths satisfy an aCSL-requirement, if an arbitrary sequen
e of a
tions from

A o
urred. It is not possible to state that a, b, c have to appear in this order

and ea
h of this a
tions exa
tly on
e. Therefore, aCSL has been extended

to aCSL+ [16℄ to over
ome this problem. In aCSL+, paths are 
hara
terised

via regular expressions.

In this paper we give a sto
hasti
 extension of the logi
 PDL, where paths


an not only be spe
i�ed via regular expressions but also via properties of

states that are visited during the exe
ution of the regular expression spe
-

ifying the paths. This is expressed via so 
alled 'tests' that 
ondition the

exe
ution of the subsequent regular expression. Subsequently, we will 
all

regular expressions that may or may not 
ontain tests 'programs'.

This paper is organised as follows: In the next se
tion we give a short

overview of PDL. In se
tion 3 we introdu
e automata that represent PDL

programs. In se
tion 4 the syntax and semanti
s of our sto
hasti
 extension
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of PDL, SPDL, is introdu
ed. In se
tion 5 we demonstrate how to 
onstru
t

automata for PDL. Se
tion 6 is devoted to the introdu
tion of model 
he
king

pro
edures for SPDL. In se
tion 7 the method of uniformisation is explained

in some detail. In se
tion 8 apply by means of a small example the 
on
epts

introdu
ed so far. In se
tion 9 we show that the validity of SPDL formulae

is preserved by a variant of Markov-AP-Bisimulation and we give a worst


ase approximation of the 
omplexity of model 
he
king SPDL probabilisti


path formulae. In se
tion 10 we extend SPDL by real time intervals, i.e.

time intervals of the form [t, t′], where t 6= 0 is possible. Finally, we draw a


on
lusion and give a short outlook on future work.

2 Propositional Dynami
 Logi
 PDL

PDL is a modal logi
 that is suited for reasoning about programs. It is inter-

preted over a Kripke stru
ture M, with M := {SM, IM}, where S is a set of

states and I an interpretation fun
tion. The idea of modal logi
, reasoning in

situations where the truth value of a formula 
an vary over time, is perfe
tly

suited for program exe
ution. We 
an interprete the states of M as the set

of all possible exe
ution stages of a program. With any program ρ we 
an

asso
iate a binary relation R over M su
h that (s, t) ∈ R i� there is an ex-

e
ution of ρ that, starting in state s terminates in state t. Now, the relation
between modal logi
 and programs is that the programs ρ are written inside

the modal operators ✸ and ✷:
〈

ρ
〉

and [ρ], su
h that PDL is a multi-modal

logi
, where ea
h program ρ is a modality. The intuitive meaning of

〈

ρ
〉

and

[ρ] is as follows:

�

〈

ρ
〉

Φ: It is possible to exe
ute ρ and thereby ending up in a state satisfying
Φ.

� [ρ]Φ: Every terminating exe
ution of ρ ends in a state satisfying Φ, where
it is not ne
essary that there is a terminating exe
ution at all.

2.1 Syntax and Semanti
s of PDL

In general, one 
an say that PDL 
ontains elements that stem from propo-

sitional logi
, modal logi
 and the algebra of regular expressions. The three


onstituents are 
omposed as des
ribed by the following syntax de�nition.
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Syntax of PDL: Basi
ally a PDL-expression may 
onsist of expressions of

the following types:

� programs: ρ, ...
� formulae: Φ, Ψ, ...

To build 
omplex expressions out of simpler ones, i.e. atomi
 propositions

and atomi
 programs, PDL provides a number of operators that 
an be 
at-

egorised as follows:

� logi
al operators: ¬,∨
� program operators: ∪, ; ,∗

� mixed operators:

〈 〉

, ?

PDL-expressions are mutually re
ursively de�ned:

Let Φ and Ψ be formulae and ρ1 and ρ2 programs, then: Φ ∨ Ψ , ¬Φ,
〈

ρ
〉

Φ
are formulae, where formulae of this kind are asso
iated with the states of

the Kripke stru
ture, i.e. state formulae, and ρ1; ρ2, ρ1 ∪ ρ2, ρ∗
1 and Φ? are

programs. Programs are de�ned as follows:

De�nition 1 (Programs). Let Act be a set of atomi
 programs, whi
h we

may also 
all a
tions and TEST be a set of state formulae. Together they

form the alphabet Σρ for the program ρ, i.e.

Σρ := Act ∪ TEST

A program ρ over an alphabet Σρ is de�ned by the following grammar:

ρ := ǫ
∣

∣a
∣

∣ρ; ρ
∣

∣ρ ∪ ρ
∣

∣ρ∗
∣

∣Ξ?; ρ
∣

∣(ρ)

Where a ∈ Act and Ξ ∈ TEST.

Semanti
s of PDL: Instead of giving the formal semanti
s of PDL, we

will des
ribe the intuitive meaning of some of the PDL-
onstru
ts. A more

thorough a

ount of the formal semanti
s of PDL 
an be found in [8, 11, 14℄.

� ρ1; ρ2: Exe
ute ρ1 and ρ2 sequentially

� ρ1 ∪ ρ2: Choose nondeterministi
ally ρ1 or ρ2 and exe
ute the 
hosen

program

� ρ∗
1: Exe
ute ρ1 a non-deterministi
ally 
hosen number of times, in
luding

zero times
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�

〈

ρ1

〉

Φ: It is possible to exe
ute ρ1 and halt in state satisfying Φ.
� [ρ1]Φ: Although not expli
itly present in PDL, the box is the dual of the

diamond and 
an be expressed as follows:

[ρ1]Φ ≡ ¬
〈

ρ1

〉

¬Φ

This means it is not possible to exe
ute ρ1 and end up in a state that

does not satisfy Φ.
Equivalently, for every terminating 
omputation of ρ1 it holds that ρ1

halts or stops in a state satisfying Φ. Note, that for the satisfa
tion of a

formula of this kind no terminating 
omputation at all must exist.

� Φ?; ρ1: Test, if Φ holds in the 
urrent state, if so, exe
ute ρ1 otherwise fail.

3 Automata for PDL

We will now introdu
e how to relate �nite exe
utions of programs that are

de�nable by the synta
ti
al means provided in se
tion 2 with automata.

3.1 Alphabets, Programs and Automata

In this se
tion we give a de�nition of programs for PDL that is adapted to

our needs. We forbid programs of the form (Φ?; ǫ)∗, this will be justi�ed in

the sequel:

In the way we do model 
he
king of SPDL formulae, i.e. by 
onstru
ting a

produ
t Markov Chain between the system's original Markov 
hain and the

automaton of the program de�ning the satisfying paths, it is not ne
essary to

have (sub-)programs of the kind (Φ?; ǫ)∗, as with a test no transition in the

Markov 
hain is asso
iated and the program 
an be exe
uted also zero times,

the validity or non-validity of Φ in the a
tual state of the Markov 
hain is

without signi�
an
e for the model 
he
king pro
edure.

De�nition 2 (Programs). Let Act be a set of atomi
 programs, whi
h we

may also 
all a
tions and TEST be a set of state formulae. Together they

form the alphabet Σρ for the program ρ, i.e.

Σρ := Act ∪ TEST

A program ρ over an alphabet Σρ is de�ned by the following grammar:

ρ := ǫ
∣

∣ρ; ρ
∣

∣ρ ∪ ρ
∣

∣Ξ?; ρ
∣

∣ρ1

∣

∣(ρ)

ρ1 := a
∣

∣ρ1; ρ1

∣

∣ρ1 ∪ ρ1

∣

∣ρ∗
1

∣

∣Ξ?; ρ1

∣

∣(ρ1)

Where a ∈ Act and Ξ ∈ TEST.
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De�nition 3 (Program transformation). Let a program ρ derived by

the grammar from de�nition 2 be given, we apply to it the following trans-

formation rules, su
h that the resulting program ρ′
is equivalent to ρ.

(T1) Sequen
es of test formulae with no atomi
 programs, i.e. elements from

Act, interspersed, i.e. sequen
es of the kind Ξ1?; Ξ2?; ...Ξn?; are trans-

formed into a 
onjun
tion of the involved test formulae:

Ξ1?; Ξ2?; ...Ξn?;≡
n

∧

i=1

Ξi?;

This transformation is 
orre
t, sin
e it 
an be shown that the above equiv-

alen
e relation holds: We show the 
orre
tness for i = 2, the general 
ase
is an easy indu
tion on the number of 
onjun
ts.

I((Ξ ∧ Θ)?; ρ) = I((Ξ ∧ Θ)?) ◦ I(ρ)

= {(u, u)
∣

∣u ∈ I((Ξ ∧ Θ))} ◦ I(ρ)

= {(u, u)
∣

∣u ∈ (I(Ξ) ∩ I(Θ))} ◦ I(ρ)

= {(u, u)
∣

∣u ∈ (Sat(Ξ) ∩ Sat(Θ))} ◦ I(ρ)

We have to show that the semanti
 de�nition for Ξ?; Θ?; ρ is identi
al to

the one above:

I(Ξ?; Θ?; ρ) = I(Ξ?) ◦ I(Θ?) ◦ I(ρ)

= {(u, v)
∣

∣∃w(u, w) ∈ I(Ξ?) ∧ (w, v) ∈ I(Θ?)} ◦ I(ρ)

For the remaining derivations we need the following equivalen
es:

(u, w) ∈ I(Ξ?) ⇐⇒ u = w ∧ u ∈ Sat(Ξ)

(w, v) ∈ I(Θ?) ⇐⇒ w = v ∧ w ∈ Sat(Θ)

Thus, it holds: u = w ∧ w = v → u = v.
Furthermore, we have:

(u, u) ∈ I(Ξ?) ⇐⇒ u ∈ Sat(Ξ)

Using the equivalen
es above, we 
an dedu
e:

{(u, v)
∣

∣∃w(u, w) ∈ I(Ξ?) ∧ (w, v) ∈ I(Θ?)} ◦ I(ρ)

= {(u, u)
∣

∣u ∈ Sat(Ξ) ∧ u ∈ Sat(Θ)} ◦ I(ρ)

= {(u, u)
∣

∣u ∈ (Sat(Ξ) ∩ Sat(Θ)} ◦ I(ρ)
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(T2) As a se
ond transformation, we turn ea
h test formula that has no dire
tly

su

eeding atomi
 program, i.e. test formulae in front of a 
hoi
e operator

(Ξ?; (ρ1 ∪ ρ2)) or a star (Ξ?; (ρ1)
∗
) or at the end of a program (ρ1; Ξ?),

into Ξ?; ǫ, i.e. a test followed by the empty word. This is 
orre
t, sin
e

∀a ∈ Σρ(a; ǫ ≡ a).
(T3) Atomi
 programs a, not pre
eeded by a test formula are transformed into

expressions of the kind true?; a. This is 
orre
t, sin
e test formulae are

state formulae and true is assumed to hold in every state this does not

a�e
t the exe
utability of a.

This transformation rules, from here on referred to as (T1) to (T3) are needed
for the de�nition of the semanti
s of SPDL. In the sequel we will assume

that ea
h program ρ has been transformed a

ording to (T1) to (T3). The
imaginary alphabet Σ of su
h transformed programs is:

Σ := TEST × Act

Note: true ∈ TEST and ǫ ∈ Act.

I.e. ea
h element of the alphabet is a tuple of test and atomi
 program.

De�nition 4 (Program instan
es, length of program instan
es). A

�nite sequen
e of elements from the alphabet Σ := TEST × Act is 
alled

program instan
e. I.e. ea
h element of this alphabet is a tuple 
onsisting of

a test formula su

eeded by an atomi
 program.

The length of a program instan
e p denoted by

∣

∣p
∣

∣

, is the number of ele-

ments from Σ o

uring in it. For example:

p = (true?; a); (Ξ?; b); (true?; c) ⇒
∣

∣p
∣

∣ = 3

For 0 ≤ i ≤
∣

∣p
∣

∣ p[i] is the (i + 1)st element of p. For example:

p = (true?; a); (Ξ?; b); (true?; c) ⇒ p[1] = Ξ?; b

Act(p[i]) is the fun
tion that returns the atomi
 program part of p[i]. TeF (p[i])
is the fun
tion that returns the test formula part of p[i]. For example:

p = (true?; a); (Ξ?; b); (true?; c) ⇒ Act(p[1]) = b ∧ TeF (p[1]) = Ξ

De�nition 5 (Equivalent program instan
es). Two program instan
es

p1 and p2 are equivalent, p1 ≡ p2, i� either
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� p1 = p2, i.e. they are synta
ti
ally equal

or

�

∣

∣p1

∣

∣ =
∣

∣p2

∣

∣

� ∀i((Act(p1[i]) = Act(p2[i])) ∧ (TeF (p1[i]) = true ⇐⇒ TeF (p2[i]) = true))

Two programs ρ1 and ρ2 are equivalent, i� all their program instan
es are

pairwise equivalent.

De�nition 6 (Non-deterministi
 program automaton NPA). An NPA
N is de�ned by the quintuple (ZN , ΣN , ZStart

N , EN , δN):

� ZN : a �nite set of states

� ΣN := TEST × Act: input alphabet

� ZStart
N : a set of initial states, ZStart

N ⊆ ZN

� EN : a set of a

epting states EN ⊆ ZN

� δN : transition fun
tion: δN : ZN × ΣN → 2ZN
.

De�nition 7 (Language of an NPA). The language of N , L(N) is de�ned
as the set of all �nite sequen
es of elements of its input alphabet ΣN su
h

that ea
h sequen
e leads from an initial state to an a

epting state:

L(N) := {p ∈ Σ∗
N

∣

∣(z0, p[1], z1), ..., (zn−1, p[n], zn) ∈ δN ∧ z0 ∈ ZStart
N ∧ zn ∈ EN}

In this de�nition we have used the fa
t, that ea
h n-ary fun
tion 
an be in-

terpreted as (n+1)-ary relation. We have applied it to the transition fun
tion

whi
h is binary and the interpretation as transition relation is ternary.

1

De�nition 8 (Language of a program ρ). The set of all possible program
instan
es of a program ρ is 
alled its language, L(ρ)2.

For example, let the following program ρ be given:

ρ = (Ξ?; a); ((true?; b); (true?; c))∗; (Θ?; d)∗

Then some instan
es of ρ are:

Ξ?; a
∣

∣ (Ξ?; a); (true?; b); (true?; c)
∣

∣ (Ξ?; a); (true?; b); (true?; c); (Θ?; d)...

As another example let ρ be the following program:

ρ = (true?; a); ((Ξ?; b) ∪ (true?; c))

1

We will use this interpretation at many pla
es without expli
itly stating it

2

Note, that we assume that ρ has been transformed a

ording to (T1) to (T3)
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Then the language of ρ is the following set of program instan
es:

L(ρ) = {(true?; a); (Ξ?; b), (true?; a); (true?; c)}

Theorem 1. For ea
h language L(ρ) there exists an NPA Nρ, su
h that

L(ρ) = L(Nρ).

The proof follows the same lines as the proof for the 
ommon non-deterministi


�nite automata.

De�nition 9 (Deterministi
 program automaton DPA). A DPA A is

de�ned by the quintuple (ZA, ΣA, zStart, EA, δA):

� ZA: a �nite set of states

� ΣA : TEST × Act: input alphabet

� zStart
A : a single initial state, zStart

A ∈ ZA

� EA: a set of a

epting states EA ⊆ ZA

� δA: state transition fun
tion: δA : ZA × ΣA → ZA: If a state z possesses

more than one outgoing transitions, then it must hold, that either the

a
tion parts of the labellings of all outgoing transitions are di�erent, or

if there are at least two transitions whi
h a
tion parts are identi
al, then

the test formula parts of them must ful�ll the property that they 
an't

be true at the same time.

Theorem 2. For ea
h NPA N an equivalent DPA A 
an be 
onstru
ted

This proof 
an be found in se
tion 5

4 Sto
hasti
 PDL

This se
tion presents the syntax and semanti
s of the sto
hasti
 propositional

dynami
 logi
 (SPDL).

4.1 A
tion- and State-Labelled Continuous-Time-Markov Chains

In this subse
tion the model that underlies SPDL is introdu
ed.

De�nition 10 (A
tion- and state-labelled 
ontinuous-time-Markov


hains, ASMC). An ASMC M is a quadruple (S, A, L, R), where

� S: �nite set of states
� A: set of a
tion names: A = Act

10



� L: state labelling fun
tion: S → 2AP

� R: state transition relation : R ⊆ S × (A × IR>0) × S

AP is the set of atomi
 propositions.

De�nition 11 (Rates and probabilities).

RA(s, s′) :=
∑

a∈A

{λ
∣

∣s
a,λ
−→ s′}

RA(s, s′): sum of all rates λ leading with a
tion a from s to s′.

E(s) :=
∑

s′∈S

RA(s, s′)

E(s): sum of all rates of transitions emanating from state s.

PA(s, s′) := RA(s, s′)/E(s)

PA(s, s′): probability to rea
h s′ via s by performing an a
tion a.
It holds:

P∅(s, s
′) = R∅(s, s

′) = 0 for all s, s′ ∈ S

For absorbing states:

PA(s, s′) = RA(s, s′) = E(s) = 0 for arbitrary s′ ∈ S

De�nition 12 (Paths inM). An in�nite path σ is a sequen
e of transitions

of the form s0
a0,t0
−→ s1

a1,t1
−→ s2...

� si ∈ S, ai ∈ A, (si, a, λ, si+1) ∈ R
� ti = τ(σ, i) ∈ IR>0: real sojourn time in si before passing to si+1.

� σ[i]: (i + 1)st state on path σ
� a[i]: (i + 1)st a
tion on path σ
� σ@t = σ[i]: state that is rea
hed at time instant t on path σ, it holds that

i is the smallest index for whi
h t ≤
∑i

j=0 tj .

A �nite path σ is a �nite sequen
e of transitions of the form: s0
a0,t0
−→ s1

a1,t1
−→

s2...sn−1
an−1,tn−1
−→ sn, where R(si, si+1) > 0 for all i < n and R(sn, s

′) = 0 for

11



all s′ ∈ S.
For �nite paths σ, σ[i] and τ(σ, i) are de�ned only for i ≤ n, for i < n as for

in�nite paths, for i = n it holds τ(σ, i) = ∞. For t <
∑l−1

j=0 tj let σ@t = sn

for all other 
ases, σ@t is de�ned as in the 
ase of in�nite paths.

The set of all paths with initial state s is 
alled PATH(s)

PATH(s) := {σ
∣

∣σ[0] = s}

A
tion sequen
es that 
hara
terise the set of ful�lling paths are de�ned in

SPDL over programs. Programs are de�ned as in se
tion 3.1. We need the

following de�nition:

4.2 Syntax of SPDL

In this se
tion we present the syntax of the sto
hasti
 extension of PDL.

SPDL extends PDL with two probabilisti
 operators that allow to express

steady state and transient measures. Like in the logi
 CSL [5, 4℄ SPDL pro-

vides two types of formulae: state formulae that are interpreted over the

states of an ASMC M and path formulae that are interpreted over paths in

an ASMC.

De�nition 13 (Syntax of SPDL). Let p ∈ [0, 1], and q ∈ AP an atomi


proposition, where AP is the set of atomi
 propositions and let ⊲⊳∈ {≤, <,≥
, >}.
The state formulae Φ of SPDL are de�ned as follows:

Φ := q
∣

∣Φ ∨ Φ
∣

∣¬Φ
∣

∣S⊲⊳p(Φ)
∣

∣P⊲⊳p(ϕ)
∣

∣(Φ)

Path formulae are de�ned by:

ϕ := Φ[ρ]IΦ

where I is the 
losed interval [t, t′].3

Expressions of the form ρ are des
ribed by the grammar given in se
tion 3.1.

4.3 Semanti
s of SPDL

Before we give the formal semanti
s of SPDL, we provide an informal expla-

nation of the SPDL-formulae.

3

In the sequel it is assumed t = 0

12



Informal semanti
s: S⊲⊳p(Φ) asserts that the steady-state probability, i.e.
the probability to reside in a parti
ular set of states on the long run, satis�es

the boundary as given by ⊲⊳ p. P⊲⊳p(ϕ) asserts that the probability measure

of the paths that satisfy ϕ is within the bounds as given by ⊲⊳ p.

Formal semanti
s: For the semanti
s of path formulae we have to de�ne

the notion of words on paths. We need this, be
ause we have to relate the

paths of the DPA of the program π and the paths in the ASMC M.

De�nition 14 (Words on paths). The word Wk
of length k, k ≥ 0, over

a path σ ∈ PATH is de�ned as follows:

W0(σ) := ǫ

Wk(σ) := Wk−1(σ) ◦ a[k − 1]

where:

a[k − 1] ∈ A ∧ σ[k − 1]
a[k−1],λ
−→ σ[k]

Where Wk(σ)[i] = p[i] is the i-th a
tion on path σ.

We need some notation from probability theory, to de�ne the semanti
s of :

De�nition 15 (Probability ve
tors, state probabilities, et
.). If an

initial probability distribution α is given, then the probability to be in state

s′ at time point t is given by

πM(α, s′, t) = Prα(σ ∈ PATHM
∣

∣σ@t = s′)

The length of α equals the 
ardinality of the state spa
e of M. The de�nition

for steady state probabilities is similar, we only have to take into a

ount that

steady state means 'on the long run':

πM(α, s′) = limt→∞πM(α, s′, t)

Often it o

urs that a unique initial state s exists, i.e. α = {1, 0, ...., 0},
we simply write Pr instead of Prα and πM(s, s′, t) instead of πM(α, s′, t)
in 
ase of transient probabilities and analogously πM(s, s′) for steady state

probabilities. The de�nitions 
an be extended to sets of states: For S ′ ⊆ S:

πM(α, S ′) :=
∑

s′∈S′

πM(s, s′) i.e.

πM(α, S ′) := limt→∞Prα(σ ∈ PATHM
∣

∣σ@t ∈ S ′)

13



We are now ready to give the formal semanti
s of SPDL.

De�nition 16 (Semanti
s of SPDL). The semanti
s of state formulae is

de�ned as follows:

M, s |= q ⇐⇒ q ∈ L(s)

M, s |= ¬Φ ⇐⇒M, s 6|= Φ

M, s |= (Φ ∨ Ψ ) ⇐⇒M, s |= Φ or M, s |= Ψ

M, s |= S⊲⊳p(Φ) ⇐⇒ πM(s, Sat(Φ)) ⊲⊳ p

M, s |= P⊲⊳p(ϕ) ⇐⇒ ProbM(s, ϕ) ⊲⊳ p

ProbM(s, ϕ) is the probability measure of all paths σ ∈ PATH(s), starting in
s to satisfy ϕ:

ProbM(s, ϕ) := Pr(σ ∈ PATHM(s)
∣

∣M, σ |= ϕ)

πM(s, S ′) is the stationary state probability to be at time instant → ∞ in a

state from the set S ′ ⊆ S, provided that s is the state at time instant zero:

πM(s, S ′) = lim
t→∞

Pr(σ ∈ PATHM(s)
∣

∣M, σ@t ∈ S ′)

α denotes the given state probability distribution at time instant zero.

The semanti
s of path formulae is de�ned as follows:

M, σ |= Φ[ρ][0,t]Ψ ⇐⇒ ∃k((M, σ[k] |= Ψ ∧
k

∑

i=0

ti ≤ t) ∧

(∀0 ≤ i < k(M, σ[i] |= Φ)) ∧ (∃p ∈ L(ρ)((
∣

∣p
∣

∣ = k) ∧

∀0 ≤ i < k(Act(p[i]) = Wk(σ)[i] ∧M, σ[i] |= TeF (p[i]))))

4.4 Derived Operators

Temporal Operators The only temporal operator presented so far is [ρ]I .
We will show, how the operators 'U', 'X' ('next') and 'F' ('�nally') 
an be

derived:

The U-operator 
an be expressed as follows by [ρ]I :

ΦUIΨ := Φ[Σ∗
ρ ]

IΨ

ΦUΨ := Φ[Σ∗
ρ ]

<∞Ψ

14



The F-operator kann is expressible by the following means:

F[ρ]IΨ := true[ρ]IΨ

F[ρ]Ψ := true[ρ]<∞Ψ

FIΨ := true[Σ∗]IΨ

FΨ := true[Σ∗]<∞Ψ

whereas X 
an be derived as follows:

X[Ξ?; a]IΨ := true[Ξ?; a]IΨ

X[Ξ?; a]Ψ := true[Ξ?; a]<∞Ψ

XIΨ := true[Σ\TEST]IΨ

XΨ := true[Σ\TEST]<∞Ψ

Modal Operators The modal operators

[

ρ
]

('ne
essarily') and

〈

ρ
〉

('possi-

bly') 
an be derived using the probabilisti
 path operater P⊲⊳p and the derived

temporal operator F as follows:

〈

ρ
〉

Ψ := P>0(F[ρ]∞Ψ )
[

ρ
]

Ψ := ¬
〈

ρ
〉

¬Ψ

5 Automata Constru
tion

For model 
he
king SPDL-path formulae it is ne
essary to derive a determin-

isti
 program automaton from the program ρ. This 
onstru
tion pro
edure

will be 
overed in greater detail in this se
tion.

5.1 Constru
ting the NPA

As we treat atomi
 programs and tests the same way when 
onstru
tion

an NPA, and again treat them the same way as a
tions are treated when

deriving a non-deterministi
 �nite automatonNFA from a regular expression

the 
onstru
tion pro
ess for an NPA N will be the same as for an NFA.
Details are omitted.

15



5.2 Note on the notation

In se
tions 3 and 4 we have spent some e�ort on de�ning the semanti
s of

SPDL and introdu
ed input alphabets for automata and alphabets for pro-

grams that slightly di�ered in the way what they regarded as 
hara
ter or

letter. Then we showed, that programs ρ that are derived by the grammar

from 2 
an be equivalently transformed into programs ρ′
that serve as inputs

for program automata thereby relating programs and program automata.

Furthermore, the transformed program ρ′
made it easier to de�ne the seman-

ti
s of SPDL-path formulae, be
ause the relation between words on pahts of

the ASMC and paths in the program automaton derived from ρ′
was easier

to establish. In this se
tion we will somehow relax this stri
t notational rules

and use a more sloppy way to handle programs. In the sequel we will use

a as an abbreviation for true?; a and Ξ?; as an abbreviation for Ξ?; ǫ. This
sloppiness eases a lot the presentation of the subsequent material. Using the

stri
t notation from se
tions 3 and 4 would make it ne
essary to 
opiously

des
ribe, how elements of the input to an automaton that stem from a pro-

gram instan
e p that either possess trivial tests as test formula part or the

empty word as atomi
 program part 
an be equivalently transformed when

applying rules for 
onstru
ting automata from program instan
es. Using a

sloppy notation we 
ir
umvent this di�
ulties.

5.3 Tests and Transitions

In this subse
tion we will des
ribe how test transitions, i.e. transitions 
on-

sisting either only of a test formula or a test formula su

eeded by an atomi


program, are treated on automata 
onstru
tion.

For reasons that lie in the model-
he
king pro
edure of SPDL it is in

most 
ases, i.e. for internal transitions (z, p[i], z′), where z′ 6∈ E, ne
essary

to require that, if p[i] is dire
tly pre
eeded by a test with the empty word

as its atomi
 program part, p[i − 1], then we want that p[i − 1]?; p[i] is a

single transition, i.e. in the automaton the transitions zi−2
p[i−1]?
−→ zi−1

p[i]
−→ zi

are repla
ed by zi−2
p[i−1]?;p[i]
−→ zi. The exa
t way to obtain the last transitions

from the two before is topi
 of the remainder of this subse
tion.

Program division: We present a basi
, stepwise 
onstru
tion pro
edure to

obtain a deterministi
 program automaton Aρ from a given program ρ.

16



Let program ρ be given, to derive Aρ, in a �rst step ρ is divided into i,
1 ≤ i ≤ n subprograms, ρi, su
h that ea
h ρi 
ontains at most one test, not

equal to true. This eases the des
ription of the treatment of test transitions

while automata 
onstru
tion. The division of ρ pro
eeds as follows:

� As long as no tests are en
ountered, ρ is divided a

ording to the synta
ti

stru
ture of the expression.

� As soon as a test is found, the expression, governed by that test be
omes

a ρi.

• A

ording to ρi internal stru
ture it might be ne
essary to further

divide ρi.

� This division is 
ontinued until ea
h sub-program 
ontains at most one

test

Let ρ1, ρ2 be subprograms without tests, then the test Ξ?; governs Ξ?; ρ1

and the test Ξ?; governs Ξ?; (ρ1 ∪ ρ2).

Treatment of test transitions: On 
onstru
tion of the automaton Aρ

it might happen that transition are generated that are labelled with tests

having an empty atomi
 program su�x, i.e. are of the form Ξ?; ǫ. If the
target state of su
h transitions is not an absorbing and a

epting state, su
h

transitions have to be treated in a spe
ial way. In the sequel we will write

shortly Ξ?; for Ξ?; ǫ for all involved test formulae. In the sequel we will use

the following shorthands:

� X is either of the form a or Θ?; a.
� Y is either of the form Λ?; or b or Λ?; b
� Let zQ be the sour
e state of Ξ?;-transitions and ZY the (set of) target

states of Y -transitions.

The following 'rules' 
an be applied to remove internal pure test transitions,

i.e. transitions with a labelling that 
onsists only of a test.

1. Let zj be a non-a

epting state, possessing loops of the form X, in
oming

transitions of the kind Ξ?; and outgoing transitions Y . Repla
e the Ξ?;-
transition from zQ to zj by Ξ?; X and add to zQ Ξ?; Y -transitions with

target states from ZY .

2. Let zj be a non-a

epting state, with no loops, but with in
oming tran-

sitions Ξ?; and outgoing transitions Y . Then, repla
e in zQ ea
h Ξ?-
transition by Ξ?; Y -transitions with target states from ZY . The Ξ?;-
transition 
an be deleted.

17



3. Let zj be an a

epting state, possessing loops of the kind X, no outgoing

transitions, but in
oming transitions of the form Ξ?;. Repla
e the Ξ?;-
transition by Ξ?; X and add to zQ a new Ξ?;-transition that leads to

an absorbing and a

epting state. This state has possibly to be newly

introdu
ed.

4. Let zj be an a

epting state, possessing loops of the form X, in
oming

transitions of the kind Ξ?; and outgoing transitions Y . Repla
e the ingo-

ing Ξ?;-transition by Ξ?; X and add to zQ Ξ?; Y -transitions with target

states from ZY . Add to zQ a new Ξ?;-transition to an absorbing a

epting

state. This state has possibly to be newly introdu
ed.

Example: Given the program ρ = (c; a ∪ d; Ξ?; ); Λ?; b. Program ρ 
onsists

of the following parts:

� ρ1 = c; a
� ρ2 = d; Ξ?
� ρ3 = Λ?; b

For ρ1 ∪ ρ2 and ρ3 we obtain the automata shown in �gure 1.

d

c
a

Λ?;b

Ξ?;

(a)

(b)

Fig. 1. Automata for ρ1 ∪ ρ2, (a) and ρ3, (b)

Putting the automata from �gure 1 yield the nondeterministi
 automaton as

shown on top of �gure 2. Determinising and appli
ation of the transformation

rules for internal test transitions yields the automaton shown on bottom of

�gure 2.

Corre
tness of the Rules: We will now show that the transformation rules

given in this subse
tion are 
orre
t in the sense that the automata that are

generated this way are equivalent to the original ones.

� Corre
tness of rule 1: An automaton having the form as des
ribed in 1

is derived from a program of the form Ξ?; X∗; Y . This yields the following

18



a

d

c
a

Determinisation

d

c
a

c

d

a

Test transition elimination
according to rule 2

c

d

a
Removing unreachable states

Ξ?;
Ξ?;

Λ?;b

Ξ?;

Λ?;b

Λ?;b

Λ?;b

Λ?;b

Ξ?;Λ?;b

Λ?;b

Ξ?; Λ?;b

Fig. 2. Stepwise 
onstru
tion of Aρ from Nρ

synta
ti
al derivations:

Ξ?; X∗; Y ≡ Ξ?; (ǫ ∪ X; X∗); Y Semanti
s of Kleene star

Ξ?; (ǫ ∪ X; X∗); Y ≡ (Ξ?; ǫ ∪ Ξ?; X; X∗); Y Distributivity of ';'

(Ξ?; ǫ ∪ Ξ?; X; X∗); Y ≡ (Ξ? ∪ Ξ?; X; X∗); Y a; ǫ ≡ a

(Ξ? ∪ Ξ?; X; X∗); Y ≡ (Ξ?; Y ∪ Ξ?; X; X∗; Y ) Distributivity of ';'

� Corre
tness of rule 2: An automaton having the form as des
ribed in

rule 2 is derived from a program of the form Ξ?; Y . In this 
ase, nothing

has to be proven.

� Corre
tness of rule 3: An automaton having the form as des
ribed in

rule 3 is derived from a program of the form Ξ?; X∗
. We have the following

synta
ti
 
onversions:

Ξ?; X∗ ≡ Ξ?; (ǫ ∪ X; X∗) Semanti
s of Kleene star

Ξ?; (ǫ ∪ X; X∗) ≡ Ξ?; ǫ ∪ Ξ?; X; X∗
Distributivity of ';'

Ξ?; ǫ ∪ Ξ?; X; X∗ ≡ Ξ?;∪Ξ?; X; X∗ a; ǫ ≡ a
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� Corre
tness of rule 4: An automaton having the form as des
ribed in

rule 4 is derived from a program of the form Ξ?; X∗ ∪ Ξ?; X∗; Y .

Ξ?; X∗ ∪ Ξ?; X∗; Y ≡ Ξ?; (ǫ ∪ X; X∗) ∪ Ξ?; (ǫ ∪ X; X∗); Y

Ξ?; (ǫ ∪ X; X∗) ∪ Ξ?; (ǫ ∪ X; X∗); Y ≡ Ξ? ∪ Ξ?; X; X∗ ∪ Ξ?; Y ∪ Ξ?; X; X∗; Y

Ξ? ∪ Ξ?; X; X∗ ∪ Ξ?; Y ∪ Ξ?; X; X∗; Y ≡ Ξ?;∪Ξ?; X; X∗ ∪ Ξ?; X; X∗; Y ∪ Ξ?; Y

Ξ?;∪Ξ?; X; X∗ ∪ Ξ?; X; X∗; Y ∪ Ξ?; Y ≡ Ξ?;∪Ξ?; X; X∗; (ǫ ∪ Y ) ∪ Ξ?; Y

5.4 Determinisation in Case of Ambiguous Tests

The automata 
onstru
ted by the pro
edure as des
ribed so far, 
all them

N might be non-deterministi
. For model-
he
king purposes it is ne
essary

to derive from N its deterministi
 version, A. Non-determinism here might

stem from two sour
es and is purged in the following manner:

� Determine N by treating all labellings as a
tion labellings as in the 
ase

of �nite automata. This automaton is 
alled N ′
.

� In N ′
ambiguous tests might o

ur, i.e. for the same state z several outgo-

ing transitions might exist having the same atomi
 program a but di�erent
test formulae Ξi, 1 ≤ i ≤ m. In the model M in whi
h the test formulae

are interpreted it is not ne
essarily the 
ase that only one of the Ξi is

true while all others are false. In su
h 
ases where several test formulae

are satis�ed the su

essor state in the model that is to be model-
he
ked

is not uniquely de�ned, therefore we have to provide means to 
ombat

this problem. The automaton obtained by applying this pro
edure will

be 
alled A.

Elimination of ambiguous tests: Let Ξi be the tests that emanate from

z su
h that the su

eeding atomi
 programs are identi
al, i.e. Act(Ξi?; a) =
Act(Ξj?; a). The algorithm in �gure 3 removes ambiguous transitions.

We will now prove the following theorem from se
tion 3:

Theorem 3. For ea
h NPA N an equivalent DPA A 
an be 
onstru
ted

Before we begin with the proof we should state what is meant by �equivalen
e�

in the 
ontext of program automata. By equivalen
e we do not longer mean

that both automata a

ept the same language, if we 
onsider tests as being a

part of the a
tion name. By saying for any NPA an equivalent DPA 
an be
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(1) Z := 2Z
N′

(2) forall Z ∈ Z
(3) forall a ∈ L(Z)

/*L(Z) is the set of transition labellings, emanating from Z*/

(4) F := {Ξ
˛

˛a ∈ L(Z) ∧ TeF (a) = Ξ}
(5) negF := {¬Ξ

˛

˛Ξ ∈ F}
(6)

˛

˛F
˛

˛ := n, Con := ∅
(7) F ′[n] := 2F∪negF

/*F ′[n] is the powerset of F ∪ negF , where ea
h element has 
ardinality n */

(8) F := F ′[n]\{F ′ ∈ F ′[n]
˛

˛Ξ ∈ F ′ ∧ ¬Ξ ∈ F ′}
(9) forall F ′′ ∈ F
(10) Con′ := Conj(F ′′) /*Conjun
tion of elements of F ′′

. */

(11) Con′′ := Con′\{
Vn

i=1 ¬Ξi}
(12) Con := Con ∪ Con′′

(13) endforall

(14) forall Ξ ∈ Con

(15) δA(Z, Ξ?; a) :=
S

z∈Z{z
′
˛

˛δN′(z, Ξi?; a) = z′, for all subformulae Ξi ∈ F}
(16) endforall

(17) endforall

(18) endforall

Fig. 3. Ambiguous test elimination algorithm

found, we mean that both are equivalent in a logi
al sense, i.e. by interpreting

the tests. This means we say that two automata are equivalent, under any

model the same a
tion sequen
es 
an o

ur. At the end of the se
tion we will

explain this in more detail.

5.5 Motivation for our Notion of Equivalen
e

The spe
ial needs of model 
he
king require that the (sub-)automaton as

shown in 4 is nondeterministi
, although from a purely synta
ti
al point of

view it 
an be 
onsidered to be deterministi
.

Ψ?; a

Φ?; a

Fig. 4. Non-deterministi
 (sub-)automaton

As already motivated in great detail we have to perform the following trans-

formation on the test formula part of the a
tion labelling of the original NPA

to obtain a DPA.

4

The desired DPA is shown in �gure 5

4

This transformation pro
ess mixes syntax and semanti
s of PDL
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(Φ ∧ ¬Ψ)?; a

(Φ ∧ Ψ)?; a

(¬Φ ∧ Ψ)?; a

Fig. 5. Deterministi
 (sub-)automaton

We therefore have to show that both automata are equivalent, although the

languages DPA and NPA re
ognised by them are di�erent. It su�
es to prove

this 
laim for two transitions Φ?; a and Ψ?; a emanating from a single sour
e

state.

5.6 Proof

1. We apply the semanti
s of PDL for the given expression, an expression

that generates an NPA of the given form stems from the following PDL

term:

Φ?; a ∪ Ψ?; a

Given the following semanti
 de�nition:

[[Φ?; a ∪ Ψ?; a]] = [[Φ?; a]] ∪ [[Ψ?; a]]

= ([[Φ?]] ◦ [[a]]) ∪ ([[Ψ ]] ◦ [[a]])

= ({(u, u)
∣

∣u ∈ [[Φ]]} ◦ [[a]]) ∪ ({(u′, u′)
∣

∣u′ ∈ [[Ψ ]]} ◦ [[a]])

= ({(u, u)
∣

∣u ∈ [[Φ]]} ∪ {(u′, u′)
∣

∣u′ ∈ [[Ψ ]]}) ◦ [[a]]

= {(v, v)
∣

∣v ∈ [[Φ]] ∪ [[Ψ ]]}) ◦ [[a]]

= {(v, v)
∣

∣v ∈ [[Φ ∨ Ψ ]]}) ◦ [[a]]

2. Now we observe that a DPA as the one shown in �gure 5 stems from a

PDL program that has the following appearan
e:

(Φ ∧ Ψ )?; a ∪ (¬Φ ∧ Ψ )?; a ∪ (Φ ∧ ¬Ψ )?; a

Applying to this program the semanti
 de�nitions of PDL yields:

[[(Φ ∧ Ψ )?; a ∪ (¬Φ ∧ Ψ )?; a ∪ (Φ ∧ ¬Ψ )?; a]] =

[[(Φ ∧ Ψ )?; a]] ∪ [[(¬Φ ∧ Ψ )?; a]] ∪ [[(Φ ∧ ¬Ψ )?; a]]

= ... = ({(w, w)
∣

∣w ∈ ([[(Φ ∧ Ψ )]] ∪ [[(¬Φ ∧ Ψ )]] ∪ [[(Φ ∧ ¬Ψ )]])}) ◦ [[a]]

= ({(w, w)
∣

∣w ∈ [[(Φ ∧ Ψ ) ∨ (¬Φ ∧ Ψ ) ∨ (Φ ∧ ¬Ψ )]]}) ◦ [[a]]
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So, we have to show:

[[Φ ∨ Ψ ]] ≡ [[(Φ ∧ Ψ ) ∨ (¬Φ ∧ Ψ ) ∨ (Φ ∧ ¬Ψ )]]

This 
an be a

omplished in two di�erent ways:

1. Truth table: Comparing the truth tables of the two respe
tive formulae

yields the desired equivalen
e result:

Φ Ψ Φ ∨ Ψ Φ ∧ Ψ ¬Φ ∧ Ψ Φ ∧ ¬Ψ (Φ ∧ Ψ ) ∨ (¬Φ ∧ Ψ ) ∨ (Φ ∧ ¬Ψ )
0 0 0 0 0 0 0

0 1 1 0 1 0 1

1 0 1 0 0 1 1

1 1 1 1 0 0 1

2. Synta
ti
 transformations:

(Φ ∧ Ψ ) ∨ (¬Φ ∧ Ψ ) = (Ψ ∧ Φ) ∨ (Ψ ∧ ¬Φ) = Ψ ∧ (Φ ∨ ¬Φ) = Ψ

Now applying this result to the third disjun
t:

Ψ ∨ (Φ ∧ ¬Ψ ) = (Ψ ∨ Φ) ∧ (Ψ ∨ ¬Ψ ) = Ψ ∨ Φ

Thus, we 
ould prove the 
laim that both automata are in fa
t equivalent. A

few remarks on the meaning of equivalen
e in this 
ontext are in order.

Meaning of Equivalen
e in the Context of SPDL Programs Equiv-

alen
e in the 
ontext of PDL deterministi
 and non-deterministi
 program

automata 
annot be 
onsidered to be language equivalen
e in the sense of

�nite automata as known from language theory. If the test formulae are in-

terpreted as part of the a
tion the languages of both automata types are


learly di�erent.

In our 
ontext equivalen
e has to be interpreted as equivalen
e with respe
t

to exe
utability of programs. We have shown in the previous subse
tion that

DPAs and NPAs are equivalent in this sense. Given a model M over whi
h

the test are interpreted we 
ould show that the programs ρDPA and ρNPA are

equivalent, i.e. if ρDPA led to an a

epting state in AρDPA
then ρNPA also led

to an a

epting state in AρNPA
.
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Example: We will now illustrate the fun
tionality of the algorithm from

�gure 3 by means of a small example.

Example 1. Let ρ := (Ξ?; a)∗; Θ?; a. Constru
t Aρ. The 
onstru
tion of N ′
ρ

is straightforward, only the �nal result is displayed in �gure 6:

Ξ?; a

zi

Θ?; a

zj

Fig. 6. Automaton N ′
for ρ

The transitions Ξ?; a and Θ?; a will be repla
ed in A by: (Ξ ∧Θ)?; a, (¬Ξ ∧
Θ)?; a and (Ξ ∧ ¬Θ)?; a, all emanating from zi. The su

essor states for the

respe
tive transitions are as follows:

δA(zi, (Ξ ∧ Θ)?; a) = {zi, zj}

δA(zi, (¬Ξ ∧ Θ)?; a) = {zj}

δA(zi, (Ξ ∧ ¬Θ)?; a) = {zi}

This yields the following automata graph for Aρ: The 
onstru
tion of N ′
ρ is

straightforward, only the �nal result is displayed in �gure 7:

{zi}

(¬Ξ ∧ Θ)?; p

(Ξ ∧ Θ)?; p

(Ξ ∧ ¬Θ)?; p

(¬Ξ ∧ Θ)?; p

(Ξ ∧ Θ)?; p

{zi, zj}

{zj}

(Ξ ∧ ¬Θ)?; p

Fig. 7. Automaton A for ρ
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6 Model Che
king SPDL

The model 
he
king pro
edure we present is an adaption of that of CSL [3℄

and aCSL+ [16℄. This again is an adaption of that of CTL.

In SPDL the model 
he
king pro
edure for non-probabilisti
 formulae is

the same as for CTL. In the sequel we will provide means to model 
he
k

probabilisti
 SPDL-state and -path formulae. Model 
he
king path formulae

as des
ribed in this se
tion assumes that I = [0, t′].

6.1 Computing Stationary State Measures

The model 
he
king pro
edure for 
omputing stationary state measures is

roughly the same as for CSL, whi
h was des
ribed in [3℄. The labelling fun
-

tion of the ASMC is extended by the notion of a '
hara
teristi
 state formula':

De�nition 17 (Chara
teristi
 state formula). A 
hara
teristi
 state for-

mula qs is an atomi
, propositional formula, only valid in state s of a spe
i�


ASMC M.

The de�nition of 
hara
teristi
 state formula 
an be extended to the notion

of a 
hara
teristi
 state set formula:

Let S ′ ⊆ S:

qS′ :=

|S′|
∨

i=1

qs′i

This formula is valid in ea
h s′ ∈ S ′
:

s′i 6|= q′s′j , i� i 6= j

s′i |= q′s′j , i� i = j

⇒ s′i |=

|S′|
∨

i=1

qs′i
, i� si ∈ S ′

For the 
omputation of steady state measures no programs are needed. For

P and R one obtains the following generalisations:

De�nition 18 (Generalisations of P and R).

� RA(s, s′): total rate to 
ome from s to s′ by exe
uting an arbitrary a
tion

from A. For an a ∈ A for whi
h holds (s, a, λ, s′) 6∈ R, this rate is zero.
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� PA(s, s′): total probability to rea
h s via s′ by exe
ution of an arbitrary

a
tion a ∈ A. For a ∈ A for whi
h holds (s, a, λ, s′) 6∈ R, this probability

is zero.

Let BSCC(M) the set of bottom strongly 
onne
ted 
omponents (BSCCs)

of M. For the 
omputation of steady state measures in SPDL we obtain the

following pseudo-algorithm:

The formula Ψ := S⊲⊳p(Φ) has to be 
he
ked, i.e., to satisfy Φ it must hold:

πM(s, Sat(Φ)) ⊲⊳ p

1. Compute BSCC(M) = {B1, B2, ..., Bm}.
2. Compute the set of states that satisfy Φ: Sat(Φ)
3. BSat(Φ)(M) := {Bi ∈ BSCC(M)

∣

∣Bi ∩ Sat(Φ) 6= ∅}.

4. πM(s, Sat(Φ)) =
∑

B∈BSat(Φ)(M)

(

Prob(s, FqB) ·
∑

s′∈B∩Sat(Φ) πB(s′)
)

qB is the 
hara
teristi
 state set formula from de�nition 17. To ful�ll FqB

eventually a state s ∈ B must be rea
hed. πB(s′) is the stationary state

probability of s′ to be in B. πB(s′) is 
omputed as follows:

πB(s′) =







1 if B = {s′}
∑

s∈B,s 6=s′ π
B(s) · RA(s, s′) =

πB(s′) ·
∑

s∈B,s 6=s′ RA(s, s′), with

∑

s∈B,s 6=s′ π
B(s) = 1 otherwise

Prob(s, FqB) denotes the probability to �nally rea
h B and is 
omputed as

follows:

Prob(s, FqB) =

{

1 if s |= qB
∑

s′ PA(s, s′) · Prob(s′, FqB) otherwise

6.2 Model Che
king Probabilisti
 Path Formulae by Solving

Integral Equations

At �rst we re
all from subse
tion 4.2 that probabilisti
 path formulae are of

the form: P⊲⊳p(Φ[ρ]IΨ ), where ρ is a program. I is the 
losed interval from 0
to t. From M only those paths are relevant for the measure that generate

program instan
es on paths that are instan
es of ρ, i.e. those instan
es that
lead in Aρ from the initial state to an a

epting state.

For a state z ∈ ZAρ we de�ne its a
tivation set:
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De�nition 19 (A
tivation set). For an arbitrary state z of Z we de�ne

L(z) := {a ∈ Σρ

∣

∣∃z′ ∈ ZAρ(δAρ(z, a) = z′)}

i.e. L(z) is the set of all elements from Σρ that emanate from z.

Furthermore, Prob(s, Φ[ρ]IΨ ) = W (s, Φ[ρ]IΨ, zStart
ρ ), whi
h will be 
hara
-

terised as follows:

W (s, Φ[ρ]IΨ, zρ) =























































































1 ⇐⇒ (M, s |= Ψ ∧ zρ ∈ Eρ) or
(M, s |= Ψ ∧ (∃Ξ(M, s |= Ξ))∧
δρ(zρ, Ξ?; ) ∈ Eρ

0 ⇐⇒ (M, s |= ¬Φ ∧ ¬Ψ ) or
(M, s |= ¬Φ ∧ Ψ ∧ zρ 6∈ Eρ∧
¬∃Ξ ∈ Sat(s)(δρ(z, Ξ?; ) ∈ δρ∧
δρ(z, Ξ?; ) ∈ Eρ)) or
(M, s |= (Φ ∧ Ψ ) ∧M, s |= ¬Ξ∧
δρ(zρ, Ξ?; ) ∈ Eρ

∧L(zρ) = {Ξ?})
t
∫

0

e−E(s)·x ·
∑

a∈L(zρ) ·
∑

s′∈S Ra(s, s
′)·

W (s′, Φ[ρ′]<I⊖xΨ, δρ(zρ, a))dx ⇐⇒M, s |= Φ ∧ ¬Ψ

(1)

This deserves some words of explanation:

� We denote by I ⊖ x the following di�eren
e: {t − x
∣

∣t ∈ I ∧ t ≥ x}.
� Case 1: If the 
urrent state s in M is a state in whi
h Ψ holds and z in

Aρ is an a

epting state then the probability that formula ϕ is satis�ed

is equal to one. Alike the probability to satisfy ϕ is equal to one, i� s in

M is a state satisfying Ψ and Ξ and the only transition from the 
urrent

state in Aρ is labelled Ξ?; and leads to an a

epting state.

� Case 2: If s in M is a state that satis�es neither Φ nor Ψ , then the

probality to satisfy ϕ is equal to zero. The same holds for a state s that

satis�es ¬Φ∧Ψ , but Aρ is not in an a

epting state. Alike, the probability

to satisfy ϕ is zero, i� s is a state satisfying Ψ , but not Ξ and the 
urrent

Aρ-state is not a

epting and the only transition leaving Aρ is labelled

with Ξ?;.
� Case 3: If s in M is a Φ-state then the probability to satisfy ϕ is equal

to the probability to leave s in x time units and rea
h a state s′. This
probability is taken over all atomi
 programs for whi
h δA is de�ned.
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This probability is multiplied with the probability to rea
h within I ⊖ x,
or equivalently t−x, time units a su

essor state s′ in M. As it might be

the 
ase that Aρ o�ers several, di�erently labelled, outgoing transitions

from its 
urrent state to some su

essor states the probabilities have to

be summed up over all these di�erent labellings. ρ′
is the program that

remains to be exe
uted, after the exe
ution of atomi
 program a.

When 
hara
terising the probabilities via systems of integral equations, a

numeri
al, approximate pro
edure to solve them 
an be used. But the 
on-

vergen
y of su
h methods is not satisfa
torily, therefore, like in [3℄ we propose

the approa
h to 
ompute path probabilities via transient analysis.

6.3 Model Che
king Probabilisti
 Path Formulae by Transient

Analysis

To be able to do model 
he
king of probabilisti
 path formulae by transient

analysis, it is ne
essary to 
onstru
t a produ
t automaton M×
, from the

ASMC M and the deterministi
 program automaton Aρ, i.e. M := M×Aρ.

The 
onstru
tion pro
ess roughly pro
eeds as follows:

The transition labellings a ∈ Act are omitted. Rate informations and state

labellings in M×
are taken from M. Let s be the 
urrent state in M and

z the 
urrent state in Aρ, then transitions from s having labellings that do

not 
orrespond to any of the labellings of transitions emanating from z are

dire
ted in M×
to an absorbing error state FAIL. Transitions in M×

are not

dire
ted to FAIL if the 
urrent M-state s satis�es Φ and o�ers a transition

whose labelling 
orresponds to one of the labellings of the 
urrent state z in

the DPA or if state s satis�es Φ and Ξ and o�ers a transition whith labelling

a, and in Aρ z possesses a transition labelled Ξ?; a. If in M×
an a

epting

state is rea
hed, i.e. a state whi
h 
omponents s and z are states satisfying

Ψ respe
tive are an a

epting state in the DPA, the pro
edure stops.

The general idea behind our method is to redu
e the model 
he
king prob-

lem for probabilisti
 path formulae in SPDL to the model 
he
king problem

of CSL. I.e. we transform the SPDL formula Φ[ρ]IΨ into the CSL formula

FIχG, where χG is a 
hara
teristi
 formula whi
h is attributed to those states

in the produ
t automaton, whi
h ASMC 
omponents satisfy Ψ and whi
h au-

tomaton 
omponents are a

epting states of the program automaton.

The produ
t automaton M×
is 
alled 'state-labelled Markov-
hain' whi
h

is de�ned as follows:
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De�nition 20 (state-labelled Markov-
hain, SMC). Let the ASMC
M = (S, A, L, R) and the DPA Aρ = (Zρ, Σρ, z

start
ρ , Eρ, δρ) given. The SMC

M× = (S×, R×, L×) is de�ned as follows:

� S×
Start ⊆ S×

� S×
Acc ⊆ S×

� R× ⊆ S× × IR+ × S×

� state spa
e: S× := {(si, z
j
ρ)

∣

∣si ∈ S ∧ zj
ρ ∈ Zρ} ∪ {FAIL}

� initial states: S×
Start := {(si, z

Start
ρ

∣

∣si ∈ S}

� a

epting states: S×
Acc := {(si, z

j
ρ) ∈ S×

∣

∣si ∈ Sat(Ψ ) ∧ zj
ρ ∈ Eρ}

� labelling:

1. ∀(si, z
j
ρ) ∈ S×\S×

Acc(L
×(si, z

j
ρ) = L(si))

2. ∀(si, z
j
ρ) ∈ S×

Acc(L
×(si, z

j
ρ) = {χG})

� transition fun
tion: R× ⊆ (S × Z) × IR>0 × (S × Z)

χG is a state formula that 
hara
terises exa
tly those states whi
h automaton

part is an a

epting state and whi
h Markov 
hain part is a state in whi
h

the formula Ψ of the path formula Φ[ρ]≤tΨ holds.

De�nition 21. For A, B ∈ 2S××IR+×S×
with B = ∅ or |B| = 1, A ⊎ B is

de�ned as follows:

� B = ∅: A ⊎ B = A
� |B| = 1 ∧ B = {(s, λ, s′)}:

A ⊎ B =

{

A ∪ B iff 6 ∃γ ∈ IR+((s, γ, s′) ∈ A)
(A\{(s, γ, s′)} ∪ {(s, γ + λ, s′)} otherwise

R×
is su

esively de�ned as follows:

1. In the SMC no a

epting state has been rea
hed. The original state s
in M satis�es Φ. M o�ers transitions with labelling a, so does Aρ. The

target state s′ in M satis�es Φ or Ψ and at the same time the target state

of Aρ, z′ must be a

epting.

R× ⊎ {(s, zρ), λ, (s′, z′ρ)
∣

∣ s
a,λ
−→ s′ ∧ zρ

a
−→ z′ρ ∧

s ∈ Sat(Φ) ∧

(s, zρ) 6∈ S×
Acc ∧

[s′ ∈ Sat(Φ) ∨ (s′, z′ρ) ∈ S×
Acc]}
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2. In the SMC no a

epting state has been rea
hed. The original state s
in M satis�es Φ. Aρ o�ers a test transition with test Ξ?; and atomi


program a. M o�ers transitions with labelling a and satis�es the test

formula of the 
orresponding transition in the DPA. The target state of
M satis�es Φ or Ψ and at the same time the target state of Aρ, z′ must

be a

epting.

R× ⊎ {(s, zρ), λ, (s′, z′ρ)
∣

∣ s
a,λ
−→ s′ ∧ zρ

Ξ?;a
−→ z′ρ ∧

s ∈ Sat(Φ) ∧

(s, zρ) 6∈ S×
Acc ∧

s ∈ Sat(Ξ) ∧

[s′ ∈ Sat(Φ) ∨ (s′, z′ρ) ∈ S×
Acc]}

3. In the SMC no a

epting state has been rea
hed. The original state s inM
satis�es Φ. Aρ o�ers in z a transition with labellings from Actρ the target

state of this transition o�ers a transition with a labelling from TEST, say

Θ. M satis�es in s the test formula of the 
orresponding z-transition.
The target state of M satis�es Ψ and Θ.

R× ⊎ {(s, zρ), λ, (s′, z′′ρ)
∣

∣ s
a,λ
−→ s′ ∧ zρ

Ξ?;a
−→ z′ρ

Θ?
−→ z′′ρ ∧

s ∈ Sat(Φ) ∧

s ∈ Sat(Ξ) ∧

(s, zρ) 6∈ S×
Acc ∧

s′ ∈ Sat(Θ) ∧

[(s′, z′′ρ) ∈ S×
Acc]}

4. In the SMC no a

epting state has been rea
hed. The original state s in

M satis�es Φ. M o�ers in s a transition labelled with a. Aρ does not o�er

a transition bearing su
h a labelling.

R× ⊎ {(s, zρ), λ, FAIL
∣

∣ s
a,λ
−→ s′ ∧

s ∈ Sat(Φ) ∧

(s, zρ) 6∈ S×
Acc ∧

(zρ
a

−→ z′ρ) 6∈ δρ}

5. In the SMC no a

epting state has been rea
hed. The original state s in

M satis�es Φ. Both M and Aρ o�er in s resp. z a transition labelled with
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a. The target state of M does not satisfy Φ and the target state of M×

is not a

epting.

R× ⊎ {(s, zρ), λ, FAIL
∣

∣ s
a,λ
−→ s′ ∧ zρ

a
−→ z′ρ ∧

s ∈ Sat(Φ) ∧

(s, zρ) 6∈ S×
Acc ∧

[s′ 6∈ Sat(Φ) ∧ (s′, z′ρ) 6∈ S×
Acc]}

6. In the SMC no a

epting state has been rea
hed. The original state s in

M satis�es Φ. Both M and Aρ o�er in s resp. z a transition labelled

with a, where in Aρ a is pre
eeded by a test. M does not satisfy the test

formula in its 
urrent state s.

R× ⊎ {(s, zρ), λ, FAIL
∣

∣ s
a,λ
−→ s′ ∧ zρ

Ξ?;a
−→ z′ρ ∧

s ∈ Sat(Φ) ∧

(s, zρ) 6∈ S×
Acc ∧

s 6∈ Sat(Ξ)}

7. In the SMC no a

epting state has been rea
hed. The original state s in

M satis�es Φ. Both M and Aρ o�er in s resp. z a transition labelled with

a, where in Aρ a is pre
eeded by a test. The target state of M does not

satisfy Φ and the target state of M×
is not a

epting.

R× ⊎ {(s, zρ), λ, FAIL
∣

∣ s
a,λ
−→ s′ ∧ zρ

Ξ?;a
−→ z′ρ ∧

s ∈ Sat(Φ) ∧

(s, zρ) 6∈ S×
Acc ∧

s ∈ Sat(Ξ) ∧

[s′ 6∈ Sat(Φ) ∧ (s′, z′ρ) 6∈ S×
Acc]}

8. In the SMC no a

epting state has been rea
hed. The original state s in

M satis�es Φ. Both M and Aρ o�er in s resp. z a transition labelled

with a, where in Aρ a is pre
eeded by a test. The target state z′ρ is not

a

epting and o�ers a transiton with labelling from TEST to an a

epting

state z′′ρ . The target state s′ of M does not satisfy Θ.

R× ⊎ {(s, zρ), λ, FAIL
∣

∣ (s
a,λ
−→ s′ ∧ zρ

Ξ?;a
−→ z′ρ

Θ?
−→ z′′ρ) ∧

(s, zρ) 6∈ S×
Acc ∧

s′ 6∈ Sat(Θ) ∧

z′′ρ ∈ Eρ}
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6.4 Corre
tness of Model Transformation

In this subse
tion we will show that our transformation is 
orre
t, i.e. we

show that the probability mass of the CSL formula that is 
he
ked in model

M×
is equal to the probability mass of the original formula Φ[ρ]IΨ in the

original model M.

To summarise the idea of se
tion 6.3 we have done the following to perform

transient analysis to 
he
k probabilisti
 SPDL path formulae:

� Transforming M to M×

� thereby transforming Φ[ρ]IΨ to FIχG

The following theorem states that the transformation steps are 
orre
t:

Theorem 4 (Corre
tness of model transformation). The transforma-

tion of M into M×
is 
orre
t. I.e. the probability of satisfying Φ[ρ]IΨ in M

is equal to the probability of rea
hing χG within time t ∈ I in M×
:

Pr{σ ∈ PathM
s

∣

∣ M, σ |= Φ[ρ]IΨ} = Pr{σ× ∈ PathM×

(s,z0)

∣

∣ ∃t ∈ I : M×, σ×@t |= FIχG}

Before we 
an prove theorem 4 we need the following de�nitions:

De�nition 22 (Indi
ator fun
tion). The fun
tion Ind(M, s, φ) indi
ates,
whether an arbitrary SPDL state formula φ is satis�ed in a given state s of

a �xed model M:

Ind(M, s, φ) =

{

1 i� M, s |= φ
0 else

For the reader's 
onvenien
e we repeat de�nition 19:

De�nition 23 (A
tivation set). For an arbitrary state z of Z we de�ne

L(z) := {a ∈ Σρ

∣

∣∃z′ ∈ ZAρ(δAρ(z, a) = z′)}

i.e. L(z) is the set of all elements from Σρ that emanate from z.

De�nition 24 (End 
ondition of a program). Let ρ be a program and

A its 
orresponding program automaton. The end 
onditions of a program ρ
are those su�xes of form Φ?; ǫ, where Φ = true is possible.

Finz(A) =







true i� z ∈ E
false i� z 6∈ E ∧ ∀a ∈ L(z) : (δ(z, a) 6∈ E)
Φ1 ∨ ... ∨ Φn i� z 6∈ E ∧ ∀i : (Φi?; ǫ ∈ L(z)) ∧ ∃Φi : (δ(z, Φi?; ǫ) ∈ E)
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Proof (Theorem 4). We will prove theorem 4 by indu
tion on the length of

paths.

Indu
tion start: |σ| = |σ×| = 1: Using the standard semanti
s of CSL

(
f. [3℄) we obtain:

Pr{σ× ∈ PathM×

(s,z0)

∣

∣ ∃t ∈ I : (M×, σ×@t |= χG)} =
∫ t

0

∑

(s′,z′)∈S×

R((s, z0), (s
′, z′)) · e−E((s,z0))·x · Ind(M×, (s′, z′), χG)dx

As the length of the path is one, Ind(M×, (s′, z′), χG) is either 1 or 0, i.e. χG

either holds in (s′, z′) or does not.
For the original formula, the probability measure 
an be 
hara
terised as

follows:

Pr{σ ∈ PathM
s

∣

∣ M, σ |= Φ[ρ]IΨ} =
∫ t

0

∑

{Φ?;a|Φ?;a∈L(z)∧M,s|=Φ}

∑

s′∈S

Ra(s, s
′) · e−E(s)·x · Ind(M, s′, Ψ ∧ Finz′(A))dx

Therefore we will now show that:

∫ t

0

∑

{Φ?;a|Φ?;a∈L(z)∧M,s|=Φ}

∑

s′∈S

Ra(s, s
′) · e−E(s)·x · Ind(M, s′, Ψ ∧ Finz′(A))dx =

∫ t

0

∑

s′∈S

∑

{Φ?;a|Φ?;a∈L(z)∧M,s|=Φ}

Ra(s, s
′) · e−E(s)·x · Ind(M, s′, Ψ ∧ Finz′(A))dx =

∫ t

0

∑

(s′,Z′)∈S∗

R((s, Z0), (s
′, Z ′)) · e−E((s,Z))·x · Ind(M×, (s′, Z ′), χG)dx

The last equation holds, sin
e by 
onstru
tion of M×
we 
an 
on
lude that

∑

{Φ?;a|Φ?;a∈L(z)∧M,s|=Φ} R(s, s′) = R((s, z0), (s
′, z′)). Therefore and by 
on-

stru
tion it holds that the two outer sums are equal. By 
onstru
tion of M×

fromM we 
on
ludeE(s) = E((s, z0)). Ind(M×, (s′, z′), χG) = Ind(M, s′, Ψ∧
Finz′(A)) by 
onstru
tion, as those states are labelled with χG in whi
h

Finz′(A)) and Ψ hold and in A an a

epting state has been rea
hed.

Indu
tion step:We assume that for paths of length n the assumption holds,

now we 
onsider paths σ×
resp. σ of lenght n + 1:
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Let σ×′
resp. σ′

be paths of length n, where σ×′
is su�x of σ×

and σ′
is

su�x of σ, then

Pr{σ× ∈ PathM×

(s,Z0)

∣

∣M×, σ×@t |= χG} =

∫ t

0

∑

(s′,Z′)∈S×

R((s, Z0), (s
′, Z ′)) · e−E((s,Z0))·x · Pr{σ×′

∈ PathM×

(s,Z0)

∣

∣M×, σ×′

@(t − x) |= χG}

Analogously:

Pr{σ ∈ PathM
s∈S

∣

∣M, σ |= Φ[ρ]≤tΨ} =

∫ t

0

∑

{Φ?;a|Φ?;a∈L(z)∧M,s|=Φ}

Ra(s, s
′) · e−E(s)·x · Pr{σ′ ∈ PathM

s∈S

∣

∣M, σ′ |= Φ[ρ′]≤t−xΨ}

where ρ′
is the su�x of ρ. Using I.H. and the indu
tion start we 
on
lude

that the theorem holds, i.e.

Pr{σ× ∈ PathM×

(s,Z0)

∣

∣M×, σ×@t |= χG} = Pr{σ ∈ PathM
s∈S

∣

∣M, σ |= Φ[ρ]≤tΨ}

7 Details: Numeri
al Analysis Methods

This se
tion aims to give a qui
k overview of mathemati
al methods we re-

ferred to and that are used for veri�
ation of path formulae.

5

In se
tion 6.2

we gave an integral equation 
hara
terisation of the probability measure for

time bounded path formulae. As mentioned earlier, model 
he
king by di-

re
tly solving integral equations is not satisfa
tory, be
ause the numeri
al

properties are not satisfa
tory. Therefore, more e�
ient means have been de-

vised to solve the model 
he
king problem. As the integral 
hara
terisation

is only needed in 6.2 we will not go into details and refer to any book on

numeri
al analysis, e.g. [6℄.

7.1 Transient Analysis and Uniformisation

Transient Analysis: The numeri
al properties of dire
t approa
hes to solve

the Volterra integral equation system dire
tly are not satisfa
tory. The trans-

formation of the original ASMC M into SMC M×
however, makes it possi-

ble to redu
e the model 
he
king problem of time bounded path formulae to

transient analysis of the CTMC at hand.

5

This overview does not 
laim to be exhaustive!
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In general, to do transient analysis on CTMCs it is ne
essary to solve the

Chapman-Kolmogorov di�erential equation system:

d

dt
~ρM×

(α, t) = ~ρM×

(α, t) · Q.

~ρM×
(α, t) is a ve
tor of length

∣

∣S×
∣

∣

and its elements are the probability to

be at time instant t in state s ∈ S×
, given an initial distribution α.

Q is the in�nitesimal generator matrix and is derived from the rate matrix

R, by setting Q(s, s′) = R(s, s′), if s 6= s′. The rate matrix R 
hara
terises

the transitions between the states of a CTMC. If R(s, s′) = λ, λ > 0, then it

is possible to move from s to s′ with rate λ. The diagonal elements of R are

repla
ed by Q(s, s) = −E(s, s) = −
∑

s 6=s′ R(s, s′).
The unique solution of the Chapman-Kolmogorov di�erential equation sys-

tem is given as follows:

~πM×

(α, t) = ~πM×

(α, 0) · eQ·t

The matrix exponential 
an be rewritten as follows (Taylor series expansion):

eQ·t =

∞
∑

k=0

(Q · t)k

k!

The attempt to solve the matrix exponential using the Taylor expansion is

not satisfa
tory, be
ause ( [17℄):

� the trun
ation point of the series 
an not be 
omputed e�
iently

� the round-o� errors are note negligeable, be
ause Q 
ontains both nega-

tive and non-negative entries.

� where Q is sparse, it is the 
ase that (Q · t)i
be
omes non-sparse.

Therefore more appropriate means have to be used to solve the equation.

Uniformisation: For uniformisation we de�ne a sto
hasti
 matrix P , i.e. a

matrix having entries that range from 0 to 1. P is derived from Q:

P := I +
Q

λ

I is the identity matrix. λ is 
hosen as the maximum absolute value of the

diagonal entries of the generator matrix Q, i.e. λ ≥ max(
∣

∣Q(i, i)
∣

∣). Therefore
it is obvious, that P is a sto
hasti
 matrix. P is a DTMC. We rewrite Q:

Q = λ · (P − I)
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We obtain:

~πM×

(α, t) = ~πM×

(α, 0) · eQ·t = ~πM×

(α, 0) · e(λ·(P−I))·t

= ~πM×

(α, 0) · e−λ·I·t · e−λ·P ·t = ~πM×

(α, 0) · e−λ·t · e−λ·P ·t

Using a series expansion we have

~πM×

(α, t) = ~πM×

(α, 0) · e−λ·t ·
∞

∑

k=0

(λ · t)k · P k

k!

e−λ·t · ((λ · t)k/(k!)) are Poisson probabilities.

This Taylor-series now 
an be solved more e�
iently. We write the equation

above as follows:

~πM×

(α, t) =
∞

∑

k=0

e−λ·t (λ · t)k · P k

k!
=

∞
∑

k=0

e−λ·t (λ · t)k

k!
· (~πM×

(α, 0) · P n)

=
∞

∑

k=0

e−λ·t (λ · t)k

k!
· ~πk

~πk is the distribution of state probabilities in the DTMC P after k steps and


an be 
omputed re
ursively:

~π0 = ~π(α, 0) ~πk = ~πk−1 · P

Now, we have redu
ed the problem to a number of ve
tor-matrix multipli
a-

tions. The question is, how large this 'number' is, i.e. we have to determine

the trun
ation point of the series. We 
ompute ~πapprox instead of ~π, be
ause
the series looks like this:

~πM×

approx(α, t) =

napprox
∑

k=0

e−λ·t (λ · t)k

k!
· ~πk

This tru
ation point napprox 
an be 
omputed e�
iently. It has to be the least

value for napprox that satis�es the following 
ondition:

napprox
∑

k=0

(λ · t)k

n!
≥ (1 − ǫ) · e−λ·t
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Where ǫ is the maximum round-o� error we allow. The Poisson probabilities

are 
omputed using the Fox-Glynn-algorithm [9℄. To 
he
k the validity of the

path formula a method like the one des
ribed in [4, 13℄ 
an be employed.

The CTMC M×
, on whi
h we 
he
k the variant of the original path for-

mula, Π = P⊲⊳p(Φ [ρ]I Ψ ), transformed to Π ′ = P⊲⊳p(true UI SUCC), has
to be uniformised, unif(M×) := U . On U we 
he
k whether the probability

bound p holds for Π resp. Π ′
.

8 Example: System Model and Measures

To illustrate our approa
h, spe
ifying and 
he
king performability measures

using the logi
 SPDL, we 
onsider an example, see �gure 8.

8.1 The System Model

The model in �gure 8 represents a system that re
eives four data pa
kets and

pro
esses them, this behaviour is repeated inde�nitely.

In more detail, an arrival is modelled by a
tion a, ea
h data pa
ket 
an

be error-free, arrival rate λ, or erroneous, arrival rate µ. An erroneous data

pa
ket 
an be 
orre
ted (co, γ), or 
an not be 
orre
ted, (e, δ). If it 
an not be


orre
ted, the bu�er is emptied and all data pa
kets have to be retransmitted,

(rt, κ). If all data pa
kets are error-free or 
orre
table, then the re
eived date


an be pro
essed (prc, ω) and the system awaits new data.

21 3 4 5

7 9

10

6 8

PSfrag repla
ements

BBBB

C

CCC

D

D

D

D

a, λa, λa, λa, λ

B = a, µ, C = co, γ, D = e, δ,

rt, κ

prc, ω

Fig. 8. System model - A 4-pla
e bu�er with erroneous arrivals
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8.2 Performability Measures

To fully exploit the power of SPDL in de�ning performability measures we

have to provide some details about the state labellings, i.e. formulae that are

valid in the states of the system model. The example system has 10 states,

enumerated 1 to 10.

� State 1: {empty}
� State 5: {full}
� State 6-10: {error}

Now, we will give some example measures:

1. Φ1 := P≥0.9((¬full)[a∗; e; rt; a∗ ∪ a∗][0,5](full)): Is the probability to re
eive

4 data pa
kets without error or with at most one non-
orre
table error

within 5 time units greater than 0.9?

2. Φ2 := P>0(¬full[a][0,∞)full): Is the probability to rea
h a state, in whi
h

the bu�er is full with a single arrival greater than zero? Φ2 
hara
terises

state 4, as this is the only state from whi
h it is possible to rea
h the only

state, state 5, for whi
h it is true that the bu�er is full.

3. Φ3 := P≤0.1(true[a∗; (Φ2?; a; (co∪ e))][0,∞)true): Is the probability that the

fourth pa
ket 
ontains an error, 
orre
table or in
orre
table, at most ten

per
ent, given that all pre
eedings pa
kets were error-free?

4. Φ4 := P≤0.85((¬full)[(a∪a; co)∗][0,10](full)): Is the probability to rea
h state

5 within 10 time units, provided no pa
ket 
ontains in
orre
table errors,

at least 85 %?

5. Φ5 := P≤0.75(true[a∗; Φ2?; a; (e ∪ co); (error?; rt; a∗ ∪ full?)][0,25]true): Is the
probability to rea
h state 5 within 25 time units, given the only erroneous

pa
ket arrived was the 4th one and either the pa
ket 
ontains a 
orre
table

or in
orre
table error, at most 75 per
ent?

6. Φ6 := P≤0.01(true[a∗; Φ2?; a; co][0,7.3]true): Is the probability that the bu�er
is full after at most 3 time units and that the 4th pa
ket 
ontains a


orre
table error, given that all pre
eeding pa
kets were error free, at

most one per
ent?

8.3 Building the Produ
t Automaton

Consider the example system M, from �gure 8 and the requirement ϕ :=
P≤0.01(true[a∗; Φ2?; a; co][0,7.3]true)
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We want to 
he
k whether M satis�es Φ3, provided the system starts in

state 1. At �rst, we derive from a∗; (Φ2?; a; co a non-deterministi
 automaton

6 Nρ (
f. �gure 9).

The test Φ2 forms together with a a single transition. Now, we have to

transform Nρ into a determininisti
 automaton Aρ (
f. �gure 10). In �gure 10

; B CA

A

Dco

B C D
coPSfrag repla
ements

a

a

a

Φ2?; a

Φ2?; a

Fig. 9. Non-deterministi
 automaton Nρ for a∗; Φ2?; a; co

DABCAB
co

PSfrag repla
ements

Φ2?; a

Φ2?; a¬Φ2?; a

¬Φ2?; a

Fig. 10. Deterministi
 automaton Aρ for a∗; Φ2?; a; co

we see that the labels of the transitions emanating from state AB are labelled

with ¬Φ2?; a resp. Φ2?; a. (
f. �gure 11). The state labelled with SUCC is an

absorbing goal state in whi
h the path formula fun
tionally holds, the state

labelled with FAIL is an absorbing error state, to whi
h all transitions are

redire
ted that lead to states that render the path formula unsatis�able. The

model 
he
king itself, i.e. the 
he
k whether M satis�es the path formula,

would be done by transient analysis.

We assign the following numeri
al values to the rates:

λ := 0.4 : µ := 0.4 : γ := 0.2 : ω := 0.2 : δ := 0.001;

Assuming a pre
ision of ǫ = 10−6
we obtain after 7 
omputation steps that

this property is violated, sin
e after 7 
omputation step the probability to

be in state SUCC equals 0.011786.

6

Grey-shaded states indi
ate the a

epting end states
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PSfrag repla
ements
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µ
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µ

γ

ω

γ + δ

γ + δ

γ + δ

Fig. 11. Produ
t automaton M× := M× Aρ

9 Bisimulation and Worst Case Complexity

In this short se
tion we will prove that a variant of the well-known Markov

bisimulation preserves the validity of SPDL formulae and give a worst 
ase

approximation of model 
he
king probabilisti
 SPDL path formulae.

9.1 SPDL and Bisimulation

The 
hosen variant of Markov bisimulation a

ounts for the fa
t that beside

rate information also a
tion labels and state labels, i.e. state formulae have to

be taken into a

ount to identify states as being equivalent or not equivalent,

we 
all this bisimulation relation Markov-AP-bisimulation. We will show by

indu
tion the 
laimed property, i.e. the preservation of the validity of SPDL

formulae under Markov-AP-bisimulation.
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De�nition 25 (Markov-AP-Bisimulation). Let M = (S, A, L, R) be an
a
tion- and state-labelled CTMC An equivalen
e relation B on S is a Markov-

AP-bisumulation over M, if for all (s, s′) ∈ B it holds that:

1. L(s) = L(s′)
2. ∀C ∈ S/ B ∀a ∈ A(Ra(s, C) = Ra(s

′, C))

Where:

� S/ B = {C1, ..., Cn} is the partition of S into equivalen
e 
lasses Ci

indu
ed by B .

� Two states s and s′ are 
alled Markov-AP-bisimilar, if there is a Markov-

AP-Bisimulation that 
ontains both states.

Theorem 5. Let B be a Markov-AP-Bisimulation, s ∈ M, then we have:

1. ∀Φ(M, s |= Φ ⇐⇒ M/ B , [s] |= Φ
2. ∀φ(ProbM(s, φ) = ProbM/ B ([s], φ)

Let φ = Φ[π]≤tΨ and ρ be an SPDL-program.

The proof is a stru
tural indu
tion over the length k of formula Φ

Proof (Theorem 5). We start with formulae of length one, i.e. with atomi


formulae. Let the states s and t be in B :

1. Let Φ ∈ AP, d.h. Φ = q: Using the preriquisites it holds: (s, t) ∈ B .

Following the de�nition of B we 
an 
on
lude: M, s |= q ⇐⇒ M, t |= q.

This 
ase serves as indu
tion start. As indu
tion hypothesis we assume that

the proposition holds for formulae of length < k.

2. Let Φ = ¬Ψ . Following I.H. it is true that M, s |= Ψ ⇐⇒ M, t |= Ψ , we
are able to prove:

M, s |= ¬Ψ
Sem.
⇐⇒ M, s 6|= Ψ

I.H.
⇐⇒ M, t 6|= Ψ

Sem.
⇐⇒ M, t |= ¬Ψ

3. Let Φ = Ψ ∨ Ξ : Following I.H. gilt M, s |= Ψ ⇐⇒ M, t |= Ψ and

M, s |= Ξ ⇐⇒ M, t |= Ξ . Thus, we have as well:

M, s |= Ψ ∨ Ξ
Sem.
⇐⇒ M, s |= Ψ oder M, s |= Ξ

I.H.
⇐⇒ M, t |= Ψ oder M, t |= Ξ

Sem.
⇐⇒ M, t |= Ψ ∨ Φ
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4. Let Φ = P⊲⊳p(∆[ρ]≤tΨ ). For the proof of this 
ase we have to demonstrate

that the probability measures of the paths satisfying path formula φ and

emanating from s and t are identi
al. This requires an indu
tion over the

length n of the paths.

(a) Let the length n = 0: The probability measure of a path satisfying φ
is either zero or one.

i. Let the measure be one: This is the 
ase i� M, s |= Ψ ∧ zρ ∈ E or

M, s |= Ψ ∧M, s |= Ξ ∧ ρ = Ξ? ∧ δ(zρ, Ξ?) ∈ E. Using the outer

I.H. these assumptions are also valid for state t.
ii. Let the measure be zero: This is the 
ase i� M, s 6|= Ψ or M, s |=

Ψ ∧M, s 6|= Ξ ∧ ρ = Ξ? ∧ zρ 6 inE. Also in this 
ase we 
an apply

the outer indu
tion hypothesis to ex
hange s and t.

(b) Let n 6= 0: We assume that the 
laim holds for paths of length < n.
We also assume that the length of the paths is minimal, i.e. for no

path whi
h is shorter than the 
onsidered length path formula φ is

satis�able. Let n 6= 0: We assume the assumption holds for paths of

length < n.

Prob(σ ∈ PFAD(s)
∣

∣σ |= φ) =
∫ t

0

eE(s)·x
∑

a∈L(zρ)

∑

s∈S′

Ra(s, s
′) · Prob(σ ∈ PFAD(s′)

∣

∣σ |= φ) =

∫ t

0

eE(s)·x
∑

a∈L(zρ)

∑

C∈M/ B

∑

s∈C

Ra(s, s
′) · Prob(σ ∈ PFAD(s′)

∣

∣σ |= φ)
∗
=

∫ t

0

eE(t)·x
∑

a∈L(zρ)

∑

C∈M/ B

∑

s∈C

Ra(t, s
′) · Prob(σ ∈ PFAD(s′)

∣

∣σ |= φ) =

∫ t

0

eE(t)·x
∑

a∈L(zρ)

∑

s∈S′

Ra(t, s
′) · Prob(σ ∈ PFAD(s′)

∣

∣σ |= φ) =

Prob(σ ∈ PFAD(t)
∣

∣σ |= φ)

∗
= this is true due to the prerequisite that (s, t) ∈ B and the resulting

fa
t that if s and t are in B they have the same 
umulative rates for

every target equivalen
e 
lass C.
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5. Let Φ = S⊲⊳p(Ψ ). It remains to show that π(s, Sat(Ψ )) = π(t, Sat(Ψ )):

π(s, Sa(Ψ )) =
∑

s′∈S

π(s, {s′}) =
∑

C|=Ψ
C∈M/ B

∑

s′∈C

lim
t′→∞

Pr(σ ∈ PFAD(s)
∣

∣σ@t′ = s′) =

∑

C|=Ψ
C∈M/ B

∑

s′∈C

lim
t′→∞

Pr(σ ∈ PFAD(t)
∣

∣σ@t′ = s′) =
∑

s′∈S

π(t, {s′}) =

π(t, Sa(Ψ ))

9.2 Complexity Analysis

Theorem 6 (Worst Case Complexity of SPDL Model Che
king).

For an a
tion- and state labelled Markov 
hain M and an SPDL formula Φ,
the time and memory 
omplexity of the model 
he
king pro
edure lies in:

O(|Φ| ·
(

(2n − n) · 2Z · N
)

· q · tmax + (((2n − n) · 2Z · N)2.81)

where N = |S| is the number of states, q the largest transition rate, tmax the

maximum time bound of M. (2n−n) ·2Z
is the number of states of the DPA,

where this numbers depend on both the length of the longest program appearing

in any of the subformulae of Φ, and the maximum number of ambiguous tests

that emanate from a state in the NPA.

Proof. Let ρ be the longest program in any of the subformulae of Φ, and
|ρ| = ρm, then an NPA with at most Z = 2 · ρM states 
an be 
onstru
ted.

The 
orresponding DPA has at most (2n − n) · (2Z) states, where Z = 22·ρM
.

2n − n stems from the fa
t that we have to determinise the automaton with

respe
t to ambiguous tests, n is the maximum number of ambiguous tests

emanating from a state of the NPA, thus 2n−n new states have to be added.

(2n − n) · (2Z) · N is the maximum number of states the produ
t Markov


hain M×
thus may have. The rest follows from [3℄.

10 Extending SPDL with Real Time Intervals

For the sake of 
ompleteness we de�ne the syntax of SPDLI
.

De�nition 26 (Syntax of SPDLI
). Let p ∈ [0, 1], q ∈ AP and ⊲⊳∈ {<, >

,≤,≥}. SPDL state formulae 
an be de�ned by the following grammar:

Φ := q
∣

∣ ¬Φ
∣

∣ Φ ∨ Φ
∣

∣ S⊲⊳p(Φ)
∣

∣ P⊲⊳p(φ)
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Path formulae φ are de�ned as follows:

φ := Φ[ρ]IΦ

where I = [t, t′], t ∈ IR0 ∧ t′ ∈ IR>0. Programs are de�ned by the following

grammar:

ρ := ǫ
∣

∣ρ; ρ
∣

∣ρ ∪ ρ
∣

∣Φ?; ρ
∣

∣ρ1

∣

∣(ρ)

ρ1 := a
∣

∣ρ1; ρ1

∣

∣ρ1 ∪ ρ1

∣

∣ρ∗
1

∣

∣Φ?; ρ1

∣

∣(ρ1)

We have to adapt the original de�nition of words over paths to the needs of

[t, t′] time intervals.

De�nition 27 (Words on paths). The word Wk
of length k, k ≥ 0 over

a path σ ∈ PATH of length k, k ≥ 0 over a path σ ∈ PATH is indu
tively

de�ned as follows:

W0(σ) = ǫ

. . .

Wk(σ) = Wk−1(σ) ◦ a[k − 1]

with:

a[k − 1] ∈ A ∧ σ[k − 1]
a[k−1],tk−1
−−−−−−→ σ[k]

Wk(σ)@ti = p@ti

is the a
tion on path σ belonging to the last transition, being terminated on

time point ti.

De�nition 28 (Semanti
s of path formulae).

M, σ |= ΦSPDLI [ρ]IΨSPDLI ⇐⇒

∃t2 ∈ I((M, σ@t2 |= ΨSPDLI) ∧ ∀t1 ∈ [t, t2)(M, σ@t1 |= ΦSPDLI ) ∧

∃p ∈ ρ(∀t1 ∈ [t, t2](|p| = |σ@t2| ∧M, σ@t1 |= TeF (p@t1) ∧W |σ|(σ)@t1 = Act(p@t1))))

where |σ@t2| is de�ned as the length of the path at time point t2.
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10.1 Chara
terisation of Path Formulae by Integral Equations

We now have four 
ases, the notation is the same as in se
tion 6.2.

W (s, Φ[ρ][t,t
′]Ψ, zρ) =



































































































































































1 ⇐⇒ t = 0 ∧ (M, s |= Ψ ∧ zρ ∈ Eρ) or
(M, s |= Ψ ∧M, s |= Ξ∧
δρ(zρ, Ξ?; ) ∈ Eρ)

e−E(s)·t+
t
∫

0

e−E(s)·x ·
∑

a∈A(zρ) ·
∑

s′∈S Ra(s, s
′)·

W (s, Φ[ρ′]<I⊖xΨ, δρ(zρ, a))dx ⇐⇒M, s |= Φ ∧ Ψ, t > 0

t′
∫

0

e−E(s)·x ·
∑

a∈A(zρ) ·
∑

s′∈S Ra(s, s
′)·

W (s, Φ[ρ′]<I⊖xΨ, δρ(zρ, a))dx ⇐⇒M, s |= Φ ∧ ¬Ψ

0 ⇐⇒ (M, s |= (¬Φ ∧ ¬Ψ )) or
(M, s |= (¬Φ ∧ Ψ )∧
¬∃Ξ ∈ Sat(s)(δρ(zρ, Ξ?) ∈ δρ)∧
δρ(zρ, Ξ?) ∈ Eρ) or
(M, s |= (Φ ∧ Ψ ) ∧M |= ¬Ξ∧
δρ(zρ, Ξ?) ∧ L(zρ) = {Ξ?})

Ex
ept for the se
ond 
ase this 
hara
terisation is identi
al to the one in

se
tion 6.2. The se
ond 
ase has the following explanation:

The probability to ful�ll ϕ is the probability to stay for more than t > 0
time units in state s plus the probability to rea
h s′ from s within x time

units, x ≤ t and to satisfy Φ[ρ′]I⊖xΨ along a path starting in s′.

11 Con
lusions

In this te
hni
al report, we have presented the de�nition of a powerful sto
has-

ti
 logi
 that is 
apable of 
on
isely and pre
isely expressing a ri
h variant

of performability measures. We have also devised an algorithm for model
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he
king probabilisti
 SPDL path formulae by transforming the underlying

model and thereby redu
ing it to the model 
he
king problem of CSL, for

whi
h solution e�
ient algorithms exist. Furthermore we have proven some

theoreti
al results on SPDL.

For the future we plan to integrate a sto
hasti
 model 
he
king engine

into our symboli
 performan
e evaluation tool CASPA [15℄. On the theoret-

i
al side we plan to extend SPDL by random time intervalls, su
h that the

upper bound is not ne
essarily longer a �xed value but 
an be drawn from

an arbitrary probability dsitribution. Further, we want to allow immediate

transitions, here, we expe
t various 
hanges in the model 
he
king pro
edure,

as now untimed transitions in the model 
an be mat
hed by transitions in the

automata. Additionally we want to 
ompare the expressive powers of various

sto
hasti
 logi
s with that of SPDL.

Referen
es

1. A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Verifying 
ontinuous time Markov 
hains.

In R. Alur and T.A. Henzinger, editors, Computer-Aided Veri�
ation, volume LNCS 1102,

pages 146�162. Springer, 1996.

2. A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model 
he
king 
ontinous time Markov


hains. ACM Transa
tions on Computational Logi
, 1(1):167�170, 2000.

3. C. Baier, B. Haverkort, H. Hermanns, and J.P. Katoen. Model-Che
king Algorithms for

Continuous-Time Markov Chains. IEEE Trans. Software Eng., 29(7):1�18, July 2003.

4. C. Baier, B.R. Haverkort, J.-P. Katoen, and H. Hermanns. Model Che
king Continuous-Time

Markov Chains by Transient Analysis. In E.A. Emerson and A.P. Sistla, editors, Computer

Aided Veri�
ation, volume LNCS 1855, pages 358�372. Springer, 2000.

5. C. Baier, J.-P. Katoen, and H. Hermanns. Approximate Symboli
 Model Che
king of

Continuous-Time Markov Chains. In J.C.M. Baeten and S. Mauw, editors, Conurren
y The-

ory, volume LNCS 1664, pages 146�162. Springer, 1999.

6. G. Evans. Pra
ti
al Numeri
al Analysis. Wiley, 1995.

7. A. Fante
hi, S. Gnesi, and G. Ristori. Model 
he
king for a
tion based logi
s. Formal Methods

in System Design, 4:187�203, 1994.

8. M. Fis
her and R. Ladner. Propositional Dynami
 Logi
 of Regular Programs. Journal of

Computer and System S
ien
es, 1979.

9. B.L. Fox and P. W. Glynn. Computing Poisson probabilities. Communi
ations of the ACM,

31(4):440�445, 1988.

10. H. Hansson and B. Jonsson. A logi
 for reasoning about time and reliability. Formal Aspe
ts

of Computing, 6:512�535, 1994.

11. D. Harel, D. Kozen, and J.Tiuryn. Dynami
 Logi
. Cambridge University Press, 2001.

12. H. Hermanns, J.P. Katoen, J. Meyer-Kayser, and M. Siegle. Towards model 
he
king sto
has-

ti
 pro
ess algebra. In Integrated Formal Methods, volume LNCS 1945, pages 420�439.

Springer, 2000.

13. Joost-Pieter Katoen, Marta Kwiatkowska, Gethin Norman, and David Parker. Faster and

symboli
 CTMC model 
he
king. In Pro
ess Algebra and Probabilisti
 Methods, volume LNCS

2165, pages 23�38, 2001.

46



14. D. Kozen and J. Tiuryn. Handbook of Theoreti
al Computer S
ien
e, Volume B: Formal

Models and Semanti
s, 
hapter Logi
 of Programs. Elsevier, 1990.

15. M. Kuntz, M. Siegle, and E. Werner. CASPA a performan
e evaluation tool based on sto
has-

ti
 pro
ess algebra and symboli
 data stru
tures. In to appear, 2003.

16. J. Meyer-Kayser. Veri�kation sto
hastis
her, prozessalgebrais
her Modelle mit aCSL+. Te
h-

ni
al Report IB 01/03, Universität Erlangen-Nürnberg, Institut für Informatik 7, 2003.

17. C. Moler and C.F. van Loan. Nineteen dubious ways to 
ompute the exponential of a matrix.

SIAM Review, 20(4):801�835, 1978.

47


