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This paper presents algorithms for identifying and reducing a dedicated set of transition rates of a
state-labelled continuous-time Markov chain model. The purpose of the reduction is to make states
to satisfy a given requirement, specified as a CSL upper time-bounded Until formula. We distinguish
two different cases, depending on the type of probability bound. A natural partitioning of the state
space allows us to develop possible solutions, leading to simple algorithms for both cases.

1 Introduction

In a production plant, there can be the requirement that “once started, the production process should be
completed within 1 hour in 95% of all cases”, or that “the probability of an alarm during the first 30
min of operation should be at most 5%”. If the system is modelled as a state-labelled continuous-time
Markov chain (SMC) and the requirements are formulated with the help of continuous stochastic logic
(CSL), they can be verified automatically by stochastic model checking [1], supported by efficient tools
such as the probabilistic model checker PRISM [10] or MRMC [9].

This paper addresses the question of how to improve a given system (also called plant P) when it
has been found that P violates such a given formal requirement. In an earlier paper [13] we presented
solutions for the case of untimed probabilistic requirements, and building on that work we now present
solutions for the case of upper time-bounded Until-type requirements (without nested or multiple Until
operators). In general, one could think of many ways of how to modify a system in order to make it
satisfy a given requirement. We decided to restrict ourselves to rate reduction, which means that some of
the system’s transition rates may be reduced, but the structure of the system remains untouched. We only
allow rate reductions, as opposed to increasing any rates, motivated by the fact that it is usually easily
possible to slow down some technical process (machine, processor, etc.), while it may not be possible
to accelerate it. We work with a partitioning of the state space into classes, based on the requirement
at hand. Our strategy then is to reduce all transition rates between some source class and target class
by a common reduction factor. Depending on the case, different sets of transitions may be reduced by
different reduction factors to achieve the goal. Before the start of the adaptation process, the value of
all reduction factors is 1, and in the end all reduction factors will be still at most 1, but strictly greater
than 0 (which means that no transitions are completely disabled). Throughout, our intention is to make
as many as possible states of P satisfy the user requirement, but it is not always possible to make all
states satisfying. This paper develops simple, intuitive algorithms, which are first motivated by examples.
We show the correctness of the algorithms (while pointing out the limitations of Algorithm 2) and also
analyze their complexity.

Related work: A related topic is model checking of parametric Markov chains, where reachability
probabilities take the form of rational functions [5, 6, 7]. Here the goal is to find valid parameter values
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in a multi-dimensional search space, as described in [8], where a discretization strategy was proposed
together with refinement and/or sampling. Synthesizing optimal rate parameter values is also the goal
of [3] (in the context of Markov models of biochemical systems), where time-bounded properties are
considered. Closely related is the so-called model repair problem which occurs when a system violates
a given requirement, which is to be fixed by modifying transition parameters while at the same time
keeping cost at a minimum. Model repair has been addressed e.g. in [2, 4, 12], for parametric DTMC or
MDP models, where solutions are obtained with the help of nonlinear optimization, sampling/refinement
or greedy strategies. Our approach described here is different from all of the above, since we work with
CTMC models which are a priori not parametric, but come with fixed rates. Once some requirement is
violated, we seek to identify sets of transitions and reduce their rates by a common reduction factor in
order to make as many states as possible satisfy the requirement. We do currently not consider the cost of
rate reduction, and we restrict ourselves to simple algorithms which avoid expensive multi-dimensional
parameter searches.

The rest of the paper is structured as follows: Sec. 2 provides the basic definitions and recalls an
earlier result for untimed requirements. In Sec. 3, an example is elaborated on in order to explain the
idea of rate reduction. It illustrates the benefits, but also the limitations of the proposed approach. The
general algorithms are discussed in Sec. 4, which also includes their complexity analysis. Finally, Sec. 5
summarizes the main findings of the paper and touches on possible future work.

2 Preliminaries

A State labelled Markov chain (SMC) is defined as follows:

Definition 1 (SMC) A SMC P is a tuple (SP ,RP ,LP) where

• SP is a finite set of states

• RP : SP ×SP 7→ R≥0, is the transition function (rate matrix)

• LP : SP → 2AP is a state labelling function, where AP is a finite set of atomic propositions

This definition does not impose any special structural conditions (such as irreducibility) on the state graph
of the Markov chain. A finite timed path σ in a SMC P is a finite sequence σ = [(s0, t0),(s1, t1), · · · ,
(sn−1, tn−1),sn] ∈ (SP ×R>0)

∗×SP , and with Paths(s) we denote the set of all finite paths originating
from state s. Probabilities are assigned to sets of finite timed paths by the usual cylinder set construction
on sets of infinite timed paths. In order to specify user requirements and characterize execution paths of
SMCs, we use a subset of CSL (continuous stochastic logic) [1].

Definition 2 (CSL with upper time bound) The grammar for CSL state formulas Φ, Φ′ and path for-
mulas ϕ is given as:

Φ ::= q |¬Φ |Φ∨Φ |P∼b(ϕ), ϕ ::= Φ
′U ≤t

Φ
′, Φ

′ ::= q |¬Φ
′ |Φ′∨Φ

′

In the definition, q∈ AP is an atomic proposition, ¬ denotes negation, ∨ denotes disjunction, b∈ (0,1) is
a probability value, and ∼ ∈ {≤,≥} a comparison operator. P∼b(ϕ) asserts that the probability measure
of the set of paths satisfying ϕ meets the bound given by ∼ b. The path formula ϕ is constructed using
the Until (U ) operator and an upper time bound t > 0. Note that we do not consider CSL requirements
with nested Until operators (that’s why we distinguish between Φ and Φ′), since parameter adaptations
for Until operators at different levels are interdependent in a complex way. For similar reasons we do not
consider requirements with multiple Until operators (although the grammar in Def. 2 does not exclude
them). We also do not consider the CSL next operator since it would be rather trivial to handle.
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Remark 1 This paper considers probability bounds b ∈ (0,1) instead of b ∈ [0,1], since the approach
presented here does not aim to turn a non-zero probability into zero, or to turn a probability smaller than
one into one. So, we do not treat requirements of the form P≤0(ϕ) or P≥1(ϕ), and for similar reasons we
also do not treat requirements of the form P>0(ϕ) or P<1(ϕ). Furthermore, there is no need to distinguish
between < b and ≤ b (or > b and ≥ b), because in the continuous-time setting the probabilities are the
same.

Definition 3 (Semantics of time-bounded Until path formula) The satisfaction relation |= for time-
bounded Until path formulas is defined as in [1]:

σ |= ΦU ≤t
Ψ if ∃t ′ ∈ [0, t].(σ@t ′ |= Ψ∧∀t ′′ ∈ [0, t ′).σ@t ′′ |= Φ)

where σ@t denotes the state occupied by the path σ at time t.

The untimed Until formula is obtained as: Φ U Ψ = Φ U <∞ Ψ. Let Sat(Φ) denote the set of states
satisfying state formula Φ, and let Pr(s,ϕ) = Pr({σ ∈ Paths(s) | σ |= ϕ}) denote the probability of the
set of ϕ-satisfying paths originating in state s. In order to accomplish the process of rate reduction, we
will use a partitioning of the SMC state space:

Definition 4 (Partitioning of SMC) Given an SMC P and a CSL requirement Φt = P∼b(Φ U ≤t Ψ).
Let ϕ = Φ U Ψ, the untimed version of the path formula. Then, states belonging to

• Sat(¬Φ∧¬Ψ) are placed in class invalid

• Sat(Ψ) are placed in class target

• Sat(Φ∧¬Ψ) are placed in class transit

The transit class is further partitioned as:

• Pr(s,ϕ) = 1 are placed in class gototarget

• Pr(s,ϕ) = 0 are placed in class gotoinvalid

• 0 < Pr(s,ϕ)< 1 are placed in class gobothways

This partitioning is illustrated in Fig. 11. Starting from states of class gototarget, the Markov chain
will eventually reach the target class via Φ-states (almost surely within finite time). Conversely, states of
class gotoinvalid do not possess any path satisfying the given (untimed, and therefore also time-bounded)
Until requirement. From states of class gobothways, both of these behaviours are possible. During the
parameter adaptation procedure, our attention will be on the states of the transit class. The Partitioning
of the state space can be obtained efficiently, based on the state labelling and by applying standard graph
algorithms [11]. Note that the time bound ≤ t and the probability bound ∼ b in the given CSL formula
have no influence on the partitioning.

As a simple but important fact we emphasize that the probability of a state satisfying a time-bounded
Until property will always be less than or equal the probability of that state satisfying the corresponding
untimed property, i.e.

∀s. ∀t. (Pr(s,Φ U ≤t
Ψ)≤ Pr(s,Φ U Ψ)) (1)

Furthermore, for an SMC P , a subset X ⊆ S of its state set, and a timed or untimed CSL state formula Φ,
we introduce the following notation: (P |=X Φ)⇐⇒ (∀s∈ X : s |= Φ). As an example, P |=gobothways Φ

means that all states from class gobothways satisfy the requirement Φ.

1For the purpose of this paper, there is no need to distinguish between classes invalid and gotoinvalid, but we prefer to
separate them for reasons of symmetry.
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Figure 1: Partitioning of the state space

For the purpose of rate reduction, we construct a reduced (parametric, see below) SMC G from SMC
P , where certain transition rates are reduced by factors i, j and k and all the states in classes invalid and
target are made absorbing.

Definition 5 (Reduced parametric SMC G ) Given SMC P as in Def. 1, a CSL requirement Φt =
P∼b(Φ U ≤t Ψ) and three reduction factors (parameters) 0 < i, j,k ≤ 1. The reduced SMC G (Φ,Ψ)
is defined as a tuple (SG ,RG ,LG ) where:

• SG = SP , and the state space partitioning into classes is taken from P

• RG (s,s′) =



0 s ∈ target ∨ s ∈ invalid
i ·RP(s,s′) s ∈ gototarget ∧ s′ ∈ target
j ·RP(s,s′) s ∈ gobothways∧ s′ ∈ (gotoinvalid∪ invalid)
k ·RP(s,s′) s ∈ gobothways∧ s′ ∈ (gototarget ∪ target)
RP(s,s′) otherwise

• LG = LP

Let Ti denote the set of transitions whose rate is multiplied by reduction factor i (and analogously for Tj

and Tk).

Considering the reduction factors i, j and k as variables, the reduced SMC G is a parametric SMC. Once
they are fixed, G is a standard SMC. Fig. 1 shows how the transition rates between certain state classes
will be multiplied by the reduction factors. The purpose of this multiplication will be explained in the
course of the paper.

2.1 A result for untimed CSL

In [13], we presented algorithms for the rate reduction problem for untimed Until requirements, based on
the following principle: In case of an upper probability bound (≤ b), all transition rates from gobothways
to gototarget and to target are reduced by a global factor of 0 < k ≤ 1. Similarly, in case of a lower
probability bound (≥ b), all rates from gobothways to gotoinvalid and to invalid are reduced by a factor
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of 0 < j≤ 1. The idea is to thereby influence the branching probabilities of states from class gobothways
in the desired direction. Theorem 3.2 of [13] states that following this strategy, the parameter synthesis
problem for untimed Until requirements can always be solved for all states of class gobothways. We are
going to use this result in the sequel, in combination with Eq. (1).

2.2 Binary Search Method (BSM)

In the time-bounded CSL scenario, we use the Binary Search Method (BSM) to approximate the maxi-
mum satisfying value of the reduction factor, where we search the range between 0 and 1 up to a precision
of a given ε > 0. Since a closed-form solution for the transient state probabilities for a parametric system
is not available, we use an approximation via BSM with multiple evaluations using uniformisation. At
the start of the reduction process, the search interval is (0,1]. BSM continues to halve the search interval
until its width is at most the predefined precision ε . In pseudo code, BSM reads as follows, the initial
call being BSM(0,1):

BSM(lower, upper)
{
while upper-lower > epsilon
{
middle = (lower + upper) / 2;

if "middle satisfies the requirement" then
lower = middle;

else
upper = middle;

}
return lower;
}

As a result, BSM returns the lower bound of the final search interval, where the search is considered
unsuccessful if that returned value is zero.

3 Example

Before giving the general rate reduction algorithms, we will explain our method with the help of an
example for the two cases of upper time-bounded CSL Until requirements for the model SMC P given
in Fig. 2. Plant P (SMC) models an abstract machine with 6 states, which can be off, up or under repair.
When the machine is up, it can go into off or repair with some predefined rates. We present our new
heuristics/algorithms, partly based on earlier heuristics given in our paper [13], to find reduction factors
i, j and k (in case Φ = P∼b(up U ≤t repair) is violated). In order to create the reduced parametric SMC
G , we need to partition P by using the CSL path formula ϕ = up U repair according to Def. 4. SMC
G for this example is given in Fig. 3, which also shows the partitioning. Note that for this example, class
gotoinvalid is empty.

3.1 Case 1

We have an abstract model as shown in P and the user property Φ1 in this case shall be given as in
Eq. (2).

Φ1 := P≤0.2(ϕ),where ϕ = up U ≤5 repair (2)



6 Rate Reduction for SMCs with Upper Time-bounded CSL Requirements

repair

off

off

up

up

up

P1
P2

P3 P4

P5

P6
2.5

1.5

0.25
1

0.5

0.5
2

1

0.25

0.5
1.5

0.5

1

Figure 2: Plant P along with rate matrix RP
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Figure 3: Reduced SMC G and its rate matrix

Model checking with PRISM [10], we get the probabilities for each state as follows:

Pr(P1,ϕ) = 0≤ 0.2 (3)

Pr(P2,ϕ) = 0≤ 0.2 (4)

Pr(P3,ϕ) = 0.47323 > 0.2 (5)

Pr(P4,ϕ) = 0.83443 > 0.2 (6)

Pr(P5,ϕ) = 0.91791 > 0.2 (7)

Pr(P6,ϕ) = 1 > 0.2 (8)

From the above probability values, we can see that Sat(Φ1) = {P1,P2}. Our focus is only on classes
gobothways and gototarget, as the states from the other classes trivially satisfy/violate the requirement
Φ1. The user property Φ1 is violated for all the states inside our classes of interest, i.e., P3,P4 and P5.
Hence, the process of rate reduction is required. Before the start of adaptation procedure, the values
of i, k and j are equal to 1. Now, since the probability of reaching the target class within the specified
time bound needs to be reduced, we have to slow down the rates going towards class target, i.e., adapt
reduction factors i and k, such that the probabilities of the states in classes gototarget and gobothways to
satisfy ϕ will fall below 0.2.

Initially, we adapt the i value, because the probability of the states in gototarget class will not get
affected by adapting the k value, whereas the vice versa is not true. To graphically show the process of
finding the satisfying range of the reduction factor i, we plotted2 the probabilities at equidistant discrete
points of i. The curve for state P5 of gototarget class is shown in the Fig. 4a.

2All the graphs are created using PRISM tool [10].
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(a) Adapting i for State 5; y-axis is Pr(P5,ϕ) (b) Adapting k for states 3 and 4, for fixed i = 0.089;
y-axis is Pr(?,ϕ)

Figure 4: Graphs for Case 1

Finding the reduction factors by solving a set of equations as in the case of untimed CSL is not
feasible3 for the time-bounded Until case. Hence, we used BSM to approximately find the satisfaction
range of i, which is 0 < i≤ 0.089.

Now, we will focus on the states from class gobothways (states P3 and P4). In order to make the
states from this class satisfying, we need to adapt the k value. In case 1, BSM considers the state with
highest probability (here it is state 4) within the class. While adapting k, we keep the i value fixed to
its maximum from the range which we found earlier. By doing so, we obtain the range of k to satisfy
Eq. (2) to be (0 < k ≤ 0.122). The graph in Fig. 4b, shows the probability plots for states 3 and 4 of
P while reducing factor k. The k value can also be read from the graph in Fig. 4b, the curve for state 4
(blue curve) falls below the required probability bound 0.2 at k = 0.122. Hence, such a k range will be
the solution for the whole P . After applying the reduction factors i and k, the probabilities of the states
in gobothways and gototarget class modify as follows, and therefore satisfy the user requirement.

Pr(P3,ϕ) = 0.10675≤ 0.2, Pr(P4,ϕ) = 0.19988≤ 0.2, Pr(P5,ϕ) = 0.19948≤ 0.2

From Eq. (1), we know that the probability for a time-bounded user requirement is always less than
or equal to the probability of untimed user requirement. Therefore, since the untimed problem can be
always solved (see Sec. 2.1) we can conclude that the time-bounded variant can also always be solved.

3.2 Case 2

The user requirement in case 2 shall be as in Eq. (9).

Φ2 := P≥0.95(ϕ),where again ϕ = up U ≤5 repair (9)

The actual probabilities of each state for ϕ are the same as shown in equations from (3) to (8). We can see
that probabilities of state P3 and P4 (and P5) are lower than the required probability bound i.e.,≥ 0.95, and
thus the user requirement is violated for those states. In case 2, our interest will be only on states from
gobothways class for the following reasons: 1) All states from classes invalid and gotoinvalid trivially

3The transient probabilities for a fixed value of the reduction factor are computed numerically via uniformisation, a para-
metric closed-form solution is not available.
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(a) (b)

Figure 5: (a) Adapting j for states 3 and 4 for Case 2; y-axis is Pr(?,ϕ),
(b) Intersecting curves while adapting j (for a different example)

cannot satisfy the requirement. 2) States from gototarget may or may not satisfy the requirement, but
if they don’t, nothing can be improved by reducing any rate (one would have to increase the rate from
gototarget to target, but this is not one of our options).

Here, since the probability should be increased beyond 0.95, the transition rates from gobothways to
gotoinvalid or invalid should be reduced, in order to make the transitions between gobothways to target
more likely to happen. For BSM, we have to reduce j, and so we choose the state with least probability
(here it is state 3) within the gobothways class. The graph in Fig. 5a shows the probability plots of states
3 and 4 for ϕ . As it can be seen, while j approaches 0, the probability for ϕ reaches a value of 0.89 (but
it does not reach 1.0 due to the time bound), but as per the requirement it should be greater than 0.95. In
this case, our algorithm fails to find a satisfying solution.

However, let us take another user requirement for the same case 2 as given in Eq. (10),

Ψ2 := P≥0.6(ϕ),where again ϕ = up U ≤5 repair (10)

Notice the change in the probability bound. Now, from the graph in Fig. 5a, we can observe that the
satisfying range of j to be approximately 0 < j ≤ 0.52, where the curve is above required probability
bound (i.e., ≥ 0.6). For the current j value, check all the states from gobothways class just to make sure
they satisfy Φ2. In general, reducing j makes the unbounded requirement Pr(Φ1 U Φ2) larger (even
reaches prob. 1), but it slows down the process. Hence the existence of a solution in Case 2 depends on
the combination of time and probability bounds given in the user requirement.

4 Algorithms

This section explains the general rate reduction algorithms for cases 1 and 2 of upper time-bounded CSL
Until properties. But before we present the algorithms, we need to discuss the important phenomenon of
intersecting curves. In the example from Sec. 3, the probability curves for different states never showed
any intersection points. However, in general the probability curves for different states may intersect, as
we can observe in other examples. Fig. 5b shows such an example of intersecting curves for varying
reduction factor j, but intersection of curves may also occur when varying factors i or k. For that reason,
once the value of the reduction factor has been determined for the state with the highest (in case 1) or
lowest (in case 2) original probability, one needs to recheck all the other states from the class. As long as
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at least one of them violates the requirement, the value of the reduction factor has to be reduced further.
This is the reason why our algorithms in this section employ while-loops for determining the reduction
factors.

4.1 Case 1

The CSL requirement in this case is given as Φ1 := P≤b(Φ U ≤t Ψ), and the state space of P is parti-
tioned according to Def. 4. For any state s from invalid ∪ gotoinvalid, it holds that Pr(s,Φ U ≤t Ψ) = 0,
and since 0 < b those states trivially satisfy the requirement. Similarly, for states from class target the
probability to follow a satisfying path is 1, thus target-states trivially violate the requirement (and nothing
can be done about that).

Therefore, the algorithm will only address states from classes gobothways and gototarget. Based
on the fact stated by Eq. (1) and the fact that the untimed problem can always be solved (see Sec. 2.1),
the problem for upper time-bounded Until as in Φ1 can always be solved for these two classes. The
algorithm proceeds by first adapting factor i on transitions from gototarget to target. It starts to reduce
the probability for sh, the state from class gototarget with the highest probability. Since the probability
curves of different states within class gototarget may intersect with each other, once a satisfying i value
is found for sh, we need to check whether all the other states of class gototarget also satisfy Φ1. As
long as any of the states violates Φ1, we continue the process of reducing i (while loop) by selecting
the state with highest probability at that instance. Once all states from class gototarget satisfy Φ1 factor
i will remain fixed. As a second step, a similar procedure is followed for class gobothways, where the
algorithm reduces factor k on transitions from gobothways to gototarget ∪ target. Again, because of
possible intersection of probability curves, the process needs to be continued for class gobothways as
motivated above. Algorithm 1 formalizes this rate reduction process for Case 1.

4.2 Case 2

In this case, the general form of CSL property to be checked is given as Φ2 := P≥b(Φ U ≤t Ψ). As
already stated in Case 1, for any state s from invalid ∪ gotoinvalid, it holds that Pr(s,Φ U ≤t Ψ) = 0, and
since 0 6≥ b those states trivially violate the requirement (and nothing can be done about it). Similarly, for
states from class target, the probability to follow a satisfying path is 1, thus target-states trivially satisfy
the requirement. For any state from class gototarget, the probability of satisfying paths may be above or
below the bound b. For states of the former type, the requirement is satisfied, but for states of the latter
type, it is not and nothing can be done about it, since one would have to accelerate the paths towards
target, which is not possible (since we only allow rate reductions).

Hence, we only focus on the remaining class gobothways for rate reduction. If the given Φ2 is
violated, then the branching probability (to eventually reach class target instead of class invalid) is too
low, or the speed of moving to class target is too slow. From the result for untimed Until (cf. Sec. 2.1) we
know that the branching probability can be increased to any desired value (arbitrarily close to 1) by the
reduction factor j. Following the similar strategy in case of time-bounded Until may lead to a solution,
but not always (because of the speed being too slow), as demonstrated by example in Sec. 3.2. So the
strategy is to try reducing factor j, and return j if a satisfying value is found, else return fail. Again, since
probability curves may intersect, the search for a satisfying value of j needs to be performed in a while
loop. The general algorithm for this case is given in Algorithm 2.
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Algorithm 1 Rate reduction for Φ1 := P≤b(Φ U ≤t Ψ)

Input: SMC P and time-bounded CSL Until property Φ1.
Output: Satisfying i, k reduction factors and corresponding sets of transitions Ti,Tk
if gobothways∪gototarget = /0 then

quit . No states whose probabilities can be modified
else

if P |=gobothways∪gototarget Φ1 then . No need for rate reduction
quit

else
G = (SG ,RG ,LG ); i = 1; k = 1 . Construct reduced SMC (Def. 5), initialize red. factors
while TRUE do . Find i for class gototarget

for current i, find sh = argmaxs{Pr(s,ΦU ≤tΨ) | s ∈ gototarget}
Apply BSM to sh to find satisfying i
Check all s ∈ gototarget for current i
if any of the states still violates Φ1 then

continue
else

fix factor i and corresponding set Ti ; break
end if

end while
while TRUE do . Find k for class gobothways

for current k value, find s′h = argmaxs{Pr(s,ΦU ≤tΨ) | s ∈ gobothways}
Apply BSM to s′h to find satisfying k
Check all s ∈ gobothways for current k
if any of the states still violates Φ1 then

continue
else

break
end if

end while
return factors i, k and corresponding sets Ti, Tk

end if
end if

4.3 A comment on optimality of Algorithm 2

As argued in Sec. 4.1, Algorithm 1 always succeeds in making all states of gobothways∪ gototarget
satisfying, whereas Algorithm 2 does not always find as solution. If Algorithm 2 fails, then there does
not exist a common reduction factor j that will make all the states of class gobothways to satisfy Φ2. In
this case, some states from gobothways may indeed satisfy Φ2, but not all of them. Algorithm 2 is not
always optimal in the following sense: There exist cases where the algorithm fails but where it would
be possible to use a more general form of rate reduction in order to make more (or maybe even all)
states of gobothways to satisfy Φ2. In those cases, it is possible to further increase the probability of
certain states from gobothways to satisfy the path formula ΦU ≤t Ψ by reducing not only the rates from
class gobothways to class gotoinvalid ∪ invalid (as Algorithm 2 does), but also reducing the rates of
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Algorithm 2 Rate reduction for Φ2 := P≥b(Φ U ≤t Ψ)

Input: SMC P and time-bounded CSL Until property Φ2.
Output: Satisfying j reduction factor and corresponding set of transitions Tj, or fail
if gobothways = /0 then

quit . No states whose probabilities can be modified
else

if P |=gobothways Φ2 then . No need for rate reduction
quit

else
G = (SG ,RG ,LG ); j = 1 . Construct reduced SMC (Def. 5), initialize red. factor
while TRUE do . Find j for class gobothways

for current j value find, sl = argmins{Pr(s,ΦU ≤t Ψ) | s ∈ gobothways}
For state sl apply BSM to reduce j
if solution found then . i.e., if j > 0

Check all s ∈ gobothways with current j value
if any of the states still violates Φ2 then

continue
else

return factor j and corresponding set Tj

end if
else

return fail
end if

end while
end if

end if

certain transitions among the states of class gobothways (i.e. transitions within gobothways). However,
selecting individual transitions among states of class gobothways for rate reduction is a very difficult
task for which there are currently no known efficient algorithms or even heuristics, so this is beyond the
scope of this paper.

4.4 Complexity

We assume a SMC with N states and M = O(N2) transitions. The time complexity for model checking
time-bounded Until is the same as for CTMC transient solution by uniformisation, which is known to be
O(M · q · t), where q is the uniformisation rate and t is the time bound [1] (note that the uniformisation
rate, which is at least the maximum of the states exit rates, actually decreases as we reduce transitions
rates). For constructing the reduced SMC G the state classes need to be determined and the reduction
factors need to be inserted, all of which can be done in time O(M). Given the desired precision ε , each
run of BSM requires O(log2

1
ε
) steps. Therefore, the overall time complexity of Algorithms 1 and 2 is

O(M ·q · t ·N · log2
1
ε
), where the factor N reflects the iterations of the while loop(s).
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5 Conclusion

In this paper, we have considered systems (also called “plants”) specified as state-labelled Markov chains,
and user requirements given as upper time-bounded CSL formulas (without multiple or nested Until
operators). Whenever a user requirement is violated by some or all states of the plant, we try to repair
the plant by reducing some dedicated sets of its transition rates, such that eventually the user requirement
will be satisfied. We only allow for a slowdown of transition rates (but without completely disabling
any transitions), since in most practical situations increasing the transition rates is not feasible. Upon
model checking, some states in the plant’s state space may already satisfy the requirement, whereas
some others may not. Some states will have constant probability which cannot be modified by reducing
the rates. Depending on the type of probability bound for the Until formula, we identified two possible
cases for which we have devised simple and intuitive algorithms along with necessary and sufficient
conditions for the solutions to exist. The algorithms partition the state space into different classes and
find the appropriate sets of transitions between those classes whose rates need to be reduced, as well as
the respective reduction factors.

Our ideal goal is to identify the maximum number of states which can be made to satisfy the user
requirement. We have shown that Algorithm 1 (for the upper probability bound) always achieves this
goal of maximality, but as discussed in Sec. 4.3, Algorithm 2 (for the lower probability bound) is not
always optimal.

In this paper, we have not addressed lower time-bounded CSL user requirements, i.e. the case of
Φ = P∼b(Φ U ≥t Ψ). Based upon the probability bound, lower time-bounded CSL requirements can be
further divided into two categories to which we refer as cases 3 and 4, and we are planning to elaborate on
these cases in a forthcoming paper. Another interesting topic for future work would be to consider time-
bounded CSL formulas with multiple or nested Until operators, a difficult problem, as already hinted at
in Sec. 2. Furthermore, there is the interesting open question of how to repair a given plant at the level
of the high-level modelling formalism, instead of at the level of Markov chain.
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