
Compositional Performance Modelling
with the TIPPtool

H. Hermanns, U. Herzog, U. Klehmet, V. Mertsiotakis, M. Siegle

Universität Erlangen-Nürnberg, IMMD 7, Martensstr. 3, 91058 Erlangen, Germany

Abstract. Stochastic Process Algebras have been proposed as compositional
specification formalisms for performance models. In this paper, we describe a
tool which aims at realising all beneficial aspects of compositional performance
modelling, the TIPPtool. It incorporates methods for compositional specification
as well as solution, based on state-of-the-art-techniques, and wrapped in a user-
friendly graphical front end.

1 Introduction
Process algebras are an advanced concept for the design of distributed systems. Their
basic idea is to systematically construct complex systems from smaller building blocks.
Standard composition operators allow one to create highly modular and hierarchical
specifications. An algebraic framework supports the comparison of different system
specifications, process verification and structured analysis. Classical process algebras
(e.g. CSP [20], CCS [26] or LOTOS [5]) describe the functional behaviour of systems,
but no temporal aspects.

Starting from [17], we developed an integrated design methodology by embedding
stochastic features into process algebras, leading to the concept of Stochastic Process Al-
gebras (SPA). SPAs allow to specify and investigate both functional and temporal prop-
erties, thus enabling early consideration of all major design aspects. Research on SPA
has been presented in detail in several publications, e.g. [11, 19, 4, 28, 15, 8] and the se-
ries of Workshops on Process Algebras and Performance Modelling (PAPM) [1].

This paper is about a modelling tool, the TIPPtool, which reflects the state-of-the-art
of SPA research. Development of the tool started as early as 1992, the original aim being
a prototype tool for demonstrating the feasibility of our ideas. Over the years, the tool
has been extensively used in the TIPP project as a testbed for the semantics of different
SPA languages and the corresponding algorithms. Meanwhile, the tool has reached a
high degree of maturity, supporting compositional modelling and analysis of complex
distributed systems via a user-friendly graphical front end.

The core of this tool is an SPA language where actions either happen immediately
or are delayed in time, the delay satisfying a Markovian assumption [15]. Beside sup-
port for analysis of functional aspects, the tool offers algorithms for the numerical analy-
sis of the underlying stochastic process. Exact and approximate evaluation techniques
are provided for stationary as well as transient analysis. As a very advanced feature,
the tool supports semi-automatic compositional reduction of complex models based on
equivalence-preserving reduction. This enables the tool to handle large state spaces (the
running example given here is small, due to didactical reasons and limited space).

Among related work, the PEPA Workbench [9] is another tool for performance eval-
uation, where Markov chain models are also specified by means of a process algebra.

The paper is organised as follows: In Sec. 2, we summarise the theoretical back-
groundof stochastic process algebras. Sec. 3 gives an overview of the tool’scomponents.
All aspects of model specification are discussed in Sec. 4, and analysis algorithms are
the subject of Sec. 5. The paper concludes with Sec. 6.

2 Foundations of Stochastic Process Algebras

2.1 Process algebras

Classical process algebras have been designed as formal description techniques for con-
current systems. They are well suited to describe reactive systems, such as operating
systems, automation systems, communication protocols, etc. Basically, a process alge-
bra provides a language for describing systems as a cooperation of smaller components,
with some distinguishing features.

Specifications are built from processes which may perform actions. The description
formalism is compositional, i.e. it allows to build highly modular and hierarchical sys-
tem descriptions using composition operators. A parallel composition operator is used
to express concurrent execution and possible synchronisation of processes. Another im-
portant operator realises abstraction: Details of a specification which are internal at a
certain level of system description can be internalised by hiding them from the envi-
ronment. Several notions of equivalence make it possible to reason about the behaviour
of a system, e.g. to decide whether two systems are equivalent. Apart from a formal
means for verification and validation purposes, equivalence-preserving transformation
can be profitably employed in order to reduce the complexity of the system. This can also
be performed in a compositional way, by replacing system parts through behaviourally
equivalent but minimised representations.

Let us exemplify the basic constructs of process algebras on a simple queueing
system. It consists of an arrival process Arrival, a queue with finite capacity, and
a Server. First, we model an arrival process as in infinite sequence of incoming ar-
rivals (arrive), each followed by an enqueue action (enq), using the prefix operator ‘;’.

Arrival := arrive; enq; Arrival

The behaviour of a finite queue can be described by a family of processes, one for each
value of the current queue population. Depending on the population, the queue may per-
mit to enqueue a job (enq), dequeue a job (deq) or both. The latter possibility is described
by a choice operator ‘[]’ between two alternatives.

Queue

0

:= enq; Queue

1

Queue

i

:= enq; Queue

i+1

[] deq; Queue

i�1

1 � i < max

Queue

max

:= deq; Queue

max�1

Next, we need to define a server process, as follows:
Server := deq; serve; Server

These separate processes can now be combined by the parallel composition opera-
tor ‘j[: : :]j’ in order to describe the whole queueing system. This operator is para-
metrised with a list ‘: : :’ of actions on which the partners are required to synchronise:

System := Arrival j[enq]j Queue

0

j[deq]j Server

A formal semantics associates each language expression with an unambiguous in-
terpretation, a labelled transition system (LTS). It is obtained by structural opera-
tional rules which define for each language expression a specific LTS as the unique
semantic model. Fig. 1 (top) shows the semantic model for our example queue-
ing system (assuming that the maximal population of the queue is max = 3).
There are 16 states, the initial state being indicated by a double circle. A tran-
sition between two states is represented by a dashed arrow and labelled with the
corresponding action. Since we assume that we are not interested in the inter-

arrive

enq

enq enq enq

enq enq

deq deq deq

deq deq deq

serve

arrive

serve serve serve

serve serve serve

arrive arrive arrive arrive

arrive arrive arrive

serve

Queue

0

Queue

1

Queue

2

Queue

3

hide enq; deq in : : : and weak bisimulation

serve serve serve

arrive

arrivearrive

serve arrive

serve

Fig. 1. Semantic model, hiding and reduction
nal details of interaction between Arrival and Queue, respectively Queue and
Server, we may wish to only observe actions arrive and serve. This requires ab-
straction from internal details, and is achieved by employing the hiding operator:

hide enq; deq in System

As a result, actions enq and deq are now internal actions, i.e. they are not visible from
the environment. Actions hidden from the environment become the distinguished inter-
nal action � . In other words, the semantic model of the above expression is obtained by
turning all enq or deq labels appearing in Fig. 1 (top) into � .

Such � -actions can be eliminated from the semantic model using an equivalence
which is insensitive to internal details of a specification, such as weak bisimulation.
Weak bisimulation is one of the central notions of equivalence in the general context
of process algebras [26]. Fig. 1 (bottom) shows an LTS, which is weakly bisimilar to
the one on top (where all enq- and deq-actions have been replaced by �). It may be sur-
prising that the resulting LTS has 6 and not 4 states (we assumed max = 3). This is
due to the fact that the arrival of a customer and its enqueueing into the queue are sep-
arate actions, so that one more arrival is possible if the queue is already full. Likewise,
dequeueing and serving are modelled as separate actions, such that at the moment the
queue becomes empty, the server is still serving the last customer.

2.2 Stochastic Process Algebras
Stochastic Process Algebras (SPA) are aimed at the integration of qualitative-functional
and quantitative-temporal aspects in a single specification and modelling approach [11].
In order to achieve this integration, temporal information is attached to actions, in the
form of continuous random variables, representing activity durations. The additional
time information in the resulting LTS makes it possible to evaluate different system as-
pects:

� functional behaviour (e.g. liveness or deadlocks)

� temporal behaviour (e.g. throughput, waiting times, reliability)

� combined properties (e.g. probability of timeout, duration of an event sequence)
Let us give a SPA specification for the above queueing system by attaching distribu-
tions to actions. We assume that the arrival process is a Poisson process with rate �

and the service time is exponentially distributed with rate �. We are not forced to asso-
ciate a duration with every action. Actions without duration happen as soon as possible,
therefore they are called immediate actions. In our example, enqueueing and dequeue-
ing is assumed to happen without any relevant delay, thus enq and deq are immediate.

Arrival := (arrive; �); enq; Arrival

Server := deq; (serve; �); Server

The queue is specified as before (it is only involved in enq and deq, therefore its spec-
ification does not have to be changed) and the composed System is also as above.
Fig. 2 depicts the labelled transition system associated with this model (again assuming
max = 3). Note that there are two kinds of transitions between states: Timed transitions
(drawn by solid lines) which are associated with an exponential delay, and immediate
transitions which happen as soon as the respective action is enabled.

States without outgoing immediate transition are shown emphasised in the figure.
They correspond to states of a Continuous Time Markov Chain (CTMC) (shown at the
bottom of the figure) isomorphic to an LTS obtained by applying the notion of weak
Markovian bisimulation, after hiding enq and deq. Weak Markovian bisimulation is an
adaptation of weak bisimulation to the setting of timed and immediate actions [14]. Ab-
straction from the two immediate actions enq and deq is an essential prerequisite for
unambiguously determining the Markov chain underlying this specification. If, say, enq
is hidden, we can be sure that our assumption that enq happens without any delay is jus-
tified. Otherwise, it may be the case that System is used as a component in further com-
position contexts, which require synchronisation on action enq. In this case, the Markov
chain depends on additional timing constraints imposed on enq. Therefore it is not pos-
sible to remove enq, as long as further synchronisation on enq is still possible (indeed,
abstraction rules out any further synchronisation, since � is not allowed to appear in the
list ‘: : :’ of synchronising actions of a parallel composition operator ‘j[: : :]j’.)

2.3 Bisimulation and Compositional analysis

As illustrated in the running example, the notion of bisimulation is important. Two states
of a process are bisimilar if they have the same possibilities to interact (with a thirdparty)
and reach pairwise bisimilar states after any of these interactions [26]. This definition
only accounts for immediate actions. On the level of Markov chains, a corresponding
definition is provided by the notion of lumpability. Two states of a Markov chain are
lumpable if they have the same cumulative rate of reaching pairwise lumpable states
[23]. Markovian bisimulation reflects lumpability and bisimulation on timed transitions,
by imposing constraints on actions and rates, see [15, 19] for details. Weak Markovian
bisimulation additionally allows abstraction from internal immediate actions, in anal-
ogy to ordinary weak bisimulation [16]. Equivalences are defined in terms of states and
transitions, i.e. on the level of the LTS. It is possible to characterise their distinguishing
power on the level of the language by means of equational laws [13].

� � �

�� �

� �

� �

Queue

3

arrive; �

arrive; �

serve; �

arrive; �

arrive; �

serve;�

arrive; �

arrive; �

serve;�

arrive; �

arrive; �

serve; �

serve; � serve;� serve;�serve;�

enq

enq enq enq

enq enq

deq deq deq

deq deq deq

Queue

0

Queue

1

Queue

2

Fig. 2. Top: The LTS for the example queueing system. Bottom: The corresponding CTMC

In the presence of composition operators, such as hiding and parallel composition,
it is highly desirable that equivalences are substitutive. Intuitively, substitutivity allows
to replace components by equivalent ones within a large specification, without chang-
ing the overall behaviour. Substitutiveequivalences are also called congruences. Indeed,
Markovian and weak Markovian bisimulation are congruences. Practically important,
such equivalences allow compositional reduction techniques, where the size of a com-
ponent’s state space may be reduced, without affecting any significant property of the
whole model. Compositional reduction has successfully been applied to a variety of sys-
tems, see e.g. [7] for an impressive industrial case study.

We return to our queueing example in order to illustrate compositional re-
duction. We now consider a queueing system with one Poisson arrival process,
two queues and two servers. We build this system from the same components,
i.e. processes Arrival, Queue and Server are defined as above. The system is now:

System := Arrival j[enq]j ((Queue

0

j[deq]j Server) jjj

(Queue

0

j[deq]j Server))

If the queue sizes are given by max = 3, the model has 128 states and 384 transitions.
By hiding actions enq and deq and applying weak Markovian bisimulation to the com-
plete system, the state space can be reduced to 22 states and 48 transitions. However,
reduction can also be performed in a compositional fashion: The subsystem consisting
of one queue-server pair has 8 states, which can be reduced down to 5 states. Combining
both (reduced) queue-server pairs, we obtain 25 states which can be reduced down to 15
states (this reduction step mainly exploits symmetry of the model). If this reduced sys-
tem is combined with the arrival process, we get 30 states which can again be reduced
to 22 states. This concept of compositional reduction is illustrated in Fig. 3, where the
size of the state space and the number of transitions are given for each reduction step.

It is interesting to observe that this system exhibits non-deterministic behaviour: Af-
ter the completion of a Markovian timed action arrive, it is left unspecified which of the
two queues synchronises with the arrival process on immediate action enq (provided, of

8 5
13 8

6
4

6Queue
4

2
2 2
2Server

6
4
6

4
Queue

2
2 2

2
Server

15
80 40
25

after reduction)

2 2
2 2Arrival

22
56 48
308 5

13 8

states
transitions

states
transitions

(before

hide deq

hide deq

hide enq

Fig. 3. Compositional reduction of the example queueing system

course, neither queue is full, in which case the behaviour is deterministic). As a conse-
quence, the Markov chain underlying this specification is not completely specified. One
may assume that both alternatives occur with the same probability. Alternatively, one
may explicitly add information (such as a scheduling strategy) in order to resolve non-
determinism. In Sec. 4, we will follow the latter path.

3 Tool overview
The TIPPtool consists of several interacting components. Specifications can be created
with an editor which is part of the tool. A parser checks specifications for syntactic cor-
rectness. Another component is responsible for the generation of the LTS and for the
reduction of the LTS according to different bisimulation equivalences (currently, four
bisimulation algorithms are provided). The user can specify performance and reliability
measures to be calculated (such as state probabilities, throughputsand mean values). Ex-
periments can be specified, providinginformationabout activity rates which may vary. A
series of experiments can be carried out automatically in an efficient manner, generating
numerical results for different values of a certain model parameter, while the state space
only needs to be generated once. The tool provides several numerical solution methods
for the steady state analysis as well as for transient analysis of Markov chains. The re-
sults of an experiment series are presented graphically with the tool PXGRAPH from
UC Berkeley.

The export module of the tool provides interfaces to three other tools, PEPP [12],
TOPO [24], and ALDEBARAN [6]. The former interface is based on a special seman-
tics for SPAs which generates stochastic task graphs [18], for which the tool PEPP offers
a wide range of both exact and approximate analysis algorithms, some of which work
even for general distributions. The second interface provides support for the translation
of SPA specifications into a format suitable for the LOTOS tool TOPO. Among other
functionalities, this tool is capable of building C-programs from LOTOS specifications.
The third interface can be used in order to bridge to the powerful bisimulation equiva-
lence algorithms of the tool ALDEBARAN.

4 Model specification
In this section, we explain the details of the specification language supported by the
TIPPtool. It is an extension of basic LOTOS [5], the ISO standardised specification lan-
guage. To reflect the passing of time in a specification, randomly varying delays may be

attached to actions (at the moment, for reasons of analytical tractability, only exponential
distributions are supported).

The available operators are listed in Table 1; Action prefix, choice, hiding and paral-
lel composition (with synchronisation) have already been used in Sec. 2. If no synchro-
nisation between two processes is required, the pure interleaving operator ||| mod-
els independent parallelism. Synchronisation is possible both between immediate or be-
tween timed actions. Synchronising a timed with an immediate action is not allowed.
When synchronising on timed actions, we define the resulting rate to be the product of
the two partner rates (this definition preserves compositionality [15]). The intuition of
the remaining operators is as follows:stop represents an inactive process, i.e. a process
which cannot perform any action. exit behaves likestop after issuing a distinguished
signal which is used in combination with the enabling operator >> to model sequential
execution of two processes. Disruption with [> is useful to model the interruption of
one process by another. Process instantiationsP [a

1

; : : : ; a

n

] resemble the invocation of
procedures in procedural programming languages.

Name Syntax Name Syntax

timed action prefix (a; r); P inaction stop
immediate action prefix a; P successful termination exit
choice P [] Q enabling P >> Q

parallel composition P |[a
1

; : : : ; a

n

]| Q disruption P [> Q

– pure interleaving P ||| Q process instantiation P [a

1

; : : : ; a

n

]

hiding hide a

1

; : : : ; a

n

in P

Table 1. Basic syntax. P;Q are behaviour expressions, a
i

are action names.

The concept of process instantiationmakes it possible to parameterise processes over
action names. In addition, it is often convenient to parameterise a specification with
some data values, such as a rate, or the length of a queue (the above specification is a sim-
ple example for a data dependent specification, since parameter i governs the synchro-
nisation capabilities of Queue

i

). We have incorporated the possibility to describe data
dependencies in the TIPPtool. In addition, data can also be attached as parameters to ac-
tions, and therefore be exchanged between processes, using the concept of inter-process
communication [5]. This is highly beneficial, in order to conveniently describe complex
dependencies. Data values are declared in the form !value, attached to an action, where
value may be a specific value, a variable or an arithmetic expression. Variable decla-
rations are the counterpart of value declarations. They have the form ?variable:type
where variable is the name of the variable. These basic ingredients can be combined to
form different types of inter-process communication (note that inter-process communi-
cation is currently only implemented for immediate actions), among them:

� value passing: If value declaration and variable declaration are combined in a syn-
chronisation, the value is transmitted from one process to the other and the variable is
instantiated by the transmitted value. An example is:
a!2 ; stop |[a]| a?x:int ; b!(x+1) ; ...
If several actions are synchronised, each with a variable declaration of the same type,
a synchronisation with another process which offers a value of the required type yields
a form of multicast communication.
a!2 ; stop |[a]| a?x:int ; P |[a]| a?y:int ; ...

� value matching: If synchronisation on actions is specified where both actions involve
value declarations, this synchronisation is only possible if the values turn out to be
equal, as in the example given below.
a!2 ; stop |[a]| a!(1+1) ; ...

To illustrate the power of these language elements, we return to our running exam-
ple of a queueing system. We modify the model in order to represent the join-shortest-
queue (JSQ) service strategy. The idea is to insert a new process, Scheduler, between
arrival and queue, whose task it is to insert an arriving job into the shortest queue. For
this purpose, Scheduler scans all queues in order to determine the shortest queue,
whenever an arrival has occurred. Process Server is defined as before. The arrival
and queue processes do not communicate directly via action enq any more, but via the
Scheduler. Therefore we simplify the arrival process as follows (‘process’ and
‘endproc’ are keywords enclosing a process specification):

process Arrival := (arrive, lambda); Arrival endproc

i.e. Arrival and Scheduler now synchronise on the timed action arrive. The
top-level specification is as follows:

(Arrival |[arrive]| Scheduler(2,1,1,100,100))
|[ask,repl,enq]|

((Queue(1,0) |[deq]| Server) ||| (Queue(2,0) |[deq]| Server))

The Scheduler is a parametric process, which can be used for an arbitrary number
noq of queues. After an arrival (action arrive with the “passive” rate 1), the sched-
uler polls all noq queues in order to identify the queue with the smallest population (ac-
tionsask and repl). Each queue sends as a reply its current population. After polling,
Scheduler has identified the shortest queue. It then enqueues the job into that queue
(action enq). Parameters c, b, nc and nb are needed to store the current queue, the
queue with (currently) smallest population, the current population and the (currently)
smallest population. In the example, nc andnb are initialisedwith the value 100, a value
larger than any real queue population (note that the tool provides the possibility to spec-
ify choice alternatives which depend on conditions ‘[...] ->’).

process Scheduler(noq,c,b,nc,nb) :=
(arrive, 1); AskQueue(noq,c,b,nc,nb)
where
process AskQueue(noq,c,b,nc,nb) :=
ask!c; repl?x:int; Decide(noq,c,b,x,nb)
endproc
process Decide(noq,c,b,nc,nb) :=
[c<noq and nc<nb] -> AskQueue(noq,c+1,c,nc,nc) []
[c<noq and (nc>nb or nc=nb)] -> AskQueue(noq,c+1,b,nc,nb) []
[c=noq and nc<nb] -> (enq!c; Scheduler(noq,1,1,100,100)) []
[c=noq and (nc>nb or nc=nb)]->(enq!b;Scheduler(noq,1,1,100,100))
endproc
endproc

The Queue process has to be modified as well: It now has a parameter s which denotes
the identity of the queue. In addition, it can now perform actions ask and repl in order
to supply information on the current queue size to the scheduler. Note how value match-
ing is used with actions ask and enq, and value passing is used with action repl.

process Queue(s,i) :=
ask!s; repl!i; Queue(s,i)

[]
([i<3] -> enq!s; Queue(s,i+1) []
[i>0] -> deq; Queue(s,i-1))

endproc

5 Analysing a specification
5.1 Generating and analysing the semantic model

The formal semantics of SPA provides an unambiguous description of how to construct
the semantic model in a mechanised way. The structural operational rules can be imple-
mented in a straight-forward fashion. The resulting LTS is either saved directly to files
(while a hash-table of all states is maintained in memory) or it is temporarily stored in
main memory as an adjacency list, depending on whether equivalence checking algo-
rithms are selected or not.

Once the LTS is generated, it can be used for functional analysis. Our tool provides
the capabilities of checking for deadlocks and tracing through the states, i.e. showing a
path of actions leading from the initial state to a user-specified target state. Apart from
that, equivalence checking algorithms can be used for deciding equivalence of two mod-
els. In this way it can be checked, for instance, whether a model meets the requirements
of a high-level specification.

5.2 Performance evaluation

Transforming the semantic model into a CTMC and then analysing it by means of nu-
merical solution algorithms for Markov chains, we can obtain performance and reliabil-
ity measures for a given specification.

Models without immediate actions: For any SPA model with timed actions only
and finite state space, the underlying CTMC can be derived directly by associating a
Markov chain state with each node of the LTS [10, 19]. The transitions of the CTMC
are given by the union of all the arcs joining the LTS nodes, and the transition rate is
the sum of the individual rates (see Fig. 4). Transitions leading back to the same node
(loops) can be neglected, since they would have no effect on the balance equations of
the CTMC. The action names are only taken into account later on, when high-level per-
formance measures are to be computed.

4

a;� �

�

2�

e; �
c; �

d; �

b; �

P

1

P

2

P

3

P

4

1 2

3

Fig. 4. Deriving a Markov chain

Models with both timed and immediate actions: As discussed in Sec. 2, imme-
diate actions happen as soon as they become enabled. In order to ensure that this en-
abling cannot be delayed by further composition, abstraction of immediate actions is
mandatory. In the stochastic process, these immediate actions correspond to immedi-
ate transitions. The presence of immediate transitions leads to two kinds of states in this
process: States with outgoing immediate transitions (vanishing states) and states without

such transitions (tangible states). If several immediate transitions emanate from a single
state, the decision among these alternatives is non-deterministic, and it may depend on
which action is offered by the environment. If we consider the system as a closed sys-
tem (which is made explicit by hiding all immediate actions) the decision among several
immediate transitions still has to be taken. One possible solution is to weight all alter-
natives with equal probabilities. The standard method used for eliminating immediate
transitions is to incorporate transitions into the CTMC which are due to the traversal
of some vanishing states between two tangible states. This is done until all vanishing
states are bypassed [2]. The rate of these arcs is computed by multiplying the rate of the
Markovian transitions leaving the source tangible state with the probability of reaching
the target tangible state. However, [29] showed that this technique should be applied
with care in the SPA context, essentially because a non-determinstic decision is concep-
tuallydifferent from an equi-probable decision. Therefore, in order to remove immediate
transitions, it is more appropriate for SPAs to eliminate them on the basis of bisimula-
tion equivalences, as it has been done in Fig. 2. If non-deterministic alternatives only
lead (via some internal, immediate steps) into equivalent states, equivalence-preserving
transformations allow to remove this non-determinism, see Sec. 5.3.

In the TIPPtool, standard numerical solution algorithms (Gauß-Seidel, Power
method, LU factorisation, refined randomisation) are employed for steady state analysis
as well as transient analysis of the CTMC. Apart from these, prototypical implementa-
tions of two efficient approximation methods are realised. Both approaches are based on
decomposition.Time Scale Decomposition (TSD) is a method which can exploit the Near
Complete Decomposability (NCD) property of many Markov chains. Response Time Ap-
proximation (RTA) works on the specification level rather than on the CTMC level [25].

5.3 Compositional model reduction
Equivalence relations such as (weak) Markovian bisimulation, introduced in Sec. 2.3,
are beneficial both for eliminating immediate transitions, and for reducing models with
very large state spaces. Both effects can be achieved by means of the same strategy. For a
given specification, say System, the key idea is to compute an equivalent specification,
System

0 , which is minimal (with respect to the number of states). Performance analysis
can then be based on the minimised specification which is obtained by a partition refine-
ment strategy: The bisimulation algorithm computes a partition of the state space, such
that the subsets correspond to the bisimulationequivalence classes. This is achieved by a
successive refinement of an initial partition which consists of a single subset containing
all states. The partition becomes finer and finer until no further refinement is needed, or,
in algebraic terms, a fixed-point is reached. This fixed-point is the desired result.

This general strategy can be realised by means of very efficient algorithms [21, 27].
For specifications which do not contain timed transitions, we implemented Kanellakis
and Smolka’s algorithm to compute strong and weak bisimulation. For the converse case
(only timed transitions), we implemented an algorithm which is due to Baier [3] for fac-
torising specifications with respect to Markovian bisimulation. These two implementa-
tions form the basis of the general case, where timed and immediate transitions coexist:
Weak Markovian bisimulation is computed by alternating the algorithms for weak bis-
mulation (for immediate transitions) and Markovian bisimulation (for timed transitions)
until a fixed-point is reached. Since weak Markovian bisimulation abstracts from inter-

nal, immediate transitions, this opens a way to eliminate immediate transitions from a
specification, as long as they are internal. However, in some cases hiding of immediate
transitions is not sufficient, because non-deterministic internal decisions may remain af-
ter factorisation. In this case the system is underspecified, and the TIPPtool produces a
warning message to the user.

Bisimulation-based minimisation is particularly beneficial if it is applied to compo-
nents of a larger specification in a stepwise fashion. Since all implemented bisimulations
have the algebraic property of substitutivity, minimisation can be applied composition-
ally, as illustrated in Fig. 3. In this way, specifications with very large state spaces be-
come tractable. In the TIPPtool, compositional minimisation is supported in an elegant
way. By dragging the mouse inside the editor window, it is possible to highlight a certain
component of the specification and to invoke compositional minimisation of this com-
ponent. When the minimised representation is computed, a new specification is gener-
ated automatically, where the selected component has been replaced by the minimised
representation.

6 Conclusion
In this paper, we have presented the status quo of the TIPPtool. Although a lot has been
achieved, there remain, of course, many open problems for future research. We will
briefly present some aspects of ongoing work in the TIPP project.

Several attempts have been made in order to incorporate generally distributed ran-
dom variables into the model, see e.g. [18, 22]. However, they all suffer from the prob-
lem that general distributions lead to intractable stochastic processes. Another problem
is that, so far, it is not completely solved how to obtain an algebraic framework (equiv-
alences and equational laws) for a process algebra with general distributions. A promis-
ing approach, however, is reported in [8], using stochastic automata as a model based
on Generalised Semi-Markov processes.

We are currently building a prototype tool for graphical model specification as an
easy-to-use front-end for users who are not familiar with the syntax of the TIPPtool’s
specification language. With the view on models with large state spaces, we are currently
investigating techniques for the compact symbolic representation of the semantic model
of an SPA description, based on Binary Decision Diagrams [30].

To summarise, the TIPPtool realises state-of-the-art techniques for compositional
performance and reliability modelling. As we have indicated, there is a lot of ongoing
activity, both in theoretical research, and concerned with the further development and
optimisation of the tool.

References
1. Workshops on Process Algebras and Performance Modelling, 1993 Edinburgh, 1994 Erlan-

gen, 1995 Edinburgh, 1996 Torino, 1997 Twente, 1998 Nice.

2. M. Ajmone Marsan, G. Balbo, and G. Conte. PerformanceModels of MultiprocessorSystems.
MIT Press, 1986.

3. C. Baier. Polynomial time algorithms for testing probabilistic bisimulation and simulation.
In Proc. CAV’96. LNCS 1102, 1996.

4. M. Bernardo and R. Gorrieri. Extended Markovian Process Algebra. In CONCUR ’96.

5. T. Bolognesi and E. Brinksma. Introduction to the ISO specification language LOTOS. Com-
puter Networks and ISDN Systems, 14:25–59, 1987.

6. M. Bozga, J.-C. Fernandez,A. Kerbrat, and L. Mounier. Protocol verification with the ALDE-
BARAN toolset. Int. J. Softw. Tools for Techn. Transf., 1(1/2):166–184, 1997.

7. G. Chehaibar, H. Garavel, L. Mounier, N. Tawbi, and F. Zulian. Specification and Verifica-
tion of the Powerscale Bus Arbitration Protocol: An Industrial Experiment with LOTOS. In
Formal Description Techniques IX. Chapmann Hall, 1996.

8. P.R. D’Argenio, J-P. Katoen, and E. Brinksma. An algebraic approach to the specification of
stochastic systems. In Programming Concepts and Methods. Chapman and Hall, 1998.

9. S. Gilmore and J. Hillston. The PEPA Workbench: A Tool to Support a Process Algebra-
Based Approach to Performance Modelling. In 7th Int. Conf. on Modelling Techniques and
Tools for Computer Performance Evaluation, Wien, 1994.

10. N. Götz. Stochastische Prozeßalgebren – Integration von funktionalem Entwurf und Leis-
tungsbewertung Verteilter Systeme. PhD thesis, Universität Erlangen–Nürnberg, April 1994.

11. N. Götz, U. Herzog, and M. Rettelbach. Multiprocessor and distributed system design: The
integration of functional specification and performance analysis using stochastic process al-
gebras. In Tutorial Proc. of PERFORMANCE ’93. LNCS 729.

12. F. Hartleb and A. Quick. Performance Evaluation of Parallel Programms — Modeling and
Monitoring with the Tool PEPP. In Proc. ”Messung, Modellierung und Bewertung von
Rechen- und Kommunikationssystemen“, p. 51–63. Informatik Aktuell, Springer, 1993.

13. H. Hermanns. Interactive Markov Chains. PhD thesis, Universität Erlangen-Nürnberg, 1998.
14. H. Hermanns, U. Herzog, and V. Mertsiotakis. Stochastic Process Algebras as a Tool for

Performance and Dependability Modelling. In Proc. of IEEE Int. Computer Performance
and Dependability Symposium, p. 102–111, 1995. IEEE Computer Society Press.

15. H. Hermanns, U. Herzog, and V. Mertsiotakis. Stochastic Process Algebras - Between LO-
TOS and Markov Chains. Computer Networks and ISDN Systems, 30(9-10):901–924, 1998.

16. H. Hermanns, M. Rettelbach, and T. Weiß. Formal characterisation of immediate actions in
SPA with nondeterministic branching. In The Computer Journal [1], 1995.

17. U. Herzog. Formal Description, Time and Performance Analysis. A Framework. In Entwurf
und Betrieb Verteilter Systeme. Springer, Berlin, IFB 264, 1990.

18. U. Herzog. A Concept for Graph-Based Stochastic Process Algebras, Generally Distributed
Activity Times and Hierarchical Modelling. [1], 1996.

19. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University
Press, 1996.

20. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
21. P. Kanellakis and S. Smolka. CCS Expressions, Finite State Processes, and Three Problems

of Equivalence. Information and Computation, 86:43–68, 1990.
22. J.P. Katoen, D. Latella, R. Langerak, and E. Brinksma. Partial Order Models for Quantitative

Extensions of LOTOS. Computer Networks and ISDN Systems, 1998. to appear.
23. J.G. Kemeny and J.L. Snell. Finite Markov Chains. Springer, 1976.
24. J.A. Manas, T. de Miguel, and J. Salvachua. Tool Support to Implement LOTOS Specifica-

tions. Computer Networks and ISDN Systems, 25(7), 1993.
25. V. Mertsiotakis. Approximate Analysis Methods for Stochastic ProcessAlgebras. PhD thesis,

Universität Erlangen–Nürnberg, 1998. to appear.
26. R. Milner. Communication and Concurrency. Prentice Hall, London, 1989.
27. R. Paige and R. Tarjan. Three Partition RefinementAlgorithms. SIAM Journal of Computing,

16(6):973–989, 1987.
28. C. Priami. Stochastic �-calculus. [1], 1995.
29. M. Rettelbach. Stochastische Prozeßalgebrenmit zeitlosen Aktivitäten und probabilistischen

Verzweigungen. PhD thesis, Universität Erlangen–Nürnberg, 1996.
30. M. Siegle. Technique and tool for symbolic representation and manipulation of stochastic

transition systems. TR IMMD 7 2/98, Universität Erlangen-Nürnberg, 1998.

