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Abstract

This paper describes how to construct complex performability models in
the context of the software tool Moebius, by hierarchically composing small
submodels. In addition to Moebius’ “Join” operator, a second composi-
tion operator “Sync” is introduced, and it is shown how both types of
composition can be realised on the basis of symbolic, i.e. BDD-based data
structures.

1 Introduction

Moebius [CCD+01] is a software tool for performability modelling which supports
different model specification formalisms and allows the modeller to construct a
complex overall model from small submodels. This paper describes how to extend
Moebius in two directions:

We describe a technique for the compact representation of large state spaces,
using Multi-terminal binary decision diagrams (MTBDD), which we apply to the
Moebius modelling framework. Such a “symbolic” representation is based on a
binary encoding of the labelled transition system (LTS), i.e. the states and state-
to-state transitions, underlying a Moebius model. It is known that MTBDD-
based state space representations can be extremely memory-efficient if the state
space of a complex model is constructed in a compositional manner from small
components.

In Moebius, submodels can be composed with the help of the operator Join, but
in this paper we introduce another, new operator for composing submodels. This
new composition operator is called synchronisation (Sync), it is well known in
the world of process algebras and it constitutes a useful complementation of the
Join operator already provided by Moebius. Fig. 1 shows the principle of Join

and Sync, using two Stochastic Petri Net (SPN) submodels as an example. At
the top of the figure, the SPN submodels are composed by a Join, which has the
effect of superposing two places. At the bottom of the figure, the SPN submodels
are composed by a Sync, which has the effect of superposing two transitions.

The MTBDD-based realisation of Sync has already been described in the liter-
ature, but in this paper we also describe an MTBDD-based realisation of Join,
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Figure 1: The operators Join and Sync.

thereby enabling a memory-efficient symbolic state space generation and repre-
sentation within the Moebius modelling framework.

2 The Moebius modelling framework

Moebius is a software tool for performability evaluation of discrete event systems.
Currently, Moebius supports the following three model specification formalisms
[CCD+01, CS01]:

1. Stochastic Activity Networks (SAN) [SM91], an extension of Generalised

Stochastic Petri Nets (GSPN),

2. Performance Evaluation Process Algebra (PEPA) [Hil94], a Stochastic Pro-

cess Algebra (SPA), and

3. Buckets and Balls for modelling Markovian transition systems, as imple-
mented, for instance, in the performance evaluation tools Marca [Ste91]
and DNAmaca [Kno96].

A simple example model, consisting of a PEPA submodel Producer and a SAN
submodel Consumer, is shown in Fig. 2. Within Moebius, submodels are mapped
onto the Abstract Functional Interface (AFI), which is implemented in C++.
Each place, bucket, process parameter or process counter of the specified sub-
models is hereby mapped onto a state variable (SV). During state space (SSp)
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Figure 2: PC system consisting of a PEPA and a SAN submodel

exploration, a state of the modelled system is represented by a tuple of n SVs,
which is called a SSp vector (SSpV) [Sow98].

In Moebius, models can be composed by applying a Join, which causes a sharing
of designated SVs between the atomic1 models [Doy97], as shown in Fig. 3 for
the Producer and Consumer submodels (denoted as PC system in the following).
On the level of the AFI, the Join results in a mapping of the explicitly shared
SVs onto the same memory address, where in terms of PEPA models only SVs
originating from process parameters can be shared. Such a mapping yields the
effect that actions or transitions defined in different submodels may manipulate
the shared but locally visible SVs and thus invisibly influence the behaviour of
the partner models.

For the purpose of completeness, it should be briefly mentioned that within Moe-
bius, the Join composition feature is augmented by the possibility of replicating

designated submodels. During SSp generation, this explicit information of a com-
posed model’s symmetry is exploited for lumping states, leading to the generation
of a monolithic but reduced overall SSp2.

1In the present work, an atomic model is a model whose SSp is not the result of the com-
position of others. In process algebras, a sequential process is a process which does not contain
the parallel composition operator.

2The term “monolithic” refers to the fact that the SSp of the composed model is not gen-
erated from the SSps of its submodels.
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Figure 3: Hierarchic composition of the PC submodels via Join

3 Symbolic representation of state spaces

It is known that MTBDDs can be employed for representing large state spaces
very compactly, provided that the overall state space is built in a compositional
fashion [Sie01]. Before going into detail, we briefly recapitulate the basics.

MTBDDs [FMY97, BFG+97]) are an extension of BDDs [Bry86] for the graph-
based representation of pseudo-Boolean functions, i.e. functions of type IBn 7→ IR.
An MTBDD is a collapsed binary decision tree whose isomorphic subtrees have
been merged and whose don’t care vertices are skipped. We consider ordered
MTBDDs where on every path from the root to a terminal vertex the variable
labelling of the nonterminal vertices obeys a fixed ordering. In the sequel we
assume that the MTBDD variables have the following ordering, denoted by ≺.
At the first na ≥ ⌈log2 |Act|⌉ levels from the root are the variables ai encoding
the action, where Act is the set of actions defined in a model whose SSp is to be
encoded. On the remaining levels we have 2 ∗ ns ≥ 2 ∗ ⌈log2 |States|⌉ variables
encoding the source and target state of a transition. These 2∗ns variables (si) and
(ti) encoding the source and target states are ordered in an interleaved fashion,
which yields the following overall variable ordering3:

ana−1 ≺ . . . ≺ a0 ≺ sns−1 ≺ tns−1 ≺ . . . ≺ s0 ≺ t0

The function represented by MTBDD M is denoted fM. Given two MTBDDs M1

and M2 and an arithmetic operator ⋆ ∈ {+,−, ∗, . . .}, we simply write M := M1 ⋆

M2 to obtain the MTBDD which represents fM1
⋆fM2

. These standard arithmetic
(and Boolean) operators can be implemented efficiently on the MTBDD data
structure with the help of the so-called APPLY algorithm [FMY97].

Fig. 4 shows an example stochastic LTS represented by an MTBDD, where a
dashed (solid) line represents the Boolean values 0 (1) of the corresponding

3This interleaved ordering is the commonly accepted heuristics for obtaining small MTBDD
sizes, see for instance [EFT93, FMY97, Sie01].

4



00 1101 10

t2

s2

a

s1

t1

µλ

enq

deq

0

1

aactionenq, λ enq, λ enq, λ

deq, µ deq, µ deq, µ

Figure 4: Stochastic LTS and corresponding MTBDD

Boolean variable. Note that MTBDD-based symbolic encodings of transition
systems are also possible in the case where both Markovian and immediate tran-
sitions coexist [Sie02].

3.1 MTBDD-based representation of vector based SSps

The main idea of an MTBDD-based representation of vector-oriented SSps as
realised by Moebius’ AFI is that each SV will be encoded by its own Boolean
vector, i.e. the current value of the associated SV (the marking of a specific place
or bucket, the value of a process counter or parameter) is encoded in binary form.
MTBDD-based SSp representation is only applicable if the model is finite and if
upper bounds of all the SVs can be determined in advance4. Thus, the bound
kj on SV j yields the dimension nj ≥ ⌈log2 kj⌉ of the Boolean vectors ~j and ~j ′

which encode the value of that SV, where ~j represents the value before (source
SV) and ~j ′ encodes the value after (target SV) a state transition (these were
previously denoted as ~s and ~t).

As an example, we consider the monolithic PC system shown in Fig. 5. For sim-
plicity, the PEPA Producer process of Fig. 2 is here replaced by a SAN structure,
and the system is now modelled as a flat SAN, where all SVs are 1-bounded,
except the one representing place Queue which is bounded by QCapacity = 3.
After the dimensions of the Boolean vectors are determined (see Table 1), one
can explore the SSp of the whole model in one step (monolithically) and encode
the transition system as an MTBDD [Dav01].

4Such bounds can be computed, for example, with the help of P-invariant analysis.
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Queue−>Mark() < QCapacity;

Idle

Serverdeq

Wait4Cust

Queueproduce, λ

consume, µ

Figure 5: PC system described as a monolithic SAN

Queue Wait4Cust Idle Server transitions

bound k 3 1 1 1 3

⌈log2 k⌉ 2 1 1 1 2

Boolean
vector

~q, ~q ′ ~w, ~w ′ ~i, ~i ′ ~s, ~s ′ ~a

Table 1: Encoding scheme of SSp of the PC-model

3.2 MTBDD-based Synchronisation

When composing two submodels P1 and P2 in parallel, a subset of the actions
may have to be executed jointly by both partners. In the context of stochastic
process algebras this is called synchronisation, or Sync for short. As a result, the
SSp T of the composed process is a subset of the Cartesian product of the SSps
Ti of the submodels, denoted as product SSp (PSSp), i.e.:

P = P1 < S > P2 ⇒ T ⊆ T1 × T2.

As an example consider Fig. 6. There the rate of action a in submodel P3, which
results from a synchronisation of P1 and P2, is given by ϕ(λ, µ). In case of the
SPA TIPP [HHK+00], the rate of a synchronised Markovian transition is given
by ϕ(λ, µ) = λ · µ. However, other synchronisation policies are also possible.
In process P4, which is the unsynchronised composition of P1 and P2, we can
observe the interleaving of two a actions.

On the MTBDD level, the operator Sync can be realised as follows [Sie02]: Let
P1 and P2 be two processes to be synchronised over a set S of actions. The corre-
sponding SLTSs are encoded as MTBDD Mi over the Boolean vectors (~a,~si,~ti),
where i ∈ {1, 2}. The set S of synchronising transitions is encoded as BDD S

over the Boolean vector ~a. Furthermore, Stabi is a BDD which encodes stability
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Figure 6: Composition of processes, synchronisation and interleaving

of submodel i, i.e. the fact that the source state equals the target state. The
MTBDD M which encodes the SLTS T is then given by:

M := (M1 · S) · (M2 · S)
+ M1 · (1 − S) · Stab2

+ M2 · (1 − S) · Stab1

Wait4Cust

deq

Queue−>Mark() < QCapacity;
Server

Idle

Arrived Queue

Shared Place: WRoom

Submodel Producer

arrive, λ

process, µ

Submodel Consumer

Figure 7: PC system modelled by two SAN submodels
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4 Extending Moebius

In the following, we describe how a synchronisation of timed activities can be
introduced into Moebius, where in the following “activity” refers to a timed
transition of a SAN or Bucket and Balls model, or a timed action of a PEPA

model. After introducing Sync into Moebius, we also develop an MTBDD-based
Join. Together, Sync and Join are basic preconditions for an effective use of an
MTBDD-based SSp representation within the Moebius modelling framework.

4.1 Introducing Synchronisation into Moebius

Referring to the vector layout of the monolithic SSp as established by the AFI,
the main idea of a synchronisation is the conjunction of the entrance conditions
and of the consequences of the jointly executed activities (for exemplification the
reader may refer to Fig. 6):

Conjunction of entrance conditions of activity a:
The timed activity a needs to be enabled in all submodels which are required to
participate in its execution, i.e. all respective places or buckets in the submodel(s)
must contain the required amount of tokens. In case of PEPA submodels the
conditional constructs (guards) of a need to evaluate to true.

Conjunction of consequences, when activity a is executed:
The monolithic PSSp of the composed model consists of arbitrary PSSp vectors
of the form (~j1, ~j2). In the following, let S ⊆ Act1 ∩ Act2 be the set of activities
to be jointly executed:

1. Interleaved execution of a 6∈ S:

~j1
a,λ
−→ ~j1

′

(~j1, ~j2)
a,λ
−→ ( ~j1

′, ~j2)
a ∈ Act1

~j2
a,µ
−→ ~j2

′

(~j1, ~j2)
a,µ
−→ (~j1, ~j2

′)
a ∈ Act2

2. Synchronised execution of a ∈ S:

~j1
a,λ
−→ ~j1

′ ∧ ~j2
a,µ
−→ ~j2

′

(~j1, ~j2)
a,ϕ(λ,µ)
−→ ( ~j1

′, ~j2
′)

a ∈ Act1, a ∈ Act2

(Concerning the rate ϕ(λ, µ) of a synchronised transition, we follow the TIPP
policy as described in Section 3.2.) This approach can be extended to the syn-
chronisation of timeless activities and to the case of more than two submodels to
be synchronised.

8



SV := {P3, P4}   

Submodel M2

M12

sync Transition:    

Submodel M1

Sync

M12.t_sync := {M1.t2, M2.t3} 

SV := {P1, P2}   
Transitions := {t1, t2}   Transitions := {t3, t4}   

Figure 8: Hierarchic composition of the models M1 and M2 via Synchronisation

We now refer to the example shown in Fig. 1, where in the lower part a superpo-
sition of two transitions t2 and t3, defined in two different SANs M1 and M2, is
illustrated. The structure of the composed model M12 could then be described
as illustrated in Fig. 85. Once Moebius includes a Sync operator, one can apply
a compositional SSp construction, based on local SSps represented by MTBDDs
and their parallel composition as already described in Section 3.2.

4.2 MTBDD-based Join

Consider the PC system given in Fig. 7, composed in the same manner as shown in
Fig. 3, however for simplicity modelled by two SAN submodels (which is transpar-
ent on the level of composition). The respective encoding scheme is then shown
in Table 2. The main idea of MTBDD-based Join is to compose the submodel
SSps over the values of the shared places (and not over transition labels, as done
before). Each shared SV in the different submodels needs to be referenced by
the same Boolean vector in the MTBDDs to be joined. Therefore the Boolean
vectors representing the SVs in a submodel are mapped on the following Boolean
vectors (see Table 3):

• ~s 0, representing the shared source SVs,

• ~s i, the local source SVs of submodel i,

• ~t 0, counterpart of vector ~s 0, but representing the target SVs,

• ~t i, counterpart of vector ~s i, representing the target SVs.

The symbolic SSp representation of a composed system, which is the Join of the
SSps of the two submodels which are already represented as MTBDDs, can be
constructed as follows:

5Note that this approach does not yet consider priorities of transitions.
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Submodel Producer

transitions Arrived Wait4Cust Arrived’ Wait4Cust’

0 0 1 0 1 1 λ

produce 1 0 0 1 1 1 0 1 λ

1 0 1 1 1 1 λ

Vars a0 a1 ar0 ar1 w0 a′0 a′1 w′

0

Submodel Consumer

Source state target state rate/
transitions

Queue Server Idle Queue’ Server’ Idle’ weight

1 1 0 1 1 0 1 0 1
deq 0 0 1 0 0 1 0 1 1 0 1

0 1 0 1 0 0 1 0 1

1 1 1 0 1 1 0 1 µ

1 0 1 0 1 0 0 1 µ
consume 0 1

0 1 1 0 0 1 0 1 µ

0 0 1 0 0 0 0 1 µ

Vars a0 a1 q0 q1 s0 i0 q′0 q′1 s′0 i′0

Table 2: Binary encoding of the transition relations for PC submodels

Submodel Source state target state

Consumer q0 q1 s0 i0 q′0 q′1 s′0 i′0

Producer ar0 ar1 w0 ar′0 ar′1 w′

0

s0
0 s0

1 s1
1 s1

2 s2
1 t00 t01 t11 t12 t21

~s 0 ~s 1 ~s 2 ~t 0 ~t 1 ~t 2

Table 3: Mapping of the Boolean variables onto four Boolean vectors
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Let P1 and P2 be submodels, sharing a set of places, buckets or process parame-
ters, i.e. sharing a set of SVs. The corresponding SLTS are encoded as MTBDD
Mi over the Boolean vectors (~a,~s 0, ~s i,~t 0,~t i), i ∈ {1, 2}. The LTS M encoding

the composed system can be constructed as follows, (where the BDDs ˜Stabi ex-
press the fact that the Boolean variables of the “passive” partner remain stable,
i.e. that the vectors ~s i and ~t i are identical):

M := M1 · ˜Stab2 + M2 · ˜Stab1

This approach, as well as the one for the MTBDD-based synchronisation (Sec-
tion 3.2) may require a symbolic reachability analysis, which is due to the encod-
ing of unreachable source states [Sie02].

5 Conclusion

As discussed in this paper, Moebius can be extended by a composition operator
Sync, which realises a superposing of transitions defined in different (possibly
heterogenous) submodels. We can employ an MTBDD-based realisation of Sync,
as had already been described in the literature. As a new feature, we have de-
veloped the MTBBD-based realisation of Moebius’ composition operator Join.
Thus, a memory-efficient symbolic SSp representation (based on MTBDDs) can
be put into practice within the Moebius modelling framework. Apart from imple-
menting the approach described in this paper, our future work will also address
open questions concerning the MTBDD-based realisation of Moebius’ replicate

feature (see Section 2) and the handling of reward variables.
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