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Abstract
This paper introduces a novel approach for synthesizing parameters and controllers for Markov
Chains with Actions and State Labels (ASMC). Requirements which are to be met by the con-
trolled system are specified as formulas of asCSL, which is a powerful temporal logic for char-
acterizing both state properties and action sequences of a labeled Markov chain. The paper
proposes two separate – but related – algorithms for untimed until type and untimed general
asCSL formulas. In the former case, a set of transition rates and a common rate reduction factor
are determined. In the latter case, a controller which is to be composed in parallel with the given
ASMC is synthesized. Both algorithms are based on some rather simple heuristics.
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1 Introduction

Markov chains are widely used to model systems with stochastic behavior and to analyze their
quantitative properties such as performance (e.g. utilization, throughput or response time)
or dependability (e.g. availability or mean time to failure). Models are usually obtained by
transforming from high-level descriptions such as Petri nets or process algebraic descriptions
etc. into low-level Markov chains. ASMCs are continuous-time Markov chains extended
with actions and state labels. To specify requirements of ASMCs, the temporal logic asCSL
[3], which is an extension of CSL [1, 4], has been developed. In particular, asCSL makes it
possible to specify complex path-based behavior with the help of regular expressions over
state properties and action labels. The process of model checking ASMCs is explained in [3].

The topic of this paper is how to create a controller (also called a supervisor) that controls
a given ASMC (also called plant) such that it will satisfy the given path-based requirements
specified in asCSL. To this aim, we first study the special case of untimed until-type formulas
and then proceed to general untimed path-based requirements. In the former case, we
propose an algorithm for parameter synthesis which determines a subset of the ASMC’s
transitions and a common factor by which those transition rates are to be reduced. In the
latter case, a controller is synthesized via a product automaton construction borrowed from
the asCSL model checking algorithm where, again, rate reduction plays an important part in
this construction. Composing the controller in parallel with the original plant will ensure
that the requirement is satisfied. It is important to note that the controller will not only
change a set of transition rates, but also potentially change the structural behavior of the
plant. We have made the deliberate decision to work with rate reduction factors (as opposed
to rate acceleration), since we advocate that it is in general possible to slow down a process
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(e.g. by reducing the speed of a machine or the capacity of a server), whereas speeding up
a process may not be possible, since this would require additional resources. The present
paper only considers the controller synthesis problem for untimed asCSL properties, i.e. here
we do not consider time-bounded or time-interval-bounded requirements.

Related work: As early as 1993, Lawford and Wonham described an algorithm for
synthesizing probabilistic supervisors for a class of probabilistic discrete event systems where
a subset of the events is controllable [13], initiating a strand of research that is still active
today (see e.g. [14]). The related area of model checking parametric Markov chains has been
studied for more than a decade [6]. Some of that work is devoted to the problem of how to
deal with the growing symbolic size of the rational functions obtained for the reachability
probabilities of interest. This was addressed in [8] for Markovian models with rewards and
nondeterminism, and associated tools have been provided [7]. Some approaches for rate
parameter synthesis use a discretization of one-dimensional or multi-dimensional parameter
ranges over a grid, together with refinement and/or sampling techniques [9]. The recent
paper [15] synthesizes rate parameters such that either a given CSL time-bounded property
should hold or that the probability of satisfaction is maximized. Their algorithms rely on
uniformization combined with the computation of lower and upper bounds as described in
[5], and also use parameter range refinement and sampling.

Our approach described in this paper is different in that we do not work with parametric
Markov chains, but with Markov chains whose rates are given as constant values. Our
problem then is to determine a subset of the transition rates to be modified, and a common
reduction factor for those rates, such that a given requirement will be satisfied. In this paper,
we consider only untimed requirements, but we deal with the full generality of asCSL-type
path properties (without nested probabilistic path operators). This requires the synthesis of
a controller which is to be composed in parallel with the given plant, thereby adapting the
plant’s behavior according to the requirement, possibly also changing its structural behavior.

The rest of the paper is organized as follows: Sec. 2 introduces the fundamental concepts
used in this paper. Sec. 3 explains the algorithm to synthesize parameters for untimed
until-type formulas, Sec. 4 explains the algorithm to synthesize both parameters and a
controller for general untimed asCSL formulas, and Sec. 5 concludes the paper.

2 Preliminaries

This section explains the fundamental concepts used in rest of the paper. A Markov chain
with state labels and actions (ASMC) is defined as follows [3]:

I Definition 2.1 (ASMC). An ASMCM is a tuple (S,Σ, R, L) where
S is a finite set of states
Σ is the set of action labels over transitions
R : S × Σ× S 7→ R≥0, is the transition function
L : S → 2AP is a state labeling function, where AP is a finite set of atomic propositions

A finite untimed path σ in an ASMCM is a finite sequence σ = [(s0, a0), (s1, a1), · · · ,
(sn−1, an−1), sn] ∈ (S × Σ)∗ × S and with Paths(s) we denote the set of all finite paths
originating from state s. Probabilities are assigned to sets of finite paths by the usual cylinder
set construction on sets of infinite paths. An ASMC without action labels is called a state-
labeled CTMC. So, the underlying CTMC for an ASMC is given by the tuple (S,R′, L), which
is a result of removing the action labels and accumulating the rates of parallel transitions,
i.e., R′(s, s′) =

∑
a∈ΣR(s, a, s′). In order to specify user requirements and characterize
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execution paths of ASMCs, we use the logic asCSL [3] (without time bounds and without the
steady-state operator), which is an extension of the purely state-based logic CSL (continuous
stochastic logic) [4].

I Definition 2.2 (State formulas of asCSL). The grammar for untimed asCSL state formulas
is given as:

Φ ::= q | ¬Φ | Φ ∨ Φ | P∼b(α)

where q ∈ AP is an atomic proposition, ¬ denotes negation, ∨ denotes disjunction, b ∈ (0, 1)
denotes a probability value, ∼ ∈ {<,≤, >,≥} a comparison operator and α is a program as
defined in Def 2.3. P∼b(α) asserts that the probability measure of the set of paths satisfying
α meets the bound given by ∼ b. The program α specifies the property for finite paths.

Remark 1. In contrast to [3], this paper considers probability bounds b ∈ (0, 1) instead of
b ∈ [0, 1], since the approach presented here does not aim to turn a non-zero probability into
zero, or to turn a probability smaller than one into one. Thus, we do not treat requirements
of the form P≤0(α) or P≥1(α), and for similar reasons we also do not treat requirements of
the form P>0(α) or P<1(α).

I Definition 2.3 (Program). asCSL-programs are defined by the following grammar:

α ::= ε | (φ, b) | α;α | α ∪ α | α∗

Formally, programs are regular expressions over the alphabet Ω = Φ×
(
Σ ∪ {

√
}
)

={
(φ, b) | φ ∈ Φ ∧ b ∈

(
Σ ∪ {

√
}
)}

. The operator ; denotes sequential composition, ∪ denotes
alternative choice, and ∗ denotes Kleene star. Intuitively, program (φ, b) means that the
current state s should satisfy φ, and then the next action taken along the path should be b.
If b ∈ Σ, an outgoing b-transition has to be taken, and if b =

√
(pseudo-action

√
/∈ Σ), no

transition is taken. The full formal semantics of asCSL is given in [3].
Untimed asCSL is an extension of untimed CSL, so every CSL formula can be expressed

in asCSL. The syntax and semantics of untimed Until formulas are as explained in [4]. For
our purpose we consider only the Until operator, because the parameter synthesis for the
Next operator follows trivially from the algorithm for the Until operator. For the sake of
completeness we provide the semantics of CSL until-type path formulas.

I Definition 2.4 (Untimed Until). The satisfaction relation |= for untimed Until path formulas
is defined as:

σ |= Φ1 U Φ2 iff ∃k ≥ 0 : σ[k] |= Φ2 ∧ ∀(0 ≤ i < k) : σ[i] |= Φ1

where Φ1,Φ2 are state formulas, and σ[k] denotes the k-th state on path σ.

From here on, untimed Until is simply called Until. Any CSL untimed Until property can
be expressed in asCSL as Φ1 U Φ2 = (Φ1,Σ)∗; (Φ2,

√
), which follows from Prop. 12 in [3].

Let Sat(Φ) denote the set of states fulfilling state formula Φ. Partitioning of the ASMC
state space is required to accomplish the process of parameter and controller synthesis. In
particular, during the synthesis procedure, our attention will be on the states of the so-called
transit class. This motivates the following definition:

I Definition 2.5 (Partitioning of ASMC). Given an ASMCM and an asCSL requirement
Φ = P∼b(α), the states with:

Pr(s, α) = 0 are placed in invalid class

SynCoP’15
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0 < Pr(s, α) < 1 are placed into transit class and
Pr(s, α) = 1 are placed into target class

where, Pr(s, α) is defined as the probability measure of the set of paths Pr(s, α) = Pr(σ ∈
Paths(s) | σ |= α).

in the given state formula, ∼ and b have no influence on the partitioning of these three
classes. Furthermore, for an ASMCM and a state formula Φ, we introduce the following
satisfaction relation:

M |=transit Φ⇐⇒ ∀s ∈ transit : s |= Φ

So, the given user requirement Φ is said to be satisfied by ASMCM, iff all the states of
the transit class satisfy Φ. The reason for this viewpoint is as motivated in Remark 1.

After controller synthesis, in order to satisfy the user requirement, parallel composition of
the plant and the controller is necessary (see Sec. 4). Therefore we now provide a definition
for parallel composition of ASMCs. Note that different stochastic process algebras possess
different semantics for parallel composition [10]. For our purpose, in case of synchronization
the resulting rate of two actions with rates λ and µ shall be determined by their product
λ · µ (where, in practice, one of the two factors is either equal to one or a slowdown factor
0 < k ≤ 1).

I Definition 2.6 (Parallel composition in ASMCs). The parallel composition of two ASMCs
P and Q is defined by the following rules (analogous to [2, 12]):

P
a,λ−−→ P ′, Q

a,µ−−→ Q′

P ‖Σsyn Q
a,λ·µ−−−→ P ′ ‖Σsyn Q′

(a ∈ Σsyn)

and
P

a,λ−−→ P ′

P ‖Σsyn Q
a,λ−−→ P ′ ‖Σsyn Q

(a 6∈ Σsyn)

and a third rule, symmetric to the second one, where Q makes a move while P remains
stable. In these rules, a ∈ Σsyn ⊆ Σ is a synchronizing action, and λ, µ are the transition
rates. The labeling of a state (pi, qj) in the product ASMC is defined to be the union of the
labellings of pi and qj .

When we employ parallel composition in Sec. 4, one process will be the plant P, the
other process will be the controller C, the set of synchronizing actions Σsyn will be equal to
the action set ΣC of the controller, and all rates of the controller will be either equal to one
or equal to a common reduction factor k, with 0 < k ≤ 1.

3 Parameter Synthesis for “Until”-type requirements

For until-type requirements, the ASMC parameter synthesis problem is intuitively explained
as computing a reduction factor k for a subset of the transition rates in the original plant, so
as to modify some reachability probabilities as needed. We will start with a simple example.

3.1 Example
This example considers a gas tank with an automatic filling pump, which can be turned off
or on based on the levels of the tank.
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Figure 1 Tank P shown as an ASMC with respective accumulated rate matrix.

3.1.1 Unrestricted plant P
Fig. 1 shows the gas tank P modeled as an ASMC along with the respective transition rates.
Nodes represent different states of the tank and edges represent transitions between states.
Initially, the gas tank can be in any state. Empty and Full represent different levels of the
tank, and level Empty is further divided into Green, Yellow, Red for easy level reading. Note
that the action labeling of transitions is irrelevant for this section.

The user requirement on P is given as an untimed Until formula Φ,

Φ = P≤0.7 (ϕ),where ϕ = Empty U Full (1)

which checks whether the probability to reach a Full state from an Empty state, possibly via
intermediate Empty states is at most 0.7. By using the PRISM tool [11], we computed the
probabilities of the states in ASMC P to be

Pr(P1, ϕ) = p15 = 0 < 0.7 (2)
Pr(P2, ϕ) = p25 = 0.69473 < 0.7 (3)
Pr(P3, ϕ) = p35 = 0.80589 > 0.7 (4)
Pr(P4, ϕ) = p45 = 0.90294 > 0.7 (5)
Pr(P5, ϕ) = p55 = 1 (6)

where pi5 = Prob(to reach state P5 from state Pi via a satisfying path) and Sat(Φ) = {P1, P2}.
According to Definition 2.5, invalid = {P1}, target = {P5} and transit = {P2, P3, P4}. From
the above equations, we know state P2 already satisfies Φ, whereas P3 and P4 do not. Hence,
parameter synthesis is required on P. This is done by reducing some of the transition rates
in P by a factor of k. To determine k, we create a reduced automaton G.

3.1.2 Obtain the reduced automaton G from P
Fig. 2 shows the ASMC G, which has been partitioned according to the definition 2.5. The
difference of G and P lies in making the invalid and target classes absorbing in G. According
to the heuristics explained in Sec. 3.2.3, in R′G the rates of the transitions leading from the
transit class towards the target class should be reduced by the factor k. The satisfying range
of k between 0 and 1 should be obtained, such that the probabilities p35 and p45 fall below
0.7 as required by equation (1).

SynCoP’15



68 Parameter and Controller Synthesis for ASMCs

GF

G2

G3

G4G5

Off

Full

Empty,Red

Empty,Yellow

Empty,Green

off,0
.2

up,1.25 down,3.5

down,3.5up,1.5

full,k*3.5

ful
l,k
*2
.5

off,0.3

invalid

target

transit

Figure 2 Reduced automaton G of P, and its rate matrix R′
G.

3.1.3 System of equations from G
For each state Gi in transit class, we now construct a new equation (depending on k) for the
probability pi5. In our example, equations for p25, p35 and p45 are obtained from the reduced
automaton G in Fig. 2 as follows:

p25 = 1.25
1.45 × p35 (7)

p35 = 3.5
k × 2.5 + 5.3 × p25 + 1.5

k × 2.5 + 5.3 × p45 + k × 2.5
k × 2.5 + 5.3 (8)

p45 = 3.5
k × 3.5 + 3.5 × p35 + k × 3.5

k × 3.5 + 3.5 (9)

According to equation (1), the following constraints need to be met:

0 < k ≤ 1 0 ≤ p25 ≤ 0.7 0 ≤ p35 ≤ 0.7 0 ≤ p45 ≤ 0.7

Upon solving the system of equations in (7),(8),(9) along with the constraints, we obtain the
satisfying range of k to be 0 < k ≤ 0.326244. Thus, the solution of the parameter synthesis
problem consists of changing P by multiplying the transition rates from P3 to P5 and from
P4 to P5 by such a factor of k. We now proceed to the general algorithm and heuristics
required to solve the parameter synthesis problem.

3.2 General Algorithm
We assume that the original plant is defined as an ASMC, P=(SP ,ΣP , R

′
P , LP ), and the

user requirement is specified by Φ = P∼b(Φ1 U Φ2). Algorithm 1 shows the procedure of how
to determine the set of transition rates to be reduced and how to synthesize the reduction
factor k. For the algorithm to deliver the correct result, the user-given Until formula should
not contain nested probabilistic formulas. Note that this algorithm provides a simple way to
control a plant according to the user requirement, but other, more distinguished, approaches
would be also possible (see Sec. 5).

3.2.1 Generating the reduced automaton G
The first step towards solving the parameter synthesis problem is to create a reduced
automaton G from P.
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Algorithm 1 Parameter synthesis algorithm for untimed Until formulas.
Input: Plant P expressed as ASMC and requirement Φ = P∼b(Φ1 U Φ2)
Output: Set of transitions to be modified and the values of reduction factor k
if transit = ∅ then quit . No states whose probabilities can be modified
else

if P |=transit Φ then quit . No need of par-synthesis, since req. is already fulfilled
else

Construct G = (SG,ΣG, R′G, LG) . Refer Sec. 3.2.1
Find set of trans. rates T to be reduced and reduction factor k . Refer Sec. 3.2.2
Change P to Pmod by reducing the rates of T by factor k

end if
end if

I Definition 3.1 (Reduced automaton G). The reduced automaton G is defined as a tuple
(SG,ΣG, R′G, LG) where:

SG = SP
ΣG = ΣP
Partitioning of P is done according to Def. 2.5
R′G = R′P \ {(s, a, s′) | s /∈ target ∨ s /∈ invalid}
LG = LP

As explained in Algorithm 1, G is created only if transit 6= ∅ and P 6|=transit Φ. Once G
has been constructed according to Def. 3.1, some rates of R′G need to be chosen for synthesis
based upon some heuristics (sec 3.2.3) on the given property Φ.

3.2.2 Obtain k from G
Parameter synthesis is based upon some rules as follows:
1. Transition rates in R′G cannot exceed the original rates in R′P and cannot be made zero.
2. Some transition rates in R′G will be reduced by a common factor k (where 0 < k ≤ 1),

to make sure that the probability during model checking will satisfy the bound given in
Φ. The set of transition rates to be multiplied with k is determined according to the
heuristics explained in Sec. 3.2.3.

3. Create a system of (rational polynomial) equations for model checking. There is one
equation for each state from transit class, representing its probability to reach the target
class via a satisfying path.

4. Impose the constraints on probabilities according to the given Φ.
5. Solve these equations and constraints for the probabilities, and the resultant k leads to a

model that satisfies the user requirement.

3.2.3 Heuristics on G
In R′G, some of the rates need to be reduced by a common factor k, such that G satisfies
the requirement Φ. The following heuristics are applied to modify the rates. If in the given
formula Φ
1. the probability bound is a lower bound, i.e. P≥b(ϕ) or P>b(ϕ), then the rates of all

transitions leading from class transit to class invalid should be multiplied by the reduction
factor k,

SynCoP’15
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2. or, if the probability bound is an upper bound, i.e. P≤b(ϕ) or P<b(ϕ), then the rates
of all transitions leading from class transit to class target should be multiplied by the
reduction factor k.

These heuristics determine the set of transition rates to be reduced, and the common
reduction factor k (0 < k ≤ 1) can then be found by solving the set of equations with the
imposed constraints.

I Theorem 3.2. Assume that transit 6= ∅. Then the set of constrained equations constructed
according to the heuristics in Sec. 3.2.3 will always have a solution.

Proof. For the reduction factor k it holds that 0 < k ≤ 1. This means that one can make
the chosen set of transition rates arbitrarily close to zero (without completely disabling the
transition). The heuristics distinguishes three classes transit, target and invalid, of which
the latter two classes are absorbing. The target and the invalid class are reachable from the
transit class by definition. Hence, the uniform reduction of rates between two classes will
make the transitions between the other two classes more likely and this will always lead to a
solution. J

We end this section by characterizing the relation between the ASMC P and its reduced
automaton G. If G satisfies Φ, that implies that the modified version of P will also satisfy Φ,
because of the fact that G focuses only on transit class of P. This is stated by the following
Theorem.

I Theorem 3.3. For any ASMC P and its reduced automaton G, and for any untimed
until-type formula Φ without nested probabilistic path operators, it holds that

G |=trans Φ =⇒ Pmod |=trans Φ

where Pmod is the modified version of P by applying the reduction factor k to the selected
transitions.

Proof. The proof follows directly from the construction of G and from the semantics of
until-type formulas. J

4 Controller synthesis for untimed asCSL requirements

Having seen the procedure to synthesize parameters for until-type requirements, we now
propose an algorithm to synthesize a controller for general untimed asCSL formulas. Given
a plant P and a user requirement in the form of an asCSL formula, we propose a novel
approach to synthesize a controller C, which is another ASMC to be composed in parallel
with the plant. Controller synthesis will also involve the synthesis of parameters as a subtask.
To better understand the synthesis procedure, we again start this section with an example,
followed by the general algorithm.

4.1 Example
Fig. 3 shows a plant modeled as an ASMC P. The states can have atomic propositions, but
they are not relevant for this example. The transitions shown among the states are labeled
with the actions followed by their respective rates. The plant consists of 4 states and has the
ability to start in any state.
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S1

S2

S3

S4

a, α

b1, β1 b2, β2

c1, γ1 c2, γ2

d, δ

Figure 3 ASMC of plant P.

{tt, {a, c1, c2, d}}

Z1

Z2

Z3

Z4

tt, b1 tt, c1

tt, b2 tt, c2

Figure 4 NPA Zα for the given asCSL pro-
gram α.

Assume that we wish to ensure that in P, once action b1 has taken place, it will be
followed by action c1 with high probability, and the same for actions b2 and c2. For this
criterion, the asCSL user requirement is given as follows,

Φ = P>0.5(α) (10)

where, α is the following asCSL program:

α = ((tt, a) ∪ (tt, c1) ∪ (tt, c2) ∪ (tt, d))∗;
((

(tt, b1); (tt, c1)
)
∪
(
(tt, b2); (tt, c2)

))
(11)

Formula Φ states that the probability to take action bi followed by ci, where i ∈ {1, 2},
should be greater than 0.5, and tt stands for true. The first part of α (covered by the Kleene
star), states that the initial behavior before either action b1 or b2 occur can be arbitrary.
For model checking ASMCs against an asCSL requirement, a NPA Zα (non-deterministic
program automaton) is constructed from the program α. The automaton Zα for the given
α is shown in Fig. 4, and it happens to be deterministic for this example. According to
the asCSL model checking algorithm [3], we now construct the product automaton Q for
P and Zα. Fig. 5 shows this product automaton Q, with the accepting state Q8 and the
absorbing fail state Q7. For model checking we considered the rates in P to be α = 2,
β1 = 4, β2 = 6, γ1 = 6, γ2 = 4 and δ = 3. Model checking the product automaton (with
PRISM [11]) gave that the probability of P satisfying the given Φ is 0.48 (the same for all
states in P), which is a violation of our requirement in equation (10). Hence, we need to
synthesize a controller. A controller has the ability to modify both the transition rates and
also the structural behavior of an ASMC, which is achieved by using parameter synthesis and
controller synthesis respectively. For parameter synthesis, we need to construct a blueprint
automaton B (similar to the purpose of G in Sec. 3) from the product automaton Q, which is
useful for applying heuristics and also to synthesize the controller. Hence, the name blueprint
automaton.

4.1.1 Blueprint automaton B for this example
In the product automaton Q, partitioning of the state space is performed according to the
Def. 2.5, with ϕ = tt U target. Furthermore, states starting from the initial state of Zα are
exclusively placed into set initial. The division of the state space is as below,
1. target class contains all states where Pr{q, ϕ} = 1, i.e. state Q8,
2. invalid class contains those states where Pr{q, ϕ} = 0 , i.e. state Q7,
3. transit class contains the states where 0 < Pr{q, ϕ} < 1, i.e. states Q1, Q2, Q3, Q4, Q5

and Q6.

SynCoP’15
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Figure 5 Product automaton Q.
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Figure 6 Blueprint automaton B from Q.
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Figure 7 Controller C for the plant P and
requirement Φ.
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Figure 8 Result of parallel composition
P‖ΣC C.

4. initial set contains only those states which start from the initial states of Zα, i.e. states
Q1, Q2, Q3 and Q4.

Note that the initial set is not disjoint from the other classes (e.g. some initial states can
be invalid or transit). The reason for this classification is to identify those states which
should satisfy the probability bound given in Φ (10). Fig. 6 shows the classes of B obtained
from Q. From the automaton B, some of the rates are then chosen for parameter synthesis
using heuristics (Sec. 4.2.2). In order to increase the probability from 0.48 to above 0.5 as
in the given Φ, the rates leaving from transit to invalid class are considered for parameter
synthesis. The aim now is to find a suitable value k (0 < k ≤ 1) as the common reduction
factor for these rates. According to the model checking algorithm for asCSL [3], in the
product automaton we only check for ϕ = tt U target formula. As we will see later, to make
P satisfy Φ, it is sufficient if only the states in the initial set of B satisfy Φ, but the states
Q1, Q2, Q3 will not affect the probability as they have single outgoing transition. Hence, only
state Q4 needs to be considered. The probability is computed using the equations below.

Pr(Q4, ϕ) = p48 = β1

β1 + β2
× γ1

γ1 + k × γ2
+ β2

β1 + β2
× γ2

k × γ1 + γ2
(12)

with constraints: 0 < k ≤ 1 0.5 < p48 ≤ 1 (13)

Solving this constrained quadratic inequality for p48 yields k to be (0 < k < 0.92). Hence
any k value from this range satisfies the user given Φ.

4.1.2 Creating controller C for P
The controller will restrict the behavior of the plant according to the user requirements.
We create a controller C, such that (P ‖ΣC C) |=init ∩ transit (P∼b(α)). Hereby, the notation
|=init ∩ transit (P∼b(α)) means that those states s = (Si, Cj) of P ‖ΣC C, where 0 < Pr(s, ϕ) <
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Algorithm 2 Controller synthesis algorithm for general untimed asCSL formulas.
Input: Plant P modeled as ASMC and an untimed asCSL specification Φ = P∼p(α)
Output: Controller C such that (P‖ΣCC) |=init ∩ transit Φ
Construct product automaton Q from P and Zα as in [3] and classify its states
Let ϕ = (tt U target)
if transit = ∅ then quit . No states whose probabilities can be modified
else

if ∀s ∈ transit ∩ initial : s |= Φ then quit . No need of contr. synthesis
else

Construct B = (SB,ΣB, RB, LB) from Q . Refer Sec. 4.2.1
From B, find set of trans. to be modified and the red. factor k . Refer Sec. 4.2.1
Modify the absorbing states in B and multiply the selected rates with k
The result is controller C

end if
end if

1 and Cj contains an initial state of Zα will satisfy Φ. We use B as a blueprint for the
controller, but in order to make its behavior non-blocking we make all the absorbing states
of B non-absorbing as follows:

The absorbing states (S4, ∅) and (S4, Z4) are removed and all the transitions leading
to them are diverted to the state (S4, Z1), because when the plant P has reached state
S4 and whether or not the previous trajectory has satisfied the asCSL program α, the
controlling needs to start again from the initial state of Zα.
The rates which we obtained by parameter synthesis are replaced by the reduction factor
k and the rest of the rates are intentionally set to 1.

Fig. 7 shows the controller C created for the plant P. The transition rates obtained
via parameter synthesis from the states C5 and C6 to C2 are multiplied by the reduction
factor k, and the rest of the rates are unchanged, hence the multiplication factor is 1. We
already obtained the value of k. When the parallel composition is performed between the
original plant P and the controller C, synchronizing over all the actions in ΣC as per the
ASMC parallel composition rules (Def. 2.6), the resultant product automaton satisfies the
user requirement Φ. The result of parallel composition of plant P and the controller C is
shown in Fig. 8.

4.2 General Algorithm for parameter synthesis for untimed asCSL
In Algorithm 1, we explained the general procedure to synthesize the parameters for until type
requirements. Now we give an algorithm to synthesize a controller for general untimed asCSL
requirements (which also includes parameter synthesis). A prerequisite for the algorithm
to work correctly is that the asCSL program α should not contain any nested probabilistic
formulas.

4.2.1 Blueprint automaton B
The blueprint automaton B is based on the product automaton Q of the plant P and Zα.

I Definition 4.1 (Blueprint automaton B). The blueprint automaton B is obtained from the
product automaton Q, along with the following modifications:
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In Q, partitioning of state space is done according to Def. 2.5 for ϕ = tt U target.
Once the partitioning is done, a new set called initial is identified which contains all the
states starting from the initial states of NPA Zα.
Some transition rates of Q are multiplied by the reduction factor k as per the heuristics
in Sec. 4.2.2.

From the resultant automaton B, a set of equations is created, taking into account Th. 27 in
[3] which states that for an ASMC P and an asCSL-program α it holds that

ProbP(s, α) = ProbP×Zα(〈s, Z0〉, tt U target)

where s is a state in P and Z0 is the set of initial states of NPA Zα. From this theorem
it follows that for an ASMC P to satisfy the probability bound in the asCSL formula Φ,
it suffices to make the states of the form 〈s, Z0〉 in the product automaton Q satisfy the
probability bound. Therefore, we construct one equation for each state in transit ∩ initial,
representing its probability to reach the target class via a satisfying path. Solving these
equations yields the value of k.

4.2.2 Heuristics on B
The heuristics on B are similar to those of G (Sec. 3.2.3). It applies between the classes
transit, invalid and target, as the new set initial will not play any role in heuristics.

4.2.3 Controller C
The controller is derived from the blueprint automaton B, but to make the controller non-
blocking, all absorbing states in B should be made non-absorbing (by redirecting their
incoming transitions). The controller C is thus obtained by modifying B as follows:
1. Replace all the states from the invalid class of the form (Si, ∅) with states of the kind

(Si, Z0), where Z0 is the set of starting states of the automaton Zα.
2. All the states from the target class like (Si, Zj) (Zj is a set containing an accepting state

of Zα) are replaced with (Si, Z0).

5 Conclusion

For a given ASMC model (the plant) and an asCSL path-based requirement, we have studied
the problem of controlling the plant in such a way that its states will satisfy the requirement,
wherever possible at all. Satisfaction can be achieved by either a reduction of a subset of the
plant’s transition rates, or by parallel composition with a controller. We have presented two
algorithms: Algorithm 1 performs parameter synthesis for untimed until-type requirements,
and Algorithm 2 extends this concept to controller synthesis for general untimed asCSL
formulas.

In this paper, we have restricted our attention to requirements without nested probabilistic
path operators. Such nesting requires special care, since changing some parameters in order
to satisfy an inner probabilistic path formula can have either a positive or an adverse
effect on the satisfiability of the enclosing formula. As a simple example, the strategy to
maximize the satisfaction set of P≥b1(Φ1 U P≥b2(Φ2 U Φ3)) will not be the same as for
P≤b1(Φ1 U P≥b2(Φ2 U Φ3)), since in the latter case the set of states satisfying the overall
formula will be larger if fewer states satisfy the inner formula. We intend to elaborate on
this in a forthcoming paper.
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The paper has presented feasible solutions, but did not address the question of optimality.
Solutions which are “better” in some sense could be obtained by applying more complex
heuristics than the ones described in this paper, for instance by allowing non-uniform
reduction factors or by also reducing some rates within the class transit. However, how do
characterize the optimal solution and how to obtain it is future work. Another important
issue for future work is the control problem for time-bounded problems which will involve the
computation of transient state probabilities with the method of uniformization.
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