
A Markov Chain Model Checker

Holger Hermannsa, Joost-Pieter Katoena,

Joachim Meyer-Kayserb⋆, and Markus Siegleb

aFormal Methods and Tools Group, University of Twente

P.O. Box 217, 7500 AE Enschede, The Netherlands

bLehrstuhl für Informatik 7, University of Erlangen-Nürnberg

Martensstraße 3, 91058 Erlangen, Germany

Abstract. Markov chains are widely used in the context of performance
and reliability evaluation of systems of various nature. Model checking
of such chains with respect to a given (branching) temporal logic for-
mula has been proposed for both the discrete [17, 6] and the continuous
time setting [4, 8]. In this paper, we describe a prototype model checker
for discrete and continuous-time Markov chains, the Erlangen–Twente

Markov Chain Checker (E T MC
2), where properties are expressed in

appropriate extensions of CTL. We illustrate the general benefits of this
approach and discuss the structure of the tool. Furthermore we report
on first successful applications of the tool to non-trivial examples, high-
lighting lessons learned during development and application of E T MC

2.

1 Introduction

Markov chains are widely used as simple yet adequate models in diverse areas,
ranging from mathematics and computer science to other disciplines such as
operations research, industrial engineering, biology and demographics. Markov
chains can be used to estimate performance characteristics of various nature, for
instance to quantify throughput of manufacturing systems, locate bottlenecks in
communication systems, or to estimate reliability in aerospace systems.

Model checking is a very successful technique to establish the correctness

of systems from similar application domains, usually described in terms of a
non-deterministic finite-state model. If non-determinism is replaced by random-
ized, i.e. probabilistic decisions, the resulting model boils down to a finite-state
discrete-time Markov chain (DTMC). For these models, qualitative and quan-
titative model checking algorithms have been investigated extensively, see e.g.
[3, 5, 6, 10, 13, 17, 29]. In a qualitative setting it is checked whether a property
holds with probability 0 or 1; in a quantitative setting it is verified whether the
probability for a certain property meets a given lower- or upper-bound.

Markov chains are memoryless. In the discrete-time setting this is reflected
by the fact that probabilistic decisions do not depend on the outcome of deci-
sions taken earlier, only the state currently occupied is decisive to completely

⋆ supported by the German Research Council DFG under HE 1408/6-1.

determine the probability of next transitions. For continuous-time Markov chains
(CTMCs), where time ranges over (positive) reals (instead of discrete subsets
thereof) the memoryless property further implies that probabilities of taking
next transitions do not depend on the amount of time spent in the current state.
The vast majority of applications of Markov chain modelling involves CTMCs, as
opposed to DTMCs.2 In particular, CTMCs are the underlying semantic model
of major high-level performance modelling formalisms such as stochastic Petri
nets [1], stochastic automata networks [26], stochastic process algebras [24, 21],
Markovian queueing networks [12], and various extensions thereof.

Model checking of CTMCs has been discussed in [8], introducing a (branch-
ing) temporal logic called continuous-time stochastic logic (CSL) to express
properties over CTMCs. This logic is an extension of the (equally named) logic
by Aziz et al. [4] with an operator to reason about steady-state probabilities: e.g.
the formula S>p(Φ) asserts that the steady-state probability for being in a Φ-state
is at least p, for p ∈ [0, 1]. Apart from the usual quantifiers like next and until,
a time-bounded until U6t , for t a non-negative real, is incorporated, for which
standard derivatives, such as a time-bounded eventually ✸

6t, can be defined.
The usual path quantifiers ∀ and ∃ are replaced by the probabilistic operator
P⊲⊳p(.) for comparison operator ⊲⊳ and p ∈ [0, 1]. For instance, P<10−9(✸64

error)
asserts that the probability for a system error within 4 time-units is less than
10−9. Such properties are out of the scope of what can be computed with stan-
dard Markov chain analysis algorithms, yet they are highly interesting to study.

In this paper we describe the Erlangen–Twente Markov Chain Checker

(E T MC
2), to our knowledge the first implementation of a model checker for

CTMCs. It uses numerical methods to model check CSL-formulas, based on [8].
Apart from standard graph algorithms, model checking CSL involves matrix-
vector multiplications (for next-formulas), solutions of linear systems of equa-
tions (for until- and steady-state formulas), and solutions of systems of Volterra
integral equations (for time-bounded until). Linear systems of equations are
iteratively solved by standard numerical methods [27]. Systems of integral equa-
tions are iteratively solved by piecewise integration after discretization. As a
side result, E T MC

2 is also capable to model check DTMCs against properties
expressed in PCTL [17]. This is not surprising, taking into account that the
algorithms needed for CSL are a superset of what is needed to check PCTL.
The tool has been implemented in Java (version 1.2), and uses sparse matrix
representations. The paper illustrates how E T MC2 can be linked (among oth-
ers) to (generalized) stochastic Petri nets (GSPN) and to Markovian queueing
networks by reporting on the model checking of a GSPN-model of a cyclic server
system and of a tandem queueing network.

Other model checkers for probabilistic systems are the DTMC-model check-
ers ProbVerus [18] and TPWB (the Timing and Probability Work-Bench)
[15], and the recent symbolic model checker for (discrete-time) Markov decision
processes [2].

2 DTMCs are mostly applied in strictly synchronous scenarios, while CTMCs have
shown to fit well to (interleaving) asynchronous scenarios.

The paper is organized as follows. Section 2 briefly introduces CTMCs and
CSL. Section 3 discusses the tool architecture together with the model check-
ing algorithm and some implementation details. Section 4 reports on practical
experiences with two case studies and Section 5 concludes the paper.

2 Continuous-time Markov chains and CSL

This section reviews continuous-time Markov chains [27] and CSL [8].

Continuous-time Markov chains. Let AP be a fixed, finite set of atomic
propositions. A (labelled) continuous-time Markov chain (CTMC for short) is a
tuple M = (S,R, L) where S is a finite set of states, R : S × S → IR>0 the rate

matrix, and L : S → 2AP the labelling function which assigns to each state s ∈ S
the set L(s) of atomic propositions a ∈ AP that are valid in s.

Intuitively, R(s, s′) specifies that the probability of moving from state s
to s′ within t time-units (for positive t) is 1 − e−R(s,s′)·t, an exponential dis-
tribution with rate R(s, s′). If R(s, s′) > 0 for more than one state s′, a
competition between the transitions exists, known as the race condition. Let
E(s) =

∑

s′∈S R(s, s′), the total rate at which any transition emanating from
state s is taken. This rate is the reciprocal of the mean sojourn time in s. More
precisely, E(s) specifies that the probability of leaving s within t time-units
(for positive t) is 1 − e−E(s)·t, due to the fact that the minimum of exponen-
tial distributions (competing in a race) is again exponentially distributed, and
characterized by the sum of their rates. Consequently, the probability of mov-
ing from state s to s′ by a single transition, denoted P(s, s′), is determined by
the probability that the delay of going from s to s′ finishes before the delays
of other outgoing edges from s; formally, P(s, s′) = R(s, s′)/E(s) (except if s is
an absorbing state, i.e. if E(s) = 0; in this case we define P(s, s′) = 0). Remark
that the matrix P describes an embedded DTMC.

A path σ is a finite or infinite sequence s0, t0, s1, t1, s2, t2, . . . with for i ∈ IN ,
si ∈ S and ti ∈ IR>0 such that R(si, si+1) > 0, if σ is infinite. For infinite path

σ, t ∈ IR>0 and i the smallest index with t 6
∑i

j=0 tj let σ@t = si, the state
of σ at time t. If σ is finite and ends in sl, we require that sl is absorbing, and
R(si, si+1) > 0 for all i < l. For finite σ, σ@t = sl for t >

∑l−1
j=0 tj , for other t it

is defined as above. Let Path(s) be the set of paths starting in s.

Continuous stochastic logic. CSL is a branching-time, CTL-like temporal
logic where the state-formulas are interpreted over states of a CTMC.

Definition 1. For a ∈ AP, p ∈ [0, 1] and ⊲⊳ ∈ {6, <, >, > }, the state-formulas
of CSL are defined by the grammar

Φ ::= a
∣

∣

∣
Φ ∧ Φ

∣

∣

∣
¬Φ

∣

∣

∣
P⊲⊳p(XΦ)

∣

∣

∣
P⊲⊳p(ΦU Φ)

∣

∣

∣
P⊲⊳p(ΦU6t Φ)

∣

∣

∣
S⊲⊳p(Φ)

The other boolean connectives are derived in the usual way. The probabilis-
tic operator P⊲⊳p(.) replaces the usual CTL path quantifiers ∃ and ∀ that can
be re-invented – up to fairness [9] – as the extremal probabilities P>0(.) and

P>1(.). Formula P⊲⊳p(XΦ) (P⊲⊳p(Φ1 U Φ2), respectively) asserts that the proba-
bility measure of the paths satisfying XΦ (Φ1 U Φ2) satisfies ⊲⊳ p. The meaning
of X (“next step”) and U (“until”) is standard. The temporal operator U 6t

is the real-time variant of U ; Φ1 U
6t Φ2 asserts that Φ1 U Φ2 will be satisfied

in the time interval [0, t]; i.e. there is some x ∈ [0, t] such that Φ1 continuously
holds during the interval [0, x[and Φ2 becomes true at time instant x. The state
formula S⊲⊳p(Φ) asserts that the steady-state probability for a Φ-state satisfies
⊲⊳ p. Temporal operators like ✸, ✷ and their real-time variants ✸

6t or ✷
6t can

be derived, e.g. P⊲⊳p(✸
6t Φ) = P⊲⊳p(true U6t Φ) and P>p(✷ Φ) = P61−p(✸¬Φ).

Semantics of CSL. Let M = (S,R, L) with proposition labels in AP. The
semantics for atomic propositions, negation, and conjunction is standard [11].
Let Sat(Φ) = { s ∈ S | s |= Φ }. The steady-state operator is defined by:

s |= S⊲⊳p(Φ) iff πSat(Φ)(s) ⊲⊳ p

where πS′(s) denotes the steady-state probability for S′ ⊆ S when starting in s,

πS′(s) = lim
t→∞

Pr{ σ ∈ Path(s) | σ@t ∈ S′ }.

This limit exists for finite S [27]. Obviously, πS′(s) =
∑

s′∈S′ πs′(s), where we
write πs′(s) instead of π{ s′ }(s). We let π∅(s) = 0.

For path-formula ϕ of the form XΦ, Φ1 U Φ2, or Φ1 U
6t Φ2 we have:

s |= P⊲⊳p(ϕ) iff Prob(s, ϕ) ⊲⊳ p, where Prob(s, ϕ) = Pr{ σ ∈ Path(s) | σ |= ϕ }

i.e., Prob(s, ϕ) denotes the probability measure of all paths σ ∈ Path(s) sat-
isfying ϕ The fact that, for each state s, the set { σ ∈ Path(s) | σ |= ϕ } is
measurable, follows by easy verification given the Borel space construction on
paths through CTMCs in [8]. The semantics of next and until-formulas is stan-
dard [11] and is omitted here. For time-bounded until we have:

σ |= Φ1 U
6t Φ2 iff ∃x ∈ [0, t]. (σ@x |= Φ2 ∧ ∀y ∈ [0, x[. σ@y |= Φ1) .

3 The model checker E T MC2

E T MC2 is a prototype tool supporting the verification of CSL-properties over
CTMCs. It is a global model checker, i.e. it checks the validity of a formula for
all states in the model. E T MC

2 has been developed as a model checker that can
easily be linked to a wide range of existing high-level modelling tools based on, for
instance, stochastic process algebras, stochastic Petri nets, or queueing networks.
A whole variety of such tools exists [20], most of them using dedicated formats
to store the rate matrix R that is obtained from the high-level specification.
The matrix R, together with the proposition-labelling function L, constitutes
the interface between the high-level formalism at hand and the model checker
E T MC2. Currently, E T MC2 accepts CTMCs represented in the tra-format as
generated by the stochastic process algebra tool TIPPtool [22], but the tool is
designed in such a way that it enables a filter plug-in functionality to bridge to
various other input formats. This is realized via Java’s dynamic class loading
capability.

3.1 The model checking algorithm

Once the matrix R and the labelling L of a CTMC M have been initialised,
the model checking algorithm implemented in E T MC2 essentially proceeds in
the same way as for model checking CTL [11]. For a given formula Φ it recur-
sively computes the sets of states Sat(.) satisfying the sub-formulas of Φ, and
constructs the set Sat(Φ) from them. The verification of probabilistic and steady-
state properties relies on the constructive characterizations for Prob(s, ϕ) and
πS′(s) as established in [8].

Steady-state properties. For calculating S⊲⊳p(Φ) the tool follows a two-phase
approach: first, the bottom strongly connected components (BSCC) of M are
determined by a standard graph algorithm [28]. Then, the steady-state prob-
ability distribution is calculated for each of the BSCC. Each step requires the
solution of a linear system of equations in the size of the BSCC. More precisely,
let G be the underlying directed graph of M where vertices represent states and
where there is an edge from s to s′ iff R(s, s′) > 0. Sub-graph B is a BSCC of G
if it is a strongly connected component such that for any s ∈ B, Reach(s) ⊆ B.
We have πs′(s) = 0 iff s′ does not occur in any BSCC reachable from s. Let B be
a BSCC of G with Reach(s)∩B 6= ∅, or equivalently, B ⊆ Reach(s), and assume
that aB is an atomic proposition such that aB ∈ L(s) iff s ∈ B. Then ✸aB is
a path-formula in CSL and Prob(s, ✸aB) is the probability of reaching B from
s at some time t. For s′ ∈ B, πs′(s) is given by πs′(s) = Prob(s, ✸aB) · πB(s′)
where πB(s′) =1 if B = {s′}, and otherwise πB satisfies the linear system of
equations3

∑

s∈B
s6=s′

πB(s) · R(s, s′) = πB(s′) ·
∑

s∈B
s6=s′

R(s′, s) such that
∑

s∈B

πB(s) = 1. (1)

Linear systems of equations can be solved either directly (e.g. Gaussian elimina-
tion or LU-decomposition) or by iterative methods such as the power method,
Jacobi iteration, Gauß-Seidel iteration and successive over-relaxation [27]. Iter-
ative methods compute approximations to the exact result up to a prespecified
precision ε. Although (except for the power method) convergence of the iterative
methods is not guaranteed, this problem only appears for pathological cases in
practice. The major advantage of these methods is that the involved matrices
do not change during the computation (i.e. fill-in is avoided), and hence the
buildup of rounding errors is nonexistent [19, 27]. In addition, direct methods
are known to be only practical for state spaces of up to a few hundred states,
while iterative methods have successfully been applied for much larger systems
(up to 107 states) [14]. For these reasons, E T MC2 supports all of the above
mentioned iterative methods to solve (1).

Probabilistic path-formulas. Calculating the probabilities Prob(s, ϕ) pro-
ceeds as in the discrete-time case [13, 17, 5], except for the time-bounded until

3 In [8] the above linear system of equations is defined in a slightly different way, by
characterizing the steady-state probabilities in terms of the embedded DTMC.

that is particular to the continuous-time case. More precisely:

Next: Prob(s, XΦ) is obtained by multiplying the transition probability matrix
P with the (boolean) vector iΦ = (iΦ(s))s∈S characterizing Sat(Φ), i.e. iΦ(s) = 1
if s |= Φ, and 0 otherwise.

Until: Prob(s, Φ1 U Φ2) is obtained by solving a linear system of equations of the
form x = P · x + iΦ2

where P(s, s′) = P(s, s′) if s |= Φ1 ∧ ¬Φ2 and 0 oth-
erwise. Prob(s, Φ1 U Φ2) is the least solution of this set of equations. E T MC2

computes the least solution by one of the standard methods mentioned above
for the steady-state operator.

Time-bounded until: to compute the time-bounded until operator, we use the
following characterization:

Theorem2. [8] The function S × IR>0 → [0, 1], (s, t) 7→ Prob(s, Φ1 U
6t Φ2)

is the least fixed point of the higher-order operator Ω : (S × IR>0 → [0, 1]) →
(S × IR>0 → [0, 1]) where4

Ω(F)(s, t) =







1 if s |= Φ2
∑

s′∈S R(s, s′) ·
∫ t

0 e−E(s)·x · F (s′, t−x) dx if s |= Φ1 ∧ ¬Φ2

0 otherwise.

This result suggests the following iterative method to approximate
Prob(s, Φ1 U

6t Φ2): let F0(s, t) = 0 for all s, t and Fk+1 = Ω(Fk). Then,
lim

k→∞
Fk(s, t) = Prob(s, Φ1 U

6t Φ2).

Each step in the iteration amounts to solve an integral of the following form:

Fk+1(s, t) =
∑

s′∈S

R(s, s′) ·
t
∫

0

e−E(s)·x · Fk(s′, t−x) dx,

if s |= Φ1 ∧ ¬Φ2. In [8], we proposed to solve these integrals numerically based
on quadrature formulas with, say, N + 1 equally spaced interpolation points
xm = m · t

N
(0 6 m 6 N) such as trapezoidal, Simpson, or Romberg integration

schemes. For the trapezoidal method, for instance, this amounts to approximate

Fk+1(s, xm) ≈
∑

s′∈S

R(s, s′) ·
m
∑

j=0

αj · e
−E(s)·xj · Fk(s′, xm − xj)

where for fixed m, α0 = αm = t
2N

and αj = t
N

for 0 < j < m. However, practical
experiments with E T MC2 revealed that these schemes may result in inaccurate
results by overestimating the impact of the ‘leftmost’ intervals. We therefore
take a different route by using piecewise integration, and approximating

Fk+1(s, xm) ≈
∑

s′∈S

R(s, s′) ·
m
∑

j=0

xj+βj+1
∫

xj−βj

e−E(s)·x dx · Fk(s′, xm − xj)

where β0 = βm+1 = 0 and βj = t
2N

for 0 < j 6 m. Note that the resulting
integrals are easily solved because they only involve exponential distributions.
So, discretization is used merely to restrict the impact of possible state changes
to the interpolation points x0, . . . , xN . The influence of the number of interpo-
lation points on the accuracy and the run-time of the algorithm is one of the

4 The underlying partial order on S × IR>0 → [0, 1] is defined for F1, F2 : S × IR>0 →

[0, 1] by F1 6 F2 iff F1(s, t) 6 F2(s, t) for all s, t.

interesting aspects discussed in Section 4.

As in [17] for until and time-bounded until some pre-processing is done (on
the underlying graph G of CTMC M) before the actual model checking is car-
ried out. First we determine the set of states for which the (fair) CTL-formula
∃(Φ1 U Φ2) is valid, i.e. we compute Sat(∃(Φ1 U Φ2)). This is done in the usual
iterative way [17]. For states not in this set the respective probabilistic until-
formula will have probability 0. In a similar way, we compute the set of states
for which the probability of these properties will be 1. This is done by computing
the set of states Sat(∀(Φ1 U Φ2)) (up to fairness, cf. [9]) in the usual iterative
way [17]. As a result, the actual computation, being it the solution of the linear
system of equations in case of an unbounded until, or the solution of the system
of Volterra integral equations in case of the time-bounded until, can be restricted
to the remaining states. This not only reduces the number of states, but also
speeds up the convergence of the iterative algorithms.

Fig. 1. User interface of E T MC
2

3.2 Tool architecture

E T MC2 has been written entirely in Java (version 1.2), an object-oriented lan-
guage known to provide platform independence and to enable fast and efficient
program development. Furthermore, support for the development of graphical
user interfaces as well as grammar parsers are at hand. For the sake of simplic-
ity, flexibility and extensibility we abstained from low-level optimizations, such
as minimization of object invocations. The design and implementation took ap-
proximately 8 man-months, with about 8000 lines of code for the kernel and

1500 lines of code for the GUI implementation, using the Swing library. The
tool architecture consists of five components, see Fig. 2.

Property
Manager

Verification
Parameters

TransitionsStates RatesSat

State Space Manager

CSL Parser

P⊲⊳p(ϕ) S⊲⊳p(Φ)∨

Linear system of equations

System of integral equations

Result
Output

Numerical Engine

Tool Driver

GUI
∧¬

Analysis Engine

Verification objects

∃(Φ1 U Φ2) ∀(Φ1 U Φ2)

BSCC

Model
Input

Filter

Fig. 2. The tool architecture

Graphical User Interface (cf. Fig. 1) enables the user to load a model M, a
labelling L, and the properties to be checked. It prints results on screen or
writes them into file and allows the user to construct CSL-formulas by the
‘CSL Property Manager’. Several verification parameters for the numerical
analysis, such as solution method, precision ε and number of interpolation
points N , can be set by the user.

Tool Driver controls the model checking procedure. It parses a CSL-formula
and generates the corresponding parse tree. Subsequent evaluation of the
parse tree results in calls to the respective verification objects that encap-
sulate the verification sub-algorithms. These objects, in turn, use the anal-
ysis and/or numerical engine. For instance, checking P6p(Φ1 U Φ2) involves
a pre-processing step (as mentioned above) that isolates states satisfying
∃(Φ1 U Φ2) and ∀(Φ1 U Φ2). The results of this step are passed to the numer-
ical engine that computes the corresponding (non-zero) probabilities.

Numerical Engine is the numerical analysis engine of E T MC2. It computes
the solution of linear systems of equations and of systems of Volterra integral
equations in the way explained above on the basis of the parameters provided
by the user via the GUI, such as the precision ε, the ‘maximum loop count’
(the maximal number of iterations before termination), or the number N of
interpolation points used for the piecewise integration.

Analysis Engine is the engine that supports graph algorithms, for instance, to
compute the BSCC in case of steady-state properties, and standard model
checking algorithms for CTL-like until-formulas. The latter algorithms are

not only used as a pre-processing phase of checking until-formulas (as ex-
plained above), but they also take care of instances of the special cases
P>1(ϕ) and P>0(ϕ) where the numerical analysis tends to produce ‘wrong’
results (such as 0.99999 . . . rather than 1.0) due to machine imprecision.

State Space Manager represents DTMCs and CTMCs in a uniform way. In
fact, it provides an interface between the various checking and analysis com-
ponents of E T MC2 and the way in which DTMCs and CTMCs are actually
represented. This eases the use of different, possibly even symbolic state
space representations. It is designed to support input formats of various
kinds, by means of a simple plug-in-functionality (using dynamic class load-
ing). It maintains information about the validity of atomic propositions and
of sub-formulas for each state, encapsulated in a ‘Sat’ sub-component. After
checking a sub-formula, this sub-component stores the results, which might
be used later. In the current version of the tool, the state space is represented
as a sparse matrix [27]. The rate matrix R (and its transposed RT) is stored,
while the entries of E and P are computed on demand. All real values are
stored in the IEEE 754 floating point format with double precision (64 bit).

4 Application case studies

In this section we report on experiences with E T MC2 in the context of model
checking two Markov chain models that have been generated from high-level
formalisms, namely queueing networks and generalized stochastic Petri nets.
Based on these experiments we assess the sensitivity of the model checker with
respect to various parameters. We ran the experiments on a 300 MHz SUN
Ultra 5/10 workstation with 256 MB memory under the Solaris 2.6 operating
system. In the case studies we solve linear systems of equations by means of the
Gauß-Seidel method. All recorded execution times are wall clock times.

4.1 A simple tandem queue

As a first, simple example we consider a queueing network (with blocking) taken
from [23]. It consists of a M/Cox2/1-queue sequentially composed with a M/M/1-
queue, see Fig. 3. Due to space constraints, we have to refer to [12] for a thorough
introduction to networks of queues. Both queueing stations have a capacity of c
jobs, c > 0. Jobs arrive at the first queueing station with rate λ. The server of the
first station executes jobs in one or two phases; that is, with probability 1 − a1

a job is served with rate µ1 only, and with probability a1, the job has to pass an
additional phase with rate µ2. Once served, jobs leave the first station, and are
queued in the second station where service takes place with rate κ. In case the
second queueing station is fully occupied, i.e. its server is busy and its queue is
full, the first station is said to be blocked. Note that in this situation, the second
phase of the first server is blocked and the first server can only pass a job that
just finished the first phase to the second phase (which happens with probability
a1), but the “bypass” of the second phase is also blocked. For the experiments

µ1

λ
κµ2

a1

1−a1

Fig. 3. A simple tandem network with blocking [23]

we take the following values for the parameters of the queue: λ = 4 · c, µ1 = 2,
µ2 = 2, κ = 4, and a1 = 0.1. We consider c = 2, which amounts to 15 states
and 33 transitions, c = 5, i.e. 66 states and 189 transitions and c = 20, i.e. 861
states and 2851 transitions. The following atomic propositions are considered:

– full is valid iff the entire tandem network is entirely populated, i.e. iff both
queueing stations contain c jobs,

– fst is valid iff no new arriving job (with rate λ) can be accepted anymore,
because the first queue is entirely populated.

– snd is valid iff the first queueing station is blocked, because the second queue
is entirely populated.

It should be noticed that full characterizes a single state, and hence, for large
c identifies a rare event, i.e. a situation that appears with very low probabil-
ity. The following steady-state properties are checked: S⊲⊳p(full), S⊲⊳p(fst), and
S⊲⊳p(P⊲⊳q(Xsnd)), for arbitrary p and q. The latter property is valid if the steady-
state probability to be in a state that can reach a state in which the first queueing
station is blocked in a single step with probability ⊲⊳ q satisfies ⊲⊳ p. We do not
instantiate p and q, as the execution times and computed probabilities will be
the same for all p and q (except for the extremal cases 0 and 1); only the compar-
ison with the bounds might lead to a different outcome. Thus, p, q ∈]0, 1[. For
the steady-state properties we vary the precision ε of the computed probability,
which is a parameter to the model checker. The results are listed in Table 1.

S⊲⊳p(full) S⊲⊳p(fst) S⊲⊳p(P⊲⊳q(Xsnd))
states ε # iterations time (in sec) time (in sec) time (in sec)

15 10−4 62 0.012 0.012 0.013

10−6 107 0.016 0.017 0.016

(c = 2) 10−8 146 0.017 0.018 0.019

66 10−4 77 0.028 0.028 0.065

10−6 121 0.041 0.042 0.076

(c = 5) 10−8 159 0.048 0.085 0.181

861 10−4 74 0.569 0.498 1.567

10−6 118 0.644 0.643 1.935

(c = 20) 10−8 158 0.811 0.778 2.369

Table 1. Statistics for checking steady-state properties on the tandem queue

The third column indicates the number of iterations needed to reach the result
with the desired precision. Recall that the model checker checks the validity of
CSL-formulas for all states in the CTMC.

The following probabilistic path properties are checked: P⊲⊳p(✸
6tfull),

P⊲⊳p(✸
6tfst) and P⊲⊳p(sndU6t ¬snd). The latter property refers to the prob-

ability of leaving a situation in which the second queue is entirely populated.
All path-properties are checked with precision ε = 10−6. We vary the time-span

interpolation P⊲⊳p(✸6tfull) P⊲⊳p(✸6tfst) P⊲⊳p(snd U6t ¬snd)
states t points # iter. time (in sec) # iter. time (in sec) # iter. time (in sec)

15 2 64 18 2.497 11 1.045 4 0.144
128 18 9.762 11 4.082 4 0.566
256 18 22.19 11 16.30 4 2.248
512 18 156.2 11 69.04 4 9.067

(c = 2) 1000 18 602.3 11 248.6 4 34.27

15 10 64 45 6.506 12 1.140 4 0.145
128 43 24.00 12 4.575 4 0.568
256 43 52.85 12 17.94 4 2.309
512 43 383.1 12 75.13 4 8.994

(c = 2) 1000 43 1433 12 274.9 4 34.38

15 100 64 472 104.6 12 2.133 4 0.229
128 344 284.9 12 7.682 4 0.817
256 285 958.1 12 31.07 4 3.361
512 260 3582 12 123.8 4 13.51

(c = 2) 1000 252 13201 12 493.8 4 51.49

861 2 64 36 448.3 29 347.3 21 9.608
128 36 1773 29 1336 21 38.90
256 36 7028 29 5293 21 150.5

(c = 20) 512 36 28189 29 21914 21 600.1

Table 2. Statistics for checking P⊲⊳p(Φ1 U
6t Φ2)-formulas on the tandem queue

t (over 2, 10 and 100), and the number of interpolation points for the piecewise
integration from 64 up to 1000. The results for c = 2 are listed in the upper part
of Table 2. Note the difference in computation time for the different properties.
Whereas P⊲⊳p(sndU6t ¬snd) can be checked rather fast, calculating the proba-
bility for reaching a fst-state within a certain time bound, and — in particular
— until reaching a full-state takes significantly more time. Since the CTMC
is strongly connected, a full- or fst-state can (eventually) be reached from any
other state, and hence for all states the probability for reaching these states
within time t must be calculated. In addition, the probability of reaching the
single full-state is low, especially for larger c, and quite a number of iterations
are needed in that case to obtain results with the desired precision. Since there
are several fst-states in the CTMC, this effect is less important for P⊲⊳p(✸

6tfst).
For the last property (last two columns), probabilities need only be computed
for snd-states rather than for all states, and precision is reached rather quickly
as the real probabilities are close to 1. These effects become more apparent when
increasing the state space. This is reflected by the results in the lower part of
Table 2 where we considered a CTMC of almost 1000 states.

4.2 A cyclic server polling system

In this section, we consider a cyclic server polling system consisting of d stations
and a server, modelled as a GSPN.5 The example is taken from [25], where a

5 We refer to [1] for details on the semantics of GSPNs. In particular, the existence of
immediate transitions (i.e. the black transitions) leads to so-called vanishing mark-
ings in the reachability graph which, however, can be eliminated easily. Our model
checker works on the resulting tangible reachability graph which is isomorphic to a
CTMC.

poll1

poll2

serve1

serve2

idle2 busy2

busy1idle1

λ2

λ1

µ1

γ1

µ2

γ2

skip1

skip2

detailed explanation can be found. For d = 2,
i.e. a two-station polling system, the GSPN
model is depicted on the left. For a d-station
polling system, the Petri net is extended in the
obvious way. Place idlei represents the condi-
tion that station i is idle, and place busyi rep-
resents the condition that station i has gen-
erated a job. The server visits the stations in
a cyclic fashion. After polling station i (place
polli) the server serves station i (place servei),
and then proceeds to poll the next station.
The times for generating a message, for polling
a station and for serving a job are all dis-
tributed exponentially with parameters λi, γi

and µi, respectively. In case the server finds
station i idle, the service time is zero which is modelled by the immediate tran-
sition skipi and the inhibitor arc from place busyi to transition skipi. In this
study we consider polling systems with d = 3, 5, 7 and 10 stations (like in [25]).
The corresponding CTMCs have 36, 240, 1344 and 15360 states (84, 800, 5824
and 89600 transitions). The polling systems are assumed to be symmetric, i.e.
all λi have the same numerical values, and the same is true for all γi = 1 and
all µi = 200. We set λi = µi/d.

In the context of GSPNs, it is rather natural to identify the set of places that
possess a token in a given marking — i.e. a state of our CTMC — with the set of
atomic propositions valid in this state. Based on these atomic propositions, we
check the following properties on the polling system: ¬(poll1∧poll2), stating that
the server never polls both stations at the same time; P⊲⊳p(¬serve2 U serve1),
i.e. with probability ⊲⊳ p station 1 will be served before station 2; busy1 ⇒
P>1(✸poll1), so once station 1 has become busy, it will eventually be polled;
busy1 ⇒ P⊲⊳p(✸

6tpoll1), once station 1 has become busy, with probability ⊲⊳ p
it will be polled within t time units. (We let t = 1.5.) The following steady state
formulas are considered: S⊲⊳p(busy1 ∧ ¬serve1), which says that the probability
of station 1 being waiting for the server is ⊲⊳ p; and S⊲⊳p(idle1), stating that
the probability of station 1 being idle is ⊲⊳ p. Like before, p ∈]0, 1[. ’ All path-
properties were checked with precision ε = 10−6, and the number of interpolation
points for numerical integration was set to 64. The steady-state properties were
checked for ε = 10−8.

4.3 Assessment of the tool

Verification time. From the results of our case studies we observe that checking
CSL-formulas consisting of just atomic propositions and logical connectives is
very fast. Checking steady-state properties and unbounded until-formulas is also
a matter of only a few seconds, even for the 15360 state case. Measurements have
shown that the performance of our tool’s steady-state solution algorithm is com-
parable to the one of TIPPtool [22] which is based on a sophisticated sparse ma-

¬(poll1 ∧ poll2) P⊲⊳p(¬serve2 U serve1) busy1 ⇒ P>1(✸poll1)
d # states time (in sec) time (in sec) time (in sec)

3 36 0.002 0.031 0.005
5 240 0.002 0.171 0.009
7 1344 0.005 1.220 0.011
10 15360 0.037 16.14 0.080

busy1 ⇒ P⊲⊳p(✸61.5poll1) S⊲⊳p(busy1 ∧ ¬serve1) S⊲⊳p(idle1)
d # states # iter. time (in sec) # iter. time (in sec) # iter. time (in sec)

3 36 8 2.308 39 0.044 39 0.038
5 240 12 30.92 61 0.103 61 0.102
7 1344 14 308.5 80 0.677 80 0.658
10 15360 18 7090 107 11.28 107 11.29

Table 3. Statistics for checking CSL-formulas on the polling system

trix library implemented in C. The model checking algorithm for time-bounded
until P⊲⊳p(Φ1 U

6t Φ2), which involves the approximate solution of a system of
integral equations, becomes very time consuming for larger state spaces. Ob-
viously, the execution times for checking time-bounded until strongly depend
on the chosen number of interpolation points: each iteration in the piecewise
integration in the worst case is of order O(N2 · K), where K is the number of
transitions and N the number of interpolation points. In addition, the execution
times depend on the arguments (i.e. Φ1 and Φ2) and the considered time-span
(i.e. parameter t). For instance, checking P⊲⊳p(✸

6tΦ2) involves a computation
for each state (that has a non-zero and non-trivial probability of reaching a
Φ2-state), while checking P⊲⊳p(aU

6t Φ2) only involves a computation for the a-
labelled states (of this set). The case studies, and other experiments which we
conducted showed that the main performance bottleneck of our tool is the algo-
rithm for time-bounded until.

Accuracy of numerical results. In order to assess the numerical accuracy of
the algorithm for time-bounded until, we used our tool to compute (amongst
others) the cumulative distribution function of the Erlang k-distribution, that
is, a convolution of k identical exponential distributions. For small k the results
of the iterative algorithm are quite accurate, even for a small number of interpo-
lation points N . The accuracy further improves as N is increased, as expected.
For k > 100 and small N , the accuracy of the results is unacceptable, while for
larger N the run-time becomes excessive.

Accuracy of verification result. Another issue — that is inherently present
in all model checking approaches that rely on numerical recipes — is to avoid
wrong outcomes of comparisons with a probability bound p in a sub-formula,
that is then propagated upwards. Because round-off and truncation errors cannot
be avoided (due to machine imprecision), this effect can happen if the computed
value is very close to the bound p. For the extremal probability bounds (i.e.
bounds > 0 and > 1), we have circumvented this problem by applying the stan-
dard model checking algorithms for ∀ and ∃ as in [17]. Furthermore we intend to
use a three-valued logic such that the tool can avoid potentially wrong results,

and answers ‘don’t know’ in case some calculated (i.e. approximated) probability
is within some tolerance to a probability bound p occurring in a (sub-)formula
to be checked.

5 Conclusion

In this paper we have presented a model checker for (state labelled) discrete and
continuous-time Markov chains. We reported on the structure of the tool, and on
experiments using the model checker to verify CTMCs derived from high-level
formalisms such as stochastic Petri nets and queueing networks. As far as we
know, E T MC2 is the first implementation of a bridge between such high-level
specification formalisms for CTMCs and model checking.

E T MC2 is a prototype, in particular for the moment it does not use symbolic,
i.e. (MT)BDD-based, data structures. Although our own experience (and of
others, cf. [16]) has shown that very compact encodings of Markov chains are
possible with MTBDDs and similar data structures [23], and symbolic model
checking algorithms for CTMCs do exist [8], we favor a separation of concerns: to
our belief the issues of numerical stability, convergence, accuracy and efficiency
are worth to be studied in isolation, without interference of the (sometimes
unpredictable) effects of BDD-based computations. In addition, none of the high-
level modelling tools for generating CTMCs uses BDD-based data structures, as
far as we know.

Our decision to implement the model checker E T MC2 in Java turned out
to be a good choice. In particular it allowed us to develop an easy-to-use user
interface along with the model checker engine. Also the numerical computations
have a good performance in Java; e.g., the computation of steady-state proper-
ties is comparable to (optimised) existing C implementations. Our experiments
with E T MC2 have shown that the checking of time-bounded until-properties re-
quires an efficiency improvement. We are currently considering alternative ways
to model check this operator [7].

Acknowledgement. The authors thank Lennard Kerber (Erlangen) for his contribu-

tion to assessing the accuracy of the tool output and Christel Baier (Bonn) for her

valuable contributions and discussions.

References

1. M. Ajmone Marsan, G. Conte, and G. Balbo. A class of generalised stochastic
Petri nets for the performance evaluation of multiprocessor systems. ACM Tr. on
Comp. Sys., 2(2): 93–122, 1984.

2. L. de Alfaro, M.Z. Kwiatkowska, G. Norman, D. Parker and R. Segala. Symbolic
model checking for probabilistic processes using MTBDDs and the Kronecker rep-
resentation. In TACAS, LNCS (this volume), 2000.

3. A. Aziz, V. Singhal, F. Balarin, R. Brayton and A. Sangiovanni-Vincentelli. It
usually works: the temporal logic of stochastic systems. In CAV, LNCS 939: 155–
165, 1995.

4. A. Aziz, K. Sanwal, V. Singhal and R. Brayton. Verifying continuous time Markov
chains. In CAV, LNCS 1102: 269–276, 1996.

5. C. Baier. On algorithmic verification methods for probabilistic systems. Habilita-
tion thesis, Univ. of Mannheim, 1999.

6. C. Baier, E. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska, and M. Ryan.
Symbolic model checking for probabilistic processes. In ICALP, LNCS 1256: 430–
440, 1997.

7. C. Baier, B.R. Haverkort, H. Hermanns and J.-P. Katoen. Model checking
continuous-time Markov chains by transient analysis. 2000 (submitted).

8. C. Baier, J.-P. Katoen and H. Hermanns. Approximate symbolic model checking
of continuous-time Markov chains. In CONCUR, LNCS 1664: 146–162, 1999.

9. C. Baier and M. Kwiatkowska. On the verification of qualitative properties of
probabilistic processes under fairness constraints. Inf. Proc. Letters, 66(2): 71–79,
1998.

10. I. Christoff and L. Christoff. Reasoning about safety and liveness properties for
probabilistic systems. In FSTTCS, LNCS 652: 342-355, 1992.

11. E.M. Clarke, E.A. Emerson and A.P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Tr. on Progr. Lang.
and Sys., 8(2): 244-263, 1986.

12. A.E. Conway and N.D. Georganas. Queueing Networks – Exact Computational
Algorithms. MIT Press, 1989.

13. C. Courcoubetis and M. Yannakakis. Verifying temporal properties of finite-state
probabilistic programs. In Proc. IEEE Symp. on Found. of Comp. Sci., pp. 338–
345, 1988.

14. D.D. Deavours and W.H. Sanders. An efficient disk-based tool for solving very
large Markov models. In Comp. Perf. Ev., LNCS 1245: 58–71, 1997.

15. L. Fredlund. The timing and probability workbench: a tool for analysing timed
processes. Tech. Rep. No. 49, Uppsala Univ., 1994.

16. G. Hachtel, E. Macii, A. Padro and F. Somenzi. Markovian analysis of large finite-
state machines. IEEE Tr. on CAD of Integr. Circ. and Sys., 15(12): 1479–1493,
1996.

17. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Form.
Asp. of Comp., 6(5): 512–535, 1994.

18. V. Hartonas-Garmhausen, S. Campos and E.M. Clarke. ProbVerus: probabilis-
tic symbolic model checking. In ARTS, LNCS 1601: 96–111, 1999.

19. B.R. Haverkort. Performance of Computer Communication Systems: A Model-
Based Approach. John Wiley & Sons, 1998.

20. B.R. Haverkort and I.G. Niemegeers. Performability modelling tools and tech-
niques. Perf. Ev., 25: 17–40, 1996.

21. H. Hermanns, U. Herzog and J.-P. Katoen. Process algebra for performance eval-
uation. Th. Comp. Sci., 2000 (to appear).

22. H. Hermanns, U. Herzog, U. Klehmet, V. Mertsiotakis and M. Siegle. Composi-
tional performance modelling with the TIPPtool. Perf. Ev., 39(1-4): 5–35, 2000.

23. H. Hermanns, J. Meyer-Kayser and M. Siegle. Multi-terminal binary decision dia-
grams to represent and analyse continuous-time Markov chains. In Proc. 3rd Int.
Workshop on the Num. Sol. of Markov Chains, pp. 188-207, 1999.

24. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
University Press, 1996.

25. O.C. Ibe and K.S. Trivedi. Stochastic Petri net models of polling systems. IEEE
J. on Sel. Areas in Comms., 8(9): 1649–1657, 1990.

26. B. Plateau and K. Atif, Stochastic automata networks for modeling parallel sys-
tems. IEEE Tr. on Softw. Eng., 17(10): 1093–1108, 1991.

27. W. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton
Univ. Press, 1994.

28. R.E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. of Comp.,
1: 146–160, 1972.

29. M.Y. Vardi. Automatic verification of probabilistic concurrent finite state pro-
grams. In Proc. IEEE Symp. on Found. of Comp. Sci., pp. 327–338, 1985.

