
MTBDD-based Activity-Local State Graph
Generation

Kai Lampka, Markus Siegle
Institute of Computer Science 7, Friedrich-Alexander-University Erlangen-Nuremberg

Email:{kilampka,siegle}@informatik.uni-erlangen.de

Abstract— We describe a method for constructing compact repre-
sentations of labelled continuous-time Markov chains which are
derived from high-level model descriptions, such as stochastic
Petri nets, stochastic process algebras, etc.. Our approach ex-
tends existing techniques in that symbolic (i.e. MTBDD-based)
representations are constructed for non-modular, flat model
descriptions. The symbolic representation of the overall model
is obtained by merging symbolic activity-local representations of
transitions. Such a scheme will not only yield a compact symbolic
representation, we also show that the state space of the overall
model may only need to be explored explicitly in parts.

I. I NTRODUCTION

High-level performability models are usually specified by
means of stochastic Petri nets, stochastic process algebra,
etc., where the low-level model or state graph consists of all
possible states and the set of all possible transitions between
these states. Concurrency, compactly described in the high-
level model, must be made explicit when deriving such a state
graph. I.e. conventional state graph exploration algorithms
expand every permutation of independent activities, wherethe
number of visited states will grow exponentially. The goal
is to explore huge state spaces in a time-efficient manner,
and store the associated labelled continuous-time Markov
chain in a compact way. We use binary decision diagrams
(BDD) and extensions thereof for representing the state graph
symbolically. It is known that extremely compact symbolic
representations can be constructed if the compositional struc-
ture of the high-level model at hand is taken into consideration
[6]. Our approach extends existing techniques in that symbolic
representations are constructed for non-modular, flat model
descriptions. In the approach described here, the symbolic
representation of the overall model is obtained by merging
symbolic activity-local representations of transitions.Such a
scheme of activity-local state graph generation does not require
the high-level description to be hierarchically structured in
order to obtain a compact symbolic representation of the
underlying state graph. We also show that the state space
of the overall model may only need to be explored partially.
Therefore the here illustrated approach is highly suited for
performance evaluation tools, such as Möbius [2], where the
high-level description is mapped onto the corresponding state
graph in a monolithic manner. By applying this scheme, one
can expect both runtime and memory savings.

The paper is organised as follows: In Sec. II, we briefly

Queue−>Mark() < 2;

Idle (I)

Server (S)

Queue (Q)arrive, λ

dequeue,ρ

service,µ

Fig. 1. A simple producer-consumer system described as a monolithic SAN

introduce BDDs and MTBDDs and the general idea of sym-
bolic state graph representation. In Sec. III, the new scheme
of activity-local state graph generation is described. Sec. IV
discusses the issue of partial state space exploration, and
Sec. V concludes the paper.

II. SYMBOLIC STATE GRAPH REPRESENTATION

A. State spaces and their encoding

During state space exploration, a state of the overall system
is represented by a state descriptor which is a vector~s
consisting ofn elements, i.e.~s = (s1, . . . , sn) where si ∈
{0, . . . , Ki} for all 1 ≤ i ≤ n. The vector elements are
called state variables (SVs). The state space can be explored
in a monolithic fashion, by executing each enabled activity,
one at a time, and determining the value of each SVsi. As
running example, we consider the SAN [5] model given in
Fig. 1. Here, each state is described by a 3-dimensional state
descriptor, where each elementsi indicates the number of
tokens contained in the corresponding placepi. The initial
state is given by~s = (0, 1, 0). The whole state graph is given
in Fig. 2 (A), where the capacity of place Queue is bounded
by 2. One may encode each SVsi by applying an injective
encoding functionE : {0, . . . , Ki} 7→ B

nsi , where we may
choosensi

≥ ⌈log
2
(Ki + 1)⌉. In our running example the

encoding of the initial state is given by the Boolean vector
~b = (00, 1, 0). One may also encode the activity labels in
a similar way: If there areKAct different activities, we can
define a functionI : Act 7→ {0, . . . , KAct − 1} which returns
an index for each activity. We can then encode the index of
each activity by applying an encoding functionE on the set
of activity indices.

For encoding the state graph, Boolean vector~b encodes the
values of the SVs before (source state) and~b ′ (target state)
after an activity’s execution, and the activity label is encoded

c© K. Lampka, M. Siegle

by the Boolean vector~a. The execution of an activityl is thus
encoded by the following scheme:

(
(s1, . . . , sn)

l
→ (s′

1
, . . . , s′n)

)
≡ (~a,~b,~b ′)

Note that, for simplicity, we concentrate on tangible states
only, i.e. we assume that vanishing states are eliminated “on-
the-fly”.

B. MTBDD-based state graph representation

An ordered MTBDD M is a canonical representation of
a function of typefM : B

n 7→ D, where D is a finite set.
We assume that the MTBDD variables have the following
ordering: At the firstnA levels from the root are the variables
ai, encoding the activity labels. On the remaining levels we
have2ns := 2

∑n
i=1

nsi
variables, encoding the source- and

target values of then SVs. In order to obtain small MTBDD
sizes, the variablesbi and b

′
i are ordered in an interleaved

fashion, yielding the following overall variable ordering[6]:

a1 ≺ . . . anA
≺ b1 ≺ b

′
1
≺ . . . ≺ bns

≺ b
′
ns

Standard arithmetic (and Boolean) operators can be imple-
mented efficiently on the MTBDD data structure with the help
of the so-called APPLY algorithm. The table in Fig. 2 (B)
shows the binary encoding of the state graph of the running
example, and part (C) shows the corresponding symbolic rep-
resentation by means of an MTBDD. In the MTBDD, a dashed
(solid) line indicates the value 0 (1) of the corresponding
Boolean variable.

III. SYMBOLIC ACTIVITY -LOCAL STATE GRAPH

GENERATION

A. Partitioning of the state descriptor

The execution of an activityl depends on a set of SVs, denoted
as pre-set (•Sl), where the execution itself will change a set
of SVs, denoted aspost-set (Sl•). The union of these sets
yields the set of dependent SVs,Sdl

:= •Sl ∪ Sl•, and its
complement is denoted asScl

. The elements ofScl
are the

SVs, which are neither affected byl’s execution, nor do they
influence its enabling condition.

This concept of dependent and independent SVs yields the
following encoding scheme for a transition induced by an
activity l:

(
(Sdl

, Scl
)

l
→ (S′

dl
, Scl

)
)
≡ (l, Sdl

, S′
dl

),

whereSdl
refers to the SV before andS′

dl
after l’s execution.

Scl
can be omitted, since its elements are immaterial forl’s

execution. The possible values ofScl
andS′

cl
will be inserted

later during the stage of symbolic completion and composition.

We can apply the concept of pre- and post-set directly to
the Boolean vectors which encode the state variables. For our
running example, the activity-dependent binary encodingsas
well as the activity-dependent sets of Boolean vectorsSdl

and

Scl
are given in Fig. 2 (D) For example, the execution of

activity arrive yields the following encoding scheme:

(
(Q, I, S)

arrive
−→ (Q′, I, S)

)
≡ (00, b1b2, b

′
1
b
′
2
)

B. Generation of the symbolic state graph representation

The idea behind activity-local state graph generation is as
follows: At the first stage,KAct MTBDDs Ml are constructed.
These encode the set of dependent SVs(Sdl

) before and
after a specific execution of activityl. Once all transitions are
generated, each of these activity-local MTBDDsMl needs to
be supplemented by its individual set of symbolically encoded
not-dependent SVsScl

, yielding the symbolic representation
of the set of potential transitions induced by activityl. Fi-
nally theKAct supplemented MTBDDs, denoted̃Ml, must be
merged in order to encode the transition relation of the overall
model. A symbolic reachability analysis needs to be carried
out then, in order to restrict the potential transition relation to
the actually reachable states.

1) Layout of the state graph generation procedure: We pro-
pose to break the major task of conventional state space
exploration and symbolic encoding into two parts:
(a) A conventional state space exploration algorithm finds all
transitions between reachable states, by successively firing all
enabled transitions, one at a time, for each detected state
descriptor. As a consequence the algorithm needs to operateon
two data structures: (i) A state buffer, containing the already
detected but not yet explored states. (ii) A transition buffer,
holding detected transitions of the form(~s, l, λ, ~s ′) which are
to be entered into the activity-local MTBDDMl, where~s and
~s ′ are the state descriptors before and after the execution of
activity l, and whereλ is the rate of the activity.
(b) The exploration part is complemented by an administration
part, which collects and encodes the detected transitions from
the transition buffer and inserts them into the activity-local
MTBDDs. Furthermore, it must decide whether a state needs
to be entered into the state buffer or not. Since the state space
should be only visited partially, in order to save time, the
conditions of inserting a state into the state buffer need tobe
considered carefully, see Sec. IV.

2) Generating the symbolic activity-local state graphs: Each
transition(~s, l, λ, ~s ′) is taken from the transition buffer, the de-
pendent SVsSdl

are encoded in binary form and inserted into
the respective MTBDDMl. We propose to employ temporarily
unreduced MTBDDs at this stage, in order to minimize the
runtime of the insertion procedure [1]. The algorithm for
inserting the MTBDD-based representation of an activity-local
transition intoMl can be sketched as follows:

(0) SymbolicEnc(Ml, ~sdl
, l, λ,~sdl

′)

(1) NewTrans := M(~b; E(~sdl
)) ∧M(~b ′; E(~sdl

′))

(2) NewTrans := NewTrans · λ

(3) Ml := Ml + NewTrans

(4) return

c© K. Lampka, M. Siegle

µλ ρ

b1

b
′
1

b2

b
′
2

b3

b
′
3

b4

b
′
4

a2

a1

 (0, 1, 0)

(1, 1, 0)

(2, 1, 0)

(2, 0, 1)

(1, 0, 1)

(0, 0, 1)

arrive,λ

arrive,λ

initial state~s

arrive,λ

arrive,λ

dequeue,ρ

service,µ

dequeue,ρ

service,µ

service,µ

~a b1b2 b3 b4 b
′
1b

′
2 b

′
3 b

′
4 fM

00 00 1 0 01 1 0 λ

00 01 1 0 10 1 0 λ

00 00 0 1 01 0 1 λ

00 01 0 1 10 0 1 λ

01 01 1 0 00 0 1 ρ

01 10 1 0 01 0 1 ρ

10 00 0 1 00 1 0 µ

10 01 0 1 01 1 0 µ

10 10 0 1 10 1 0 µ

(A) State graph of the running example

(B) Binary encoding of the state graph

(C) Symbolic representation by MTBDDM

(D) Activities, their encoding and their setsSdl
andScl

activity j ~a Sdl
:= •Sl ∪ Sl• Scl

:= S \ Sdl

arrive 0 00 b1, b2 b3, b4

dequeue 1 01 b1, b2, b3, b4 ∅

service 2 10 b3, b4 b1, b2

Fig. 2. State graph, binary encodings, corresponding MTBDDand activity-dependent sets of SVs

HerebyMl := 0 before the first insertion. The vectors~sdl
and

~sdl

′ encode the values of the dependent SVs before and after
the execution ofl. Parameterλ is the rate between these two
states, which will be stored in a terminal vertex ofMl. M is
the minterm function which constructs the conjunction ofn
literals given as first argument (e.g.~b) according to the value
given as second argument (e.g.E(~sdl

)).

3) Merging of activity-local MTBDDs: After the activity-
local MTBDDs are generated, the overall state graph can be
generated by merging the activity-local MTBDDs. Before the
actual merging, the symbolic encoding of the setScl

must be
inserted into each MTBDDMl. For the variables fromScl

the condition~b = ~b′ must hold, because under activityl the
SVs si ∈ Scl

do not change their value, they stay stable. This
condition is achieved by the BDDStabl defined as follows:

fStabl
(~b,~b ′) :=

∧

∀bi∈Scl

(bi = b
′
i)

It is interesting to note that the interleaved ordering of the
variables minimises the number of vertices ofStabl. In order
to enable the calculation of impulse rewards, we need to
insert the encoding of the activity labels (represented by
BDD M(~a, E(I(l))) into Ml as well. Now one can sum the
KAct activity-local MTBDDs, where the whole process of
completion and merging is given by:

M :=
∑

l∈Act

M(~a, E(I(l))·M̃l =
∑

l∈Act

M(~a, E(I(l))·Ml·Stabl,

The MTBDD M thus constructed encodes the potential set of
transitions of the overall model.

IV. PARTIAL STATE SPACE EXPLORATION

In the following, we consider the condition for entering a state
into the state buffer, in order to do as few exploration stepsas
necessary. Following a standard breadth-first search strategy,
one may enter a target state~s ′ (resulting from the execution of
activity l) into the state buffer, if for all activitiesk the activity-
dependent marking~sdk

′ ⊆ ~s ′ is not contained (as source
state) in Mk. If one only checkedMl for the containment
of ~sdl

′, the algorithm might stop too soon and states might
be omitted. On the other hand, in many casesMk will not
contain~sdk

′, sincek may not be enabled in this marking. As
a consequence, a state would be always entered into the state
buffer, thus the algorithm would never stop. Therefore we need
to supplement each state by a list of activities which could
possibly be executed by the exploration part. The criterionfor
an activityk to become a member of such a list is given by
~sdk

′ /∈ Mk. However, since we follow a breadth-first search
strategy, one needs to check only those activities which might
be newly enabled or re-enabled after the execution of activity
l. Therefore we define two activitiesl andk as dependent if
they share at least one SV, i.e.Sdl

∩ Sdk
6= ∅, otherwise the

activities are considered asindependent. The set of dependent
activities for activityl is thus given by:

Tdl
:= {k ∈ Act | Sdl

∩ Sdk
6= ∅}

Note that according to this definition we havel ∈ Tdl
, since

it is possible thatl is enabled again in~s ′. ThusTdl
contains

at least activityl. For each activityk ∈ Tdl
one needs to

check whether or not MTBDDMk contains the encoding of
the activity-dependent marking~sdk

′ given by ~s ′. In case it
does not, activityk is considered as being potentially enabled,

c© K. Lampka, M. Siegle

1, 1, 0

2, 1, 0

1, 0, 1

0, 0, 1

1, 1, 0

0, 1, 0

2, 1, 0

1, 0, 1

2, 0, 1

 0, 1, 0

Tddequeue
:= {arrive, service, dequeue}

Sets of dependent activities:

Tdservice
:= {dequeue, service}

Tdarrive
:= {arrive, dequeue}

service, µ

dequeue, ρ

[arrive, dequeue]

(arrive, dequeue)

arrive, λ

(dequeue)
[arrive, dequeue]

dequeue, ρ

[dequeue]

(service)

(∅)

[service, dequeue]

service, µ

arrive, λ

service, µ

[arrive, dequeue, service]
(arrive)

arrive, λ

(∅)
[service, dequeue]

arrive, λ

Fig. 3. State Tree under a partial exploration scheme

which gives us the set of potentially enabled activities foreach
state~s ′ reached through activityl:

E~s ′,l := {k ∈ Tdl
| ~sdk

′ /∈ Mk}

In the initial state all activities are candidates for being
enabled, thusE~s1,ǫ = Act, where~s1 is the initial state. Fig. 3
shows the state tree, where each activity-dependent setTdl

is
given in {. . .} and each set of potentially enabled activities
E~s ′,l is given in [. . .]. The sets of activities given in(. . .)
contain those activities fromE~s ′,l whose enabling condition
is evaluated to true by the exploration part. As illustratedin
the figure, the scheme introduced above reduces the number of
transitions explicitly established, e.g. activityservice is only
executed once. It is interesting to note that some reachable
states (here(2, 0, 1)) will not be visited at all during this
phase, since the states in the dashed boxes would be only
(re-) visited in case a conventional state space layout and
exploration routine were employed. In contrast, the algorithm
described here will stop at the states framed by double boxes.
Our algorithm can be sketched as follows:

(0) EvaluateTransition(TransBuffer)
(1) read(TransBuffer,~s, l, λ,~s ′)
(2) E~s ′,l := ∅
(3) for each k ∈ Tdl

do
(4) if ~sdk

′ /∈ Mk then E~s ′,l := E~s ′,l ∪ {k} fi
(5) od
(6) if E~s ′,l 6= ∅ then insert(StateBuffer,~s ′, E~s ′,l) fi
(7) SymbolicEnc(Ml, ~sdl

, l, λ,~sdl

′)
(8) return

One may note that the insertion of a transition into the
respectiveMl (line (7)) is performed after the generation of
E~s ′,l, in order to makel a member of the latter. However
doing so induces an overhead in case of loops, since they are
detected at their second generation, whereE~s ′,l := ∅. On the
other hand, one is enabled now, to check target and source
states encoded inMk for the existence of~sdl

′. Under such a
procedure, the complementatory exploration part works then

as follows:

(0) ExploreState(StateBuffer)
(1) read(StateBuffer,~s, E~s,l)
(2) for each k ∈ E~s,l do
(3) if k enabled in~s then
(4) (~s ′, λ) := succ(~s, k)
(5) insert(TransBuffer,~s, k, λ,~s ′) fi
(6) od
(7) return

where succ(~s, k) returns the successor state~s ′ in case activity
k is executed in~s, as well as the respective rateλ (line(4)).

V. SUMMARY AND FUTURE WORK

In this short paper we have shown how symbolic state graph
representations can be constructed in the context of monolithic
models. We saw that only parts of the state graph need
to be generated, yielding advantages concerning run-time
behaviour. The complete state graph of the overall model
is constructed by merging the activity-local state graphs and
subsequent symbolic state space exploration. So far, we have
not considered the problem that the boundsKi for the state
variables may not be known a priori. However, we plan to
employ Z-BDDs [4] and their extension to the multi-terminal
case, yielding Z-MTBDDs. The reduction rules for this type of
decision diagram enable an efficient handling of this problem.
Furthermore the use of Z-MTBDDs reduces the memory
requirements for representingfStab [3].

The performance evaluation tool Möbius [2] is capable of
exploiting symmetries specified within a model, generatinga
reduced state space by applying the lumpability theorem on-
the-fly [5]. We plan to support this feature during the symbolic
state space generation as well. Furthermore, we also plan to
develop an efficient scheme for handling reward variables in
the symbolic context, especially in combination with reduced
overall models.

REFERENCES

[1] I. Davies, W.J. Knottenbelt, and P.S. Kritzinger. Symbolic Methods for
the State Space Exploration of GSPN Models. InProc. of the 12th Int.
Conf. on Modelling Techniques and Tools (TOOLS 2002), LNCS 2324,
pages 188 – 199. Springer, April 2002.

[2] Daniel D. Deavours, Graham Clark, Tod Courtney, David Daly, Salem
Derisavi, Jay M. Doyle, William H. Sanders, and Patrick G. Webster.
The Moebius Framework and Its Implementation.IEEE Transactions on
Software Engineering (TSE), 28(10):956–969, October 2002.

[3] K. Lampka. Z-BDD-based State Graph Representation for Monolithic
Model Descriptions. Technical Report 02/03, UniversitätErlangen-
Nürnberg, Institut für Informatik 7, 2003.

[4] S. Minato. Zero-Suppressed BDDs for Set Manipulation inCombinatorial
Problems. InProc. of the 30th Design Automation Conference, pages
272–277, Dallas (Texas), USA, June 1993. ACM Press.

[5] W.H. Sanders and J.F. Meyer. Reduced Base Model Construction Methods
for Stochastic Activity Networks. IEEE Journal on Selected Areas in
Communications, 9(1):25–36, January 1991.

[6] M. Siegle. Behaviour analysis of communication systems: Compositional
modelling, compact representation and analysis of performability proper-
ties. Berichte aus der Informatik. Shaker Verlag, Aachen, Germany, 2002.
Habilitation Thesis Friederich-Alexander-University Erlangen-Nürnberg.

c© K. Lampka, M. Siegle

