
A symbolic multilevel method with sparse submatrix

representation for memory-speed-tradeoff

Johann Schuster and Markus Siegle

Universität der Bundeswehr München, Institut für Technische Informatik

{johann.schuster,markus.siegle}@unibw.de

Abstract. This paper is about the numerical analysis of Markov chains, employ-

ing a multilevel algorithm for computing the vector of steady-state probabilities.

As a basic data structure, multi-terminal binary decision diagrams (MTBDD) are

used, which are known to provide very space-efficient symbolic representations

of the rate matrix, even for very large Markov chains. In the approach presented

here, the original Markov chain and several aggregated chains (used during the

multilevel cycles) are stored within a single MTBDD. It is also discussed how the

problem of non-contiguous encodings of the reachable states (of both the original

and the aggregated chains) is dealt with by the concept of multi-offset-labelling.

Furthermore, as the major innovation of the paper, a modification of the symbolic

data structure is presented, in which parts of the MTBDD are replaced by a new

type of enhanced sparse-matrix format, thereby speeding up access to the matrix

elements during iteration. This new memory layout, specially tailored for mul-

tilevel algorithms, follows the recursive block structuring which is characteristic

for both the multilevel algorithm and the MTBDD-based representation. The pro-

posed data structure and algorithm are evaluated on the basis of three benchmark

models. The empirical results exhibit considerable improvements in speed at very

low memory cost, when compared to other methods.

Keywords: CTMC, numerical solution, aggregation, multilevel method, MTBDD,

sparse matrices.

1 Introduction

Markov chains are an important and powerful mathematical concept for the model-

based performance and dependability analysis of computer and communication sys-

tems. Usually some sort of high-level modelling formalism, such as stochastic Petri

nets or stochastic process algebra, is employed for model specification, and the under-

lying Markov chain is generated automatically with the help of a tool which imple-

ments the semantics of the high-level model. The most important step during Markov

chain analysis is the computation of the vector of stationary or transient state prob-

abilities, from which most performance and dependability measures of interest can

be derived by simple computations. A large range of numerical algorithms exists for

computing these state probabilities: Simple iterative techniques such as Jacobi, Gauss-

Seidel or their over-relaxed variants, block iterative methods such as block Gauss-

Seidel, projection methods such as GMRES or BiCGStab, and methods based on aggre-

gation/disaggregation. Uniformisation is the method of choice for computing transient

state probabilities. A classical overview of these methods is given in [18].

If the state space of the Markov chain is very large (which is often the case when

modelling complex distributed systems with concurrent behaviour), its handling be-

comes problematic. Powerful approaches have been developed for generating and stor-

ing very large Markov chains in an efficient manner, of which a range of techniques

which are based on compositional modelling formalisms and different forms of deci-

sion diagrams have proved to be particularly successful. These can be grouped into

those approaches which are based on binary decision diagrams (BDD) and extensions

thereof [12, 17, 8], and those approaches which are based on multi-valued decision di-

agrams and matrix diagrams [10, 11, 5]. A well-known feature of such symbolic repre-

sentations is that state enumeration is non-contiguous, i.e. there exists a potential state

space of which only a certain fraction is actually reachable. The reachable portion, how-

ever, can be determined efficiently with the help of symbolic reachability algorithms.

While Markov chain generation and representation based on symbolic data structures is

well understood, their numerical solution remains the major bottleneck and may even

become infeasible in practice, due to memory and CPU time restrictions.

In this paper, we consider the computation of the vector of steady-state probabilities

of Continuous Time Markov Chains (CTMC) which stem from a compositional mod-

elling formalism and are represented in symbolic form using the multi-terminal BDD

(MTBDD) data structure. For the numerical solution, we employ the so-called mul-

tilevel method, an iterative aggregation/disaggregation method which was inspired by

multigrid methods, as proposed by Horton and Leutenegger [7], and even earlier con-

sidered by Schweitzer [16]. In our approach, the rate matrix of the original CTMC, as

well as the rate matrices of all aggregated chains, are represented in a memory-efficient

fashion within a single, augmented MTBDD. All probability vectors for the original and

the aggregated systems are stored as arrays of the appropriate sizes, and the mapping

between reachable states and their encoding in the potential state space is achieved with

the help of an offset labelling of the MTBDD in the style of [12], but extended here to

multiple offsets.

The contribution of this paper consists in the combination of the following three

ingredients:

1. MTBDDs are used as a symbolic data structure for representing very large Markov

chains in a compact way. In contrast to standard approaches, the basic MTBDD

structure is extended in several ways: Instead of encoding only one Markov chain,

multiple (aggregated) chains, together with their respective offset information, are

represented by a single MTBDD.

2. As an efficient numerical solution method, the multilevel method is used, work-

ing directly on the symbolic Markov chain representation, thereby exploiting the

natural recursive block structuring of the matrix as induced by the MTBDD.

3. For speeding up the traversal of the MTBDD, parts of it are replaced by a new type

of sparse matrix data structures. In addition to our earlier approach described in

[15], we do not only replace the very bottom parts of the MTBDD, but also blocks

which are located in the interior of the MTBDD between any two aggregation lev-

els, leading to improved runtimes.

1.1 Organisation of the paper

In Sec. 2, the multilevel solution algorithm is sketched. Sec. 3.1 gives a short introduc-

tion to the symbolic encoding of matrices, used for representing Markov chains. Sec. 3.2

recalls the multi-offset-labelling scheme, needed to keep track of different equation sys-

tems within one MTBDD, and Sec. 3.3 introduces the intermediate sparse matrices,

used to speed up the symbolic multilevel algorithm. The applicability of the presented

concepts is shown by some empirical results in Sec. 4. Sec. 5 concludes the paper.

2 The multilevel method

As an adaptation of multigrid techniques for the solution of Markov chains, the so-

called multilevel algorithm has been presented in [7]. It is the idea of this algorithm

to successively reduce large Markov chains to smaller ones. From the solutions of the

smaller Markov chains, the current iteration vector of the original Markov chain is cor-

rected.

For a given CTMC M, let R denote its transition rate matrix and Q its generator

matrix, respectively. Let π denote the vector of steady-state probabilities of the reach-

able states of M. A certain level, i.e. a horizontal dotted line in Fig. 1, of the multilevel

solution scheme is denoted by an integer l ∈ {0, . . . , N}. The original system of linear

equations (also called the fine system) will be labelled with level 0, i.e. Q(0) := Q,

π(0) := π. The system of linear equations obtained by the aggregation of the system of

level l is denoted by level l + 1.

For a given Markov chain of level l, the aggregated chain of level l + 1 is calcu-

lated as follows: Let S be the finite state space of the chain at level l, and π̃(l),pre be an

approximation of the solution-vector of the steady-state equation π(l) · Q(l) = 0 with
∑

i π
(l)
i = 1. Let the partition {Si|i ∈ {0, . . . , M − 1}} of S define the next aggrega-

tion step. Then the initial probability vector π̃(l+1),pre of the aggregated Markov chain

is given by the partial sums π̃
(l+1),pre

i =
∑

j∈Si
π̃

(l),pre

j . Using π̃(l),pre, the M × M
transition matrix of the ideal aggregate [14] is defined as follows:

Q
(l+1)
ij

i6=j
=

∑
v∈Si

π̃
(l),pre
v ·

∑
w∈Sj

q
(l)
vw

∑
v∈Si

π̃
(l),pre
v

,

i.e. consists of conditional probabilities of moving from one aggregate to another. As

usual, the diagonal elements are given as negative row sums. After solving

π(l+1) · Q(l+1) = 0 with
∑

i π
(l+1)
i = 1

by π(l+1),post, the correction

π̃
(l),post

j

j∈Si
=

π
(l+1),post

i

π̃
(l+1),pre

i

· π̃
(l),pre

j (1)

is applied, i.e. all the states belonging to a certain aggregate are scaled by the same

factor. Instead of directly solving level (l + 1) by π(l+1),post, it is a canonical exten-

sion to approximate the solution of level (l+1) by π̃(l+1),post through further recursive

aggregation of level (l + 1). Then π̃(l+1),post is used instead of π(l+1),post in the disag-

gregation equation (1). The successive application of this approximation concept leads

to the multilevel algorithm as indicated by a V-cycle in Fig. 1. On every level a certain

number of smoothing steps, i.e. steps of an ordinary iterative solution algorithm, are

performed.

{

{aggregation {disaggregation

{

aggregated systems
of linear equations

original system
of linear equations

Fig. 1: Scheme of a multilevel V-cycle

3 MTBDD with sparse submatrix representation

3.1 Notation and MTBDD basics

Without loss of generality, it is assumed that all diagonal elements of the transition rate

matrix R are zero (the row sums needed for the generator matrix Q are stored separately

as a vector). The number of reachable states of the Markov chain is denoted by S := |S|.
For the symbolic representation, symbols si and ti (1 ≤ i ≤ n) denote the Boolean

variables encoding the source and target states of the transition rate matrix. Following

a commonly accepted heuristics for obtaining small MTBDD sizes, these variables are

ordered in an interleaved fashion, s1 ≺ t1 ≺ . . . ≺ sn ≺ tn, and each pair (si, ti) is

called a level of the MTBDD. Integers a1 > . . . > aN (where 1 ≤ ai ≤ n) denote the

aggregation levels of the MTBDD, which means that ai is the index of the s-variable that

corresponds to the i-th aggregation level in the sense of Sec. 2. For an MTBDD node

(or for a sparse submatrix), Nbelow denotes the number of aggregation levels below the

node (or below the anchor position of the submatrix), not including the node itself.

Symbolic matrix encoding: An element rij of matrix R is represented in the MTBDD

by a path from the root to a terminal node. The terminal node carries the real value rij ,

the s-variables on the path encode the source index i, and the t-variables encode the

target index j.

As an example, consider the matrix R and its MTBDD representation as shown

in Fig. 2 (this will be used as a running example throughout the paper). The matrix

has S = 7 reachable states. However, the state indices to be encoded are from the set

{0, 1, 2, 4, 5, 6, 8}, since reachable states are numbered non-contiguously, as is common

in Markov chains stemming from compositional modelling formalisms. Since 8 is the

highest index to be encoded, n = 4 s-variables and 4 t-variables are required. This

means that the MTBDD in fact encodes a 24×24 matrix, of which in Fig. 2 (a) only the

top left portion is shown since all remaining entries are zero. As an example, consider

the encoding of r51 = 5. Based on the binary encodings 5 = 01012 and 1 = 00012, the

interleaved transition encoding is 00100011, which corresponds to the leftmost path of

the MTBDD of Fig. 2 (b).

0000 0001 0010 0011 0100 0101 0110 0111 1000

0000

0001

0010

0011

0100

0101

0110

0111

1000

row: 0 1 0 1
column: 0 0 0 1

encoding: 00100011}

s1s2s3s4

t1t2t3t4

(a)

0.0515 0.5 2

s1

s2

s3

s4

t1

t2

t3

t4

(b)

Fig. 2: (a) A transition matrix R and (b) its MTBDD representation

Recursive block structuring of the matrix: A well-known feature of MTBDD-based

matrix representation is its recursive block structuring (which is of particular impor-

tance for the multilevel approach): In a first step, fixing the value of the s1-variable and

of the t1-variable leads to a sub-MTBDD which represents one of the four quadrants

of the original matrix (e.g., in Fig. 2, the setting s1 = 0, t1 = 0 leads to the top left

8 × 8 quadrant). In a second step, fixing the s2-variable and the t2-variable leads to a

quadrant within the top-level quadrant, and so on. This phenomenon is of course due to

the interleaved ordering of the s- and t-variables. Each block indicated in Fig. 2 (a) is

addressed by a particular combination of the variables s1, t1, s2, t2. These blocks will

be aggregated later on in the running example.

3.2 Multi-offset-labelling

The concept of multi-offset-labelling was introduced in [15], where also an algorithm

for computing the multi-offsets was presented. For the symbolic multilevel method, the

BDD reach (encoding the set of reachable states) and the MTBDD trans (representing

the rate matrix of the original (fine) system) are extended in several ways:

BDD reach: This is an ordinary BDD (not an MTBDD) used to encode the set of

reachable states. It depends on the Boolean variables s1, . . . , sn. This BDD is aug-

mented by offset information for the various (i.e. original and aggregated) systems.

Each non-terminal node carries multiple offsets, i.e. a list of offset values, whose length

is determined by the level of the node: A given node carries offset values for the fine

system and for all systems whose aggregation level lies below this node (which number

equals Nbelow + 1).

Fig. 3 (a) shows the reachability structure of the original vector and of the aggre-

gated vector for the running example (shaded fields denote unreachable states). Using

s3 as aggregation level, four states of the original system are aggregated into a single

state. A state of the aggregated system is reachable, if and only if at least one of the

corresponding states of the original system is reachable.

BDD reach, shown in Fig. 3 (b), is augmented by offset information for the fine

and all aggregated systems, as will now be explained: Firstly, the complete BDD reach

encodes the set of reachable states of the original system, i.e. the set {0, 1, 2, 4, 5, 6, 8}.

This set needs to be mapped to the set of contiguous indices {0, 1, 2, 3, 4, 5, 6} with

the help of the offset values for the fine system, which are the leftmost values inside

the BDD nodes. Offset values are additive, where a particular value is counted only on

such paths where the corresponding node is left via the 1-valued edge. As an example,

consider the example path 0110 in Fig. 3 (b). The corresponding potential state index

0 ·23+1 ·22+1 ·21+0 ·20 = 6, is mapped to the offset 0+3+2+0 = 5, as indicated in

Fig. 3 (c), bottom. Secondly, regarding aggregation level s3, variables s1 and s2 encode

the reachable states of the aggregated system, which happens to be the set {0, 1, 2}.

This set is mapped to the set of contiguous indices {0, 1, 2} (i.e. in this case to itself!)

with the help of the offset values for the aggregated system, which are the values on the

right-hand side inside the doubly indexed BDD nodes. For the example path 01xx in

Fig. 3 (b) the potential state index 0 · 21 + 1 · 20 = 1 is mapped to the offset 0 + 1 = 1,

as indicated in Fig. 3 (c), top.

0 1 2 3 4 5 6

0 1 2 3 4 5 6

7 8 9 111213141510

0 1 2 3

0 1 2
[[[[

1

2

3,1 1,1

1

11

6,2 s1

s2

s3

s4

(a) (b) (c)

Fig. 3: (a) Reachability structure of original and aggregated vector for the running example, (b)

corresponding multi-offset-labelled BDD and (c) mapping of potential to reachable state space

MTBDD trans: This symbolic data structure represents both the transition rate matrix

of the fine system and of all aggregated systems. Rates of an aggregated system are

stored within separate vectors in the aggregation levels.

Fig. 4 (a) illustrates this concept of multi-offest-labelling, referring again to the run-

ning example (the transition rates of the aggregated system are not shown in the figure).

Offset values inside s-nodes contribute to the row index, whereas offset values inside

t-nodes contribute to the column index. As an example for the fine system, consider

again the binary encodings 0101 and 0001, which combine to the interleaved transition

encoding 00100011. Looking at the offset values in the figure, this results in the row

offset 0+3+0+1 = 4 and in the column offset 0+0+0+1 = 1. As an example for the

aggregated system, consider the binary encodings 01 and 00, which combine to the path

0010. This results in the row offset 0+1 = 1 and in the column offset 0+0 = 0. Fig. 4

(b) (top) shows how the aggregation information is stored within the MTBDD of Fig. 4

(a). For this illustration, variables {s3, s4, t3, t4} as well as all the fine system offsets

are omitted, as they are not used for the aggregated matrix. Again, diagonal elements

of the matrix are stored separately. Pointers are used to keep track of the aggregated

values. For the storage of the aggregation information, an iteration vector of the orig-

inal system is reused, for details we refer to [15]. The aggregated system as a matrix

is given in Fig. 4 (b), (bottom). As an example, for π = (π0, π1, π2, π3, π4, π5, π6) the

aggregation process gives x2 = 5π3+5π4+5π5

π3+π4+π5
.

0.0515 0.5 2

1

1

3,1

2 2

1

3,1 3,1 1,1

6,2

6,2

1,1 3,13,1

1 1

11 1 1

1 1

2

1

1 1 1

1

1 2

2

22

22 2

6,2

s1

s2

s3

s4

t1

t2

t3

t4

(a)

s1

s2

t1

t2

x1 x2 x3 x4

(b)

Fig. 4: (a) Multi-offset-labelled MTBDD for the running example, (b) representation of the ag-

gregated system

3.3 Sparse matrix representation

In order to speed up the traversal of the symbolic data structure trans, parts of it (as

much as memory allows) may be replaced by sparse matrix structures. Replacing sub-

MTBDDs below the first aggregation level a1 by sparse matrices is the most straight-

forward (following the replacement scheme originally described in [12]), and has al-

ready been described in [15]. However, the achievable gain in speed is quite limited,

if only the lowest parts of the MTBDD can be replaced. Therefore, as an important

contribution, this paper also describes the replacing of parts of the MTBDD that lie be-

tween two aggregation levels, which is more complicated, since offset information for

more than one system has to be included in the sparse matrix representation. This paper

does not consider sparse replacements of MTBDD-subgraphs that cross any aggrega-

tion level.

The following briefly recalls the principle of sparse matrix data structures [9, 18]:

A common sparse representation for a square S × S matrix with NZ non-zero entries

uses three arrays: Vals, Cols and RStart. The array Vals (of size NZ) contains all non-

zero entries of the matrix, ordered by row. Array Cols is also of size NZ , its position i
contains the column index of the corresponding entry in Vals. The array RStart of size

S contains pointers into Vals and Cols, such that RStart[i] denotes the beginning of

row i.
In the context of the multilevel method, every non-zero value of a sparse matrix

block must be associated with an array of row offsets and an array of column offsets.

These arrays may not coincide, since for non-diagonal blocks the reachability structure

for rows and columns may be different. Therefore, the sparse matrix storage scheme is

extended by additional data structures, whose identifiers and roles are as follows:

– ROff is a list of arrays of row offsets. The length of the list equals the number of

reachable rows in the current block. Each array is of length Nbelow + 1, i.e. the

number of relevant aggregation levels.

– COff is a list of arrays of column offsets. Its length is the number of pairwise differ-

ent combinations of column indices for the different relevant aggregated systems.

Each array has the length Nbelow + 1.

– RStart is used in the standard way. It is an array of indices into the array ColsVals.

Its length is the number of reachable rows in the current block.

– ColsVals combines the roles of the above mentioned Cols and Vals, but concern-

ing the column index, there is one more degree of redirection than in the standard

case. ColsVals is an array of index-pointer pairs. Its length is the number of non-

zero entries in the current block. The index does not directly store the column index,

it is an index into the array COff. The pointer is a pointer to a rate value or to the

anchor node of a sub-block.

RStart: 0, 2
COff: (0,0), (3,1)
ROff: (0,0), (3,1)

ColsVals: (0,), (1,),(0,),(1,)

3,1

3,13,1

6,2

22 2 22 2

6,2

s2

s3s3

t1t1

t2

(a) (b)

∗ ∗∗∗

.

.

Fig. 5: Part of matrix substitution process for the

running example

This general scheme is now

explained by the running exam-

ple (Fig. 4 (a)): In this example,

MTBDD levels s2 and t2 are re-

placed by sparse multi-offset matri-

ces (i.e. these matrices are of dimen-

sion 2 × 2). For these matrices we

have Nbelow = 1 (since aggrega-

tion level a1 ∼ s3 lies below their

anchor nodes). This means that the

matrices have to contain offset in-

formation for two systems, the fine

system and the first (and in this case

only) aggregated system. For the dis-

cussion, we focus on the part of the

MTBDD shown in Fig. 5 (a). The re-

placement of s2 and t2 is given in

Fig. 5 (b) and reads as follows: ROff = (0, 0); (3, 1) means that there are two non-

zero rows. For the fine system, the row offsets are 0 and 3, whereas for the aggregated

system the row offsets are 0 and 1. RStart = 0, 2 means that the first non-zero row

contains 2 entries, and the second non-zero row contains the remaining (in this case

also 2) entries. ColsVals = (0, ∗), (1, ∗), (0, ∗), (1, ∗) means that the matrix contains 4

non-zero entries. The column offsets for a particular entry are determined by looking

up the corresponding element of COff, i.e. for the value 0 the column offsets for the

fine/aggregated system are 0/0, while for the value 1 the column offsets are 3/1. The

actual entries can be found by following the corresponding arrows emanating from the

∗ symbol. In Fig. 6, the resulting overall data structure is shown.

0.0515 0.5 2

ROff: (3,1)
COff: (0,0)
RStart: 0

ROff: (0,0)
COff: (0,0)
RStart: 0RStart: 0, 2

COff: (0,0), (3,1)
ROff: (0,0), (3,1)

ColsVals: (0,), (1,),(0,),(1,) ColsVals: (0,) ColsVals: (0,)

2

1

1

1

1

2

1

1

22 2

2 2 2 2 2

1 1 1 1 1 1

1 1 1 1 1

6,26,2

6,2s1

s2

s3

s4

t1

t2

t3

t4

∗ ∗∗∗∗∗

Fig. 6: Multi-offset-labelled MTBDD with sparse submatrices for the running example

4 Experimental results

In this section, we give examples of multilevel speedup due to the new sparse matrix

approach. A comparison of runtimes will be given between the Jacobi Overrelaxation

Algorithm, which is used as a smoother for the multilevel algorithm, the multilevel al-

gorithm without intermediate sparse matrices and the new version with sparse matrices

between some aggregation levels.

As suggested in [2], special emphasis is placed on the aggregation according to the

submodel-structure of the high-level model specification from which the given Markov

chain is derived. However, in contrast to [2], the MTBDD-based multilevel algorithm is

not restricted to submodel-wise aggregation. This is very useful in cases where only a

few submodels with small aggregated systems exist. Additional aggregation levels can

be introduced in order to benefit from the finer structure of the aggregated matrix. Vice

versa, for aggregation matrices which are too large, aggregation levels may be skipped

or raised in order to obtain smaller aggregated systems.

All measurements presented here were performed on an Intel Xeon 3.0 GHz pro-

cessor with 2 GByte of main memory under the Linux operating system. As a software

platform for experimentation, we used the tool PRISM [13]. We implemented our mul-

tilevel algorithms (ML and the new MLS, see below) within the open source framework

of PRISM. The following numerical algorithms are compared:

– JOR, Jacobi Overrelaxation, as provided by PRISM, with relaxation parameter 0.9.

– ML Multilevel algorithm using 4 pre- and 4 post-smoothing steps, respectively,

on the fine system and 8 pre- and 8 post-smoothing steps, respectively, for the

aggregated systems using V-cycles.

– MLS Multilevel algorithm using 4 pre- and 4 post-smoothing steps, respectively,

on the fine system and 8 pre- and 8 post-smoothing steps, respectively, for the

aggregated systems using V-cycles and intermediate sparse levels.

We did not consider Pseudo-Gauss-Seidel (PGS), as in [15] it is shown that for the FMS

model JOR performs better than PGS and for the tandem queueing network only for the

small scaling parameter PGS was able to outperform the ML algorithm.

For the multilevel smoothing steps of the fine system and all the aggregated sys-

tems, ordinary JOR steps with overrelaxation parameter 0.9 are used. For every multi-

level experiment, on which we report, the aggregation levels for each aggregate will be

given in parentheses, starting with the first and ending with the last aggregate. With

the notation introduced in Sec. 3.1, an experiment is given by ML(a1, . . . , aN) or

MLS(a1, . . . , aN), respectively.

Our ML and MLS implementations aim to achieve memory efficiency by using the

second JOR iteration vector of the fine system for storing all aggregation information

during the V-cycle [15]. The Jacobi Overrelaxation algorithm has been measured twice.

Once with the PRISM standard setting which limits the memory for the sparse matrix

structures to one megabyte, and the other that uses pure sparse matrices (all MTBDD

levels are converted to sparse matrices).

The stopping criterion for all algorithms is a relative element-wise error smaller

than 1.0 · 10−6. For JOR this is measured between two consecutive iterations, whereas

for the ML and MLS algorithms, convergence is tested during the post-smoothing step

in the fine system.

Tables 1, 2 and 3 show the results of the experiments. In the first three columns the

model characteristics are shown: The scaling parameter of the model (e.g. number of

tokens for every machine in the FMS system, see 4.1), the number of reachable states

and the number of transitions between the reachable states. Column algorithm specifies

the numerical method used. Column ML-cycles shows the number of multilevel cycles

until the convergence criterion is satisfied (which is only applicable to the ML and

MLS algorithms). Column steps gives the number of iteration steps until convergence

for JOR, whereas in the multilevel cases only the smoothing steps on the fine system

are counted (to show the reduced smoothing effort for the fine system). In variable

levels the number of s-variables is shown. The sparse levels column gives the number

of s- (and t-) variables substituted by sparse matrices beginning from the bottom of

the MTBDD. In column residual the maximum norm of the final vector π̃Q is given.

The column memory shows the total memory consumption of the different algorithms

in kilobyte and finally the column time shows the consumed time (including both setup

phase of the data structure and time for the iterations) in seconds until convergence was

achieved.

4.1 Flexible Manufacturing System (FMS)

This example is one of the standard benchmark case studies which are available from the

PRISM web page [13] and is based on the model published in [3]. The model consists

of three machines where one machine produces one certain part (denoted by part1), the

second machine can produce two different parts (denoted by part2 and part3), and the

third machine produces a new part (denoted by part12) out of part1 and part2 provided

by the first and the second machine. The scaling parameter is the initial number of raw

parts for each machine.

The current version of the multilevel algorithm uses a fixed ordering of the aggre-

gations. For the experiments, the ordering of submodels is always (part2, part1, part12,

part3) for the generation of the MTBDD. Therefore, the aggregation levels for scaling

5 − 7 are (47,34,15), scalings 8 and 9 use (59,43,19).

The results in Table 1 show that the intermediate sparse matrix version (MLS) ac-

celerates the symbolic multilevel algorithm (ML) by the factors (2.52, 2.05, 1.85, 1.76,

1.40). This is due to the 32 (scalings 5-7) or 40 (scaling 8 and 9) additionally replaced

MTBDD levels. The MLS algorithm always outperforms the JOR algorithm, even in

the case where all MTBDD variable levels were substituted by sparse matrices. The

speedup factors from fully-sparse JOR to MLS are (1.52, 1.75, 2.02, 2.02, 1.88), which

shows the superiority of the multilevel principle. The memory consumption of ML and

MLS is not higher than the memory consumption of JOR. This is due to the fact, that in

our implementation, aggregation information is stored within the second iteration vec-

tor of the JOR smoother of the fine system, therefore memory for storing the aggregated

systems is “for free”. Overall, the experiments show that the FMS model can be solved

efficiently by the multilevel algorithm.

4.2 Tandem Queueing Network

This example is also one of the standard benchmark case studies which are available

from the PRISM web page [13] and is based on the model published in [6]. The model

consists of two queues, the first one is a M/Cox2/1, the second one a M/M/1 queue,

both of the same capacity. The scaling parameter is the capacity of the queues.

The PRISM specification consists of two submodels, namely the two queues. If only

submodel-wise aggregation were applied, the multilevel algorithm would degenerate to

a two-level algorithm. In this case, the aggregated matrix would be very small and the

multilevel corrections could not efficiently contribute to the solution phase. Therefore,

for every experiment with the tandem model, two aggregation levels were used.

The results in Table 2 show that the speedup from (ML) to the intermediate sparse

matrix version (MLS) is (1.13, 1.08, 1.03, 1.03), Such low speedup had to be expected,

as there are only four MTBDD levels additionally replaced by the MLS algorithm.

The total speedup of the MLS algorithm compared to the fully-sparse JOR algo-

rithm is (1.10, 1.90, 2.11, 2.46). For scaling parameters 200 and 400, the aggregation

scaling states transitions algorithm ML- steps variable sparse residual memory time

cycles levels levels (kB) (s)

5 152712 1111482 ML(47,34,15) 28 224 55 9 3.3086 · 10−11 4279.2 38.99

MLS(47,34,15) 28 224 55 41 3.3086 · 10−11 4437,4 15.46

JOR - 996 55 27 5.5554 · 10−10 4789.8 34.87

JOR - 996 55 55 5.5554 · 10−10 8523.2 23.45

6 537768 4205670 ML(47,34,15) 31 248 55 9 4.3858 · 10−11 11985.5 123.46

MLS(47,34,15) 31 248 55 41 4.3858 · 10−11 12285.0 60.21

JOR - 1189 55 24 3.9511 · 10−10 12586.2 147.74

JOR - 1189 55 55 3.9511 · 10−10 28554.3 105.66

7 1639440 13552968 ML(47,34,15) 34 272 55 9 1.7333 · 10−11 32838.8 362.97

MLS(47,34,15) 34 272 55 41 1.7333 · 10−11 33365,9 195.71

JOR - 1385 55 22 3.0842 · 10−10 33017.4 528.45

JOR - 1385 55 55 3.0842 · 10−10 86777.4 394.76

8 4459455 38533968 ML(59,43,19) 37 296 70 12 3.2604 · 10−11 85696.0 1127.32

MLS(59,43,19) 37 296 70 52 3.2604 · 10−11 86567.4 641.90

JOR - 1582 70 24 2.4266 · 10−10 85035.1 1759.28

JOR - 1582 70 70 2.4266 · 10−10 239493.2 1297.75

9 11058190 99075405 ML(59,43,19) 41 328 70 12 1.3347 · 10−11 205011.8 2813.31

MLS(59,43,19) 41 328 70 52 1.3347 · 10−11 206017.9 2012.56

JOR - 1782 70 24 1.9119 · 10−10 204209.8 4834.75

JOR - 1782 70 70 1.9119 · 10−10 601256.2 3775.74

Table 1: Empirical results for the FMS model

information does not fit into the space provided by the second JOR iteration vector of

the fine system, so slightly more memory is consumed than for the JOR with moderate

sparse matrix level. For scaling parameters 600 and 800 the aggregation information

fits in the second iteration vector, so the memory requirement is lower than for the JOR

variants. In every case fully sparse JOR has the highest memory consumption.

4.3 Multi server multi queue model (MSMQ)

This third case study follows exactly the model published in [1]. A similar model had

been used in the context of a multilevel algorithm for hierarchical Kronecker structures

in [2]. It consists of five clients which are served by two servers in a round robin manner.

We use the same parameter set as used in [2], that is, λ = (0.075, 0.075, 0.225, 0.75, 1.2)
for the arrival rates to the queues, service rate ω = 10.0 and walk rate µ = 1.0. Service

and walk are of infinite server type, whereas the arrivals are of single server type.

The results are shown in Table 3, where the “scaling parameter” column has a

special meaning: One configuration uses some extra MTBDD variables for the high-

level structure, that is, the distribution of the two servers to the clients, as proposed

in [2] (denoted by HLM). The other configuration uses only the synchronised queuing

components without additional MTBDD variables for the high-level structure (denoted

by STD). The ordering of submodels is (high-level, client1, client2, client3, client4,

client5) for HLM and (client1, client2, client3, client4, client5) for STD. For all exper-

iments we use submodel-wise aggregation of one or more submodels per aggregation

step. The high-level submodel uses 10, all the clients use 7 MTBDD variables. For both

scaling states transitions algorithm ML- steps variable sparse residual memory time

cycles levels levels (kB) (s)

200 80601 280599 ML(16,12) 170 1360 17 2 3.4694 · 10−18 2414.2 87.22

MLS(16,12) 170 1360 17 6 3.4694 · 10−18 2417.4 76.99

JOR - 3670 17 2 2.2204 · 10−16 1426.4 114.4

JOR - 3670 17 17 2.2204 · 10−16 2601.1 84.36

400 321201 1121199 ML(17,13) 339 2712 19 3 2.2204 · 10−16 6366.9 476.17

MLS(17,13) 339 2712 19 7 2.2204 · 10−16 6370.1 442.46

JOR - 7389 19 4 5.5511 · 10−17 5657.2 949.0

JOR - 7389 19 19 5.5511 · 10−17 10350.1 841.76

600 721801 2521799 ML(17,13) 695 5560 21 5 1.1102 · 10−16 12715.6 1463.42

MLS(17,13) 695 5560 21 9 1.1102 · 10−16 12718.7 1421.25

JOR - 11130 21 15 2.2204 · 10−16 13517.5 3055.40

JOR - 11130 21 21 2.2204 · 10−16 23255.7 2998.17

800 1282401 4482399 ML(17,13) 842 6736 21 5 6.9388 · 10−18 22569.0 3064.44

MLS(17,13) 842 6736 21 9 6.9388 · 10−18 22573.2 2979.68

JOR - 14880 21 15 1.1102 · 10−16 23443.7 7465.32

JOR - 14880 21 21 1.1102 · 10−16 41315.7 7343.33

Table 2: Empirical results for the Tandem model

STD and HLM, we experimented with different sets of aggregation levels, as indicated

by the “algorithm” column of Table 3.

In the STD case, MLS accelerates ML by (1.63, 1.63). For HLM, the speedup of

MLS over ML amounts to (1.85, 1.90, 1.79), as there are more levels to traverse. In

both cases, when each submodel is aggregated separately, the memory consumption of

the multilevel algorithms is about one megabyte higher than the memory consumption

of JOR, as for this model the aggregation information cannot be “hidden” within the

second iteration vector of the JOR smoother.

In our experiments, we found no parameter set where the multilevel algorithms

performed better than the standard Jacobi Overrelaxation method. It is remarkable that

the multilevel algorithms require fewer iterations than JOR (as expected), but due to the

multilevel overhead, they still perform more slowly than JOR. However, the positive

results published in [2] are probably due to the fact that there a cyclic or dynamic

change of the multilevel aggregation ordering was employed, a feature which is not

currently available with our own implementation.

The fewest multilevel cycles are required by the (39,25,11) aggregation level set

for HLM, where only the high-level submodel is not aggregated in the coarsest system.

It seems that this model is too small to apply the MTBDD-based multilevel algorithm

successfully.

5 Conclusion and future work

This paper demonstrated how an improvement of the data structure can considerably

speed up the numerical solution of Markov chains. Working with a symbolic MTBDD-

based representation of the rate matrix and employing the well-known multilevel so-

lution method, the new method which we presented consists of replacing parts of the

scaling states transitions algorithm ML- steps variable sparse residual memory time

cycles levels levels (kB) (s)

HLM 358560 2135160 ML(39,32,25,18,11) 51 408 45 7 1.9872 · 10−9 8131.7 120.79

MLS(39,32,25,18,11) 51 408 45 35 1.9872 · 10−9 8174,7 65.12

ML(39,25,11) 44 352 45 7 3.1295 · 10−9 7671.8 99.52

MLS(39,25,11) 44 352 45 35 3.1295 · 10−9 7845,4 52.37

ML(39,25) 49 392 45 7 2.2471 · 10−9 7671.8 112.03

MLS(39,25) 49 392 45 21 2.2471 · 10−9 7756,3 62.62

JOR - 663 45 26 8.9223 · 10−9 7162.5 33.05

JOR - 663 45 45 8.9223 · 10−9 15134.2 29.87

STD 358560 2135160 ML(29,22,15,8) 51 408 35 7 2.0104 · 10−9 7888.3 105.07

MLS(29,22,15,8) 51 408 35 28 2.0104 · 10−9 7914.0 64.19

ML(29,15) 48 384 35 7 1.9999 · 10−9 7544.2 95.98

MLS(29,15) 48 384 35 21 1.9999 · 10−9 7620.8 59.05

JOR - 663 35 25 8.9223 · 10−9 6971.7 32.66

JOR - 663 35 35 8.9223 · 10−9 15047.2 30.09

Table 3: Empirical results for the MSMQ model

symbolic data structure by a specialised type of sparse matrices. Contrary to previous

approaches, the new method does not only replace boundary, i.e. bottom-most or top-

most parts of the MTBDD, but also interior parts, thereby speeding up the traversal of

the graph-based data structure and thus leading to reduced runtimes.

We found that the new method works very well on most, but not on all examples.

The degree of improvement depends, of course, on the portion of the MTBDD to be

replaced by sparse structures. This is limited on the one hand by the available memory.

On the other hand, since we only replace parts of the MTBDD that are located between

two aggregation levels, the success of the approach depends on a careful combined

choice of aggregation levels and levels to be replaced.

We are currently developing a parallelised version of the symbolic multilevel code,

targeted at multicore architectures, which promises further speedup while being widely

available on modern microprocessor architectures. Furthermore, in addition to building

the multilevel algorithm on the basis of Jacobi (or its overrelaxed variant), we plan

to also employ the pseudo-Gauss-Seidel scheme, which is known to converge faster

in many cases. However, the memory overhead is expected to be larger in that case.

Furthermore, it seems that some models (such as MSMQ) that have been investigated

in the literature, require a dynamic variation of the multilevel cycles in order to exhibit

good performance. Our current implementation is not yet capable of performing such

dynamic cycles, but this issue is also on our agenda for future work.

Acknowledgements: The authors would like to thank Cristian Cioriia from the Univer-

sity of Craiova, Romania, who did part of the implementation work during his stay as

an exchange student at the Universität der Bundeswehr München [4].

The authors would also like to thank Deutsche Forschungsgemeinschaft (DFG)

which supported this work under grants SI 710/2 and SI 710/5.

References

1. M. Ajmone-Marsan, S. Donatelli, and F. Neri. GSPN models of Markovian multiserver

multiqueue systems. Performance Evaluation, 11:227–240, May 1990.

2. P. Buchholz and T. Dayar. Comparison of Multilevel Methods for Kronecker-based Marko-

vian Representations. Computing, 73(4):349–371, 2004.

3. G. Ciardo and K. Trivedi. A decomposition approach for stochastic reward net models.

Performance Evaluation, 18(1):37–59, 1993.

4. C. Cioriia. Analysis of large Markov models based on symbolic data structures. Gradua-

tion project, Universität der Bundeswehr München, Institut für Technische Informatik, and

University of Craiova, June 2007.

5. S. Derisavi, P. Kemper, and W. H. Sanders. Symbolic state-space exploration and numerical

analysis of state-sharing composed models. In Proc. of the 4th Int. Conf. on the Numerical

Solution of Markov Chains (NSMC ’03), pages 167–189, Urbana, IL, September 2003.

6. H. Hermanns, J. Meyer-Kayser, and M. Siegle. Multi terminal binary decision diagrams to

represent and analyse continuous-time Markov chains. Proc. 3rd Int. Workshop on the Num.

Sol. of Markov Chains, pages 188–207, 1999.

7. G. Horton and S. Leutenegger. A Multi-Level Solution Algorithm for Steady-State Markov

Chains. ACM Performance Evaluation Review, 22(1):191–200, May 1994.

8. K. Lampka and M. Siegle. Analysis of Markov Reward Models using Zero-suppressed

Multi-terminal BDDs. In 1st. Int. Conf. on Performance Evaluation Methodologies and Tools

(Valuetools), Pisa, Italy, ACM press, ISBN 1-59593-504-5 (CD edition), 10 pages, 2006.

9. R. Mehmood. Serial disk-based analysis of large stochastic models. In C. Baier,

B. Haverkort, H. Hermanns, J-P. Katoen, and M. Siegle, editors, Validation of Stochastic

Systems: A Guide to Current Research, volume 2925 of Lecture Notes in Computer Science

(Tutorial Volume), pages 230–255. Springer, 2004.

10. A. Miner and G. Ciardo. Efficient reachability set generation and storage using decision

diagrams. In H. Kleijn and S. Donatelli, editors, Application and Theory of Petri Nets 1999,

pages 6–25, Williamsburg, VA, USA, 1999. Springer, LNCS 1639.

11. A. Miner and D. Parker. Symbolic representations and analysis of large probabilistic sys-

tems. In C. Baier, B. Haverkort, H. Hermanns, J-P. Katoen, and M. Siegle, editors, Validation

of Stochastic Systems: A Guide to Current Research, volume 2925 of Lecture Notes in Com-

puter Science (Tutorial Volume), pages 296–338. Springer, 2004.

12. D. Parker. Implementation of symbolic model checking for probabilistic systems. PhD thesis,

School of Computer Science, Faculty of Science, University of Birmingham, 2002.

13. PRISM website. http://www.prismmodelchecker.org/.

14. G. Rubino and B. Sericola. Sojourn Times in Finite Markov Processes. Journal of Applied

Probability, 26(4):744–756, Dec 1989.

15. J. Schuster and M. Siegle. A Multilevel Algorithm based on Binary Decision Diagrams. In

K. Al-Begain, A. Heindl, and M. Telek, editors, 14th Int. Conf. on Analytical and Stochastic

Modelling Techniques and Applications (ASMTA’07), pages 129–136, June 2007.

16. P. Schweitzer. Aggregation Methods for Large Markov Chains. In G. Iazeolla, P. Courtois,

and A. Hordijk, editors, Math. Computer Performance and Reliability. Elsevier, 1984.

17. M. Siegle. Advances in model representation. In L. de Alfaro and S. Gilmore, editors,

Process Algebra and Probabilistic Methods, Joint Int. Workshop PAPM-PROBMIV 2001,

pages 1–22. Springer, LNCS 2165, September 2001.

18. W.J. Stewart. Introduction to the numerical solution of Markov chains. Princeton University

Press, 1994.

