
Using Structured Modelling for Efficient Performance
Prediction of Parallel Systems

Markus Siegle

Computer Science Department (IMMD VII), Universität Erlangen-Nürnberg,
Martensstraße 3, 91058 Erlangen, Germany, siegle@informatik.uni-erlangen.de

Abstract: A method for analyzing parallel systems with the help of structured Markovian
models is presented. The overall model is built from interdependent submodels, and
symmetries are exploited automatically by grouping similar submodels in classes. During
model analysis, this leads to a state space reduction, based on the concept of exact lumpability.

1. Introduction

The high complexity of today’s parallel computers — due to the large number of concurrently
active and mutually dependent hardware and software components — makes them difficult
to understand for human users. Developing efficient software for this class of machines
is therefore very time-consuming and expensive. The resulting performance often fails to
meet expectations, therefore requiring major re-implementation. Event-based performance
models can be used to alleviate this problem. They help humans to understand the dynamic
behaviour of parallel systems by abstracting the overwhelming number of details of the real
world to essentials. They are especially useful forpredicting the performance of not yet
implemented systems, which helps to avoid expensive implementation work. Models assist
application programmers in writing more efficient parallel code. With the advent of the
modern parallel computer generation, modelling theory has an increased practical relevance.
The development of efficient techniques for the modelling of parallel systems is therefore an
important contribution to the understanding and acceptance of such systems.

Markovian models are widely used for the modelling of parallelism because they are amenable
to numerical analysis. For their specification such different modelling paradigms as queueing
networks, stochastic Petri nets and stochastic automata can be used. Tools exist [1, 2] which
support the generation of high-level models which are then translated into an underlying
continuous time Markov chain. The solution of the Markov chain yields probability values
from which performance and reliability measures of the modelled system can be derived.
Steady-state analysis is employed for studying the long-range behaviour of systems reaching
an equilibrium, whereas the system’s development over a limited period of time is investigated
by means oftransient analysis. In this paper, only steady-state analysis will be considered.

The major problem in Markovian modelling of complex real systems is the high number
of model states. Memory space needed for the model’s stochastic generator matrixQ

often exceeds the available capacity, and computation time for solving the Markov chain
(i.e. solving the system of linear equationspQ = 0, wherep is the vector of steady-state
probabilities) can make model analysis prohibitively expensive.

Process A Process B

. . .

Communication
Subsystem

exec

comm

λµσ µ λ

exec

comm

Figure 1: Simple Parallel Processing Model (Stochastic Petri Net)

As a simple example, consider the stochastic Petri net model shown in Fig. 1. It represents
two processes (each is assumed to run independently on a separate node of a multiprocessor)
which are either executing work (exec) or attempting to submit a message to a communication
subsystem (comm). There are two message buffer places, and message submission is only
possible if there is such a buffer available. A process willing to submit a message is blocked
until a buffer is available. The durations of theexec and comm activities are exponentially
distributed with rates� and� respectively. The communication subsystem processes messages
at rate�. This Petri net has3 � 22 = 12 reachable markings, i.e. the underlying continuous
time Markov chain (CTMC) has 12 states. For a general case withn instead of2 processes
involved (as indicated by the dots in Fig. 1) but still with only two buffers, the number of states
is given by the expression3� 2n. We see that, although being very simple, the example has
a state space which grows exponentially with respect to the number of components involved.
This phenomenon is quite typical for models of parallel systems.

Among the techniques that have been considered in order to overcome the state space
explosion problem are model decomposition [3], model simplification [4] and structured
modelling. In this paper, we focus on the latter approach.

2. Structured Modelling

Structured modelling is based on information about the modular structure of the (existing or
projected) real system to be modelled. This makes it superior to model decomposition, where
an overall model must be decomposed into submodels whose identification often constitutes
a serious problem. In structured modelling the question of how to decompose a large overall
model never arises. It is implicitly answered by the structure of the real system in the
following way: For each of the modules of the real system there is a corresponding submodel
which may be specified in isolation. During model analysis, the structure of the model is
exploited, making it possible to analyze complex models whose solution would otherwise not
be feasible. Carrying out modelling in a structured way brings recognized advantages from

other areas such as software engineering. Modularity makes it easier for humans to understand
models, and submodels can be replaced very easily without affecting the specification of
other components, resulting in a great flexibility. Among published approaches to structured
modelling, the following are of particular relevance:

• In the work of Plateau et al., stochastic automata networks are used for model specification
[5, 2]. Information on the interdependence between automata is given by synchronizing
events and functional rates (rates dependent on the global state). It is shown that the
generator matrix of the overall model can be described by a tensor expression involving
only small submodel matrices. The iterative numerical solution (power method) of the
model can be carried out in adistributed fashion on this tensor descriptor. This technique
saves a lot of memory space, thus making large models tractable. Parallelization of the
scheme is possible.

• In the work of Buchholz [6], the tensor descriptor also plays an important role. He uses
two-layer hierarchical multi-paradigm models. A high-level model defines the flow of
entities (customers, tokens) between the submodels, resulting in an entity-oriented view
(as opposed to the state-oriented approach of Plateau).

Our own intention is to develop a framework which combines features of the above mentioned
approaches. While we allow multiple paradigms to be used for submodel specification,
we preserve the state-oriented view of Plateau. This avoids the restriction of submodel
interdependence to the flow of entities, allowing arbitrary interdependence instead. A new
feature is the grouping of submodels into classes. Submodel classes are introduced in view
of automatic symmetry exploitation, and it will be shown in the course of this paper (see
Section 3) that this can lead to significant state space reduction.

We return to the parallel processing example of Section 1, which will now be described by
a structured model. In Fig. 2, three submodels (SM1, SM2 and SM3) are shown which
represent the system components. The communication subsystem (SM1) is specified by an
M/M/1/2 queue, i.e. it consists of an exponential server with rate� and a finite buffer with a
total capacity of 2 customers (including the one in service). The two processes are represented
by the (identical) stochastic automata submodels SM2 and SM3. This stochastic automaton
has two states and two possible state transitions: The transition fromexec to comm is a purely
local event which takes place at rate�. The reverse transition fromcomm to exec, however,
can only take place synchronously with an arrival to the communication subsystem SM1.
This is an example of a synchronizing event. It is labellede in Fig. 2.

Since both (in general alln) process submodels are identical, we say that they belong to
the samesubmodel class (indicated by the dashed boxes in Fig. 2). In general, all similar
submodels constitute a class. The semantics of the synchronizing evente is to be chosen
here so that only one submodel per class is participating in the event. For the two process
case, this means that the evente synchronizes either the pair of submodels (SM1, SM2) or
the pair (SM1, SM3). There is another possible semantics for synchronizing events so that all
submodels within a class must participate (this would synchronize all three submodels SM1,
SM2 and SM3 which is not the intended behaviour).

We will now show how the generator matrix of the overall model can be described by smaller
submodel matrices and the use of tensor operations. The matrices associated with SM1 are

exec comm

exec comm

SM1: Communication
Subsystem

SM2: Process A

SM3: Process B
e

σ

λ

λ

e, µ

e, µ
SM Class 2

.

.

.

Overall Model

SM Class 1

Figure 2: Structured Model of Simple Parallel Processing

all of dimension3 � 3 (since SM1 has three possible states) and are given by

Q
(1)
l =

24 0 0 0
� �� 0
0 � ��

35; Q(1)
e =

24 0 1 0
0 0 1
0 0 0

35; Q(1)
e;n =

24 1 0 0
0 1 0
0 0 0

35 (1)

Here,Q(1)
l contains the rates of transitions local to submodel SM1, namely the service of

messages which takes place at rate�, provided that at least one message is in the buffer of the
communication subsystem. MatrixQ(1)

e describes how SM1 is affected by the synchronizing
evente, the arrival of a message. Matrices denoted byQ

(i)
e;n will be needed to correct the

entries on the diagonal of the overall generator matrix. In general, their diagonal elements
are equal to the row sums of the correspondingQ

(i)
e , and all off-diagonal entries equal zero.

In this particular case, all non-zero entries ofQ
(1)
e are equal to unity, because the (active)

rate of transitione will be associated with SM2 and SM3, while SM1 is participating in the
synchronization passively. The matrices for submodels SM2 and SM3 are given by

Q
(i)
l =

��� �

0 0

�
; Q

(i)
e =

�
0 0

� 0

�
; Q

(i)
e;n =

�
0 0

0 �

�
; i = 2; 3 (2)

The generator matrixQ of the overall model can now be built from these submatrices by
using the operators� and
 (tensor sum and tensor product, see appendix).

Q =Q
(1)
l �Q

(2)
l �Q

(3)
l

+Q
(1)
e
Q

(2)
e
 I2 �Q

(1)
e;n
Q

(2)
e;n
 I2

+Q
(1)
e
 I2
Q

(3)
e �Q

(1)
e;n
 I2
Q

(3)
e;n

(3)

The full structure of matrixQ is depicted in Fig. 3.

Diagonal entries denoted by� are equal to the negative row sum. The tensor descriptor
form of Q in the general case withn process submodels is a straightforward extension of the
expression in Eq. (3). It is given by

Q =

n+1M
i=1

Q
(i)
l +

n+1X
i=2

Q
(1)
e
I2
� � �
Q

(i)
e
� � �
I2�

n+1X
i=2

Q
(1)
e;n
I2
� � �
Q

(i)
e;n
� � �
I2 (5)

Q =

26666666666666666664

� � �

� � �

� � �

� � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � �

� � �

� �

37777777777777777775
Figure 3: Generator MatrixQ for the n = 2 Case

In this section we have demonstrated some important features of structured modelling.
Submodels which correspond to the various components of the real system to be modelled
can be specified individually. Different modelling paradigms such as stochastic automata,
queueing models and stochastic Petri nets can be used within one overall model. Since the
explicit construction of the model’s state space may be avoided, the memory space for the
(potentially very large) stochastic generator matrix is not needed.

3. Exploiting Symmetries

While structured description and analysis help to make large models tractable, large state
spaces still make analysis expensive, so the aim of reducing the state space remains. In this
section we describe how the cardinality of the state space may be reduced drastically by
taking advantage ofsymmetries in the model. Since many modern parallel systems consist
of a high number of similar components (processors, memory modules, busses), and since
parallel application programs often involve replicated processes, models of such systems will
exhibit symmetries, and therefore this is an issue of great practical relevance.

The idea of state space reduction through symmetry exploitation is by no means new. It is
a technique which has been used very often, but usually in a rather specialized way, tailored
to the particular case study at hand. Two recent approaches to a general modelling procedure
in which symmetry exploitation is an essential part are the following:

• In the context of stochastic Petri nets it has been shown how symmetry can be exploited
by folding identical subnets of a GSPN, thereby obtaining a concise coloured GSPN
representation. The definition of an equivalence relation on the set of coloured net
markings (the model’s state space) and the concept of symbolic reachability graph (SRG)
[7] result in a reduction of the model’s state space. In [8] an example for the SRG
technique is given where state space reduction from exponential to linear growth (with
respect to the degree of parallelism) is achieved.

• For stochastic activity networks — a particular class of stochastic Petri nets — an
algorithm for reducing the state space in the presence of replicated subsystems has been
developed [9].

Using structured modelling, symmetries are known from model structure. In our framework
of structured models, with submodel classes containing a number of similar submodels, there
are states which are symmetric. Such states have the same steady-state probability and it
is redundant to treat them individually. The idea of symmetry exploitation is to combine
all submodels of a class and replace them by a single reduced model in order to avoid this
redundancy. During the construction of the reduced model, only one state is chosen as a
representative for each set of symmetric states. We will now show how our approach to
structured modelling, and in particular the notion of submodel classes, provides a general
framework for the exploitation of symmetries.

Submodel Classes and Markov Chain Lumpability

Suppose we have a structured model consisting ofn submodelsSM1; . . . ; SMn. Furthermore,
let this set of submodels be the union ofc classes such that all similar submodels belong to the
same class, i.e. a class contains multiple copies of the same submodel. Let classi containni

submodels, each havingsi states. We have the relation�c
i=1ni = n, and the number of states

s of the overall model is given bys = �c
i=1s

ni

i (not all states must be actually reachable).

Let us now focus our attention to classi, and without loss of generality assume that the
submodels in this class are denotedSM1; . . . ; SMni . The combined state spaceSi of all
submodels of classi has sni

i states, where every state is anni-tuple with elements from
f0; . . . ; si� 1g. We consider two statesx = (x1; . . . ; xni) andy = (y1; . . . ; yni) symmetric if
y is a permutation ofx, i.e. if there exists a permutation matrixP of dimensionni such that
y = xP . The state spaceSi is now partitioned in such a way that all symmetric states are
in the same partition. This partition is clearly an equivalence relation, and its construction
guarantees that the sum of the transition rates from a given state to all states in another
partition is the same for all states within the same partition. Therefore the Markov process
with state spaceSi is lumpable [10] with respect to this partition. A reduced model can then
be built which contains only one state per set of symmetric states.

In general, the generator matrix̂Q of the lumped Markov chain is obtained formally by right-
multiplying the original generator matrixQ with a projection matrixV , and by left-multiplying
with a selection matrixU .

Q̂ = UQV (6)

In our framework we have a special case of lumpability. Within each class, states are in
lexicographical ordering as a result of the tensor operations. Therefore, when lumping the
combined state space of submodel classi, the structure of the matricesU and V depends
only onni andsi. Thus, these matrices are known a priori, and we will denote themUni

si
and

V ni
si

. The dimensions of matricesUni
si

andV ni
si

arer� sni

i andsni

i � r, wherer =
�ni+si�1

si�1
�
.

Lumping symmetric states in the combined stochastic process of classi reduces the state
space of this process fromsni

i to
�
ni+si�1

si�1
�
.

Returning to the example shown in Fig. 2, we observe that in the combined state space
of submodels SM2 and SM3,S2, states(exec; comm) and (comm; exec) are symmetric,
i.e. S2 will be partitioned asS2 = f(exec; exec)g [f(exec; comm); (comm; exec)g [
f(comm; comm)g. The combination of SM2 and SM3 is replaced by a reduced stochastic

comm, comm

SM1: Communication
Subsystem

e
σ 2λ

λ

e, µ

e, 2µ

SM Class 2

SM23: Process A and Process B

exec, exec

exec, comm

Overall Model

SM Class 1

Figure 4: Reduced Structured Model of Simple Parallel Processing

automaton with only 3 states (as opposed to 4) as shown in Fig. 4. For the overall model,
this means that the number of states is reduced from3�22 = 12 to 3� �31� = 3�3 = 9. The
matrices associated with the reduced model can be computed automatically. Local transitions
of the combination of SM2 and SM3 are described byQ̂

(23)
l , given by

Q̂
(23)
l = U2

2

�
Q
(2)
l �Q

(3)
l

�
V 2
2

=

24 1 0 0 0
0 1 0 0
0 0 0 1

35
2664
�2� � � 0

0 �� 0 �

0 0 �� �

0 0 0 0

3775
2664
1 0 0

0 1 0
0 1 0
0 0 1

3775 =

24�2� 2� 0
0 �� �

0 0 0

35 (7)

Likewise, for the matrices describing the synchronization with SM1 by the evente, we obtain
Q̂
(23)
e = U2

2

�
Q
(2)
e �Q

(3)
e

�
V 2
2 and Q̂(23)

e;n = U2
2

�
Q
(2)
e;n �Q

(3)
e;n

�
V 2
2 .

4. Conclusion

In this paper, we have discussed significant advantages which arise if modelling is carried
out in a structured fashion. We have presented a framework which is based on the tensor
descriptor approach of Plateau, but is extended in such a way that symmetries are recognized
and exploited in an automizable way. Our framework, a complete formal definition of which
is yet to be given, is kept general enough to allow multiple paradigms to be employed for
the specification of submodels. Exact lumpability is the theoretical background for symmetry
exploitation, which is carried out at the level of submodel classes. The degree to which
the state space is reduced is predictable — it depends on the number of submodels within
a class and on the cardinality of the state space of these submodels — and a reduction of
the state space of a submodel class implies the reduction of the overall state space by the
same factor. So far there is no existing tool support for our method, and this is clearly a
challenge for future work.

References
[1] G. Ciardo and J. Muppala.Manual for the SPNP Package Version 3.1. Duke University, October 1991.

[2] B. Plateau, J.-M. Fourneau, and K.-H. Lee. PEPS: A Package for Solving Complex Markov Models of
Parallel Systems. InProceedings of the 4th International Conference on Modelling Techniques and Tools for
Computer Performance Evaluation, pages 341–360, Palma (Mallorca), September 1988.

[3] G. Ciardo and K. Trivedi. Solution of Large GSPN Models. In W. Stewart, editor,Numerical Solution of
Markov Chains, pages 565–595. Marcel Dekker, New York, Basel, Hong Kong, 1991.

[4] C. Simone and M. A. Marsan. The Application of EB-Equivalence Rules to the Structural Reduction of
GSPN Models.Journal of Parallel and Distributed Computing, 15(3):296–302, July 1992.

[5] B. Plateau. On the Synchronization Structure of Parallelism and Synchronization Models for Distributed
Algorithms. InProceedings of the ACM Sigmetrics Conference on Measurement and Modeling of Computer
Systems, pages 147–154, Austin, TX, August 1985. ACM.

[6] P. Buchholz. Numerical Solution Methods Based on Structured Descriptions of Markovian Models. In
G. Balbo and G. Serazzi, editors,5th International Conference on Modelling Techniques and Tools for
Computer Performance Evaluation, pages 242–258, Torino, February 1991.

[7] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. On Well-Formed Coloured Nets and their
Symbolic Reachability Graph. InProceedings of the 11th International Conference on Application and
Theory of Petri Nets, pages 387–410, Paris, June 1990. reprinted in High-level Petri Nets.

[8] M. Siegle. On Efficient Markovian Modelling. InProc. QMIPS Workshop on Stochastic Petri Nets, pages
213–225, Sophia Antipolis, November 1992.

[9] W. Sanders and J. Meyer. Reduced Base Model Construction Methods for Stochastic Activity Networks.
IEEE Journal on Selected Areas in Communications, 9(1):25–36, January 1991.

[10] J. Kemeny and J. Snell.Finite Markov Chains. Springer-Verlag, 1976.

Appendix — Basic Tensor Operations

Let M(r; c) be the set of matrices withr rows and c columns. The tensor product
(Kronecker product) of two matricesA 2 M(rA; cA) and B 2 M(rB; cB) is the matrix
C 2 M(rArB; cAcB) such that

C = A
B =

2664
a11B a12B . . . a1cAB

a21B
...

...
arA1B . . . arAcAB

3775
For example,�

a11 a12 a13
a21 a22 a23

�

�
b11 b12
b21 b22

�
=

2664
a11b11 a11b12 a12b11 a12b12 a13b11 a13b12
a11b21 a11b22 a12b21 a12b22 a13b21 a13b22
a21b11 a21b12 a22b11 a22b12 a23b11 a23b12
a21b21 a21b22 a22b21 a22b22 a23b21 a23b22

3775
The tensor sum of two square matricesA 2 M(dA; dA) andB 2 M(dB; dB) is defined as
A�B = A
 IdB + IdA
B, whereId denotes an identity matrix of dimensiond.

For example,

264 a11 a12 a13

a21 a22 a23

a31 a32 a33

375� �
b11 b12

b21 b22

�
=

2666666664

a11 + b11 b12 a12 a13

b21 a11 + b22 a12 a13

a21 a22 + b11 b12 a23

a21 b21 a22 + b22 a23

a31 a32 a33 + b11 b12

a31 a32 b21 a33 + b22

3777777775

