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Abstract. A new denotational semantics for a variant of the stochastic
process algebra TIPP is presented, which maps process terms to Multi-
terminal binary decision diagrams. It is shown that the new semantics is
Markovian bisimulation equivalent to the standard SOS semantics. The
paper also addresses the difficult question of keeping the underlying state
space minimal at every construction step.

1 Introduction

Motivation: Binary decision diagrams (BDD) enjoy great success for the com-
pact representation, manipulation and analysis of very large state spaces. They
have proved to be an efficient vehicle for alleviating the notorious problem of
state space explosion. Recently, stochastic models have been represented sym-
bolically with the help of Multi-terminal BDDs (MTBDD), and it has been
shown that in addition to functional analysis, performance analysis and the ver-
ification of performability properties can also be carried out on such symbolic
representations [7, 14, 19, 21, 25, 27].

We employ stochastic process algebras (SPA) for model specification and
wish to generate symbolic representations directly from the high-level model,
instead of generating transition systems as an intermediate representation. For
this purpose, we develop a denotational semantics which maps a given SPA
specification directly to its underlying MTBDD. The semantics proceeds in a
compositional fashion, according to the structure of the process term at hand,
as it has been observed before [7, 14, 27] that structure exploitation is the key
to achieving compact representations. The process algebra which we use is a
restricted version of TIPP [15] which guarantees finiteness of the underlying
state space. To our knowledge, this is the first complete BDD-based semantics
for SPA which completely avoids the construction of transition systems.

The transition system encoded by the MTBDD resulting from our composi-
tional semantics is not necessarily minimal with respect to Markovian bisimula-
tion. Since minimality is a desirable feature, we address the difficult problem of
keeping the underlying state space minimal at every step of the MTBDD con-
struction. While it turns out that certain reductions can be performed with the

⋆ This work is supported by the DFG-funded project BDDANA (HE 1408/8) and by
the DFG/NWO-funded project VOSS (SI 710/2).



help of some relatively simple heuristic algorithms, we cannot, in general, achieve
the maximal reduction without applying a standard bisimulation algorithm.

Related Work: The following is a short summary of related research. We are
aware of three approaches to a BDD-based semantics for process algebras, but all
of these only cover the functional case, whereas our approach covers stochastic
process algebras (note, however, that with minor changes our method can also
be applied to purely functional process algebras).

The earliest approach is that of [9], where the authors describe BDD-based
procedures for parallel composition, relabelling and restriction of BDDs gener-
ated from CCS terms. These procedures assume that the operands are already
available as BDDs, and it is shown that under certain conditions the size of the
symbolic representation of a given term is proportional to the sum of the sizes of
its components. The paper [28] considers the process algebra LOTOS and pro-
poses to exploit the compositional nature of process algebras for building BDD
representations of the underlying state space. The overall system specification
is decomposed into its basic building blocks. For these, small transition systems
are generated and converted into their corresponding BDD representations. The
BDD representation of the overall system is then obtained by combining the
BDDs for the components in an appropriate way. The approach presented in [8]
is the most general, since this method is applicable to a large class of process
algebras whose rule system is of GSOS format. A given process algebra term
is interpreted as a Boolean formula, i.e. a minterm, and each operator that ap-
pears in the term is encoded by one or more Boolean variables, depending on its
arity. The minterm is associated with a Boolean vector, and the application of
the leading operator causes the changing of some values of the Boolean vector
according to specific rules. In terms of transition systems, the original minterm
corresponds to the source state and the modified minterm corresponds to the
target state of a transition. The length of the encoding is kept constant, although
the encoded term can become shorter if its leading operator is of dynamic na-
ture. Since each operator is represented by at least one Boolean variable, the
depth of the BDD can become larger than necessary. For the parallel composi-
tion operator, the BDD is not constructed from the BDDs representing the two
operands, but in a monolithic way, which is not in accordance with the findings
of [9, 7, 25–27].

In [24, 3] a denotational semantics is presented which maps terms of a re-
stricted stochastic process algebra to real-valued matrices (which could be rep-
resented by MTBDDs). This work is interesting for us since it also aims at con-
structing representations which are minimal with respect to Markovian bisimu-
lation.

Outline: This paper is organised as follows: In Sect. 2 we define the SPA lan-
guage and study some properties of Markovian bisimulation. Sect. 3 briefly re-
views MTBDDs and provides definitions related to the encoding of finite sets.
In Sect. 4 the MTBDD semantics is presented together with an example. The
correctness of the new semantics is shown in Sect. 5, the problem of minimality
is addressed in Sect. 6, and Sect. 7 concludes the paper.



2 Stochastic process algebras and bisimulation

2.1 Definition of the language

In this paper, a restricted version of the stochastic process algebra TIPP [15] is
considered which will be referred to as restricted TIPP or R-TIPP for short.

Definition 1. (Language R-TIPP) For a set of actions Act (including the in-
ternal action τ), let a ∈ Act and b ∈ Act\{τ}. Let L ⊆ Act\{τ} be a set of
visible actions, let λ ∈ IR>0 be a rate, and let X ∈ V ar be a process variable.
R-TIPP is the language whose terms are given by the following grammar:

P := P |[L]|P
∣

∣ hide b in P
∣

∣ Q

Q := stop
∣

∣ X
∣

∣ (a, λ); Q
∣

∣ Q + Q
∣

∣ recX : Q

All occurrences of process variables must be guarded1.

We have restricted the language in order to keep the state space finite, since
we will only be able to represent finite state spaces symbolically. Therefore,
recursion is not allowed over static operators.

As underlying semantics we assume the standard SOS semantics given by the
semantic rules in Fig. 12. The semantic model is a multi-transition system, i.e.
a transition system where the number of instances of a transition is recognised.
This multi-transition system is defined as the tuple (S, Act, =⇒, s0), where S is
the set of derivable process terms, Act is the set of actions, s0 ∈ S is the initial
process and =⇒= {|(s, a, λ, t) | s, t ∈ S, a ∈ Act, λ ∈ IR>0|} is a multi-relation
({| and |} denote multiset brackets). The multiplicity of a certain transition is
defined as the number of its distinct derivations according to the semantic rules
in Fig. 1. For more details see for instance [12, 17]. It is possible to flatten the
multi-relation to an ordinary transition relation as follows: Transitions with mul-
tiplicity greater than one can be amalgamated into a single transition whose rate
is the sum of the individual rates, and such a cumulation (which is actually a
special case of Lemma 2 below) preserves the behaviour with respect to Marko-
vian bisimulation3. Therefore, from now on, we can safely assume that multiple
transitions are already cumulated and that the semantic model is a stochas-
tic labelled transition system (with an ordinary transition relation), defined as
follows:

Definition 2. (Stochastic Labelled Transition System (SLTS)) Let S be a finite
set of states, let s0 ∈ S be the initial state and let Act be a finite set of action
labels. Let −→ ⊆ S ×Act× IR>0 ×S. We call T = (S, Act,−→, s0) a stochastic

labelled transition system. If (s, a, λ, t) ∈ −→ we write s
a,λ
−→ t.

1 For a definition of guardedness see e.g. [22]
2 In the rule for synchronisation, we adopt TIPP’s concept of multiplying the rates

of the two partner transitions. However, the MTBDD-based semantics described in
this paper could also realise other synchronisation schemes, as long as the resulting
rate is a function of the two partner rates.

3 In Sect. 4 we shall see that our MTBDD-based semantics automatically cumulates
multiple transitions into a single one.



(a, λ); P
a,λ

−−−−−−➤ P

P
a,λ

−−−−−−➤ P
′

P + Q
a,λ

−−−−−−➤ P
′

Q
a,λ

−−−−−−➤ Q
′

P + Q
a,λ

−−−−−−➤ Q
′

P
a,λ

−−−−−−➤ P
′

P |[L]|Q
a,λ

−−−−−−➤ P ′|[L]|Q

a 6∈ L
Q

a,λ
−−−−−−➤ Q

′

P |[L]|Q
a,λ

−−−−−−➤ P |[L]|Q′
a 6∈ L

P
a,λ

−−−−−−➤ P
′

Q
a,µ

−−−−−−➤ Q
′

P |[L]|Q
a,λ∗µ

−−−−−−−−➤ P ′|[L]|Q′
a ∈ L

P
b,λ

−−−−−−➤ P
′

hide b in P
τ,λ

−−−−−−➤ hide b in P
′

P
a,λ

−−−−−−➤ P
′

hide b in P
a,λ

−−−−−−➤ hide b in P
′

a 6= b

Q[(recX : Q)/X]
a,λ

−−−−−−➤ Q
′

recX : Q
a,λ

−−−−−−➤ Q
′

Fig. 1. Semantic rules for the language R-TIPP

2.2 Markovian bisimulation

Bisimulation relations characterise equivalent behaviour at the level of the la-
belled transition system. Examples are strong and weak bisimulation [22], strong
and weak Markovian bisimulation [13] and extended Markovian bisimulation [2]
(strong Markovian bisimulation agrees with Hillston’s strong equivalence [17]).
In this paper, we do not consider weak bisimulations since in R-TIPP all internal
transitions have an exponentially distributed delay, which can neither be ignored
nor “merged” with another such delay.

Informally, two states are Markovian bisimilar if from both states the same
equivalence classes can be reached in one step by the same actions and with the
same “cumulative rate”. Markovian bisimulation can be seen as a refinement of
Markov chain lumpability [6], by distinguishing between different action names.
Formally:

Definition 3. (Cumulative rate γ) The cumulative rate from a state s ∈ S by
action a ∈ Act to a set of states C ⊆ S is defined by the function γ(s, a, C) =
∑

λ∈E(s,a,C) λ, where E(s, a, C) = {|λ | s
a,λ
−→ s′ ∧ s′ ∈ C |}. ({| and |} denote

multiset brackets.)

Definition 4. (Markovian bisimulation) An equivalence relation B on the set
of states S of an SLTS is a (strong) Markovian bisimulation, if (s1, s2) ∈ B
implies that for all equivalence classes C of B and all actions a it holds that

γ(s1, a, C) = γ(s2, a, C)

Two states s1 and s2 are Markovian bisimilar (written s1 ∼M s2) if they are
contained in a Markovian bisimulation.

If C1 = {s1, s2, . . .} and C2 are equivalence classes of a Markovian bisimulation
B we sometimes write γ(C1, a, C2) instead of γ(si, a, C2), knowing that the



cumulative rate is the same for all si ∈ C1. Given all Markovian bisimulations
B 1, B 2, . . . on the same SLTS, one is typically interested in the largest (i.e.
coarsest) one, namely B =

⋃

i B i.
Bisimulations are useful for reducing the state space of a given transition

system, by replacing each class of equivalent states by a single macro state. In
that case, the carrier set of the bisimulation relation is the state space S of the
transition system to be reduced. From a slightly different perspective, in order
to show that two transition systems are equivalent (written T1 ∼M T2), we may
show that their initial states s0

1 and s0
2 are bisimulation equivalent. In this case,

the union of the two state spaces S1 ∪ S2 can be used as the carrier set of the
bisimulation relation. A third viewpoint, which arises when we consider parallel
composition, is discussed in the sequel.

Equivalence class structure under parallel composition: We now discuss
how equivalence classes of process P = Q|[L]|R can be constructed from the
equivalence classes of Q and R (we will use Lemma 1 in Sect. 5).

Lemma 1. Let PartQ = {CQ
1 , . . . , CQ

mQ
} (PartR = {CR

1 , . . . , CR
mR

}) be a par-
tition of the state space of process Q (R) which corresponds to the equivalence

classes of a Markovian bisimulation. The Cartesian product CP
i,j = C

Q
i × CR

j

yields a partition PartP of the state space of process P = Q|[L]|R (with equiva-
lence classes {CP

i,j |i = 1, . . . , mQ, j = 1, . . . , mR}) which again corresponds to a
Markovian bisimulation.

Lemma 1 can be proven by showing the equivalence of the cumulative rates
[20], details are omitted here (Lemma 1 can also be seen as a consequence of
the fact that Markovian bisimulation is a congruence [15, 13]). Note that some
equivalence classes of the combined process P may not be reachable due to
synchronisation conditions. Note further that Lemma 1 does not assume that
PartQ and PartR correspond to the largest bisimulation relations, nor does it
claim that the equivalence classes CP

i,j are maximal.

Parallel Transitions: Two transitions s1
a1,λ1−→ t1 and s2

a2,λ2−→ t2 are called
parallel if s1 = s2 and a1 = a2 and t1 = t2 (note that, in principle, both λ1 6= λ2

and λ1 = λ2 is possible, although the latter case is ruled out if we only consider
ordinary transition systems, as opposed to multi-transition systems). Parallel
transitions can be created by applying the choice or hiding operators, or by
applying the recursion operator in combination with choice. As we will see in
Sect. 4, our MTBDD semantics does not represent parallel transitions separately,
but cumulates their rates, which is correct by the following lemma:

Lemma 2. Let T be an SLTS and let transition system T ′ be constructed from T
by cumulating parallel transitions, i.e. by replacing each set of parallel transitions

{s
a,λi
−→ t | i = 1, . . . , n} by a single transition s

a,λ
−→ t, where λ =

∑n
i=1 λi. Then

T ∼M T ′.

Lemma 2 can be shown by comparing cumulative rates [20].



3 Basis for symbolic representation

3.1 Multi-Terminal Binary Decision Diagrams

MTBDDs [11] (also called ADDs [1]) are an extension of BDDs [5] for the
graph-based representation of pseudo-Boolean functions, i.e. functions of type
IBn 7→ IR. An MTBDD is a collapsed binary decision tree whose isomorphic sub-
trees have been merged and whose don’t care vertices are skipped. We consider
ordered MTBDDs where on every path from the root to a terminal vertex the
variable labelling of the nonterminal vertices obeys a fixed ordering.

In the sequel we assume that the MTBDD variables have the following order-
ing, denoted by ≺. At the first na ≥ ⌈log2 |Act|⌉ levels from the root are the vari-
ables ai encoding the action. On the remaining levels we have 2∗ns ≥ 2∗⌈log2 |S|⌉
variables encoding the source and target state of a transition. The source state
variables (si) and the target states variables (ti) are ordered in an interleaved
fashion, which yields the following overall variable ordering4:

ana−1 ≺ . . . ≺ a0 ≺ sns−1 ≺ tns−1 ≺ . . . ≺ s0 ≺ t0

The function represented by MTBDD M is denoted fM. Given an MTBDD M,
we use M

∣

∣

s=0
or M

∣

∣

s=1
to denote its restriction to the case s = 0 or s = 1. Note

that the MTBDD resulting from such a restriction does no longer depend on
Boolean variable s. Given two MTBDDs M1 and M2 and an arithmetic operator
⋆ ∈ {+,−, ∗, . . .}, we simply write M := M1 ⋆ M2 to obtain the MTBDD which
represents fM1 ⋆ fM2 . These standard arithmetic (and Boolean) operators can
be implemented efficiently on the MTBDD data structure with the help of the
so-called APPLY algorithm [11].

3.2 Encodings

Definition 5. (Encoding function) Let M be an arbitrary finite set. EncM (m)
denotes the injective encoding function that maps m ∈ M to its binary encoding
(a Boolean vector) of length n, i.e. EncM : M 7→ IBn, n ≥ ⌈log2 |M |⌉. If M is
obvious from the context, the index of the encoding function can be omitted. We
write EncM (m) = ~m = (mn−1, . . . , m0).

Definition 6. (Encoding sets) Let the length n of an encoding be given. PC is
the set of all possible binary encodings, i.e. PC := IBn. The set of used encodings
UC contains those elements of PC that were already used to encode elements
of a given set M , i.e. UC := {~c

∣

∣ ~c ∈ PC ∧ ∃m ∈ M : (EncM (m) = ~c)}. The
set of free encodings FC contains those elements of PC that are not in UC, i.e.
FC := PC \ UC.

4 This interleaved ordering is the commonly accepted heuristics for obtaining small
MTBDD sizes, see for instance [9, 11, 27].



Definition 7. (Extension of a set of encodings by a leading binary digit) Let C

be a set of Boolean vectors of length n. Ext0(C) is obtained by adding a leading
zero to the elements of C, i.e.:

Ext0(C) = {~c′
∣

∣ ~c′ = 0 ◦ ~c ∧ ~c ∈ C}

Analogously we obtain Ext1(C) from C by adding a leading one. The function
Ext(C) adds an arbitrary leading digit to the vectors in C, i.e. Ext(C) =
Ext0(C) ∪ Ext1(C).

Definition 8. (Choice of encoding) An element ~c of a given set of encodings C

is chosen with respect to a total ordering relation ⊲⊳ by the function Ch(C, ⊲⊳) :=

~c ∈ C such that ∀~c′ ∈ C : (~c ⊲⊳ ~c′).

Definition 9. (Literal, normal term, minterm) A literal is a Boolean variable
(a) or its complement (1 − a). A normal term is a term in which no variable
occurs more than once. A minterm in n variables is a normal multiplication term
in n literals.

Note that since we are working with MTBDDs we use (1 − a) instead of a and
multiplication ∗ instead of conjunction ∧.

Definition 10. (Minterm function) Given n distinct Boolean variables a1, . . . , an

and a Boolean vector (b1, . . . , bn) of length n, MT (a1, . . . , an, b1 . . . , bn) denotes
the minterm consisting of n literals, i.e.

MT (a1, . . . , an, b1 . . . , bn) := a
∗

1 ∗ . . . ∗ a
∗

n

where a
∗

i = ai if bi = 1 and a
∗

i = (1 − ai) if bi = 0.

Definition 11. (Transition encoding function) A transition x
a,λ
−→ y of an SLTS

can be encoded using the minterm function:

TR(x
a,λ
−→ y) := MT (~s, EncS(x)) ∗ MT (~a, EncAct(a)) ∗ MT (~t, EncS(y)) ∗ λ

where ~a denotes the vector of Boolean variables encoding the action, and ~s and
~t denote the vectors of Boolean variables encoding the source and target state of

the transition. In the sequel TR(x
a,λ
−→ y) will be written as TR(x, a, λ, y).

4 MTBDD semantics for R-TIPP

4.1 General idea

The general idea behind our MTBDD semantics is to encode the transitions of
a given process algebraic term P symbolically by an MTBDD. The symbolic
representation [[P ]] is constructed from the parse tree of P which is processed in
a depth first manner, thereby constructing [[P ]] inductively from simpler terms.
Finally we have the pure MTBDD-based representation of the transitional be-
haviour of P .



Definition 12. (Symbolic representation of process algebra terms) The sym-
bolic representation of a process algebra term P is denoted [[P ]]. It consists of the
following parts:

– an MTBDD B(P ) which encodes the transition relation,

– a list of encodings of process variables X that appear in P , denoted EncS(X)5,

– the encoding of the initial state EncS(sDS
P ).

The list of action encodings EncAct(a) is globally valid for all processes and
therefore not included in [[P ]].

In the following sections we describe how to obtain [[P ]] from the symbolic rep-
resentations of its constituents.

4.2 Process variables and stop process

Verbal description: A (guarded) process variable X specifies a reference state
within a surrounding recX operator6. Therefore, process variables are encoded
in a similar fashion as states, i.e. their encodings are taken from PC (the set
of possible encodings). Within each sequential component7 (within the scope of
the same recX operator) process variables having the same name get the same
encoding. Upon first appearance of a process variable X , the MTBDD associated
with it is the 0-MTBDD (the MTBDD consisting of only the terminal vertex 0).

Formal description:

if not first appearance of X within present sequential component then

skip /* do nothing */

else if FC = ∅ then /* need to extend the set of possible encodings */

PC := Ext(PC); UC := Ext0(UC); FC := PC\UC

endif

EncS(X) := Ch(FC, <)

B(X) := 0

endif

The stop process is a special case of a process variable (a process constant). It
has no emanating behaviour, i.e. it remains inactive forever. Therefore, the stop
process is associated with the 0-MTBDD.

5 As explained in Sect. 4.2, process variables correspond to states, therefore we use
the encoding function EncS for both states and process variables.

6 Note that R-TIPP does not allow defining equations where the behaviour originating
in a process variable is specified in another equation.

7 A sequential component is a process term which does not include the parallel com-
position operator.



4.3 Prefix P = (a, λ); Q

Verbal description: To generate [[P ]] = [[(a, λ); Q]] from [[Q]] an additional tran-
sition has to be inserted into B(Q), leading from the encoding of a new initial
state to the encoding of the initial state of Q. A free encoding is chosen and used
as the new initial state of the overall process. The path that encodes the new
transition is added to the existing MTBDD. (If the set FC of free encodings
is empty the set of possible encodings PC has to be extended first, and in the
existing MTBDD B(Q) a new source- and target-variable (sn and tn) have to
be introduced, whose values remain constant.)

Formal description:

if FC = ∅ then

PC := Ext(PC); UC := Ext0(UC); FC := PC\UC

B(Q) := B(Q) ∗ (1 − sn) ∗ (1 − tn)

endif

EncS(sDS
P ) := Ch(FC, <)

B(P ) := B(Q) + TR(sDS
P , a, λ, sDS

Q )

4.4 Choice P = Q + R

Verbal description: When deriving the symbolic representation [[P ]] = [[Q + R]]
from [[Q]] and [[R]], a new initial state is introduced for Q+R. All transitions em-
anating from the initial states of the subprocesses Q and R have to be copied,
as they may also take place in the initial state of the overall process. (If the
set FC of free encodings is empty the set of possible encodings PC has to be
extended first, and the existing MTBDDs B(Q) and B(R) have to be adjusted
accordingly.)

Formal description:

if FC = ∅ then

PC := Ext(PC); UC := Ext0(UC); FC := PC\UC

B(Q) := B(Q) ∗ (1 − sn) ∗ (1 − tn)

B(R) := B(R) ∗ (1 − sn) ∗ (1 − tn)

endif

EncS(sDS
P ) := Ch(FC, <)

/* copy initial transitions from sDS
Q and sDS

R : */

B(Q′) := B(Q)
∣

∣

∣

~s=EncS(sDS
Q )

∗ MT (~s, EncS(sDS
P ))

B(R′) := B(R)
∣

∣

∣

~s=EncS(sDS
R )

∗ MT (~s, EncS(sDS
P ))

B(P ) := B(Q) + B(R) + B(Q′) + B(R′) /* put it all together */



At this point we observe that this procedure will cumulate parallel or multiple

transitions correctly: In case Q contains a transition sDS
Q

a,λ1
−→ t and R contains

a transition sDS
R

a,λ2
−→ t (for any common target state t, and for either λ1 6= λ2

or λ1 = λ2), these two transitions will be cumulated, since they are represented
in B(Q′) and B(R′) as parallel transitions emanating from sDS

P and leading to
t, and since the MTBDD addition on the last line realises the addition of rates.

As an optimisation of the above procedure, if Q does not possess a cyclic

transition sequence of the form s0
a1,λ1
−→ s1

a2,λ2
−→ s2 . . . sl−1

al,λl−→ s0, the initial
state of Q can be re-used as initial state of P (and similar for R).

4.5 Parallel composition P = Q|[L]|R

Verbal description: For symbolic parallel composition we follow the same ba-
sic strategy as described e.g. in [9, 7, 25–27], where it had been found that this
scheme ensures that the size of the symbolic representation of the composed pro-
cess is linear in the size of its components. [[P ]] = [[Q|[L]|R]] can be constructed
from [[Q]] and [[R]] as follows8: The MTBDD which represents the transitions
in which both processes participate is constructed by combining those parts of
B(Q) and B(R) which correspond to transitions labelled by actions from L (we
use L to denote the BDD which encodes the actions in L). The MTBDD which
represents the transitions which Q (R) performs independently of R (Q) is con-
structed by multiplying the part of B(Q) (B(R)) with a BDD IdR (IdQ) which
denotes stability9 of proces R (Q).

Formal description:

EncS(sDS
P ) := EncS(sDS

Q ) ◦ EncS(sDS
R )

B(P ) := (B(Q) ∗ L) ∗ (B(R) ∗ L)+ B(Q) ∗ (1− L) ∗ IdR +B(R) ∗ (1−L) ∗ IdQ

4.6 Recursion P = recX : Q

Verbal description: When constructing [[P ]] = [[recX : Q]] from [[Q]] we can
distinguish two cases:

1. X does not appear (unbound) in Q: In this case we simply identify the
symbolic representation of recX : Q with that of Q.

2. X appears in Q: In this case the process variable X is identified with the
encoding of the initial state of Q.

8 It is assumed that B(Q) depends on the vectors of Boolean variables ~a, ~s Q, ~t Q and
B(R) depends on ~a, ~s R, ~t R, i.e. their sets of state variables are disjoint.

9 BDD IdQ, depending on the vectors of Boolean variables ~s Q and ~t Q, encodes the
identity matrix of appropriate size, and has a very compact representation under the
interleaved variable ordering. Similar for IdR.



Formal description (case 2 only):

EncS(sDS
P ) := EncS(sDS

Q )

B(P ) := B(Q)∗(1−MT (~t, EncS(X)))+B(Q)
∣

∣

∣

~t=EncS(X)
∗MT (~t, EncS(sDS

Q ))

Note that recursion (in combination with the choice operator appearing within
the scope of the recursion) may lead to parallel transitions which are cumulated
correctly by the above procedure: In case process Q contains two transitions

s
b,λ1
−→ sDS

Q and s
b,λ2
−→ X (for any source state s and any action b), the latter

of them will be redirected to the target state sDS
Q and the two transitions will

be cumulated into the single transition s
b,λ1+λ2
−→ sDS

Q by the addition of the two
MTBDDs.

4.7 Hiding P = hide b in Q

Verbal description: For constructing [[P ]] = [[hide b in Q]] from [[Q]], the MTBDD
B(Q) is first cofactorised with respect to the encoding of action b. The result is
multiplied with the minterm encoding the internal action τ . Finally, the part of
the original MTBDD B(Q) that does not correspond to action b is added.

Formal description:

EncS(sDS
P ) := EncS(sDS

Q )

B(P ) := B(Q)
∣

∣

∣

~a=EncAct(b)
∗MT (~a, EncAct(τ))+B(Q)∗(1−MT (~a, EncAct(b)))

Again, this procedure cumulates parallel transitions correctly. For any pair of

states s and t, a transition s
b,λ1
−→ t (which will be turned into an internal τ -

transition) and an existing τ -transition s
τ,λ2
−→ t will be cumulated by the addition

of the two MTBDDs, leading to a single transition s
τ,λ1+λ2
−→ t.

4.8 Example

In this section we show how to build the symbolic representation for the process
term P := recX : ((a, λ); (b, µ); X + (c, γ); stop).

1. First, we generate the parse tree of P which is shown in Fig. 2 (a)
2. We set the action encoding as EncAct(τ) = 00, EncAct(a) = 01, EncAct(b) =

10 and EncAct(c) = 11.
3. First, we generate the symbolic representation of the left hand side of P .

(a) [[X ]]: For process variable X we allocate one state bit, s0, and encode X

as s0 = 0.
(b) [[(b, µ); X ]]: This yields a new state which we encode as s0 = 1. The

MTBDD representation is shown in Fig. 2 (b). (In the graphical depiction
of an MTBDD, dashed lines indicate zero-edges and solid lines indicate
one-edges.)
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(c)(b) (d)

X

(c, γ)

(b, µ)

(a, λ)

+

recX

s0

t0

stop

γ

Fig. 2. (a) Parse tree of P , (b) MTBDD representing (b, µ); X, (c)(d) MTBDD repre-
sentations of the left hand side and right hand side of P

(c) [[(a, λ); (b, µ); X ]]: This yields a new state. We need to introduce an addi-
tional state variable, s1, and we encode the new state as s1s0 = 10. Now
the encoding of the left hand side of P is complete, we store its initial
state and the encoding of the process variable X : (EncS(sDS

(a,λ);(b,µ);X) =

10, EncS(X) = 00). The MTBDD representation is depicted in Fig. 2 (c).

4. Next we generate the symbolic representation of the right hand side of P :

(a) [[stop]]: We use the fresh encoding s1s0 = 11 to encode the process stop.

(b) [[(c, γ); stop]]: Since the set of free encodings is now empty, we have to
add a third variable to encode this new state: s2s1s0 = 100. We store the
following information: (EncS(sDS

(c,γ);stop) = 100, EncS(stop) = 011). The

MTBDD generated for the right hand side of P is depicted in Fig. 2 (d).

5. The third state variable (s2 and t2) must also be introduced into the MTBDD
corresponding to the left hand side of P (not shown in the figure).

6. The left hand side and the right hand side of P are now composed according
to the semantics of the choice operator. As no subprocess has transitions
leading back to its initial state, we can choose one of the subprocesses’ initial
states as the initial state of the overall process. In this case we choose the
initial state of the left hand side: Enc(sDS

(a,λ);(b,µ);X+(c,γ);stop) = 010, yielding

the MTBDD representation as shown in Fig. 3 (a).

7. In the last step we add recursion. The encoding of X is now identified with
the encoding of the initial state, leading to the final MTBDD depicted in
Fig. 3 (b).
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λ µ γ λ µ γ

a1

a0

a1

a0

s2

t2

s1

t1

s0

t0t0

s0

t1

s1

t2

s2

Fig. 3. (a): Left hand side and right hand side joined together using choice, (b) Recur-
sion operator added

5 Correctness of the semantics

In this section we show that our MTBDD semantics is bisimulation equivalent to
the standard SOS-semantics. Roughly speaking, this is shown along the following
steps:

– From the MTBDD-representation [[P ]] of a given term P we derive an SLTS
which we denote by Tr([[P ]]) and whose initial state we denote by sDS

P . The
SLTS Tr([[P ]]) = (SDS

P , Act,−→, sDS
P ) is obtained from [[P ]] by a straight-

forward algorithm [20] which extracts the encoded transitions one by one
from the MTBDD. The details are omitted here.

– Using induction on the term’s structure and exploiting the congruence prop-
erty of Markovian bisimulation we show that for an arbitrary term P the
SLTS obtained by applying the SOS-rules, in the following denoted by SOS(P )
(with state space SSOS

P and initial state sSOS
P ), is bisimulation equivalent to

Tr([[P ]])10. (Induction on the term’s structure means that for each opera-
tor we show that its addition preserves the bisimulation equivalence relation
established for the shorter term.)

Theorem 1. For any process term P from the language R-TIPP it holds that
Tr([[P ]]) ∼M SOS(P ).

Proof. The complete proof can be found in [20], here we only present part of it.
We distinguish the following cases:

10 Note that SOS(P ) and Tr([[P ]]) are bisimulation equivalent but not necessarily
isomorphic, since SOS(P ) may contain parallel transitions, while Tr([[P ]]) cannot
represent these separately.



1. P = stop: This case constitutes the start of the induction. For the stop pro-
cess, our MTBDD semantics generates a state encoding and the 0-MTBDD.
The SLTS Tr([[stop]]) derived from this symbolic representation consists of
a single state with no outgoing transitions, which is isomorphic (and there-
fore Markovian bisimulation equivalent) with the SLTS SOS(stop). The case
P = X is similar.

2. P = (a, λ); Q: By construction, in Tr([[(a, λ); Q]]) there is only a single tran-

sition emanating from the initial state, namely sDS
P

a,λ
−→ sDS

Q . Similarly, in
SOS((a, λ); Q) there is only a single transition emanating from the initial

state, namely sSOS
P

a,λ
−→ sSOS

Q . Since by the induction hypothesis we have

sDS
Q ∼M sSOS

Q it follows that sDS
P ∼M sSOS

P and thus Tr([[P ]]) ∼M SOS(P ).

3. P = Q + R: We need to show that sDS
P ∼M sSOS

P which means that we
have to show that for all actions a ∈ Act and for all equivalence classes
C ⊆ SDS

P ∪ SSOS
P we have γ(sDS

P , a, C) = γ(sSOS
P , a, C). (Note that the

bisimulation relation B is now defined on the union of the state spaces of
Tr([[Q + R]]) and SOS(Q + R), i.e. each equivalence class C is a subset of
that union.)

γ(sDS
P , a, C)

(by construction)
= γ(sDS

P , aQ, C) + γ(sDS
P , aR, C)

(by construction)
= γ(sDS

Q , aQ, C) + γ(sDS
R , aR, C)

(by ind. hypothesis)
= γ(sSOS

Q , aQ, C) + γ(sSOS
R , aR, C)

(by SOS semantics)
= γ(sSOS

P , a, C)

Here γ(sDS
P , aQ, C) denotes the cumulation of those a-transitions which are

due to an a-transition in subprocess Q (and similarly for R). We have used
the induction hypothesis, namely that sDS

Q ∼M sSOS
Q and sDS

R ∼M sSOS
R .

4. P = Q|[L]|R: We prove sDS
P ∼M sSOS

P by showing that for every action a

and for every equivalence class CP
k,l we have γ(sDS

P , a, CP
k,l) = γ(sSOS

P , a, CP
k,l)

(note that the equivalence relation is now defined on the union of the state
spaces S = SDS

P ∪SSOS
P where SDS

P = SDS
Q ×SDS

R and SSOS
P = SSOS

Q ×SSOS
R ).

We need to distinguish two cases:
(a) a 6∈ L, i.e. a is a non-synchronising action.

γ(sDS
P , a, CP

k,l)
(by construction)

= γ(sDS
P , aQ, CP

k,l) + γ(sDS
P , aR, CP

k,l)

(by constr. and Lemma 1)
= γ(sDS

Q , aQ, C
Q
k ) + γ(sDS

R , aR, CR
l )

(by ind. hypothesis)
= γ(sSOS

Q , aQ, C
Q
k ) + γ(sSOS

R , aR, CR
l )

(by SOS sem. and Lemma 1)
= γ(sSOS

P , aQ, CP
k,l) + γ(sSOS

P , aR, CP
k,l)



(by SOS semantics)
= γ(sSOS

P , a, CP
k,l)

Here γ(., aQ, .) (γ(., aR, .)) denotes those transitions which are due to an
a-transition of process Q (R). Note that (assuming that sDS

P ∈ CP
i,j), in

this non-synchronising case, target class CP
k,l is either CP

i,l or CP
k,j since

only one partner makes a move, and thus one of the summed cumulative
rates in the above sequence of equations is always equal to zero.

(b) a ∈ L, i.e. a is a synchronising action. Details omitted for lack of space.

5.-6. The proof for recursion and hiding proceeds essentially along the same line,
by establishing the equivalence of the cumulative rates. Details are omitted.

6 Towards minimal semantics

We have shown that our MTBDD semantics is correct, but so far we have not
made any considerations on its minimality. It would, of course, be desirable that
the MTBDD constructed by our denotational semantics encodes an SLTS which
is minimal with respect to Markovian bisimulation, where minimality means that
every class of bisimilar states is represented by a single macro state. Trivially, this
goal could be achieved by performing bisimulation minimisation [23, 10, 18] after
every construction step, thereby ensuring that all intermediate representations
are minimal. BDD-based bisimulation algorithms are available [4, 16], they follow
the usual iterative refinement scheme, but such a strategy is impracticable since
the overhead for running the bisimulation algorithm would be prohibitive.

Ideally, we wish to perform bisimulation on-the-fly, keeping the encoded state
space minimal at every step of the construction, by exploiting information about
the operator at hand and the structure of the operand processes. For that pur-
pose we investigate a set of heuristic algorithms. As a simple example, we now
briefly discuss such an algorithm for the case of recursion. Fig. 4 shows an algo-
rithm which merges known equivalence classes of process Q in order to obtain
equivalence classes for P = recX : Q. Starting from the newly formed class C′

ini

which contains both X and the initial state, the algorithm looks for pairs of
predecessor classes (denoted Pred(C′

ini)) which can be merged. If two classes
are merged, the search also considers the further predecessor classes in a chained
fashion, and this aim-driven procedure makes the algorithm quite efficient. In
the example shown in Fig. 5, the predecessor of X and the predecessor of the
initial state are merged first, and in the subsequent step the two dark states are
merged. This is a case where our heuristic algorithm finds the largest Markovian
bisimulation, leading to a minimal state space. However, there exist situations
like the one shown in Fig. 6 where the algorithm of Fig. 4 does not find the
coarsest partition, since it is not possible to merge the two dark states without
merging the three lightly shaded states at the same time. Altogether, one can
say that the merging of two classes at a time is not sufficient, as our algorithm
is correct but not complete.



(1) Part := PartQ

(2) C′

ini := Cini ∪ CX /* the initial class and the class containing state X are merged */
(3) Part := Part\{Cini, CX} ∪ {C′

ini} /* the partition is updated */
(4) Mergers := {C′

ini}
(5) while Mergers 6= ∅ do

(6) choose Cmrg ∈ Mergers

(7) forall Ci, Cj ∈ Pred(Cmrg) do /* consider pairs of predecessor classes of Cmrg */
(8) if ∀a : γ(Ci, a, Ci ∪ Cj) = γ(Cj , a,Ci ∪ Cj) then /* compare mutual rates */
(9) if ∀Ck : ∀a : γ(Ci, a, Ck) = γ(Cj , a, Ck) then /* compare rates to third party */
(10) C′

i := Ci ∪ Cj /* two classes are merged */
(11) Part := Part\{Ci, Cj} ∪ {C′

i} /* the partition is updated */
(12) Mergers := Mergers∪ {C′

i} /* a new merger is added */
(13) endif

(14) endif

(15) endfor

(16) Mergers := Mergers \ {Cmrg} /* the processed merger is removed */
(17)endwhile

(18) return Part

Fig. 4. Determining equivalence classes of recX : Q from the classes of Q

For prefix, finding the optimal partition is trivial: If Q contains a state s′

with a single outgoing transition s′
a,λ
−→ sDS

Q then s′ is equivalent to the new
initial state of P = (a, λ); Q. For choice, as already observed in [24], the key to
minimality lies in the ability to detect common behaviour within the operands Q

and R. This can be achieved by identifying and comparing the strongly connected
components (SCC) of Q and R. SCCs can be determined symbolically in an
efficient way [29]11. For parallel composition, the resulting SLTS is not minimal
if the two partners contain identical behaviour which leads to symmetries in the
state space (but symmetry is not a necessary precondition for non-minimality).
[24] describes state space reduction for replicated processes. Although this can
yield a large reduction of the state space, it is shown in [3] that the resulting
SLTS is not necessarily minimal. In fact, it is minimal only if all states of the
replicated process are “relatively prime”, which condition is difficult to verify
in practice12. For hiding, the situation is essentially the same as for recursion:
We have an algorithm which calculates equivalence classes of (hide b in Q) from
the equivalence classes of Q, but again the resulting partition is not necessarily
optimal.

11 In addition, since only reachable behaviour should be represented, in case the initial
state sDS

Q (sDS
R ) is unreachable after the application of the choice operator, transi-

tions emanating from this state can be deleted.
12 Furthermore, since some states of the combined process may be unreachable due

to synchronisation conditions, (symbolic) reachability analysis may be necessary in
order to determine the set of reachable states.
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Fig. 5. Example where the algorithm of Fig. 4 finds the largest bisimulation

a, 2

a, 1 a, 1 a, 1 a, 1

a, 2

X

b, 5

b, 3 b, 2

b, 2 b, 3

b, 3 b, 2

b, 2 b, 3

b, 5

a, 2 b, 5recX : Q ∼M

Q recX : Q recX : Q

Fig. 6. Example (after [3]) that demonstrates non-optimality of the algorithm in Fig. 4

7 Conclusion and future work

Conclusions: We presented a straight-forward approach to deriving a symbolic
representation of the transition system underlying a given SPA term. The ma-
jor contribution of this work is to provide a fully MTBDD-based semantics for a
stochastic process algebra, in order to avoid the state space explosion problem by
exploiting compositionality. Furthermore we discussed some heuristic algorithms
that help to reduce the encoded state space at each stage of its construction.

Future work: Next, we plan to implement our denotational semantics, in order
to compare the size of the resulting MTBDDs to that of existing MTBDD gen-
eration methods. In the implementation, some optimisations are possible (e.g.
reuse of the encodings of states that became unreachable). It is planned that our
implentation works with an extended version of R-TIPP, for instance allowing
parallel composition not only at the top level (as long as it is not in the scope
of a recursion operator), and adding an immediate prefix. Finally, we intend to



further investigate the questions addressed in Sect. 6, e.g.: Is it possible to clas-
sify the situations in which our heuristic algorithms lead to optimal/non-optimal
results? What is the benefit of using our algorithms compared to standard bisim-
ulation algorithms? Is it even possible to extend our algorithms in such a way
that they guarantee minimality?

Acknowledgements: The authors would like to thank the anonymous referees
whose comments helped to fix some technical flaws and improve the presentation
of the paper.
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12. N. Götz. Stochastische Prozeßalgebren – Integration von funktionalem Entwurf
und Leistungsbewertung Verteilter Systeme. Ph.D. thesis, Universität Erlangen–
Nürnberg, 1994 (in German).

13. H. Hermanns, U. Herzog, and V. Mertsiotakis. Stochastic Process Algebras —
Between LOTOS and Markov Chains. Computer Networks and ISDN (CNIS),
30(9-10):901–924, 1998.

14. H. Hermanns, J. Meyer-Kayser, and M. Siegle. Multi Terminal Binary Decision Di-
agrams to Represent and Analyse Continuous Time Markov Chains. In B. Plateau,



W.J. Stewart, and M. Silva, editors, 3rd Int. Workshop on the Numerical Solution
of Markov Chains, pages 188–207. Prensas Universitarias de Zaragoza, 1999.

15. H. Hermanns and M. Rettelbach. Syntax, Semantics, Equivalences, and Axioms
for MTIPP. In Proc. of PAPM’94, pages 71–88. Arbeitsberichte des IMMD 27 (4),
Universität Erlangen-Nürnberg, 1994.

16. H. Hermanns and M. Siegle. Bisimulation Algorithms for Stochastic Process Alge-
bras and their BDD-based Implementation. In J.-P. Katoen, editor, ARTS’99, 5th
Int. AMAST Workshop on Real-Time and Probabilistic Systems, pages 144–264.
Springer, LNCS 1601, 1999.

17. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
University Press, 1996.

18. P. Kanellakis and S. Smolka. CCS Expressions, Finite State Processes, and Three
Problems of Equivalence. Information and Computation, 86:43–68, 1990.

19. J.-P. Katoen, M. Kwiatkowska, G. Norman, and D. Parker. Faster and Symbolic
CTMC Model Checking. In PAPM-PROBMIV’01, pages 23–38. Springer, LNCS
2165, 2001.

20. M. Kuntz and M. Siegle. Deriving symbolic representations from stochastic process
algebras. Tech. Rep. Informatik 7 03/02, Universität Erlangen-Nürnberg, 2002.

21. M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic Symbolic
Model Checker. In P. Kemper, editor, MMB-PNPM-PAPM-PROBMIV Tool Pro-
ceedings, pages 7–12. Univ. Dortmund, Informatik IV, Bericht 760/2001, 2001.

22. R. Milner. Communication and Concurrency. Prentice Hall, London, 1989.
23. R. Paige and R. Tarjan. Three Partition Refinement Algorithms. SIAM Journal

of Computing, 16(6):973–989, 1987.
24. M. Rettelbach and M. Siegle. Compositional Minimal Semantics for the Stochastic

Process Algebra TIPP. In Proc. of PAPM’94, pages 89–106. Arbeitsberichte des
IMMD 27 (4), Universität Erlangen-Nürnberg, 1994.

25. M. Siegle. Compact representation of large performability models based on ex-
tended BDDs. In Fourth Int. Workshop on Performability Modeling of Computer
and Communication Systems (PMCCS4), pages 77–80, Williamsburg, Sept. 1998.

26. M. Siegle. Compositional Representation and Reduction of Stochastic Labelled
Transition Systems based on Decision Node BDDs. In D. Baum, N. Müller, and
R. Rödler, editors, MMB’99, pages 173–185, Trier, September 1999. VDE Verlag.

27. M. Siegle. Advances in model representation. In L. de Alfaro and S. Gilmore,
editors, Process Algebra and Probabilistic Methods, Joint Int. Workshop PAPM-
PROBMIV 2001, pages 1–22. Springer, LNCS 2165, September 2001.

28. R. Sisto. A method to build symbolic representations of LOTOS specifications. In
Protocol Specification, Testing and Verification, pages 323–338, 1995.

29. A. Xie and P.A. Beerel. Implicit Enumeration of Strongly Connected Components.
In ICCAD’99, pages 37–40. IEEE, 1999.


