
A Stochastic Extension of the Logic PDL
Matthias Kuntz

Friedrich-Alexander-Universität Erlangen-Nürnberg
Institut für Informatik 7

Martensstrasse 3, D-91058 Erlangen
Email: mskuntz@informatik.uni-erlangen.de

Markus Siegle
Friedrich-Alexander-Universität Erlangen-Nürnberg

Institut für Informatik 7
Martensstrasse 3, D-91058 Erlangen

Email: siegle@informatik.uni-erlangen.de

Abstract— We present stochastic PDL (SPDL), a stochastic
extension of the modal logic PDL (propositional dynamic logic),
which is interpreted over labelled continuous time Markov chains
(CTMC). This logic allows one to specify complex path-based
performability measures and check their validity automatically.
We define the syntax and semantics of SPDL. In this logic,
computation paths can be characterised by regular expressions,
also called programs, where the executability of a regular
expression may depend on the validity of test formulae. For
model checking SPDL path formulae, we transform programs
into a variant of deterministic finite automata, and then build
the product automaton between this automaton and the labelled
CTMC. The paper contains a small example that illustrates the
model checking procedure1.

I. M OTIVATION AND INTRODUCTION

Distributed, concurrent hard- and software systems have
become part of our daily life and it becomes more and more
important to assert that they are working correctly and that
they meet high performance and dependability requirements.

In order to carry out performance, dependability and relia-
bility analysis it is necessary to have both a model and a num-
ber of measures of interest, such as utilisation, mean number
of jobs, mean time to failure, etc.. Roughly spoken, the model
is derived in two steps: Firstly, some specification method such
as stochastic Petri nets, stochastic process algebras, queueing
networks, etc. is employed to obtain a high-level specification
of the system that is to be analysed. Secondly, from this high-
level specification the low-level representation is obtained.
This low-level representation is normally a continuous time
Markov chain (CTMC).

In the realm of functional verification, temporal logics
such as CTL provide powerful means to specify complex
requirements that a system has to satisfy. In the recent years
big efforts have been made to provide similar means for the
specification of system properties in the area of performance
analysis. One result of these efforts is the logic CSL (contin-
uous stochastic logic) introduced by [1] and extended in [2]
with an operator to reason about steady state probabilities.
CSL allows the specification of certain types of performability
measures (cf. [3]) but the specification of these measures is
completely state-oriented.

A very important branch of modelling formalisms is that of
stochastic process algebras (SPA), which is action-oriented. In

1 c©Matthias Kuntz and Markus Siegle

a nutshell this means a process is specified by the sequence
of actions that it can perform. In this context, states constitute
only an auxiliary means within the semantic model of SPA-
processes. In contrast, using CSL, the determination of the
measures of interest is state-oriented. To avoid this change of
views, i.e. action- vs. state-oriented, in [4] an action-based
variant of CSL, aCSL, has been proposed. In [5] it was
shown how to employ this logic for performability modelling.
In aCSL the requirements are completely action-oriented. As
aCSL has only limited capabilities to characterise paths, it was
extended in [6] to aCSL+, where paths can be characterised
by regular expressions, also called programs.

In this extended abstract we propose a stochastic extension
of the modal logic PDL, SPDL, which extends aCSL+. In
SPDL paths can also be characterised by programs, but in
addition it is possible to express that a program is executable
only if the current state satisfies a given state property. This
makes it possible to combine in an easy way state- and action-
oriented behaviour.

SPDL is thus well suited for performability modelling,
since it provides ample means to characterise paths, thereby
allowing the modeller to obtain a high level of confidence in
the performance and dependability of the system at hand.

This paper is organised as follows: At first we define
the syntax and semantics of the logic SPDL (Sec. II). In
Sec. III we illustrate the possibilities of SPDL to specify
performability measures by means of an example system.
Sec. IV introduces the model checking procedure of SPDL-
path formulae, which can be reduced to standard transient
analysis, by example. The paper concludes with a summary
and an outlook on future work.

II. SYNTAX AND SEMANTICS OF SPDL

This section introduces the syntax of SPDL formulae and
programs and describes in an informal way their semantics.

A. Syntax of SPDL

Generally spoken, SPDL consists of the following ingre-
dients: propositional logic, modal logic, probability theory,
and algebra of regular expressions. SPDL expressions can be
formed using as follows: Letp ∈ [0, 1] andq ∈ AP, whereAP

is the set of atomic propositions, i.e. elementary state formulae,
and let⊲⊳∈ {≤, <,≥, >}. The state formulaeΦ of SPDL are



defined by the following grammar:

Φ := q
∣

∣Φ ∨ Φ
∣

∣¬Φ
∣

∣S⊲⊳p(Φ)
∣

∣P⊲⊳p(ϕ)
∣

∣(Φ)

Thus, a state formula is either an atomic proposition, the
disjunction of two state formulae, the negation of a state
formula, a steady state formula (S), or a probabilistically
quantified path formula (P). Path formulaeϕ are defined by:

ϕ := Φ[π]IΦ

whereI is the closed interval[t, t′]. π is a program as defined
in the sequel.

Let Act be a set of atomic programs, which we may also
call actions, andTEST be a set of state formulae. A program
π is defined by the following grammar:

π := ǫ
∣

∣π; π
∣

∣π ∪ π
∣

∣Φ?; π
∣

∣π1

∣

∣(π)

π1 := a
∣

∣π1; π1

∣

∣π1 ∪ π1

∣

∣π∗
1

∣

∣Φ?; π1

∣

∣(π1)

where a ∈ Act and Φ ∈ TEST. ǫ is the empty program,
π; π is the sequential execution of two programs,π ∪ π is the
non-deterministic choice between two programs.Φ?; π checks
whetherΦ holds in the actual state, if it does, executeπ,
otherwise fail. Finally,π∗

1 means, executeπ1 an arbitrarily
chosen finite number of times, including zero times.
S⊲⊳p(Φ) asserts that the steady-state probability, i.e. the

probability to reside in a particular set of states on the long
run, given an initial states, satisfies the boundary as given by
⊲⊳ p. P⊲⊳p(ϕ) asserts that the probability measure of the set
of paths that satisfyϕ is within the bounds as given by⊲⊳ p.

B. The Semantic Model

SPDL is interpreted over an action- and state-labelled
CTMC (ASMC) M, which is a quadruple(S, Act, L, R),
where

• S: finite set of states
• Act: set of action names
• L: state labelling function:S → 2AP

• R: state transition relation :R ⊆ S × (A × IR>0) × S

The semantics of SPDL-state formulae is defined the standard
way, details can be found in [7]. We only describe informally
the semantics of SPDL-path formulae as their semantics is
very different from that of CSL: A pathσ of modelM satisfies
path formulaϕ := Φ[π]IΨ iff:

• a Ψ-state on pathσ is reached after the passage oft′′

time units, wheret′′ is within I.
• all preceeding states satisfyΦ
• the actions offered byσ correspond to the programπ.
• all test formulae occuring inπ are satisfied in the corre-

sponding states ofσ.

C. Derived Temporal Operators

The only temporal operator presented so far is[π]I . The
usual until-operator of CSL (cf. [8]) can be expressed as
follows:

ΦUIΨ := Φ[Act∗]IΨ

Other operators, like ’X’ (’next’) and ’F’ (’finally’) can also
be derived. Details can be found in [7].

III. E XAMPLE : SYSTEM MODEL AND REQUIREMENTS

In order to illustrate our approach, specifying and checking
performability measures using the logic SPDL, we consider
an example.

A. The System Model

The model in Fig. 1 represents a system that receives four
data packets and processes them together. This behaviour is
repeated indefinitely.

86

10

97

5431 2

Abbreviations:

A A A AC C C C

E
EE E

a, λ a, λ a, λ a, λ

A = a, µ C = co, γ E = e, δ

rt, κ

prc, ω

Fig. 1. System model – a 4 place buffer with erroneous arrivals

In more detail, an arrival is modelled by actiona. Arrival
of a data packet can be error-free (arrival rateλ) or erroneous
(arrival rateµ). An erroneous data packet can be corrected
(co, γ), or cannot be corrected(e, δ). If it cannot be corrected,
the buffer is emptied and all data packets have to be retransmit-
ted(rt, κ). If all data packets are error-free or correctable, then
the received data can be processed(prc, ω) and the system
awaits new data.

We must also provide the state labellings, i.e. atomic for-
mulae that are valid in the states of the system model. The
example system has 10 states, indexed 1 to 10.

• L(s1) = {empty}
• L(s2) = L(s3) = L(s4) = ∅
• L(s5) = {full}
• L(s6) = L(s7) = L(s8) = L(s9) = L(s10) = {error}

A state satisfies the negations of the formulae that are not valid
in it, e.g. states 2 - 4 satisfy{¬empty,¬full,¬error}.

B. Performability Measures

Now, we will give some example requirements:

1) Φ1 := P≥0.9(¬full[a∗; e; rt; a∗ ∪ a∗][0,5]full): Is the
probability to receive all data packets without error or
with at most one non-correctable error within 5 time
units at least 0.9?

2) Φ2 := P>0(true[a][0,∞)full): Is the probability to reach
a state in which the buffer is full with a single arrival
greater than zero?Φ2 characterises state 4 as this is
the only state from which it is possible to reach a state
satisfying ’full’ by a single arrival action.



3) Φ3 := P≤0.1(true[a∗; (Φ2?; a; co)][0,7.3]full): Is the
probability that the buffer is full after at most 7.3 time
units and that the 4th packet contains a correctable error
and that all preceeding packets are error free, at most
ten percent?

4) Φ4 := P≥0.85(true[(a ∪ a; co)∗][0,10]full): Is the proba-
bility to reach state 5 within 10 time units, provided no
packet contains incorrectable errors, at least 85%?

IV. M ODEL CHECKING SPDL

In this section we illustrate by example how we can model
check SPDL path formulae. A thorough account of how to
model check SPDL can be found in [7].

A. General Aproach

Fig. 2 shows the general approach to model check SPDL
path formulae. We assume that a system modelM and a

path formula

Nondet. Automaton

Det. Automaton

SPDL System Model

Product automaton

Transient Analysis on a labelled CTMC

Nπ

Aπ

M× = M× Aπ

MΦ[π]IΨ

Fig. 2. Model checking SPDL path formulae – general approach

SPDL requirementΦ[π]IΨ are given. Fromπ we derive a
non-deterministic automaton,Nπ, that is transformed into a
deterministic one,Aπ. FromAπ andM a product automaton
M× is built, which in fact is a CTMC whose transitions rates
are taken fromM. Finally, onM× we can perform transient
analysis to check whether the model satifies its requirement
or not. Transient analysis is done by the well-known method
of uniformisation.

B. Example

Consider the example systemM, from Fig. 1 and the
requirementϕ := true[a∗; (Φ2?; a; co)][0,7.3]full. We want to
check whetherM satisfiesϕ, especially for state 1. Corre-
sponding to Fig. 2 we derive froma∗; (Φ2?; a; co) a non-
deterministic automatonNπ (cf. Fig. 3)2. The testΦ2 forms
together witha a single transition. Now, we have to transform
Nπ into a determininistic automatonAπ (cf. Fig. 4) which
possesses states from the powerset of the state space ofNπ. In

2Grey-shaded states indicate the accepting end states.

A B C Dco

a

a Φ2?; a

Fig. 3. Non-deterministic automatonNπ for a∗; (Φ2?; a; co)

DABCAB coΦ2?; a

Φ2?; a¬Φ2?; a

¬Φ2?; a

Fig. 4. Deterministic automatonAπ for a∗; (Φ2?; a; co)

5,ABC

FAIL

1,AB

9,ABC

SUCC

8,AB

6,AB

4,AB

3,AB 7,AB

2,AB

λ

λ

λ

λ
µ

µ

µ

µ

γ

ω

γ + δ

γ + δ

γ + δ

Fig. 5. Product automatonM× = M× Aπ for checking validity ofΦ3

Fig. 4 we see that the labels of the transitions emanating from
statesAB and ABC are labelled with¬Φ2?; a resp.Φ2?; a,
i.e. the tests are disjoint. We discuss this issue further below.
Fig. 5 shows, how the product automatonM× := M × Aπ

is generated. The state labelled withSUCC is an absorbing
goal state in which the path formula functionally holds, the
state labelled withFAIL is an absorbing error state to which
all transitions are redirected that lead to states that render the
path formula unsatisfiable. The model checking itself, i.e.the
check whetherM satisfies the path formula, would be done
by transient analysis.

Now, we will briefly explain whyAπ possesses transitions
labelled ¬Φ2?; a and Φ2?; a, instead ofa and Φ2?; a: For
model checking to yield correct result it is necessary to
preserve the stochastic behaviour ofM. For an artificial
example, we will see that this requirement might be violated
(cf. Fig. 6). If we assume that in state 4 ofM the formula
Ψ of an imaginary path formulaϕim := Φ[(Θ?; a)∗; Ξ?; a]IΨ
holds, then the lower path ofM×

Nπ

, the Ξ-path leads to the
FAIL-state, as once in stateB of the automaton for the
programπ of ϕim no transition is possible. In contrast, the



{Φ, Ξ}{Φ, Θ}{Φ, Θ, Ξ} {Ψ}

λλλ 432

Product automaton

SUCC3,A2,A

2,B

1,A

pathΞ−

pathΘ, Θ, Ξ−

FAIL
λ

λ

λλ
λ

1

BA

a, a, a,

Θ?; a

Ξ?; a

M:

Nπ:

M×
Nπ

:

Fig. 6. Incorrect product automaton forϕim

upper path, the(Θ, Θ, Ξ)-path leads to state 4 ofM and to an
accepting state in the automaton forπ, therefore this path is a
satisfying path. But, as both paths can be taken in state(1, A)
we doubled the rateλ, which modifies the stochastic behaviour
of M and would therefore lead to wrong results during model
checking. In Fig. 7, we find the correct product automaton
by using the same kind of transition labelling procedure as in
Fig. 4. We see that the product automaton in Fig. 7 preserves
the branching and therefore the stochastic behaviour ofM. In
contrast toNπ in Aπ no two transitions are activated at the
same time. The tests inAπ are disjoint, therefore whenM is
in state1 andAπ is in stateA only the transition with labelling
(Θ ∧ Ξ)?; a to stateAB can be taken, leading in the product
automatonM×

Aπ

to the unique successor state(2, AB).

A

1

{Φ, Θ} {Φ, Ξ}{Φ, Θ, Ξ} {Ψ}

λλλ 432

λ

Product automaton

λ
1, A SUCC3, A2, AB pathΦ, Φ, Ξ−λ

AB

B

a, a, a,

(Θ ∧ ¬Ξ)?; a

(Θ ∧ ¬Ξ)?; a

(¬Θ ∧ Ξ)?; a

(¬Θ ∧ Ξ)?; a

(Θ ∧ Ξ)?; a

(Θ ∧ Ξ)?; a

M:

Aπ:

M×
Aπ

:

Fig. 7. Correct product automaton forϕim

V. CONCLUSION

We have presented a stochastic extension of the logic
PDL, SPDL, that allows the user to specify very complex
performability requirements, including both state measures and
path-based measures.

By a small example we have demonstrated how to check
whether the model at hand meets the requirements. In the
technical report version of this paper [7] we have also shown
that bisimulation preserves validity of SPDL formulae. Fur-
thermore we have shown that SPDL is strictly more expressive
than CSL, aCSL and aCSL+.

In the near future we plan to implement SPDL and integrate
it into our existing performance analysis toolCASPA [9]

ACKNOWLEDGMENTS

The authors wish to thank Joachim Meyer-Kayser for many
fruitful discussions.

REFERENCES

[1] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton, “Verifying continu-
ous time Markov chains,” inComputer-Aided Verification, R. Alur and
T. Henzinger, Eds., vol. LNCS 1102. Springer, 1996, pp. 146–162.

[2] C. Baier, J.-P. Katoen, and H. Hermanns, “Approximate Symbolic Model
Checking of Continuous-Time Markov Chains,” inConurrency Theory,
J. Baeten and S. Mauw, Eds., vol. LNCS 1664. Springer, 1999, pp.
146–162.

[3] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen, “On the logical
characterisation of performability properties,” inICALP, vol. LNCS 1853.
Springer, 2000, pp. 780–792.

[4] H. Hermanns, J. Katoen, J. Meyer-Kayser, and M. Siegle, “Towards model
checking stochastic process algebra,” inIntegrated Formal Methods, vol.
LNCS 1945. Springer, 2000, pp. 420–439.

[5] H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle, “Imple-
menting a Model Checker for Performability Behaviour,” inFifth Int.
Workshop on Performability Modelling of Computer and Communication
Systems (PMCCS5), R. German, J. Luethi, and M. Telek, Eds. Universität
Erlangen-Nürnberg, Arbeitsberichte des Instituts für Informatik, Band 34
Nummer 13, September 2001, 2001, pp. 110–115.

[6] J. Meyer-Kayser, “Verifikation stochastischer, prozessalgebraischer Mod-
elle mit aCSL+ (in German),” Universität Erlangen-Nürnberg, Institut für
Informatik 7, Tech. Rep. 01/03, 2003.

[7] M. Kuntz and M. Siegle, “A Stochastic Extension of the Logic PDL,”
Friedrich-Alexander-Universität Erlangen-Nürnberg,Tech. Rep. 03/03,
2003.

[8] C. Baier, B. Haverkort, J.-P. Katoen, and H. Hermanns, “Model checking
algorithms for continuous time Markov chains,”to appear in IEEE
Transactions on Software Engineering, 2003.

[9] M. Kuntz, M. Siegle, and E. Werner, “CASPA: A performanceevaluation
tool based on stochastic process algebra and symbolic data structures,”
in to appear in tool proc. of the 2003 Illinois Int. Multiconference on
Measurement, Modelling, and Evaluation of Computer-Communication
Systems, 2003.


