
Activity-Local Symbolic State Graph Generation

for High-Level Stochastic Models

Kai Lampka and Markus Siegle

Universität der Bundeswehr München, Institut für Technische Informatik
{lampka,siegle}@informatik.unibw-muenchen.de

Abstract. This paper introduces a new, efficient method for deriving
compact symbolic representations of very large (labelled) Markov chains
resulting from high-level model specifications such as stochastic Petri
nets, stochastic process algebras, etc.. This so called “activity-local”
scheme is combined with a new data structure, called zero-suppressed
multi-terminal binary decision diagram, and a new efficient “activity-
oriented” scheme for symbolic reachability analysis. Several standard
benchmark models from the literature are analyzed in order to show
the superiority of our approach.

1 Introduction

High-level model description methods such as stochastic Petri nets (SPN) or
stochastic process algebras (SPA) have shown to be powerful tools for describ-
ing and analyzing concurrent systems. In this work we consider high-level model
specifications of this kind, where low-level representations, i.e. (labelled) Markov
chains, are obtained by state graph (SG) exploration in order to carry out qual-
itative and quantitative analysis. Unfortunately, the standard interleaving se-
mantics leads to the well-known phenomenon of state space explosion. In this
paper, a new method for constructing and representing SGs, in combination with
a new data structure and a new algorithm for symbolic reachability analysis, is
presented. In contrast to all existing efficient techniques, our method does not
require the high-level model to have any particular compositional structure. The
only requirement is the existence of a dependency relation between the model’s
sets of activities and state variables. Results obtained from an implementation of
our method in the context of the Möbius modelling framework [DCC+02] show
that our method is highly run-time efficient and highly memory efficient. The
new data structure, as well as the new scheme for symbolic reachability analysis,
are applicable beyond the activity-local approach developed here. Performance
evaluation tools such as CASPA [KSW04] and PRISM [Par02], which are based
on binary decision diagrams and traditional symbolic reachability analysis, may
benefit from these innovations.
The paper is organized as follows: Sec. 2 reviews and classifies related work on
symbolic SG generation. Sec. 3 introduces the model world and the symbolic
encoding of labelled Markov chains by multi-terminal zero-suppressed binary

K. Lampka and M. Siegle

decision diagrams (ZDDs). Sec. 4 explains our new algorithms and discusses
their features. Empirical results, including comparisons with other tools and
implementations, are presented in Sec. 5, and Sec. 6 concludes the paper.

2 Related work

In the context of stochastic modelling, the most prominent decision diagrams
(DDs) are multi-terminal or algebraic BDDs (ADDs) [FMY97], multi-valued de-
cision diagrams (MDDs) [KVBSV98] and matrix diagrams [Min01]. In the fol-
lowing, a review and classification of symbolic SG generation schemes will be
given. At the top level, we distinguish between monolithic and compositional
approaches. Monolithic approaches do not exploit any structure of the high-
level model, the SG is generated by exploring all enabled activities in each state.
In contrast, compositional approaches are based on SG exploration of submodels
and on operators for the symbolic composition of these local SGs. We further
distinguish between fully symbolic approaches and hybrid approaches, where hy-
brid characterizes a combination of explicit exploration and symbolic encoding.
Fully symbolic methods require a symbolic realization of the next-state function.

Monolithic approaches: These methods either suffer from long run-times or
are specialised for a particular model description method.

1. Hybrid: In [DKK02] the reachability set of a SPN is generated by standard
SG exploration, where each detected state is inserted into the symbolic rep-
resentation of states reached so far. Since every arc of the SG is traversed,
the approach suffers from long run-times. The memory savings are due to
the use of P-invariants, which restricts the method to a certain class of SPN.

2. Fully symbolic: The method presented in [PRCB94] uses a symbolic next-
state function for each activity1 of a non-stochastic, 1-bounded PN. It gener-
ates the set of reachable markings by performing the standard breadth-first
search (bfs) algorithm for symbolic reachability analysis. This approach is
highly efficient, but its applicability is limited to PNs.

Compositional approaches: Compositionality has been considered to be cru-
cial for the success of symbolic methods, since (a) it may significantly reduce the
number of transitions to be explicitly explored and (b) it induces regularity and
thus compactness of the symbolic structures. Since all of the approaches listed
below require a compositional structure of the high-level model, one should re-
member that the partitioning of flat models into independent submodels with
local SGs of adequate size is still an open question.

1. Hybrid: The SGs of the submodels are explored explicitly, each one being
represented by its own DD. These local SG representations are then com-
posed by applying a symbolic composition scheme. This yields a set of po-
tential transitions which needs to be reduced to the set of actually reachable
ones. Symbolic composition may take either of the two following forms:

1 Contrary to standard PN terminology, the term activity is used here, because we use
the term transition to denote the arcs of the SG.

Activity-Local Symbolic SG Generation for High-level Stochastic Models

(a) Synchronization over a set of activities, either by employing a Kronecker
structure [CM99], or by applying a symbolic synchronization operator
[Sie98,Sie02].

(b) Composition via state variable sharing, and application of a symbolic
Join-operator [LS02].

2. Fully symbolic: In this case, a DD is derived directly from the modular
high-level specification. The symbolic encodings of the local SGs are com-
posed by applying symbolic synchronization operators, followed by symbolic
reachability analysis [Par02,KS02].

The approaches listed above are all limited to specific model description meth-
ods or to cases where an upper bound for the value of each state variable (SV)
is known a priori. This restricts their applicability to models where (a) the
bounds are specified in the model [KS02,Par02], (b) bounds can be computed,
e.g. by means of invariant analysis [PRCB94,DKK02], or (c) the local SGs can
be generated in isolation [CM99,Sie98,Sie02,LS02]. In order to overcome this re-
striction, recently developed methods generate the local SGs in an interleaved
fashion [CMS03,DKS04], but they depend on a good partitioning of the overall
model, in order to be efficient. Thus their application is problematic in case of
flat, non-modular models where an adequate partitioning is not obvious. Our
activity-local scheme overcomes this drawback by maintaining compositionality
at the lowest level, i.e. the level of individual activities, and only requires knowl-
edge about the dependencies between activities and SVs. Due to the nature of
Bryant’s Apply-algorithm [Bry86], the generated activity-local SGs can be com-
posed even if they do not fulfill a product-form requirement as it is essential for
the Kronecker-based schemes [CM99,CMS03] and for the symbolic synchroniza-
tion approaches [Sie98,Sie02,KS02,Par02].

In order to extend the saturation technique of [CMS03] to a general class of
models, [Min04] describes an event-oriented approach, where a kind of depen-
dency relation among events, as well as an Apply-algorithm for building the
cross-product of two matrix diagrams, is employed. This allows [Min04] to use
the same composition scheme in the context of matrix diagrams, as already in-
troduced for BDD-based schemes in [LS02] and extended in [LS03]. These ideas,
which allow one to apply symbolic SG generation techniques to models where
the Kronecker-product-form requirement does not hold, are still at the core of
the activity-local scheme described here, but the present paper has more to of-
fer, namely a new data structure and a new scheme for symbolic reachability
analysis, which follows an activity-wise strategy. Similiar to the approach of
[BCL91], this new reachability scheme handles partitions of the overall transi-
tion system sequentially, rather than executing them all at once, which leads
to runtime reduction. This also enables so-called greedy chaining on the set of
states to be explored in the next step. A similar strategy had been proposed
for non-stochastic Petri nets in [PRC97]. However, our experience showed, that
this greedy chaining, even though it reduces the number of iterations of the
reachability algorithm, often plays a minor role only.

K. Lampka and M. Siegle

3 Background

3.1 Properties of high-level model

Static properties: A model M consists of a finite ordered set of discrete state
variables (SVs) si ∈ S, where each can take values from a finite subset of the
naturals. Each state of the model is thus given as a vector ~s ∈ S ⊂ N|S|. Con-
cerning the high-level model description by means of PNs or PAs, the current
value of a SV may describe the number of tokens in a place, the current state of a
process, or the value of a process parameter. A model has a finite set of activities
(Act). Analogously to the PN-formalism, SVs and activities are assumed to be
connected through a connection relation Con ⊆ (S ×Act)∪ (Act×S), such that
the enabling and the execution of an activity l depends on a set of SVs:

Dl := {si ∈ S | (si, l) ∈ Con ∨ (l, si) ∈ Con},

where Dl = S \ Dl. Based on this, we define for each activity l ∈ Act a projec-
tion function χ

l
: N|S| −→ N|Dl| which yields the sub-vector consisting of the

dependent SVs only. We use the shorthand notation ~sdl
:= χ

l
(~s), where ~sdl

is
called the activity-local marking of state ~s with respect to activity l.
We have a reflexive and symmetric dependency relation ActD ⊆ Act × Act.
Two activities l, k ∈ Act are called dependent if they share at least one SV,
i.e. (k, l) ∈ ActD ⇔ Dk ∩ Dl 6= ∅. Now the set of dependent activities for each
activity l can be defined as ADl := {k ∈ Act |(l, k) ∈ ActD}. Note that according
to this definition we have l ∈ ADl .

Dynamic properties: When an activity is executed, the model evolves from
one state to another. The transition function δ : S × Act −→ S depends on
the model description method. Concerning the target state of a transition, we
use the superscript of a state descriptor to indicate the sequence of activities
leading to that state, thus we write ~s ω := δ(. . . δ(δ(~s, ω1), ω2), . . . , ω|ω|) where
ω := (ω1, . . . , ω|ω|) ∈ Act∗ and ~s ω ∈ S. If activity l is enabled in state ~s we write
~s [. l. We also define the rate function η : S × Act × S −→ R

≥0, which yields
the transition rate at which the Markov chain moves from source to target state
when a specific activity l occurs. During SG exploration, δ and η define the
successor-state relation as a set of quadruples T ⊆ (S×Act×R>0 ×S), which is
the set of transitions of a stochastic labelled transition system (SLTS), i.e. the
underlying labelled Markov chain. The method described in this paper, as well as
our implementation thereof, can handle not only purely Markovian models but
also models with both, Markovian and immediate transitions (with priorities),
but we decided not to describe this feature in order to keep the discussion simple.
For each l ∈ Act we partition T into sets of transitions with label l, where each
state vector is reduced to the activity dependent markings:

T l := {(~sdl
, l, λ, ~s l

dl
) | ~sdl

= χ
l
(~s) ∧ ~s l

dl
= χ

l
(~s l) ∧ (~s, l, λ, ~s l) ∈ T} (1)

For generating the sets of activity-local transitions T l we will later follow a
selective breadth-first-search strategy, i.e. for a detected state ~s l, which was

Activity-Local Symbolic SG Generation for High-level Stochastic Models

reached by firing action l in state ~s , we generate the set of successor states by
executing only those enabled activities, which are also dependent on l:

ADl

~s l := {k ∈ ADl | ~s l [. k ∧ ~s l
dk

6∈ Ek} (2)

In eq. (2) the set Ek records the activity-local markings of states on which activity
k was already tested in a previous step. Thus ~s l

dk
6∈ Ek states that activity k was

not yet tested on the activity-dependent marking of state ~s l.

3.2 Symbolic encodings of state graphs

Binary encodings of transitions: The value of a SV si can be encoded in
binary form. For this purpose we define an injective encoding function Ei :
{0, . . . , Ki} → Bni , where Ki is the maximum value of si and ni ≥ dlog2(Ki+1)e.

We define n :=
∑|S|

i=1 ni which is the number of bits required for encoding the
full state vector ~s. For convenience, we define an encoding function for the full
state vector ES : N|S| −→ Bn, which is simply the combination of the individual
ones. In a similar fashion one can encode the index of each activity label by an
encoding function EAct using nAct bits. This yields the following binary encoding

scheme: (~s
l
→ ~s l) 7→

(

EAct(l), ES(~s), ES(~s l)
)

for each transition leading from
source state ~s to target state ~s l and labelled by l. The rate λ is unaccounted,
since it will be stored in a terminal node of the DD.

Zero-suppressed multi-terminal binary DDs (ZDDs): In a reduced or-
dered BDD, isomorphic subgraphs have been merged and don’t care nodes2 are
eliminated. Zero-suppressed BDDs (ZBDDs) [Min93] are derivatives of BDDs for
representing sparse sets efficiently. In ZBDDs, instead of eliminating don’t-care
nodes, one eliminates those non-terminal nodes whose 1-successor is the terminal
0-node. Analogously to ADDs we allow ZBDDs to have more than two terminal
nodes and obtain zero-suppressed multi-terminal binary DDs (ZDDs). Standard
arithmetic operators can be performed efficiently on the ZDD data structure
with the help of a variant of Bryant’s [Bry86] Apply-algorithm3.

ZDD-based representation of SGs: Each transition of a SLTS is encoded
by a Boolean vector whose bit positions correspond to the Boolean variables of
the ZDD representing the SG. The symbolic representation of a SG T is a ZDD
Z over the Boolean variables ~a, ~s and ~t where variables ~a encode the activity
label, variables ~s encode the source state, and variables ~t encode the target state
of a transition. In the sequel we assume that the ZDD variables are ordered in
the following way: At the first nAct levels from the root are the variables ai,
and on the remaining 2n levels we have the variables si and ti in an interleaved
fashion. This interleaved ordering of source and target bits is a commonly ac-
cepted heuristics for obtaining small BDD sizes which also works well for ZDDs.

2 A don’t care node is a node whose 1- and 0-successors are identical.
3 Our implementation is built on top of the CUDD package [Som], but we extend each

DD by the set of variables on which it depends. This allows us to implement a new
Apply-algorithm for partially shared ZDDs.

K. Lampka and M. Siegle

(A) A stochastic Petri net

2

d, µ

p4p3

p1 p2 p5

c, λ

e, ρ

a, λ
b, µ

(B) The corresponding SLTS

10 10 0

00 10 1 01 01 0 10 00 1

00 01 1

10 01 0

01 00 1

01 10 0

00 00 2

c, λ

c, λ

c, λ

d, µ

d, µ

d, µ

b, µ

b, µ

a, λ

a, λ

a, λ

e, ρb, µ

(C) Binary encodings of the SLTS

~a ~s ~t
l a1a2a3 s1s2s3s4s5s6 t1t2t3t4t5t6

fM

101000 011000
a 000 100100 010100 λ

100001 010001
101000 100100

c 001 011000 010100 λ
001001 000101
011000 001001

b 010 010100 000101 µ
010001 000010
100100 100001

d 011 010100 010001 µ
000101 000010

e 100 000010 101000 ρ

PSfrag replacements

a1

a2

a3

s1

s2

s3

s4

s5

s6

t1

t2

t3

t4

t5

t6

λ µ ρ

(D) ADD representing the SLTS

Fig. 1. From a SPN to the symbolic representation of its underlying SLTS

Unknown bounds for SVs: The values Ki are in general not known prior to
SG generation. Contrary to ADDs, ZDDs have the nice feature that during SG
generation and encoding one can allocate a new most significant bit for any SV
si by simply adding a new Boolean variable to Z, i.e. without changing the struc-
ture of the DD’s graph. Thus it is not necessary to know the maximum value
Ki of SV variable si in advance, one simply introduces a new most-significant
bit for si each time it is required, which does not slow down the SG exploration.
Example: Part (A) and (B) of Fig. 1 show a simple SPN and its underlying
SLTS, where for the moment the bold, regular and dashed arrows of the SLTS
have the same meaning (cf. Sec. 4.4). The Boolean encodings of the transitions
of the SLTS as produced by function EAct and ES are specified in table (C). The
5 integer state variables of S are encoded by 6 Boolean variables, since only state
variable s5, which represents the marking of place p5, can take a value other than
0 or 1. Part (D) shows the corresponding ADD M, where the Boolean s-variables
and the Boolean t-variables are ordered in an interleaved fashion. The rates of
the transitions are stored in the terminal nodes. The ADD is ordered, i.e. on all
paths from the root to a terminal node we have the same variable ordering, and
it is reduced, i.e. all isomorphic substructures have been merged. In the ADD, a

Activity-Local Symbolic SG Generation for High-level Stochastic Models

dashed (solid) arrow indicates the value assignment 0 (1) to the corresponding
Boolean variable on the respective path. The nodes printed in dotted lines are
those which get eliminated when applying the zero-suppressing reduction rule for
ZDDs, which is applicable here in a straight-forward manner, since incidently
the ADD M has no don’t care nodes.

4 Symbolic Activity-local State Graph Generation

After illustrating the main idea in sec. 4.1, sec. 4.2 covers the different elements of
the activity-local scheme: explicit exploration and encoding of transitions, sym-
bolic composition and re-initialization. Sec. 4.3 presents a new scheme for sym-
bolic reachability analysis as required not only by the activity-local scheme pre-
sented here, but also by other BDD-based approaches [Sie02,LS02,Par02,KS02].
The final subsection discusses the correctness and completness of the activity-
local scheme.

4.1 Main idea

The main idea of our approach is the explicit exploration of parts of the SG,
where each detected transition is encoded and inserted into the respective activity-
local ZDD. Each activity-local ZDD Zl solely depends on the Boolean variables
encoding the SVs of the set Dl and it represents only transitions induced by
activity l (at the end of SG exploration, Zl encodes all transitions of T l, cf.
eq. (1)). We define the sets of dependent Boolean source and target variables,
and the sets of their independent counterparts:

Dl := {~s i,~t i|si ∈ Dl} Il := {~s i,~t i|si ∈ Dl} (3)

In this equation,~s i and~t i denote those Boolean variables which encode the value
of the dependent SV si in the source and target state of a transition (~s, l, λ,~t).
After the generation and encoding of the individual transitions, the overall SG is
obtained by symbolic composition of the ZDDs. A symbolic reachability analysis
must follow, so that the obtained set of potential transitions is limited to the set
of reachable ones. Several rounds of explicit SG generation, symbolic composition
and symbolic reachability analysis may be required.

4.2 The Scheme

The top-level algorithm of the activity-local scheme is shown in Fig. 2.C. Lines
1 – 4 contain the initialization:

1. ADε

~s ε is the set of activities enabled in the initial state.
2. The ZBDDs Ek encode the sets Ek of activity-local markings of states on

which activity k was already tested.
3. The StateBuffer holds tuples of states and activity sets (~s l,ADl

~s l) for ex-
plicit exploration.

K. Lampka and M. Siegle

(A) Encoding and insertion of transitions into Zl

(0) EncodeTransitions()
(1) while (TransBuffer 6= empty) do

(2) TransBuffer (~s, l, λ, ~s l)

(3) A
Dl

~s l
:= ∅

(4) for k ∈ ADl do

(5) if E(~s l
dk

) /∈ Ek ∧ ~s l [. k then

(6) A
Dl

~s l
:= A

Dl

~s l
∪ {k}

(7) Ek := Ek ∪ ~s l
dk

(8) end

(9) if A
Dl

~s l
6= ∅ then

(10) (~s l,A
Dl

~s l
) StateBuffer

(11) Zl := Zl + E(~sdl
, λ, ~s l

dl
)

(12) end

(B) Exploration of states, where ~s 6∈ Zl

(0) ExploreStates()
(1) while (StateBuffer 6= empty) do

(2) StateBuffer (~s l,A
Dl

~s l
)

(3) for k ∈ A
Dl

~s l
do

(4) ~s lk := δ(~s l, k)

(5) λ := η(~s l, k, ~s lk)

(6) if ~s l 6= ~s lk
then

(7) (~s l, k, λ, ~s lk) TransBuffer
(8) end

(9) end

(D) Symbolic composition, symbolic reach-
ability analysis and refill of StateBuffer

(0) InitiateNewRound()
(1) ZR := ReachabilityAnalysis()
(2) for k ∈ Act do

(3) Temp := ZR \ Ek

(4) while Temp 6= ∅ do

(5) Temp ~s
(6) if ~s [. k then

(7) (~s, {k}) StateBuffer
(8) Temp := Temp \ {E(~sdk

)}
(9) end

(10) end

(C) Main routine for the symbolic
activity-local scheme

(0) ExploreStateGraph()

(1) ∀k ∈ Act: if ~s ε [. k then {k} ADε
~s ε

(2) ∀k ∈ Act : Ek := E(~s ε
dk

)

(3) (~s ε,ADε
~s ε) StateBuffer

(4) TransBuffer = ∅
(5) do

(6) do

(7) ExploreStates()
(8) EncodeTransitions()
(9) until StateBuffer = ∅
(10) InitiateNewRound()
(11) until StateBuffer = ∅
(12) ZT := (

P
l∈Act

Zl · 1⊥l · Al) · ZR

Fig. 2. Algorithms for the activity-local scheme

4. The TransBuffer holds explicitly generated transitions (~s l, k, λ, ~s lk) to be
encoded and inserted into the respective activity-local ZDDs.

In the inner loop (lines 6 – 9) procedures ExploreStates and EncodeTransitions

are called in an alternating fashion in order to carry out explicit SG exploration
and the encoding of the detected transitions. If a fixed point is reached, the
re-initialization routine InitiateNewRound, as called in line 10, searches for new
states triggering new model behaviour. If such states exist, a new round of ex-
plicit SG exploration and encoding will follow, i.e. one re-enters the outer loop
(lines 5 – 11). Otherwise the SG generation procedure is finished and the set of
all reachable transitions is computed in line 12, where ZR is the set of reachable
states returned by symbolic reachability analysis (which is carried out by one of
the routines of Fig. 3 and called in procedure InitiateNewRound).

Explicit SG generation: The explicit SG generation and encoding is real-
ized with the help of two complementary procedures, called EncodeTransitions

and ExploreStates (Fig. 2.A and 2.B). In line 2 of algorithm EncodeTransitions a
transition is read from the TransBuffer, and in lines 3 – 8 the set ADl

~s l of depen-
dent activities enabled in the target state is determined. The state/activity-set
tuple for further exploration is inserted into the StateBuffer in line 10, and
the activity-local encoding of the current transition is then inserted into ZDD
Zl. The complementary exploration routine ExploreStates for executing the set
of dependent activities ADl

~s on a state ~s l works as shown in Fig. 2.B. In line 2,
a state together with a set of activities is read from the TransBuffer. For
each activity k from that set, the successor state ~s lk and the corresponding
rate λ are computed (lines 4 and 5). Each resulting transition is inserted into

Activity-Local Symbolic SG Generation for High-level Stochastic Models

the TransBuffer (line 7), provided it is not a self-loop. Executing procedures
ExploreStates and EncodeTransitions alternatingly, a fixed point will be reached,
where EncodeTransitions has been executed and the StateBuffer is still empty.
At that point, one has visited all states reachable from the initial state through
sequences of dependent activities. What follows next, is the composition of the
activity-local markings of the states reached so far, in order to obtain also states
resulting from the interleaved execution of independent activities.

Symbolic composition: At the end of an exploration and encoding phase we
have |Act| ZDDs Zl each of which encodes T l (cf. eq. (1)) (already complete or
still incomplete, depending on the number of rounds completed). Before com-
position can take place, Zl needs to be supplemented by the activity’s set of
independent Boolean variables Il (cf. eq. (3)), yielding the symbolic represen-
tation of the set of potential transitions induced by activity l. When activity l

takes place, the SVs si ∈ Dl do not change their values, which is expressed by
the pairwise identity over the Boolean s- and t- variables of activity l’s set of

independent SVs Il: 1⊥l :=
∧

~s i∈Il

ni
∧

j=1

(si
j ↔ tij ,) During composition, the activity-

local ZDDs are combined in order to obtain the transition relation of the overall
model:

ZT :=
∑

l∈Act

Zl · 1⊥l · Al (4)

In the above equation, Al represents the binary encoding of activity label l. The
ZDD ZT thus constructed encodes a set of potential transitions. Therefore, at
this point it is necessary to perform symbolic reachability analysis.

Re-initialization: So far we have not considered states resulting from the com-
bined execution of independent activities for further explicit exploration (states
of this type are a result of symbolic composition, cf. eq. (4)). Since such states
may trigger new model behaviour, algorithm InitiateNewRound (Fig. 2.D) checks
this and inserts the corresponding state-activity tuples into the StateBuffer.
The algorithm first calls the procedure ReachabilityAnalysis (cf. Sec. 4.3) which
performs symbolic composition and reachability analysis in order to return the
set of reachable states ZR. In lines 2 – 10 the algorithm determines those reach-
able states on which a given activity has not yet been tested, since these need
to be examined further. The obtained pairs of states and enabled activities are
inserted into the StateBuffer (line 7), yielding the input for the next round of
explicit SG exploration and encoding. If the StateBuffer is still empty after
the execution of InitiateNewRound, the activity-local scheme has reached a fixed
point and a symbolic representation of the complete SG has been generated.

4.3 Symbolic reachability analysis

We now discuss two variants of a reachability algorithm as required by algo-
rithm InitiateNewRound (line 1 of Fig. 2.D). Line 1 of the algorithm of Fig. 3.A
computes ZBDD ZT which represents the set of potential transitions (for simplic-
ity, activity-labels are omitted and rates are dropped). The algorithm employs

K. Lampka and M. Siegle

(A) Bfs. symbolic reachability analysis
as proposed by [PRCB94,Sie02]

(0) ReachabilityAnalysis()
(1) ZT :=

P
l∈Act Zl · 1⊥l

(2) ZR :=M(~t, E(~s ε))
(3) ZU :=M(~s, E(~s ε))
(4) do

(5) Ztmp := Abstract(ZT ∧ ZU ,~s,∨) \ ZR

(6) ZR = ZR ∨ Ztmp

(7) ZU := Ztmp{~s←~t}
(8) until ZU = ∅
(9) ZR := ZR{~s←~t}
(10) return ZR

(B) Sequential activity-oriented symbolic reachability
analysis organised as quasi-dfs-traversal

(0) ReachabilityAnalysis()
(1) ZR := ∅
(2) ZU :=M(~s, E(~s ε))

(3) ∀k ∈ Act : fZk := Zk · 1⊥k

(4) do

(5) ZR := ZR ∨ ZU

(6) for k ∈ Act do

(7) Ztmp := Abstract(fZk ∧ ZU ,~s,∨) \ ZR

(8) ZU := ZU ∨ Ztmp{~s←~t}
(9) end

(10) ZU := ZU \ ZR

(11) until ZU = ∅
(12) return ZR

Fig. 3. Pseudo-code of symbolic reachability analysis variants

another three ZBDDs: ZBDD ZU for representing the set of unexplored states,
ZBDD ZR for representing the set of reached states, and ZBDD Ztmp which
represents the set of states detected in the current iteration. The former two
ZBDDs are initialized with the symbolic representation of the initial state ~s ε

(constructed by the function M (lines 2 and 3)). The standard breadth-first-
search (bfs) symbolic reachability analysis is realized by the loop of lines 4 – 8.
The conjunction of ZU (unexplored states) and ZT (potential transitions) deliv-
ers all transitions emanating from the states of ZU . The subsequent abstraction
of the source states as encoded by variables ~s yields the set of newly reached
target states stored as Ztmp (line 5). One may consider this step as set-oriented
and “parallel”, since ZU may represent more than one state and one obtains
all successor states at once. We propose now the following improvements (cf.
Fig. 3.B):

(i) replace the “parallel” scheme of line 5 Fig. 3.A by an activity-wise scheme,
(ii) update the set of unexplored states as soon as possible (a.k.a. greedy chaining).

If ZU of Fig. 3.B were not updated with the newly reached states in line 8, but
outside the inner for-loop, one would obtain the same number of iterations of the
main (outer) do-until loops for both algorithms. The activity-wise iteration
of Fig. 3.B combined with an early update of ZU realizes a set-oriented quasi
depth-first-search (dfs.) scheme, since all successor states of ZU reachable by the
same activity k are generated in one step. Consequently this procedure leads to
a significant reduction of the number of iterations of the main (outer) do-until
loop. In Sec. 5 we will refer to this reduction by the ratio riter .

4.4 Comments on the activity-local generation scheme

Correctness of the generated transitions: Our algorithm starts from the
initial state. For a given state ~s l reached by activity l, the algorithm explores
activity k if and only if

1. l and k share dependent SVs,
2. k is enabled in ~s l,

Activity-Local Symbolic SG Generation for High-level Stochastic Models

3. k has not yet been explored from any other state ~t whose projection to the
set of dependent SVs Dk (activity-local marking) is identical to that of ~s l.

Instead of encoding a detected transition (~s, l, λ, ~s l) as a whole, the algorithm
only encodes the SVs in the set Dl. The SVs outside the set Dl may take arbi-
trary values, but they must remain stable upon execution of activity l, which is
expressed by the multiplication with 1⊥l. This has the effect that a single detected
transition is encoded as a possibly huge set of potential transitions. Symbolic
reachability analysis reduces this set of potential transitions to the transitions
which are actually reachable from the initial state, yielding only legal transitions.

Completeness of the generation scheme: According to the diamond prop-
erty for two independent activities l and k (here (l, k) 6∈ ActD), the order of their
execution is without significance, i.e. one may execute these activities indepen-
dently on a given source state ~s. The target state of the combined sequential
execution of either kl or lk can then be obtained by combining the activity-
dependent markings as contained in the intermediate states ~s l and ~s k. This
property also holds for sequences of pairwise independent activities, yielding the
well-known trace equivalence relation on the set of sequences of executed activ-
ities. Under this equivalence relation two sequences ω, ρ ∈ Act∗ are considered
equivalent if and only if they can be obtained from each other by swapping the
execution order of adjacent independent activities [God95]. Consequently one
only needs to generate the sequences of dependent activities explicitly. All other
states can be obtained by a composition of the kind mentioned above. This is
exactly the functionality of the algorithms presented in Fig. 2.

Example: We consider again the example depicted in Fig. 1. We may for the
moment ignore the rate information, since it is irrelevant for the following dis-
cussion. Starting from the initial state (10100), the activity-local scheme will
explore those transitions explicitly which are drawn by fat arrows in the figure.
As an example, transition 10100

a
−→ 01100 will be explored and then encoded

in the activity-local ZDD Za of activity a as 10*** −→ 01***, where the symbol
* denotes a don’t care, since the respective variables are not visible within Za

(only p1 and p2 belong to the set of dependent SVs of activity a). The tran-
sitions drawn by regular arrows are the ones which are generated during the
composition of the activity-local ZDDs, which can be seen as a cross product
construction followed by reachability analysis as realized by one of the algorithms
of Fig. 3 as called by procedure InitiateNewRound. We will now explain why the
transitions drawn as dashed arrows in the figure are not generated during the
first round of exploration. Consider, for example, transitions caused by activ-
ity d: In the first round the algorithm explicitly generates the transition 10010

d
−→ 10001, which is encoded in the activity-local ZDD of activity d as ***10

−→ ***01. The cross product construction yields any transition +++10
d

−→
+++01 (where the +-positions are arbitrary but stable), but it does not yield

the dashed transition 00011
d

−→ 00002. During procedure InitiateNewRound, one
detects that state 00011 is reachable and that activity d has not yet been tested
in states of the type ***11. Therefore the tuple (00011,d) will be inserted into

K. Lampka and M. Siegle

N states trans transe N states trans transe N states trans transe

Fault-tolerant Multiprocessor Kanban System (KS) [CT96] Courier Protocol
(FTMP) [SM92] 5 2.5464E6 2.4460E7 1, 860 (CP) [WL91]

2 2.5693E5 1.6978E6 688 6 1.1261E7 1.1571E8 4, 116 4 9.7102E6 5.7005E7 142
3 1.2408E8 1.1513E9 1, 548 7 4.1645E7 4.5046E8 8, 232 5 3.2405E7 1.9983E8 206
4 5.5039E10 6.6113E11 2, 752 8 1.3387E8 1.5079E9 15, 192 6 9.3302E7 5.9818E8 289
5 2.3549E13 3.4847E14 4, 300 9 3.8439E8 4.4746E9 26, 280 7 2.3965E8 1.5858E9 394
6 9.9082E15 1.7463E17 6, 192 10 1.0059E9 1.2032E10 43, 120 8 5.6182E8 3.8166E9 524

Tandem Queueing Network Flexible Manufacturing System
(TQN)[HMKS99] (FMS) [CT93]
127 3.2640E4 1.1328E5 32, 639 6 5.3777E5 4.2057E6 434
128 3.3153E4 1.1507E5 33, 152 7 1.6394E6 1.3553E7 616
255 1.3082E5 4.5594E5 130, 815 8 4.4595E6 3.8534E7 840
256 1.3184E5 4.5920E5 131, 840 9 1.1058E7 9.9075E7 1, 110
511 5.2378E5 1.8294E6 1.050E6 10 2.5398E7 2.3452E8 1, 430
512 5.2583E5 1.8365E6 1.054E6

Table 1. Model specific data for the various case studies

the StateBuffer at this point, and this dashed transition (as well as the other
two dashed transitions) will be explored in the second round.

5 Empirical Evaluation

In order to evaluate the proposed innovations, we analyzed five models which
are commonly employed as benchmarks in the literature. Table 1 gives the sizes
of their SGs, i.e. the number of states (states), number of transitions (trans),
and the number of transitions explicitly explored under our activity-local scheme
(transe). The experiments carried out with our implementation, as well as those
carried out with the tools CASPA [KSW04] and PRISM [Pri], were run on a
Pentium 4 (3 GHz) with 1 GByte of RAM and a Linux OS. All run-time results
were averaged from 100 runs. In order to simplify the comparison, we decided
to present most of our results in the form of ratios, where the respective figures
are always normed to the new activity-local scheme. Ratios > 1 indicate an
advantage of the innovations developed in this work, and ratios < 1 indicate their
disadvantage. The figures which serve as norm concerning run-time and space
complexity are given in Table 2.A, i.e. all other figures can be obtained by simply
scaling these figures with the respective ratios.Within the Möbius modelling
framework [DCC+02] the local exploration of submodel SGs in isolation is not
feasible, due to the nature of the Join model composition formalism, and the
fact, that one can not calculate SV capacities in advance. Thus this framework is
highly suited for implementing the activity-local approach. Our implementation
consists of three main modules:

1. A module for the explicit SG generation (derived from the standard SG
generator of Möbius) which constitutes the interface between the symbolic
engine and Möbius (algorithm of Fig. 2.B).

2. The symbolic engine (mainly algorithm (A) and (D) of Fig. 2, in combination
with one of the algorithms of Fig. 3).

3. A ZDD-library (based on the CUDD-package [Som]), which contains the new
algorithms for manipulating partially shared ZDDs and implements a C++
wrapper for them.

Activity-Local Symbolic SG Generation for High-level Stochastic Models

(A) ZDD-based scheme (B) ADD-based scheme
nodes tg inN n

ZR ZT peak sec
rR rT rpk rtime

FTMP
2 142 256 5,792 7.483 E4 0.277 2.01 2.38 2.36 1.81
3 196 610 16,225 2.546 E5 1.179 1.99 2.40 2.31 1.59
4 262 1044 30,892 6.201E5 3.268 2.00 2.41 2.31 1.80
5 326 1556 49,845 9.742E5 7.257 1.99 2.41 2.90 1.53
6 390 2146 73,002 2.278E6 14.082 1.99 2.41 2.20 1.44

KS
5 96 163 2751 8.3250 E4 0.39 1.97 2.29 2.50 2.27
6 96 215 3,704 1.40709 E5 0.84 1.81 2.13 2.33 1.96
7 96 273 4,758 2.22282 E5 1.66 1.68 2.00 2.20 1.78
8 128 341 6,020 3.33193 E5 3.26 2.14 2.44 2.76 2.26
9 128 416 7,414 5.44593 E5 6.76 2.01 2.32 2.35 1.69
10 128 497 8,933 6.60963 E5 9.99 1.92 2.23 2.60 1.70

CP
4 144 271 3,490 4.168 E5 3.781 2.11 2.65 2.80 2.03
5 144 353 4,715 7.303 E5 5.871 1.93 2.43 2.67 1.97
6 144 433 5,941 1.212 E6 8.778 1.82 2.29 2.59 2.06
7 144 515 7,184 1.943 E6 13.493 1.74 2.2 2.49 1.78
8 166 603 8,487 2.964 E6 20.128 1.98 2.48 2.86 2.00

TQN
127 30 22 204 5.922 E4 2.338 0.41 1.40 1.96 1.14
128 34 18 201 5.398 E4 2.376 1.06 1.68 2.60 1.33
255 34 25 235 2.354 E5 12.353 0.40 1.40 1.59 1.11
256 38 20 228 2.647 E5 12.729 1.05 1.68 1.72 1.18
511 38 28 266 8.576 E5 61.146 0.39 1.40 1.51 1.05
512 42 22 255 8.143 E5 62.907 1.05 1.68 1.95 1.17

FMS
6 96 559 17,557 1.786 E5 0.521 1.86 2.29 2.34 2.23
7 98 756 26,567 2.845 E5 0.852 1.72 2.14 2.20 2.08
8 118 992 38,610 4.323 E5 1.409 2.04 2.50 2.54 2.24
9 120 1,262 53,740 6.260 E5 2.062 1.95 2.41 2.46 2.62
10 124 1,566 72,341 8.724 E5 3.067 1.86 2.32 2.38 2.26

Table 2. Empirical comparison of ADDs and ZDDs for various case studies

Comparing ADD and ZDD data structures: Table 2 illustrates the differ-
ence between the ADD- and ZDD-based encoding schemes with respect to their
space and time complexity for the different models. The first column gives the
model scaling parameter N , the second gives the total number of Boolean vari-
ables required for encoding all SVs, where we encoded each SV by a minimum
number of bits. In practice such an allocation strategy is not feasible for ADDs,
due to the lack of a priori knowledge of the maximum value Ki taken by SV si,
which means that practical figures would be even more favourable for our ZDD
approach. In case of ZDDs, pre-allocation of Boolean variables is unnecessary,
since skipped variables are interpreted as being 0-assigned.
Table 2.A gives the number of nodes required for representing the set of reach-
able states (encoded by ZBDD ZR), the transition system (encoded by ZDD ZT),
as well as the peak number of nodes (peak) as allocated during the process of
symbolic SG construction. In our implementation, since we employed the CUDD-
package, each node consumes 16 bytes of memory. Column tg contains the SG
generation time in seconds. In Table 2.B the ADD-based activity-local scheme
is compared to the ZDD-based version, by providing ratios of memory consump-
tion concerning ZR, ZT and the peak number of nodes (rpk). The comparison
is rounded by finally giving the ratio of the construction times rtime. As illus-

K. Lampka and M. Siegle

(A) ZDD-based reachability schemes within Möbius (B) ADD-based reachability
schemes within CASPA

N rtime rpk rc2ut rc2ct N rtime rpk rc2ut rc2ct told tnew pkold pknew riter

FTMP KS KS
2 0.711 0.366 0.764 0.698 6 3.456 0.599 4.558 5.262 0.690 0.333 47,538 14,544 4.474
3 2.668 0.280 3.571 3.429 7 5.196 0.658 7.076 8.385 1.310 0.531 76,384 18,439 4.500
4 4.868 0.248 6.754 5.714 8 5.391 0.743 6.988 8.412 2.424 0.892 116,978 25,840 4.520
5 11.947 0.294 22.065 17.240 9 6.534 0.771 9.708 11.897 3.870 1.560 168,921 34,641 4.536
6 73.533 0.217 10.808 10.158 10 9.693 0.912 13.548 16.737 6.710 2.570 248,749 48,034 4.548

CP FMS FMS
4 2.272 0.291 2.437 3.756 6 1.246 0.282 1.672 1.560 1.612 0.948 95,412 60,337 4.083
5 2.420 0.313 2.564 3.085 7 1.626 0.268 2.195 2.015 3.366 1.830 167,392 93,834 4.071
6 2.670 0.411 2.988 3.494 8 2.438 0.261 3.023 2.750 7.299 3.169 287,628 136,405 4.063
7 3.484 0.498 4.387 4.912 9 3.605 0.253 4.608 4.214 12.910 5.700 473,845 197,777 4.056
8 6.018 0.649 7.197 8.005 10 5.143 0.245 6.208 5.595 23.420 8.670 728,265 268,851 4.050

Table 3. Empirical comparison of the two variants of symbolic reachability analysis

trated by the ratios for the various case studies, the use of ZDDs reduces memory
consumption. As a a consequence of smaller DD sizes, the caching behaviour of
the ZDD-based scheme is much better. Thus the improvment in run-time is not
really surprising.
The TQN model [HMKS99] constitutes a very interesting case study. We spec-
ified this model as a SPN consisting of 3 places, where two may contain the
number of tokens specified by the scaling parameter N (let us say places 1 and
2), and the remaining place (place 3) contains either one or zero tokens. Con-
sequently, for N = 2ni − 1 the model uses a very dense Boolean enumeration
scheme, where ni is the number of bits used for encoding place i ∈ {1, 2}. As we
expected, and as supported by the experimental data, in these cases the space
requirement of the ADD-based representation of the reachable states ZR is bet-
ter (see col. rR of Table 2.B). If N is a power of two, the enumeration scheme
is much sparser and a different picture has to be drawn. Concerning the sym-
bolic representation of the SG ZT , it is interesting to note that ZDDs are always
more compact (see col. rT of Table 2.B). Furthermore, the ZDD-based scheme
maintains its run-time advantage in both cases, which is significant, since the
TQN-model is a worst case scenario concerning the number of transitions to be
explicitly explored (cf. col. transe in Table 1).

Assessment of the new reachability analysis algorithm: For most case
studies, the number of explicitly explored and encoded transitions (transe) un-
der the activity-local scheme is very low (see Table 1). Therefore, under this
scheme, similar to the fully symbolic approaches, most of the execution time is
consumed by symbolic reachability analysis. The precise portion of time differs,
of course, for different models. For instance, for the KS and FTMP model one
spends about 70% on reachability analysis, whereas for the FMS and CP models
symbolic reachability analysis accounts for 99% of the run-time. As a conse-
quence, most of the CPU time is spent in routines for manipulating the DD
structures. Profiling reveals that a dominant fraction of the run-time, between
35% and 68%, is spent in the CUDD-functions UniqueInter and CacheLookup,
where other functions consume less than 10%. UniqueInter delivers either an ex-
isting node found in the “unique table”, or a newly allocated node. The Cache-
Lookup function accesses the “computed table” in order to fetch results from

Activity-Local Symbolic SG Generation for High-level Stochastic Models

previous recursions of the Apply- or Abstract-algorithm. Table 3 compares
standard bfs. to the new quasi-dfs. algorithm (see Fig. 3). The data is based on
the run-times, the peak memory requirements (pk), and on the number of calls
to UniqueInter (c2ut) and CacheLookup (c2ct). As before we only give ratios
by norming everything to the figures of the new quasi-dfs. variant. Table 3.A
shows the figures for our ZDD-based implementation as realized within Möbius,
where the new scheme produces fewer calls to UniqueInter and CacheLookup,
making it substantially faster. But on the other hand it consumes more memory
as indicated by rpk. This increase of the peak memory consumption seems to be
closely related to the sparseness of the ZDDs, since during ZDD manipulation
many nodes are allocated, which can be eliminated for the final representation
of the SG. In contrast, using ADDs for SG representation, the new scheme is not
only faster, but also consumes less memory. We can report this result not only
for the ADD-based experiments carried out with our Möbius implementation,
but also for experiments carried out with the tool CASPA, whose results are
listed in Table 3.B. This table shows results as obtained from employing (i) the
standard bfs. reachability analysis (old) and (ii) the new quasi-dfs. reachability
analysis (new) within the tool CASPA, which is based on ADDs. Even though
the number of iterations of the outer do-until loop of the algorithm (Fig. 3.A)
is reduced by a factor of about 4 (cf. riter , Table 3.B) under the new scheme,
the run-times only halve (cf. col. 1 and 2), and the peak memory requirement
is reduced by a factor of around 2 to 3.4 The moderate speed-up might be a
consequence of the very compact encodings of each state by CASPA, since it
employs a dense enumeration scheme of submodel states, leading to much “flat-
ter” DD-structures, i.e. DDs with fewer Boolean variables, than our Möbius
implementation and PRISM. Thus the quasi-dfs. scheme becomes more advan-
tageous concerning run-time and space complexity, the larger the generated DDs
are. This is not only supported by the figures produced by CASPA, but also by
the results obtained for the FTMP model (cf. Table 3.A) which required the
largest number of Boolean variables for representing the SG symbolically.

Assessment of the activity-local scheme: We now compare our implemen-
tation of the activiy-local scheme to the MDD- and Kronecker-based approach of
[DKS04] because our implementation is within Möbius and – similar to [DKS04]
– uses the Möbius high-level model specification and the standard next-state
function of Möbius for explicit exploration. We also compare to PRISM (and
tested the new reachability scheme within CASPA) because these tools are both
based on the CUDD library which we also use. Since only PRISM, similar to
our own implementation, allows a freely chosen ordering of the Boolean vari-
ables and also encodes states in exactly the same way as we do, the focus of the
comparison in Table 4.C is on PRISM rather than CASPA. We decided not to
compare to the tool SMART and the results of [Min04], since there would be

4 We decided to give absolute run-times and peak numbers of nodes, in order to
enable the reader to compare the activity-local approach also to CASPA. An explicit
comparison will be omitted, since a comparison with the PRISM tool seems to be
more appropriate (cf. Sec. 5: Assessment of the activity-local scheme).

K. Lampka and M. Siegle

(A) Comparison to [DKS04] (B) Data produced by PRISM

N rmem rtime N nPRISM peak iter
F 2 1.14 4.69 5 96 59,731 71
T 3 1.08 21.29 6 96 93,464 85
M 4 1.06 61.20 K 7 96 135,514 99
P 5 1.05 180.52 S 8 128 246,750 113

6 0.36 372.82 9 128 333,388 127
10 128 437,910 141

4 7.32 1.15 6 110 226,441 49
C 5 12.26 3.53 F 7 110 348,540 57
P 6 19.95 9.55 M 8 140 679,426 65

7 31.57 25.72 S 9 140 971,954 73
8 48.08 51.67 10 140 1,359,552 81

(C) Comparing the activity-local approach to PRISM

ADD based SG representation

nodes 1. bfs. scheme 2. quasi-dfs. scheme
3. ZDD + quasi-dfs. scheme

N MR MT rpk rtime rpk riter rtime rR rT rpk rtime

5 321 6,308 0.051 0.060 0.29 2.96 0.88 1.97 2.29 0.72 2.00
6 389 7,876 0.045 0.065 0.29 3.04 0.90 1.81 2.13 0.66 1.77

K 7 458 9,521 0.041 0.031 0.28 3.09 0.81 1.68 2.00 0.61 1.44
S 8 731 14,698 0.037 0.031 0.27 3.14 0.68 2.14 2.44 0.74 1.53

9 837 17,196 0.034 0.050 0.26 3.18 0.69 2.01 2.32 0.61 1.17
10 952 19,877 0.031 0.047 0.25 3.20 0.81 1.92 2.23 0.73 1.34

6 1,039 40,274 0.11 0.42 0.54 2.33 2.56 2.47 4.45 1.27 5.69
F 7 1,298 56,853 0.08 0.46 0.56 2.48 3.40 2.29 4.55 1.23 7.07
M 8 2,022 96,647 0.06 0.77 0.62 2.50 7.32 2.79 5.57 1.57 16.38
S 9 2,455 129,644 0.05 0.68 0.63 2.52 6.91 2.62 18.09 1.55 18.09

10 2,907 167,798 0.04 0.74 0.65 2.53 10.39 2.49 5.61 1.56 23.51

Table 4. Comparing the activity-local scheme and other symbolic methods

neither a common implementation framework nor a common data structure.

In order to compare our full scheme (activity-local + quasi-dfs. reachability
analysis + ZDDs) to the symbolic approach of [DKS04], identical Möbius model
specifications for the FTMP and CP models were employed. Once again, ra-
tios for run-time5 and memory consumption are provided, where everything is
normed to the figures of the activity-local scheme. As an example, the last entry
in the fifth row of Table 4.A states that our activity-local approach is 372.82
times faster. The fact that the activity-local approach is significantly faster than
the MDD-based approach shows that the partial-order style strategy of explor-
ing only paths of dependent activities pays off, especially for models without
strongly modular structure (cf. col. trans and transe of Table 1). Furthermore
the memory requirement for storing the set of reachable states is better as well
(rmem), except in case of the FTMP model with N = 6.

Table 4.B gives the basic model data of the KS and FMS model when executed
by PRISM, including the number of Boolean variable required for encoding the
transitions (nPRISM), as well as the number of iterations (iter) as required by
the standard bfs reachability analysis (basically the do-until loop of algorithm
Fig. 3.A). For the KS model our implementation encodes the model in exactly
the same way as PRISM does, consequently the generated ADDs are identical.
But in case of the FMS model, we employed a slightly different model, due to the

5 The results of [DKS04] were obtained on an AMD Athlon 2400. Furthermore, the
timing information includes time for state lumping, but since this is below 0.3% of
the overall time we can safely neglect it.

Activity-Local Symbolic SG Generation for High-level Stochastic Models

different elimination of immediate transitions. As a consequence of employing
fewer SVs, we were able to encode each state by a smaller number of Boolean
variables, (see col. nPRISM of Table 4.B for details), leading already to slightly
smaller DD structures, whose sizes are given in col. MR and MT of Table 4.C. In
order to evaluate the different aspects of the work presented here, we chose to
investigate the activity-local scheme in three different settings, comparing each
one to PRISM:

1. In the first setting we combined the activity-local scheme with ADDs and
standard bfs. reachability analysis.

2. In the second setting we switched to the new quasi-dfs reachability scheme.
3. In the third setting we additionally switched to the ZDD data structure.

The figures of the different settings are shown in col. 4 to 12 of Table 4.C, where
we once again normed all data to the figures of the activity-local schemes. As an
example, the last entry in the last row of the table states that the activity-local
scheme is 23.51 times faster than PRISM. By considering Table 2 one can then
compute that PRISM consumed 3.067sec · 23.51 = 72.11 sec of CPU time for
generating the SG of the FMS model for N = 10. From Table 4.C (col. 5 (rtime))
one can conclude that the explicit handling of transitions induces a non-neglible
run-time overhead, although it is caused by only a small fraction of the overall
number of transitions (cf. columns trans and transe of Table 1). However, this
overhead is justified by two aspects:

(a) The activity-local approach – in contrast to the fully symbolic ones – is not
restricted to any specific model description method.

(b) Monolithic models or models not suitable for being partitioned and composed
via activity-synchronization (such as FTMP, FMS and CP) can be analyzed
very efficiently, where submodel-oriented approaches are problematic.

As shown by the last 7 columns of Table 4.C, the new scheme for reachability
analysis (q.-dfs) as well as the use of ZDDs improves the situation significantly.
As with all symbolic representation techniques, memory space is not an issue.
Even though we store redundant DDs in order to simplify and speed up the
activity-local scheme, the CP model, which is the largest model concerning peak
memory requirement, consumed only 45 MByte for symbolic SG generation and
representation. If memory were at a premium, the redundancy could easily be
eliminated without a dramatic increase in run-time.

6 Summary and Future Work

In this paper, we presented the following innovations: (i) Zero-suppressed multi-
terminal binary Decision Diagrams (ZDDs), which proved to be an excellent
data structure for symbolic SG representation. (ii) A new algorithm for symbolic
reachability analysis, organized as a quasi-dfs. scheme, which demonstrated sig-
nificant run-time and (in case of ADDs) also memory savings. Innovations (i)
and (ii) can easily be integrated into existing BDD-based tools such as PRISM

K. Lampka and M. Siegle

and CASPA, in order to improve run-time and reduce memory space. (iii) We
presented the activity-local scheme for generating the state graph by explicit
exploration and symbolic composition. The scheme does not only yield compact
symbolic representations, but also has the advantage that only a small fraction
of the SG needs to be explored explicitly. Consequently, it achieves substantial
run-time savings, especially if the high-level model does not have a compositional
structure.

Since we develop our implementations in the context of Möbius, we are currently
working on an efficient symbolic realization of the “Replicate” feature and on
the symbolic treatment of reward variables. Another important step is the avail-
ability of efficient numerical algorithms for steady-state and transient analysis.
To this end we have adapted the approach of [Par02] to the ZDD data structure.
First results are very positive, e.g. applying the pseudo Gauss-Seidel solution
method to the FMS model with N = 8, reduces run-time for computing steady
state probabilities by a factor of 3.11, when compared to the original ADD-based
approach of [Par02]. Details as well as further results will be presented in a forth-
coming paper.

Acknowledgment: We would like to thank the Möbius, PRISM and CASPA
developer groups for their support.

References

[BCL91] J.R. Burch, E.M. Clarke, and D.E. Long. Symbolic model checking with
partitioned transition relations. In Int. Conf. on Very Large Scale Integra-
tion, pages 49–58, Edinburgh, 1991. North-Holland.

[Bry86] R.E. Bryant. Graph-based Algorithms for Boolean Function Manipulation.
IEEE ToC, C-35(8):677–691, August 1986.

[CM99] G. Ciardo and A. S. Miner. Efficient reachability set generation and storage
using decision diagrams. In Proc. of ATPN, LNCS 1639, pages 6–25, 1999.

[CMS03] G. Ciardo, R. Marmorstein, and R. Siminiceanu. Saturation unbound. In
Proc. of TACAS, LNCS 2619, 2003.

[CT93] G. Ciardo and K. Trivedi. A decomposition approach for stochastic reward
net models. Performance Evaluation, 18(1):37–59, 1993.

[CT96] G. Ciardo and M. Tilgner. On the use of Kronecker operators for the
solution of generalized stochastic Petri nets. ICASE Report 96-35, 1996.

[DCC+02] D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi, J. Doyle, W.H.
Sanders, and P. Webster. The Moebius Framework and Its Implementa-
tion. IEEE Transactions on Software Engineering, 28(10):956–969, 2002.

[DKK02] I. Davies, W.J. Knottenbelt, and P.S. Kritzinger. Symbolic Methods for
the State Space Exploration of GSPN Models. In Proc. of TOOLS, pages
188–199. LNCS 2324, 2002.

[DKS04] S. Derisavi, P. Kemper, and W. H. Sanders. Symbolic State-space Explo-
ration and Numerical Analysis of State-sharing Composed Models. Linear
Algebra and its Applications (LAA), 386:137–166, 2004.

[FMY97] M. Fujita, P. McGeer, and J.C.-Y. Yang. Multi-terminal Binary Decision
Diagrams: An efficient data structure for matrix representation. Formal
Methods in System Design, 10(2/3):149–169, April/May 1997.

Activity-Local Symbolic SG Generation for High-level Stochastic Models

[God95] P. Godefroid. Partial-Order Methods for the Verification of Concurrent
Systems. An Approach to the State-Explosion Problem. PhD thesis, Uni-
versité de Liege, 1995.

[HMKS99] H. Hermanns, J. Meyer-Kayser, and M. Siegle. Multi Terminal Binary
Decision Diagrams to Represent and Analyse Continuous Time Markov
Chains. In Proc. of 3’rd NSMC, pages 188–207. Prensas Universitarias de
Zaragoza, 1999.

[KS02] M. Kuntz and M. Siegle. Deriving Symbolic Representations from Stochas-
tic Process Algebras. In Proc. of PAPM-PROBMIV, LNCS 2399, pages
1–22, 2002.

[KSW04] M. Kuntz, M. Siegle, and E. Werner. Symbolic Performance and De-
pendability Evaluation with the Tool CASPA. In Proc. of EPEW, pages
293–307. Springer, LNCS 3236, 2004.

[KVBSV98] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. Multi-
valued decision diagrams: theory and applications. Multiple-Valued Logic,
4(1-2):9–62, 1998.

[LS02] K. Lampka and M. Siegle. Symbolic Composition within the Moebius
Framework. In Proc. of 2’nd MMB Workshop, pages 63–74, September
2002. Forschungsbericht der Universität Hamburg Fachbereich Informatik.

[LS03] K. Lampka and M. Siegle. MTBDD-based activity-local state graph gen-
eration. In Proc. of PMCCS 6, pages 15–18, 2003.

[Min93] S. Minato. Zero-Suppressed BDDs for Set Manipulation in Combinatorial
Problems. In Proc. of DAC, pages 272–277, Dallas (Texas), USA, June
1993. ACM Press.

[Min01] A. Miner. Efficient solution of GSPNs using matrix diagrams. In Proc. of
PNPM, pages 101–110. IEEE Computer Society Press, 2001.

[Min04] A. Miner. Saturation for a general class of models. In Proc. of QEST,
pages 282–291. IEEE Computer Society Press, 2004.

[Par02] D. Parker. Implementation of Symbolic Model Checking for Probabilistic
Systems, Ph.D. Thesis, University of Birmingham (U.K.), 2002.

[PRC97] E. Pastor, O. Roig, and J. Cortadella. Symbolic Petri Net Analysis us-
ing Boolean Manipulation. Technical report, Univ. Politec. de Catalunya,
DAC/UPC Report No. 97/8, 1997.

[PRCB94] E. Pastor, O. Roig, J. Cortadella, and R.M. Badia. Petri Net Analysis
Using Boolean Manipulation. In R. Valette, editor, Proc. of ATPN, LNCS
815, pages 416–435. Springer, June 1994.

[Pri] PRISM web page. http://www.cs.bham.ac.uk/∼dxp/prism/.
[Sie98] M. Siegle. Compact representation of large performability models based on

extended BDDs. In Proceedings of PMCCS 4, pages 77–80, Williamsburg,
VA, Sept. 1998.

[Sie02] M. Siegle. Behaviour analysis of communication systems: Compositional
modelling, compact representation and analysis of performability proper-
ties. Shaker Verlag Aachen, 2002.

[SM92] W. H. Sanders and L. M. Malhis. Dependability evaluation using composed
SAN-based reward models. Journal of Parallel and Distributed Computing,
15:238–254, 1992.

[Som] F. Somenzi. CUDD Package, Release 2.4.x. http://vlsi.colorado.edu/˜fabio.
[WL91] M. Woodside and Y. Li. Performance Petri net analysis of communications

protocol software by delay-equivalent aggregation. In Proc. of 4’th PNPM,
pages 64–73, 1991.

