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ABSTRACT
Symbolic approaches based on decision diagrams have shown
to be well suited for representing very large continuous-time
Markov chains (CTMC), as derived from high-level model
descriptions. Unfortunately, each type of decision diagram
requires its own implementation of the numerical solvers for
computing the state probabilities of the CTMC. For this rea-
son, some time ago the idea of separating numerical solution
methods from the representation of the CTMC was proposed
[12], suggesting the implementation of a so-called state-level
abstract functional interface (AFI), which defines classes of
iterators for accessing the entries of the CTMC transition
rate matrix. In this paper we (a) present an implementation
of the AFI for zero-suppressed multi-terminal binary deci-
sion diagrams (ZDDs) [18] and (b) empirically investigate
the viability of matrix-layout-independent implementations
of numerical solvers.

1. INTRODUCTION
High-level description methods for Markovian models, such

as stochastic Petri nets, stochastic process algebras, among
others, have shown to be powerful formalisms for describ-
ing and analyzing concurrent systems. The first step of
quantitative analysis of such models is the generation of a
continuous-time Markov chain (CTMC), where the inter-
leaving semantics of standard high-level model description
methods yields the explicit extraction of all possible execu-
tion sequences of system activities. This may lead to an
exponential blow-up in the number of system states, com-
monly known as state space explosion, which may prevent
or at least hamper the analysis of complex and large sys-
tems. Once the CTMC has been generated, steady-state or
transient probabilities can be computed using a numerical
algorithm which accesses the entries of the transition rate

∗supported by DFG grants SI 710/2 and SI 710/3

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SMCtools ’07, October 26, 2007, Nantes, France
Copyright 2007 ICST 978-963-9799-00-4.

matrix.
Many approaches have been developed in order to cope

with state space explosion on the one hand and limited avail-
ability of memory and CPU time on the other hand. In the
context of numerical solvers, techniques for storing and han-
dling large CTMCs can be grouped into the following four
classes:

1. Methods exploiting mass storage and/or distributed
hardware (e.g. [17, 15, 22]).

2. Reduction and symmetry exploitation techniques based
on state lumping (e.g. [27, 28, 16, 1, 11]).

3. Implicit (or Kronecker-operator-based) representation
techniques (e.g. [26, 3, 5, 4, 7]).

4. Methods employing decision diagrams [6, 24, 29, 30].

Decision diagrams (DD) enable both, the efficient explo-
ration of huge CTMCs, and their compact storage. In [18] we
introduced partially shared zero-suppressed multi-terminal
binary decision diagrams (ZDD for short), and a new method
for efficiently deriving a ZDD-based representation of a high-
level model’s CTMC. This scheme was extended in [19] to
the case of high-level performability models, where we also
presented a ZDD-based variant of the hybrid solution method
which had been previously developed for multi-terminal bi-
nary decision diagrams (MTBDDs) by Parker [25]. Alto-
gether, these innovations enable us to efficiently compute
performability measures on commodity computers for CTMCs
with more than, say, 108 states.

Since different techniques employ different data structures
for storing the transition rate matrix (also referred to as the
“state-level object”), a given iterative solution method usu-
ally has to be be re-implemented for each new representation
format. Thus, it seems very useful to employ a generic inter-
face, which separates the concerns of matrix representation
on the one hand, and implementation of numerical solvers
on the other hand. In order to make matrix representation
and numerical solvers independent of each other, the authors
of [12] presented the idea of a state-level abstract functional
interface (AFI). For demonstrating the competitiveness of
such an interface, the authors provided an implementation of
the AFI within the Moebius modelling framework [9], where
the following matrix layouts were employed:

1. Flat explicit storage, where the transition rate matrix
is stored in a straight-forward manner, employing the
well-known sparse matrix technique.



2. Kronecker representation, where the transition rate
matrix is represented implicitly. On each access to
a matrix element, a Kronecker expression needs to be
evaluated for a set of (local) transition rate matrices.

In this paper, we also describe an implementation of the AFI
within the Moebius modelling framework [9], but based on
the ZDD data structure. For carrying out a sound analy-
sis, not only of our AFI implementation, but for the AFI in
general, two typical benchmark models are analyzed, where
different standard solution methods in combination with dif-
ferent matrix storage formats, ranging from sparse matrix
storage formats over matrix diagrams (MxD) [24] up to our
new type of DD, are employed.

1.1 The Moebius Performability Evaluation Tool
Moebius [9] is a comprehensive software tool for the mod-

elling and evaluation of discrete-event systems, developed
by W.H. Sanders and his group at the University of Illinois.
Moebius supports several formalisms for model specification
and offers different analysis methods for the derivation of
quantitative performability measures, in particular numeri-
cal analysis of Markov chains and discrete-event simulation.
The present paper concentrates on Moebius’ state-level ab-
stract functional interface (state-level AFI) [12, 10] through
which the various numerical solvers access the state-level ob-
ject that was generated from the high-level model descrip-
tion1.

1.2 Organization
The paper is further organized as follows: Sec. 2 presents

details about our implementation of symbolic matrix rep-
resentation and our ZDD-based implementation of the AFI.
Empirical results, obtained from our proprietary ZDD-based
solvers, our implementation of the AFI, as well as its sparse
matrix format and MxD-based implementation [12], are pre-
sented in Sec. 3, and Sec. 4 concludes the paper.

2. THE ZDD-BASED AFI
Our ZDD approach consists of two parts: (1) First we

generate the symbolic representation of a given high-level
model’s underlying CTMC (including the symbolic repre-
sentation of rate and impulse reward functions). (2) Either
by making use of the Moebius solvers, which access the sym-
bolic representations of the CTMC transition rate matrix
via the AFI, or by using our proprietary non-AFI solvers,
we then compute the desired state probabilities.

In the following, we briefly explain how ZDDs are em-
ployed for symbolically representing CTMCs in a compact
way. Our semi-symbolic technique2 for efficiently generat-
ing symbolic representations of CTMCs was explained in
detail in [19]. The symbolic handling of reward functions
is discussed in [19]. We will also discuss ZDD-based matrix
representation, which is a prerequisite for understanding the

1Moebius’ so-called model-level AFI, which constitutes the
interface between the user-level model description and the
tool’s internal data structures, is not of interest for the
present paper.
2We call this technique “semi-symbolic”, since it combines
explicit exploration with symbolic composition and symbolic
reachability analysis. The explicit exploration is thereby
limited to sequences of dependent activities, such that in
practice only a small fraction of the transitions needs to be
explored.

matrix iterators as implemented within the ZDD-based ver-
sion of the AFI. These iterators are described in Sec. 2.3.

2.1 ZDD-based representation of activity-la-
belled CTMCs

2.1.1 Preliminaries:
A high-level model M consists of a finite ordered set of

discrete state variables (SVs) si ∈ S, where each can take
values from a finite subset of the naturals. Each state of
the model is thus given as a vector ~s ∈ S ⊂ N

|S|, where ~s [i]
refers to the current value of the i’th SV in state ~s. When
an activity is executed, the model evolves from one state to
another. For each activity l we have a transition function
δl : S −→ S, the specific implementation of which depends
on the model description method. These transition func-
tions allow one to map a high-level model M to its under-
lying activity-labelled CTMC (aCTMC). If activity labels
are removed, transitions between the same pair of states are
aggregated via summation of the individual rates.

2.1.2 The ZDD data structure:
Zero-suppressed BDDs (z-BDDs) [23] are derivatives of

ordered BDDs for representing sparse sets efficiently. In z-
BDDs, one eliminates all non-terminal nodes which have the
terminal 0-node as their 1-successor (this is called the zero-
suppressing reduction rule). We allow z-BDDs to have more
than two terminal nodes, thereby obtaining zero-suppressed
multi-terminal binary decision diagrams (z-MTBDDs, or ZDDs
for short). ZDDs are a weakly canonical representation of
pseudo-Boolean functions. Standard arithmetic operators
can be performed efficiently on them with the help of a
variant of Bryant’s Apply-algorithm [2]. For simplicity, a
complete (formal) definition and details of the algorithms
are skipped here (they will be published in a forthcoming
paper [20]), but for convenience some elements of ZDDs are
introduced now.

1. The disjoint sets of non-terminal nodes (KNT ) and ter-
minal nodes (KT ).

2. A finite (possibly empty) set of Boolean variables V
with a strict total ordering π. Within an ordered DD
environment, all nodes labelled with the same Boolean
variable xi ∈ V appear at level i.

3. The function then : KNT 7→ KNT ∪ KT , which yields
the then or 1-child of node n.

4. The function else : KNT 7→ KNT ∪ KT , which yields
the else or 0-child of node n.

5. The function value : KT 7→
�

maps a terminal node to
an element of the finite set

�
, where usually

�
⊂ � +.

2.1.3 ZDD based representation of aCTMCs:
Let the transitions defining an aCTMC T be given as

quadruples (a,~s,~t, µ), where ~s,~t ∈ S, the label a is an el-
ement of the finite set of activity labels Act and the rate
µ is an element of

�
⊂ � +. If one defines an adequate

Boolean encoding function E : Act × S × S 7→ � nV for the
transitions, one ends up with a function table of a pseudo-
Boolean function, where the transition rates are considered



as being the function values. A ZDD T is a symbolic repre-
sentation of a given aCTMC T if the following holds for all
transitions of T :

fT(E(a,~s,~t) = µ ⇔ (a, s, t, µ) ∈ T

(The notation fT denotes the function represented by ZDD
T). In case (a, s, t, µ) 6∈ T the characteristic function fT

evaluates to 0. Within our model world, we employ the
following ordered sets of Boolean variables:

1. ~a := (a1, . . . , aBAct
) for encoding the activity labels,

2. ~s i := (si
1, . . . , s

i
Bi

) for encoding the SV si in the source
state ~s of a transition,

3. ~t i := (ti
1, . . . , t

i
Bi

) for encoding the SV si in the target

state ~t of a transition.

The s- and t-variables are collected as two ordered tuples,
where a most-significant bit first order is assumed, yielding:

~s := (s1, . . . , sm) := (s1B1
, . . . , s11, . . . , s

n
Bn

, . . . sn
1 ) and

~t := (t1, . . . , tm) := (t1B1
, . . . , t11, . . . , t

n
Bn

, . . . tn
1 ).

(1)

In order to keep the DDs small, we employ a variable order-
ing in which the Boolean vector ~a appears first. Starting at
level BAct + 1 the Boolean vectors encoding source and tar-
get states follow in an interleaved fashion. This interleaved
ordering of s and t variables is a commonly accepted heuris-
tics for obtaining small DD sizes [13, 14, 29].
As an example, the reader is referred to Fig. 1. Part (i)
depicts a small aCTMC T , where the states consist of two
SVs only (s1, s2). The binary encodings of the transitions
is given in Fig. 1.ii. This function table defines a pseudo-
Boolean function, which enables one to construct the respec-
tive ZDD B, as depicted in Fig. 1.iii.

It has been (empirically) found that the ZDD-based rep-
resentation is more compact than the representation based
on standard MTBDDs, where a factor of approximately two
to three in space and runtime to the advantage of ZDDs has
been observed. This not only has the positive effect that the
construction and manipulation times for the symbolic rep-
resentation are reduced, but also memory space and CPU
time required for computing state probabilities are reduced
by about the same factor [18, 19, 21].

2.2 The hybrid approach to computing state
probabilities

2.2.1 Preliminaries
(a) ZDD based representations of matrices: If row and

column indices of a matrix M are encoded in binary form,
each real-valued (2n × 2n) matrix M can be interpreted as
a pseudo-Boolean function, so that fM(E(r, c)) = M(r, c),
with |V| = 2n. The connection to the ZDD based encoding
of an aCTMC is as follows: One abstracts from the Boolean
variables encoding the activity labels (the a-variables), and
interprets the Boolean variables collected in the vectors ~s
and ~t (cf. Eq. 1) as binary encoded row and column indices.
An example is shown in Fig. 1: Abstracting from the activity
labels (Fig. 1.iii), one obtains ZDD A which directly encodes
the underlying transition rate matrix as shown in Fig. 1.iv.

(b) Access-pattern to the matrix entries: Since we defined
a “most-significant-bit-first” ordering as well as an inter-
leaved ordering of the ~s and ~t variables, a depth-first traver-
sal of the ZDDs realizes a block-wise access-pattern to the

elements of the represented matrix. I.e. the Boolean expan-
sion for variable s1 is fM = s1f

M
1 +¬s1f

M
0 , where the respec-

tive (sub-)graphs of fM

{0,1} give the upper or lower half of the
matrix M . The subsequent expansion of t1 gives one then
the individual quadrants of M . Boolean expansion for the
first pair of variables s1, t1 thus yields:

fM = s1t1f
M

11 + s1¬t1f
M

10 + ¬s1t1f
M

01 + ¬s1¬t1f
M

00.

The graph rooted in node representing fM

~b
is a symbolic

representation of sub-matrix Mi,j , with E(i, j) = ~b. This
access scheme can be applied recursively to each submatrix
until one reaches the level of terminal nodes. For a (4 × 4)
matrix M this would give us the matrix elements mr,c in
the following sequence: m0,0, m0,1, m1,0, m1,1, which are the
matrix entries of the upper left quadrant of M . The next
elements to follow are m0,2, m0,3, m1,2, m1,3, which are the
elements of the upper right quadrant, and so on.

As an example, we refer to Fig. 2 (left) which shows a
matrix C and its ZDD-based representation. In order to il-
lustrate the block-wise addressing scheme realized by the
chosen variable ordering, the matrix is shown as a table
equipped with Boolean variables. The valuation ¬s1¬t1,
which corresponts to the diagonally hatched nodes of ZDD
C, leads to the sub-ZDD rooted in node n1 at level s2, rep-
resenting the sub-function fC

00(s2, t2). This means that we
extracted the upper left block-matrix C(0, 0), whose entries
are given by the values of the terminal nodes reachable from
n1 (including the 0-entries that we chose to ignore so far).
A depth-first traversal with else-edge first delivers the se-
quence 0, 0, µ, 0 of matrix entries.

2.2.2 Extending ZDDs for efficiently computing matrix-
vector products

The symbolic solvers as well as the ZDD-based implemen-
tation of the Moebius AFI considered in this paper employ
an approach in which the generator matrix is represented
by a symbolic data structure and the probability vectors are
stored as arrays.

(a) Offset-labelling of ZDD-nodes: If n Boolean variables
are used for state encoding, there are 2n potential states,
of which only a small fraction may be reachable. Allocat-
ing entries for unreachable states in the vectors would be a
waste of memory space and would severely restrict the appli-
cability of the algorithms (for instance, storing probabilities
as doubles, a vector with about 134 million entries already
requires 1 GByte of RAM). Therefore a dense enumeration
scheme for the reachable states has to be implemented. This
is achieved via the concept of offset-labelling, as had been
first suggested for the MTBDD data structure by [25]. In
an offset-labelled ZDD, each node is equipped with an offset
value. While traversing the ZDD encoding the matrix, in or-
der to extract a matrix entry, the row and column index in
the dense enumeration scheme can be determined from the
offsets, basically by adding the offsets of those nodes where
the then-Edge is taken. In other words, the offsets are used
to map the ~s and ~t vectors to a pair (r, c) of (densely enu-
merated) row and column indices.
As an example, one may refer to Fig. 2.iii. On the left the
ZDD of Fig. 1.iii is depicted once again. At the right, one
can see the offset-labelled variant of the same ZDD. This
makes it possible to interpret the ZDD now as a (3× 3) ma-
trix, where in contrast to the matrix of Fig. 1.iv the third
row and column are masked, since state 10 is not reachable.
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Figure 1: aCTMC, its ZDD based representation and underlying transition rate matrix

As Fig. 2.iii also illustrates, within offset-labelled ZDDs iso-
morphic nodes are merged only if they also carry the same
offset. Thus the diagonally hatched node within the origi-
nal ZDD needs to be duplicated, once the offset-labelling is
added.

(b) Block-structured hybrid offset-labelled ZDDs: The space
efficiency of symbolic matrix representation comes at the
cost of computational overhead, caused by the recursive
traversal of the ZDD during access to the matrix entries. For
that reason, [25] introduced the idea of replacing the lower
levels of the MTBDD by explicit sparse matrix represen-
tations, which works particularly well for block-structured
matrices. In the context of our work, we call the resulting
data structure hybrid offset-labelled ZDD. The level at which
one switches from symbolic representation to sparse matrix
representation, called sparse level, depends on the available
memory space, i.e. there is a typical time/space tradeoff.
The Gauss-Seidel method requires row or column-wise access
to the matrix entries. Unfortunately, this cannot be realized
efficiently with ZDD-based representations, if the interleaved
variable ordering as described above is chosen. As a com-
promise, [25] developed the so-called pseudo-Gauss-Seidel
(PGS) iteration scheme. Given a ZDD which represents the
matrix, each inner node at a specific level corresponds to a
block. Pointers to these nodes can be stored, which means
that effectively the top levels or variables of the ZDD have
been removed. The ZDD level at which the root nodes of
the sub-matrices reside is called block level. When removing
the upper b levels, one partitions the matrix into blocks, not
necessarily of equal size, due to unreachable states. This
allows one to access the blocks in a descending or ascend-
ing order and thus employ the Gauss-Seidel iteration scheme
among the blocks, where within the blocks the Jacobi itera-
tion scheme must be used.
Fig. 2.iv shows an example where the offset-labelled ZDD of
Fig. 2.iii is block-structured. In order to achieve a correct
indexing of the matrix entries, one not only has to store ref-
erences to the root nodes of each block, but also the initial
row and column offset. In terms of Fig. 2.iv, these pairs are
depicted on top of the root nodes.
In total, block-structuring and the hybrid storage format
yield a memory structure in which some levels from the top
and some levels from the bottom of the ZDD have been re-

placed by sparse matrix structures. We call such a memory
structure a block-structured hybrid offset-labelled ZDD. The
choice of an adequate sparse level s and an adequate block
level b is an optimization problem. In general, increasing
b improves convergence of the PGS scheme, and replacing
more ZDD levels by sparse structures improves speed of ac-
cess.

2.3 Accessing the transition rate matrix via the
AFI

Analogously to our proprietary ZDD-based solvers de-
scribed in [19], our AFI implementation operates on offset-
labelled (hybrid) ZDDs representing the transition rate ma-
trix. However, contrary to the symbolic solvers, the AFI-
based solvers do not have any knowledge about the symbolic
data types employed, they simply iterate over the matrix in
an element-wise, row-wise, column-wise or sub-matrix-wise
fashion. The implementation of these different access pat-
terns will be discussed in greater detail now.

2.3.1 Iteration over all matrix entries
The allEdges container defined in the AFI returns all ma-

trix entries in an arbitrary order, where the value and the
pair of indices must be delivered. In case of ZDDs, this can
be achieved by a hanging recursive depth-first search graph
traversal. The matrix entry to be delivered by the iterator
is given by the value of the currently visited terminal node,
as well as the computed row and column offsets. In details
the algorithm work as follows: Upon initialization, the itera-
tor descends to the first non-0 terminal node by repetitively
taking the else-edge if it does not lead to terminal 0-node
or the then-edge otherwise. Every time the else-edge is cho-
sen, the current node and the row and column offset values
are pushed onto a stack so the then-successor can be pro-
ceeded later. Consequently, this stack implements the func-
tionality of a program stack, such that the recursion can
be split over the subsequently executed accesses. When the
solver calls for the next matrix element via the ++-iterator
or next-operator, the topmost element is removed from the
stack and the next recursive step is performed until a non-
zero terminal node is reached, where the traversed nodes
are once again pushed onto the stack. An empty stack sig-
nals the end of the graph traversal, causing the iterators
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Figure 2: Block-wise access (left), and extending ZDDs by offsets (right)

to set their end -flag, which may cause the solvers to start
with the next iteration of the solution method. Since the
hanging recursion follows always the else-edge first, the al-
gorithm implementing the above functionality is denoted as
GetLeftChildFST.
For exemplification one may refer to Fig. 2.v. At the first
call GetLeftChildFST traverses the path with the diagonally
hatched nodes. When leaving node n4 via its then-edge, the
routine pops it from the stack. Since in the next step a ter-
minal node is reached GetLeftChildFST stops and returns
(λ, (0, 1)) to the iterator calling function. Node n3 is hereby
left at the top of the stack, so that within the next step
GetLeftChildFST can resume with traversing its sub-graph.

For hybrid ZDDs the above procedure needs to be slightly
adapted: when reaching the sparse level, one starts iterat-
ing over the sparse matrices, thereby book-keeping row and
column offsets accordingly.

2.3.2 Access to matrix rows and columns
As explained above, the interleaved ordering of variables

encoding row- and column indices is a commonly accepted
heuristics for obtaining small DD sizes. However, this comes
with the drawback that graph traversal organized in a depth-
first style does not visit the matrix elements in row or col-
umn order (see once again Fig. 2 (left)). For resolving the
collision between ordering and access scheme, one may ex-
tract the currently required column or row-entries by exe-
cuting a multiplication between the BDD Zc representing
the binary encoded column (or row) index and the ZDD
ZM representing the transition rate matrix. I.e. by comput-
ing Ztmp := Zc · ZM and subsequently abstracting over the
variables encoding the row (or column) indices (ZAbstract
(Ztmp,~s, +)) one obtains a symbolic representation of the
column (or row) vector representing the respective matrix
column (or row). The fact that employed DDs, i.e. especially
the ZDD representing the transition rate matrix (ZM ), are

offset-labelled, does not affect the operation, we only have
to copy the offsets of the nodes of ZM to the nodes in the re-
sulting DD Ztmp, so that its traversal yields the correct row
and column indices of the dense enumeration as induced by
the offset labelling scheme.

Encoding and constructing Zc is hereby very efficient,
whereas the multiple execution of Zc · ZM is computation-
ally expensive. As an alternative one could think of generat-
ing and storing the ZDDs representing the different rows or
columns separately. However, such a strategy is not feasible,
it would significantly increase the number of ZDD nodes for
storing the respective symbolic structures. But most impor-
tantly, the storage of the root nodes would induce a non-
tolerable memory requirement. Therefore the extraction of
row or column entries as illustrated above is executed on-
the-fly, i.e. by means of a hanging recursive graph-traversal.
This severely complicates the iterator code, since not only
the zero-suppressing reduction rule must be taken into ac-
count, but also the branching is crucial, since one needs to
traverse each path until it is evident that it does not encode
the indices of the row or column currently accessed. In case
this is known, the traversing algorithm performs a rollback
to the last valid branching.

The column and row iterator as described above, do not
currently support hybrid offset-labelled ZDDs nor the block-
structured variant, but only pure offset-labelled ZDDs.

2.3.3 Submatrix access to the matrix:
Access to submatrix partitions is implemented with two

different approaches:
(a) Block-structuring with variably sized blocks: The first

implementation follows the block-partitioning approach as
employed under the pseudo Gauss-Seidel method. Since
each inner node of the ZDD ZM represents a submatrix,
one simply needs to remove the upper b levels, so that the
root nodes of the block matrices all reside at the same level,



commonly denoted as block level. Due to the fact that the
blocks may contain different numbers of reachable states,
the blocks are in general neither quadratic nor of the same
size. For compensating this problem, each root node must
be furthermore equipped with an initial row and column off-
set. Arising from the different sizes of the blocks, the block-
structured access to the matrix entries can only be used with
solvers that make no special demands on the partitioning.

(b) Block-structuring with specifically sized blocks: In the
attempt to allow arbitrary matrix partitioning, i.e. a parti-
tioning where the blocks must be of a specific size, e.g. all
sub-matrices need to be square matrices of the same size,
a second implementation of submatrix access exists. This
implementation mainly follows the idea of the row/column
access, i.e. one intends to create a ZDD that encodes all
states in the requested sub-matrix partition by multiply-
ing the transition matrix ZM with the symbolic encodings
belonging to the current partition (of reachable states) Sj .
Let the set of reachable states be somehow partitioned (
S = S1 ] . . .]Sn). Based on this partitioning, the respective
block entries contained in the overall transition matrix ZM

can be extracted as follows:

∀ Sj , Sk ∈ {S1, . . . , Sn} :

Z
Sjk

M :=

 

P

~x∈Sj

Z~s:=~x

!

·

 

P

~y∈Sk

Z~t:=~y

!

· ZM ,

The remarks about memory and time consumption made
in the context of the row/column-access scheme also apply
in principle to this access scheme. However, the number of
blocks is much smaller than the number of reachable states,
thus a caching of the symbolically represented sub-matrix

Z
Sjk

M seems useful and will significantly speed-up the access
times.

3. EMPIRICAL EVALUATION
We employed the following solution methods for bench-

marking the implemented AFI-iterators: (a) Jacobi solution
method (JAC) for accessing the matrix entries in an arbi-
trary order3. (b) Gauss-Seidel method (GS) for accessing
the matrix entries in a row-wise manner. (c) Takahashi so-
lution method for accessing the matrix entries in block-wise
style. Before we give details about the collected runtime
data, we briefly describe the software structure, employed
benchmark models and platform on which the software was
executed.

3.1 Preliminaries

3.1.1 Implementation
The software employed for benchmarking the ZDD-based

AFI implementation consists of the following modules:
(a) The ZDD-based framework: This framework is imple-

mented by us and incorporated into the Moebius modelling
tool:

1. A symbolic engine for generating a ZDD-based repre-
sentation of the high-level model’s underlying (activ-
ity/reward-labelled) CTMC.

3For access in arbitrary order, one could also employ the
Power method for computing steady-state probabilities or
the uniformization method for computing transient proba-
bilities.

2. Proprietary ZDD-based hybrid solvers for computing
steady state and transient state probabilities, which
access the matrix element directly, i.e. not via the AFI.
The run-time data of these solvers will be headed by
the title ZDD no AFI in the following tables.

3. The ZDD-based implementation of Moebius AFI as
described in the previous section. The run-time data
of these ZDD and AFI-based solvers will be headed by
the title ZDD stand (for standard) in the tables.
For speeding up matrix access we also implemented an
optimized version, where we removed all s and t vari-
ables residing above the sparse level yielding a nested
sparse matrix structure. I.e. similar to the approach of
[22], every ZDD-path from the root node to the sparse
matrix structures is substituted by a pointer. Since the
blocks are in general not of equal sizes, each pointer
must be equipped with the appropriate row and col-
umn offsets. The run-time data of the optimized ZDD
and AFI-based solvers will be headed by the title ZDD
opt (for optimized). In contrast to [22], we make use of
a linked list and not a sparse matrix storage scheme for
administering the root nodes and initial offsets of the
symbolic submatrix representations. This decreases
memory requirements clearly, since blocks containing
only zeros can be omitted. The major disadvantage of
the optimized approach, no matter if one uses a sparse
matrix format or a linked list, is the increase in mem-
ory consumption, since the pointers (and their pair of
offsets) must be stored for each submatrix.

(b) Components of the Moebius performance evaluation
tool:

1. Implementation of the AFI iterating over matrices stored
in sparse-matrix format [12] and an implementation
of iterators working on MxD-based representations of
the transitions matrix [10].

2. The AFI-based numerical solvers for computing steady
state and transient state probabilities as provided by
the Moebius tool.

3.1.2 Benchmark models and platform
For evaluating our ZDD-based implementation of the AFI

we employed two well-known benchmark models, namely the
Kanban model (Kanban) [7] and the Flexible Manufacturing
System model (FMS) [8]. Both models are parameterized by
the initial number of tokens within dedicated places, where
in the following these numbers are described by parame-
ter N . Depending on N , column 2 and 3 of Tab. 1.B give
the number of states (states) and the number of transitions
among them (trans). The number of transitions is equal to
the number of non-zero entries of the transition rate matrix,
and the number of states indicates its dimension.
All benchmarking experiments were executed on Pentium 4
systems with a Linux OS, where we employed either 3 GHz
or 2.88 GHz machines. I.e. the figures of Tab. 1 were pro-
duced on a P4 with 3.0 GHz and 1 GByte of RAM, whereas
the figures of all other tables were produced on a P4 with
2.88 GHz and a maximum of 3 GByte of RAM.

3.2 Jacobi solution method (JAC)
Tab. 1 shows the iteration time and memory consumption

when employing Moebius’ JAC-solver in combination with



(A) CPU time consumed per iteration (in seconds)

ZDD opt. ZDD stand ZDD
N sparse MxD s := 0.0 s := 0.66 s := 0.0 s := 0.66 no AFI

(a) Flexible Manufacturing System (FMS)

6 0.2400 0.2548 0.6068 0.2120 0.7760 0.2560 0.0560
8 2.1889 2.2521 5.5464 1.8801 7.7265 2.4522 0.5184
10 ??? 14.2405 34.3484 11.6827 47.0149 13.9949 3.2734

Time per iteration in seconds

6 4.2857 4.5500 10.8357 3.7857 13.8570 4.5714
8 4.2222 4.3441 10.6984 3.6265 14.9036 4.7299
10 ??? 4.3504 10.4932 3.5690 14.3627 4.2753

Ratios, normed to ZDD (no AFI)

(b) Kanban Manufacturing System (Kanban)

5 0.8213 2.3669 2.9758 1.1713 4.0815 1.5433 0.2884
6 ??? 9.9166 14.2427 5.5343 20.5173 7.4737 1.3533
7 ??? 37.3503 56.1271 21.0813 78.6449 27.8845 5.4195

Time per iteration in seconds

6 2.8474 8.2067 10.3178 4.0610 14.1512 5.3509
8 ??? 7.3278 10.5246 4.0896 15.1611 5.5226
10 ??? 6.8918 10.3564 3.8899 14.5114 5.1452

Ratios, normed to ZDD (no AFI)

(B) Memory space consumed (in MByte)

ZDD
N #states #trans iter vecs. sparse MxD s := 0.66 s := 0.33

(a) FMS

6 0.54E6 4.21E7 8.21 87 16 23 20
8 4.46E6 3.85E7 68.05 760 109 135 116
10 2.54E7 2.35E8 387.54 ??? 595 679 606

(b) Kanban

5 2.55E6 2.45E7 38.86 447 70 73 66
6 1.13E7 1.16E8 171.83 ??? 284 294 272
7 4.16E7 4.50E8 635.45 ??? 1008 1044 979

Table 1: Times per iteration for the AFI-based implementation of the JAC method

different data types and their different AFI-based implemen-
tation for iterating over all matrix entries in an arbitrary
order. The upper tables of Tab. 1.A give the plain iteration
times in seconds, whereas the lower tables contain ratios by
norming the AFI-based iteration times to the iteration times
of the proprietary (hybrid) symbolic solver. The positions
filled with ??? refer to cases, where a solution could not
be computed due to memory restrictions. Col. sparse con-
tains the iteration time when the AFI in combination with a
sparse matrix format was employed [12] and column MxD
contains the figures as produced by the MxD-based AFI im-
plementation as described in [10]. Concerning a ZDD-based
representation of transition rate matrices one needs to dis-
tinguish between the optimized version (ZDD opt) and the
standard version (ZDD stand). In both cases we varied the
sparse level, so that either 0% or 66% of the ZDD was con-
verted into sparse matrix format. In the last column of
Tab. 1.A the iteration times of the proprietary ZDD-based
JAC-solvers are given, where we also converted 66% of the
offset-labelled ZDD into sparse matrix format. As one can
obtain from the lower tables (the ones containing the ra-
tios) the use of ZDDs in combination with the AFI imposes
a severe run-time overhead. However, when also employ-

ing hybrid ZDDs this overhead can be reduced clearly, but
nevertheless the imposed runtime overhead is not ignorable
when it comes to practice, e.g. for 1,415 iterations required
for computing steady state for the FMS (N := 10) model one
consumes 4.59h CPU time with the optimized ZDD-version
(s := 0.66), whereas the proprietary ZDD JAC-solvers only
requires 1.29 h. The overhead is not really surprising, since
profiling reveals that 35% of the CPU time is spent for rou-
tine GetLeftChildFST, 22% for the routine executing each
numerical iteration step (perform_iter()) and 16% for the
++-operator, which calls GetLeftChildFST. The alternate
execution of these methods, which are implemented either
within the AFI-based solver or within the state-level object
encapsulating the transition matrix, imposes additional load
on the operating system, which in fact clearly reduces the
performance of the solver.

Tab. 1.B shows the overall memory consumption of the dif-
ferent solvers, including the memory consumption of the two
probability vectors as shown in column 4 (iter vecs.), which
in case of the symbolic matrix representations (MxD or
ZDD-based) is the most resource consuming part. By com-
paring the memory requirements of the ZDD-based solvers
(AFI-based and proprietary), we found out, that the addi-



tional memory overhead of the AFI is negligible. This is
of course obvious if one keeps in mind that probability vec-
tors and sparse matrices of the hybrid ZDDs are the most
memory consuming parts. For investigating this effect, we
therefore lowered the number of levels converted into sparse
matrix format to 33%, which reduces the memory consump-
tion as shown in the last two columns of Tab. 1.B.

3.3 Gauss-Seidel solution method (GS)
Tab. 2 shows the runtime data as collected when solving

the FMS and Kanban model with the Gauss-Seidel method.
It is important to note that in case of the proprietary ZDD-
based solvers the pseudo Gauss-Seidel method, as described
in the previous section, was employed, where the upper 50%
of the DD-levels was replaced. The positions within Tab. 2
filled with xxx refer to cases, where the computation of a so-
lution was not feasible due to time restrictions. As expected,
the row-wise access to the matrix elements yields in case of
ZDDs a non-tolerable run-time overhead, which makes a dy-
namic row-extraction useless in practice. This might also be
the reason, why – as far as we know – the MxD-based version
of row-wise access was never implemented.

The disappointing runtimes in case of the ZDD-based AFI
as given in Tab. 2.A and B mostly stem from the excessive
calls to the routine AFIApplyMult(), which extracts the dif-
ferent rows (or columns) from the matrix and annotates the
nodes of the resulting ZDD with the correct offsets. But
besides the bad runtimes in case of the ZDD-based AFI,
Tab. 2.A and B also indicate the overhead imposed by the
AFI when standard sparse matrix technology is employed.
As one can read from the tables, the AFI increases the CPU
times by a factor of approximately 3. Similar to what we
observed with the JAC-solver, such an increase is not dra-
matic, but from a practical point of view severely reduces
the applicability of the AFI.

In contrast to the allEdges-iterator, the row-iterator as
employed by the GS-based solver does currently not make
use of block-structured and/or hybrid offset-labelled ZDDs
(it uses pure offset-labelled ZDDs). Implementing these fea-
tures would improve CPU time consumption to a certain
extent, but it would certainly not reduce the runtime by
two orders of magnitude.

In contrast to the JAC method, the (pure) GS method
does not require the use of an additional iteration vector,
which significantly reduces the memory requirement of the
method. Thus, if memory limitation is not an issue, one
may think of pre-generating symbolic representations for
each row, so that the computationally expensive generation
during each numerical iteration is avoided. Alternatively,
one may also think of replacing the interleaved ordering
scheme by a sequential order, where the variables encoding
the rows come first and the variables encoding the column
thereafter. However, we did not implement and investigate
such strategies, since the ZDD-based PGS-method already
delivers highly competitive results.

3.4 Takahashi solution method
The method of Takahashi is an iterative aggregation/dis-

aggregation method for computing the steady-state proba-
bility vector of a Markov chain [32, 31]. The state space is
partitioned into K blocks, and in each iteration an aggre-
gated system of size K is constructed based on the current
approximation of the solution vector. Each outer iteration

sparse matrix ZDDN
tpart titer. tpart titer.

ratio

(A) Flexible Manufacturing System
6 0.8121 1.5952 157.3498 14.4299 0.1106
8 10.2246 16.5459 1,787.4957 293.2779 0.0564

(B) Kanban System
5 3.2002 20.0452 577.8441 74.5958 0.2687

Table 3: CPU times when employing the Takahashi
solution method

of the Takahashi algorithm includes the solution of the ag-
gregated system and the solution of the K systems corre-
sponding to the individual blocks, i.e. in one iteration K +1
smaller sized systems must be solved in order to obtain a
new approximation of the overall solution.

In the implementation under study, the overall matrix is
partitioned into blocks of predefined size, whereby for each
block a separate ZDD is constructed with the help of the
AFI routine getSubMatrixPartition. During iteration, the
individual blocks are accessed through routine getSubMa-

trix. Tab. 3 shows the timing results for the Takahashi
method, where the AFI is employed for accessing the ma-
trix blocks represented as sparse matrices (columns 2 and 3)
and as ZDDs (columns 4 and 5). The table lists the times
for partitioning the matrix into blocks, and the times for one
outer Takahashi iteration. The last column (“ratio”) has now
a different meaning than in the previous tables, it denotes
the ratio between the sparse matrix iteration time and the
ZDD iteration time. Looking at both, the absolute times
and the ratios, it is obvious that the partitioning into blocks
of predefined size, which in general do not correspond to
ZDD subgraphs, causes an immense overhead. It should be
pointed out that, in the current implementation, the blocks
are represented by pure (i.e. non-hybrid) ZDDs. The itera-
tion times could be improved to some extent by replacing the
lower parts of these block-ZDDs by sparse matrices, thereby
speeding up the access to the matrix elements.

4. CONCLUSION
This paper investigated the pros and cons of a state-level

abstract functional interface (AFI) in the context of Marko-
vian performability modelling. Such an interface can be
used for accessing the entries of a matrix represented by
a symbolic data structure. It separates numerical solution
methods from the underlying data structure used for matrix
representation: A given numerical method accesses matrix
elements through the AFI and therefore does not need to
know any details of the data structure.

The Moebius state-level AFI had previously been imple-
mented (at least partially) for the sparse matrix, Kronecker
and MxD data structures. The present paper described a
complete implementation for state-level objects in the ZDD
format. We conducted an empirical assessment which basi-
cally resulted in the two following findings:

1. Even for access pattern which match very well with
the state-level object, the AFI may pose a significant
runtime overhead.

2. Numerical algorithms which require a particular access
pattern to the matrix entries will always work through



sparse ZDD
N no AFI AFI ZDD opt ZDD stand no AFI

(A) FMS
6 0.0556 0.1608 74.8367 133.7204 0.1368
8 0.5080 1.4925 832.0120 1,512.2945 0.8693
10 ??? ??? xxx xxx 5.0279

Time per iteration in seconds

6 0.4064 1.1754 977.4237 977.4237
8 0.5844 1.7170 1,739.7614 1,739.7614
10 ??? ??? xxx xxx

Ratios, normed to ZDD (no AFI)

(B) Kanban
5 0.2545 0.7360 298.6627 715.8367 0.3648
6 ??? ??? 1,406.4719 3,633.2871 1.7157
7 ??? ??? xxx xxx 6.5536

Time per iteration in seconds

5 0.6976 2.0175 818.6509 1,962.1480
6 ??? ??? 819.7623 2,117.6617
7 ??? ??? xxx xxx

Ratios, normed to ZDD (no AFI)

Table 2: Times per iteration when employing the GS method

the AFI, but they will not achieve high performance,
unless this pattern conforms with the underlying data
structure.

Overall, an AFI makes it easier to introduce new storage for-
mats for the matrices while reusing existing solution meth-
ods. However, it is clear that numerical algorithms will not
achieve high performance unless they are somewhat tailored
to the underlying data structure.

Acknowledgements: The authors would like to cor-
dially thank Bill Sanders and the Moebius developers group
from the University of Illinois for making Moebius available
to us and for several fruitful discussions.

5. REFERENCES
[1] P. Bazan and R. German. Approximate Analysis of

Stochastic Models by Self-Correcting Aggregation. In
2nd Int. Conf. on Quantitative Evaluation of Systems
(QEST’05), pages 134–144. IEEE Comp. Soc., 2005.

[2] R.E. Bryant. Graph-based Algorithms for Boolean
Function Manipulation. IEEE Transactions on
Computers, C-35(8):677–691, August 1986.

[3] P. Buchholz. Numerical Solution Methods Based on
Structured Descriptions of Markovian Models. In
G. Balbo and G. Serazzi, editors, Proc. 5th Int. Conf.
on Modelling Techniques and Tools for Computer
Performance Evaluation, pages 242–258. Elsevier
Science Publisher B.V., 1992.

[4] P. Buchholz. Structured Analysis Techniques for Large
Markov Chains. In Proc. 1st Workshop on Tools for
Solving Structured Markov Chains, Pisa, 2006. ACM
Press, CD Edition.

[5] P. Buchholz and P. Kemper. Kronecker Based Matrix
Representations for Large Markov Models. In
C. Baier, B. Haverkort, H. Hermanns, J.P. Katoen,
and M. Siegle, editors, Validation of Stochastic
Systems – A Guide to Current Research, pages
256–295. Springer, LNCS 2925, 2004.

[6] G. Ciardo and A. S. Miner. Efficient reachability set
generation and storage using decision diagrams. In
Proc. of 20th Int. Conf. on Application and Theory of
Petri Nets, LNCS 1639, pages 6–25. Springer, June
1999.

[7] G. Ciardo and M. Tilgner. On the use of Kronecker
operators for the solution of generalized stochastic
Petri nets. Technical Report 96-35, Institute for
Computer Applications in Science and Engineering,
1996.

[8] G. Ciardo and K. Trivedi. A decomposition approach
for stochastic reward net models. Performance
Evaluation, 18(1):37–59, 1993.

[9] D. Deavours, G. Clark, T. Courtney, D. Daly,
S. Derisavi, J. Doyle, W.H. Sanders, and P. Webster.
The Moebius Framework and Its Implementation.
IEEE Transactions on Software Engineering,
28(10):956–969, 2002.

[10] S. Derisavi. The Moebius State-level Abstract
Functional Interface, 2005. Master Thesis. University
of Illinois at Urbana-Champaign (IL, USA).

[11] S. Derisavi. A Symbolic Algorithm for Optimal
Markov Chain Lumping. In O. Grumberg and
M. Huth, editors, TACAS 2007, pages 139–154.
Springer, LNCS 4424, 2007.

[12] S. Derisavi, T. Courtney, P. Kemper, and W. H.
Sanders. The Moebius State-level Abstract Functional
Interface. In Proc. of Performance Tools 2002: 12th
Int. Conf. on Modelling Tools and Techniques for
Computer and Communication System Performance
Evaluation, pages 31–50, 2002.

[13] R. Enders, T. Filkorn, and D. Taubner. Generating
BDDs for symbolic model checking in CCS.
Distributed Computing, 6(3):155–164, 1993.

[14] M. Fujita and P. McGeer, editors. Formal Methods in
System Design: Special Issue on Multi-terminal
Binary Decision Diagrams, 1997. Vol. 10, No. 2/3.

[15] B.R. Haverkort, A. Bell, and H. Bohnenkamp. On the



Efficient Sequential and Distributed Generation of
very Large Markov Chains from Stochastic Petri Nets.
In Proc. of IEEE Petri Nets and Performance Models,
pages 12–21, 1999.

[16] H. Hermanns and M. Ribaudo. Exploiting Symmetries
in Stochastic Process Algebras. In Simulation-Past,
Present and Future. 12th European Simulation
Multiconference, pages 763–770. SCS International,
June 1998.

[17] W.J. Knottenbelt. Parallel Performance Analysis of
Large Markov Models. PhD thesis, University of
London, Imperial College, Dept. of Computing, 1999.

[18] K. Lampka and M. Siegle. Activity-Local State Graph
Generation for High-Level Stochastic Models. In
Measuring, Modelling, and Evaluation of Systems
2006, pages 245–264. VDE-Verlag, April 2006.

[19] K. Lampka and M. Siegle. Analysis of Markov Reward
Models using Zero-supressed Multi-terminal decision
diagramms. In Proceedings of VALUETOOLS 2006
(CD-edition), October 2006.

[20] K. Lampka, M. Siegle, J. Ossowski, and C. Baier.
Zero-Suppressed Multi-Terminal BDDs: Concept,
Algorithms and Applications. Manuscript in
preparation.

[21] K. Lampka, M. Siegle, and M. Walter. An easy-to-use,
efficient tool-chain to analyze the availability of
telecommunication equipment. In Proc. Formal
Methods on Industrial Critical Systems 2006, LNCS
4346, pages 35–50, 2006.

[22] R. Mehmood. Disk-based techniques for efficient
solution of large Markov chains. PhD thesis,
University of Birmingham, University of Birmingham
(U.K.), October 2004.

[23] S. Minato. Zero-Suppressed BDDs for Set
Manipulation in Combinatorial Problems. In Proc.
30th Design Automation Conference (DAC), pages
272–277, Dallas (Texas), USA, June 1993. ACM /
IEEE.

[24] A. Miner and D. Parker. Symbolic Representations
and Analysis of Large State Spaces. In Validation of
Stochastic Systems, LNCS 2925, pages 296–338.
Springer, 2004.

[25] D. Parker. Implementation of Symbolic Model
Checking for Probabilistic Systems. PhD thesis,
University of Birmingham, Birmingham (U.K.), 2002.

[26] Brigitte Plateau. On the stochastic structure of
parallelism and synchronization models for distributed
algorithms. In Proc. SIGMETRICS’85, pages 147–154.
ACM Press, 1985.

[27] W.H. Sanders and J.F. Meyer. Reduced Base Model
Construction Methods for Stochastic Activity
Networks. IEEE Journal on Selected Areas in
Communications, 9(1):25–36, January 1991.

[28] M. Siegle. Beschreibung und Analyse von
Markovmodellen mit großem Zustandsraum. PhD
thesis, Friedrich-Alexander-Universität
Erlangen–Nürnberg, Erlangen (Germany), 1995.

[29] M. Siegle. Advances in model representation. In Proc.
of the Joint Int. Workshop PAPM-PROBMIV 2001,
LNCS 2165, pages 1–22. Springer, September 2001.

[30] M. Siegle. Behaviour analysis of communication
systems: Compositional modelling, compact

representation and analysis of performability
properties. Shaker Verlag, Aachen, 2002.

[31] W.J. Stewart. Introduction to the numerical solution
of Markov chains. Princeton University Press, 1994.

[32] Y. Takahashi. A Lumping Method for Numerical
Calculation of Stationary Distributions of Markov
Chains. Technical Report B-18, Tokio Institute of
Technology, Dpt. of Information Sciences, June 1975.


