
Speeding up the Symbolic Multilevel Algorithm
Johann Schuster

University of the Federal Armed Forces Munich
johann.schuster@unibw.de

Markus Siegle
University of the Federal Armed Forces Munich

markus.siegle@unibw.de

Abstract—This paper describes two recent improvements to
the symbolic multilevel algorithm. Firstly, it is shown how to
use precalculations for the aggregation process of the matrix.
Secondly, faster vector aggregation/disaggregation routines us-
ing precalculated indices are presented. Experiments show the
practical use of these changes.

I. INTRODUCTION

This paper is about a fast approach to the steady-state
solution of Continuous Time Markov Chains (CTMCs), called
multilevel algorithm, as originally presented in [1]. The idea is
to perform iterative aggregation/disaggregation steps combined
with additional smoothing steps in order to achieve a faster
convergence than with standard numerical methods. There
are several approaches to store large transition rate matrices
of Markov Chains. For two of them, namely the Kronecker
and MTBDD (Multi-Terminal Binary Decision Diagram) data
structures, variants of the multilevel algorithm are known [2],
[3].

The Kronecker-based approach aggregates submatrices of
the Kronecker representation supporting arbitrary (and non-
fixed) aggregation orderings and several smoothing algorithms,
while the symbolic approach supports arbitrary aggregations
of a power of 2 potential states but is so far limited to a fixed
aggregation ordering. In this paper, we present a faster variant
of the symbolic multilevel algorithm using precalculations.
Most notable, the speedup is achieved by only a slight increase
of memory. The algorithms presented are prototypically im-
plemented in the PRISM tool [4]. As the PRISM numerical
solvers are also used for the CASPA tool [5], the multilevel
algorithm can easily be used for this tool as well. The paper
is organised as follows: Sec. II gives a short introduction
to the multilevel algorithm. In Sec. III, the use of symbolic
data structures is sketched. The use of precalculations for
symbolic matrix aggregations is shown in Sec. IV. Faster
vector aggregation/disaggregation routines are presented in
Sec. V. A comparison of the new algorithm variant and the
older version from [6] is given in Sec. VI. Finally, Sec. VII
concludes the paper.

II. MULTILEVEL ALGORITHM

The multilevel algorithm for Markov Chains has been
presented in [1]. Its basic idea is to aggregate the given Markov
Chain M to a smaller one M ′ which can be solved more
easily. The solution of M ′ is then disaggregated to a solution
of M . It is well-known that a finite CTMC with n states can
be represented by a n × n matrix, namely its infinitesimal

generator matrix Q. For the following explanations we only
look at the transition matrix trans, that is Q with all diagonal
elements set to 0. We sketch the basic multilevel idea by
means of a small two-level example: Suppose we are given
a transition matrix trans and an initial solution vector π as
seen in the upper left part of Fig. 1. Two neighbouring states

Fig. 1. Basic aggregation/disaggregation scheme

should be aggregated as indicated by the division of the matrix
in 2×2 blocks. A basic aggregation/disaggregation procedure
can be divided into the following steps (as indicated by the
arrows in Fig. 1):

1) Aggregation of π: The state probabilities of all states
belonging to an aggregated are summed up

2) Aggregation of trans: aggregated rates for non-diagonal
blocks are calculated

3) Calculation of an approximate solution
4) Disaggregation of the solution to an approximate solution

of the original matrix
In order to improve the solution additional smoothing steps
have to be performed (i.e. iteration steps with conventional
solvers). The basic multilevel procedure has to be repeated
until a certain accuracy of the result is achieved. Our sketch
only shows a so-called two-level algorithm. Recursive solution
of aggregated systems up to a certain recursion depth leads to
the multilevel v-cycle.

III. ADAPTATION TO MTBDD DATA STRUCTURE

A. Data structure preliminaries

The PRISM tool uses MTBDD data structures to store the
n × n transition matrix. Compositional modelling leads to
unreachable states (either by synchronisation constraints or by
the fact that MTBDDs always encode a power of 2 states).
Therefore unreachable states have to be taken into account
for the multilevel algorithm. In the example shown in Fig. 2a
we assume that the states corresponding to the first three
rows/columns are reachable, while the state corresponding
to the last row/column is unreachable. In the following, a



(a) Matrix (b) MTBDD

Fig. 2. Example Matrix and corresponding MTBDD

row/column index always starts with 0. The symbolic encoding
works as follows:
• A matrix is interpreted as a function N×N→ R, mapping

row and column index to the real value of the matrix
entry.

• Rows and columns are stored as dual numbers with k :=
dlog ne Bits (in our case 3 states → 2 Bits)

• Row- (ri) and column variables (ci) are mixed to bit
strings (r1, c1, r2, c2, . . . , rk, ck)

• The bit strings are encoded by paths in a binary decision
diagram (0 ' false, 1 ' true)

• The real values of the matrix entries are represented by
the leaves corresponding to such paths

• Reduction rules avoid the storage of redundant paths
• Zero-leaves (i.e. zero-values of the matrix) are omitted

With this transformation in mind, entry (0, 1) 7→ 1 in the
example matrix is coded as bit string (0, 0, 0, 1) and is
represented by the leftmost path in Fig. 2b. For a more verbose
explanation we refer to [6].

B. Aggregation in the context of MTBDDs

An aggregation of two neighbouring states would corre-
spond to an aggregation of the 2 × 2 blocks as indicated in
Fig. 2a. The same aggregation in MTBDD terms is given
in Fig. 2b. It can be defined considering level r2 as the
aggregation level of the MTBDD. In the aggregated MTBDD,
only the MTBDD variables labelled as blocks remain (they
determine the 2× 2 structure of the aggregated matrix), while
the nodes labelled by submatrices are aggregated. In the
aggregated matrix, the nodes in the aggregation level now play
the role of the terminal nodes and have to be filled with the
aggregated values by the aggregation routine. In this way the
symbolic multilevel algorithm can always aggregate a power
of 2 potential states to one aggregated state.

IV. NODE CHARACTERISATION

In this section it is shown how redundant calculations can
be avoided using precalculations. Aggregated values for nodes
that can be precalculated have to be stored only once, therefore
saving memory.

A. Characterisation of Nodes

Looking again at Fig. 2b, for the characterisation we are
only interested in the aggregation nodes, i.e. nodes that belong
to the aggregation level (for real calculations there can be
usually more than one aggregation level). Firstly, looking at the

(a) Rates to be aggregated (b) Aggregated rate

Fig. 3. Aggregation of matrices and MTBDDs

corresponding matrix in Fig. 2a we can distinguish between
nodes belonging to diagonal blocks in the aggregated matrix
and those that do not. Diagonal elements of the aggregated
matrices are calculated on the fly as the negative sums of the
non-diagonal elements and they are stored in a separate vector.
Therefore in the sequel we only regard nodes that belong to
non-diagonal elements, i.e. nodes, where aggregations have to
be performed. Next, we introduce the notation of reducible and
non-reducible nodes by means of the simple four-state-model
given in Fig. 3a. It can be seen that the aggregated rate λ̄
depends on the cumulative sums of the rates to be aggregated
(λ0 and λ1, respectively) and the current state probabilities (π0

and π1, respectively) of the states from which they emanate.
Reducible nodes are those where the aggregation equation
cancels out and the result can be precalculated, otherwise we
call them non-reducible nodes. There are three different cases:
• λ0 = λ1: fraction cancels out ⇒ reducible
• λ0 = 0, λ1 6= 0 (without loss of generality):

– cancels out for π0 = 0 ⇒ reducible
– does not cancel out for π0 6= 0 ⇒ non-reducible

• λ0 6= λ1, both non-zero: no cancellation⇒ non-reducible
Note that this characterisation can easily be generalised to a
larger number of states to be aggregated. Further we would
like to stress that it is possible to do all these calculations by
purely symbolic operations.

B. Aggregation clash

Similar to an offset clash introduced in [7], in the multilevel
context, the notion of an aggregation clash is important.
Consider once again our running example given by the matrix
in Fig. 2a.

According to Sec. III-A, the corresponding MTBDD rep-
resentation is given in Fig. 4a. Suppose again that r2 is the
aggregation level, i.e. consider aggregations of 2 × 2 subma-
trices. The problem is that there is one node (marked by node

of interest) representing both the top right
(

2 −
0 −

)
(non-

reducible) and bottom left
(

2 0
− −

)
(reducible) submatrix.

In this case we speak of an an aggregation clash. This clash
has to be resolved by splitting this node into two separate
nodes, as seen in Fig. 4b. In Sec. VI we will see that
aggregation clashes are much rarer than offset clashes.



(a) MTBDD trans (b) Clash resolved

Fig. 4. Example: Aggregation clash

C. Aggregation Offsets

Without exploiting the reducibility of nodes, the matrix
aggregation amounts to a (in our case depth-first-) traversal of
the MTBDD trans up to the variable level of the system to be
aggregated. Once the nodes are distinguished, aggregations of
reducible nodes do not have to be calculated in every iteration,
but they can be precalculated once as shown above. When an
aggregated value is known in advance, it is desirable to be
able to skip the aggregation of such a node. A slight problem
arises when successive aggregations have to be performed,
as all aggregated values of one aggregation level are stored
sequentially: In Fig. 5a a part of an MTBDD representing a
transition matrix is given. Assume there are two aggregation
levels ri and ri+1 and assume further that x is a diagonal
(or reducible) node for the aggregation level ri, and therefore
might be skipped (i.e. its sub-MTBDD is not processed).
Let y be an non-reducible node and let us further assume
that during the aggregation in ri+1 the aggregated matrix
values were stored as indicated in Fig. 5b (two paths leading
from x to y, so two values y1 an y2 have to be stored for
the aggregated values of node y). Now the point is that if
during the aggregation at level ri node x is skipped (i.e. its
sub-MTBDD is not processed), the counter indicating the
position of the aggregated value has to be updated as well.
Otherwise in the example node z would get the value y1 as
two incrementations of the counter were missed. In the spirit
of the offset labelling concept presented in [7] we therefore
introduce the concept of aggregation offsets. That means for
every node x at an aggregation level ri we precalculate the
number of non-reducible nodes in aggregation level ri+1 that
are reached during a traversal of the sub-MTBDD below x.
This is the offset to be added to the array pointer for the
aggregated values when such a node is skipped.

V. VECTOR AGGREGATION/DISAGGREGATION

Profiling revealed that the vector aggregation/disaggregation
used in [6] is too time-consuming compared to the other op-
erations for the multilevel algorithm. For a faster approach we
make use of the fact that the MTBDD offset labelling allows
for a compact storage of the vector of reachable states (without
gaps for unreachable states - this was the aim of the hybrid
approach [7]). Therefore, vector aggregation/disaggregation

(a) Higher aggregations (b) Critical values

Fig. 5. Skipping reducible nodes

operations can be based on indices of the borders between
states belonging to different aggregates. It is sufficient to know
how many states are grouped to a certain aggregate. Instead
of traversing the entire BDD reach every time an aggrega-
tion/disaggregation is performed, the aggregation borders are
extracted within a single BDD traversal as a preprocessing
step. Algorithm 1 shows the principle of aggregating a vector
vect to an aggregate agg vect, given that the borders (array
aggborder) are available. First, the counter j for the vector
elements of vect is reset. The outer FOR-loop runs through
all elements of the aggregate agg vect. The current element
of the aggregate is then reset and the inner loop adds elements
of vect until the aggregation-border of the current state i is
reached. As a drawback, this approach has a higher memory

Algorithm 1 Faster vector aggregation
j = 0
for i = 0 to AGGVECTORSIZE do
agg vect[i] = 0
while j < aggborder[i] do
agg vect[i] = agg vect[i] + vect[j]
j = j + 1

end while
end for

consumption, as for every aggregation as many borders as
there are aggregated values have to be stored.

VI. EXPERIMENTAL RESULTS

We present some experimental results for the Flexible
Manufacturing System (FMS) [8] , and compare the new
results to the results given in [6]. The numerical results
(i.e. state probabilities, residual) remained the same, so they
are omitted. We use the same number of smoothing steps as in
[6], namely 4 pre- and 4 post-smoothing steps, respectively,
on the fine system and 8 pre- and 8 post-smoothing steps,
respectively, for the aggregated systems and the same sparse
matrix substitutions. The results are shown in Tab. I, which is
organised as follows (Subscript old references to the algorithm
presented in [6], subscript new references to the algorithm
presented in this paper):
• scaling: the model scaling parameter, i.e. the initial num-

ber of raw parts for each machine of the FMS.



sca- states trans. agg.- MTBDD minterms MTBDD nodes memory speedup
ling level total red. ratio total red. ratio ratio

5 1.5 · 105 1.1 · 106
47 4.0 · 104 3.3 · 104 0.83 41 10 0.24

1.06 1.1734 1.7 · 104 1.3 · 104 0.73 136 55 0.40
15 5.1 · 102 1.8 · 102 0.34 91 22 0.24

6 5.4 · 105 4.2 · 106
47 1.2 · 105 1.0 · 105 0.87 53 11 0.20

1.04 1.1834 4.3 · 104 3.2 · 104 0.74 193 70 0.36
15 9.4 · 102 3.2 · 102 0.34 122 27 0.22

7 1.6 · 106 1.4 · 107
47 2.9 · 105 2.5 · 105 0.84 70 11 0.16

1.03 1.1434 9.2 · 104 6.6 · 104 0.71 268 82 0.31
15 1.6 · 103 5.5 · 102 0.34 157 32 0.20

8 4.5 · 106 3.9 · 107
59 6.7 · 105 5.8 · 105 0.87 86 12 0.14

1.02 1.2443 1.8 · 105 1.3 · 105 0.72 354 98 0.28
19 2.6 · 103 8.7 · 102 0.34 196 37 0.19

9 1.1 · 107 9.9 · 107
59 1.4 · 106 1.2 · 106 0.85 108 12 0.11

1.01 1.2143 3.4 · 105 2.4 · 105 0.69 465 110 0.24
19 3.9 · 103 1.3 · 103 0.34 239 42 0.18

TABLE I
IRREDUCIBLE/REDUCIBLE, MEMORY AND SPEEDUP STATISTICS FOR THE FMS MODEL

• states: number of reachable states
• trans.: number of reachable transitions
• agg.-level.: aggregation levels used
• MTBDD minterms: total number of minterms, minterms

belonging to reducible nodes, ratio between the two
• MTBDD nodes: total number of nodes, reducible nodes,

ratio between the two
• memory: memory ratio memnew

memold

• speedup: speedup ratio told

tnew

It is remarkable that for all the FMS parameters we measured,
no aggregation clash occurred. Note that there might be a large
number of reducible minterms in contrast to only a few re-
ducible nodes on the same level. This indicates a good sharing
of reducible nodes. One can see that the number of reducible
nodes decreases for higher aggregations. Most interestingly,
there is only a slight increase in memory usage in contrast
to a relatively good speedup. This is the case as the memory
saved by the node characterisation for the matrix aggregations
is compensated by the memory needed for the border markings
for the vector operations. The speedup achieved is mostly due
to the faster vector routines, the time saved in the matrix
traversal for skipping known aggregations is nearly neutralised
by the additional distinction (reducible/non-reducible node).

VII. CONCLUSION

In this paper we have presented two modifications to the
symbolic multilevel algorithm presented in [6]. While the
concept of node characterisation saves memory due to a com-
pact storage of the aggregated matrices, the modified vector
routines demand more memory but allow for faster iterations.
Using these two concepts we have shown that with only a
negligible effort of memory there is a significant improvement
in the runtime.

With the concepts introduced here we are currently working
on a variant of the symbolic multilevel algorithm for multi-
core processors. Queueing jobs for parallel matrix aggrega-
tions or parallel smoothing cycles is possible by using the

aggregation offsets introduced in this paper.
By introducing an intermediate sparse matrix concept for

the BDD reach, similar to the concept already used for the
MTBDD trans, we expect also fast vector operations but with
more moderate memory demands.

As the aggregation procedure now is significantly faster than
before, it would be interesting to use other parameter sets (for
example [2] often use only one pre- and post-smoothing step),
which will probably lead to faster convergence.

ACKNOWLEDGMENT

The authors would like to thank Deutsche Forschungsge-
meinschaft for supporting this work under grant SI 710/5-
1. This work is partially supported by DFG/NWO bilateral
research programme ROCKS.

REFERENCES

[1] G. Horton and S. Leutenegger, “A Multi-Level Solution Algorithm for
Steady-State Markov Chains,” ACM Performance Evaluation Review,
vol. 22, no. 1, pp. 191–200, May 1994, proceedings of the ACM Sig-
metrics and Performance 1994, International Conference on Measurement
and Modeling of Computer Systems.

[2] P. Buchholz and T. Dayar, “Comparison of Multilevel Methods for
Kronecker-based Markovian Representations,” Computing, vol. 73, no. 4,
pp. 349–371, 2004.

[3] J. Schuster and M. Siegle, “A Multilevel Algorithm based on Binary
Decision Diagramms,” in 14th Int. Conf. on Analytical and Stochas-
tic Modelling Techniques and Applications (ASMTA’07), K. Al-Begain,
A. Heindl, and M. Telek, Eds., June 2007, pp. 129–136.

[4] “PRISM website,” http://www.prismmodelchecker.org, (last checked
April 2010).

[5] J. Schuster and M. Siegle, “Dependability modelling with the stochastic
process algebra tool CASPA,” in Procceedings of the DYADEM workshop.
ACM, 2010 (in press).

[6] ——, “A symbolic multilevel method with sparse submatrix represen-
tation for memory-speed tradeoff,” in 14. GI/ITG Conf. Measurement,
Modelling and Evaluation of Comp. and Communic. Systems (MMB08).
VDE Verlag, 2008, pp. 191–205.

[7] D. Parker, “Implementation of symbolic model checking for probabilistic
systems,” Ph.D. dissertation, School of Computer Science, Faculty of
Science, University of Birmingham, 2002.

[8] G. Ciardo and K. Trivedi, “A decomposition approach for stochastic
reward net models,” Performance Evaluation, vol. 18, no. 1, pp. 37–59,
1993.


