
Path-based calculation of MTTFF, MTTFR and

asymptotic unavailability with the stochastic

process algebra tool CASPA ∗

Johann Schuster and Markus Siegle

Universität der Bundeswehr München

Abstract

CASPA is a stochastic process algebra tool for performance and depend-

ability modelling, analysis and verification. It is based entirely on the

symbolic data structure MTBDD (Multi-Terminal Binary Decision Di-

agram) which enables the tool to handle models with very large state

space. This paper describes an extension of CASPA’s solving engine for

path-based approximation of MTTFF (Mean Time To First Failure), MT-

TFR (Mean Time To First Recovery) and asymptotic unavailability by

MTBDD algorithms. To keep the paper self-contained, we briefly recall a

symbolic variant of the k-shortest-path algorithm of Azevedo et al., which

works in conjunction with a symbolic variant of Dijkstra’s shortest path

algorithm. A non-trivial case study illustrates the use of this kind of path-

based analysis and compares the path-based unavailability calculation to

the results from standard Markovian analysis.

∗This work is based on the paper Symbolic calculation of k-shortest paths and related

measures with the stochastic process algebra tool CASPA [6]

1



1 Introduction

In order to better understand the behaviour of fault-tolerant systems, it is often

very helpful to obtain information about the possible sequences of events which

may lead to system failure. Therefore, in addition to standard steady-state and

transient measures, path-based analysis is an important ingredient to model-

based dependability analysis (see for example [4]). Knowing the most likely

paths from an initial, error-free state to the set of states where the system has

failed, and knowing the associated probabilities and average durations of such

paths, is very valuable for system designers and may assist them in debugging

and improving their fault-tolerant system.

In this paper, we discuss algorithms for the path-based analysis as imple-

mented in the modelling tool CASPA [10, 7, 2], which is a tool for performance

and dependability modelling, based on a stochastic process algebra. CASPA

is completely based on symbolic, i.e. Multi-Terminal Binary Decision Dia-

gram (MTBDD)-based, techniques that enable the tool to generate and analyse

Markov chains with very large state spaces in a highly efficient manner. The

tool has shown to be very suitable for dependability evaluation purposes, for

example it is also used as a back-end solver for the OpenSESAME modelling

tool [9]. Here we describe a new analysis feature of CASPA that uses path-based

calculations. In this paper we use the term “k-shortest path” synonymous to

“k-most probable path”. We briefly recall the symbolic algorithm for the cal-

culation of k-shortest paths presented in [6] and show how it can be used to

calculate also MTTFF (Mean Time To First Failure), MTTFR (Mean Time To

First Recovery) and asymptotic unavailability. As the terms are not defined

uniquely in the literature, we emphasise that we use the term MTTFF (for re-

pairable systems) to denote the average time to the first failure starting from

the completely repaired system (which is the initial state for our model). In this

paper, MTTFF will be used to approximate the MUT (Mean Up Time). We

would like to note that [4] uses the term MTTF to describe the mean time to

2



first failure. Our calculation of MTTFR, the mean time from the first failure

to (first) recovery, will be used to approximate the MDT (Mean Down Time).

The paper is organised as follows: Section 2 recalls the algorithms presented

in [6] for calculating the shortest (i.e. most probable) path in a given transition

system. In Section 3 we show how to approximate the MTTFF, MTTFR and

asymptotic unavailability on the basis of k-shortest-path calculations. Section 4

presents a non-trivial application case study that illustrates the efficiency of the

implemented symbolic data structures and algorithms, and Section 5 concludes

the paper.

2 Preliminaries

This section briefly summarises the algorithms given in [6] for calculating the

k-shortest paths. The basis of the algorithms is a set of labels L, a set of states

S and a labelled transition system Trans defined as follows:

Trans ⊆ S × L × [0, 1] × S,

We only allow “parallel” transitions with different labels, i.e. if (x, a, p, y) ∈

Trans and (x, a′, p′, y) ∈ Trans, then a 6= a′ must hold. The real number in

the interval [0, 1] is the probability of taking the corresponding transition, so

the auxiliary condition

∀x ∈ S :
∑

(x,a,p,y)∈Trans

p = 1.

must hold. As an abbreviation we will use x
a,p
→ y for the tuple (x, a, p, y).

Fig. 1(a) shows an example of such a transition system. In addition, we de-

fine another transition system Transmax out of Trans and call it the maximal

3



Figure 1: maximal projection, Flooding Dijkstra and maximal lifting

projection.

Transmax := {(x, p, y) ∈ S × [0, 1]× S|

(∃a ∈ L : (x, a, p, y) ∈ Trans) ∧

(∀a ∈ L, p′ ∈ [0, 1] : ((x, a, p′, y) ∈ Trans) ⇒ (p′ ≤ p))}.

The existence condition ensures that a lifting to Trans exists and the second

condition ensures that p is maximal. So these are the maximum transition

probabilities one can get by choosing an arbitrary action from a source to a

target state. Again, we will use x
p
→ y as a synonym for the tuple (x, p, y),

cf. Fig. 1(b) as the maximal projection of the example.

Another definition is needed to read the action labels from the path: The

maximal lifting of a subset T ⊆ Transmax to Trans:

T ∗ := {(x, a, p, y) ∈ Trans|∃(x, p, y) ∈ T }.

In general, this lifting is not unique: There can be more than one action fulfilling

the maximality condition while p as the maximum is unique for a certain pair

(x, y) ∈ S2. An example for the maximal lifting can be seen in the arrow from

Fig. 1(c) to (d).

All algorithms in [6] are given by set-theoretic operations in order to allow

for efficient MTBDD-implementations (which are given in the appendix of [6]).

4



Figure 2: Trans and Trans’

2.1 Spanning tree algorithm

Using the maximal projection of Trans, the action labels are abstracted away

and one can proceed with a variant of Dijkstra’s algorithm to obtain a spanning

tree. In our case we are not interested in the shortest path but in the maximum

probability, which is an equivalent problem formulation. Our Dijkstra-Variant

is a multi-update approach that allows for an implementation by MTBDD op-

erations. We call it Flooding-Dijkstra (cf. Sec. 2 in [6]). The Flooding Dijkstra

algorithm is sketched in by the arrow from Fig. 1(b) to (c).

2.2 Reading the action labels

Once the spanning tree is known, it has to be lifted to a subset of Trans and

a certain path (there might be more than one with the maximum probability)

has to be chosen (cf. Sec. 3.1 in [6]). In the example, the shortest path could

be read from Fig. 1(d).

2.3 Second shortest path

Starting with Trans and the shortest path a new transition system Trans′ can

be constructed with the ideas of [1, 8]. The desired property of Trans′ is that a

shortest path in Trans′ (from Init’ to Dest) is a second-shortest path in Trans

(cf. Sec. 3.2 in [6]). An example is shown in Fig. 2. With this algorithms at

hand, the k-shortest path can be calculated iteratively for an arbitrary but fixed

k.

5



3 MTTFF and MTTFR

In this section we need to consider sojourn times of states, therefore the purely

probabilistic setup of the previous sections does not suffice. We thus define

two sets of transitions, which are directly generated by CASPA from the input

language. Let TransM be the subset of Markovian transitions

TransM ⊆ S × L × R>0 × S,

where similarly to Sec. 2 S is a set of states and L a set of labels. The real number

in the tuple describes the Markovian transition by means of the parameter λ

(transition rate) of the corresponding exponentially distributed random variable.

Analogously, we define the set of immediate transitions by TransI as follows:

TransI ⊆ S × L × R>0 × S.

The real number in this case is interpreted as a weight which is normalised

to a probability at the end of the model generation process [2]. By the maxi-

mum progress assumption, Markovian transitions that compete with immediate

transitions are removed from TransM . Using the transition probabilities of the

immediate transitions and calculating the transition probabilities of the Marko-

vian transitions (from the specified transition rates), a transition system Trans

like the one defined in Sec. 2 can be obtained easily.

For the following subsections we also need the set of failure states of the

system, which will be denoted by Failure. For the calculation of the time

corresponding to a path, the notation of the cumulative outgoing rate of a state

x ∈ S is important:

λ(x) :=
∑

x
a,λ
→y∈TransM

λ

Using the cumulative outgoing rate, an associated average time can be calculated

for every path in the Transition system TransM ∪ TransI starting at a certain

6



state x0. We define:

getT ime(x0, path) :=
∑

x∈SM(path)

1

λ(x)

Here SM (path) ranges over all source states in TransM ∩path and x0 is the first

state of path. Note that x0 is redundant as path contains all the information

we need, but it makes calculations in Sec. 3.2 easier to read.

3.1 Calculation of MTTFF

An approximation of the MTTFF (cf. definition in Sec. 1) is calculated as

follows [4]:

MTTFF ≈
1

α · λ(Init)
(1)

Being in the state Init, α is the probability of visiting at least one state of the

set Failure before returning to Init. Clearly, α can be approximated by adding

up the probabilities of the k-shortest paths from Init to the set Failure.

This approximation in Eq. 1 can be motivated as seen in Fig. 3. Starting

from the state Init, we are interested in the mean time necessary to reach an

Error before returning to the initial state as seen in Fig. 3(a). An exemplary

scenario is shown in Fig. 3(b), where a non-critical error occurs and the system

can recover to the error-free state Init. As in this approximation we assume fast

repairs, the repair time is negligible in contrast to the sojourn time T := 1
λ(Init)

in state Init, so the time for a loop from Init to Init is taken to be T . Therefore

one can approximate

MTTFF ≈ T · α + 2 · T · (1 − α) · α + . . . = α · T ·

∞
∑

i=0

(i + 1) · (1 − α)i

and from this one can deduce Eq. (1) by a geometric series argument. Note that

if the system does not have fast repairs, an alternative approach similar to the

calculation of MTTFR in Sec. 3.2 can be taken for the calculation of MTTFF.

7



(a) Basic setup (b) Timeline

Figure 3: Approximation of MTTFF

3.2 Calculation of MTTFR

As the calculation of MTTFF exploits the fact that the system has fast repairs,

a similar approximation cannot be applied for the calculation of the MTTFR.

Therefore, we apply the following method, as originally proposed in [4]: For a

state x ∈ S and a subset of target states T ⊆ S we use PATH(x, T ) to denote

minimal paths from x to T . By minimal we mean in this case that only the last

state of the path is in the set T . The probability of a certain path starting from

state x is denoted by P (x, path) (this is a by-product of the Flooding Dijkstra

algorithm, cf. Sec. 2). Let the function Target return the final state of a path.

With this notation we can define the MTTFR for paths starting in state x as

MTTFR(x) :=
∑

path∈PATH(x,S\Failure)

P (x, path) · getT ime(x, path).

We also need the cumulated probability of the explored paths

Pexpl :=
∑

path∈PATH(Init,Failure)

P (Init, path).

The MTTFR is then approximated as the weighted sum

MTTFR :=
1

Pexpl

·
∑

path∈PATH(Init,Failure)

P (Init, path)·MTTFR(Target(path)).

From this, the asymptotic unavailability can be calculated as follows:

Ā(∞) =
MDT

MUT + MDT
≈

MTTFR

MTTFF + MTTFR

8



Figure 4: Sketch of the electrical system

Note that in this approximation we also assume that the system has fast repairs

(then it holds that MUT ≈ MTTFF , MDT ≈ MTTFR). In systems with fast

repair the fully repaired system has by far the highest probability (e.g. 0.996 in

the example in Sec. 4).

3.3 Approximations in CASPA

In CASPA only trivial truncation criteria are implemented so far: Firstly, we

can specify how many paths should be calculated (and therefore be used in the

calculations of Sec. 3.1 and 3.2) and secondly, we cancel a path if its probability

is below a certain threshold. As stated in [4] we want to stress that we only can

expect good approximation results if we are given a model with fast repair, i.e.

the repair rates are orders of magnitude bigger than the failure rates.

4 Case study

To show the applicability of our algorithm we modelled the electrical system

given in [3]. However, we noticed that the most probable paths published there

did not fit the textual description (e.g. an initial failure of transfo 2 would

not be possible if it was a cold spare). This is why we now give an alternative

description of the model that to our best knowledge produces the paths given

in [3].

9



4.1 Description of the model

The model is shown in Fig. 4. The aim of the system is to provide the busbar

with electrical energy. Each of the two main lines consists of upper and lower

circuit breakers (CB) and a transformer (transfo). They route electrical energy

from the grid to the busbar. If the lines fail or the grid does, the diesel gener-

ator has to be used. The initial configuration is as seen in Fig. 4 where only

CB dw 2 and CB dies are in the open position, the other switches are closed.

The following constraints for the operation and dynamic behaviour are given:

• States of the components can be WORKING, STANDBY or FAILED.

• Either line 1, line 2 or the diesel engine is used. As long as the grid works,

mode switches can only be line 1 ↔ line 2 ↔ diesel, no direct switches from

line 1 to diesel and vice versa are allowed.

• The transformers and the grid are hot spares and always fail with the same

rate, no matter if they are active (i.e. in the WORKING state) or not.

• The circuit breakers CB up and CB dw are cold spares (i.e. they do not fail as

long as no current runs over them) and they can produce on-demand-failures

(i.e. errors that occur when trying to switch a circuit breaker). The switching

may succeed or fail according to a on-demand-failure probability.

• CB dies may only fail on-demand, it does not fail internally.

• When a transformer fails, its upper circuit breaker has to be opened, otherwise

a short-circuit will make the grid unavailable for the other transfo.

• Switching from transfo 1 to transfo 2 means trying to open CB up 1 and to

close CB dw 2. Note that when transfo 1 fails and CB up 1 fails to open, there

is always an attempt to close CB dw 2 even if it’s clear that in this situation

the diesel engine has to be used anyway, as the grid is short-circuited by line

1.

• Switching on the diesel engine means closing CB dies and trying to start the

engine (RS: request to start). Both operations may have on-demand failures.

• Switching back after a repair always works without on-demand failures.

• Whenever an error (either Markovian or on-demand) occurs, a repairman

10



Figure 5: Sketch of the model of a transformer line

(with exponentially distributed repair time) starts the repair.

• For the repairs we use infinite server semantics (i.e. there are infinitely many

stochastically independent repairmen).

We have introduced a total ordering of all switching actions as follows: (CB up 1

> CB dw 1 > CB up 2 > CB dw 2 > CB dies > RS dies). Whenever there are

multiple switching operations to be done in our model, switching operations will

be performed in the order defined by this relation. Following the philosophy of

shortest paths to failure states, we stress that whenever a greater switching

action fails, we do not explore the path any further (except for the short circuit

situation given above). All intended switchings succeed with probability 999
1000 ,

all failure rates are equal to 10−4 per hour and all repair rates equal to 10−1

per hour.

4.2 CASPA implementation of the model

The model has been built in CASPA using a compositional modelling approach

with synchronisations. Each line is the parallel composition of two switches,

a transformer and a line administration. Its synchronising actions are given

in Fig. 5. The line administration process has in addition to its internal state

a counter variable that keeps track of how many components of the line are

currently in the FAILED state. From this it can be determined when the entire

line has been repaired. A top-level process (not shown in Fig. 5) synchronises

with two line subprocesses and takes care of the grid and the entire diesel line.

As the immediate actions used only for synchronising are of no interest for the

11



resulting paths, they are eliminated, once the overall model has been generated.

For the path-based analysis, this partial elimination is done by five symbolic

elimination rounds [2] and the resulting model has 3604 reachable states (none

of them absorbing). For the steady-state analysis all immediate transitions

can be eliminated in 14 symbolic elimination rounds and the resulting ergodic

Markov model has 1136 reachable states. Note that the model in [6] used only

one single failure state as we did not consider repair events, so there were only

774 states for the path-based analysis.

4.3 Experimental results

All experiments have been carried out on an Intel Xeon 3.06 GHz machine with

2 GB of main memory running SUSE Linux version 9.1.

Nr. Path numerical result theoretical result mean time (h)
1 Failure OF GRID

Occurrence OF RC CB dies 2.0e − 04 1
5

1
1000 2.000e+03

2 Failure OF GRID
OK OF RC CB dies
Occurrence OF RS dies 1.998e-04 1

5
999
1000

1
1000 2.000e+03

3 Failure OF GRID
OK OF RC CB dies
OK OF RS dies

Failure OF dies generator 1.990e-04 1
5

(

999
1000

)2 10−4

10−1+3·10−4 2.010e+03

4 Failure OF Transfo2
Occurrence OF RO CB up 2

Occurrence OF RC CB dies 2.000e-07 1
5

(

1
1000

)2
2.000e+03

5 Failure OF CB dw 1
Occurrence OF RC CB dw 2
Occurrence OF RC CB dies

6 Failure OF CB up 1
Occurrence OF RC CB dw 2
Occurrence OF RC CB dies

Table 1: Start of the list of most probable paths

Table 1 shows the 6 most probable paths calculated by our algorithm (more

paths can be found in [6]). The first column is the ordering of the paths given

by CASPA, the second one the corresponding sequence of actions. The third

column shows the numerical result provided by our algorithm, the fourth one

shows the exact result calculated by hand. The last column shows the mean

time the corresponding path takes. In column 2, the prefix Failure_ always

12



means a failure caused by an exponential distribution. The prefix OK_ means

that an on-demand failure did not occur, while prefix Occurrence_ means that

an on-demand failure did occur. The following abbreviations are used: RO

(Request to Open), RC (Request to Close) and RS (Request to Start). For the

by-hand calculation one only has to take care which failure event(s) and repair

event(s) can occur for a certain state. For example, the most probable path

is calculated as follows: In the initial configuration, no component has to be

repaired and Transfo1, CB up 1, CB dw 1, Transfo2 or Grid can fail. Therefore

P

0

@

Failure OF GRID →

Occurrence OF RC CB dies

1

A = 10−4

5·10−4
· 1

1000
= 1

5
· 1

1000
.

Due to the fact that CASPA uses the CUDD library [5] with a default accuracy

Cudd Epsilon of 1.0 · 10−12, this is the maximum accuracy one can expect from

the results. For example the tool calculates

P

0

B

B

B

B

B

B

@

Failure OF Transfo2 →

OK OF RO CB up 2 →

Failure OF GRID →

Occurrence OF RC CB dies

1

C

C

C

C

C

C

A

= P

0

B

B

B

B

B

B

B

B

B

@

Failure OF Transfo2 →

Occurrence OF RO CB up 2 →

OK OF RC CB dies →

OK OF RS dies →

Failure OF dies generator

1

C

C

C

C

C

C

C

C

C

A

,

but the exact values differ:

1
5
· 999

1000
· 10−4

10−1+4·10−4
· 1

1000
6= 1

5
· 1

1000

`

999
1000

´

2 · 10−4

10−1+3·10−4

As the difference is below 1.0 · 10−12, the values are taken as equal. Reducing

Cudd Epsilon would improve accuracy but also slow down the calculations. We

have calculated the asymptotic unavailability using the following characterisa-

tion of a non-critical state:

``

(line 1 and sc line 2) or (line 2 and sc line 1)
´

and grid
´

or diesel.

The first part of the term is the condition that line 1 is working and no short-circuit

at line 2 is present (and so on). For the measure of a failure state, the term was

negated and converted into disjunctive normal form (DNF) to fit the CASPA syntax

of a measure.

4.3.1 Path-based measures and discussion

Table 2 shows a comparison of the results. Column one shows the results of the

algorithms described in this paper (using the two most probable paths into every

13



MTBDD-path-based results in [3] MTBDD-steady-state

MTTFF (h) 3.2870 · 106 3.29 · 106 -
MTTFR (h) 4.9792 4.95 -

Unavailability 1.5148 · 10−6 1.51 · 10−6 1.5153 · 10−6

Solution time (s) 92.22 n.a. 3.5

Table 2: Experimental results

failure state and for every failure state the two most probable paths out of it), column

two contains the results given in [3] and the last column shows the result by steady-

state analysis. The results of [3] and our results are quite similar.

To verify our path-based algorithms we compared the result for the asymptotic un-

availability to the result of steady-state analysis, which fits very well. With the Gauss

Seidel algorithm the result was calculated within only 19 iterations in 0.04 seconds.

The rest of the 3.5 seconds given in Tab. 2 was spent for the model generation, reach-

ability analysis and so on. This showed that being only interested in the asymptotic

unavailability, it is much faster using standard numerical methods and calculating the

state-measure.

5 Conclusion

In this paper, we first recalled k-most probable path calculations using variants of

Dijkstra’s and Azevedo et al. algorithm (c.f. [6]). From this starting point we intro-

duced approximations for MTTFF and MTTFR and asymptotic unavailability that

are suitable for symbolic implementations. A non-trivial case study showed the appli-

cability of the approach, but it also revealed that if only the asymptotic unavailability

is to be calculated, standard numerical methods are faster than the path-based ones

(which require expensive MTBDD operations). The precision of the algorithms has

been shown to be dependent on the accuracy of the calculations in the underlying

MTBDD package CUDD. With this path-based analysis, the CASPA tool provides

an alternative analysis method to the standard numerical analysis. The path-based

analysis can further nicely be used for debugging models: If a certain behaviour of a

system is known from the specification, the paths in the model can be checked against

it.

14



Acknowledgements: Special thanks to Max Walter for his fruitful comments

on the MTTFF/MTTFR calculations. Also we would like to thank the reviewers for

their helpful questions and suggestions. Further we would like to thank Deutsche

Forschungsgemeinschaft (DFG) who supported this work under grant SI 710/7-1 and

for partial support by DFG/NWO Bilateral Research Programme ROCKS.

References

[1] J. Azevedo, J. Madeira, E. Martins, and F. Pires. A Shortest Paths Ranking

Algorithm. In Proc. of the Annual Conference AIRO’90 Operational Research

Society of Italy, pages 1001–1011, IEEE, 1990.

[2] J. Bachmann, M. Riedl, J. Schuster, and M. Siegle. An Efficient Symbolic Elim-

ination Algorithm for the Stochastic Process Algebra tool CASPA. In SOFSEM

2009: Theory and Practice of Computer Science, pages 485–496, Špindler̊uv Mlýn,

Czech Republic, 2009. Springer, LNCS 5404.

[3] M. Bouissou and J.-L. Bon. A new formalism that combines advantages of fault-

trees and Markov models: Boolean logic driven Markov processes. Reliability

Engineering and System Safety, 82:149–163, 2003.

[4] M. Bouissou and Y. Lefebvre. A Path-Based Algorithm to Evaluate Asymptotic

Unavailability for Large Markov Models. Proc. of the Annual Reliability and

Maintainability Symposium, pages 32–39, 2002.

[5] CUDD website. http://vlsi.colorado.edu/∼fabio/CUDD/, (last checked Au-

gust 2010).

[6] M. Günther, J. Schuster, and M. Siegle. Symbolic calculation of k-shortest paths

and related measures with the stochastic process algebra tool CASPA. In Proc.

of the First Workshop on DYnamic Aspects in DEpendability Models for Fault-

Tolerant Systems, pages 13–18, 2010.

[7] M. Kuntz, M. Siegle, and E. Werner. Symbolic Performance and Dependability

Evaluation with the Tool CASPA. In Europ. Perf. Engineering Workshop, pages

293–307. LNCS 3236, 2004.

15



[8] W. Schmid. Berechnung kürzester Wege in Straßennetzen mit Wegeverboten. PhD

thesis, Universität Stuttgart, Fakultät für Bauingenieur- und Vermessungswesen,

2000.

[9] M. Walter, M. Siegle, and A. Bode. OpenSESAME: The Simple but Extensive,

Structured Availability Modeling Environment. Reliability Engineering and Sys-

tem Safety, 93(6):857–873, 2007.

[10] E. Werner. Leistungsbewertung mit Multi-terminalen Binären Entscheidungsdi-

agrammen. Master’s thesis, Univ. Erlangen, Computer Science 7 (in German),

2003.

16


