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Rate Lifting for Stochastic Process Algebra by Transition Context Augmentation

AMIN SOLTANIEH, Department of Computer Science, Bundeswehr University Munich, Germany

MARKUS SIEGLE, Department of Computer Science, Bundeswehr University Munich, Germany

This paper presents an algorithm for determining the unknown rates in the sequential processes of a Stochastic Process Algebra (SPA)

model, provided that the rates in the combined flat model are given. Such a rate lifting is useful for model reverse engineering and

model repair. Technically, the algorithm works by solving systems of nonlinear equations and – if necessary – adjusting the model’s

synchronisation structure, without changing its transition system. The adjustments cause an augmentation of a transition’s context

and thus enable additional control over the transition rate. The complete pseudo-code of the rate lifting algorithm is included and

discussed in the paper, and its practical usefulness is demonstrated by two case studies. The approach taken by the algorithm exploits

some structural and behavioural properties of SPA systems, which are formulated here for the first time and could be very beneficial

also in other contexts, such as compositional system verification.
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1 INTRODUCTION

Stochastic Process Algebra (SPA) is a family of formalisms widely used in the area of quantitative modelling, especially

for performance and dependability evaluation of concurrent systems. Typical members of this family are PEPA [11],

TIPP [7], EMPA [3], CASPA [16], but also the reactive modules language of probabilistic verification tools such as

PRISM [17] and STORM [6]. SPA models are frequently used in probabilistic model checking projects, where models

need to satisfy formal requirements expressed, e.g. with the help of temporal logics such as CSL [1]. When a model

violates a given requirement, model repair [2, 5, 21] seeks to improve the model in such a way that the requirement will

eventually hold. Model repair can take various forms (see, for instance, the recent work on automatic abstract machine

repair of B formal models [4]), but in connection with SPA performability
1
models, repair by transition rate adaptation

is a major technique, aiming to speed up or slow down certain transitions in the model in order to positively influence

probabilistic branchings and to control a system’s timing behaviour [8, 29].

This paper presents a solution to the following problem: For a compositional SPA specification with known original

transition rates in its components, let rate modification factors for (a subset of) the transition rates in its flat low-level

model be given. The task is to find new transition rates for the components of the high-level SPA model, such that

the resulting rates in the flat model will be modified as desired. An alternative formulation of the same problem is:

Given a compositional SPA specification where the transition rates in its components are unknown but all transition

1
Performability is a term originally coined by John Meyer, expressing the simultaneous consideration of performance and dependability issues [19].
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2 Amin Soltanieh and Markus Siegle

rates of the associated flat low-level transition system are known, the task is to find the unknown transition rates for

the components of the high-level SPA model. The first formulation is from the perspective of model checking and

model repair, whereas the second one pertains to systems reverse engineering (to be more specific, one could call it rate

reverse engineering). We will refer to both variants of the problem as “rate lifting problem”.

An algorithm that solves the rate lifting problem for SPA models with only 𝑛 = 2 components was presented in

[27], the nonlinear equation system involved being studied in [28]. However, developing a rate lifting algorithm for

a general number 𝑛 ≥ 3 of processes turns out to be a much bigger challenge, since – firstly – SPA models with 𝑛

components may have a much more complex synchronisation structure than for 𝑛 = 2, and it is the synchronisation

structure which plays an essential role during the execution of the algorithm. Secondly, components of SPA models

often contain selfloops (intended to synchronise with other components, thereby enabling a check of a component’s

state and controlling the overall rate of the resulting transition), and – related to this – the transition system underlying

a compositional SPA model is actually a collapsed multi-transition system [7, 11]. These two facts have to be considered

during the necessary deconstruction of a flat transition, and they strongly contribute to the complication of the problem.

So, in this paper we develop a rate lifting algorithm for SPA systems consisting of 𝑛 components, where 𝑛 is arbitrary.

The algorithm will assign (new) values to the components’ transition rates and – under certain circumstances – it

will change the synchronisation structure of the SPA model. The latter means that the algorithm may add actions to

certain synchronisation sets and in consequence it will insert additional selfloops at some specific component states,

but it will do this in such a way that the set of reachable states and the set of transitions of the overall model are not

changed, only the transition rates of the overall model are set/changed as desired. Such a change in the synchronisation

structure realises a “transition context augmentation”, since the context of a transition, consisting of a well-defined

set of participating sequential processes (see Sec. 2.3), is augmented by additional processes. Since the rate of a flat

transition is a function of the rates in the participating processes, this enables additional control over the transition rate.

For determining the unknown rates, the algorithm sets up and aims to solve (possibly multiple) systems of nonlinear

(precisely: multilinear) equations. The actual equation solving is treated as a black box in this paper, outsourced to

external tools such as Matlab [14], Mathematica [15] or Gurobi [13], since this is another involved topic, beyond the

scope of the paper. It is quite easy to see that an arbitrary assignment of rates to the transitions of the low-level transition

system may not always be realisable by suitable rates in the components, i.e. not every instance of the rate lifting

problem has a solution. Therefore, naturally, the algorithm presented in this paper will not always succeed. However, it

is guaranteed that the algorithm will find a solution, if such a solution exists (see Sec. 5).

We build our algorithm based on certain structural and behavioural properties of SPA systems, which are exploited

in the course of the algorithm. As one example, for a given transition in one of the SPA components, it is necessary to

identify the partners which must or may synchronise with it. As another example, for an individual flat transition, we

must be able to determine exactly the set of participating sequential processes, including possible selfloops or even

multiple combinations of selfloops (see Sec. 2.3 and Sec. 3). To the best of our knowledge, these fundamental properties

of SPA have not previously been addressed in the literature, which is surprising, since they could be very valuable

also in other contexts. For example, in compositional system verification, distinguishing between different types of

neighbourhoods of processes or determining the participating set of a transition is the key to establishing dependence /

independence relations between processes.

To summarize, the two most important contributions of this paper, which is a substantially extended version of the

conference paper [24], are:
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Rate Lifting for Stochastic Process Algebra 3

(1) The paper contributes to the theory of SPA by formulating new structural and behavioural properties of SPA

systems and the underlying flat transition system. There is a particular focus on the role of selfloops and –

related to this – “parallel” transitions (see Sec. 3).

(2) The paper presents the first complete rate lifting algorithm for general SPA systems with an arbitrary number 𝑛

of components, based on the aforementioned structural and behavioural properties. If the desired rates cannot

be realised in the unmodified system, the algorithm follows the strategy of “transition context augmentation”,

which means artificially extending the control over a transition’s rate without changing the qualitative behaviour

of the system.

The remainder of this paper is structured as follows: Sec. 2 recapitulates the basics of SPA and provides the necessary

definitions. The neighbourhood relations are introduced and their properties established. Then the flat transition system

underlying an SPA system is inspected, leading to the important notions of Participating Set and Involved Set. Sec. 3 is

devoted to the aspect of “parallel” transitions, which occur especially in connection with selfloops. The important helper

algorithm for determining all relevant selfloop combinations contributing to a transition is presented. The explanation

of our new rate lifting algorithm can be found in Sec. 4. After an informal overview, the problem of spurious transitions,

which must be absolutely avoided when modifying the synchronisation structure of an SPA system, is addressed, and

afterwards the pseudo code of the algorithm, as well as that of auxiliary algorithms, provided in the appendices, is

explained in some detail. Sec. 5 shows the correctness of the algorithm and analyses its asymptotical complexity. In

Sec. 6, two case studies are described, which show how the new rate lifting algorithm behaves in practice. Finally, Sec. 7

summarises the paper and lists some topics for future research.

2 STRUCTURAL AND BEHAVIOURAL PROPERTIES OF SPA

The class of Markovian Stochastic Process Algebra models considered in this paper is simple but still very general, as

given by the following definition:

Definition 2.1. (SPA language) For a finite set of actions 𝐴𝑐𝑡 , let 𝑎 ∈ 𝐴𝑐𝑡 and 𝐴 ⊆ 𝐴𝑐𝑡 . Let 𝜆 ∈ R>0 be a transition
rate. An SPA system 𝑆𝑦𝑠 is a process of type 𝐶𝑜𝑚𝑝 , constructed according to the following grammar:

𝐶𝑜𝑚𝑝 := (𝐶𝑜𝑚𝑝 | |𝐴 𝐶𝑜𝑚𝑝)
�� 𝑆𝑒𝑞

𝑆𝑒𝑞 := 0

�� (𝑎, 𝜆); 𝑆𝑒𝑞 �� 𝑆𝑒𝑞 + 𝑆𝑒𝑞
�� 𝑉

𝑆𝑒𝑞 stands for sequential processes, and𝐶𝑜𝑚𝑝 for composed processes.𝑉 stands for a process variable for a sequential

process, which can be used to define cyclic behaviour (including selfloops). One could add a recursion operator, the

special invisible action 𝜏 , hiding, renaming of processes, and other features, but this is not essential for our purpose. The

semantics is standard, i.e. the SPA specification is mapped to the underlying flat transition system, which is an action-

labelled CTMC (see e.g. [7, 10, 11]). In Sec. 3.1 we will comment on the important fact that the semantic model, in general,

is actually a collapsed multi-transition system. Like in other SPA formalisms, we assume multiway synchronisation (in

contrast to the two-way synchronisation of CCS [20]). That is, in our setting, the synchronisation of two 𝑎-transitions

yields another 𝑎-transition (with well-defined rate), which can then participate in further 𝑎-synchronisations, etc..

When two 𝑎-transitions synchronise (one from process 𝑃 and one from process 𝑄), the resulting rate is assumed to be a

function 𝑓 (. , .) of the two partner rates (such as their product, minimum, maximum, arithmetic mean, . . . ), and possibly

2024-04-04 10:40. Page 3 of 1–30. Manuscript submitted to ACM
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4 Amin Soltanieh and Markus Siegle

of the two context processes 𝑃 and 𝑄 . Thus the semantic rule for process synchronisation can be written as

𝑃
𝑎,𝜆−−→ 𝑃 ′ ∧ 𝑄

𝑎,𝜇
−−→ 𝑄 ′

𝑃 | |𝐴 𝑄
𝑎,𝑓 (𝑃,𝑄,𝜆,𝜇 )
−−−−−−−−−−−→ 𝑃 ′ | |𝐴 𝑄 ′

(𝑎 ∈ 𝐴)

In the remainder of this paper, we will assume that 𝑓 (𝑃,𝑄, 𝜆, 𝜇) = 𝜆 · 𝜇, since multiplication of rates is a de facto standard

for Markovian SPAs, as implemented, for example, by the tools PRISM and STORM. Multiplication has favourable

algebraic properties, and in connection with SPA notions of equivalence, multiplication of rates implies congruence

properties [10]. In addition, multiplication of rates is also a good choice from a modelling point of view: In many SPA

models, multiplication of rates is used in such a way that one of the synchronisation partners sets the rate (𝜆, say) and

the other partner(s) use(s) the rate 1 (neutral), or provide(s) an acceleration factor (> 1) or a slowdown factor (< 1). If

the rate resulting from the synchronisation of two or more processes were defined by an operator different from the

product of the participating rates, the equations constructed by our rate lifting algorithm (see Sec. 4) would have to be

changed accordingly, but apart from this change, the lifting algorithm would still work in exactly the same way. Even

for synchronisation policies where the resulting rate depends not only on the two synchronising transitions but on the

two partner processes 𝑃 and 𝑄 as a whole – such as PEPA’s sychronisation policy involving the apparent rate of the

partner processes [11] – our algorithms would also still work in the same way, but the equations would become more

complex in order to reflect that dependency.

It is important to mention that SPA processes may contain selfloops which will play an important role in this paper.

For example, process 𝑃 = (𝑎, 𝜆) .𝑄 + (𝑏, 𝜇).𝑃 may either move to 𝑄 with action 𝑎 (at rate 𝜆) or perform a selfloop with

action 𝑏 (at rate 𝜇). Selfloops are often used as a valuable modelling feature to control the context of a transition, such as

testing an enabling condition for a transition in another, synchronised process, or to control the rate of a synchronised

transition. The latter feature is exploited by our rate lifting algorithm in Sec. 4, by inserting artificial selfloops in specific

places, in order to realise the desired rates. In this paper, a selfloop in a single sequential process will be called an

atomic selfloop, whereas the synchronisation of two or more selfloops from different sequential processes will be called

a combined selfloop.

An SPA system (as defined in Def. 2.1) corresponds to a process tree whose internal nodes are labelled by the parallel

composition operator, each one parametrized by a set of synchronising actions (| |𝐴 , with 𝐴 ⊆ 𝐴𝑐𝑡 ), and whose leaves

are sequential processes of type 𝑆𝑒𝑞. For a specific action 𝑎 ∈ 𝐴𝑐𝑡 , we write | |𝑎 as an abbreviation to express that 𝑎

belongs to the set of synchronising actions, and | |¬𝑎 that it does not.

Definition 2.2. Let 𝑆𝑦𝑠 be a given SPA system.

(a) The set of all sequential processes within 𝑆𝑦𝑠 is denoted as 𝑠𝑒𝑞𝑝𝑟𝑜𝑐 (𝑆𝑦𝑠) (i.e. the set of all leaves of the process
tree of 𝑆𝑦𝑠).

(b) The set of all (sequential or composed) processes within 𝑆𝑦𝑠 is denoted as 𝑝𝑟𝑜𝑐 (𝑆𝑦𝑠) (i.e. the set of all nodes of
the process tree of 𝑆𝑦𝑠).

It holds that 𝑠𝑒𝑞𝑝𝑟𝑜𝑐 (𝑆𝑦𝑠) ⊆ 𝑝𝑟𝑜𝑐 (𝑆𝑦𝑠), since the leaves of a tree form a subset of all the nodes of a tree.

Let us denote all actions occurring in the syntactical specification of a sequential process 𝑃 ∈ 𝑠𝑒𝑞𝑝𝑟𝑜𝑐 (𝑆𝑦𝑠) as𝐴𝑐𝑡 (𝑃).
We can extend this definition to an arbitrary process 𝑋 ∈ 𝑝𝑟𝑜𝑐 (𝑆𝑦𝑠) by writing 𝐴𝑐𝑡 (𝑋 ) = ⋃

𝐴𝑐𝑡 (𝑃𝑖 ), where the union is

over those sequential processes 𝑃𝑖 that are in the subtree of 𝑋 . Note that, throughout the paper, we will use symbols like

𝑋,𝑌, . . . to denote both, a (sequential or composed) process, and the associated node in the process tree with its subtree.

For a sequential process 𝑃 , the fact that 𝑎 ∈ 𝐴𝑐𝑡 (𝑃) means that 𝑃 (considered in isolation) can actually at some point in

Manuscript submitted to ACM 2024-04-04 10:40. Page 4 of 1–30.
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Fig. 1. (𝑃1 | |{𝑎} 𝑃2 ) | |{𝑏} (𝑃3 | |{𝑏} (𝑃4 | |{𝑎} 𝑃5 ) )

its dynamic behaviour perform action 𝑎. However, for a process 𝑋 ∈ 𝑝𝑟𝑜𝑐 (𝑆𝑦𝑠) \ 𝑠𝑒𝑞𝑝𝑟𝑜𝑐 (𝑆𝑦𝑠), the fact that 𝑎 ∈ 𝐴𝑐𝑡 (𝑋 )
does not necessarily mean that 𝑋 can actually perform action 𝑎. As an example, think of 𝑋 = 𝑃 | |𝑎 𝑄 , where 𝑎 ∈ 𝐴𝑐𝑡 (𝑃)
but 𝑎 ∉ 𝐴𝑐𝑡 (𝑄). As another example, think of the same 𝑋 where 𝑎 ∈ 𝐴𝑐𝑡 (𝑃) and 𝑎 ∈ 𝐴𝑐𝑡 (𝑄) but no combined state is

reachable in which both 𝑃 and 𝑄 can perform action 𝑎. Therefore, we define 𝐴𝑐𝑡𝑝𝑒𝑟 𝑓 (𝑋 ) ⊆ 𝐴𝑐𝑡 (𝑋 ) to be those actions

that 𝑋 (considered as a process in isolation) can actually perform at some point in its dynamic behaviour. Formally:

𝑎 ∈ 𝐴𝑐𝑡𝑝𝑒𝑟 𝑓 (𝑋 ) iff ∃ state 𝑠 reachable from the initial state of 𝑋 : ∃𝜆 : ∃𝑠′ : 𝑠 𝑎,𝜆−−→ 𝑠′

While 𝐴𝑐𝑡 (𝑋 ) is a purely syntactical concept, 𝐴𝑐𝑡𝑝𝑒𝑟 𝑓 (𝑋 ) is a behavioural concept.
Given an SPA system 𝑆𝑦𝑠 and two proceses 𝑋,𝑌 ∈ 𝑝𝑟𝑜𝑐 (𝑆𝑦𝑠), we say that 𝑋 and 𝑌 are disjoint if and only if they do

not share any part of the process tree of 𝑆𝑦𝑠 . In other words: Neither is 𝑋 included in the subtree rooted at 𝑌 , nor vice

versa. Inside the disjoint processes 𝑋 and/or 𝑌 , different actions (from 𝐴𝑐𝑡 (𝑋 ) and 𝐴𝑐𝑡 (𝑌 )) may take place, among

them the specific action 𝑎, say. Synchronisation on action 𝑎 between 𝑋 and 𝑌 is possible if and only if the root of the

smallest subtree containing both 𝑋 and 𝑌 is of type | |𝑎 . Maximal | |𝑎-rooted subtrees are called 𝑎-scopes, as formalized

in the following definition.

Definition 2.3. Let 𝑎 ∈ 𝐴𝑐𝑡 . An 𝑎-scope within an SPA system 𝑆𝑦𝑠 is a subtree rooted at a node of type | |𝑎 , provided
that on all nodes on the path from that node to the root of 𝑆𝑦𝑠 there is no further synchronisation on action 𝑎 (i.e. all

nodes on that path, including the root, are of type | |¬𝑎).
Furthermore, as a special case, if 𝑃 ∈ 𝑠𝑒𝑞𝑝𝑟𝑜𝑐 (𝑆𝑦𝑠) and there is no 𝑎-synchronisation on the path from 𝑃 to the root of

the process tree of 𝑆𝑦𝑠 , we say that 𝑃 by itself is an 𝑎-scope.

For example, in the system shown in Figure 1, subtrees rooted at 𝑋1 and 𝑋4 are 𝑎-scopes, and sequential process 𝑃3

is also an 𝑎-scope. The only 𝑏-scope of this system is at the root of the system, i.e. 𝑋2.

Note that, according to this definition, 𝑎-scopes are always maximal, i.e. an 𝑎-scope can never be a proper subset of

another 𝑎-scope. Clearly, if the root node of 𝑆𝑦𝑠 requires synchronisation on action 𝑎, then the whole 𝑆𝑦𝑠 is a single

𝑎-scope. Synchronisation via action 𝑎 is impossible between two distinct 𝑎-scopes. But even within a single 𝑎-scope, not

all processes can / need to synchronise on action 𝑎, which motivates the neighbourhood relations in the next section.

2.1 Neighbourhood relations

The following definition answers the question (from the perspective of a sequential process 𝑃 ) which processes cannot /

must / may synchronise with an 𝑎-transition in process 𝑃 .

2024-04-04 10:40. Page 5 of 1–30. Manuscript submitted to ACM
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6 Amin Soltanieh and Markus Siegle

Definition 2.4. For 𝑎 ∈ 𝐴𝑐𝑡 , consider the 𝑎-transitions within process 𝑃 ∈ 𝑠𝑒𝑞𝑝𝑟𝑜𝑐 (𝑆𝑦𝑠). Let 𝑋 ∈ 𝑝𝑟𝑜𝑐 (𝑆𝑦𝑠) be such
that 𝑃 and 𝑋 are disjoint (i.e. that 𝑃 is not part of 𝑋 ). Let 𝑟 be the root of the smallest subtree that contains both 𝑃 and 𝑋 .

(a) 𝑋 ∈ 𝑁𝑐𝑎𝑛𝑛𝑜𝑡 (𝑆𝑦𝑠, 𝑃, 𝑎) iff 𝑟 is of type | |¬𝑎 .
(b) 𝑋 ∈ 𝑁𝑚𝑢𝑠𝑡 (𝑆𝑦𝑠, 𝑃, 𝑎) iff 𝑟 is of type | |𝑎 and on the path from 𝑟 to 𝑋 all nodes are of type | |𝑎 , where “path” means

all nodes strictly between 𝑟 and the root of 𝑋 .

(c) 𝑋 ∈ 𝑁𝑚𝑎𝑦 (𝑆𝑦𝑠, 𝑃, 𝑎) iff 𝑟 is of type | |𝑎 but on the path from 𝑟 to 𝑋 there exists a node of type | |¬𝑎 .

For example, referring again to the system shown in Figure 1, 𝑋3 ∈ 𝑁𝑐𝑎𝑛𝑛𝑜𝑡 (𝑆𝑦𝑠, 𝑃1, 𝑎) because 𝑋2 is of type | |¬𝑎 .
𝑋4 ∈ 𝑁𝑚𝑢𝑠𝑡 (𝑆𝑦𝑠, 𝑃3, 𝑏) because 𝑋3 is of type | |𝑏 . 𝑃4 ∈ 𝑁𝑚𝑎𝑦 (𝑆𝑦𝑠, 𝑃3, 𝑏) because 𝑋3 is of type | |𝑏 but on the path from

𝑃4 to 𝑋3 there is a node (namely 𝑋4) of type | |¬𝑏 .

Remark 1. In the definition, 𝑃 denotes a sequential process, whereas 𝑋 denotes any kind of process (sequential or

composed). Notice that for a process 𝑋 it is possible that 𝑋 ∈ 𝑁𝑚𝑎𝑦 (𝑆𝑦𝑠, 𝑃, 𝑎) or 𝑋 ∈ 𝑁𝑚𝑢𝑠𝑡 (𝑆𝑦𝑠, 𝑃, 𝑎) even if 𝑎 ∉

𝐴𝑐𝑡𝑝𝑒𝑟 𝑓 (𝑋 ) (or even 𝑎 ∉ 𝐴𝑐𝑡 (𝑋 )), which of course means that 𝑋 will never be able to synchronise on action 𝑎. This

is considered below in the definition of the set 𝐼𝑆𝑟 (cf. Def. 2.8). Related to this observation, note further that a process

𝑋 ∈ 𝑁𝑚𝑎𝑦 (𝑆𝑦𝑠, 𝑃, 𝑎) could actually be forced to synchronise with 𝑃 on action 𝑎 (i.e. it could be that 𝑋 must synchronise

with 𝑃 on 𝑎, even though 𝑋 ∉ 𝑁𝑚𝑢𝑠𝑡 (𝑆𝑦𝑠, 𝑃, 𝑎)). For example, if 𝑆𝑦𝑠 = 𝑃 | |𝑎 (𝑄 | |¬𝑎 𝑅) then 𝑄 ∈ 𝑁𝑚𝑎𝑦 (𝑆𝑦𝑠, 𝑃, 𝑎) and
𝑅 ∈ 𝑁𝑚𝑎𝑦 (𝑆𝑦𝑠, 𝑃, 𝑎), but if 𝑎 ∉ 𝐴𝑐𝑡 (𝑄) then 𝑃 always needs 𝑅 as a synchronisation partner on action 𝑎.

We proceed with some useful properties related to the neighbourhood relations:

Lemma 2.5. (a) The neighbourhood 𝑁𝑐𝑎𝑛𝑛𝑜𝑡 (𝑆𝑦𝑠, 𝑃, 𝑎) is disjoint from 𝑁𝑚𝑎𝑦 (𝑆𝑦𝑠, 𝑃, 𝑎) and 𝑁𝑚𝑢𝑠𝑡 (𝑆𝑦𝑠, 𝑃, 𝑎).
(b) Every 𝑋 ∈ 𝑁𝑚𝑎𝑦 (𝑆𝑦𝑠, 𝑃, 𝑎) is a subtree of some 𝑌 ∈ 𝑁𝑚𝑢𝑠𝑡 (𝑆𝑦𝑠, 𝑃, 𝑎).

Proof. Part (a) follows directly from the definition. Part (b): For given 𝑋 , one such node 𝑌 is the node directly below

𝑟 on the path from 𝑟 (as defined in Def. 2.4) to 𝑋 . □

For a given sequential process 𝑃 and action 𝑎, the complete set 𝑁𝑚𝑢𝑠𝑡 (𝑆𝑦𝑠, 𝑃, 𝑎) can be determined algorithmically

as follows: When moving up from 𝑃 to the root of 𝑆𝑦𝑠 , on every | |𝑎-node the other subtree is in 𝑁𝑚𝑢𝑠𝑡 (𝑆𝑦𝑠, 𝑃, 𝑎).
Furthermore, when moving down recursively in such a subtree, as long as one moves along | |𝑎-nodes, both subtrees are

also in 𝑁𝑚𝑢𝑠𝑡 (𝑆𝑦𝑠, 𝑃, 𝑎). Given a system with 𝑛 sequential processes (whose process tree has 2𝑛 − 1 nodes), calculating

𝑁𝑚𝑢𝑠𝑡 (𝑆𝑦𝑠, 𝑃, 𝑎) for a single process 𝑃 thus takes 𝑂 (𝑛) steps. In a similar way, one can also describe algorithms that

determine the complete set 𝑁𝑚𝑎𝑦 (𝑆𝑦𝑠, 𝑃, 𝑎) or the complete set 𝑁𝑐𝑎𝑛𝑛𝑜𝑡 (𝑆𝑦𝑠, 𝑃, 𝑎).

2.2 Symmetry and Transitivity of Neighbourhood Relations

The following symmetry and transitivity issues are not directly needed in our rate lifting algorithm, but they could be

very useful in other applications.

Lemma 2.6. For an SPA system 𝑆𝑦𝑠 , let 𝑃,𝑄 ∈ 𝑠𝑒𝑞𝑝𝑟𝑜𝑐 (𝑆𝑦𝑠).

(a) The 𝑁𝑐𝑎𝑛𝑛𝑜𝑡 relationship is symmetric, which means that 𝑄 ∈ 𝑁𝑐𝑎𝑛𝑛𝑜𝑡 (𝑆𝑦𝑠, 𝑃, 𝑎) implies that 𝑃 ∈
𝑁𝑐𝑎𝑛𝑛𝑜𝑡 (𝑆𝑦𝑠,𝑄, 𝑎).

(b) In contrast, the 𝑁𝑚𝑢𝑠𝑡 relationship is not symmetric, since 𝑄 ∈ 𝑁𝑚𝑢𝑠𝑡 (𝑆𝑦𝑠, 𝑃, 𝑎) implies either that 𝑃 ∈
𝑁𝑚𝑢𝑠𝑡 (𝑆𝑦𝑠,𝑄, 𝑎) or that 𝑃 ∈ 𝑁𝑚𝑎𝑦 (𝑆𝑦𝑠,𝑄, 𝑎).

(c) Similarly, the 𝑁𝑚𝑎𝑦 relationship is also not symmetric, since 𝑄 ∈ 𝑁𝑚𝑎𝑦 (𝑆𝑦𝑠, 𝑃, 𝑎) implies either that 𝑃 ∈
𝑁𝑚𝑎𝑦 (𝑆𝑦𝑠,𝑄, 𝑎) or that 𝑃 ∈ 𝑁𝑚𝑢𝑠𝑡 (𝑆𝑦𝑠,𝑄, 𝑎).
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Proof. Part (a): From 𝑄 ∈ 𝑁𝑐𝑎𝑛𝑛𝑜𝑡 (𝑆𝑦𝑠, 𝑃, 𝑎) we know that 𝑟 (the root of the smallest subtree that contains both

𝑃 and 𝑄) is of type | |¬𝑎 . If we interchange the roles of 𝑃 and 𝑄 , the root of the relevant subtree is still the same 𝑟 , so

the condition for cannot-neighbourhood is also satisfied in the other direction. Part (b): From 𝑄 ∈ 𝑁𝑚𝑢𝑠𝑡 (𝑆𝑦𝑠, 𝑃, 𝑎)
we know that 𝑟 is of type | |𝑎 , so for sure 𝑃 ∉ 𝑁𝑐𝑎𝑛𝑛𝑜𝑡 (𝑆𝑦𝑠,𝑄, 𝑎). That means that either 𝑃 ∈ 𝑁𝑚𝑢𝑠𝑡 (𝑆𝑦𝑠,𝑄, 𝑎) or
𝑃 ∈ 𝑁𝑚𝑎𝑦 (𝑆𝑦𝑠,𝑄, 𝑎). Both of these cases are possible, as can be easily shown by example: If 𝑆𝑦𝑠 = 𝑃 | |𝑎 𝑄 , then

𝑄 ∈ 𝑁𝑚𝑢𝑠𝑡 (𝑆𝑦𝑠, 𝑃, 𝑎) and 𝑃 ∈ 𝑁𝑚𝑢𝑠𝑡 (𝑆𝑦𝑠,𝑄, 𝑎). However, if 𝑆𝑦𝑠 = (𝑃 | |¬𝑎 𝑅) | |𝑎 𝑄 then 𝑄 ∈ 𝑁𝑚𝑢𝑠𝑡 (𝑆𝑦𝑠, 𝑃, 𝑎) but
𝑃 ∈ 𝑁𝑚𝑎𝑦 (𝑆𝑦𝑠,𝑄, 𝑎), because an 𝑎-transition of 𝑄 could synchronise with 𝑅 instead of 𝑃 . Part (c) can be shown in a

similar way as Part (b). □

Lemma 2.7. For an SPA system 𝑆𝑦𝑠 , let 𝑃,𝑄, 𝑅 ∈ 𝑠𝑒𝑞𝑝𝑟𝑜𝑐 (𝑆𝑦𝑠).

(a) The 𝑁𝑚𝑢𝑠𝑡 relationship is transitive, which means that

𝑄 ∈ 𝑁𝑚𝑢𝑠𝑡 (𝑆𝑦𝑠, 𝑃, 𝑎) ∧ 𝑅 ∈ 𝑁𝑚𝑢𝑠𝑡 (𝑆𝑦𝑠,𝑄, 𝑎) ⇒ 𝑅 ∈ 𝑁𝑚𝑢𝑠𝑡 (𝑆𝑦𝑠, 𝑃, 𝑎)

(b) In contrast, the 𝑁𝑚𝑎𝑦 and 𝑁𝑐𝑎𝑛𝑛𝑜𝑡 relationships are not transitive.

Proof. Starting with Part (b), this can be easily shown by counterexamples: For 𝑁𝑐𝑎𝑛𝑛𝑜𝑡 one counterexample is

𝑆𝑦𝑠 = ((𝑃 | |𝑎 𝑅) | |¬𝑎 𝑄). For 𝑁𝑚𝑎𝑦 one counterexample is 𝑆𝑦𝑠 = ((𝑃 | |¬𝑎 𝑅) | |𝑎 (𝑄 | |¬𝑎 𝑆)). For Part (a), a formal

proof arguing along the structure of the process tree can be found in [26]. However, it is also intuitively clear that if 𝑄

is forced to go along with 𝑃 and if 𝑅 is forced to go along with 𝑄 in any 𝑎-transition, then indirectly 𝑅 is also forced to

go along with 𝑃 . □

2.3 Moving Set and Participating Set

Having discussed the neighbourhoods of processes, which are related to the structure of SPA systems, we now focus

on the dynamic behaviour of SPA systems. Given a system 𝑆𝑦𝑠 constructed from 𝑛 sequential processes 𝑃1, . . . , 𝑃𝑛 , its

global state is a vector (𝑠1, . . . , 𝑠𝑛) where 𝑠𝑖 is the state of 𝑃𝑖 (a state of a sequential SPA process 𝑃𝑖 is just a derivative

of the process, i.e. any SPA process reachable from 𝑃𝑖 ) . We follow the convention that the ordering of processes in

the state vector is given by the in-order (LNR) traversal of the process tree of 𝑆𝑦𝑠 . A transition 𝑡 in the flat transition

system of 𝑆𝑦𝑠 is given by

𝑡 = ((𝑠1, . . . , 𝑠𝑛)
𝑎,𝜆𝑠−−−→ (𝑠′

1
, . . . , 𝑠′𝑛))

where for at least one 𝑘 ∈ {1, . . . , 𝑛} we have 𝑠𝑘 ≠ 𝑠′
𝑘
and where the transition rate 𝑟𝑎𝑡𝑒 (𝑡) = 𝜆𝑠 is a function of the

rates of the transitions of the participating processes. The assumption that in each such transition at least one of the 𝑛

processes must move makes sense, since we are considering here transitions of the overall system 𝑆𝑦𝑠 , where a global

selfloop would be meaningless for our work and therefore could be ignored. For such a transition 𝑡 we introduce the

following notation:

𝑎𝑐𝑡𝑖𝑜𝑛(𝑡) = 𝑎 𝑟𝑎𝑡𝑒 (𝑡) = 𝜆𝑠

𝑠𝑜𝑢𝑟𝑐𝑒 (𝑡) = (𝑠1, . . . , 𝑠𝑛) 𝑡𝑎𝑟𝑔𝑒𝑡 (𝑡) = (𝑠′
1
, . . . , 𝑠′𝑛)

𝑠𝑜𝑢𝑟𝑐𝑒𝑖 (𝑡) = 𝑠𝑖 𝑡𝑎𝑟𝑔𝑒𝑡𝑖 (𝑡) = 𝑠′𝑖

But which are actually the participating processes in the above transition 𝑡? For an 𝑎-transition 𝑡 as above, we define

the Moving Set 𝑀𝑆 (𝑡) as the set of those sequential processes whose state changes, i.e. 𝑀𝑆 (𝑡) = {𝑃𝑘 | 𝑠𝑘 ≠ 𝑠′
𝑘
}. The

complement of the Moving Set is called the Stable Set 𝑆𝑆 (𝑡), i.e. 𝑆𝑆 (𝑡) = {𝑃1, . . . , 𝑃𝑛} \𝑀𝑆 (𝑡).
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Since processes may contain selfloops and since synchronisation on selfloops is possible, the Participating Set 𝑃𝑆 (𝑡)
of transition 𝑡 can also include processes which participate in 𝑡 in an invisible way by performing a selfloop. Therefore

𝑃𝑆 (𝑡) can be larger than𝑀𝑆 (𝑡), i.e. in general we have𝑀𝑆 (𝑡) ⊆ 𝑃𝑆 (𝑡). Processes in 𝑆𝑆 (𝑡) which must synchronise on 𝑎

with one of the elements of𝑀𝑆 (𝑡) must have an 𝑎-selfloop at their current state and must belong to 𝑃𝑆 (𝑡). Furthermore,

processes in 𝑆𝑆 (𝑡) which may synchronise on 𝑎 with one of the elements of 𝑀𝑆 (𝑡) and have an 𝑎-selfloop at their

current state may also belong to 𝑃𝑆 (𝑡), provided that they are not in the 𝑁𝑐𝑎𝑛𝑛𝑜𝑡 -neighbourhood of one of the processes

of𝑀𝑆 (𝑡). Altogether we get:

𝑃𝑆 (𝑡) = 𝑀𝑆 (𝑡) ∪{
𝑃𝑖 ∈ 𝑆𝑆 (𝑡) |(
∃𝑃 𝑗 ∈ 𝑀𝑆 (𝑡) :(
𝑃𝑖 ∈ 𝑁𝑚𝑢𝑠𝑡 (𝑆𝑦𝑠, 𝑃 𝑗 , 𝑎)

∨
(
𝑃𝑖 ∈ 𝑁𝑚𝑎𝑦 (𝑆𝑦𝑠, 𝑃 𝑗 , 𝑎) ∧ (selfloop 𝑠𝑖

𝑎,𝜆𝑖−−−→ 𝑠𝑖 exists and is enabled in 𝑠𝑜𝑢𝑟𝑐𝑒 (𝑡))
) ) )

∧
(
�𝑃 𝑗 ∈ 𝑀𝑆 (𝑡) : 𝑃𝑖 ∈ 𝑁𝑐𝑎𝑛𝑛𝑜𝑡 (𝑆𝑦𝑠, 𝑃 𝑗 , 𝑎)

)}
(1)

The condition “selfloop . . . is enabled in 𝑠𝑜𝑢𝑟𝑐𝑒 (𝑡)” means that the selfloop in 𝑃𝑖 can actually take place in the source state

of transition 𝑡 , i.e. it is not blocked by any lacking synchronisation partner(s). Note that for the case 𝑃𝑖 ∈ 𝑁𝑚𝑢𝑠𝑡 (𝑆𝑦𝑠, 𝑃 𝑗 , 𝑎)
there obviously exists a selfloop in process 𝑃𝑖 , but this existence is implicit, so we do not have to write it down. In

Sec. 2.4, a procedure for practically calculating 𝑃𝑆 (𝑡) is given.
Using an example we show why the definition of 𝑃𝑆 (𝑡) needs to be so complicated, in particular why being in the

𝑚𝑎𝑦 neighbourhood of a moving component and having a selfloop is not enough to become a participating component.

For the system shown in Figure 2, we wish to find 𝑃𝑆 (𝑡) where 𝑡 = ((𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5)
𝑎, .−−→ (𝑠′

1
, 𝑠2, 𝑠3, 𝑠4, 𝑠5)). 𝑃1 is the

only moving component, and assume that there are 𝑎-selfloops in state 𝑠2 of 𝑃2 and also in state 𝑠3 of 𝑃3, but that there

are no 𝑎-selfloops in state 𝑠4 of 𝑃4 and in state 𝑠5 of 𝑃5. 𝑃2 ∈ 𝑁𝑚𝑎𝑦 (𝑆𝑦𝑠, 𝑃1, 𝑎) is in 𝑃𝑆 (𝑡), since its selfloop can take

place without hindrance, whereas 𝑃3 ∈ 𝑁𝑚𝑎𝑦 (𝑆𝑦𝑠, 𝑃1, 𝑎) is not included in 𝑃𝑆 (𝑡), since its selfloop, although it exists, is

not enabled in the source state of transition 𝑡 (it would need 𝑃4 or 𝑃5 as a synchronisation partner).

Fig. 2. 𝑃1 | |{𝑎,𝑏,𝑐} (𝑃2 | |{𝑐} (𝑃3 | |{𝑎} (𝑃4 | |{𝑏,𝑐} 𝑃5 ) ) )

2.4 Calculating the Participating Set

In Eq. 1 quite a complicated closed-form expression for the Participating Set of a transition was given. In practice, the

Participating Set 𝑃𝑆 (𝑡) for a given transition 𝑡 in an SPA system, with 𝑎𝑐𝑡𝑖𝑜𝑛(𝑡) = 𝑎, can be obtained by the following
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procedure: We first calculate a set of candidate processes 𝑃𝑆𝑐𝑎𝑛𝑑 :

𝑃𝑆𝑐𝑎𝑛𝑑 (𝑡) = {𝑃𝑖 ∈ 𝑆𝑆 (𝑡) | (𝑃𝑖 has a selfloop 𝑠𝑖
𝑎,𝜆𝑖−−−→ 𝑠𝑖 )

∧ (∃𝑃 𝑗 ∈ 𝑀𝑆 (𝑡) : (𝑃𝑖 ∈ 𝑁𝑚𝑎𝑦 (𝑆𝑦𝑠, 𝑃 𝑗 , 𝑎)))
∧ (�𝑃 𝑗 ∈ 𝑀𝑆 (𝑡) : (𝑃𝑖 ∈ 𝑁𝑐𝑎𝑛𝑛𝑜𝑡 (𝑆𝑦𝑠, 𝑃 𝑗 , 𝑎)))}

Then we determine the set 𝑃𝑆𝑚𝑎𝑦 ⊆ 𝑃𝑆𝑐𝑎𝑛𝑑 as follows: For each 𝑃𝑖 ∈ 𝑃𝑆𝑐𝑎𝑛𝑑 (𝑡), let 𝑟 of type ∥𝑎 be the root of the

smallest subtree containing 𝑃𝑖 and at least one of the components of𝑀𝑆 (𝑡). For each node 𝑁 of type ∥𝑎 on the path from

𝑃𝑖 to 𝑟 , excluding 𝑟 , let 𝑋𝑁 be the child process of node 𝑁 which does not contain 𝑃𝑖 . If a selfloop (−→𝑠 𝑋𝑁

𝑎, .−−→ −→𝑠 𝑋𝑁
)

exists in process 𝑋𝑁 then 𝑃𝑖 ∈ 𝑃𝑆𝑚𝑎𝑦 (𝑡)2. Overall we get:

𝑃𝑆 (𝑡) = 𝑀𝑆 (𝑡) ∪ 𝑃𝑆𝑚𝑎𝑦 (𝑡) ∪ {𝑃𝑖 ∈ 𝑆𝑆 (𝑡) | ∃𝑃 𝑗 ∈ 𝑀𝑆 (𝑡) : 𝑃𝑖 ∈ 𝑁𝑚𝑢𝑠𝑡 (𝑆𝑦𝑠, 𝑃 𝑗 , 𝑎)}

Returning to the example from Sec. 2.3 (Figure 2): For transition 𝑡 = ((𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5)
𝑎, .−−→ (𝑠′

1
, 𝑠2, 𝑠3, 𝑠4, 𝑠5)), we

assumed that there are selfloops in state 𝑠2 in 𝑃2 and also in state 𝑠3 in 𝑃3, so both 𝑃2 and 𝑃3 are in 𝑃𝑆𝑐𝑎𝑛𝑑 (𝑡). Since on
the path from 𝑃2 to 𝑟 (= 𝑋1) there is no node of type | |𝑎 , nothing else needs to be checked for 𝑃2, so 𝑃2 is in 𝑃𝑆𝑚𝑎𝑦 .

For 𝑃3, we need to check whether the other child of 𝑋3 (which is 𝑋4) can peform an 𝑎-selfloop at the current state

−→𝑠 𝑋4
= (𝑠4, 𝑠5). But since this is not the case, 𝑃3 is not in 𝑃𝑆𝑚𝑎𝑦 and therefore not in 𝑃𝑆 (𝑡).

2.5 Involved Set

In addition to the Participating Set 𝑃𝑆 (𝑡) of a transition 𝑡 , we also need to define the Involved Set 𝐼𝑆 (𝑡) which can be

larger than 𝑃𝑆 (𝑡), since it also contains those processes which may synchronise on action 𝑎 with one of the processes

in 𝑃𝑆 (𝑡) (in another transition 𝑡 ′), and so on, inductively. Formally:

Definition 2.8. For a transition 𝑡 with 𝑎𝑐𝑡𝑖𝑜𝑛(𝑡) = 𝑎 we define

(i) The Involved Set

𝐼𝑆 (𝑡) = 𝑃𝑆 (𝑡) ∪
{
𝑃𝑘 ∈ 𝑠𝑒𝑞𝑝𝑟𝑜𝑐 (𝑆𝑦𝑠) | ∃𝑃 𝑗 ∈ 𝐼𝑆 (𝑡) :

(
𝑃𝑘 ∈ 𝑁𝑚𝑎𝑦 (𝑆𝑦𝑠, 𝑃 𝑗 , 𝑎)

)}
(ii) The restricted Involved Set 𝐼𝑆𝑟 (𝑡) = {𝑃 ∈ 𝐼𝑆 (𝑡) | 𝑎𝑐𝑡𝑖𝑜𝑛(𝑡) ∈ 𝐴𝑐𝑡 (𝑃)}.

So 𝐼𝑆 (𝑡) represents the transitive closure of the 𝑁𝑚𝑎𝑦-neighbourhood of one of the participating processes. For that

reason, after the existential quantifier in part (i) we have to write 𝑃 𝑗 ∈ 𝐼𝑆 (𝑡) instead of only 𝑃 𝑗 ∈ 𝑃𝑆 (𝑡). The definition
of the restricted Involved Set 𝐼𝑆𝑟 (𝑡) is motivated by the observation in Remark 1. The idea is to omit those sequential

processes 𝑃 from 𝐼𝑆 (𝑡) where 𝑎 ∉ 𝐴𝑐𝑡 (𝑃), since they will never actually synchronise on action 𝑎 with any other process.

In some cases 𝐼𝑆 (𝑡) = 𝑃𝑆 (𝑡), but it can be easily shown by example that 𝐼𝑆 (𝑡) may be a strict superset of 𝑃𝑆 (𝑡). As
an example, consider the system

𝑆𝑦𝑠 = (𝑃1 | |¬𝑎 𝑃2) | |𝑎 (𝑃3 | |𝑎 𝑃4)

and the transition 𝑡 = ((𝑠1, 𝑠2, 𝑠3, 𝑠4)
𝑎,𝜆𝑠−−−→ (𝑠′

1
, 𝑠2, 𝑠

′
3
, 𝑠4)). The Moving Set is 𝑀𝑆 (𝑡) = {𝑃1, 𝑃3}, and there is obviously

a selfloop in 𝑃4 of the form 𝑠4
𝑎,𝜆4−−−→ 𝑠4 (otherwise 𝑃3 would not be able to perform the 𝑎-transition 𝑠3

𝑎,𝜆3−−−→ 𝑠′
3
), so

the Participating Set is 𝑃𝑆 (𝑡) = {𝑃1, 𝑃3, 𝑃4}. However, 𝑃2 is also (indirectly) involved since it is possible that in some

other transition 𝑃3 (and 𝑃4) will synchronise on action 𝑎 with 𝑃2. More concretely: The transitions 𝑠3
𝑎,𝜆3−−−→ 𝑠′

3
(in

2
The notation

−→
𝑠 𝑋𝑁

denotes a vector representing the states of the sequential components in process 𝑋𝑁 , i.e. it is the projection of the overall state

vector
−→
𝑠 = (𝑠1, . . . , 𝑠𝑛 ) to 𝑋𝑁 .
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𝑃3) and 𝑠4
𝑎,𝜆4−−−→ 𝑠4 (in 𝑃4) may synchronise with 𝑠′

2

𝑎,𝜆′
2−−−→ 𝑠′′

2
(in 𝑃2) (for some states 𝑠′

2
and 𝑠′′

2
of 𝑃2). Therefore we

get 𝐼𝑆 (𝑡) = {𝑃1, 𝑃2, 𝑃3, 𝑃4}. This will be important for our rate lifting algorithm (Sec. 4), since if we didn’t take the

involvement of 𝑃2 into account, we might (while processing transition 𝑡 ) change some rates in 𝑃3 and/or 𝑃4 which

would have side effects on other transitions. This means that in our rate lifting algorithm we will have to set up a

system of equations involving all four processes.

The following lemma establishes the connection between a transition’s Involved Set 𝐼𝑆 (𝑡) (a behavioural concept)
and the 𝑎-scope from Def. 2.3, which is a structural concept.

Lemma 2.9. For a transition 𝑡 of the SPA system 𝑆𝑦𝑠 , with 𝑎𝑐𝑡𝑖𝑜𝑛(𝑡) = 𝑎, let 𝑟 be the root of the smallest tree containing

all processes of 𝐼𝑆 (𝑡).

(i) Then 𝑟 is a node of type | |𝑎 .
(ii) There is no other node of type | |𝑎 “above” 𝑟 (i.e. on the path from 𝑟 to the root of 𝑆𝑦𝑠).

(iii) The Involved Set 𝐼𝑆 (𝑡) is exactly the set of all sequential processes in the subtree rooted at 𝑟 .

(iv) The Involved Set 𝐼𝑆 (𝑡) is exactly the set of sequential processes in the 𝑎-scope rooted at 𝑟 . So, in a sense, the Involved

Set and the 𝑎-scope are equal.

Proof. (i) Assume that 𝑟 was of type | |¬𝑎 . Then no process 𝑃𝑙 ∈ 𝐼𝑆 (𝑡) in the left subtree of 𝑟 could synchronise (on

action 𝑎) with any process 𝑃𝑟 ∈ 𝐼𝑆 (𝑡) in the right subtree of 𝑟 , which contradicts the fact that the set 𝐼𝑆 (𝑡) contains
processes in both subtrees of 𝑟 .

(ii) Furthermore, assume that there is another node 𝑟2 of type | |𝑎 on the path from 𝑟 to the root of 𝑆𝑦𝑠 . Then any 𝑎

transition occurring in one of the processes of 𝐼𝑆 (𝑡) would have to synchronise with some process in the other subtree

of 𝑟2, which means that the subtree rooted at 𝑟 does actually not contain all processes of 𝐼𝑆 (𝑡), which is a contradiction.

(iii) We only need to show that each sequential process in the subtree rooted at 𝑟 is in 𝐼𝑆 (𝑡). Assume that there is a

sequential process 𝑃𝑛𝑜𝑡 in the left subtree of the tree rooted at 𝑟 such that 𝑃𝑛𝑜𝑡 ∉ 𝐼𝑆 (𝑡). We know that there exists a

sequential process 𝑃𝑟 in the right subtree of the tree rooted at 𝑟 such that 𝑃𝑟 ∈ 𝐼𝑆 (𝑡). Then, since according to (i) 𝑟 is of

type | |𝑎 , either 𝑃𝑛𝑜𝑡 ∈ 𝑁𝑚𝑎𝑦 (𝑆𝑦𝑠, 𝑃𝑟 , 𝑎) or 𝑃𝑛𝑜𝑡 ∈ 𝑁𝑚𝑢𝑠𝑡 (𝑆𝑦𝑠, 𝑃𝑟 , 𝑎). But from this it follows that 𝑃𝑛𝑜𝑡 would have to be

in 𝐼𝑆 (𝑡), which is a contradiction. A symmetric argument holds if we assume that there is a sequential process 𝑃𝑛𝑜𝑡 in

the right subtree of the tree rooted at 𝑟 .

(iv) This is an immediate consequence of (i) - (iii). □

Lemma 2.10. For two transitions 𝑡1 and 𝑡2 with 𝑎𝑐𝑡𝑖𝑜𝑛(𝑡1) = 𝑎𝑐𝑡𝑖𝑜𝑛(𝑡2), if 𝐼𝑆 (𝑡1) ∩ 𝐼𝑆 (𝑡2) ≠ ∅ then 𝐼𝑆 (𝑡1) = 𝐼𝑆 (𝑡2).

Proof. This follows directly from the closure property of the 𝐼𝑆 definition. □

3 “PARALLEL” TRANSITIONS AND RELEVANT SELFLOOP COMBINATIONS

3.1 Multi Transition System

It is well known that the semantic model underlying an SPA specification is actually a multi-transition system [7, 11].

This is usually collapsed to an ordinary transition system by adding up the rates of “parallel” transitions, i.e. transitions

which have the same source state, the same target state and the same action label. Thus a transition within the flat

transition system of 𝑆𝑦𝑠 may be the aggregation of more than one transition. As an example, consider the system

𝑆𝑦𝑠 = 𝑃 | |𝑎 (𝑄 | |¬𝑎 𝑅) and the transition 𝑡 = ((𝑠1, 𝑠2, 𝑠3)
𝑎,𝜆𝑠−−−→ (𝑠′

1
, 𝑠2, 𝑠3)). The Moving Set is 𝑀𝑆 (𝑡) = {𝑃}, but the

Participating Set must be larger. Assume that 𝑄 has a selfloop 𝑠2
𝑎,𝜆2−−−→ 𝑠2 and that 𝑅 has a selfloop 𝑠3

𝑎,𝜆3−−−→ 𝑠3. Since
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𝑄 and 𝑅 do not synchronise on 𝑎, only one of those two selfloops synchronises with 𝑠1
𝑎,𝜆1−−−→ 𝑠′

1
at a time, but both

selfloops may synchronise with the 𝑎-transition in 𝑃 . This yields the two “parallel” transitions

((𝑠1, 𝑠2, 𝑠3)
𝑎,𝜆12−−−−→ (𝑠′

1
, 𝑠2, 𝑠3)) and ((𝑠1, 𝑠2, 𝑠3)

𝑎,𝜆13−−−−→ (𝑠′
1
, 𝑠2, 𝑠3))

(where 𝜆12 is a function of 𝜆1 and 𝜆2, and 𝜆13 is a function of 𝜆1 and 𝜆3), but they are not visible as separate transitions

in the low-level transition system. Rather, they are aggregated to the single transition ((𝑠1, 𝑠2, 𝑠3)
𝑎,𝜆12+𝜆13−−−−−−−−→ (𝑠′

1
, 𝑠2, 𝑠3)),

so 𝜆𝑠 = 𝜆12 + 𝜆13. As an anticipation of Eq. 4 in Sec. 4, let us mention that in this situation our rate lifting algorithm

would create the equation

𝑥
(𝑃 )
𝑠1𝑠

′
1

𝑥
(𝑄 )
𝑠2𝑠2 + 𝑥

(𝑃 )
𝑠1𝑠

′
1

𝑥
(𝑅)
𝑠3𝑠3 = 𝜆𝑠 · 𝑓 (2)

where a variable of the form 𝑥
(𝑃𝑖 )
𝑠,𝑠′ denotes the unknown rate from state 𝑠 to state 𝑠′ in sequential process 𝑃𝑖 , 𝑓 is the

desired rate multiplication factor, and (as discussed in Sec. 2) synchronisation is realised by multiplication of rates.

3.2 Calculating Relevant Selfloop Combinations

In the simple (and most common) case that none of the sequential processes in the SPA specification of 𝑆𝑦𝑠 has any

selfloops (and also no “parallel” transitions), we know that any transition of the flat transition system has only one single

semantic derivation. In consequence, for the considered flat transition 𝑡 it then holds that 𝑃𝑆 (𝑡) = 𝑀𝑆 (𝑡). However, as
discussed above, in the general case the flat transition system underlying a compositional SPA specification is actually a

multi-transition system which gets collapsed to an ordinary transition system by amalgamating “parallel” transitions. In

order to cover this general case, in the lifting algorithm (see Sec. 4) we have to do the opposite: Instead of amalgamation,

we need to deconstruct a flat transition into its constituents. I.e., given a flat transition (which was possibly amalgamated

from parallel transitions), we need to find out the contributing transitions, in order to be able to construct the correct

equation in line 52 of the algorithm (Eq. 4 in Sec. 4).

Consider the flat transition 𝑡 := ((𝑠1, . . . , 𝑠𝑛)
𝑐,𝛾 ·𝑓
−−−−→ (𝑠′

1
, . . . , 𝑠′𝑛)). We can determine its (non-empty) Moving Set

𝑀𝑆 (𝑡) and its Participating Set 𝑃𝑆 (𝑡), where we know that 𝑀𝑆 (𝑡) ⊆ 𝑃𝑆 (𝑡). We are particularly interested in the

processes from the set (𝑃𝑆 (𝑡) ∩ 𝑆𝑆 (𝑡)) \⋃𝑃∈𝑀𝑆 (𝑡 ) 𝑁𝑚𝑢𝑠𝑡 (𝑆𝑦𝑠, 𝑃, 𝑐), since these are exactly the processes that may (but

not must) contribute to transition 𝑡 . Certain combinations of these processes (which have selfloops, otherwise they

wouldn’t be in 𝑃𝑆 (𝑡)) contribute to transition 𝑡 . We call these combinations “relevant selfloop combinations (rslc)”. Note

that there are also selfloops in

⋃
𝑃∈𝑀𝑆 (𝑡 ) 𝑁𝑚𝑢𝑠𝑡 (𝑆𝑦𝑠, 𝑃, 𝑐), but they are not part of rslc.

It remains to calculate rslc for transition 𝑡 , still assuming that 𝑎𝑐𝑡𝑖𝑜𝑛(𝑡) = 𝑐 . For this purpose, we define a function

𝑟𝑠𝑙𝑐 (𝑡) which returns a set of sets of sequential processes, each such set describes a relevant selfloop combination. In the

process tree of 𝑆𝑦𝑠 , let 𝑟 be the root node of the smallest subtree containing 𝑃𝑆 (𝑡). We know that 𝑟 is either a non-leaf

node of type | |𝑐 or a leaf (if 𝑟 were a non-leaf node of type | |¬𝑐 , the Participating Set 𝑃𝑆 (𝑡) couldn’t span both subtrees

of 𝑟 ). Calling the recursive algorithm in Appendix B by the top-level call RSLC(𝑡, 𝑟 ) delivers all the relevant selfloop

combinations. Note that 𝑟𝑠𝑙𝑐 (𝑡) as called in the lifting algorithm has one argument (a transition) but the recursive

function 𝑅𝑆𝐿𝐶 (𝑡, 𝑛) (see Appendix B) has two arguments (a transition and a node of the process tree, the latter needed

for recursive descent through the process tree).

Example: Consider the SPA specification 𝑆𝑦𝑠 = ((𝑃 | |¬𝑐 𝑄) | |𝑐 (𝑅 | |¬𝑐 𝑆)) | |𝑐 (𝑇 | |¬𝑐 𝑈 ) whose process tree is shown

in Figure 3, and the transition 𝑡 := ((𝑠𝑃 , 𝑠𝑄 , 𝑠𝑅, 𝑠𝑆 , 𝑠𝑇 , 𝑠𝑈 )
𝑐,𝛾 ·𝑓
−−−−→ (𝑠′

𝑃
, 𝑠𝑄 , 𝑠𝑅, 𝑠𝑆 , 𝑠𝑇 , 𝑠𝑈 )). Obviously, the Moving Set is

𝑀𝑆 (𝑡) = {𝑃}, and if we assume that there are 𝑐-selfloops in states 𝑠𝑅, 𝑠𝑆 , 𝑠𝑇 and 𝑠𝑈 (in all of them!), the Participating
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Fig. 3. ( (𝑃 | |¬𝑐 𝑄 ) | |𝑐 (𝑅 | |¬𝑐 𝑆 ) ) | |𝑐 (𝑇 | |¬𝑐 𝑈 )

Set is 𝑃𝑆 (𝑡) = {𝑃, 𝑅, 𝑆,𝑇 ,𝑈 }. So transition 𝑡 can be realised as any combination of a selfloop in 𝑅 or 𝑆 with a selfloop in

𝑇 or𝑈 , thus the algorithm will find the set of relevant selfloop combinations {{𝑅,𝑇 }, {𝑅,𝑈 }, {𝑆,𝑇 }, {𝑆,𝑈 }}.
Anticipating once again Eq. 4 from Sec. 4, this set of relevant selfloop combinations would lead to the desired equation

𝑥
(𝑃 )
𝑠𝑃𝑠

′
𝑃

𝑥
(𝑅)
𝑠𝑅𝑠𝑅𝑥

(𝑇 )
𝑠𝑇 𝑠𝑇 + 𝑥

(𝑃 )
𝑠𝑃𝑠

′
𝑃

𝑥
(𝑅)
𝑠𝑅𝑠𝑅𝑥

(𝑈 )
𝑠𝑈 𝑠𝑈 + 𝑥

(𝑃 )
𝑠𝑃𝑠

′
𝑃

𝑥
(𝑆 )
𝑠𝑆𝑠𝑆𝑥

(𝑇 )
𝑠𝑇 𝑠𝑇 + 𝑥

(𝑃 )
𝑠𝑃𝑠

′
𝑃

𝑥
(𝑆 )
𝑠𝑆𝑠𝑆𝑥

(𝑈 )
𝑠𝑈 𝑠𝑈 = 𝛾 · 𝑓 (3)

where, again, a variable of the form 𝑥
(𝑃𝑖 )
𝑠,𝑠′ denotes the unknown rate from state 𝑠 to state 𝑠′ in process 𝑃𝑖 . This

equation reflects the fact that process 𝑃 , moving from 𝑠𝑃 to 𝑠′
𝑃
, is participating, always together with exactly one

of the four relevant selfloop combinations. Alternatively, if we assumed that the Participating Set was smaller, say

𝑃𝑆 (𝑡) = {𝑃, 𝑅, 𝑆,𝑇 } (i.e. if there were no 𝑐-selfloop at 𝑠𝑈 ), then the algorithm would find a smaller set of relevant selfloop

combinations, namely {{𝑅,𝑇 }, {𝑆,𝑇 }}, leading to the simpler equation 𝑥
(𝑃 )
𝑠𝑃𝑠

′
𝑃

𝑥
(𝑅)
𝑠𝑅𝑠𝑅𝑥

(𝑇 )
𝑠𝑇 𝑠𝑇 + 𝑥

(𝑃 )
𝑠𝑃𝑠

′
𝑃

𝑥
(𝑆 )
𝑠𝑆𝑠𝑆𝑥

(𝑇 )
𝑠𝑇 𝑠𝑇 = 𝛾 · 𝑓 .

4 RATE LIFTING ALGORITHM

Our rate lifting algorithm processes the transitions whose rates are to be modified in a one by one fashion. It is, however,

not strictly one by one, since in many situations a whole set of “related” transitions is taken into account together

with the currently processed transition, where “related” means that the transitions have the same action label and

take place within the same scope. The algorithm consists of four parts named A, B, C and D as shown in Figure 4. In

Part A, for a transition whose Involved Set consists of only one single sequential process, the algorithm first tries to

change its rate by modifying the rate locally in exactly this sequential process, which is referred to as “local repair”.

Local repair will fail, however, if two flat “sibling” transitions which both originate from the same local transition have

different modification factors. In Part B, which is the starting point for transitions whose Involved Set contains at least

two processes, the algorithm creates a system of nonlinear equations and tries to solve it. This system of equations

covers all transitions with the same action label and the same Involved Set, i.e. all these transitions are dealt with

simultaneously in one system of equations. The basic idea behind the system of equations is to consider all involved

local rates as variables whose values are to be determined. Part C, entered upon failure of Part B, is the first part where

the system specification is modified by augmenting some synchronisation sets and inserting selfloops, all within the

current 𝑐-scope. These modifications are carried out in such a way that the global transition system is not changed.

Again, like in part B, the algorithm creates a set of nonlinear equations (but now the system of equations is larger,

involving more unknown rates, since the model has been modified) and tries to solve it. If the previous steps have failed,

Part D tries to expand the scope, by modifiying the system in a larger scope than the current Involved Set. This means

that the Involved Set is artificially augmented by adding action 𝑐 to the synchronisation set at a higher node. Again, a
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Fig. 4. Overview of the algorithm

similar but even larger system of equations of the same type is constructed. However, even this system of equations

may not have a solution, in which case the desired rate lifting has turned out to be impossible.

4.1 Spurious Transitions

As we have seen, in certain situations the rate lifting algorithm needs to change the synchronisation structure of the

given system, i.e. it will change an inner node of type | |¬𝑐 to a node of type | |𝑐 . Clearly, this needs to be done with great

care, since such a step will – in general – change the behaviour of the system. Therefore the algorithm, before adding

action 𝑐 to a synchronisation set, has to ensure that no spurious transitions will be generated. Spurious transitions (sp. tr.)

are extra, superfluous transitions not present in the original system, and therefore incorrect. Furthermore, after action 𝑐

has been added to a synchronisation set, the algorithm also has to ensure that all transitions in the original system are

still possible (it could easily happen that a previously existing transition now lacks a synchronisation partner in the

newly synchronised system). For that purpose, the algorithm inserts selfloops into the sequential components, wherever

necessary to preserve the behaviour of the original system. There are actually two types of spurious transitions:

(A) Superfluous transitions which appear when two previously 𝑐-non-synchronised components become synchro-

nised over action 𝑐 .

(B) Superfluous transitions which appear when a new 𝑐-selfloop is inserted into a sequential process which is in

the 𝑐-must- or 𝑐-may-neighbourhood of another process.

The algorithm avoids both types of sp. tr.. It guarantees that even though the synchronisation structure of the system

may be altered and artificial selfloops are inserted, the set of reachable states and the set of transitions remain the same.

4.2 Detailed Description of the Algorithm

Appendix A shows the pseudo code of the new rate lifting algorithm. The arguments of the algorithm are the SPA

system 𝑆𝑦𝑠 and its flat transition system 𝑇 (a set of transitions), the set of transitions whose rate is to be modified

𝑇𝑚𝑜𝑑 ⊆ 𝑇 as well as a function 𝑓 𝑎𝑐𝑡𝑜𝑟 that returns, for each transition in 𝑇𝑚𝑜𝑑 , its modification factor (thus, this
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presentation of the algorithm addresses model repair rather than rate reverse engineering, cf. Sec. 1). For transitions

not in 𝑇𝑚𝑜𝑑 , the modification factor is supposed to be 1.

In each iteration of the outer while-loop (lines 10 to 133), the algorithm picks one of the remaining transitions from

𝑇𝑚𝑜𝑑 , called 𝑡 with action label called 𝑐 , and processes it (possibly together with other transitions that have the same

action label).

(Part A) Local repair: If the Involved Set of the currently processed transition 𝑡 consists of only one single process, the

algorithm tries to adjust the rate of exactly one transition in that process. This is done in lines 17–32 of the algorithm.

However, this will only work if all “sibling” transitions where this process makes the same move have the same, common

modification factor. That set of “sibling” transitions is denoted as𝑇𝑐,𝑠𝑖
1
,𝑠′
𝑖
1

in the algorithm, and the common modification

factor is denoted as 𝑓𝑐𝑜𝑚 .

(Part B) System of equations for𝑇𝑐 : If the Involved Set of the currently processed transition 𝑡 consists of two or more

processes, all transitions with the same Involved Set and the same action as 𝑡 are processed together (lines 44–61). In

the algorithm, this set of transitions is denoted𝑇𝑐 . For every transition 𝑡 ∈ 𝑇𝑐 , the algorithm determines its Participating

Set 𝑃𝑆 (𝑡), calculates the relevant selfloop combinations (rslc) and from this information creates a nonlinear equation∑︁
𝐶∈𝑟𝑠𝑙𝑐 (𝑡 )

∏
𝑃∈𝑀𝑆 (𝑡 )

𝑥
(𝑃 )
𝑠𝑃𝑠

′
𝑃

∏
𝑄∈𝑃𝑆 (𝑡 )\𝑀𝑆 (𝑡 )

∧ ∃𝑃 ∈𝑀𝑆 (𝑡 ) :𝑄∈𝑁𝑚𝑢𝑠𝑡 (𝑆𝑦𝑠,𝑃,𝑐 )

𝑥
(𝑄 )
𝑠𝑄𝑠𝑄

∏
𝑅∈𝐶

𝑥
(𝑅)
𝑠𝑅𝑠𝑅 = 𝛾 · 𝑓 (4)

where the 𝑥 ’s are the unknown rates of the participating processes (some of which are rates of selfloops, if such exist in

the system). The superscript of variable 𝑥
( ·)
· · identifies the sequential process, and the subscript denotes the source/target

pair of states. The equation reflects the fact that the rates of all synchronising processes are multiplied, and that the total

rate is obtained as the sum over all possible relevant selfloop combinations. As concrete examples for Eq. 4, Eqns. 2 and

3 were already shown in Sec. 3. Afterwards, this system of equations is solved, and if a solution exists, all 𝑐-transitions

in the current 𝑐-scope have been successfully dealt with. We would like to point out that, if for some transition 𝑡 the

Participating Set 𝑃𝑆 (𝑡) is equal to its Moving Set𝑀𝑆 (𝑡), then the resulting equation has a much simpler form

𝑥
(𝑃1 )
𝑠1𝑠

′
1

· 𝑥 (𝑃2 )
𝑠2𝑠

′
2

· · · · · 𝑥 (𝑃𝑘 )
𝑠𝑘𝑠

′
𝑘

= 𝛾 · 𝑓

(assuming that |𝑀𝑆 (𝑡) | = 𝑘), since in this case, there are no selfloops involved, and therefore also no combinations of

selfloops to be considered.

(Part C) Expanding the context of 𝑐-transitions by synchronising with more processes and inserting artificial
selfloops within the current 𝑐-scope: If the system of equations constructed in part (B) for the set𝑇𝑐 had no solution,

it is the strategy of the algorithm to involve more processes (for the moment only from the current 𝑐-scope), since this

opens up more opportunity for controlling the context of these 𝑐-transitions, and thereby controlling their rates. In

this part of the algorithm (lines 66–100), 𝑎𝑐𝑡𝑖𝑜𝑛(𝑡) = 𝑐 is added to the synchronisation set at each node of type | |¬𝑐
in the current 𝑐-scope, except where this would lead to spurious transitions (of type A or type B). These tasks of the

algorithm are outsourced to function TRYSYNC (called in line 77). In TRYSYNC (the details of which are elaborated

on in Appendix C), checking for spurious transitions of type A is done by checking all source states of transitions in

the current 𝑇𝑐 , making sure that there are no concurrently enabled 𝑐-transitions in newly synchronised subprocesses.

After adding action 𝑐 to some synchronisation sets, we also have to make sure that all transitions originally in 𝑇𝑐

can still occur, i.e. that they have not been disabled by the new synchronisations (because some newly necessary

synchronisation partners would now be lacking). This is also done in function TRYSYNC, by inserting the necessary

selfloops in those processes which are now newly synchronising on action 𝑐 , provided that those new selfloops do not
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lead to the existence of spurious transitions (of type B). The steps just described guarantee that the modified system

𝑆𝑦𝑠′ has exactly the same set of transitions as the original system 𝑆𝑦𝑠 (qualitatively), but it remains to find the correct

rates of all 𝑐-transitions in the involved processes. For this purpose, a similar (but larger) system of equations as in Part

(B) is set up and solved.

(Part D) Expanding the Involved Set by moving the current root upwards: It is possible that the systems of

equations constructed in Part (B) and thereafter in Part (C) both have no solution. In this case, the algorithm seeks to

expand the current 𝑐-scope by moving its root up by one level (unless the root of the overal system has already been

reached). Again, it needs to be ensured that no spurious transitions would be created from this step. This is done in

lines 112–132 of the algorithm, again with the help of function TRYSYNC.

5 CORRECTNESS, EXHAUSTIVENESS AND COMPLEXITY OF THE ALGORITHM

Correctness: It must be guaranteed that a solution found by the algorithm is correct, which means that the modified

compositional SPA system (with the calculated rates, possibly modified synchronisation sets and added selfloops)

possesses exactly the same flat transition system as the original system, just with the transition rates modified as desired.

In other words, correctness means that the modified flat transition system is structurally isomorphic to the original flat

transition system, only the rates are changed to the desired values. Isomorphism of the flat transition systems implies

that the two systems are functionally strongly bisimilar, but of course not strongly Markov bisimilar [10], since the

rates have changed. Our proof of the algorithm’s correctness is based on the following lemma:

Lemma 5.1. Let 𝑆𝑦𝑠 = 𝑃 | |𝐴 𝑄 where 𝑃,𝑄 are sequential processes and 𝑐 ∉ 𝐴.

(a) (i) Assume that in the transition system of 𝑃 there is one single 𝑐-transition, namely 𝑝
𝑐,𝛾𝑃−−−→ 𝑝′, and likewise that in

the transition system of 𝑄 there is one single 𝑐-transition, namely 𝑞
𝑐,𝛾𝑄−−−−→ 𝑞′. (ii) Assume furthermore that in the

low-level transition system of 𝑆𝑦𝑠 the combined states {(𝑝, 𝑞𝑙 ) | 𝑙 = 1, . . . , 𝐿} are reachable and that these are the
only reachable states where 𝑃 is in state 𝑝 (other combined states where 𝑃 is not in state 𝑝 may also be reachable).

Likewise, assume that the combined states {(𝑝𝑚, 𝑞) | 𝑚 = 1, . . . , 𝑀} are reachable and that these are the only

reachable states where 𝑄 is in state 𝑞. (iii) Assume also that combined state (𝑝, 𝑞) is not reachable.

Let 𝑄 ′ be identical to 𝑄 but with 𝐿 artificial 𝑐-selfloops added, namely the selfloops 𝑞𝑙
𝑐,𝑓𝑙−−−→ 𝑞𝑙 where 𝑙 = 1, . . . , 𝐿.

Likewise, let 𝑃 ′ be identical to 𝑃 but with𝑀 artificial 𝑐-selfloops added, namely the selfloops 𝑝𝑚
𝑐,𝑔𝑚−−−−→ 𝑝𝑚 where

𝑚 = 1, . . . , 𝑀 . Let 𝑆𝑦𝑠′ = 𝑃 ′ | |𝐴′ 𝑄 ′ where 𝐴′ = 𝐴 ∪ {𝑐}. Then the low-level transition systems of 𝑆𝑦𝑠 and 𝑆𝑦𝑠′ are

structurally isomorphic.

(b) If, contrary to the assumptions in (a), there exists in 𝑄 an outgoing non-selfloop 𝑐-transition from at least one of the

states 𝑞1, . . . , 𝑞𝐿 , for instance the transition 𝑞𝑙
𝑐, .−−→ 𝑞′

𝑙
, then the low-level transition systems of 𝑆𝑦𝑠 and 𝑆𝑦𝑠′ would

not be structurally isomorphic. There is a symmetric argument in case there exists in 𝑃 an outgoing non-selfloop

𝑐-transition from at least one of the states 𝑝1, . . . , 𝑝𝑀 .

(c) Let the situation be as in (a), with the exception that 𝑃 may now contain multiple 𝑐-transitions, namely 𝑝1
𝑐,𝛾𝑃,1−−−−→ 𝑝′

1
,

𝑝2
𝑐,𝛾𝑃,2−−−−→ 𝑝′

2
, . . . , and that 𝑄 may now contain multiple 𝑐-transitions, namely 𝑞1

𝑐,𝛾𝑄,1−−−−−→ 𝑞′
1
, 𝑞2

𝑐,𝛾𝑄,2−−−−−→ 𝑞′
2
, . . . . Then,

if all conditions named in (a) hold mutatis mutandis for each of those 𝑐-transitions, and if all the respective artificial

selfloops in 𝑄 and in 𝑃 were added, it follows that the low-level transition systems of 𝑆𝑦𝑠 and 𝑆𝑦𝑠′ are structurally

isomorphic. If, however, similarly to part (b), in 𝑆𝑦𝑠 a combined state was reachble where both 𝑃 and 𝑄 have an

outgoing 𝑐-transition, then the low-level transition systems of 𝑆𝑦𝑠 and 𝑆𝑦𝑠′ would not be structurally isomorphic.
2024-04-04 10:40. Page 15 of 1–30. Manuscript submitted to ACM
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Proof. Part (a): From the assumptions (i) . . . (iii) it follows that 𝑞 is not equal to any of the 𝑞𝑙 and likewise that 𝑝

is not equal to any of the 𝑝𝑚 . The original system 𝑆𝑦𝑠 has 𝐿 + 𝑀 𝑐-transitions, namely: (𝑝, 𝑞𝑙 )
𝑐,𝛾𝑃−−−→ (𝑝′, 𝑞𝑙 ) where

𝑙 = 1, . . . , 𝐿, and (𝑝𝑚, 𝑞)
𝑐,𝛾𝑄−−−−→ (𝑝𝑚, 𝑞′) where 𝑚 = 1, . . . , 𝑀 . The modified system 𝑆𝑦𝑠′ has exactly the same set of

𝑐-transitions. In 𝑆𝑦𝑠′ each of these transitions is realised by the 𝑐-transition in 𝑃 (in 𝑄) which synchronises with the

artificially inserted 𝑐-selfloop in one of the states 𝑞𝑙 (one of the 𝑝𝑚). All non-𝑐-transitions in 𝑆𝑦𝑠 are not affected by the

insertion of the artificial 𝑐-selfloops and the extra action 𝑐 in the synchronising set 𝐴′
, therefore the non-𝑐-transitions

of 𝑆𝑦𝑠 and 𝑆𝑦𝑠′ are also identical. Thus, the low-level transition systems of 𝑆𝑦𝑠 and 𝑆𝑦𝑠′ are stucturally isomorphic. In

case all of the values 𝑓𝑙 and 𝑔𝑚 are equal to 1, even the transition rates in 𝑆𝑦𝑠 and 𝑆𝑦𝑠′ are identical. Otherwise, by an

appropriate choice of the values of 𝑓𝑙 and 𝑔𝑚 , different transition rates for the 𝑐-transitions in 𝑆𝑦𝑠′ can be realised.

Part (b): Notice that assumptions (i) . . . (iii) in (a) imply that in𝑄 there is no outgoing 𝑐-transition from any one of the

states 𝑞𝑙 . Suppose now that 𝑄 had a 𝑐-transition emanating from one of the states 𝑞𝑙 , say transition 𝑞𝑙1
𝑐, .−−→ 𝑞′

𝑙1
. Since

(𝑝, 𝑞𝑙1 ) is reachable, 𝑆𝑦𝑠′ would contain the transition (𝑝, 𝑞𝑙1 )
𝑐, .−−→ (𝑝′, 𝑞′

𝑙1
) which does not occur in 𝑆𝑦𝑠 , thus being a

spurious transition of type A. This proves part (b).

The proof of part (c) follows the same argumentation as that of parts (a) and (b), however requiring an elaborate

notation because of the many possible combinations of states of 𝑃 and 𝑄 that have to be considered. The simple case

that 𝑃 (or 𝑄) contains zero 𝑐-transitions is also included. □

Now we can argue constructively for the correctness of the algorithm as follows: In Part A, the Involved Set of

transition 𝑡 consists of only one single sequential process, denoted 𝑃𝑖1 . If the condition in line 21 of the algorithm is

fulfilled, only the transition rate of a single transition in that processes needs to be changed, resulting in the simultaneous

change of all the rates of the well-defined set of global flat “sibling” transitions𝑇𝑐,𝑠𝑖
1
,𝑠′
𝑖
1

, all having the same modification

factor, which yields the intended result. Obviously, this single rate change in Part A does not modify the structure of

the underlying transition system. On the other hand, if the condition in line 21 is violated, the only chance of realising

different rates for the transitions in the set 𝑇𝑐,𝑠𝑖
1
,𝑠′
𝑖
1

is by augmenting the context and inserting controlling selfloops

in other sequential processes, which is attempted in Part D. Parts B, C and D all rely on the fact that the rate of a flat

transition is a function of the rates of transitions in all participating sequential processes. Consequently, to adjust the

rate of 𝑡 in the overall transition system, the rates in the participating processes 𝑃𝑆 (𝑡) must be set properly. Since

these rates can have side-effects on other 𝑐-transitions in the same 𝑐-scope, all 𝑐-transitions in the scope 𝐼𝑆 (𝑡) must be

considered at the same time in a system of equations. Therefore, Parts B, C and D each work by setting up and solving a

nonlinear system of equations relating to the original (Part B) resp. carefully modified SPA system (Parts C and D). One

equation is created for every transition 𝑡 in the set 𝑇𝑐 , precisely reflecting the synchronisation of the sequential SPA

processes in 𝑃𝑆 (𝑡) (see line 52 resp. line 90, which are both instances of Eq. 4). In the equation for transition 𝑡 , since 𝑡

may be a collapsed multi-transition (cf. Sec. 3), all relevant selfloop combinations contributing to 𝑡 are reflected correctly

by the summation over all elements of 𝑟𝑠𝑙𝑐 (𝑡). The system of equations for 𝑇𝑐 takes into account all transitions with

action label 𝑐 which belong to the current 𝑐-scope (which is equal to 𝐼𝑆 (𝑡)), making sure that the resulting rates of those

transitions are all as desired. If a solution for the unknown rates is found in Part B, the synchronisation sets remain

untouched and no new selfloops are added, so obviously the structure of the underlying transition system remains the

same. If in Parts C and D the model is adjusted (by augmenting one or more synchronisation sets and inserting artificial

selfloops), Lemma 5.1 (applied analogously also to non-sequential processes) guarantees that this will not affect the

structure of the low-level transition system, as far as spurious transitions of type A are concerned. In the pseudo-code,

this is guaranteed by function TRYSYNC (see Appendix C), which also makes sure that no spurious transitions of type
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B will be created by the adjustments taken, and also that all the transitions of the original flat transition system are still

present. In other words, TRYSYNC guarantees that the original low-level transition system and the modified low-level

transition system remain structurally isomorphic with each added 𝑐-synchronisation. In particular, during the checking

for sp. tr. of type B, TRYSYNC computes feasible combinations 𝐶 𝑓 𝑒𝑎𝑠
of processes synchronising on a 𝑐-transition, and

is thus able to precisely determine the necessary new selfloops. Testing all nodes of type 𝑋 = 𝑋1 | |¬𝑐𝑋2 in bottom-up

order (line 76) is correct because it guarantees that sub-processes behave as expected, thus larger processes created from

these building blocks will also behave as expected (this follows from the process algebra principle of compositionality

[10]). In summary, since each individual step of the algorithm is correct, we can conclude by induction that the total

effect of multiple steps is also correct.

Exhaustiveness: Related to the correctness of the algorithm, the question should be raised whether the algorithm

uses all possible opportunities. In other words: If the lifting algorithm doesn’t find a solution, is it really guaranteed

that no solution exists? We now provide an informal proof of “exhaustiveness” in that sense: The algorithm’s goal is to

realise given rates in the low-level transition system, without stucturally changing the transition system. Since in a

compositional SPA system the rate of a global transition 𝑡 is a function of (the rate values of) all processes participating

in that transition, the algorithm will have maximum freedom if it can set all contributing rates in the Participating Set

𝑃𝑆 (𝑡) freely. However, changing rates in processes from 𝑃𝑆 (𝑡) can have cross-effects on the rates of other transitions,

as explained in Sec. 2.5. That’s why all transitions with the same Involved Set 𝐼𝑆 (𝑡) need to be taken into account at the

same time while processing 𝑡 , which is exactly what the algorithm does. If it turns out that the degrees of freedom

inside 𝐼𝑆 (𝑡) are not sufficient for realising the desired rates, the algorithm augments the context of 𝑡 (by synchronising

with more processes) in the maximum permissible way. In detail, following the steps of the algorithm, we can give

the basic line of argument for exhaustiveness: If we start with Part A of the algorithm and if local repair fails, this

happens because the same local transition 𝑠𝑖1
𝑐,·−−→ 𝑠′

𝑖1
(involving only a single sequential process 𝑃𝑖1 ) should be executed

in different contexts with different modification factors (i.e. different rates), which is of course not possible in the

unmodified system. In order to solve this problem, some controlling context needs to be added. For this purpose, we

synchronise the process with all possible neighbouring processes (where selfloops are added at specific states in order

to partake in the existing transitions) in a subtree of a certain height, which leads to a set of equations (of the form of

Eq. 4) in Part D of the algorithm. We keep expanding the context until either a solution has been found or the root of

the system has been reached, which means that the algorithm has used the maximum potential. Alternatively, if we

start with Part B (because the Involved Set of the currently processed transition 𝑡 is already larger than one), we first

search for a solution in the “local” context, i.e. in the current Involved Set, which is a subtree of the system. First we try

to leave the model unchanged, which also leads to a system of equations. If it turns out that this system of equations is

inconsistent (thus not having a solution), we need to include more degrees of freedom into the equations. This is first

done within the current scope in Part C, by synchronising with as many processes as possible, albeit all from within

this same scope. Note that there is no danger of inserting too many (permissible) selfloops, since the more combinations

of selfloops exist, the more different rates are realisable. Therefore, our algorithm exhaustively includes all permissible

such combinations of selfloops and thus does not miss any opportunity. If Part C also fails, i.e. if the thus extended

system is also inconsistent, even more degrees of freedom can be added by expanding the current scope, leading us

again to part D of the algorithm. In total, the algorithm uses all possible degrees of freedom, since at every step it

involves all processes, except those whose involvement would cause damage (in the sense that spurious transitions

would occur). So, in that sense, the algorithm is “exhaustive”.
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Complexity:We now analyse the asymptotic worst-case execution time complexity of the rate lifting algorithm.

The analysis is not straightforward, since the algorithm’s control structure opens up many possibe execution paths

during which many subtasks have to be considered. The following notations are used: 𝑛 is the number of sequential

processes in 𝑆𝑦𝑠 . 𝑆 ⊆ 𝑆1 × · · · × 𝑆𝑛 is the overall (combined) set of reachable states of 𝑆𝑦𝑠 . 𝑆𝑚𝑎𝑥 is the set of states of

the largest sequential process in 𝑆𝑦𝑠 . 𝑇 is the set of (flat) transitions of 𝑆𝑦𝑠 , where |𝑇 | ≤ |𝑆 |2 |𝐴𝑐𝑡 |. 𝑇𝑎𝑐𝑡=𝑐 ⊆ 𝑇 is the set

of 𝑐-transitions. 𝑇𝑚𝑜𝑑 ⊆ 𝑇 is the set of transitions with modification factor ≠ 1.

The process tree is an unbalanced binary tree. For 𝑛 sequential processes, the tree has 𝑛 leaf nodes and 𝑛 − 1 non-leaf

nodes. Its depth is at most 𝑛 − 1. Traversal of the process tree takes 𝑂 (𝑛) time. All neigbourhoods of processes (all

𝑁𝑡𝑦𝑝𝑒 (𝑆𝑦𝑠, 𝑃, 𝑎), where 𝑡𝑦𝑝𝑒 ∈ {𝑐𝑎𝑛𝑛𝑜𝑡,𝑚𝑢𝑠𝑡,𝑚𝑎𝑦}) can be determined before running the lifting algorithm, but need to

be updated every time the synchronisation structure is changed (when some node is made 𝑐-synchronising). Calculating

the neighbourhoods of all processes (for a single action), each of which involves a (partial) process tree traversal,

takes 𝑂 (𝑛𝑛) = 𝑂 (𝑛2) time. All Moving Sets 𝑀𝑆 (𝑡) can be precalculated in time 𝑂 ( |𝑇 |𝑛) and will never change. All

Participating Sets 𝑃𝑆 (𝑡) should also be precalculated, but they may change: If some node 𝑋 is made 𝑐-synchronising,

then all 𝑐-transitions 𝑡 with 𝑃𝑆𝑜𝑟𝑖𝑔 (𝑡) ∩ 𝑋 ≠ ∅ need to have 𝑃𝑆 (𝑡) updated (where 𝑃𝑆𝑜𝑟𝑖𝑔 (𝑡) denotes the Participating
Set of 𝑡 before the update). Calculating 𝑃𝑆 (𝑡) for a single transition 𝑡 (with the procedure from Sec. 2.4) takes 𝑂 (𝑛2)
time. All Involved Sets 𝐼𝑆 (𝑡) can easily be precalculated, since they correspond to 𝑐-scopes in the process tree. During

Part D of the algorithm, the Involved Sets may change, but they can be updated in 𝑂 (1) time.

If the algorithm succeeds in Part A, the complexity is dominated by the calculation of the set 𝑇𝑐,𝑠𝑖
1
,𝑠′
𝑖
1

, which takes at

most 𝛼 := |𝑇𝑎𝑐𝑡=𝑐 | ≤ |𝑇 | steps.
Running Part B of the algorithm is dominated by running the RSLC algorithm for each transition in𝑇𝑐 and setting up

and solving the system of nonlinear equations. The RSLC algorithm will create at most 2𝑛 recursive calls, of which the

calls for the 𝑛 leaf nodes are the most expensive, since the set operations of line 7 (of RSLC) need to be executed, which

takes 𝑂 (𝑛). Since RSLC yields 𝑂 (2𝑛) combinations, the overal runtime of RSLC is 𝑂 (2𝑛𝑛 + 2
𝑛) = 𝑂 (2𝑛). Therefore, the

overall time for Part B is 𝑂 (𝛽) := 𝑂 ( |𝑇𝑐 |2𝑛), plus the time for solving the nonlinear system of equations. We do not

attempt to quantify the time for equation solving here, since this heavily depends on the algorithm and tool used.

The runtime for Part C is similar to that of Part B, but now the time for changing the synchronisation structure,

done by function TRYSYNC, has to be added. TRYSYNC is called 𝑂 (𝛾1) := 𝑂 (𝑛) times. During TRYSYNC, checking

for spurious transitions of type A takes 𝑂 (𝛾2) := 𝑂 ( |𝑆 |𝑛) steps. Running function COMB, which is similar to RSLC

(involving a process tree traversal, but now without the expensive set operations), produces |𝐶 | ≤ 2
𝑛
results, thus

taking 𝑂 (𝛾3) := 𝑂 (2𝑛) steps. Therefore 𝐶 𝑓 𝑒𝑎𝑠 ⊆ 𝐶 also has at most 𝑂 (𝛾4) := 𝑂 (2𝑛) elements. For each combination

𝐶𝑖 ∈ 𝐶 𝑓 𝑒𝑎𝑠
, there are 𝑂 (𝛾5) := 𝑂 ( |𝑇𝑐 | |𝑆𝑚𝑎𝑥 |𝑛) new selfloops to be checked for and possibly inserted. For each new

selfloop, checking for spurious transitions of type B takes 𝑂 (𝛾6) := 𝑂 (𝑛 |𝑆 |) steps (the process tree has to be traversed

and transitions in 𝑌2 found). So the overall complexity for Part C is (considering the control structure, i.e. loops)

𝑂 (𝛾) := 𝑂 (𝛾1 (𝛾2 + 𝛾3 + 𝛾4𝛾5𝛾6) + 𝛽) = · · · = 𝑂 (𝑛32𝑛 |𝑇𝑐 | |𝑆𝑚𝑎𝑥 | |𝑆 | + 𝛽) = 𝑂 (𝑛32𝑛 |𝑇𝑐 | |𝑆𝑚𝑎𝑥 | |𝑆 |) (remember that 𝛽 is the

complexity of Part B).

The runtime complexity of Part D is the same as for Part C, since at the beginning function TRYSYNC is called once

(for the new root of the 𝑐-scope), and then Parts B and possibly C are executed in that new context.

Summarising these partial results, the runtime of the rate lifting algorithm is the sum of the runtimes for Parts A to

D, which is dominated by Parts C and D. Since the outermost while-loop of the algorithm (lines 13 - 129) performs

at most |𝑇𝑚𝑜𝑑 | iterations, the overall runtime (excluding the time for solving the nonlinear system of equations) is

𝑂 (𝑛32𝑛 |𝑇𝑚𝑜𝑑 | |𝑇𝑚𝑎𝑥
𝑐 | |𝑆𝑚𝑎𝑥 | |𝑆 |), where |𝑇𝑚𝑎𝑥

𝑐 | = max{|𝑇𝑐 | : 𝑐 ∈ 𝐴𝑐𝑡}. It should be emphasised that this is the result of a
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pessimistic, worst-case analysis. In practice, the runtime of the core algorithm is moderate for small to medium-sized

models (see Sec. 6).

As clearly stated above, our complexity analysis so far deliberately excluded the time for solving the nonlinear

systems of equations. The time for equation solving may or may not dominate the overall runtime, depending on the

particular problem instance at hand (see Sec. 6). If one wanted to include the time for equation solving in the complexity

analysis, one would have to modify the expression for Part B to become 𝑂 (𝛽) := 𝑂 ( |𝑇𝑐 |2𝑛 + 𝑔(𝑛, |𝑇𝑐 |, . . . )), where 𝑔 is a

yet unknown function of the number of components 𝑛, the number of 𝑐-transitions in the current 𝑐-scope |𝑇𝑐 | and other
(numerical) parameters. This modification would carry over to𝑂 (𝛾) for Part C, which also depends on 𝛽 . To the authors’

knowledge, there are no generally valid results on the complexity of solving nonlinear systems of equations, although

many studies of such systems exist, e.g. [9, 18, 23, 25]. The system of equations constructed by our algorithm (see eq. 4)

has a special nonlinear form, called multilinear, because all unknowns appear as linear factors in product terms. For the

special case 𝑛 = 2, the paper [28] investigated efficient solutions of the associated bilinear system of equations. For the

general case 𝑛 > 2, however, a complexity analysis of the solving of the nonlinear system of equations is a difficult

problem which must be left for future research.

6 EXPERIMENTAL RESULTS

6.1 Cyclic Server Polling System

This section considers – as a first case study – the Cyclic Server Polling System from the PRISM CTMC benchmarks,

originally described in [12] as a GSPNs. It is a system where a single server polls 𝑁 stations and provides service for

them in cyclic order. The SPA representation of this system is:

𝑆𝑦𝑠 = 𝑆𝑒𝑟𝑣𝑒𝑟 | |Σ𝑠 (𝑆𝑡𝑎𝑡𝑖𝑜𝑛1 | | 𝑆𝑡𝑎𝑡𝑖𝑜𝑛2 | | . . . | | 𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑁 )

where Σ𝑠 = {𝑙𝑜𝑜𝑝𝑖𝑎, 𝑙𝑜𝑜𝑝𝑖𝑏 , 𝑠𝑒𝑟𝑣𝑒𝑖 | 𝑖 = 1 . . . 𝑁 } (actions with index 𝑖 synchronise between 𝑆𝑒𝑟𝑣𝑒𝑟 and 𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑖 ). A

detailed description of the model is available in [12] and the SPA-style source code can be found at [22]. Assume that for

each 𝑙𝑜𝑜𝑝1𝑎-transition 𝑡 in the combined flat model a modification factor 𝑓 (𝑡) ≠ 1 is given. From an application point

of view, this assignment of modification factors aims at controlling the speed at which 𝑆𝑡𝑎𝑡𝑖𝑜𝑛1 is polled, depending on

the global state of the system. Using our new lifting algorithm, we lift this model repair information to the components.

The modification factors 𝑓 are chosen in such a way that local repair (Part A) and also Part B of the algorithm will

not find a solution. In part C of the algorithm, it turns out that action 𝑙𝑜𝑜𝑝1𝑎 can be added to all | |¬𝑙𝑜𝑜𝑝1𝑎 -nodes of the
process tree, since it does not cause spurious transitions. Consequently, 𝑙𝑜𝑜𝑝1𝑎-selfloops are added to all the states of

the components 𝑆𝑡𝑎𝑡𝑖𝑜𝑛2, . . . , 𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑁 . This means that stations 2 to N, which were orignally not involved in action

𝑙𝑜𝑜𝑝1𝑎 , now also participate in that action. While this is not necessarily meaningful from an application point of view, it

enables control of the rate of that action in a context-dependent fashion, as desired. These changes lead to the modified

SPA model

𝑆𝑦𝑠′ = 𝑆𝑒𝑟𝑣𝑒𝑟 | |Σ𝑠 (𝑆𝑡𝑎𝑡𝑖𝑜𝑛1 | |𝑙𝑜𝑜𝑝1𝑎𝑆𝑡𝑎𝑡𝑖𝑜𝑛
′
2
| |𝑙𝑜𝑜𝑝1𝑎 . . . | |𝑙𝑜𝑜𝑝1𝑎𝑆𝑡𝑎𝑡𝑖𝑜𝑛

′
𝑁 )

where the stations with added selfloops are shown by 𝑆𝑡𝑎𝑡𝑖𝑜𝑛′
𝑖
. With the chosen modification factors, a solution

can be found in Part C of the algorithm. This example is a scalable model where the state space increases with the

number of stations 𝑁 . Note that the model contains cyclic symmetries, but it isn’t lumpable in the sense of Markovian

bisimulation (since the action names in different stations are differrent). The considered rate lifting problem, however,

is not symmetric, since in the original model only 𝑆𝑡𝑎𝑡𝑖𝑜𝑛1 and the 𝑆𝑒𝑟𝑣𝑒𝑟 participate in the 𝑙𝑜𝑜𝑝1𝑎-transitions.

2024-04-04 10:40. Page 19 of 1–30. Manuscript submitted to ACM



989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Amin Soltanieh and Markus Siegle

Table 1. Model statistics of the combined polling model for different numbers of stations

N

6 7 8 9 10 11

Total number of states |𝑆 | 576 1344 3072 6912 15360 33792

Total number of transitions |𝑇 | 2208 5824 14848 36864 89600 214016

Number of 𝑙𝑜𝑜𝑝1𝑎-transitions 32 64 128 256 512 1024
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Fig. 5. Runtime comparison for different number of stations

Table 1 shows the model statistics for different numbers of stations. The last row of the table (number of 𝑙𝑜𝑜𝑝1𝑎-

transitions) equals the number of equations, each of the 2
𝑁−1

equations containing the product of 𝑁 + 1 unknown

variables. The whole system of equations has (𝑁 − 1) ∗ 2 + 2 variables stemming from (𝑁 − 1) ∗ 2 newly added

𝑙𝑜𝑜𝑝1𝑎-selfloops plus two original 𝑙𝑜𝑜𝑝1𝑎-transitions (in the 𝑆𝑒𝑟𝑣𝑒𝑟 and 𝑆𝑡𝑎𝑡𝑖𝑜𝑛1). Figure 5 shows the required times to

run our rate lifting algorithm (implemented as a proof-of-concept prototype in Matlab [14]) and to solve the system of

equations (done by Wolfram Mathematica [15]) for different values of 𝑁 3
. For this case study, as 𝑁 grows, the time for

equation solving by far dominates the runtime of the lifting algorithm (by a factor of 2.61 for 𝑁 = 11). As shown in the

figure, the runtimes grow exponentially, which is not surprising since the number of equations increases exponentially.

6.2 Mobility-Aware RSVP

For this second case study, we consider a model of the Resource Reservation Protocol (RSVP) originally presented in

[30]. In the modelled scenario, mobile nodes initiate communication sessions for which network resources need to

be reserved. The network consists of the lower network channel (LNC) representing the mobile access network and

the upper network channel (UNC) representing the Internet core network. LNC and UNC are queue-like processes

with capacities𝑀 resp. 𝑁 , expressing resource limitations, where𝑀 ≥ 𝑁 . Blocking occurs when at the time of session

initiation the requested resources are not available. When a session is initiated, resources both in LNC and UNC are

requested, but when a handover occurs during a session, only resources in the LNC need to be requested since the

3
Executed on a standard laptop with Intel Core i7-8650U CPU@ 1.90GHz-2.11GHz
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Fig. 6. Process tree of the RSVP model (with three mobile nodes (MN))

Table 2. Model statistics of different configurations of the RSVP model

lifting for action ℎ𝑎𝑛𝑑𝑜𝑣𝑒𝑟 lifting for action 𝑒𝑥𝑝𝑖𝑟𝑒

model config. #states #trans #eqns algo (sec) solve (sec) #eqns algo (sec) solve (sec)

MN3M5N3 592 2576 78 26.22 0.44 467 52.68 3.13

MN3M7N5 842 3661 116 32.30 0.58 717 67.52 4.13

MN4M7N5 3984 21756 240 242.20 1.08 3359 1307.17 72.91

MN5M5N5 12468 79468 275 1872.37 1.19 9343 7344.45 274.76

MN5M7N5 18718 123566 425 4520.75 5.04 15593 40358.23 1298.25

already allocated resources in the UNC can be kept. The model contains one process for each mobile node (MN), for the

lower and upper network channel (LNC and UNC) and for the so-called channel monitor (CM). The latter is an auxiliary

process needed to ensure that resources no longer needed in LNC are properly released. Fig. 6 shows the process tree of

the SPA model for an instance with three MNs, where the synchronisation sets are also indicated.

To test our rate lifting algorithm, we considered five different configurations of the RSVP model. Configuration

MN𝑥M𝑦N𝑧 denotes a model with 𝑥 mobile nodes and queue sizes 𝑦 resp. 𝑧. The model statistics for the different

configurations are shown in Table 2, where the second / third column gives the number of overall states / flat transitions

of the model.

We start by setting rate modification factors for all ℎ𝑎𝑛𝑑𝑜𝑣𝑒𝑟 -transitions of the flat transition system. In the original

model, the Participating Set of each ℎ𝑎𝑛𝑑𝑜𝑣𝑒𝑟 transition consists of exactly one MN and the CM process. That means that

the algorithm starts with Part B. However, we set the modification factors in such a way that the system of equations in

Part B has no solution. Thus the algorithm proceeds with Part C, where it turns out that ℎ𝑎𝑛𝑑𝑜𝑣𝑒𝑟 can be added to the

synchronisation set of 𝑋4, resulting in artificial selfloops in processes UNC and LNC, leading to a system of equations

which does possess a solution. The relevant statistics are given in columns 4 to 6 of Table 2: Column 4 gives the number

of unique equations (since a ℎ𝑎𝑛𝑑𝑜𝑣𝑒𝑟 transition with given Participating Set may take place in different contexts,

sometimes possibly with the same modification factor, some of the constructed equations may be identical. In general,

for 𝑎 ∈ 𝐴𝑐𝑡 , if distinct 𝑎-transitions have the same Participating Set and the same modification factor, this results in

identical equations). Column 5 of the table is the execution time of the lifting algorithm, and column 6 is the Matlab

solution time for the system of equations
4
. Interestingly, here the overall time is dominated by the execution time of

the lifting algorithm and not by the numerical equation solving. The reason is that – contrary to the polling example in

Sec. 6.1 – we chose “benignant” modification factors which admit a solution without running into numerical difficulties.

4
Executed again on the same standard laptop with Intel Core i7-8650U CPU@ 1.90GHz-2.11GHz
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Fig. 7. Runtime for different configurations of the RSVP model

Fig. 8. Number of equations for action 𝑒𝑥𝑝𝑖𝑟𝑒 in the RSVP model

We proceed by setting modification factors for all 𝑒𝑥𝑝𝑖𝑟𝑒-transitions. Notice that the 𝑒𝑥𝑝𝑖𝑟𝑒-scope of the RSVP model

consists of the subtree rooted at 𝑋4. Only processes LNC and CM participate in the 𝑒𝑥𝑝𝑖𝑟𝑒 action (UNC does not).

The modification factors were chosen in such a way that Part B of the algorithm fails. In Part C, action 𝑒𝑥𝑝𝑖𝑟𝑒 can be

successfully added to node 𝑋5 of the process tree, thereby adding 𝑒𝑥𝑝𝑖𝑟𝑒 selfloops to UNC without causing spurious

transitions, but unfortunately still the system of equations does not possess any solution. The algorithm then moves on

to Part D, which succeeds by adding 𝑒𝑥𝑝𝑖𝑟𝑒 to the synchronisation set of 𝑋3 (i.e. the needed selfloops in MN1, MN2

and MN3 do not cause spurious transitions) and finding a solution for the resulting system of equations. The relevant

statistics are given in columns 7 to 9 of Table 2. Now the runtime of the lifting algorithm becomes really exorbitant, on

our modest hardware it is more than 11 hours for the largest model!

Fig. 7 visualises the runtimes of the algorithm (including numerical solution) for different RSVP model instances for

both the ℎ𝑎𝑛𝑑𝑜𝑣𝑒𝑟 (blue) and 𝑒𝑥𝑝𝑖𝑟𝑒 (orange) actions. Finally, Fig. 8 shows the number of equations constructed by the

lifting algorithm (in Part D) when handling the 𝑒𝑥𝑝𝑖𝑟𝑒-action, for values of 𝑀𝑁 and 𝑀 beyond those considered in

Table 2 (note that 𝑁 has no influence on the number of equations for action 𝑒𝑥𝑝𝑖𝑟𝑒). For MN = 9 and M = 9 we would

need to solve a nonlinear system with more than 350000 equations! This is, of course, beyond the scope of what can be

done on standard hardware.

7 CONCLUSION

In this paper, we have presented a novel algorithm for the lifting of rate information from the flat low-level transition

system of an SPA model to its components. The algorithm works for general SPA models with an arbitrary structure and
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any number of components. We have established some novel structural and behavioural concepts of Markovian SPA,

which were needed to formulate the lifting algorithm. A key idea of the algorithm is the augmentation of a given flat

transition’s context, by synchronising with additional components and inserting artificial selfloops, thereby enhancing

the control over a transition’s rate. While doing this, the algorithm takes great care to avoid negative side effects such

as spurious transitions. The algorithm ensures that the modifications of the SPA model do not change its qualitative

behaviour – only the transition rates are modified as desired. During the algorithm, systems of nonlinear equations

for the unknown component rates are constructed. For their solution, instead of developing our own methods, for the

moment we make use of available numerical solvers, since the details of nonlinear equation solving are beyond the

scope of the present paper. It would, however, be an interesting research problem to develop efficient numerical solution

schemes dedicated to this particular type of nonlinear equations. It is also important to mention that the solution of this

type of nonlinear system of equations, in case such a solution exists, is in general not unique. In case several different

solutions exist, the question arises which of them is optimal, but this is a non-trivial question since optimality criteria

are yet to be defined. Therefore, the search for an optimal solution is also an interesting topic for future research. Apart

from a thorough analysis of the algorithm regarding its correctness and complexity, the paper also presented two case

studies that illustrate the successful practical use of the algorithm. As future work, we are also planning to develop

improved implementation strategies for the algorithm, based on compact data structures. Another important point for

future work is to characterise a priori the set of problem instances for which a solution to the rate lifting problem exists.
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A RATE LIFTING ALGORITHM FOR AN SPA SYSTEMWITH 𝑛 SEQUENTIAL COMPONENTS

1: Algorithm RateLifting (𝑆𝑦𝑠,𝑇 ,𝑇𝑚𝑜𝑑 , 𝑓 𝑎𝑐𝑡𝑜𝑟 )
2: //𝑇 is the flat Markovian transition system of SPA system 𝑆𝑦𝑠 ,

3: // consisting of sequential processes 𝑃1, . . . , 𝑃𝑛 as leaves of a process tree with synchronisation sets 𝐴𝑖 .

4: // The algorithm lifts the repair information given in the form of rate modification factors 𝑓 𝑎𝑐𝑡𝑜𝑟 (𝑡 ) for
5: // transitions 𝑡 ∈ 𝑇𝑚𝑜𝑑 ⊆ 𝑇 to the high-level components of 𝑆𝑦𝑠 , if possible.

6: // The repaired system is returned as 𝑃 ′
1
, . . . , 𝑃 ′

𝑛 and possibly modified synchronisation sets 𝐴′
𝑖
.

7:

8: 𝑃 ′
1
:= 𝑃1, . . . , 𝑃

′
𝑛 := 𝑃𝑛 , ∀𝑖 : 𝐴′

𝑖
:= 𝐴𝑖 // initialisation

9:

10: while𝑇𝑚𝑜𝑑 ≠ ∅ do

11: choose 𝑡 := ( (𝑠1, . . . , 𝑠𝑛 )
𝑐,𝛾 · ˆ𝑓
−−−−→ (𝑠′

1
, . . . , 𝑠′𝑛 ) ) from𝑇𝑚𝑜𝑑

12: // 𝑡 is the transition processed during one iteration of the outer while-loop

13: 𝑓 𝑜𝑢𝑛𝑑 := 𝑓 𝑎𝑙𝑠𝑒

14: // indicates that no solution was found yet while processing the current 𝑡

15: determine 𝐼𝑆 (𝑡 ) := {𝑃𝑖1 , . . . , 𝑃𝑖𝑚 } // the Involved Set 𝐼𝑆 is also a 𝑐-scope

16:

17: if |𝐼𝑆 (𝑡 ) | = 1 then
18: // Algorithm Part A:
19: // try local repair in 𝑃𝑖1 by considering all “sibling” transitions

20: 𝑇𝑐,𝑠𝑖
1
,𝑠′
𝑖
1

:= {𝑡 ∈ 𝑇 | 𝑎𝑐𝑡𝑖𝑜𝑛 (𝑡 ) = 𝑐 ∧ 𝑠𝑜𝑢𝑟𝑐𝑒𝑖1 (𝑡 ) = 𝑠𝑖1 ∧ 𝑡𝑎𝑟𝑔𝑒𝑡𝑖1 (𝑡 ) = 𝑠′
𝑖1
}

21: if ∃𝑓𝑐𝑜𝑚 ∈ R : ∀𝑡 ∈ 𝑇𝑐,𝑠𝑖
1
,𝑠′
𝑖
1

: 𝑓 𝑎𝑐𝑡𝑜𝑟 (𝑡 ) = 𝑓𝑐𝑜𝑚 then
22: // there exists a common factor 𝑓𝑐𝑜𝑚 for all transitions in𝑇𝑐,𝑠𝑖

1
,𝑠′
𝑖
1

23: in 𝑃 ′
𝑖1

set 𝑠𝑖1

𝑐,𝛾𝑖
1
·𝑓𝑐𝑜𝑚

−−−−−−−−→ 𝑠′
𝑖1

(where 𝛾𝑖1 is the current rate in 𝑃 ′
𝑖1
)

24: 𝑇𝑚𝑜𝑑 := 𝑇𝑚𝑜𝑑 \𝑇𝑐,𝑠𝑖
1
,𝑠′
𝑖
1
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25: for each 𝑡 ∈ 𝑇𝑐,𝑠𝑖
1
,𝑠′
𝑖
1

do

26: 𝑓 𝑎𝑐𝑡𝑜𝑟 (𝑡 ) := 1

27: // the modification factor of the fixed transitions is changed to 1,

28: // which is important in case they are considered again

29: // when dealing with another 𝑐-transition from𝑇𝑚𝑜𝑑 later

30: end for
31: 𝑓 𝑜𝑢𝑛𝑑 = 𝑡𝑟𝑢𝑒

32: end if
33: if 𝑓 𝑜𝑢𝑛𝑑 = 𝑓 𝑎𝑙𝑠𝑒 then
34: // local repair was not successful

35: // therefore, since |𝐼𝑆 (𝑡 ) | = 1, the algorithm has to move up in the tree

36: 𝑐𝑢𝑟𝑟_𝑟𝑜𝑜𝑡 := 𝑃𝑖1

37: // 𝑐𝑢𝑟𝑟_𝑟𝑜𝑜𝑡 denotes the root of the subtree that is currently

38: // considered as the context for transition 𝑡

39: end if
40:

41: else
42: // Algorithm Part B:
43: // it holds that |𝐼𝑆 (𝑡 ) | > 1

44: 𝑇𝑐 := {𝑡 ∈ 𝑇 | 𝑎𝑐𝑡𝑖𝑜𝑛 (𝑡 ) = 𝑐 ∧ 𝐼𝑆 (𝑡 ) = 𝐼𝑆 (𝑡 ) }
45: // all 𝑐-transitions in current 𝑐-scope are considered together

46: 𝑟 := root of current 𝑐-scope // needed in lines 49 and 84

47: for each 𝑡 := ( (𝑠1, . . . , 𝑠𝑛 )
𝑐,𝛾 ·𝑓
−−−−→ (𝑠′

1
, . . . , 𝑠′𝑛 ) ) ∈ 𝑇𝑐 do

48: determine 𝑃𝑆 (𝑡 ) := {𝑃𝑝1 , . . . , 𝑃𝑝𝑘 } ⊆ 𝐼𝑆 (𝑡 )
49: find the set of relevant selfloop combinations rslc(𝑡 ) := RSLC(𝑡, 𝑟 )
50: // for rslc see Sec. 3.2 and Appendix B

51: create an equation

52:

∑︁
𝐶∈𝑟𝑠𝑙𝑐 (𝑡 )

∏
𝑃 ∈𝑀𝑆 (𝑡 )

𝑥
(𝑃 )
𝑠𝑃 𝑠

′
𝑃

∏
𝑄∈𝑃𝑆 (𝑡 )\𝑀𝑆 (𝑡 )

∧ ∃𝑃 ∈𝑀𝑆 (𝑡 ) :𝑄∈𝑁𝑚𝑢𝑠𝑡 (𝑆𝑦𝑠,𝑃,𝑐 )

𝑥
(𝑄 )
𝑠𝑄𝑠𝑄

∏
𝑅∈𝐶

𝑥
(𝑅)
𝑠𝑅𝑠𝑅

= 𝛾 · 𝑓

53: end for
54: solve system of equations, if successful set 𝑓 𝑜𝑢𝑛𝑑 := 𝑡𝑟𝑢𝑒

55: if 𝑓 𝑜𝑢𝑛𝑑 = 𝑡𝑟𝑢𝑒 then
56: use the found solution to set the rates in the sequential processes accordingly

57: 𝑇𝑚𝑜𝑑 := 𝑇𝑚𝑜𝑑 \𝑇𝑐
58: for each𝑇 ∈ 𝑇𝑐 do
59: 𝑓 𝑎𝑐𝑡𝑜𝑟 (𝑡 ) := 1

60: // needed in case same transition is considered again later

61: end for
62:

63: else
64: // Algorithm Part C:
65: // it still holds that 𝑓 𝑜𝑢𝑛𝑑 = 𝑓 𝑎𝑙𝑠𝑒

66: // now try to change the model:

67: if 𝑃𝑆 (𝑡 ) ≠ 𝐼𝑆 (𝑡 ) then
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68: // the condition 𝑃𝑆 (𝑡 ) ≠ 𝐼𝑆 (𝑡 ) means that there exist processes in the current 𝑐-scope which

69: // could possibly be added to 𝑃𝑆 (𝑡 )
70: // the algorithm tries to add 𝑐 to the sync. set of every internal node 𝑋

71: // of the form 𝑋 = 𝑋1 | |¬𝑐𝑋2, within the current 𝑐-scope,

72: // but this must not lead to sp. tr. outgoing from a reachable state.

73: // If 𝑐 can be added, then the necessary 𝑐-selfloops must also be added.

74: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 := 𝑓 𝑎𝑙𝑠𝑒

75: // variable 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 remembers if at least one of the following calls to TRYSYNC (line 77) returns true

76: for all nodes 𝑋 = 𝑋1 | |¬𝑐𝑋2 in current 𝑐-scope (in bottom-up order) do
77: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 := 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ∨ TRYSYNC (𝑋,𝑐 )
78: // TRYSYNC tries to add 𝑐 to the sync. set of node 𝑋 ,

79: // if possible it changes 𝑋 to | |𝑐 , adds necessary selfloops below 𝑋 and returns true

80: end for
81: if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 then
82: for each 𝑡 := ( (𝑠1, . . . , 𝑠𝑛 )

𝑐,𝛾 ·𝑓
−−−−→ (𝑠′

1
, . . . , 𝑠′𝑛 ) ) ∈ 𝑇𝑐 do

83: determine 𝑃𝑆 (𝑡 ) := {𝑃𝑝1 , . . . , 𝑃𝑝𝑘 } ⊆ 𝐼𝑆 (𝑡 )
84: find the set of relevant selfloop combinations rslc(𝑡 ) := 𝑅𝑆𝐿𝐶 (𝑡, 𝑟 )
85: // similar calculations as in the two previous lines

86: // have already been performed in lines 48 and 49, but now the

87: // model is changed, so 𝑃𝑆 (𝑡 ) will potentially be larger than before,

88: // and the sets in rslc(𝑡 ) will potentially be larger than before!

89: create an equation

90:

∑︁
𝐶∈𝑟𝑠𝑙𝑐 (𝑡 )

∏
𝑃 ∈𝑀𝑆 (𝑡 )

𝑥
(𝑃 )
𝑠𝑃 𝑠

′
𝑃

∏
𝑄∈𝑃𝑆 (𝑡 )\𝑀𝑆 (𝑡 )

∧ ∃𝑃 ∈𝑀𝑆 (𝑡 ) :𝑄∈𝑁𝑚𝑢𝑠𝑡 (𝑆𝑦𝑠,𝑃,𝑐 )

𝑥
(𝑄 )
𝑠𝑄𝑠𝑄

∏
𝑅∈𝐶

𝑥
(𝑅)
𝑠𝑅𝑠𝑅

= 𝛾 · 𝑓

91: end for
92: solve system of equations, if successful set 𝑓 𝑜𝑢𝑛𝑑 := 𝑡𝑟𝑢𝑒

93: if 𝑓 𝑜𝑢𝑛𝑑 = 𝑡𝑟𝑢𝑒 then
94: // changing the model led to a solution

95: use the found solution to set the rates in the sequential processes accordingly

96: 𝑇𝑚𝑜𝑑 := 𝑇𝑚𝑜𝑑 \𝑇𝑐
97: for each𝑇 ∈ 𝑇𝑐 do
98: 𝑓 𝑎𝑐𝑡𝑜𝑟 (𝑡 ) := 1

99: // needed in case same transition is considered again later

100: end for
101: else
102: // no solution found in current 𝑐-scope, even with added selfloops

103: // it still holds that 𝑓 𝑜𝑢𝑛𝑑 = 𝑓 𝑎𝑙𝑠𝑒

104: 𝑐𝑢𝑟𝑟_𝑟𝑜𝑜𝑡 := root of current 𝑐-scope

105: end if
106: end if
107: end if
108: end if
109: end if
110:

111: // Algorithm Part D:
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112: while 𝑓 𝑜𝑢𝑛𝑑 = 𝑓 𝑎𝑙𝑠𝑒 and 𝑐𝑢𝑟𝑟_𝑟𝑜𝑜𝑡 ≠ 𝑟𝑜𝑜𝑡 (𝑆𝑦𝑠 ) do
113: // move current root upwards and try to expand 𝑐-scope

114: 𝑐𝑢𝑟𝑟_𝑟𝑜𝑜𝑡 := 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑐𝑢𝑟𝑟_𝑟𝑜𝑜𝑡 )
115: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 := TRYSYNC(𝑐𝑢𝑟𝑟_𝑟𝑜𝑜𝑡 , 𝑐)

116: // TRYSYNC tries to add 𝑐 to the sync. set of node 𝑐𝑢𝑟𝑟_𝑟𝑜𝑜𝑡,

117: // and if possible changes 𝑐𝑢𝑟𝑟_𝑟𝑜𝑜𝑡 to | |𝑐 and adds the

118: // necessary selfloops below 𝑐𝑢𝑟𝑟_𝑟𝑜𝑜𝑡

119: if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 then
120: 𝐼𝑆𝑛𝑒𝑤 (𝑡 ) := all leaves of subtree rooted at 𝑐𝑢𝑟𝑟_𝑟𝑜𝑜𝑡 = {𝑃𝑖1 , . . . , 𝑃𝑖𝑚 }
121: // this𝑚 is now larger than in line 15,

122: // it gets larger in each iteration of this while-loop

123: 𝐼𝑆 (𝑡 ) := 𝐼𝑆𝑛𝑒𝑤 (𝑡 )
124: 𝑇𝑐 := {𝑡 ∈ 𝑇 | 𝑎𝑐𝑡𝑖𝑜𝑛 (𝑡 ) = 𝑐 ∧ 𝑃𝑆 (𝑡 ) ∩ 𝐼𝑆 (𝑡 ) ≠ ∅}
125: 𝑟 := 𝑐𝑢𝑟𝑟_𝑟𝑜𝑜𝑡 // root of current 𝑐-scope

126: now the same code as in lines 47–108

127: . . .

128: else
129: BREAK while-loop of lines 112–132 and move 𝑐𝑢𝑟𝑟_𝑟𝑜𝑜𝑡 up further

130: // it was not possible to add 𝑐 to the sync. set at 𝑐𝑢𝑟𝑟_𝑟𝑜𝑜𝑡

131: end if
132: end while
133: end while

B RSLC ALGORITHM (RELEVANT SELFLOOP COMBINATIONS)

Note: RSLC is called from the main rate lifting algorithm in lines 49 and 84.

1: Algorithm RSLC (𝑡, 𝑛)

2: // 𝑡 ∈ 𝑇 is a transition

3: // 𝑛 is a node of the process tree of 𝑆𝑦𝑠 , denoting the current position in the recursive descent

4: // The algorithm returns a set of sets of sequential processes

5: // (each representing a relevant selfloop combination contributing to 𝑡 )

6: if type(𝑛) = leaf then
7: if 𝑃𝑛 ∈ (𝑃𝑆 (𝑡) ∩ 𝑆𝑆 (𝑡)) \⋃𝑃∈𝑀𝑆 (𝑡 ) 𝑁𝑚𝑢𝑠𝑡 (𝑆𝑦𝑠, 𝑃, 𝑐) then
8: // 𝑃𝑛 denotes the process represented by leaf-node 𝑛

9: // 𝑃𝑛 ∈ 𝑃𝑆 (𝑡) ensures that 𝑃𝑛 has a selfloop at its current state 𝑠𝑜𝑢𝑟𝑐𝑒𝑃𝑛 (𝑡)
10: return {{𝑃𝑛}}
11: // a set containing a singleton set is returned

12: else
13: return {∅}
14: // the set containing the empty set is returned

15: end if
16: else if type(𝑛) = | |𝑐 then
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17: return {𝐶1 ∪𝐶2 | 𝐶1 ∈ 𝑅𝑆𝐿𝐶 (𝑡, lchild(𝑛)) ∧𝐶2 ∈ 𝑅𝑆𝐿𝐶 (𝑡, rchild(𝑛))}
18: // all combinations of left and right subtree

19: else
20: // it holds that type(𝑛) = | |¬𝑐
21: return {𝐶 | 𝐶 ∈ 𝑅𝑆𝐿𝐶 (𝑡, lchild(𝑛)) ∨𝐶 ∈ 𝑅𝑆𝐿𝐶 (𝑡, rchild(𝑛))}
22: // the (disjoint) union of left and right subtree

23: end if

C TRYSYNC FUNCTION

Note: TRYSYNC is called from the main algorithm in lines 77 and 115.

1: Function: TRYSYNC (𝑋, 𝑐) returns Boolean
2: // This function checks whether adding action 𝑐 to node 𝑋 of type | |¬𝑐
3: // is possible without creating spurious transitions.

4: // If possible, it changes 𝑋 to | |𝑐 and adds the necessary selfloops.

5: // The return value is true iff action 𝑐 could be successfully added.

6: if changing 𝑋 to | |𝑐 would cause sp. tr. of type A then
7: // checking for sp. tr. of type A can be done

8: // by ensuring that for all reachable states
−→𝑠 = (𝑠1, ..., 𝑠𝑛),

9: // transitions
−→𝑠 𝑋1

𝑐−−→ . . . and −→𝑠 𝑋2

𝑐−−→ . . . do not both exist,

10: // where 𝑋1 and 𝑋2 are the children of node 𝑋 .

11: return false // do nothing, since 𝑋 can’t be made 𝑐-synchronising

12: end if
13: compute 𝐶 := 𝐶𝑂𝑀𝐵(𝑋, 𝑐)
14: // 𝐶 contains all possible combinations of 𝑐-participants below 𝑋 , assuming 𝑋 was of type | |𝑐
15: 𝑇𝑋

𝑐 = {𝑡 ∈ 𝑇𝑐 | 𝑃𝑆 (𝑡) ∩ 𝑃𝑋 ≠ ∅}
16: // where 𝑃𝑋 denotes the set of all sequential processes contained in 𝑋 ,

17: // so 𝑇𝑋
𝑐 is the subset of 𝑐-transitions with some process from 𝑋 participating

18: // compute the set of feasible combinations 𝐶 𝑓 𝑒𝑎𝑠 ⊆ 𝐶:

19: 𝐶 𝑓 𝑒𝑎𝑠
:= {𝐶𝑖 ∈ 𝐶 | ∀𝑡 ∈ 𝑇𝑋

𝑐 :

20: (selfloops in all 𝑃𝑘 ∈ 𝐶𝑖 \ 𝑃𝑆 (𝑡) at state 𝑠𝑜𝑢𝑟𝑐𝑒𝑘 (𝑡) are present
21: or can be added without causing sp. tr. of type B)}
22: if 𝐶 𝑓 𝑒𝑎𝑠 = ∅ then
23: return false // do nothing, since 𝑋 can’t be made 𝑐-synchronising (because there doesn’t exist

24: // any feasible combination)

25: end if
26: // now we know that 𝑋 can be made 𝑐-synchronising!

27: change 𝑋 to type | |𝑐 // add action 𝑐 to the sync. set 𝐴𝑖 corresponding to 𝑋

28: // now permanently add the new selfloops:

29: for each 𝐶𝑖 ∈ 𝐶 𝑓 𝑒𝑎𝑠 do
30: for each 𝑡 ∈ 𝑇𝑋

𝑐 do
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31: // it suffices to look at projection 𝑡𝑋 :
−→𝑠𝑋

𝑐−−→ −→𝑠𝑋 ′

32: for each 𝑃𝑘 ∈ 𝐶𝑖 ∧ 𝑃𝑘 ∉ 𝑃𝑆 (𝑡) do
33: if selfloop in 𝑃𝑘 : 𝑠𝑘

𝑐−−→ 𝑠𝑘 does not exist then

34: add selfloop in 𝑃𝑘 : 𝑠𝑘

𝑐,𝑥
𝑃𝑘
𝑠𝑘 ,𝑠𝑘−−−−−−→ 𝑠𝑘

35: end if
36: end for
37: end for
38: end for
39: return true // 𝑋 has been changed to | |𝑐 and the new selfloops added

40: end function

Checking for Spurious Transitions of Type B: We now discuss the details of how it can be checked whether a

combination 𝐶𝑖 ∈ 𝐶 = 𝐶𝑂𝑀𝐵(𝑋, 𝑐) is feasible or not, i.e. the details of lines 19 - 21 of function TRYSYNC. We are in

the process of checking whether making node 𝑋 = 𝑋1 | |¬𝑐𝑋2 𝑐-synchronising (and adding some selfloops as needed by

combination𝐶𝑖 ) causes sp. tr. of type B or not. The following program segment performs this check:

1: assume (temporarily) that 𝑋 = 𝑋1 | |𝑐𝑋2 // i.e. assume that 𝑋 was 𝑐-synchronising

2: // compute the set of newly needed selfloops for combination 𝐶𝑖 :

3: 𝑆𝑒𝑙 𝑓 𝑙𝑜𝑜𝑝𝑠 (𝐶𝑖 ) := {(𝑃𝑘 , 𝑠𝑘 𝑗
) | ∃𝑡 ∈ 𝑇𝑋

𝑐 : 𝑃𝑘 ∈ 𝐶𝑖 \ 𝑃𝑆 (𝑡) ∧ 𝑠𝑘 𝑗
= 𝑠𝑜𝑢𝑟𝑐𝑒𝑃𝑘 (𝑡)

4: ∧ selfloop 𝑠𝑘 𝑗

𝑐−−→ 𝑠𝑘 𝑗
does not yet exist}

5: for all 𝑃𝑘 where any new selfloops are needed for 𝐶𝑖 do
6: // assume that 𝑃𝑘 is part of 𝑋1, otherwise symmetric procedure

7: let 𝑌 := 𝑌1 | |𝑐𝑌2 be the lowest 𝑐-synchronising node containing 𝑃𝑘
8: // assume that 𝑃𝑘 is part of 𝑌1, otherwise symmetric procedure

9: // initially, 𝑌 is either part of 𝑋1, or 𝑌 = 𝑋 (since 𝑋 is now 𝑐-synchronising)

10: // later (when moving 𝑌 upwards, see line 29), 𝑌 can be even above 𝑋

11: for all states 𝑠𝑘 𝑗
where a selfloop is needed and not yet present in 𝑃𝑘 do

12: temporarily add selfloop 𝑠𝑘 𝑗

𝑐−−→ 𝑠𝑘 𝑗

13: set 𝑍 := 𝑃𝑘 and
−→𝑧 := 𝑠𝑘 𝑗

14: // we use 𝑍 to denote a subsystem with a selfloop and
−→𝑧 its state

15: // initially, 𝑍 is equal to only 𝑃𝑘 , but when moving 𝑌 upwards (see line 29)

16: // 𝑍 will be a larger subsystem

17: if 𝑌 ≠ 𝑋 and ∃−→𝑠 reachable state such that
−→𝑠 𝑍 =

−→𝑧 and ∃−→𝑠 𝑌2

𝑐−−→ . . . then
18: // non-selfloop 𝑐-transition in

−→𝑠 𝑌2 would synchronise with new (atomic or combined) selfloop at
−→𝑧

19: // which means that a sp. tr. of type B exists, therefore 𝐶𝑖 is not feasible

20: remove all selfloops newly added while processing 𝑋

21: BREAK // because 𝐶𝑖 is not feasible

22: else if ∃−→𝑠 reachable state such that
−→𝑠 𝑍 =

−→𝑧 and ∃−→𝑠 𝑌2

𝑐−−→ −→𝑠 𝑌2 then
23: // selfloop 𝑐-transition in

−→𝑠 𝑌2 would synchronise with new (atomic or combined) selfloop at
−→𝑧 ,

24: // yielding a new combined selfloop
−→𝑠 𝑌

𝑐−−→ −→𝑠 𝑌

25: // having found such a new combined selfloop, it has to be ensured that it will not cause
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26: // a sp. tr. of type B by synchronising with another process higher up in the tree,

27: // therefore 𝑌 has to be moved upwards

28: move upwards // i.e. rerun the if-clause (lines 17 - 33) for 𝑍 := 𝑌 , −→𝑧 :=
−→𝑠 𝑌 and

29: // 𝑌 := next higher node 𝑌 of type | |𝑐 , if such a higher node 𝑌 exists

30: else
31: // no 𝑐-transition nor 𝑐-selfloop in

−→𝑠 𝑌2

32: // selfloop can be safely added to 𝑠𝑘 𝑗
without causing sp. tr. of type B

33: end if
34: end for
35: end for
36: // once both FOR-loops have terminated without BREAK, we know that combination 𝐶𝑖 is feasible

D COMB ALGORITHM

Note: COMB is called from TRYSYNC in line 13.

1: Algorithm COMB (𝑋, 𝑐)

2: // This algorithm returns all sequential component combinations under

3: // node 𝑋 wrt action 𝑐 . Every combination consists of some sequential

4: // components that may participate together in a 𝑐-transition.

5: // Like RSLC, this algorithm returns a set of sets of sequential processes.

6: if type(X)=leaf then
7: return {{𝑃𝑋 }}
8: // the seq. process

9: else if type(𝑋 )=| |𝑐 then
10: return
11: {𝐶1 ∪𝐶2 | 𝐶1 ∈ COMB(lchild(𝑋 ), 𝑐) ∧𝐶2 ∈ COMB(rchild(𝑋 ), 𝑐)}
12: else
13: //type(X)=| |¬𝑐
14: return
15: {𝐶 | 𝐶 ∈ COMB(lchild(𝑋 ), 𝑐) ∨𝐶 ∈ COMB(rchild(𝑋 ), 𝑐)}
16: end if
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