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Abstract

Approaches to the state space explosion problem in Markovian modelling of con-

current systems are discussed. The emphasis is on structured model description

techniques and model simpli�cation. In particular, it is shown that the exploit-

ation of model symmetries has a potential to drastically reduce the size of the

state space. The common features of di�erent techniques described in the lite-

rature are pointed out. Examples from the domain of stochastic Petri Nets are

given.
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1 Introduction

High-level description techniques such as stochastic Petri nets, queueing networks or

stochastic automata are convenient for modelling the functional behaviour and the

performance of parallel and distributed systems. If the time distributions associated

with model constructs are exponential, the model's stochastic behaviour is described

by an underlying continuous time Markov chain (CTMC). When using such models for

modelling complex systems, the combinatorial explosion of the state space is often a

serious problem.

This paper discusses techniques which have been developed in order to alleviate, if

not overcome, the largeness problem. We present a survey of techniques which have

been described in the literature. In particular, we wish to point out the common

features of di�erent approaches. We use the term e�cient Markovian modelling for

summarizing these approaches.

Largeness can be approached in a number of di�erent ways: It is possible to deal

with largeness at the level of the model description (high-level) or at the level of the

underlying CTMC (low-level). The former can be more easily understood by the user

because he is working with the high-level representation. Some techniques aim at
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avoiding largeness during model design, whereas others allow the toleration of lar-

geness during model analysis. Largeness avoidance can be achieved by taking into

account knowledge about the structure of the system to be modelled. While some of

the approaches are not limited to the modelling paradigm used (e.g. queueing net-

work, GSPN, : : : ), others are paradigm-speci�c. Finally, we can distinguish between

techniques which yield exact results and others based on approximations. This paper

concentrates on the former.

The following section contains an overview of approaches to the largeness problem,

based on the literature. All examples in this paper are taken from the domain of

stochastic Petri nets. In section 3, the exploitation of model symmetries using Ge-

neralized Coloured Stochastic Petri Nets (GCSPNs) is discussed. Section 4 contains

simpli�cation techniques for the well-established class of Generalized Stochastic Petri

Nets (GSPNs) [14].

2 Approaches to Dealing with Large Markovian

Models

As illustrated in �g 1, approaches to overcoming the combinatorial state space explosion

problem can be divided into three categories: Model decomposition, structured model

description and model simpli�cation.

2.1 Model Decomposition

Starting with a large model, decomposition can be applied in order to reduce the ex-

pense for solving the underlying Markov chain. Classical results in this category include

product form queueing networks [2] and Courtois' notion of nearly completely decom-

posable (NCD) systems [11]. More recently, Ciardo and Trivedi have been working on

the decomposition of GSPNs [10], thereby employing the notion of near-independent

subsystems (NIS). While the decomposition of product form queueing networks is ex-

act, NCD and NIS decomposition typically yield approximate results. The terms

NCD and NIS are completely orthogonal, i.e. the fact that a model is NCD does not

imply that it is also NIS, and vice versa. Intuitively speaking, in an NCD system,

the state space can be partitioned into groups in such a way that transitions between

groups are much less likely than transitions within a group. For the decomposition to

yield good approximations, entries in the diagonal blocks of the in�nitesimal generator

matrix of the CTMC have to be signi�cantly larger than entries outside these blocks.

A model which is composed of subsystems with almost no mutual interference falls into

the class of NIS. The state space of the joined model is equal to the Cartesian product

of the subsystems' state spaces. NIS models have a generator matrix structure which

is \close" to the tensor sum [12] of the subsystems' generator matrices.

The major di�culty with the decomposition approach is |given the joined model|

to recognize the way in which the model should be decomposed. A model is decomposa-

2



Structured
Model Description

NIS

Approx.

NCD

[Courtois] [Ciardo]

PFQN

[BCMP]

Exact

Model
Decomposition

Paradigm-specific

GSPN
Simplification

[Simone+Marsan]

Model
Simplification

Efficient Markovian Modelling

GCSPN

[Chiola]

Hierarch.
Multi-Paradigm

Modelling

[Balbo, Buchholz]

Stochastic
Activity

Networks

[Sanders][Plateau]

Combined
Stochastic
Automata

Figure 1: Survey of Techniques for E�cient Markovian Modelling

ble because it is combined of parts which have only limited interaction and interdepen-

dence. However, knowledge about the way in which the combination was carried out

is not represented in the joined model. Therefore it seems to be more advantageaous

to use this knowledge during model design. This leads to structured model description

techniques.

2.2 Structured Model Description

There is a large number of approaches which fall into the structured model description

category. In [15], Plateau showed how interdependent stochastic automata can be

combined to a joined model. Tensor algebra is used to obtain the structure of the

combined generator matrix. It is shown that an iterative solution technique (power

method) can be applied to solve the combined model, without explicitly generating

the joined generator matrix. A similar approach is described by Donatelli [13] for

superimposed stochastic automata, a special class of stochastic Petri nets. Balbo et al.

described a technique in which queueing networks and GSPNs are combined for solving

complex models [1]. A similar approach is followed by Buchholz [4] in the hierarchical

multi-paradigmmodelling approach. The joined model consists of a number of low level

models which can be speci�ed by multi-class queueing networks or coloured stochastic

Petri nets, and a high level model which describes the ow of entities (customers or

tokens) between the low level models. Buchholz also uses tensor algebra to obtain the

combined generator matrix. He shows that beside the power method, other iterative

solution techniques (Jacobi and Gauss-Seidel) can be applied based on the submodel

generator matrices. In a recent paper, this technique is extended to the exploitation

of symmetries in order to reduce the cardinality of the state space [5]. Symmetry

exploitation is also the basic idea which led to the use of coloured Petri nets for the

purpose of performance evaluation [9]. This will be demonstrated by an example in
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Figure 2: Structured Model Description: Common Features

section 3. A very similar technique has been described for another class of stochastic

Petri nets { stochastic activity networks (SANs) { by Sanders et al. [16]. Here also,

the exploitation of symmetries allows to solve the model e�ciently.

The common features of di�erent structured model description techniques are poin-

ted out by the table in �g 2. The �rst column states the technique which is used for

submodel speci�cation. The second column is divided into two subcolumns: The tech-

nique for combining the submodels is given, and special features which are used during

the combination process are mentioned. Properties of the resulting joined model and

of its solution method are listed in the third column.

It is common to all approaches that submodels are �rst speci�ed individually, and

then combined in order to obtain the joined model. Di�erent mechanisms are used

to specify the way in which the combination takes place. For stochastic automata,

the combination is determined by the interdependences which exist between the com-

ponents. In the hierarchical multi-paradigm modelling approach, the high-level model

speci�es how low-level models are combined. Using GCSPNs, submodels cannot be

identi�ed quite as easily: They can be seen as identical subnets of a GSPN model,

where the interaction is given by the arcs and places between them. To build the

GCSPN, these identical subnets are folded together, and thereafter only distinguis-

hable by colour domains associated with them. SAN components can be combined

using two operations: There is the replicate operation to generate n instances of one

component, where a subset of distinguished places is not replicated, i.e. is common to

all n instances, and there is the join operation, to join two components by merging two

subsets of places, one in each component.

For combined stochastic automata and the hierarchical multi-paradigm modelling

approach, the generator matrix of the joined model is given as an expression, in which
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the generator matrices of the components are combined by tensor operations. Know-

ledge about the structure of the joined generator matrix is su�cient in order to apply

iterative solution techniques for obtaining the steady-state solution of the model, i.e.

the joined generator matrix does not have to be created explicitly. Since the joined

generator is often a very large sparse matrix, this helps to save a lot of storage space.

A second important advantage may be seen by the fact that this kind of iterative solu-

tion technique, based on the components' generator matrices, is amenable to parallel

processing.

A general expression for the generator matrix, Q, of the joined model is given by

Q = �

i

Q

i

+

X

e




i

Q

i

e

:

In this expression, the tensor sum over the Q

i

accounts for state transitions inside one

of the submodels. The dimension of Q

i

is equal to the cardinalty of the state space of

submodel i. Transitions e which a�ect more than one submodel, such as synchronized

events or the instantaneous ow of an entity from one submodel to another, are descri-

bed by the matrices Q

i

e

. Again, the dimension is equal to the cardinalty of submodel

i's state space. The summation is over all such transitions, and the tensor product is

over all submodels. For those submodels i which are not a�ected by a particular e, the

corresponding Q

i

e

is an identity matrix.

For the hierarchical multi-paradigm modelling approach, GCSPN and SAN, it has

been shown how the exploitation of model symmetries may reduce the cardinality of

the state space dramatically. In the former, symmetries may be present due to a

number of identical low-level models, or to the identical behaviour of di�erent entity

classes [5]. Entities are either customers (in queueing network submodels) or tokens

(in GSPN submodels). In GCSPNs, it is also the identical behaviour of di�erent token

classes which enables reduction (see section 3). Here symmetries are recognized by

permutating these token classes. Using SANs, symmetries are present wherever the

replicate operation is used. Symmetries lead to the partition of the state space into

classes of equivalent states, and it su�ces to choose one state from each equivalence

class |usually determined by lexicographical ordering|to represent this class. The

steady-state probability of the representative state in the reduced joined model is equal

to the sum of the steady-state probabilities in its equivalence class in the original model.

2.3 Model Simpli�cation

In addition to decomposition and structured model description, the third category

of techniques for e�cient Markovian modelling is model simpli�cation. A number of

approaches to the simpli�cation of GSPN models is presented in section 4. They are

based on work by Berthelot dedicated to the structural reduction of place-transition

nets [3]. These techniques are applicable only to GSPN models and there is no obvious

way to make them available to, say, queueing network models. They are thus paradigm-

speci�c. Similar techniques are discussed in a recent paper by Simone et al. [17].
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3 Generalized Coloured Stochastic Petri Nets

In this section, an example is given to show how symmetries can be exploited in GCSPN

models.

The analysis of (non-coloured) GSPN models consists of the following steps: Star-

ting from a GSPN which has both timed and immediate transitions, the reachability

set is computed to build the reachability graph (RG). Every element of the reachability

set corresponds to a possible net marking. The RG contains two classes of markings,

tangible markings and vanishing markings. Arcs starting at vanishing markings corre-

spond to the �ring of immediate transitions in the net. The next step is the elimination

of the vanishing markings, resulting in the tangible RG. The tangible RG may con-

tain redundant arcs and self-loops which have to be eliminated. Then the RG can be

transformed into a CTMC.

Sync

Write

X

X

X

Work

Resource

S

R

Y

Y

<X,Y>

<X,Y>

X

Sync

Write

Work

Resource

Figure 3: Mutual Exclusion Example

A GSPN model of 3 parallel processes which access a common resource is shown in

�g 3 (left). Each process performs the following activities in a cyclic fashion: Having

done some work (work) it has to wait until the resource is available (sync). Then it

uses the resource (write), returns the resource and goes back to work. The resource

can only be used by one process at a time (mutual exclusion), therefore the access to

the resource is controlled by the sync-transitions.

The scenario shown in �g 3 can be generalized to the case with N processes. In

this general case, the total number of reachable markings and thus the cardinality

of the reachability set is given by 2

N

+ N2

N�1

. This expression can be obtained by

simple combinatorial reasoning: Either none of the processes is currently using the

resource, which means that each process is either working or ready to use the resource

(2

N

di�erent markings), or one of them is using the resource (N di�erent cases) while

the others are either working or waiting for the resource (2

N�1

). It is clear that due to

the exponential growth of the reachability set and therefore of the underlying CTMC,
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M0 = (s0 s1 s2, φ, φ, r)

M1 = (s0 s1, s2, φ, r)
≅ (s1 s2, s0, φ, r)
≅ (s2 s0, s1, φ, r)

M2 = (s0 s1, φ, s2 r, φ)
≅ (s1 s2, φ, s0 r, φ)
≅ (s2 s0, φ, s1 r, φ)

. . .

Figure 4: Symbolic Reachability Graph (Part) for the Mutual Exclusion Example

the solution of the model becomes prohibitively expensive even for moderate values of

N .

This problem can be overcome by representing the model as a GCSPN and using

the concept of symbolic reachability graph (SRG). The GCSPN model of the mutual

exclusion example is shown in �g 3 (right). To obtain the coloured Petri net, all bran-

ches representing the individual processes have been folded onto each other, resulting

in a single subnet with the transitions work, sync and write. The representation of the

resource is unchanged. The coloured Petri net is enhanced by annotations containing

information about the initial marking and conditions on the transition �ring. There

are two classes of colours: The elements s

i

of class S = fs

0

; s

1

; : : : ; s

N�1

g represent the

N processes, and element r of class R = frg represents the resource. For the initial

marking, all processes are working (the input place of transition work is marked with

S), and the resource is not in use (the resource place is marked with R). The arcs

are labelled with the functions X and Y which select an element from the sets S and

R, respectively. For instance, transition work is enabled if there is an element of S

in its input place. Upon �ring of transition work, this element will be moved to the

input place of transition sync. It is interesting to note what happens at transition

sync. When it �res, an element of class S is combined with the single element r of

class R. The resulting colour is equal to the Cartesian product of S and R, denoted

by < X;Y >.

There are markings which have identical steady-state probabilities. They can be

obtained from each other by permutation of the indices of the elements in class S.

For example, if N = 3, markings (s

0

s

1

; s

2

; �; r), (s

1

s

2

; s

0

; �; r) and (s

2

s

0

; s

1

; �; r) are

interchangeable, because they represent a marking in which two processes are working

and the third is ready to use the resource. It is known that these three markings are

equally likely, because all three processes behave in exactly the same way, and there is

no priority associated with them. The reachability set can therefore be partitioned into

classes of equivalent markings. Each equivalence class constitutes a symbolic marking.
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There is one representative marking in every equivalence class |uniquely determined

by lexicographical order|which is used to represent the symbolic marking. The sym-

bolic RG consists of the symbolic markings and transitions between them. Part of the

symbolic RG for the GCSPN model in �g 3 is shown in �g 4. It contains the initial

markingM

0

= (s

0

s

1

s

2

; �; �; r) and two other symbolic markings,M

1

and M

2

. For this

mutual exclusion example, the number of symbolic markings and therefore the size of

the symbolic RG is given by 2N + 1. This is also the cardinality of the underlying

CTMC which can be seen as a modi�ed version of the original CTMC (obtained from

the GSPN model), after equivalent states have been lumped together. In this example,

we observe a dramatic reduction of the state space, reducing the exponential growth

to linear growth (with respect to N). This demonstrates the power of the symbolic

RG method for GCSPNs. For the practical application of this technique, it is of great

importance that equivalent markings can be recognized automatically. An algorithm

for the computation of the symbolic RG is described in [9]. This result is extended

in [7] where the automatic identi�cation of symmetries in the colour structure of a

GCSPN is presented.

4 Simpli�cation of GSPNs

In this section, structural simpli�cation techniques for GSPNs are discussed. This

work is based on reduction techniques for untimed place-transition nets which were

developed by Berthelot [3]. The reduction of place-transition nets has the following

goals: checking net properties and the behavioural veri�cation of parallel systems. An

initially complex model is reduced in a stepwise fashion until the resulting model is

so simple that the desired properties can be easily checked. It is clear that essential

net properties, such as boundedness, safety and the covering by invariants, have to be

preserved in each reduction step.

For the simpli�cation of GSPNs, the goals have changed: It is the aim of the sim-

pli�cation to make the performance analysis of the model easier. To achieve this,

simpli�cations must reduce the set of reachable markings of a GSPN. More speci�-

cally, a reduction of the number of tangible markings is desirable, because the tangible

markings correspond to the states of the underlying CTMC. The stochastic behaviour

of the model has to be preserved by the simpli�cations.

Fusion of doubled places. The fusion of doubled places is a reduction technique

which can be translated from the place-transition net domain to the GSPN domain

without di�culty. Fig 5 (left) shows an example scenario where this kind of simpli-

�cation is applicable. In this net, tokens in places P

3

and P

4

can never be mixed up,

for two reasons: aAt any time, either place P

3

or place P

4

is empty, and any transition

which has P

3

as input place has another input place which is not an input place of

P

4

, and vice versa. Therefore places P

3

and P

4

can be fused into place P

34

, as shown

in the �gure (right), without changing the net's behaviour. Application conditions for

reduction rules often include conditions on the net's reachability set, i.e. on the net
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Figure 5: Fusion of Doubled Places

behaviour. Since the computation of the reachability set is expensive, it is desirable to

formulate application conditions in terms of conditions on the net structure only. This

can be done for the doubled places simpli�cation rule, using the P-invariant yC = 0,

where C is the incidence matrix of the net. In the example, this su�ces to verify that

P

3

and P

4

cannot contain tokens concurrently.

We observe that the fusion of doubled places does not contribute to the reduction of

the reachability set. The simpli�ed net's reachability set contains the same number of

markings as that of the original net. With this simpli�cation, we have only obtained a

simpler graphical representation of the net. The same negative result holds for another

reduction rule, the elimination of redundant places [3], often also called implicit places.

Pre-fusion of transitions. Fig 6 shows how another reduction technique for

place-transition nets can be made available to the simpli�cation of GSPNs. Immediate

T1

T2

P

T2’ T12 T12’

Figure 6: Pre-fusion of Transitions

transition T

1

can be fused with both of the two timed transitions T

2

and T

0

2

. This is

similar to the elimination of immediate transitions at the net level (instead of elimina-

ting vanishing markings at the RG level), as described in [8]. For a net with a large

number of immediate transitions, this simpli�cation has the potential to save a lot of
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memory space during the construction of the underlying CTMC, because no memory

space is needed for those vanishing markings which are caused by the now eliminated

immediate transitions. However, the number of tangible markings in the reachability

set and therefore the size of the CTMC is not reduced by this simpli�cation.

Exchanging conicts of immediate/timed transitions. Now we will discuss

a simpli�cation technique for GSPNs which is capable of reducing the size of the un-

derlying CTMC. An example net which can be simpli�ed by this rule is shown in �g 7

(top). Two levels of decision are represented by the net. At the �rst level, there

. . . pn

αn1 αnm

. . .

p1

λ1

α11 α1m
. . .

λm λ1

. . .

λm

λm

α1m αnm

p1

α11

pn

αn1
. . .

p1 pn

. . .

λ1

Figure 7: Exchanging Conicts of Immediate/Timed Transitions

is a conict between n immediate transitions which is decided according to the �ring

probabilities p

1

: : : p

n

assigned to these transitions. At the second level, in each of the

n branches of the net there is a conict of m timed transitions. This race condition

is decided upon the �ring rates �

1

: : : �

m

. The number m of timed transitions has to
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be the same in each of the n branches, and the set of rates �

1

: : : �

m

assigned to these

transitions must also be identical in all n branches. The transitions associated with

the �ring rates �

11

: : : �

nm

may be generalized: They may be replaced by arbitrary

subnets.

In the simpli�ed net shown in �g 7 (bottom), the two levels of decision are exchan-

ged. The conict of the m timed transitions is now followed by a conict of the n

immediate transitions in each of the m branches. The rates of the timed transitions

labelled with �

ij

(the subnets in the general case) have to be permutated as shown in

the �gure: the combination of an immediate transition and a timed transition must

lead to the same �

ij

in the original and in the simpli�ed net. The number of tangi-

ble markings for the original net is given by n + mn, whereas the simpli�ed net has

only 1 + mn tangible markings. There is one tangible marking corresponding to the

conict of the m timed transitions in each of the n branches of the original net. In

the simpli�ed net, one marking su�ces to represent the conict between the m timed

transitions, before a decision is made which of the n immediate transition will �re.

Bene�t of the Simpli�cation. Three simpli�cation rules have been presented.

It can be observed from the three examples that simpli�cation rules for GSPNs may

be classi�ed as follows: There are those which do not change the net's reachability

set (they merely change the graphical representation of the net), those which reduce

the number of vanishing markings (which saves memory space during the construction

of the CTMC) and those which reduce the number of tangible markings of the net

(resulting in a smaller CTMC). There is a number of important questions which remains

open in the context of GSPN simpli�cation:

� The cost of the simpli�cation needs to be determined. The time spent on the

searching for net constructs which may be simpli�ed, on the checking of applica-

tion conditions and on the execution of simpli�cation rules, plus the time needed

to solve the simpli�ed GSPN, must be compared with the time needed to solve

the original GSPN.

� It is not known to what extent GSPNs from practical modelling contain constructs

amenable to simpli�cation.

� An important point is the semantics of the simpli�ed net. Net constructs such as

places and transitions represent constructs from the real world system being mo-

delled, such as processors, bu�ers or communication channels. If net constructs

are manipulated by simpli�cation rules, it is important to relate the semantics of

the simpli�ed net to the real world system.

� The examples discussed in this section yield an exact simpli�cation of GSPNs.

However, simpli�cations leading to an approximation of the net's stochastic be-

haviour may be acceptable. The derivation of lower bounds for the throughput

of Markovian Petri nets by means of transformation techniques is described in

[6].
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� The extension of GSPN approximation rules to GCSPN has not been formalized

yet.

Finally, the author is not aware of any tools which support the simpli�cation of GSPNs.

Only with the help of tools will simpli�cations be widely applicable in practical mo-

delling.

5 Summary

We have discussed techniques for making the Markovian modelling of complex systems

feasible by reducing the cardinality of the state space. The largeness problem is approa-

ched at the high-level model description, rather than at the continuous time Markov

chain level. This makes it easier for the user to understand the techniques. We have

shown that di�erent techniques for structured model description rely on the same foun-

dations: they use tensor algebra for the description of the joined model's stochastic

generator matrix, and they provide means to exploit symmetries in the model, thereby

reducing the state space without changing the stochastic behaviour. Transformation

techniques for the structural simpli�cation of GSPNs have been presented. They may

be used in conjunction with the above mentioned structured modelling techniques by

simplifying individual submodels before analyzing the joined model.
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