
Compositional Performance Modelling

with the TIPPtool

H. Hermanns,

1

U. Herzog,

U. Klehmet, V. Mertsiotakis, and M. Siegle

Lehrstuhl f�ur Informatik VII, Friedrich-Alexander Universit�at Erlangen-N�urnberg,

Martensstr. 3, 91058 Erlangen, Germany

Abstract

Stochastic Process Algebras have been proposed as compositional speci�cation for-

malisms for performance models. In this paper, we describe a tool which aims at re-

alising all bene�cial aspects of compositional performance modelling, the TIPPtool.

It incorporates methods for compositional speci�cation as well as solution, based

on state-of-the-art-techniques, and wrapped in a user-friendly graphical front end.

Apart from highlighting the general bene�ts of the tool, we also discuss some lessons

learned during development and application of the TIPPtool. A non-trivial model

of a real life communication system serves as a case study to illustrate bene�ts and

limitations.

Key words: stochastic process algebra, performance analysis, Markov chain,

bisimulation aggregation, tool support.

1 Introduction

Process algebras are an advanced concept for the design of distributed sys-

tems. From the beginning [40,50], their basic idea was to systematically con-

struct complex systems from small building blocks. Standard operators allow

highly modular and hierarchical speci�cation. An algebraic framework sup-

ports the comparison of di�erent system speci�cations, process veri�cation

and structured analysis. Classical process algebras such as CSP [41], CCS [51]

or LOTOS [9] describe the functional behaviour of systems, but no temporal

aspects.

1

Current address: Systems Validation Centre, Dept. of Computer Science, Univer-

sity of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.

Preprint submitted to Elsevier Preprint 10 June 1999

Starting from [34], we developed an integrated design methodology by em-

bedding stochastic features into process algebras, leading to the concept of

Stochastic Process Algebras (SPA). Since then, research on SPA has been a

�eld of growing activity, motivated by the desire to carry out performance

and dependability studies on the basis of an algebraic framework, exploiting

the bene�cial characteristics of process algebras for the purpose of stochas-

tic modelling. SPAs allow one to specify and investigate both functional and

temporal properties. The signi�cant advantage of such an integrated approach

is obvious: early consideration of all major design aspects, avoiding costly re-

design. Research on SPA has been presented in detail in several publications,

e.g. [22,37,7,54,28,16]. The community of SPA researchers is still small, how-

ever, several European research groups work intensively in this exciting area

and meet regularly at the successful series of Workshops on Process Algebras

and Performance Modelling (PAPM) [1].

This paper is about a modelling tool, the TIPPtool, which reects the state-

of-the-art of SPA research. Development of the tool started as early as 1992,

the original aim being a prototype tool for demonstrating the feasibility of our

ideas. Step by step, we added new features, allowing more general and more

e�cient speci�cation and analysis, as well as a user-friendly graphical front

end. Over the years, the tool has been extensively used in the TIPP project as

a testbed for the semantics of di�erent SPA languages and the corresponding

algorithms. Meanwhile, the tool has reached a relatively high degree of matu-

rity, supporting compositional modelling and analysis of complex distributed

systems.

The core of this tool is an SPA language where actions either happen imme-

diately, or are delayed in time, the delay satisfying a Markovian assumption

[28]. Beside some support for analysis of functional aspects, the tool o�ers al-

gorithms for the numerical analysis of the underlying stochastic process which,

under certain restrictions, turns out to be a Markov chain. Exact and approx-

imate evaluation techniques are provided for stationary as well as transient

analysis. The tool is capable of handling large state spaces, and it incorpo-

rates some very advanced features, such as the semi-automatic compositional

aggregation of complex models.

Among related work, the PEPAWorkbench, developed by Hillston et al. in Ed-

inburgh [19], is another tool for performance evaluation, where Markov chain

models are also speci�ed by means of a process algebra. The tool TwoTow-

ers [6], based on two existing tools (one for functional analysis and one for

performance analysis), also employs a stochastic process algebra as its speci-

�cation formalism.

The paper is organised as follows: In Sec. 2, we summarise the theoretical

background of stochastic process algebras. Sec. 3 gives an overview of the

2

components of the tool and their inter-operation. All aspects of model speci�-

cation are discussed in Sec. 4, and analysis algorithms are the subject of Sec. 5.

Sec. 6 briey discusses some implementation considerations and suggestions

for improvement. In Sec. 7 we demonstrate the use of the tool by means of a

non-trivial case study. Sec. 8 concludes the paper.

2 Foundations of Stochastic Process Algebras

2.1 Process algebras

Classical process algebras (e.g. CCS [51], CSP [41], LOTOS [9]) have been

designed as formal description techniques for concurrent systems. They are

well suited to describe reactive systems, such as operating systems, automation

systems, communication protocols, etc. Basically, a process algebra provides a

language for describing systems as a cooperation of smaller components, which

themselves belong to the language. However, there are some distinguishing

features, schematically visualised in Fig. 1.

The basic constructs from which all speci�cations are built are actions and

processes, where processes may perform actions. In Fig. 1, processes are repre-

sented as blocks of di�erent shape, and actions appear as labels (a, b, . . .) of

bidirectional arrows. The description formalism is compositional, which means

that it allows to build highly modular and hierarchical system descriptions us-

ing composition operators. These operators are provided by the language to

construct processes out of smaller processes. For instance, a parallel compo-

sition operator is used to express concurrent execution (of, say, action c) and

possible synchronisation of processes. Another important operator realises ab-

straction. Details of a speci�cation which are internal details at a certain level

of system description can be internalised by hiding them from the environment.

Several notions of equivalence make it possible to reason about the behaviour

of a system, e.g. to decide whether two systems are equivalent. Apart from a

formal means for veri�cation and validation purposes, equivalence-preserving

transformations can be pro�tably employed in order to reduce the complexity

of the system. This can also be performed in a compositional way, i.e. system

parts can be replaced by behaviourally equivalent but aggregated representa-

tions. A formal semantics and an algebraic framework ease the handling and

comparison of speci�cations.

Let us exemplify the basic constructs of a process algebraic speci�cation by

means of a simple queueing system. It consists of an arrival process Arrival, a

queue with �nite capacity, and a Server. First, we model an arrival process as

an in�nite sequence of incoming arrivals (arrive), each followed by an enqueue

3

equivalence

abstraction

compositionality

processes and actions
a c

b

c

d

a

a

a

b

b

c

d

d

d

b

Fig. 1. Basic principles of process algebras

action (enq). This is speci�ed using the pre�x operator `;'.

Arrival := arrive; enq; Arrival

The behaviour of a �nite queue can be described by a family of processes, one

for each value of the current queue population. Depending on the population,

the queue may permit to enqueue a job (enq), dequeue a job (deq) or both. The

latter possibility is described by a choice operator [] between two alternatives.

Queue

0

:= enq; Queue

1

Queue

i

:= enq; Queue

i+1

[] deq; Queue

i�1

1 � i < max

Queue

max

:= deq; Queue

max�1

Next, we need to de�ne a server process, as follows:

Server := deq; serve; Server

These separate processes can now be combined by the parallel composition

operator j[: : :]j in order to describe the whole queueing system. This operator

is parameterised with a list `: : :' of actions on which the partners are required

to synchronise:

System :=Arrival j[enq]j Queue

0

j[deq]j Server

A formal semantics associates each language expression with an unambiguous

4

interpretation represented in terms of a variant of the well known state transi-

tion diagrams. This labelled transition system (LTS) is obtained by structural

operational rules [53] which de�ne for each language expression a speci�c LTS

as the unique semantic model. Fig. 2 (top) shows the semantic model for our

example queueing system, under the assumption that the maximal population

of the queue is max = 3. There are 16 states, the initial state being indicated

by a double circle. A transition between two states is represented by a dashed

arrow and is labelled with an action which occurs when the system changes

from one state to another. Since we can assume that we are not interested in

enq

enq enq enq

enq enq

deq deq deq

deq deq deq

serve

arrive

serve serve serve

serve serve serve

arrive arrive arrive arrive

arrive arrive arrive

serve serve serve

serve arrive

arrive

arrivearrive

arriveserve

serve

hide enq; deq in : : : and weak bisimulation

Queue

0

Queue

1

Queue

2

Queue

3

Fig. 2. Semantic model, hiding and aggregation

the internal details of interaction between Arrival and Queue, respectively

Queue and Server, we may wish to only observe actions arrive and serve.

This requires abstraction from internal details, and is achieved by employing

the hiding operator:

hide enq; deq in System

As a result, actions enq and deq are now internal actions, i.e. they are not

5

visible from the environment. Actions hidden from the environment become

the distinguished internal action � . In other words, the semantic model of the

above expression is obtained by turning all enq or deq labels appearing in

Fig. 2 (top) into � .

Such � -actions can be eliminated from the semantic model using an equiva-

lence which is insensitive to internal details of a speci�cation, such as weak

bisimulation. Weak bisimulation is one of the central notions of equivalence in

the general context of process algebras [51]. Fig. 2 (bottom) shows an LTS,

which is weakly bisimilar to the one on top (where all enq- and deq-actions

have been replaced by � before applying weak bisimulation). It may be sur-

prising that the resulting LTS has 6 and not 4 states (we assumed max = 3).

This is due to the fact that the arrival of a customer and its enqueuing into the

queue are separate actions, so that one more arrival is possible if the queue is

already full. Likewise, dequeuing and serving are modelled as separate actions,

such that at the moment the queue becomes empty, the server is still serving

the last customer.

2.2 Stochastic Process Algebras

Parallel and distributed systems are usually fully designed and functionally

tested before any attempt is made to determine their quantitative charac-

teristics such as performance and dependability. As a consequence, costly

redesign of both hardware and software is often needed. In order to con-

tribute to the avoidance of such costs, the Stochastic Process Algebra (SPA)

modelling paradigm is aimed at the integration of qualitative-functional and

quantitative-temporal aspects in a single speci�cation and modelling approach

[22].

In order to achieve this integration, temporal information is attached to ac-

tions, in the form of continuous random variables, representing activity dura-

tions. Models enhanced in this way are well-suited to capture the functional

and temporal behaviour of a large range of applications which may be re-

ferred to as shared resource systems. These systems are characterised by ran-

domly varying temporal behaviour, possibly due to data dependent execution

times, tra�c dependent communication delays, or runtimes which are highly

dependent on unpredictable environmental conditions. Examples are commu-

nication networks and distributed systems, central server systems and parallel

machines, or production lines and workow systems.

The concept of stochastic process algebras follows the lines of classical process

algebras: The system behaviour is described by an abstract language from

which a LTS is generated, using structural operational rules [28]. The addi-

6

tional time information in the semantic model makes it possible to evaluate

di�erent system aspects:

� functional behaviour (e.g. liveness or deadlocks)

� temporal behaviour (e.g. throughput, waiting times, reliability)

� combined properties (e.g. probability of timeout, duration of certain event

sequences)

Let us give a stochastic process algebra speci�cation for the above queueing

system, by attaching distributions to actions. We assume that the arrival pro-

cess is a Poisson process with rate � and the service time is exponentially

distributed with rate �. We are not forced to associate a duration with ev-

ery action. Actions without durations happen as soon as possible, therefore

they are called immediate actions. In our example, enqueuing and dequeu-

ing is assumed to happen without any relevant delay, thus enq and deq are

immediate.

Arrival := (arrive; �); enq; Arrival

Server := deq; (serve; �); Server

The queue is speci�ed as before (it is only involved in enq and deq, therefore

its speci�cation does not have to be changed) and the composed system is

(also as above):

System :=Arrival j[enq]j Queue

0

j[deq]j Server

Fig. 3 depicts the labelled transition system associated with this model, again

assuming a maximal queue size of max = 3. Note that there are two kinds of

transitions between states: Timed transitions (drawn by solid lines) which are

associated with an exponential delay, and immediate transitions which happen

as soon as the respective action is enabled.

States without outgoing immediate transition are shown emphasised in the

�gure. Under the assumption, that enq and deq happen without any delay,

the emphasised states correspond to states of a continuous time Markov chain

(CTMC). This chain is shown at the bottom of the �gure. It is isomorphic

to an LTS obtained by applying the notion of weak Markovian bisimulation,

after hiding enq and deq. Weak Markovian bisimulation is an adaption of weak

bisimulation to the setting of timed and immediate actions [27]. Abstraction

from the two immediate actions enq and deq turns out to be an essential

prerequisite to unambiguously determine the Markov chain underlying this

speci�cation. If, say, enq is hidden, we can indeed be sure that our assumption

that enq happens without any delay is justi�ed. Otherwise, it may be the case

that System is used as a component in further composition contexts, which

7

�

� � �

� �

��

�

�

arrive; �

arrive; �

serve; �

arrive; �

arrive; �

serve; �

arrive; �

arrive; �

serve; �

arrive; �

arrive; �

serve; �

serve; � serve; � serve; �serve; �

enq

enq enq enq

enq enq

deq deq deq

deq deq deq

Queue

0

Queue

1

Queue

2

Queue

3

Fig. 3. Top: The labelled transition system for the example queueing system. Bot-

tom: The corresponding CTMC

require synchronisation on action enq. In this case, the a Markov chain depends

on additional timing constraints imposed on enq. Therefore it is not possible

to remove enq, as long as further synchronisation on enq is still possible.

2

This particularity highlights an important di�erence in the semantics of imme-

diate actions compared to the semantics of immediate transitions in GSPN [3].

In contrast to the priority levels de�ned in GSPN, immediate actions do not

always have priority over timed actions. Under the notion of weak Markovian

bisimulation only internal immediate actions preempt timed actions. Such a

distinction is necessary to ensure that equivalent components remain equiva-

lent in the context of arbitrary further compositions, see below (and [28] for

an exhaustive discussion).

2

Indeed, abstraction rules out any further synchronisation, since � is not allowed

to appear in the list `: : :' of synchronising actions of a parallel composition operator

j[: : :]j.

8

2.3 Bisimulation and Compositional analysis

As illustrated in the running example, the notion of bisimulation is of high

importance. Bisimulation manifests itself in the following way: Two states of a

process are bisimilar if they have the same possibilities to interact (with a third

party) and reach pairwise bisimilar states after any of these interactions [51].

This de�nition only accounts for immediate actions. On the level of Markov

chains, a corresponding de�nition is provided by the notion of lumpability.

Two states of a Markov chain are lumpable if they have the same cumulative

rate of reaching pairwise lumpable states [45].Markovian bisimulation reects

lumpability and bisimulation on timed transitions, by imposing constraints on

actions and rates, see [31] or [12,37] for details. Weak Markovian bisimulation

additionally allows abstraction from internal immediate actions, in analogy to

ordinary weak bisimulation [32].

Such equivalences are de�ned in terms of states and transitions, i.e. on the level

of the LTS. In order to get insight into their particularities, it is highly valuable

to characterise their distinguishing power on the level of the language by means

of equational laws. Some important laws for weak Markovian bisimulation are

given below [30]:

(a; �); � ; P =(a; �); P (1)

� ; P [] (a; �); Q= � ; P (2)

(a; �); P [] (a; �); P =(a; �+ �); P (3)

They reect the following characteristics of weak Markovian bisimulation. Ac-

cording to law (1), an immediate internal action following a timed action has

no e�ect and can therefore be eliminated. Law (2) states that the internal im-

mediate action � has priority over a Markovian timed action, since the former

will happen without any delay. Recall that this priority only holds for internal

immediate actions. Law (3) says that the rate of two timed transitions (with

the same action) can be cumulated. This law reects lumpability, and is also

valid for (non-weak) Markovian bisimulation.

In the presence of composition operators, such as hiding and parallel composi-

tion, it is highly desirable that equivalences are substitutive. Intuitively, substi-

tutivity allows to replace components by equivalent ones within a large speci-

�cation, without changing the overall behaviour. Substitutive equivalences are

also called congruences. Indeed, Markovian and weak Markovian bisimulation

are congruences, except for the choice operator where weak bisimulations gen-

erally require a slight re�nement [30]. Practically important, such equivalences

allow compositional aggregation techniques, where the size of a component's

state space may be reduced, without a�ecting any signi�cant property of the

9

whole model. Compositional aggregation has successfully been applied to a

variety of systems, see e.g. [15] for an impressive industrial case study.

Let us return to our queueing example in order to illustrate compositional

aggregation. We will now model a queueing system with one Poisson arrival

process, two queues and two servers. We can build this system from the same

components, i.e. processes Arrival, Queue and Server are de�ned as above.

The system is now:

System := Arrival j[enq]j ((Queue

0

j[deq]j Server) jjj

(Queue

0

j[deq]j Server))

If the queue sizes are given bymax = 3, the model has 128 states and 384 tran-

sitions. By hiding actions enq and deq and applying weak Markovian bisimula-

tion to the complete system, the state space can be aggregated to 22 states and

48 transitions. However, aggregation can also be performed in a compositional

fashion such that the 128 state system never has to be generated explicitly:

The subsystem consisting of one queue-server pair has 8 states, which can be

aggregated to 5 states. Combining both (aggregated) queue-server pairs, we

obtain 25 states which can be aggregated to 15 states (this aggregation step

mainly exploits symmetry of the model). If this aggregated system is combined

with the arrival process, we get 30 states which can again be aggregated to

22 states. This concept of compositional aggregation is illustrated in Fig. 4,

where the size of the state space and the number of transitions are given for

each aggregation step.

8 5
13 8

8 5
13 8

2 2
2 2Arrival

6

2

6
4
6

2
2 2

4 4
6

2 2
2

4

2

Queue

Server

Queue

Server

15
80 40
25

22
56 48
30

before / after aggregation
states
transitions

hide deq

hide deq

hide enq

Fig. 4. Compositional aggregation of the example queueing system

It is interesting to observe that this system exhibits non-deterministic be-

haviour: After the completion of a Markovian timed action arrive, it is left

unspeci�ed which of the two queues synchronises with the arrival process on

immediate action enq (provided, of course, neither queue is full, in which case

10

the behaviour is deterministic). As a consequence, the Markov chain under-

lying this speci�cation is formally not completely speci�ed. One may assume

that both alternatives occur with the same probability. Alternatively, one may

explicitly add information (such as a scheduling strategy) in order to resolve

non-determinism. In Sec. 4, we will follow the latter path.

The reduction obtained by compositional application of weak Markovian bisim-

ulation relies on two phenomena.

(1) Since the equivalence notion incorporates the idea of lumpability, symme-

tries within the speci�cation can be exploited, as in the above example,

where the two queue-server pairs are replicas of each other. (Note how-

ever, that in general the lumping e�ect of (weak and strong) Markovian

bisimulation goes beyond simple symmetry exploitation [17,26].)

(2) Abstraction of sequences of internal immediate actions can be exploited

in a componentwise fashion. Immediate transitions contribute to the state

space only to the extent in which they are required for further composi-

tion. Therefore it is possible to abstract from internal immediate actions

(over which synchronisation is not allowed). This e�ect is also present

in (the �rst and the �nal step of) the aggregation example depicted in

Fig. 4.

3 Tool overview

The TIPPtool consists of several components. It includes a parser which checks

speci�cations for syntactic correctness. The language accepted by the parser

is a superset of Basic LOTOS [9], and will be explained in detail in Sec. 4.

If a speci�cation is syntactically correct, the tool applies the structural op-

erational rules automatically and generates the underlying semantic model

and its corresponding Markov chain. It provides several numerical algorithms

for the solution of the Markov chain and the computation of measures. Algo-

rithms are provided to aggregate the LTS according to di�erent bisimulation

equivalences. The interaction among di�erent components of the tool is shown

in Fig. 5.

Speci�cations can be created with an editor which is provided by the tool

(Edit component). The Generate/Aggregate component is responsible for the

generation of the semantic model and for the aggregation of the LTS accord-

ing to a bisimulation equivalence. The user may currently choose between 4

bisimulation equivalences.

Via the Options, the user can specify various measures to be calculated, such

as the probability of the system being in a certain subset of states, or the

11

Analyse

Experiment

Measures

Options

Generate

Edit

Specification

Export

State list

Transition list

TOPOPEPPALDEBARAN

TIPPtool

PXGRAPH

Aggregate

GUI

Fig. 5. Structure of the tool

throughput (i.e. the mean frequency of occurrence) of some action. An exper-

iment description contains information about activity rates which may vary,

i.e. which are represented by a textual string to be replaced during analysis

by a concrete value. A series of experiments can be carried out automatically

in an e�cient manner, generating numerical results for di�erent values of a

certain model parameter, while the state space only needs to be generated

once.

Models can be analysed with the Analyze module. It provides several numerical

solution methods for the steady state analysis as well as for the transient

analysis of Markov chains. If an experiment series has been carried out, the

results are presented graphically with the tool pxgraph from UC Berkeley.

The Export module of the tool provides interfaces to three other tools, pepp

[25], topo [46], and aldebaran [18]. The former interface is based on a

special semantics for SPAs which generates stochastic task graphs [35,47],

for which the tool pepp o�ers a wide range of both exact and approximate

analysis algorithms, some of which work even for general distributions. The

second interface provides support for the translation of SPA speci�cations into

a format suitable for the LOTOS tool topo. Among other functionalities,

this tool is capable of building C-programs from LOTOS speci�cations. The

third interface can be used to exploit the powerful bisimulation equivalence

algorithms of the tool aldebaran. Here, the interface is at the level of the

state space.

12

4 Model speci�cation

In this section, we explain the details of the speci�cation language supported

by the TIPPtool. In particular, we highlight how parametric processes and

inter-process communication can be used to model complex dependences con-

veniently. The speci�cation language of the TIPPtool is closely related to

LOTOS [42], the ISO standardised speci�cation language. To reect the pass-

ing of time in a speci�cation, randomly varying delays may be attached to

actions. At the moment, for reasons of analytical tractability, only exponen-

tial distributions are supported. Thus, our language can be seen as a means

for the compositional high-level description of a CTMC.

4.1 Basic operators

The available operators are listed in Table 1; the upper half has already been

used in Sec. 2, namely (timed and immediate) action pre�x, choice, hiding and

parallel composition (with synchronisation). Note that the internal action � is

denoted tau. If no synchronisation between two processes is required, the pure

interleaving operator ||| models independent parallelism. Synchronisation is

possible both between immediate or between timed actions. Synchronising a

timed with an immediate action is not allowed. When synchronising on timed

actions, we de�ne the resulting rate to be the product of the two partner rates.

This de�nition preserves compositionality [31,28].

The intuition of the remaining operators is as follows: stop represents an

inactive process, i.e. a process which cannot perform any action. exit behaves

like stop after issuing a distinguished signal � indicating that the process has

successfully terminated. This signal is used in combination with the enabling

operator >> to model sequential execution of two processes. Disruption with

[> is useful to model the interruption of one process by another. As soon as Q

executes any action, P is preempted and control is handed over to Q. There

is one exception to this general rule: In order to allow the passing of time

until preemption takes place, internal, timed actions of Q do not preempt P .

Process instantiations P [a

1

; : : : ; a

n

] resemble the invocation of procedures in

procedural programming languages such as pascal. We will see examples in

the sequel.

4.2 Value passing and inter-process communication

The concept of process instantiation makes it possible to parameterise pro-

cesses over action names. In addition, it is often convenient to parameterise a

13

Name Syntax

timed action pre�x { observable (a; r); P

{ internal (tau; r); P

immediate action pre�x { observable a; P

{ internal tau; P

choice P [] Q

parallel composition { with synchronisation P |[a

1

; : : : ; a

n

]| Q

{ pure interleaving P ||| Q

hiding hide a

1

; : : : ; a

n

in P

inaction stop

successful termination exit

enabling P >> Q

disruption P [> Q

process instantiation P [a

1

; : : : ; a

n

]

Table 1

Basic syntax of the TIPPtool language. P and Q are behaviour expressions,

a; a

1

; : : : ; a

n

are action names.

speci�cation with some data values, such as a rate, or the length of a queue.

Indeed, the above speci�cation of a queue can be seen as a simple example for

a data dependent speci�cation, since the parameter i governs the synchroni-

sation capabilities of Queue

i

.

We have incorporated the possibility to describe data dependencies explic-

itly in the TIPPtool. In addition, data can also be attached as parameters to

actions, and therefore be exchanged between processes, using the concept of

inter-process communication [9]. This is highly bene�cial, in order to conve-

niently describe complex dependencies.

As a prerequisite for inter-process communication and data parametrisation,

it is necessary to support at least basic data types. In the current version of

the TIPPtool, the type integer may be used for inter-process communication,

and both integer and (positive) real for process parametrisation. In order to be

used for inter-process communication, data values have to be declared. A value

declaration has the form !value and is usually attached to an action, as in

a!2;stop.valuemay be a speci�c value, a variable or an arithmetic expression.

Variable declarations are the counterpart of value declarations. They have the

form ?variable:type where variable is the name of the variable. An example

is a?x:int;P .

14

These basic ingredients can be combined to form three di�erent types of inter-

process communication supported by the TIPPtool.

� value passing: If value declaration and variable declaration are combined

in a synchronisation, the value is transmitted from one process to the other

and the variable is instantiated by the transmitted value. An example is:

a!2 ; stop |[a]| a?x:int ; b!(x+1) ; ...

� value matching: If synchronisation on actions is speci�ed where both

actions involve value declarations, this synchronisation is only possible if

the values turn out to be equal, as in the example given below.

a!2 ; stop |[a]| a!(1+1) ; ...

� value generation: If several actions are synchronised, each with a variable

declaration of the same type, a synchronisation with another process which

o�ers a value of the required type yields a form of multicast communication.

a!2 ; stop |[a]| a?x:int ; P |[a]| a?y:int ; ...

With the inclusion of values, further extensions to the basic syntax are conve-

nient. When the enabling operator is used, it is sometimes desirable to receive

a value from the exiting process, as for instance in a?x:int ; exit(x) >>

accept v:int in P . Furthermore, it is convenient to describe behaviours

which depend on conditions. For instance, the queue with three places can be

described as follows.

Queue(i) := [i<3] -> (enq; Queue(i+1)) []

[i>0] -> (deq; Queue(i-1))

The operators currently supported for inter-process communication and para-

metric processes are summarised in Table 2. Note that inter-process commu-

nication is currently only implemented for immediate actions.

Name Syntax

value declarations (send) a!r

variable declarations (receive) a?x:int

return values exit(n)

accept values accept x:int in P

conditional constructs [bool-expr] -> P

parametric processes P [a

1

; : : : ; a

n

](r

1

; : : : ; r

m

)

Table 2

Language constructs for inter-process communication and data parametrisation.

bool-expr is a Boolean expression, possibly containing '<', '=', and '>'. Parameters

r; r

1

; : : : ; r

m

can be instantiated by arbitrary positive real numbers, integers or by

arithmetic expressions of such numbers.

15

4.3 The queueing example revisited

In order to illustrate the power of these language elements, we return to our

running example of a queueing system. We modify the model in order to

represent the join-shortest-queue (JSQ) service strategy. The idea is to insert

a new process, Scheduler, between arrival and queue, whose task it is to

insert an arriving job into the shortest queue, i.e. the queue with smallest

current population. For this purpose, Scheduler scans all queues in order

to determine the shortest queue, whenever an arrival has occurred. Process

Server is de�ned as before. The arrival and queue processes, on the other

hand, do not communicate directly via action enq any more, but via the

Scheduler. Therefore we simplify the arrival process as follows (`process'

and `endproc' are keywords enclosing a process speci�cation):

process Arrival := (arrive, lambda); Arrival endproc

i.e. Arrival and Scheduler now synchronise on the timed action arrive. The

top-level speci�cation is as follows:

(Arrival |[arrive]| Scheduler(2,1,1,100,100))

|[ask,repl,enq]|

((Queue(1,0) |[deq]| Server) ||| (Queue(2,0) |[deq]| Server))

The Scheduler is a parametric process, which can be used for an arbitrary

number noq of queues. After an arrival (action arrive with the \passive" rate

1), the scheduler polls all noq queues in order to identify the queue with the

smallest population (actions ask and repl). Each queue sends as a reply its

current population. After polling, Scheduler has identi�ed the shortest queue.

It then enqueues the job into that queue (action enq). Parameters c, b, nc and

nb are needed to store the current queue, the queue with (currently) smallest

population, the current population and the (currently) smallest population. In

the example, nc and nb are (re-)initialised with the value 100, a value larger

than any real queue population.

process Scheduler(noq,c,b,nc,nb) :=

(arrive, 1); AskQueue(noq,c,b,nc,nb)

where

process AskQueue(noq,c,b,nc,nb) :=

ask!c; repl?x:int; Decide(noq,c,b,x,nb)

endproc

process Decide(noq,c,b,nc,nb) :=

[c<noq and nc<nb]

-> AskQueue(noq,c+1,c,nc,nc) []

[c<noq and (nc>nb or nc=nb)]

-> AskQueue(noq,c+1,b,nc,nb) []

16

[c=noq and nc<nb]

-> (enq!c; Scheduler(noq,1,1,100,100)) []

[c=noq and (nc>nb or nc=nb)]

-> (enq!b; Scheduler(noq,1,1,100,100))

endproc

endproc

The Queue process has to be modi�ed as well: It now has a parameter s which

denotes the identity of the queue. In addition, it can now perform actions

ask and repl in order to supply information on the current queue size to the

scheduler. Note how value matching is used with actions ask and enq, and

value passing is used with action repl.

process Queue(s,i) :=

[i<3] -> enq!s; Queue(s,i+1) []

[i>0] -> deq; Queue(s,i-1)

ask!s; repl!i; Queue(s,i) []

endproc

5 Analysing a speci�cation

The semantic model serves as a basis for functional analysis and performance

analysis. We will informally explain how the semantic model is constructed by

the TIPPtool and how it is used later on. Details can be found in [28].

5.1 Generating and analysing the semantic model

The formal semantics of SPA provides an unambiguous description of how to

construct the semantic model in a mechanised way. The structural operational

rules can be implemented in a straight-forward fashion. One such rule, for

example, is

if P

a

➤
P

0

then P [] Q

a

➤
P

0

i.e. if the process P is able to perform the action a and switch to P

0

, then the

process P [] Q can do the same action, leading to P

0

, thus preempting Q. Of

course, a symmetric rule would allow Q to preempt P . The semantic model

contains all possible states to which the speci�ed system may evolve.

The semantic model is a directed graph whose nodes denote states and whose

arcs represent transitions between states. According to the semantics, states

17

are labelled by terms of the SPA language (in encoded notation), while the arcs

contain an action name and optionally a transition rate and some auxiliary

labels. The state space is either saved directly to �les (while a hash-table of all

states is maintained in memory) or it is temporarily stored in main memory as

an adjacency list (a common data structure for graphs), depending on whether

equivalence checking algorithms are enabled or not (see Section 5.3).

Once the semantic model is generated, it can be used for some elementary

functional analysis. Our tool provides the capabilities of checking for deadlocks

and tracing through the states, i.e. showing a path of actions leading from

the initial state to a user-speci�ed target state. Apart from that, equivalence

checking algorithms can be used for deciding equivalence of two models. In this

way it can be checked, for instance, whether a model meets the requirements

of a high-level speci�cation.

5.2 Performance evaluation

Transforming the semantic model into a CTMC and then analysing it by

means of numerical solution algorithms for Markov chains, we can obtain

performance and reliability measures for a given speci�cation. For didactic

reasons, let us �rst assume that the model contains timed actions only, and

later show how to extend the procedure for immediate actions.

Models without immediate actions

For any SPA model with timed actions only and �nite state space, the un-

derlying CTMC can be derived directly by associating a Markov chain state

with each node of the labelled transition system [21,37]. The transitions of the

CTMC are given by the union of all the arcs joining the LTS nodes, and the

transition rate is the sum of the individual rates (see Fig. 6). This is justi�ed

by the properties of exponential distribution, in particular the fact that the

minimum of two exponentially distributed random variables with rates �

1

; �

2

is again exponentially distributed with rate �

1

+ �

2

. Transitions leading back

to the same node (loops) can be neglected, since they would have no e�ect

on the balance equations of the CTMC. The action names are only taken into

account later on, when high-level performance measures are to be computed.

In the TIPPtool, standard numerical solution algorithms [62] (Gau�-Seidel,

Power method, LU factorisation, re�ned randomisation) are employed for

steady state analysis as well as transient analysis of the CTMC. Apart from

these, prototypical implementations of e�cient approximation methods are

realised (see Section 5.4).

18

a; � �

�

2�

e; �
c; �

d; �

b; �

P

1

P

2

P

3

P

4

1

2

3

4

Fig. 6. Deriving a Markov chain

3

4

�=2

�=2

3

4

�

2

1

1

Fig. 7. Eliminating immediate transitions

Models with both timed and immediate actions

As discussed in Sec. 2, immediate actions happen as soon as they become

enabled. In order to ensure that this enabling cannot be delayed by further

composition, abstraction of immediate actions is mandatory. In the stochastic

process, these immediate actions correspond to immediate transitions. The

presence of immediate transitions leads to two kinds of states in this process:

States with outgoing immediate transitions and states without such transi-

tions. We adopt the usual terminology for the former kind of states and refer

to them as vanishing states. All other states are called tangible states [3]. If

several immediate transitions emanate from a single state, the decision among

these alternatives is non-deterministic, and it may depend on which action

is o�ered by the environment. If we consider the system as a closed system

(which is made explicit by hiding all immediate actions) the decision among

several (now internalised) immediate transitions still has to be taken. One

possible solution is to weigh all alternatives with equal probabilities. Under

this assumption of equi-probability, the underlying stochastic process is not

a Markov chain, but a special type of Semi-Markov process which has both

Markovian and immediate transitions. Although the solution of such Semi-

Markov processes represents no conceptual problem, the solution e�ort is usu-

ally reduced by eliminating vanishing states, thus yielding a CTMC with fewer

states.

Several methods exist for eliminating immediate transitions. The method used

in most tools is to incorporate transitions into the CTMC which are due to the

traversal of some vanishing states between two tangible states. This is done

until all vanishing states are bypassed [3]. The rate of these arcs is computed

by multiplying the rate of the Markovian transitions leaving the source tan-

gible state with the probability of reaching the target tangible state (see Fig.

7). This is quite a general and e�cient technique. However, [56] showed that

it should be applied with care in the SPA context, essentially because a non-

deterministic decision is conceptually di�erent from an equi-probable decision.

19

Therefore, in order to remove immediate transitions, it is more appropriate

for SPAs to eliminate them on the basis of bisimulation equivalences, as it

has been done in Fig. 3. If non-deterministic alternatives only lead (via some

internal, immediate steps) into equivalent states, equivalence-preserving trans-

formations allow to remove this non-determinism, see Sec. 5.3. The TIPPtool

proposes to follow this way, whenever a critical non-deterministic decision is

encountered, by issuing a warning. Depending on the user's advice, it is able

to proceed with performance analysis, by applying the usual elimination of

vanishing states.

5.3 Compositional aggregation

Equivalence relations such as (weak) Markovian bisimulation, introduced in

Sec. 2.3, are bene�cial both for eliminating immediate transitions, and for

alleviating the state space explosion problem bymeans of lumping. Both e�ects

can be achieved by means of the same strategy. For a given speci�cation, say

System, the key idea is to compute a speci�cation, System

0

, which is minimal

(with respect to the number of states) among all those speci�cations which

are equivalent to System. Performance analysis can then be based on the

minimised speci�cation. In principle, it is possible to produce System

0

by

term rewriting on the level of the syntax, using equational laws, see e.g. [27].

A di�erent approach works on the level of the transition system, factorising the

whole state space into equivalence classes of states. A minimal representation

is obtained afterwards, representing each class by a single state.

The general strategy for factorising the state space is known as partition re-

�nement. A partition is a representation of a set as a disjoint union of subsets.

The bisimulation algorithm should obviously compute a partition of the state

space, such that the subsets correspond to the bisimulation equivalence classes.

This is achieved by a successive re�nement of an initial partition which con-

sists of a single subset containing all states. The partition becomes �ner and

�ner until no further re�nement is needed, or, in technical terms, a �xed-point

is reached. This �xed-point is the desired result.

This general strategy can be realised by means of e�cient algorithms [43,52].

Therefore, our bisimulation algorithm prototypes implemented in the TIPPtool

follow the partition re�nement approach [33]. For speci�cations which do not

contain timed transitions, we implemented Kanelakis and Smolka's algorithm

to compute strong and weak bisimulation. For the converse case (only timed

transitions), we implemented an algorithm which is due to Baier [5] for fac-

torising speci�cations with respect to Markovian bisimulation. These two im-

plementations form the basis of the general case, where timed and immediate

transitions coexist: Weak Markovian bisimulation is computed by alternating

20

the algorithms for weak bisimulation (for immediate transitions) and Marko-

vian bisimulation (for timed transitions) until a �xed-point is reached. Since

weak Markovian bisimulation abstracts from internal, immediate transitions,

this opens a way to eliminate immediate transitions from a speci�cation, as

long as they are internal. So hiding of immediate transitions is necessary for an

elimination, but it is, in some cases, not su�cient, because non-deterministic

internal decisions may remain after factorisation. In this case the system is

underspeci�ed, and the TIPPtool produces a warning message to the user.

Bisimulation-based minimisation is particularly bene�cial if it is applied to

components of a larger speci�cation in a stepwise fashion. Since all imple-

mented bisimulations have the algebraic property of substitutivity, minimisa-

tion can be applied compositionally, as illustrated in Fig. 4. Minimising an

arbitrary component of a speci�cation does not alter the behaviour of the

whole speci�cation. In this way, speci�cations with very large state spaces

become tractable, as outlined in [29].

In the TIPPtool, compositional minimisation is supported in an elegant way.

By dragging the mouse inside the edit window, it is possible to highlight a

certain component of the speci�cation and to invoke compositional minimi-

sation of this component. When the minimised representation is computed,

a new speci�cation is generated automatically, where the selected component

has been replaced by the minimised representation. This new speci�cation is

displayed in a new, distinguished window, see Fig. 8. We used this feature for

compositional aggregation of our queueing example. The resulting sizes of the

component's state spaces and their aggregated versions are depicted in Fig. 4.

5.4 Approximate analysis

In addition to the exact analysis methods discussed above, prototypical im-

plementations of two e�cient approximation algorithms are integrated into

the TIPPtool. Both approaches are based on decomposition. The theoretical

foundations of SPA were of high importance for both approaches, since they

were needed to show the correctness of the transformations imposed on the

model during decomposition/aggregation [48].

Time Scale Decomposition

Time Scale Decomposition (TSD) is a decomposition method which tries to

exploit the near complete decomposability (NCD) property of many Markov

chains. In particular, CTMCs resulting from models which contain reliability

aspects lead to NCD Markov chains. Such models tend to lead to so-called sti�

Markov chains, which increases the solution e�ort immensely. TSD partitions

21

Fig. 8. Compositional aggregation by selecting parts of the speci�cation with the

mouse

the state space into fast and slow components, based on a distinction between

fast and slow actions, according to a threshold value for the rate [38]. The

generation of the whole state space at once is avoided. Only one partition at

a time is held in memory. The accuracy of the results is excellent for systems

with NCD structure. The algorithm is based on existing work on SPNs [8] and

goes back to the decomposition/aggregation scheme of Simon and Ando [61].

Of course, there are some drawbacks, in particular due to the restriction that

the partitions need to be solvable by steady state analysis, i.e. they have to

be irreducible. If this is not the case, an additional error is introduced.

22

Response Time Approximation

Response time approximation (RTA) works on the speci�cation level rather

than on the CTMC level [48,49]. The basic principle goes back to early work

on queueing networks [14,2] and more recent derivatives in the SPN context,

e.g. [13]. Here, the state space is not generated for the whole model, but only

for a small part of the model. The RTA algorithm for a special class of SPNs,

called marked graphs, has been adapted to so-called decision free processes

(DFP), and implemented in the TIPPtool, in order to derive substitute aggre-

gates which approximate the response time of the original aggregates. Several

equivalence-preserving transformations are applied to the model prior to de-

composition. If the decomposed model components are still too big, they can

be decomposed again recursively in a divide and conquer fashion. Thus, the

state complexity is reduced by several orders of magnitude. The main limita-

tion is that this method is restricted to DFP, a very speci�c class of models

[48].

For example, a DFP whose speci�cation is given as

System := P

1

j[: : :]j P

2

j[: : :]j P

3

j[: : :]j P

4

j[: : :]j P

5

j[: : :]j P

6

j[: : :]j P

7

j[: : :]j P

8

is aggregated into a smaller aggregated system:

AggregatedSystem := P

1

j[: : :]j P

2

j[: : :]j P

3

j[: : :]jAP

where the substitute aggregate AP amalgamates the whole behaviour of the

replaced components P

5

� P

8

into a few actions only, thus reducing the total

state space complexity. The substitute aggregate is obtained automatically,

by weak bisimulation preserving transformations. Its temporal behaviour is

estimated by an adaptation of the RTA algorithm for marked graphs.

5.5 De�nition and computation of characteristic performance measures

The result of steady state analysis as well as transient analysis is a vector of

probabilities. This vector can be used by the TIPPtool in order to derive more

sophisticated measures. Currently, three types of measures are supported:

state measure: This measure represents the probability that the system is

in a certain state or in a group of states. The user may specify such a set

of states via regular expressions. After analysis, the tool collects all states

from the state space which are matched by this expression and sums up the

corresponding probabilities. Typical measures which can be obtained in this

way are resource utilisation, availability, or probability of deadlock.

23

throughput: Here the result is not a probability, but a frequency. If the

name of a timed action is speci�ed, its throughput will be computed, i.e.

the average number of occurrences of this action per time unit.

mean value: In the presence of parametric processes where one parameter

represents a counter (e.g. a queue length), this measure type returns the

mean value of this counter.

Fig. 9 shows how three measures for the running example are de�ned via

a dialog box. The state measures `Empty' and `Blocking' correspond to the

probability of �nding both queues empty (full). `Throughput' is the number

of serve-actions per time unit.

Fig. 9. Measure de�nition dialog box

5.6 Experiment de�nition and visualisation

The TIPPtool provides a dialog box for the de�nition of experiments (Fig. 10).

Here, the user speci�es the numerical values of symbolic model parameters.

Values may either be constant or variable. In the latter case, a smallest and

a largest value, as well as a stepsize have to be speci�ed. The tool will then

automatically replace the symbolic parameters by the actual values, and eval-

uate the model for each value combination. The state space, however, only

has to be generated once.

Fig. 11 contains a screen shot of some numerical results for our running ex-

ample, calculated during an experiment where the service rate � was varied,

and displayed with the help of pxgraph.

24

Fig. 10. De�nition of experiments

6 Implementation considerations

In this section, we wish to give some insight into a few implementation aspects

of the TIPPtool. Although the tool is quite far advanced and provides a user-

friendly interface, it still represents a prototype, and as such has shortcomings

with regard to the e�ciency of the implementation.

Our choice for the programming language Standard ML deserves special con-

sideration. We used it for implementing the parser, the semantics, and the

bisimulation algorithms. It was also used for the approximate solution meth-

ods. The main advantage of this language is that it is perfectly suited for im-

plementing semantics of formal languages. Its type concept, memory manage-

ment (garbage collector) and a rich library made the development of the tool

a lot easier. Standard ML code is translated into an architecture-dependent

executable bytecode. Consequently, this part of the tool clearly represents a

bottleneck. Furthermore the implementations of partition re�nement to com-

pute (weak) Markovian bisimulation do not meet the best possible complexity

results, their e�ciency can therefore be improved a lot [33,26]. For instance,

25

Fig. 11. Display of experiment results via pxgraph

the weak bisimulation algorithm implemented in the TIPPtool currently fails

for state spaces of more than 8000 states, while a far more advanced imple-

mentation of essentially the same algorithmic idea, realised in aldebaran, is

able to handle more than 10

6

states.

As for the numerical analysis part, we chose a 'C'-library which provides data

structures for sparse matrices, called SparseLib1.3 (by Kenneth Kundert, UC

Berkeley). We extended this library by a few iterative solution methods for

steady state analysis and transient analysis. The numerical solvers were imple-

mented in 'C', and the communication with the state space generator is done

via ASCII-�les. The clear interface of the library makes it easy to integrate

other solution methods into the tool.

For computing the measures, shell-scripts are used, which are based on stan-

dard UNIX-tools such as GREP, AWK and SED. Finally, the graphical user

interface has been implemented using another scripting language, Tcl/Tk. The

communication between the GUI and the other tools is done via UNIX-pipes.

This turned out to be a good choice, since the use of Tcl/Tk makes it easy to

customise the GUI of the tool.

7 Case study: A Hospital Communication System

In this section, we exemplify the use of the TIPPtool by means of a non-

trivial case study. We describe the speci�cation and analysis of the hospital

26

communication system (HCS) operated by the University of Erlangen. This

study is part of an ongoing performance measurement and modelling project

which is being conducted at the University of Erlangen [60,59,4].

7.1 Global structure of the HCS

The hospital communication system provides a communication infrastructure

which is used by medical subsystems for exchanging information such as pa-

tient data, observation results, medical images and accounting data. Further-

more, the system consists of a huge number of interacting subsystems, among

them the hospital's main laboratory, an observations processing system and

the operations documentation system.

In a large clinic such as the Erlangen University hospital there exists a great

variety of subsystems associated with di�erent departments and institutions.

Due to historical reasons, these decentralised information processing systems

are mostly incompatible. In the past, communication between subsystems was

based on proprietary one-to-one relations. Integration e�orts have led to the

use of standardised message formats (e.g. the Health Level 7 message standard

developed for the healthcare sector) and the deployment of a central commu-

nication server. In Erlangen, the communication server DataGate from STC

Inc. is used, whose tasks are the reception, checking, processing, routing and

forwarding of (standardised) messages between medical subsystems. Among

the subsystems in the Erlangen HCS, the patient management system, a SAP

R/3 IS-H product, is the central business application. Beside the patient man-

agement system, there is a second large data base, the communication data

base, which mirrors parts of the patient management system and contains

additional medical information. The communication database serves as a fast

data bu�er which, from the point of view of the subsystems, provides data

access about 10 times faster than the patient management system itself, and

as a side e�ect also signi�cantly reduces the load of the latter.

We only present a rudimentary model of the Erlangen hospital communica-

tion system which during our project has been extended in various directions.

Fig. 12 shows the basic structure of the model. It consists of the commu-

nication server (CS), the communication data base (CDB) and two medical

subsystems, the main laboratory system (MLS) and an observations process-

ing system (OPS). Since almost all of the subsystems' demands for data can

be satis�ed by the CDB, we do not model the patient management system

(PMS) at this stage (therefore the PMS is drawn grey in the �gure). There is

an \arti�cial" subsystem, representing an adjustable background load (BL),

caused by those subsystems which are not explicitly modelled (BL actually

consists of two subprocesses, a source and a sink which communicate with CS

27

CS

request

query answer

load_out

source sinkMLS OPS BL

0 1

0,1 0,1

0
response

request 1
response load_in

PMSCDB
ask

put

. . .

Fig. 12. The hospital communication system model

via actions load in and load out).

The top-level speci�cation for the TIPPtool is as follows:

hide request,response in

(MLS ||| OPS)

|[request,response]|

(

hide query,answer in

(

hide load_in,load_out in

BL |[load_in,load_out]| CS

)

|[query,answer]| CDB

)

7.2 Speci�cation of components

We now describe a typical communication sequence in the system: The MLS,

after some internal processing, needs a patient data record from the CDB. It

sends a request message to the CS (action request) which is forwarded to

the CDB (action query). After completing the data base lookup, the CDB

generates an answer message which is sent back to the CS (action answer)

and from there on to the MLS (action response). Queries initiated by the

OPS subsystem do not request patient data records, they request observation

results instead. Apart from that, they follow the same basic pattern as queries

initiated by MLS. However, since the answer to a request for observations may

consist of a number of di�erent observations, an OPS query does not result in

28

a single answer message, but in a random number of answer messages. Mea-

surements on the real system have shown that this number follows a geometric

distribution.

SubsystemsMLS, OPS communicatewith CS via actions request and response.

In order for these communications to be distinguishable, we use inter-process

communication, in particular value passing and value matching. All actions as-

sociated with communications initiated by subsystem MLS carry the value 0,

while those originating from OPS carry the value 1. The following part of the

speci�cation illustrates how value passing and value matching are employed

between MLS and CS. Note that MLS is capable of receiving a response

at any time. This is used to ensure that CS may engage in response even

though MLS has just decided to induce the next request!0 (equivalently a

sink could be used instead, that runs independently in parallel and just con-

sumes response!0 actions).

process MLS := (time_mls, lambda); MLS2 [] response!0; MLS

endproc

process MLS2 := request!0; MLS [] response!0; MLS2

endproc

The following portion of code speci�es the behaviour of subsystem CS. In

subprocess CStodo a query is submitted to the CDB. Depending on the value x

received through action request, this corresponds to a query for a patient data

record or for observation results. In subprocesses CStodo and CStransmit,

checking the condition [x=0 or x=1] is redundant. It is, however, an example

for a useful mechanism for debugging during model development, since the

receiving of a request or an answer with a value di�erent from 0 or 1 would

constitute an error and result in a deadlock. Concerning the rate of timed

actions such as time cs, the basic time unit is 1 millisecond.

process CS := request?x:int; (time_cs, 0.02); CStodo(x) []

answer?x:int; (time_cs, 0.02); CStransmit(x) []

load_in; (time_cs, 0.02); load_out; CS

endproc

process CStodo(x) := [x=0 or x=1] -> (query!x; CS)

endproc

process CStransmit(x) := [x=0 or x=1] -> (response!x; CS)

endproc

Similar value passing mechanisms are employed for the communication be-

tween the CS and the CDB. In order to perform the correct type of data base

lookup, the CDB has to recall the initiator of each query. To this end, queries

are stored in front of the CDB in a queue with multiple job classes. i.e. for

each queue position the type of the query is stored. Again, several equivalent

29

before / after aggregation
states
transitions

4

73

2 2

11

20

137

16

1515

4

41

4

80
144

11

4

22

764

3056

1132
2571

16

39

MLS ||| OPS

CDB

CS

BL

8846

2012

2294
7340

hide query,answer

hide load in,load out

hide request,response

Fig. 13. Compositional aggregation applied to the hospital communication system

ways are possible to represent this data type inside a TIPP speci�cation. The

following fragment of code illustrates the concept of a queue with three waiting

positions and multiple job classes.

process CDB(f,p1,p2,p3) :=

[f=0] -> (query?x:int; CDB(1,x,0,0)) []

[f=1] -> (query?x:int; CDB(2,p1,x,0) []

Lookup(1,p1,0,0)) []

[f=2] -> (query?x:int; CDB(3,p1,p2,x) []

Lookup(2,p1,p2,0)) []

[f=3] -> (query?x:int; (full,10); CDB(3,p1,p2,p3) []

Lookup(3,p1,p2,p3))

endproc

Parameter f denotes the current queue population. The remaining three pa-

rameters are used to store the class of the job in the �rst, second and third

queue position. Action query sets the next free position with the value passed

from the CS and increases parameter f. (If a query action meets a full queue,

i.e. in the case where f=3, an exception is raised by action full). The converse

operation, sending (one or several) answer(s) back to the CS and thereafter

removing a job from the queue, is not shown in this fragment. It is part of the

Lookup process and its subprocesses which can be entered under the condition

that the CDB queue is not empty. If the Lookup process is processing a query

originating from the OPS, it generates a geometrically distributed number of

answers. This geometric distribution is modelled by a loop with a non-zero

probability of reentry after an answer has been generated.

7.3 State space construction

The size of the state space for this model is 4951 states and 16236 transitions.

The computation time for generating this state space was about 80 seconds

on a SUN Ultra 1 C equipped with 512 MB of main memory. Building the

30

generator matrix and solving the linear system for obtaining steady state prob-

abilities took about 30 seconds. It was also possible to construct an aggregated

state space for this model in a compositional fashion, applying stepwise ag-

gregation by means of bisimulation, see Fig. 13. In this way, for instance, the

state space of CDB could be aggregated from 80 to 73 states, and the parallel

composition of CS and BL could be reduced from 22 to 20 states, after abstrac-

tion of load in and load out. Combining these intermediate state spaces and

hiding query as well as answer we obtained 1132 states which, again, were

aggregated to 764 states. Finally, we obtained 3056 states for the overall sys-

tem speci�cation which could be aggregated to an equivalent speci�cation with

2294 states, instead of the original 4951 states. This very last aggregation step

took more than 15 hours, indicating that compositional aggregation still de-

serves some implementation e�ort. All aggregations were based on the notion

of weak Markovian bisimulation and made use of the mouse drag-and-highlight

feature to steer compositional aggregation (cf. Fig. 8).

7.4 Numerical analysis and evaluation

We have calculated a variety of numerical results for this model. There are no

queues in front of process CS, i.e. subsystems wishing to communicate via the

CS may have to wait until the CS is ready for synchronisation. This waiting

time can become quite signi�cant if the CS is very heavily loaded. For instance,

experiments revealed that under heavy background load the subsystem MLS

spends up to 11% of total time waiting for the CS (cf. Fig. 14, left). In this as

in other experiments, the o�ered background load was increased exponentially,

starting with an initial value load

0

= 1 request/sec which was doubled in every

step.

waiting time percentage

ld(load/load0)
3.00

3.50

4.00

4.50

5.00

5.50

6.00

6.50

7.00

7.50

8.00

8.50

9.00

9.50

10.00

10.50

11.00

11.50

0.00 2.00 4.00 6.00 8.00 10.00

prob CS idle in %

ld(load/load0)
0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

0.00 2.00 4.00 6.00 8.00 10.00

Fig. 14. Left: waiting time percentage in subsystem MLS dependent on background

load. Right: probability of CS being idle. (Note the logarithmic scale.)

31

This raises the question of the utilisation of CS which of course depends on the

o�ered load. The tra�c generated by subsystems MLS and OPS is constant,

namely 1 request/sec for MLS and 0.25 requests/sec for OPS. The o�ered

background load, as mentioned, is increased dramatically from load

0

= 1 re-

quest/sec to 1024 requests/sec. Fig. 14 (right) shows the proportion of time the

CS is idle, depending on the o�ered background load. It should be noted that

due to the average message processing time of 50 ms/message, a maximum of

20 messages/sec can be carried by the CS, no matter how much background

load is o�ered.

We now briey discuss the size of the queue in front of the CDB and its

implications. In the real system, an almost unlimited number of queries can

be queued in front of the CDB, the only limitation being the size of physical

memory of the machine. In order to avoid state space explosion, we can only

model very small queue sizes. The diagram in Fig. 15 (left) shows that for

a queue size of 3 waiting positions the probability of the queue being full is

between 5.9% and 8.3%, depending on the o�ered background load.

prob. CDB queue full in %

ld(load/load0)

6.00

6.20

6.40

6.60

6.80

7.00

7.20

7.40

7.60

7.80

8.00

8.20

0.00 2.00 4.00 6.00 8.00 10.00

lost queries per second x 10-3

ld(load/load0)
77.00

78.00

79.00

80.00

81.00

82.00

83.00

84.00

85.00

86.00

87.00

88.00

89.00

90.00

91.00

92.00

93.00

94.00

95.00

96.00

97.00

0.00 2.00 4.00 6.00 8.00 10.00

Fig. 15. Left: probability of the CDB queue being full. Right: rate of lost queries

The rate at which (MLS and OPS) queries get lost is 0.077 to 0.097 queries/sec,

see Fig. 15 (right). This corresponds to a query loss probability of 6.3% (low

background load) to 8.6% (high background load). In real life such high loss

probabilities would of course not be acceptable. On the other hand, we observe

that even for modelling a queue size of 3 one already obtains quite reasonable

estimates for the performance measures.

The parameters used in the model were derived frommeasurements on the real

system. We found that exponential assumptions were justi�ed for the request

inter-arrival times and even for the message processing time in the CS. The

data base lookup times in the CDB were modelled as Erlang-2 distributions

(as a sequence of two exponential phases), with di�erent mean, depending on

whether a query originated from the MLS or OPS subsystem.

32

As explained above, the speci�cation makes excessive use of interprocess com-

munication and of immediate actions. On the other hand, it is interesting to

observe that the applied synchronisation discipline for timed actions (where

the product of rates is implemented) is of no importance in this case study,

because synchronisation is carried out only over immediate actions.

As mentioned above, the model described in this section was our �rst rudi-

mentary model, which we extended in various directions. For instance, we

explicitly modelled the PMS and the fact that queries which cannot be sat-

is�ed by the CDB have to be forwarded to the PMS (see Fig. 12, where it is

indicated that synchronisation between CDB and PMS is performed via ac-

tions ask and put). We conducted experiments with varying CDB \hit rates",

i.e. varying probability of forwarding a query form the CDB to the PMS. We

also studied the question whether it is bene�cial to enable parallel queries to

the CDB by employing a separate \query" process for each subsystem gener-

ating queries. In all of these investigations we frequently dealt with state space

sizes of several hundreds of thousands of states. Compositional aggregation,

however was only possible for models of modest size, due to limitations of

our implementation. Recently, on the other hand, the interface between the

TIPPtool and aldebaran has been successfully used to circumvent this bot-

tleneck and to compositionally analyse another case study of more than 10

7

states in total [29].

8 Conclusion

In this paper, we have presented the status quo of the TIPPtool. We have

described the particular features of a process algebra based speci�cation for-

malism, together with the distinguishing components of the tool. A non-trivial

case study has shown how a performance model of signi�cant complexity can

be speci�ed and analysed compositionally. We believe that the TIPPtool cur-

rently is the leading tool for compositional modelling and analysis. In partic-

ular, it is the only tool supporting semi-automatic compositional aggregation.

Although a lot has been achieved, there remain, of course, many open prob-

lems for future research. We will briey present some aspects of ongoing work

in the TIPP project. Several attempts have been made in order to incorpo-

rate generally distributed random variables into the model [23,24,35,44,54].

However, they all su�er from the problem that general distributions lead to

intractable stochastic processes, i.e. it is usually impossible to evaluate them

e�ciently. Simulation is a possible way out, but very costly in general. Another

problem is that, so far, it is not completely solved how to obtain an algebraic

framework (equivalences and equational laws) for a process algebra with gen-

eral distributions. A promising approach, however, is reported in [16], using

33

stochastic automata as a model based on Generalised Semi-Markov processes.

We have built a prototype tool for graphical model speci�cation, calledDeedo,

which is an easy-to-use front-end for users who are not familiar with the syn-

tax of the TIPPtool's speci�cation language. Via a graphical editor, the user

can draw automaton-like models, consisting of states and transitions. A hiding

operator and a parallel composition operator are also supplied, such that hid-

ing of internal behaviour and the combination of submodels can be speci�ed

graphically in a hierarchical fashion. Currently, Deedo produces a textual

model description which is used as input for the TIPPtool.

With the view on models with large state spaces, we are currently investi-

gating techniques for the compact symbolic representation of the semantic

model of an SPA description. The basic idea is as follows: The LTS is encoded

as a Boolean function and represented as a Binary Decision Diagram (BDD)

[11]. Parallel composition of submodels is done on their BDD representation.

This has the major advantage that BDDs only grow linearly in size when

they are composed in parallel, whereas transition systems grow exponentially

with the number of parallel components. In order to incorporate the stochas-

tic information into the symbolic representation, we developed DNBDDs, an

extension of purely functional BDDs [58]. We have implemented a tool which

builds a BDD from the LTS-description generated by the TIPPtool, performs

BDD-based parallel composition of submodels, and | most interesting | ag-

gregates the model by means of a Markovian bisimulation algorithm which

works exclusively on BDDs. The resulting BDD can be converted back to an

LTS-�le for further processing by the TIPPtool.

To summarise, the TIPPtool realises state-of-the-art techniques for compo-

sitional performance and dependability modelling. As we have described in

this paper, there is a lot of ongoing activity, both in theoretical research, and

concerned with the further development and optimisation of components of

the tool.

References

[1] Workshops on Process Algebras and Performance Modelling.

[39,36,20,57,10,55].

[2] S.C. Agrawal, J.P. Buzen, and A.W. Shum. Response time preservation: a

general technique for developing approximate algorithms for queueing networks.

Performance Evaluation Review, 12(3):63{77, August 1984. Proc. of the 1984

ACM SIGMETRICS Conference on Measurement and Modeling of Computer

Systems.

34

[3] M. Ajmone Marsan, G. Balbo, and G. Conte. Performance Models of

Multiprocessor Systems. MIT Press, 1986.

[4] B. Aures. Modellierung des Erlanger Klinikkommunikationssystems mit Hilfe

von stochastischen Proze�algebren und TIPPtool. Studienarbeit, Universit�at

Erlangen{N�urnberg, IMMD VII, Okt 1998.

[5] C. Baier. Polynomial time algorithms for testing probabilistic bisimulation

and simulation. In Proceedings CAV'96, volume 1102 of LNCS, pages 50{61.

Springer, 1996.

[6] M. Bernardo, W.R. Cleaveland, S.T. Sims, and W.J. Stewart. TwoTowers: A

Tool Integrating Functional and Performance Analysis of Concurrent Systems.

In FORTE/PSTV, 1998.

[7] M. Bernardo and R. Gorrieri. Extended Markovian Process Algebra. In

CONCUR '96, volume 1119 of LNCS, pages 315{330. Springer, 1996.

[8] A. Blakemore and S. Tripathi. Automated Time Scale Decomposition of SPNs.

In Proc. of the 5th International Workshop on Petri Nets and Performance

Models, Toulouse, 1993. IEEE Computer Society Press.

[9] T. Bolognesi and E. Brinksma. Introduction to the ISO Speci�cation Language

LOTOS. In P.H.J. van Eijk, C.A. Vissers, and M. Diaz, editors, The Formal

Description Technique LOTOS, pages 23{73, Amsterdam, 1989. North-Holland.

[10] E. Brinksma and A. Nymeyer, editors. Proc. of 5th Workshop on Process

Algebras and Performance Modelling. CTIT Technical Report series, No. 97-

14, University of Twente, June 1997.

[11] R.E. Bryant. Graph-based Algorithms for Boolean Function Manipulation.

IEEE ToCS, C-35(8):677{691, August 1986.

[12] P. Buchholz. Markovian Process Algebra: Composition and Equivalence. In

Herzog and Rettelbach [36], pages 11{30.

[13] J. Campos, J.M. Colom, H. Jungnitz, and M. Silva. Approximate Throughput

Computation of Stochastic Marked Graphs. IEEE Transactions on Software

Engineering, 20(7):526{535, July 1994.

[14] K.M. Chandy, U. Herzog, and L. Woo. Parametric Analysis of Queuing Models.

IBM Journal of Research and Development, 19(1):36{42, January 1975.

[15] G. Chehaivbar, H. Garavel, N. Tawbi, and F. Zulian. Speci�cation and

Veri�cation of the Powerscale Bus Arbitration Protocol: An Industrial

Experiment with LOTOS. In R. Gotzhein and J. Bredereke, editors, Formal

Description Techniques IX, pages 435{450. Chapman and Hall, 1996.

[16] P.R. D'Argenio, J-P. Katoen, and E. Brinksma. An algebraic approach to the

speci�cation of stochastic systems (extended abstract). In D. Gries and W.-P.

de Roever, editors, Programming Concepts and Methods, pages 126{148, New

York, USA, 1998. Chapman and Hall.

35

[17] S. Donatelli, H. Hermanns, J. Hillston, and M. Ribaudo. Quantitative Methods

in Parallel Systems, chapter GSPN and SPA Compared in Practice - Modelling

A Distributed Mail System. Springer Verlag, 1995.

[18] Jean-Claude Fernandez, Hubert Garavel, Alain Kerbrat, Radu Mateescu,

Laurent Mounier, and Mihaela Sighireanu. Cadp (c�sar/aldebaran development

package): A protocol validation and veri�cation toolbox. In R. Alur and

T.A. Henzinger, editors, Proceedings of the 8th Conference on Computer-Aided

Veri�cation (New Brunswick, New Jersey, USA), volume 1102 of LNCS, pages

437{440. Springer, August 1996.

[19] S. Gilmore and J. Hillston. The PEPA Workbench: A Tool to Support a

Process Algebra-Based Approach to Performance Modelling. In G. Haring

and G. Kotsis, editors, 7th Int. Conf. on Modelling Techniques and Tools for

Computer Performance Evaluation, pages 353{368, Wien, May 1994.

[20] S. Gilmore and J. Hillston, editors. Proc. of the 3rd Workshop on Process

Algebras and Performance Modelling. Oxford University Press, Special Issue of

\The Computer Journal", 38(7) 1995.

[21] N. G�otz. Stochastische Proze�algebren { Integration von funktionalem Entwurf

und Leistungsbewertung Verteilter Systeme. PhD thesis, Universit�at Erlangen{

N�urnberg, April 1994.

[22] N. G�otz, U. Herzog, and M. Rettelbach. Multiprocessor and distributed

system design: The integration of functional speci�cation and performance

analysis using stochastic process algebras. In Tutorial Proc. of the 16th

Int. Symposium on Computer Performance Modelling, Measurement and

Evaluation, PERFORMANCE '93, volume 729 of LNCS, pages 121{146.

Springer, 1993.

[23] N. G�otz, U. Herzog, and M. Rettelbach. TIPP | Einf�uhrung in die

Leistungsbewertung von verteilten Systemen mit Hilfe von Proze�algebren. In

Verteilte Systeme | Grundlagen und zuk�unftige Entwicklungen aus der Sicht

des SFB182, pages 509{531. BI-Wissenschaftsverlag, 1993.

[24] P. Harrison and B. Strulo. Stochastic process algebra for discrete event

simulation. In F. Bacelli, A. Jean-Marie, and I. Mitrani, editors, Quantitative

Methods in Parallel Systems, Esprit Basic Research Series, pages 18{37.

Springer-Verlag, 1995.

[25] F. Hartleb and A. Quick. Performance Evaluation of Parallel Programms |

Modeling and Monitoring with the Tool PEPP. In B. Walke and O. Spaniol,

editors, Proceedings der 7. GI-ITG Fachtagung "Messung, Modellierung und

Bewertung von Rechen- und Kommunikationssystemen\, Aachen, 21.{23.

September 1993, pages 51{63. Informatik Aktuell, Springer, 1993.

[26] H. Hermanns. Interactive Markov Chains. PhD thesis, Universit�at Erlangen-

N�urnberg, 1998.

[27] H. Hermanns, U. Herzog, and V. Mertsiotakis. Stochastic Process Algebras

as a Tool for Performance and Dependability Modelling. In Proc. of IEEE

36

International Computer Performance and Dependability Symposium, pages 102{

111, Erlangen, April 1995. IEEE Computer Society Press.

[28] H. Hermanns, U. Herzog, and V. Mertsiotakis. Stochastic Process Algebras {

Between LOTOS and Markov Chains. Computer Networks and ISDN Systems,

30(9-10):901{924, 1998.

[29] H. Hermanns and J.P. Katoen. Automated Compositional Markov Chain

Generation for a Plain Old Telephony System. Science of Computer

Programming. to appear.

[30] H. Hermanns and M. Lohrey. Priority and Maximal Progress are completely

axiomatisable. In D. Sangiorgi and R. de Simone, editors, CONCUR'98

Concurrency Theory, volume 1446 of LNCS, pages 237{252. Springer, 1998.

[31] H. Hermanns and M. Rettelbach. Syntax, Semantics, Equivalences, and Axioms

for MTIPP. In Herzog and Rettelbach [36], pages 71{88.

[32] H. Hermanns, M. Rettelbach, and T. Wei�. Formal characterisation of

immediate actions in SPA with nondeterministic branching. In The Computer

Journal [20], pages 530{541.

[33] H. Hermanns and M. Siegle. Bisimulation Algorithms for Stochastic Process

Algebras and Their BDD-based Implementation. In J.P. Katoen, editor,

Proceedings ARTS'99, volume 1601 of LNCS, pages 244{264. Springer, 1999.

[34] U. Herzog. Formal Description, Time and Performance Analysis. A Framework.

In T. H�arder, H. Wedekind, and G. Zimmermann, editors, Entwurf und Betrieb

Verteilter Systeme, pages 172{190. Springer Verlag, Berlin, IFB 264, 1990.

[35] U. Herzog. A Concept for Graph-Based Stochastic Process Algebras, Generally

Distributed Activity Times and Hierarchical Modelling. In Ribaudo [57], pages

1{20.

[36] U. Herzog and M. Rettelbach, editors. Proceedings of the 2nd Workshop on

Process Algebra and Performance Modelling. University of Erlangen-N�urnberg,

IMMD, November 1994.

[37] J. Hillston. A Compositional Approach to Performance Modelling. PhD thesis,

University of Edinburgh, 1994.

[38] J. Hillston and V. Mertsiotakis. A Simple Time Scale Decomposition Technique

for SPAs. In Gilmore and Hillston [20], pages 566{577.

[39] J. Hillston and F. Moller, editors. Proceedings of the 1st Workshop on Process

Algebra and Performance Modelling. University of Edinburgh, July 1993.

[40] C.A.R. Hoare. Communicating Sequential Processes. CACM, 21(8):666{677,

August 1978.

[41] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood

Cli�s, NJ, 1985.

37

[42] I.S.O. LOTOS : A Formal Description Technique Based on the Temporal

Ordering of Observational Behaviour. ISO, 1989.

[43] P. Kanellakis and S. Smolka. CCS Expressions, Finite State Processes, and

Three Problems of Equivalence. Information and Computation, 86:43{68, 1990.

[44] J.P. Katoen, D. Latella, R. Langerak, and E. Brinksma. Partial Order Models

for Quantitative Extensions of LOTOS. Computer Networks and ISDN Systems,

30:925{950, 1998.

[45] J.G. Kemeny and J.L. Snell. Finite Markov Chains. Springer, 1976.

[46] J.A. Manas, T. de Miguel, and J. Salvachua. Tool Support to Implement

LOTOS Speci�cations. Computer Networks and ISDN Systems, 25(7):815{839,

1993.

[47] K. Marzbani. Hierarchische Beschreibung und

Analyse von Kommunikationssystemen mittels Graphbasierten Proze�algebren.

Master's thesis, Universit�at Erlangen{N�urnberg, IMMD 7, 1997.

[48] V. Mertsiotakis. Approximate Analysis Methods for Stochastic Process Algebras.

PhD thesis, Universit�at Erlangen{N�urnberg, 1998.

[49] V. Mertsiotakis and M. Silva. Throughput Approximation of Decision Free

Processes Using Decomposition. In Proc. of the 7th Int. Workshop on Petri

Nets and Performance Models, pages 174{182, St. Malo, June 1997. IEEE CS-

Press.

[50] R. Milner. A Calculus of Communicating Systems, volume 92 of LNCS.

Springer, 1980.

[51] R. Milner. Communication and Concurrency. Prentice Hall, London, 1989.

[52] R. Paige and R. Tarjan. Three Partition Re�nement Algorithms. SIAM Journal

of Computing, 16(6):973{989, 1987.

[53] G.D. Plotkin. A Structured Approach to Operational Semantics. Technical

Report DAIMI FM-19, Computer Science Department, Aarhus University, 1981.

[54] C. Priami. Stochastic �-calculus with general distributions. In Ribaudo [57],

pages 41{57.

[55] C. Priami, editor. Proc. of 6th Workshop on Process Algebras and Performance

Modelling. University of Verona, September 1998.

[56] M. Rettelbach. Stochastische Proze�algebren mit zeitlosen Aktivit�aten und

probabilistischen Verzweigungen. PhD thesis, Universit�at Erlangen{N�urnberg,

1996.

[57] M. Ribaudo, editor. Proc. of the 4th Workshop on Process Algebras and

Performance Modelling. Universita di Torino, CLUT, 1996.

38

[58] M. Siegle. Compact representation of large performability models based

on extended BDDs. In Fourth International Workshop on Performability

Modeling of Computer and Communication Systems (PMCCS4), pages 77{80,

Williamsburg, VA, September 1998.

[59] M. Siegle, D. Kraska, M. Simon, and B. Wentz. Analyse des Erlanger

Klinikkommunikationssystems mit Hilfe von Leistungsmessungen. In E. Greiser

and M. Wischnewsky, editors, 43. Jahrestagung der Deutschen Gesellschaft f�ur

Medizinische Informatik, Biometrie und Epidemiologie (GMDS), pages CD{

ROM C24, Bremen, September 1998. MMV Medien & Medizin Verlag.

[60] M. Siegle, B. Wentz, A. Klingler, and M. Simon. Neue Ans�atze zur Planung von

Klinikkommunikationssystemen mittels stochastischer Leistungsmodellierung.

In R. Muche, G. B�uchele, D. Harder, and W. Gaus, editors, 42. Jahrestagung

der Deutschen Gesellschaft f�ur Medizinische Informatik, Biometrie und

Epidemiologie (GMDS), pages 188 { 192, Ulm, September 1997. MMV Medien

& Medizin Verlag.

[61] H.A. Simon and A. Ando. Aggregation of Variables in Dynamic Systems.

Econometrica, 29:111{138, 1961.

[62] W.J. Stewart. Introduction to the numerical solution of Markov chains.

Princeton University Press, 1994.

39

Vitae

Holger Hermanns studied applied mathematics at the University of Bor-

deaux I, France, and computer science at the University of Erlangen{N�urnberg,

Germany, where he received his diploma degree in 1993 (with honours). He re-

ceived a Ph.D. degree from the department of computer science, University of

Erlangen{N�urnberg, in 1998 (with honours). Currently he is with the Systems

Validation Centre, University of Twente, the Netherlands. He has been active

in the area of algebraic foundations of speci�cation and evaluation methods

for performance prediction. His main research interest include compositional

performance modelling, state space compression, and model checking of per-

formance models.

Ulrich Herzog received all his degrees in electrical engineering from the Uni-

versity of Stuttgart. In 1964, he joined the Institute for Switching Techniques

and Data Processing at the University of Stuttgart, working in the area of

telephone switching systems and teletra�c research. He then spent two years

in the Teleprocessing System Optimization Group at IBM Thomas J. Watson

Research Center. Since 1976, he has been full professor at the University of

Erlangen{N�urnberg. Since 1981, he has held the chair on computer architec-

ture and performance evaluation. His current research and teaching interests

are architecture and performance evaluation of computer systems, and com-

munication networks. In particular, he is involved in projects on system design

methodology, the integration of process algebras and performance modeling,

and rapid prototyping of real-time systems.

Ulrich Klehmet studied mathematics at the Ernst-Moritz-Arndt University

Greifswald from where he received his degree in 1973. From 1990 to 1995 he

worked at the University of Erlangen{N�urnberg. In that time he was deal-

ing with performance modelling and parameter optimisation of the German

�eldbus protocol Pro�bus. In 1995 he received his Ph.D.. Currently he is a re-

searcher at the University of Erlangen{N�urnberg in the group of Prof. Ulrich

Herzog. His research interests include stochastic process algebras and their

application to performance and dependability evaluation.

Vassilis Mertsiotakis received a degree in computer science from the Uni-

versity of Erlangen{N�urnberg in 1993. From 1993 until 1998 he was research

assistant at the computer science department of the University of Erlangen{

N�urnberg where he participated at the project SFB182 Multiprocessor{ and

network con�gurations. He defended his doctoral thesis on approximate anal-

ysis methods for stochastic process algebras in 1998. In the same year he

joined Lucent Technologies, Switching and Access Systems Group, R & D.

He is involved in software architecture of access networks for POTS, ISDN,

PRA-ISDN, xDSL, and FITL.

40

Markus Siegle studied computer science at the University of Stuttgart from

1984 to 1989, graduating with the German engineering degree. He received

a Fulbright scholarship which allowed him to pursue his studies at North

Carolina State University where he earned a Masters degree in 1990. From

1990 to 1995 he worked as a researcher at the University of Erlangen{N�urnberg

in the group of Prof. Ulrich Herzog from where he received the doctorate

degree in 1995. Markus Siegle is currently working on stochastic modelling

and veri�cation at the University of Erlangen{N�urnberg.

41

