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ABSTRACT
We propose a novel modelling concept for stochastic con-
trol on systems which are hierarchically composed of sub-
systems with discrete states and stochastic continuous time.
The global control structure (called decision tree) is based
on the model hierarchy and can be defined by an interleav-
ing of local control with concurrency. For model specifica-
tion we review the language LARES which comprises an
object-oriented modelling design in order to specify modu-
lar and hierarchically structured stochastic systems. In or-
der to embed the control structure into the LARES frame-
work we describe the language extension LARES.de. The
main focus of the paper is a transformation to a Markov De-
cision Process induced by an agent-based view on the con-
trol structure. This defines the concrete language semantics
and makes state-based system optimization accessible.
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1 Introduction

In highly dependable or safety-critical systems, where
components are subject to failures, the question of optimal
control arises. In which situations should preventive main-
tenance be performed? If several components have failed,
which one should be repaired first in order to maximize
the lifetime of the overall system? Markov decision pro-
cesses (MDP) constitute a suitable domain in which such
problems can be treated. However, existing modelling for-
malisms for MDPs are not suited very well to specify large
reconfigurable systems, where many components evolve
concurrently with the possibility of different interaction
patterns among them.
Therefore, in this paper, we present a modular and hier-
archical modelling formalism, which enables its users to
specify models of even very complex real systems in a clear
and concise way. Our new formalism is an extension of
the existing LARES specification language [?], which up
to now was restricted to the modelling of fully stochas-
tic systems. We chose LARES as a starting point since
it implements an object-oriented modelling concept, sep-
arating abstract descriptions from their concrete instanti-
ations, and using modularity and hierarchy together with

scoping and interface-based information flow mechanisms.
Furthermore, the LARES framework is very flexible, eas-
ily enabling different kinds of transformation and language
extensions. In this paper, we present our own extension,
called LARES.de, by introducing decisions which inter-
leave with the information flow and conserve modularity.
We also present a semantics which transforms LARES.de
models to an MDP.
The remainder of the paper is organized as follows: In Sec-
tion 2 we review the LARES language and construct a run-
ning example step by step. Section 3 describes the seman-
tics of LARES by transformation to a Markov chain. We
introduce the concept of a forward tree which incorporates
the information flow through the model. The main part in
Section 4 describes the extension LARES.de and its trans-
formation to an MDP. We show a novel hierarchical con-
cept called decision tree which describes control and reac-
tions in an interleaving manner. Section 5 briefly outlines
related work and Section 6 concludes the paper.

2 The LARES formalism

A typical LARES model consists of Behavior and
Module definitions: In general a Behavior describes
a single automaton with finite state space, whereas a
Module can instantiate Behaviors and define interac-
tion between them. A Behavior B is defined by a dis-
crete set of states SB and and two types of labelled transi-
tions

s
g−→λ s

′ and s
g

99Kw s
′

where s, s′ ∈ SB , g ∈ LB is a guard label, true ∈ LB

is a special label, w > 0 represents the weight of a Dirac
transition which fires immediately and λ > 0 the rate pa-
rameter of an exponential distribution specifying the posi-
tive delay of the transition. In order to treat different tran-
sition distribution types homogenously, we define the set
of all transitions TB containing tuples (s, g, δ, s′), where
δ ∈ {Dirac(w),Exp(λ)} denotes the distribution of the g-
labelled transition from s to s′. Define further

SB(g) :=
{
s | ∃s′ ∃δ : (s, g, δ, s′) ∈ TB

}
as states in SB from which a g-labelled transition can take
place, regardless of the transition type.



1 Behavior B(mu) {
S t a t e A, F , T
T r a n s i t i o n s from A

i f <t r u e>→ F , de lay e x p o n e n t i a l 0 . 1
T r a n s i t i o n s from F

6 i f <rep>→ T , de lay e x p o n e n t i a l mu
T r a n s i t i o n s from T

i f <t r u e>→ A, weight 9 . 0
i f <t r u e>→ F , weight 1 . 0

}

A

<true> <true>
0.1 9.0

<rep>

<true>
1.0

F T

Figure 1. Definition of a Behavior and its automaton
representation. Solid lines indicate transitions with expo-
nential delay, whereas dashed lines indicate Dirac transi-
tions.

As an example consider the Behavior definition in Fig-
ure 1 describing a component of a system which can be
active (A), failed (F) or in the test state (T). If the compo-
nent is active it can fail after an exponentially distributed
time with rate 0.1. From the failed state the component
can be repaired by triggering the guard label <rep> which
takes an exponentially distributed time with parametrized
rate mu moving the Behavior B to the test state in or-
der to check if a repair was successful or not. From the
local viewpoint of the Behavior B a repair is successful
with probability 0.9, which is computed by normalizing the
weights from the state T to define a probability distribution
over states.
In order to build up a system specification out of
Behavior definitions one can define an abstract Module
definition which instantiates a set of Behaviors. Fur-
thermore a Module can instantiate other Module defini-
tions. In this way it is possible to establish a hierarchical
tree structure of the model specification where the leaves of
the hierarchy are given by instantiated Behaviors. The
root module definition in this hierarchy has to be declared
by a System keyword. As an example consider a system
main which consists of three components C[1], C[2]
and C[3], where C[1] and C[2] inherit their state space
from Behavior B and C[3] is a container component
which comprises two subcomponents SC[1] and SC[2]
(which also inherit from B). Figure 2 shows a possible spec-
ification of this hierarchical model with LARES.
Since LARES is a specification language suited especially
for hierarchically structured systems, it comes along with
scoping constraints on the information flow through the
model hierarchy. For this reason one can make assertions
about states by logical expressions:

• Condition statements can be used in order to com-
bine, aggregate and lift states or other conditions to-
wards the root level of the system hierarchy.

• guards and forward statements can be used in
order to trigger guarded transitions of instantiated
Behavior definitions. A guards statement repre-
sents the entry point of a triggering event determined
by a condition and forward statements propagate

System main {
I n s t a n c e C[ 1 ] of Comp ( 2 . 0 ) i n i t i a l l y a c t i v e
I n s t a n c e C[ 2 ] of Comp ( 5 . 0 ) i n i t i a l l y a c t i v e
I n s t a n c e C[ 3 ] of Cont ( 3 . 0 ) i n i t i a l l y a c t i v e

5
Condit ion sysF = C [ 1 ] . F & C [ 2 ] . F & C [ 3 ] . F

C [ 1 ] . F & ! sysF guards C[1].< r e p a i r>
C [ 2 ] . F & ! sysF guards C[2].< r e p a i r>

10 C [ 3 ] . F & ! sysF guards C[3].< r e p a i r>
}

Module Comp( r e p r a t e ) : B(mu= r e p r a t e ) {
Condit ion F = B . F

15
I n i t i a l a c t i v e = B .A

forward <r e p a i r> to B.< rep>
}

20
Module Cont ( r e p r a t e ) {

I n s t a n c e SC [ 1 ] of Comp( r e p r a t e = r e p r a t e )
I n s t a n c e SC [ 2 ] of Comp( r e p r a t e = r e p r a t e )

25 Condit ion F = SC [ 1 ] . F | SC [ 2 ] . F

I n i t i a l a c t i v e = SC [ 1 ] . a c t i v e , SC [ 2 ] . a c t i v e

forward <r e p a i r> {
30 i f SC [ 1 ] . F to SC[1] .< r e p a i r>

i f SC [ 2 ] . F to SC[2] .< r e p a i r>
}

}

main

C[1] C[2] C[3]

B B

B B SC[1] SC[2]

Figure 2. A hierarchically structured LARES model
(top) with information flow through the instance tree (bot-
tom): Behavior states are lifted towards the root main
via Condition statements whereas guard labels are
pushed towards the instantiated Behaviors (leaves) via
forward statements.

the event towards the addressed Behavior instances
on the leaves.

In our running example (Figure 2) we specified a system
which fails if all components C[1], C[2] and C[3] fail
(described by the condition sysF). The container itself is
a (series) system which fails if at least one of its subcom-
ponents is failed. Initially all components are active. The
guards statements are used in order to specify a repair
process for failed components. In general, guards state-
ments can be used in order to define interaction between in-
stances by specifying a dependency for guarded transitions
of one instance to states of other instances. In our case the
label <repair> will be forwarded towards the addressed
Behavior instance via forward statements. As spec-
ified above, if two components fail a race is induced be-
tween two concurring repair processes, meaning that both
components are repaired in parallel.



3 Semantics of LARES

In the following, we describe the semantics of a LARES
model by transformation to a Markov chain. [?] describes
the whole transformation workflow which is implemented
in Scala. This workflow consists of a sequence of trans-
formation steps which roughly speaking resolve the model
hierarchy, leading to a flat version of the LARES model. In
this way

• each Behavior definition residing at a leaf of the
instance tree is instantiated: by enumerating the
leaves with i = 1, . . . , n, a Behavior instance
Bi = (fqn,B) is created and characterized by its
unique fully qualified name fqn induced by hierarchi-
cal instantiation (e.g. main.C[3].SC[1].B) and a
reference to its Behavior definition B,

• all guards and forward statements are resolved to
a set of guards statements (i.e. interactions, cf. Sec-
tion 3.1) which directly trigger referenced guard labels
in Behavior instances Bi.

Instead of resolving the guards and forward statements
directly, we add in this paper an intermediate transfor-
mation step by defining a so called “forward tree”. The
LARES.de extension in Section 4 will build upon this no-
tion.
In the following we will use for shorthand notation Bi.g
resp. Bi.s in order to reference a guard label g ∈ LB resp.
a state s ∈ SB of a Behavior instance Bi = (fqn,B).
We define similarly LBi :=

{
Bi.g | g ∈ LB

}
and L̂ :=⋃n

i=1 L
Bi as the set of referenced guard labels for the in-

stance Bi resp. the set of all referenced guard labels in the
LARES model. Analogously, let SBi :=

{
Bi.s | s ∈ SB

}
and Ŝ :=

∏n
i=1 S

Bi (i.e. the cross product of all instan-
tiated Behaviors) be the composed potential state space
of the LARES model.

3.1 Forward tree

A guards or forward statement can be seen as a
set of conditional reactions (C,R), where C is a logi-
cal expression on states of Behavior instances repre-
senting a Boolean function C : Ŝ → B. The reac-
tion R represents an effect on other forward labels or
guard labels L̂ which finally can influence state transi-
tions. In our example (Figure 2) the forward state-
ment in lines 29..32 creates the conditional reactions
(SC[1].F, SC[1].<repair>) and (SC[2].F,
SC[2].<repair>). More generally, since it is also pos-
sible to model label synchronisation with LARES, R is an
abstract syntax tree with terminal nodes representing labels
and inner nodes representing operators on labels. Typically,
label operators are given by different views on synchroni-
sation of transitions. So far the operators sync, maxsync
and choose have been implemented [?]. For simplicity
and since the label operators are out of scope of this paper,

we will not enlighten the concrete semantics of these oper-
ators in this paper in full detail. In order to keep the follow-
ing algorithms as simple as possible we only deal with the
synchronisation operator sync. We will not use any label
operators in examples in this paper, s.t. the algorithms can
be understood more easily.
Roughly speaking a “forward tree”F incorporates the reac-
tion flow in the instance tree towards Behavior instances.
Figure 3 shows the forward tree for our running example.

true true SC[1].F SC[2].F

truetrue

C[1].F & !sysF

C[2].F & !sysF

C[3].F & !sysF

C[1].<repair> C[2].<repair> C[3].<repair>

SC[1].<repair> SC[2].<repair>B.<rep> B.<rep>

B.<rep> B.<rep>

Figure 3. Forward tree for the LARES example model

A forward tree F defines in its leaf nodes possible transi-
tions (in Behavior instances), which can be guarded by
some guard label. The inner nodes can have different node
types: branching nodes coming from forward statements
and synchronisation nodes coming from a forward to
sync(...) statement. The root node is of branching
type and realizes all guards statements. Some subtrees of
F describe an “interaction” between Behavior instances,
comprising branching or synchronisation of conditional re-
actions. The conditions on edges of these subtrees repre-
sent restrictions of interactions. If there are no synchroni-
sation nodes these subtrees are just paths in F .

Definition (Interaction): Let B = {Bi | i = 1, . . . , n}
be the set of Behavior instances of a LARES model with
Ŝ =

∏n
i=1 S

Bi and L̂ =
⋃n
i=1 L

Bi . An interaction on B is
a tuple γ = (C,R) where C : Ŝ → B represents a logical
expression and R ⊆ L̂ is a set of guard labels.

Note that we use the same notation (C,R) for conditional
reactions and interactions, since subtrees ofF consisting of
conditional reactions (represented as nodes and edges) are
“flattened” into interactions. Roughly speaking an interac-
tion describes a transition on the composed potential state
space Ŝ: The conditional part C represents a constraint on
composed source states while the reactive part R ⊆ L̂ de-
scribes a synchronous transition on a subset of Behavior
instances to a composed target state.
Reachability analysis needs to be performed, in order to
generate the state graph. In a first step we “flatten” F to
a set Igrd of (guarded) interactions. The second step per-
forms a depth-first search on the composed potential state
space Ŝ for generating the reachable subset of Ŝ by using
Igrd together with the concurrent unguarded process.



3.2 Flattening the forward tree

The detailed flattening procedure is described in Algorithm
1 and returns a set of (guarded) interactions

Igrd := FLATTEN(F).

Algorithm 1 Flattening the forward tree
Input: subtree T of the forward tree F
Output: interactions Igrd = {(Ck, Rk) | k ∈ K}

1: function FLATTEN(T )
2: v := root of T
3: if v is terminal then
4: let Bi.g be the guard label referenced by v
5: M :=

{
(C,Bi.g) | C ∈ SBi(g)

}
6: else
7: for all children v′ of v do
8: C := condition on edge (v, v′)
9: Tv′ := subtree of T with root v′

10: Mv′ := FLATTEN(Tv′)
11: Mv′ := {(C ∧ Ck, Rk) | (Ck, Rk) ∈Mv′}
12: if v is branching node then
13: M :=

⋃
{Mv′ | v′ child of v}

14: else if v is synchronisation node then
15: P :=

∏
{Mv′ | v′ child of v}

16: M :=
⋃
{AND(γ) | γ ∈ P}

17: M := {(C,R) ∈M | C 6≡ false} . filter M
18: return M

In order to explain this algorithm, let’s assume for the mo-
ment that there are no synchronisation nodes, i.e. all in-
ner nodes of F are branching nodes. In this case for each
leaf node of F an interaction γ = (C,R) is generated as
follows: In lines 3..5 the referenced guard label Bi.g in
each leaf node is resolved by extracting SBi(g) (i.e. source
states of Behavior instance Bi under guard label g) into
conditions C. The reactive part consists only of the guard
label Bi.g itself. In lines 7..11 each parent node v con-
juncts to the conditional part Ck of its children v′ the con-
dition C residing on the edge (v, v′) and leaves the reac-
tive part Rk untouched. In the case that for each refer-
enced guard label Bi.g there is only one source state (i.e.∣∣SBi(g)

∣∣ = 1), each leaf node would generate exactly one
interaction. In general

∣∣Igrd∣∣ is the sum over all
∣∣SBi(g)

∣∣
with Bi.g a referenced guard label (if there are no synchro-
nisation nodes). Applying the flattening procedure to our
running example we get (modulo namespace, resolution of
Condition statements and tautological simplifications of
the logical expression C):

( SC[1].F & (C[3].F & !sysF),

{main.C[3].SC[1].B.<rep>} ) ∈ Igrd

In order to deal with synchronisation nodes we lift the
conjunction of logical expressions on interactions: Let

γ = (γ1, . . . , γn) with γi = (Ci, Ri). Define

AND(γ) := {(C1 ∧ · · · ∧ Cn, R1 ∪ · · · ∪Rn)} .

A synchronisation of two guard labels B1.g1 and B2.g2 in-
duces a synchronous state transition of both instances B1

and B2 if and only if both of them are able to trigger the
guards g1 resp. g2. This fact is realized by applying AND
on both interactions γi = (Ci, {Bi.gi}). In this case the
reactive part is the set {B1.g1, B2.g2} which is responsible
for the synchronicity of the transition.
In order to handle the concurrent unguarded process, i.e.
transitions in Behavior instances triggered by the guard
label <true>, we define the unguarded interactions

Iungrd :=
n⋃
i=1

{
(C,R) | C ∈ SBi(true), R = {Bi.true}

}
and the complete set of interactions as

I := Igrd ∪ Iungrd.

3.3 Reachability for LARES

Each interaction γ = (C,R) ∈ I is resolved to a set of
transitions between composed states s ∈ Ŝ as described
in Algorithm 2. If s = (s1, . . . , sn) satisfies C then a
guard label Bi.g ∈ R induces a set of transitions from
si ∈ SBi to some state s′i ∈ SBi with distribution type
δi ∈ {Dirac(w),Exp(λ)}. All instances which do not syn-
chronize remain in their state and are assigned an unspec-
ified distribution NA. Function SYNCDISTR(δ1, . . . , δn)
computes the “joint” (delay) distribution for the synchro-
nized state transition out of component-wise distributions
δi. Since synchronisation is out of scope in this paper we
omit the concrete definition for SYNCDISTR. Originally
the LARES semantics is based on the stochastic process
algebra CASPA [?] and therefore carries over its synchro-
nisation semantics [?].
The reachability analysis (cf. Algorithm 3) filters out all
transitions with unspecified distributions NA, since they
do not contribute to a fully specified state transition. Lines
5..6 describe the so-called maximal progress assumption
[?, ?], which indicates that Dirac transitions are not delayed
and therefore any concurring (exponentially) delayed tran-
sition is discarded from s. Finally all remaining transitions
are applied to the state s and s is marked as done and the
reachability recurses on states on the fringe of the search
space.
As an example, Figure 4 shows the application of the reach-
ability algorithm to our running example (Figure 2) from
the viewpoint of the modeller. Here a state s is encoded by:

s = (s1, s2, s3, s4) ∈ SC[1] × SC[2] × SSC[1] × SSC[2],

e.g. s = (A, F, F, A) represents that the components C[1]
and SC[2] are active whereas C[2] and SC[1] are al-
ready failed. From this state the conditions of two guards



Algorithm 2 Generation of transitions
Input: state s = (s1, . . . , sn), interaction γ = (C,R)
Output: set of transitions between composed states

1: function GENERATETRANSITIONS(s, γ)
2: if s satisfies C then
3: for i = 1, . . . , n do
4: if ∃Bi.g ∈ R then
5: ti =

{
(s′i, δi) | (si, g, δi, s′i) ∈ TBi

}
6: else ti := {(si, NA)}

7: t :=

{
(s′, δ)

∣∣∣∣ s′ = (s′1, . . . , s
′
n), (s

′
i, δi) ∈ ti,

δ = SYNCDISTR(δ1, . . . , δn)

}
8: else t := ∅

Algorithm 3 Reachability
Input: (initial) state s = (s1, . . . , sn), interactions I
Output: reachable state space

1: function REACHABILITY(s, I)
2: mark s as done
3: t :=

⋃
γ∈I GENERATETRANSITIONS(s, γ)

4: t := {(s′, δ) ∈ t | δ 6= NA}
5: tDirac = { (s′, δ) ∈ t | δ = Dirac(w) }
6: if tDirac 6= ∅ then t := tDirac

7: M := {s} × t
8: N := {s′ | (s′, δ) ∈ t, s′ not done}
9: return M ∪

⋃
s′∈N REACHABILITY(s′, I)

statements are satisfied which finally trigger the guard la-
bel <rep> in the referenced Behavior instances. (This
corresponds to a subset of paths of the forward tree F (as
in Figure 3).) By triggering these labels the corresponding
Behavior instances can move to the test state T. Addi-
tionally there is a concurrent unguarded process running in
which the two active components C[1] and SC[2] can
still fail. Figure 4 bottom shows all potential transitions
from the state (T,T,F,F). In this case, by the maximal
progress assumption, the exponentially delayed repair tran-
sitions will not be possible.
As a last step, the result of the reachability algorithm is
transformed to a DTMC or a CTMC. The reachability re-
turns the (reachable) state space S ⊆ Ŝ with exponen-
tially delayed transitions and immediate Dirac transitions
between composed states. To obtain a DTMC, all exponen-
tially delayed transitions can be embedded or uniformized
and all weights of Dirac transitions normalized to discrete
probability distributions [?]. E.g. in Figure 4 bottom a tran-
sition to the state (A,T,F,F) will be taken with prob-
ability 0.45. For transforming the reachability result to a
CTMC, vanishing states have to be eliminated leading to a
smaller state space [?, ?].

4 Decision Extension: LARES.de

As we have seen from the running example in the last chap-
ter, a failed component will be immediately repaired, re-
gardless of when the component failed or how many other

C[3].<repair>

(A,F,F,A)

SC[1].<repair>

C[2].<repair>

B.<rep>

B.<rep>5.0

3.0

0.1 0.1

(A,T,F,A) (A,F,T,A) (A,F,F,F) (F,F,F,A)

(T,T,F,F)

(T,T,T,F) (T,T,F,T) (A,T,F,F) (F,T,F,F) (T,A,F,F) (T,F,F,F)

C[3].<repair>

SC[1].<repair> SC[2].<repair>

B.<rep> B.<rep>

3.0 3.0

9.0 9.01.0 1.0

Figure 4. Forwarding labels through the model hierarchy
for the running example model. Arrows with solid lines
indicate exponential transitions and dashed lines indicate
Dirac transitions.

components need to be repaired in parallel. Assume now
that we want to model that only one component can be re-
paired at a time. Furthermore, in a state in which several
components are failed we want to find an optimal repair as-
signment: Which component shall be repaired first in order
to optimize some system measure (e.g. the life time of the
system)? These and similar kinds of problems can be typ-
ically modelled by Markov Decision Processes, which is a
well-established formalism for state-based optimization.

Definition (MDP): A Markov Decision Process (MDP)
is a structure (S,Act, e, P, ν,R) with discrete state space
S, initial distribution ν over S, discrete action set Act with
enabling function e(s) ⊆ Act for a state s, transition prob-
ability P (s′ | s, a) for moving from s by taking action
a ∈ e(s) to s′ and gaining a reward R(s, a) ∈ R.

The semantics of an MDP can be roughly described
through the view of an agent who, being in state s, decides
for action a in order to optimize some objective. Depend-
ing on the type of his objective he can use the reward in
order to evaluate his chosen action a. Typical types for ob-
jectives coming along with MDPs can be classified by the
length of the horizon (finite or infinite) and the type of re-
ward accumulation (discounted, undiscounted or average)
[?]. There is a plethora of optimization methods which can
be roughly classified in dynamic programming (value iter-
ation and policy iteration), linear programming and rein-
forcement learning [?, ?].
Since LARES offers modularity and hierarchy concepts it
is well-suited to be extended towards MDPs. Due to the ex-
ponential delays used in the LARES language, one would
obtain a continuous-time model, which however can be
mapped on a discrete-time MDP. In the following, we ex-
tend LARES with an action structure.
In order to specify actions, we enrich the forwarding



mechanism of LARES by adding the modifier keyword
decision to guards and forward statements. In this
way the modeller can define a control structure on the level
of modules. In order to show the arising semantics we mod-
ify our running example as shown in Figure 5. From this
specification a so-called “decision tree”D is constructed as
can be seen in Figure 6.

System main {
2 . . .

Condit ion oneF = C [ 1 ] . F | C [ 2 ] . F | C [ 3 ] . F

oneF & ! sysF guards d e c i s i o n <dorep>
oneF & ! sysF guards d e c i s i o n <norep>

7
forward <dorep> {

i f C [ 1 ] . F to d e c i s i o n <repC [1]>
i f C [ 2 ] . F to d e c i s i o n <repC [2]>
i f C [ 3 ] . F to d e c i s i o n <repC [3]>

12 }

forward <norep> {}

forward <repC [1]> to C[1].< r e p a i r>
17 forward <repC [2]> to C[2].< r e p a i r>

forward <repC [3]> to C[3].< r e p a i r>
}

Module Comp( r e p r a t e ) : B(mu= r e p r a t e ) {
22 . . .

forward <r e p a i r> to B.< rep>
}

Module Cont ( r e p r a t e ) {
27 . . .

forward <r e p a i r> {
to d e c i s i o n <repSC [1]>
to d e c i s i o n <repSC [2]>

}
32

forward <repSC [1]> i f SC [ 1 ] . F to SC[1] .< rep>
forward <repSC [2]> i f SC [ 2 ] . F to SC[2] .< rep>

}

Figure 5. The running example extended by decisions

A decision tree extends the notion of forward tree with a
new type of edges representing decisions. The (standard)
edges carried over from the forward tree will be called con-
current edges.
Interpretation of the decision tree in Figure 6: If the system
is working and some component C[i] is failed (the condi-
tion oneF & !sysF is satisfied) the decisions <dorep>
and <norep> get activated. In contrast to concurrent
edges which roughly speaking (finally) induce a probabilis-
tic choice between the outgoing paths inD, these decisions
behave non-deterministically. This means that from the
perspective of an agent residing in some system state and
faced with a set of decisions, he has to “decide” which path
in D to follow. In case the subtree with root <dorep>
is chosen and depending on which component C[i] has
failed, the decisions <repC[i]> are activated. In this
way the control for the repair process is refined, i.e. the
agent has to decide as next which of the components C[i]
shall be repaired. The chosen label <repC[i]> is for-
warded by C[i].<repair> from the main module to

<dorep> <norep>

oneF & !sysF oneF & !sysF

C[1].F
C[2].F

C[3].F

<repC[1]> <repC[2]> <repC[3]>

true truetrue

C[1].<repair> C[2].<repair> C[3].<repair>

true true true true

B.<rep> B.<rep> <repSC[1]> <repSC[2]>

SC[2].FSC[1].F

B.<rep> B.<rep>

Figure 6. Decision tree D for the LARES.de running ex-
ample. Concurrent edges are drawn by solid lines whereas
decisions are represented by curly lines.

the component modules Comp resp. Cont, which can de-
fine on their own a control process, as it is done in the con-
tainer module Cont. In this way the modularity aspects
of LARES can be used in order to refine decisions inside
submodules.
Normally, the decision to repair one of the components
SC[i] should be only possible if the component itself has
failed. However, the corresponding conditions SC[i].F
can be found in Figure 5 lines 33..34 and not in lines
29..30 as one would expect. This is due to didactical
reasons only, in order to show a semantical difference in
both specification possibilities. Let’s assume that SC[1]
has failed and SC[2] is active. As specified, both de-
cisions <repSC[1]> and <repSC[2]> get activated.
If the agent chooses <repSC[1]> then the guard label
SC[1].B.<rep> will be finally triggered since the con-
dition SC[1].F is satisfied and a state transition for repair
can take place. However a choice for <repSC[2]> will
not induce an additional state transition since SC[2].F is
not satisfied. This means that by choosing <repSC[2]>
in such a state, only the concurrent unguarded process
could take place (i.e. some other component fails). In
the other case, if both of these conditions were specified
in lines 29..30, as expected, then <repSC[2]> would not
be selectable for the agent.
In order to define the concrete semantics of LARES.de we
transform it to an MDP. Therefore we derive from the de-
cision tree a set of actions a ∈ Act together with their en-
abling function e : S → P(Act). Roughly speaking an
action a is represented as a subtree R of D s.t. each inner
node v in R has at most one outgoing decision. We explain
the transformation by dividing it into the 3 steps: comple-
tion, splitting and enabling.

4.1 Completion

This step is a sort of preprocessing for the main splitting
part. Consider in our example that we change the condi-
tion oneF to be true in every composed state. Then from



state (A,A,A,A) the agent could still choose the decision
<dorep>, but no subdecision <repC[i]> would be ac-
tivated. Therefore the agent would be stuck in the node
<dorep> and wait until some unguarded transition hap-
pens. In order to handle such cases in the splitting part
consistently we compute the so-called “completion” Dc of
the decision tree D. This means that we append to each
inner node a child node <noDec> which incorporates the
possibility to choose no decision. Thereby the agent can
decide for <noDec> if and only if there is no other deci-
sion activated: For a non-terminal node v of D with chil-
dren vk (k ∈ K), reached by some decision edge labelled
with the condition Ck, define

c :=
∧
k∈K

Ck =
∨
k∈K

Ck

(bar indicates logical negation equivalent to the LARES
!-operator) as the condition of the decision edge
(v,< noDec >). Figure 7 illustrates the completion pro-
cedure by example.

Completion
A B

<a> <b>

C D E

<c>

A B !A&!B

<a> <b> <noDec>

true
C

<noDec> <c>

D E !D

<d> <e> <noDec><d> <e>

Figure 7. Completion of a decision tree: Each inner node
gets a <noDec> child completing the logical expressions
for decisions to true.

4.2 Splitting

The splitting of the completed decision tree Dc to a set of
split decision subtrees R of Dc is shown in Algorithm 4.
General idea behind this algorithm: The semantics distin-
guishes between concurrent edges and decision edges in
the following way: If an agent resides in some node v and
is faced with a set of decisions then the current subtree T
(with root v) is split into a set of trees, s.t. there is exactly
one outgoing decision edge from v. Therefore all already
split subtrees Rv′ (of a child v′ of v) which are reached
by some decision edge are collected into a set D (lines
10..11). All concurrent edges induce a branching, since
there is no decision yet visible and might possibly appear
later (in some subtree of Dc). Since the splitting of con-
current edges is left yet open we take the product C over
all these concurrent subtrees (lines 12..13). Therefore each
combination p ∈ P = D×C (line 14) consists of exactly
one subtree which is directly reached by a decision edge
from v and a set of subtrees reached by some concurrent
edge.

Algorithm 4 Splitting of a decision tree D
Input: subtree T of a decision tree D
Output: set of subtrees R of the decision tree D

1: function SPLIT(T )
2: v := root of T
3: if v is terminal then
4: R := {v}
5: else
6: D := ∅, C := {()}
7: for all children v′ of v do
8: Tv′ := subtree of T with root v′

9: Rv′ := SPLIT(Tv′) . Rv′ is a set of split trees
10: if (v, v′) is decision edge then
11: D := D ∪Rv′
12: else ((v, v′) is concurrent edge)
13: C := C×Rv′
14: P := D×C
15: R := append each element of P as a subtree to v
16: carry over all node and edge labels from T to R
17: return R

Definition (Action set): Let D be a decision tree of a
LARES.de model and Dc its completion. For the trans-
formation towards an MDP we define the action set

Act := SPLIT(Dc).

An action a ∈ Act is represented (by recursion) as a sub-
tree of Dc s.t. from each inner node there is exactly one
outgoing decision.
In order to understand this algorithm in more detail we
show its application on two examples. We denote a tree
T with root v and children v′1, . . . , v

′
n recursively through

the linearized notation v(v′1, . . . , v
′
n). In the following ex-

amples we didn’t make explicit which of the nodes are
<noDec> nodes, but we assume the trees are completed.

<a> <b> <c>

<d> <e> <f> <g>

<a> <b>

<d>

<a> <b>

<e>

<b> <c>

<f> <g>

Figure 8. Splitting example 1: A completed decision tree
Dc splits into 3 actions

Example 1: (cf. Figure 8) Being in some state, an agent
is confronted with decisions <a> and <c>, where decision
<a> refines into the subdecisions <d> and <e>. Therefore



calling SPLIT on T = <a>(<d>,<e>) returns the split
subtrees

R<d> = {<d>} and R<e> = {<e>} .

Since both nodes <d> and <e> are reached by a deci-
sion it follows that D = R<d> ∪ R<e> = {<d>,<e>}
and C = {()} is the set containing the 0-tuple (repre-
senting an empty product). The split trees computes to
P = D × C = {(<d>), (<e>)} and each of them is
appended to <a>. On the root level (calling SPLIT on
T = Dc) we get similarly the split trees

R<a> = {<a>(<d>),<a>(<e>)} ,
R<b> = {<b>} and R<c> = {<c>(<f>,<g>)}

Therefore D = {<a>(<d>),<a>(<e>),<c>(<f>,<g>)}
and C = {<b>}, s.t.

P = D×C = {(<a>(<d>),<b>) ,
(<a>(<e>),<b>) , (<c>(<f>,<g>),<b>)}

and the returned result R as illustrated in Figure 8.

<a> <b> <c>

<d> <e> <f> <g>

<a> <b> <c>

<d>

<a> <b> <c>

<d> <f>

<a> <b> <c> <a> <b> <c>

<g> <e> <f> <e> <g>

Figure 9. Splitting example 2: Concurrent decisions can be
modelled by specifying an intermediate layer with concur-
rent edges.

Example 2: (cf. Figure 9) This example shows that deci-
sions can also be taken concurrently by mixing them with
concurrent edges: Being in some state, an agent chooses
the single available decision <b>. Since the nodes <a>
and <c> are reached concurrently there are possibly some
decisions inside their subtrees. The agent can not decide to
which node to move, thus this decision is left open by cre-
ating a branching of these nodes. Such a branching induces
the possibility to choose concurrently decisions residing in
subtrees of the branched nodes. In an MDP setup this cor-
responds to taking multiple actions simultaneously.
Applying this idea to our example, calling SPLIT on the
whole decision tree Dc returns

R<a> = {<a>(<d>),<a>(<e>)} ,
R<c> = {<c>(<f>),<c>(<g>)} and R<b> = {<b>}

s.t. C = R<a> × R<c> gives all combinations of already
split subtrees and D = {<b>}. The result R given by
appending all combinations of D × C to the root node is
shown in Figure 9.
Typical “basis” forms of actions already shown in the ex-
amples (Figure 8 and 9) are sequences of decisions and
branching of decisions. These basis actions can be arbi-
trarily combined to more complex actions, e.g. branching
of sequences of decisions. Since decision trees extend for-
ward trees from LARES it is also possible to synchronize
reactions (e.g. state transitions). Thus it is possible to de-
fine both

• actions with synchronous effects (e.g. sync node fol-
lowing a decision) and

• synchronous actions (decisions residing in subtrees of
a sync node).

4.3 Enabling

We still need to define the enabling function e : S →
P(Act) which describes for each state s ∈ S which ac-
tions e(s) ⊆ Act can be chosen in that state. Syntactically
the enabling of an action is given by conditions in guards
decision resp. forward to decision statements.
By looking at the running example in Figure 5 together
with the arising decision tree in Figure 6 the decision
<dorep> is activated if the condition oneF & !sysF
holds. If this is the case then <repC[1]> is activated
if additionally the condition C[1].F holds. But there
are also concurrent edges which finally can end up in fur-
ther decision edges as can be seen in the edge between
<repC[3]> and C[3].<repair>.

Definition (Enabling): Let s be a composed state and
a ∈ Act. We say that

• a is partially enabled in s if s fulfills all conditions
residing on decision edges of a. Denote ep(s) as all
partially enabled actions a in s and epa as the predicate
describing the partial enabling.

• a is (completely) enabled in s if a ∈ ep(s) and a in-
duces at least one transition in the composed model.
Denote e(s) as all enabled actions a in s.

As an example Table 1 shows the partial enablings epa after
splitting the completed tree in Figure 7.

action a partial enabling epa
<a>(<noDec>,<c>) A ∧ true
<b>(<d>,<e>) B ∧D
<b>(<noDec>, <e>) B ∧D
<noDec> A ∧B

Table 1. Action set together with its partial enabling for the
completed decision tree in Figure 7



In order to motivate the separation between partial enabling
and complete enabling consider Figure 7. Imagine that an
agent is in some state s which satisfies the condition A∧B
and that there is no concurrent unguarded process active in
s. Then the agent would choose the single partially en-
abled action <noDec> and no transition to some target
state s′ could take place. Therefore in the MDP context
there would be a state-action deadlock. In order to resolve
this situation, an action a is defined as (completely) enabled
in s if there really is some transition possible. On the other
hand, if for all a ∈ ep(s) no transition is possible from s
then there are no enabled actions in s, i.e. e(s) = ∅ and
thus s is absorbing.

Proposition: The partial enabling covers the whole com-
posed potential state space, i.e.

∀s ∈ Ŝ ∃a ∈ Act : a ∈ ep(s).

The meaning of this proposition is that the intuitive ap-
proach for hierarhical specification of actions by the mod-
eller can be actually represented through the cooperation
of the three steps: completion, splitting and enabling. Con-
cretely, by applying these steps, it is not possible to create
a deadlock state in which the agent gets stuck and can not
choose any (partially enabled) action.

Proof. Let s ∈ Ŝ and v some inner node of Dc with tree
Tv := v(v′1, . . . , v

′
d, v
′′
1 , . . . , v

′′
c ) s.t. v′k, k = 1, . . . , d

(d = |D|) are reached by some decision edge from v in
Dc and v′′j , j = 1, . . . , c by some concurrent edge. By
completion the disjunction over all conditions on (v, v′k) is
tautologically true. The splitting divides Tv into d · |C|
subtrees Rk = v(v′k, v

′′
1 , . . . , v

′′
c ) with exactly one deci-

sion edge (v, v′k) (cf. Algorithm 4). Therefore there exists
k ∈ {1, . . . , d} s.t. s satisfies the condition on edge (v, v′k)
of Rk. Note that for j ∈ {1, . . . , c} the node v′′j is the same
in eachRk but the subtrees from v′′j are different (|C| possi-
ble combinations). We need also the following distributive
law for two sets X and Y of logical expressions:

∨
(x,y)∈X×Y

(x ∧ y) =

( ∨
x∈X

x

)
∧

∨
y∈Y

y

 .

Transfering to our case with c sets Aj , j = 1, . . . , c of
logical expressions given by conditions on decision edges
in subtrees Tv′′j of v′′j we have that by induction the partial
enabling of Tv′′j is given by some conjunction x1 ∧ · · · ∧
xc, xj ∈ Aj . Furthermore

∨
xj∈Aj

xj = true for all j,
since Tv′′j is completed. Thus by distributive law∨

(x1,...,xc)∈A1×···×Ac

(x1 ∧ · · · ∧ xc) = true.

Therefore there is some split concurrent subtree which par-
tial enabling is also satisfied in s.

Remark: In case actions are modelled by branching de-
cisions, then in the worst case the number of actions grows
exponentially with the number of decisions. If such an
exponential increase in the number of actions is not di-
rectly intended by the modeller, actions can be discarded
by checking the satisfiability of partial enablings.

4.4 Reachability for LARES.de

Each action a ∈ Act induces a forward tree Fa by chang-
ing all decision edges in a to concurrent edges. A state
s′ is reachable from s if there exists a ∈ e(s) s.t. ap-
plying Fa to s reaches s′. The reachability (Algorithm
5) for a LARES.de model slightly modifies the reacha-
bility (Algorithm 3) for a LARES model: The interac-
tions I are replaced by “enabled interactions” (a, Ia, epa)
consisting of the concrete action a ∈ Act, interactions
Ia := FLATTEN(Fa)∪Iungrd and its partial enabling epa.

Algorithm 5 Reachability for LARES.de
Input: (initial) state s = (s1, . . . , sn) and enabled interac-

tions I := {(a, Ia, epa) | a ∈ Act}
Output: reachable state space

1: function REACHABILITY(s, I)
2: mark s as done
3: M := ∅
4: for all a ∈ Act with epa(s) = true do
5: t :=

⋃
γ∈Ia GENERATETRANSITIONS(s, γ)

6: t := {(s′, δ) ∈ t | δ 6= NA}
7: tDirac = { (s′, δ) ∈ t | δ = Dirac(w) }
8: if tDirac 6= ∅ then t := tDirac

9: M :=M ∪ ({(s, a)} × t)
10: N := {s′ | (s′, δ) ∈ t, s′ not done}
11: return M ∪

⋃
s′∈N REACHABILITY(s′, I)

Note that Algorithm 5 uses the partial enabling epa as an
input but implicitly uses the semantics of the complete en-
abling: If t = ∅ for some a ∈ ep(s) then the product
{(s, a)}× t in line 9 gets empty and thus a is not visible in
s in the transformed MDP.

5 Related work

MDPs are often used in the field of AI for describing ac-
tions (e.g. in planning domains) with probabilistic effects.
Typical specification languages used there are PPDDL [?],
PPDDL+ [?], SPUDD [?] and RDDL [?]. We shortly de-
scribe their expressivity and explain why we couldn’t build
upon these formalisms.
SPUDD is based on a symbolic representation of action-
dependent dynamic Bayes nets (DBNs). However, time is
discrete, actions can not be taken concurrently and there is
no enabling structure for actions, s.t. all actions can be ex-
ecuted in every state.
RDDL builds upon PPDDL and extends its expressivity



by composing state spaces through so-called fluent vari-
ables. It further allows for some features also express-
ible with LARES.de, like concurrent actions and interme-
diate layers for transition control. Further features are in-
tended for planning domains which are not expressible with
LARES.de, like partial observability and first-order expres-
sions. A subset of RDDL can be transformed to SPUDD in
order to generate an MDP model, thus losing the enabling
structure. Furthermore, RDDL lacks the modelling of con-
tinuous stochastic delay and reward structure for counting
the sojourn time in states.
PPDDL+ closes these shortcomings by incorporating
stochastic delays but fails for modelling more complex ac-
tion structures. Furthermore, the tool Tempastic-DTP [?]
works on a subset of PPDDL+ and does not allow (among
others) for undiscounted measures and non-binary state
variables.
All these formalisms do not support separation between ab-
stract descriptions and concrete instantiations, thus the de-
gree of modularity is restricted.

6 Conclusion and Future work

We have introduced the modelling concept of a forward tree
which abstracts stochastic transitions by concurrent con-
ditional reactions. We extended this structure in an intu-
itive way to the so-called decision tree in order to spec-
ify stochastic control by mixing controllable reactions with
concurrent reactions. In order to perform analysis and op-
timization on the specified systems, we defined a transfor-
mation to an MDP which is based on the view of an agent
acting in the decision tree. This approach shows several
advantages for modelling control, e.g. flexible description
of different types of actions comprising sequences, branch-
ing or synchronisation of actions and an enabling structure
for actions. We further presented and motivated LARES
and LARES.de as modular and hierarchical specification
languages which allow to embed these tree structures in a
cooperative way with object-oriented modelling concepts.
We haven’t shown in this paper the already existing hierar-
chical definition of the reward structure which allows for
different kinds of model measures. The implementation
of LARES.de is almost finalized. Therefore we plan in
a forthcoming paper to mix the decision and reward ex-
tensions and show the modelling advantages on a bigger
case-study. Moreover we plan to define a transformation
to a continuous-time MDP by eliminating vanishing state-
action pairs on the level of LARES.de such that the state
space of specific models may be reduced dramatically.
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