
A Modelling and Analysis Environment for LARES

Alexander Gouberman, Martin Riedl, Johann Schuster, and Markus Siegle

Institut für Technische Informatik,
Universität der Bundeswehr München,
{firstname.lastname}@unibw.de

Abstract. This paper presents a toolset for modelling and analysis of
fault tolerant systems based on LARES (LAnguage for REconfigurable
Systems), an easy-to-learn formalism that allows its users to describe
system structure, dynamic failure and repair behaviour.

1 Introduction
Modern societies rely on the correct and timely functioning of complex systems,
e.g. in the communication, transportation or energy sectors, which makes it ex-
tremely important that we understand and are able to improve the dependability
of these systems.

In this short paper, we present the LARES toolset, a new software library
which supports dependability modelling and analysis. It is designed to be inte-
grated into the development cycle of modern IT-based systems, since it offers
transformations from / to various other modelling languages. At the core of the
toolset is the domain specific LARES language, first presented in [3] and since
then employed in several modelling case studies, e.g. [4]. This language allows
the user to specify in a clear and concise way all aspects of a system which are
relevant for its dependability. Apart from basic combinatorial failure conditions,
complex error situations such as error propagation or common cause failures,
arbitrary redundancy structures and different repair strategies can be modelled
in a strictly modular and hierarchical fashion.

The LARES toolset, presented here for the first time, does not contain its
own analysis engine, but relies on external tools for qualitative and quantitative
analysis. For this purpose, transformations to various target formalisms such as
stochastic process algebra (SPA), stochastic Petri nets (SPN) or some simulation
language need to be provided. Some of these have been implemented already,
in particular the present paper focuses on the transformation to the SPA tool
CASPA [1] which consists of several steps, as discussed below.

2 The LARES Modelling Language
For explaining how modularity and hierarchy can be modelled in LARES, a small
example of a fault tolerant system is given in Fig. 1. The system RedComp con-
sists of two components iC and iSer whose descriptions are captured inside the
(abstract) module definitions mComp and mSerialC. The module mComp includes
a behaviour bComp which defines the state space for each instance of this mod-
ule. Concretely, the lifetime of the component iC is phase-type distributed with
an initial state Good, an erroneous state Error and an absorbing state Failed

2 Alexander Gouberman, Martin Riedl, Johann Schuster, Markus Siegle

indicating a failure of the component. From an erroneous state the component
can recover to the state Good with rate 0.2 or finally fail with rate 0.3. The
component iSer consists of two subcomponents iComp[1] and iComp[2] which
have the same lifetime distribution as iC since they are instantiated from the
same abstract module mComp. Inside a module, conditions can be defined which
capture information about the states of the subcomponents, e.g. the component
iSer fails (defined in the condition failed) if at least one of its subcomponents
fails. This condition is used in order to lift state information towards the sys-
tem level in the structural model hierarchy. On the level of the system, if both
components iC and iSer fail, the event intEvent is generated which immedi-
ately forces the system to fail. Beside its two components, the system has an
additional error behaviour bErr: it can fail either if the guard <intEvent> is
triggered (if both components fail) or due to an external event after an exponen-
tially distributed lifetime with rate 0.082. Since the system does not provide an
explicit start state for bErr, the first occurring state is used.
Behavior bErr (externalEventRate){

Transitions from Good
i f <true> → Failed , delay exponential externalEventRate
i f <intEvent> → Fai l ed

}
System RedComp : bErr (externalEventRate =0.082) {

Behavior bComp {
Transitions from Good i f <true> → Error , delay

exponential 0 .1
Transitions from Error

i f <true> → Good , delay exponential 0 .2
i f <true> → Failed , delay exponential 0 .3

}
Module mComp : bComp {

Condition f a i l e d = bComp. Fa i l ed
Initial i n i t = bComp.Good

}
Module mSerialC {

expand (i in {1 . . 2}) { Instance iComp [i] of mComp }
Condition f a i l e d = OR[i in {1 . . 2}] iComp [i] . f a i l e d

}
Instance i S e r of mSerialC
Instance iC of mComp
iSe r . f a i l e d & iC . f a i l e d guards bErr.< intEvent>

}

RedComp

iC

iSer

Module mComp

iComp[1]

Module mSerialC

iComp[2]

!failed

instance of

instance of instance of

instance of

Fig. 1. Fault Tolerant Example Model

We restrict in this model to exponentially distributed time delays (by using
phase-type distributions) in order to be able to analyze it exactly with Markov
chain methods. The LARES language also allows for general distributions, in
which case the model needs to be analyzed with simulative methods.

3 Tooling and Transformations

Fig. 2 shows the tools used (dark grey filled rectangles) and the different trans-
formation steps into specific formalisms such as SPN or SPA. A LARES model
can be specified using an editor component that supports the user with syntax
highlighting, auto-completion and of course syntactical and partial semantical
evaluation of correctness of the model. There is a multistage transformation that
first evaluates all expressions, thereby expanding all parameter dependent state-
ments, then resolving the hierarchical indirections over Condition statements
leading to resolved logical propositions on states used inside the guards state-
ments, and finally resolving the indirections of the guard label references over the
hierarchy. These steps yield the LARESBASE subset from which two different
types of transformation are supported: Firstly, the transformation into a stochas-

Modelling and Analysis Environment for LARES 3

reachability and
elimination

resolve
hierarchy

hierarchy represented
by composition structure

resolve parameters/initials
resolve boolean expressions
resolve guards

LARES xText based Editor

TimeNet 4.0 SPNP Petrinet SolverCASPA Solver

Performance/
Dependability
Measures

Performance/
Dependability
Measures

Fig. 2. Tools and Transformation Workflows

tic process algebra, where synchronisation is used to handle the different cases,
i.e.: Does a certain state of a component contribute to a valid generative com-
posed state? Which reaction, based on the transitions referred to by a guard label
reference, could follow? From this, a sequential stochastic process is generated
and integrated by synchronisation information, to specify which transitions have
to interact with their environment. While decomposing the LARES hierarchy,
the SPA composition tree PACT is built, consisting of the individual processes
at its leaves and their subsequently generated intermediate composition nodes
and their synchronisation sets. The generated composition structure is then de-
composed, resulting in an SPA specification which can be analysed using the
CASPA solver. Secondly, the hierarchy can be resolved leading to a stochastic
Petri net (i.e. flatSPN) with enabling conditions for transitions. Based on this
model, either a reachability analysis can be performed, resulting in a transition
system (TRA file), or alternatively, it can be translated to an eDSPN model to
apply TimeNet [5] or to an SPNP model [2].

0 5 10 15 20
0

0.25

0.5

0.75

1

Time

P
ro
b
[F
a
i
l
e
d
]

Fig. 3. Analysis Example

Applying the transformation workflow into
CASPA SPA, we can automatically derive cer-
tain measures. Fig. 3 shows a curve obtained
by transient analysis of our example for a num-
ber of timepoints for a given state measure de-
fined on the Failed state of the system error
model. Since the model has an absorbing state
(i.e. components cannot recover), the curve
converges to one.

4 Implementation Details

A textual editor for LARES has been implemented using Eclipse TMF xText,
in order to provide a suitable modelling environment to the user (a graphical
editor is under development). xText provides an easy way to implement domain
specific languages such as LARES. Moreover, we chose the Scala language to
implement the transformations into the solver formalisms. It helped a lot to ap-
ply its functional and OO concepts and therefore obtain a code which is close
to the mathematical formalization. The abstract syntax tree definition has been
built using algebraic data types (i.e. using Scala case classes). Furthermore, the

4 Alexander Gouberman, Martin Riedl, Johann Schuster, Markus Siegle

concrete syntax has been implemented using Scala parser combinators. By ap-
plying the root parser to a LARES specification, the abstract syntax tree is
created, i.e. a model is loaded. Next, the transformation has to be done. Classi-
cally, the visitor pattern is applied to assure a separation between the abstract
syntax tree implementation and the transformation code. As the tree consists
of algebraic data types, one can use Scala pattern matching for decomposition
instead of traversing the tree with the visitor concept, retaining the separation of
the abstract syntax tree implementation and transformation code. The LARES
instance tree is traversed multiple times to apply all transformation steps de-
scribed above. After thus obtaining the intermediate PACT representation, a
composition routine is executed, resulting in the SPA model. Lastly, a simple
model-to-text transformation is done on the SPA model whose result is subse-
quently handed over to the CASPA solver. Transformation validation can be
performed, which helps to assure the correctness of the transformation workflows
even when applying changes to the code. This is done using ScalaCheck, a unit
testing library that allows to define a number of testcases. When performing
a test, two different workflows are executed resulting in two transition systems
on which a comparison (i.e. bisimulation equivalence) is performed. ScalaCheck
finally states whether the two transition systems are bisimilar or not, or if an
error occurred during the transformation. Whenever a code change is done, all
testcases are evaluated again.

5 Conclusion

We have presented an environment in which LARES dependability models can
be specified and analysed. We introduced the LARES formalism by example and
gave insight into the different transformation steps which lead to an analysable
model. Moreover, we also briefly touched transformation validation. Readers
interested in the toolset are asked to contact the authors.

Acknowledgments. We would like to thank Deutsche Forschungsgemeinschaft
(DFG) who supported this work under grants SI 710/7-1 and for partial support
by DFG/NWO Bilateral Research Programme ROCKS.

References

1. J. Bachmann, M. Riedl, J. Schuster, and M. Siegle. An Efficient Symbolic Elim-
ination Algorithm for the Stochastic Process Algebra Tool CASPA. In SOFSEM
’09: Proc. of the 35th Conf. on Current Trends in Theory and Practice of Computer
Science, pages 485–496, Berlin, Heidelberg, 2009. Springer LNCS 5404.

2. G. Ciardo, J. Muppala, and K. Trivedi. SPNP: Stochastic Petri Net Package. In
Proc. of the Third Int. Workshop on Petri Nets and Performance Models, pages 142
–151, Dec 1989.

3. A. Gouberman, M. Riedl, J. Schuster, M. Siegle, and M. Walter. LARES - A
Novel Approach for Describing System Reconfigurability in Dependability Models of
Fault-Tolerant Systems. In ESREL ’09: Proc. of the European Safety and Reliability
Conf., pages 153–160. Taylor & Francis Ltd., 2009.

Modelling and Analysis Environment for LARES 5

4. M. Walter and M. Lê. Clear and Concise Models for Fault-Tolerant Systems with
Limited Repair using the Modeling Paradigm LARES+. In 19th AR2TS Advances
in Risk and Reliability Technology Symposium, pages 310–321, 2011.

5. A. Zimmermann, M. Knoke, A. Huck, and G. Hommel. Towards version 4.0 of
TimeNET. In Reinhard German and Armin Heindl, editors, MMB, pages 473–476.
VDE Verlag VDE Verlag, 2006.

