
CASPA: Symbolic Model Checking of Stochastic

Systems

Matthias Kuntz, Markus Siegle

Universität der Bundeswehr München
Institut für Technische Informatik

Abstract. This note describes the new features of the performance eval-
uation tool CASPA, which has been extended by algorithms for the model
checking of stochastic systems. CASPA uses stochastic process algebras as
its input language. Multi-terminal binary decision diagrams (MTBDD)
are employed to represent the transition system underlying a given pro-
cess algebraic specification. The specification of performability require-
ments can be done using a newly developed stochastic temporal logic.
All phases of modelling, from model construction to model checking and
numerical analysis, are based entirely on MTBDDs.

1 Introduction

Symbolic data structures, such as binary decision diagrams (BDD) and variants
thereof have proved to be suitable for the efficient generation and compact rep-
resentation of very large state spaces and transition systems. It has been shown
that in the context of a compositional model specification formalism such as pro-
cess algebra, the size of the symbolic representation can be kept within linear
bounds, even if the underlying state space grows exponentially [3]. The key to
such compact representation is the exploitation of the compositional structure
of a given specification. It is also known that in addition to functional analysis,
performance analysis and the verification of performability properties can also
be carried out on such symbolic representations [5].

In this note, we describe the symbolic stochastic model checking tool
CASPA [4] which offers a Markovian stochastic process algebra language for
model specification. CASPA generates a symbolic model representation, which is
based on multi-terminal binary decision diagrams (MTBDD) [2], directly from
the high-level model, without generating transition systems as an intermedi-
ate representation. In addition to specifying the model, CASPA allows the user
to specify complex requirements that a system has to satisfy by means of the
stochastic temporal logic SPDL (stochastic propositional dynamic logic) [4].
Model checking and numerical analysis are also carried out directly on the
symbolic representation of the transition rate matrix of the underlying labelled
CTMC. To our knowledge, CASPA is the first stochastic process algebra and
model checking tool whose implementation relies completely on symbolic data
structures.

Matthias Kuntz, Markus Siegle

/*** rate and constant definitions ***/

rate lambda=0.5; rate gamma=0.1; rate omega=0.4; rate delta=1.5; rate mu=4.3;
int max=5000;

/*** system specification ***/
System := Arr(0) |[faulty arr,corr,ncorr]| Errorhandler
Arr(i [max]) := [i < max] -> (arr,lambda);Arrival(i+1) + (faulty arr,mu);Fault Arr(i)

[i = max] -> (prc,omega);Arrival(0)
Fault Arr(i [max]) := (corr,1);Arr(i+1) + (ncorr,1);(rt,kappa);Arr(i)

Errorhandler := (faulty arr,1);((corr,gamma);Errorhandler + (ncorr,delta);Errorhandler)

/*** requirement specification (note that "!" denotes logical negation) ***/

spdl req1 P(> 0.9)(!full [arr*;faulty arr;ncorr;rt;arr* + arr*](0,5) full)
spdl req2 P(<= 0.85)(!full [(arr + faulty arr;corr)*](0,10) full)

Fig. 1. Specification of a fault-tolerant packet collector

2 The Modelling Language

The modelling language of CASPA is a stochastic process algebra where all ac-
tions have an exponentially distributed delay. The language provides operators
for prefixing, choice, parallel composition and hiding. Infinite (i.e. cyclic) be-
haviour can be specified with the help of defining equations (instead of employing
an explicit recursion operator). The technique used for symbolic model represen-
tation (cf. Sec. 4) works only for finite state spaces. Therefore the grammar of the
input language is such that recursion over static operators (i.e. parallel composi-
tion and hiding) is not allowed, which ensures that the underlying state space is
finite. CASPA allows the specification of parameterised processes, i.e. processes
which carry one ore more integer parameters. This feature is very useful for
describing the behaviour of queueing, counting, or generally indexed processes.
Within a parameterised process, the enabling of actions may be conditioned on
the current value of the process parameters.

We demonstrate the use of the CASPA modelling language by means of a
small example which is shown in Fig. 1. It is a fault-tolerant packet collector
that receives a fixed number of packets and processes them together. In the first
two lines the rate parameter values and the number of packets to be collected
(max) are defined. The entire system consists of an arrival process and an error
handling process. A packet arrival can be error-free (action arr) or erroneous
(action faulty arr). An error can be correctable (action corr) or not correctable
(action ncorr). If it is correctable we return from the erroneous arrivals handling
process to the arrival process, awaiting a new packet. If it is not correctable the
respective packet has to be retransmitted (action rt). In the last two lines two
example requirement specifications can be found. They are indicated by the key
word spdl, and are identified by an arbitrary but unique name (req1 resp. req2).

3 Specification of Requirements

Using the logic SPDL, CASPA supports the definition and verification of a very
general class of performance and reliability requirements. Like the logic CSL [1],
SPDL allows to reason about the transient and steady-state behaviour of stochas-
tic systems. Also like CSL, SPDL provides both state and path formulae. Unlike

CASPA: Symbolic Model Checking of Stochastic Systems

CSL, in SPDL the required system behaviour is specified in the form of ac-
tion sequences , which are defined with the help of extended regular expressions
(also called programs). These extensions of regular expressions make it possi-
ble to express programming language constructs such as if -then-else and while.
Probabilistic path-based formulae of SPDL are of the form P./p(φ1[ρ]tφ2), where
the part inside the parentheses is interpreted as follows: Within t time units a
state satisfying the state formula φ2 must be reached, and all preceding states
must satisfy φ1. In addition, the actions on the considered path must form a
word that can be induced from the program ρ. For the packet collector from
Fig. 1, the given requirements read as follows:

req1: The probability to receive max data packets (with at most one non-
correctable error) within 5 time units should be greater than 90%.

req2: The probability to reach a state in which the state formula full holds within
10 time units, provided no packet contains incorrectable errors, should be at
most 85%.

4 Construction of the State Space Representation

CASPA translates a given process algebraic specification directly to an MTBDD-
based symbolic representation of the underlying state space and transition sys-
tem. It uses the CUDD library [6] which provides support for the construction
and manipulation of BDD-based data structures. The translation implements
the denotational semantics described in [4], with some extensions and optimisa-
tions. The basic idea of this translation is as follows: In a first step, the parse tree
of the process algebraic specification at hand is constructed. Then the MTBDD
representation of the underlying transition relation is constructed in a compo-
sitional fashion, starting with sequential processes (i.e. processes which do not
contain the parallel composition operator) which are located close to the leaves
of the parse tree. Finally the MTBDD for the overall process is built from the
MTBDDs of its components by applying rules for symbolic parallel composition.
This construction procedure is completely symbolic and compositional, i.e. each
sub-process of the specification is represented by an MTBDD, which is then used
as an operand during the construction of the higher-level processes.

5 Model Checking and Numerical Analysis

Model checking a requirement of the form P./p(φ1[ρ]tφ2) requires the following
steps:

– For the program ρ, a non-deterministic program automaton A is generated.
– From A and the system model M a product Markov chain M× is generated,

thereby making A deterministic and restricting M to the satisfying paths.
This can be done on the purely symbolic level.

– On M× the probability with which the formula is satisfied is computed.

Matthias Kuntz, Markus Siegle

For the numerical computation of a system’s steady-state or transient state prob-
abilities, CASPA uses code that was developed within the PRISM project [5]. Ta-
ble 1 gives the results for model checking the system from Fig. 1. The run-times
were obtained on a standard PC and are given in seconds. Column “M.C. Time”
includes generation of M× from M and A and transient numerical analysis.

max States M
req1 req2

States M
× M.C. Time States M

× M.C. Time

5,000 20,001 10,002 2.01 5,003 1.91

15,000 60,001 30,002 7.18 15,003 8.02

30,000 90,001 60,002 15.92 30,003 15.27

50,000 150,001 100,002 29.45 50,003 29.28

Table 1. Results of model checking the system from Fig. 1

6 Conclusion and Future Work

This note briefly described the new features of the symbolic stochastic model
checking tool CASPA. Based on the case studies conducted in [4] one can state
that CASPA is very efficient, both with respect to state space generation and
model checking. As future work, we are planning to extend the class of models
which the tool can handle, to add some advanced analysis techniques and (last
but not least) to improve the user interface of the tool.

References

1. C. Baier, B. Haverkort, H. Hermanns, and J.P. Katoen. Model-Checking Algorithms
for Continuous-Time Markov Chains. IEEE Trans. Software Eng., 29(7):1–18, 2003.

2. M. Fujita, P. McGeer, and J.C.-Y. Yang. Multi-terminal Binary Decision Diagrams:
An efficient data structure for matrix representation. Formal Methods in System
Design, 10(2/3):149–169, April/May 1997.

3. H. Hermanns, M. Kwiatkowska, G. Norman, D. Parker, and M. Siegle. On the use of
MTBDDs for performability analysis and verification of stochastic systems. Journal
of Logic and Algebraic Programming, 56(1-2):23–67, 2003.

4. M. Kuntz. Symbolic Semantics and Verification of Stochastic Process Algebras. PhD
thesis, Universität Erlangen-Nürnberg, Institut für Informatik, 2006. (to appear).

5. M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model check-
ing with PRISM: A hybrid approach. International Journal on Software Tools for
Technology Transfer (STTT), 6(2):128–142, 2004.

6. F. Somenzi. CUDD: Colorado University Decision Diagram Package, Release 2.3.1.
User’s Manual and Programmer’s Manual, February 2001.

