
Compositional Minimal Semanticsfor the Stochastic Process Algebra TIPPMichael Rettelbach, Markus SiegleAbstractThe problem of deriving the Markov chain underlying a stochastic processalgebra term is addressed. Transition rate matrices are used as a convenientmethod for uniquely describing Markov chains. For a modi�ed version of thestochastic process algebra TIPP, we propose a set of new semantic rules whichspecify the way in which process terms are translated into their correspondingmatrices. For each operator of the language, a semantic rule describes how the(one ore more) operand matrices have to be combined in order to form the matrixcorresponding to the overall term. These semantic rules guarantee certain highlyadvantageous properties of the resulting matrices, the two most important ofwhich are (i) the absence of non-reachable states and (ii) minimality with respectto Markov chain lumpability. Thus avoiding redundancy, our new approach is acontribution to the struggle against state space explosion.1 IntroductionTIPP is a formal language for specifying Markovian models of behaviour, employinga process algebra formalism. For a general introduction to TIPP see [GHR93, G�ot94].This paper deals with the problem of translating a TIPP description into its under-lying Markov chain whose subsequent solution permits the calculation of performancemeasures for the model. The major di�culty lies in the potential size of the resultingMarkov chain which in many cases can make its numerical solution impractical. Onthe other hand, Markov chains resulting from TIPP descriptions often have subsetsof states which represent equivalent behaviour, such that their individual treatment isredundant. Therefore we are interested in the generation of Markov chains which areminimal, i.e. do not have states with equivalent behaviour.One can think of the following three general schemes for translating a TIPP terminto a labelled transition system which is minimal with respect to a given notion ofequivalence:� In a �rst step translating the term into a labelled transition system followingthe ordinary structural operational TIPP semantics. Afterwards the transition1

system is checked for sets of equivalent states. Given the existence of such setsthe transition system can be transformed into an equivalent but smaller one.� Rewriting the term with respect to the rules of an axiomatisation [HR94], therebyobtaining a normal form of the process term, and applying the structural opera-tional semantics afterwards.� Applying improved semantic rules which produce directly the reduced state space.The new approach proposed in this paper follows the third scheme. It de�nes acompositional semantics which guarantees in each step the generation of a minimalMarkov chain. We do not regard labelled transition systems but work on a relatedformalism | the matrix representation of the underlying Markov chain.2 Preliminaries2.1 The LanguageWe de�ne a new language, TIPPMS, which is based on a subset of TIPP, enhanced bya new replication operator. This language is de�ned by the following grammar:P ::= 0 j X j (a; �):P j P + P j recX:P j !nSPwhere a 2 Act and X 2 V ar is a process variable. For the moment, we restrict the setof action types to one single action, i.e. Act = fag. This restriction permits a simplernotation and explanation of the semantic rules which will be established in Sec. 3.Thereafter, the generalisation to more than a single action type will turn out to bestraight forward.The operators of the language have the usual meaning (cf. e.g. [GHR93]). The newreplication operator !nS is de�ned as:!nSA := A kS A kS : : : kS A| {z }n timesThus, the replication operator !nS is a specialisation of the general parallel compositionoperator kS which we have not included in the language TIPPMS. The languageTIPPMS also does not provide a hiding operator.2.2 Equivalence and LumpabilityEquivalent behaviour and bisimulation In an algebra it is important to provide ameans for comparing terms, in particular to establish the notion of equality between twoterms. A whole line of research has been directed towards the de�nition of equivalencerelations for process algebras. For process algebras in a Markovian context the majorcontributions are [Hil94], [HR94] and [Buc94b].2

In the following, we will talk on the one hand of the equivalence between two processterms, and on the other hand of the equivalence between two states. Since states arein fact (derived) process terms, the meaning is the same in both cases. Informally, twostates of a labelled transition system (two process terms) are equivalent if and only iffor all actions the overall rate to change the state to any state of a given equivalenceclass is the same for both processes and for all equivalence classes. For a more detailedexplanation and a formal de�nition of the notion of equivalence that is used within thispaper, please see [HR94].Having established the notion of equivalence, it is natural to look for a minimalrepresentation of a state, i.e. an equivalent and most concise description of a state.This goal is very closely related to our goal in the work presented here: To derive aminimal matrix representation of the behaviour speci�ed by a process term.Relation between MPA equivalence and CTMC lumpability In [Hil93], Hill-ston showed that the stochastic process underlying a Markovian process algebra (MPA)is a continuous timeMarkov chain (CTMC). A convenient way for unambiguously spec-ifying a CTMC is its description by a transition rate matrix. There exists a notion ofminimality in the CTMC context which is induced by the concept of CTMC lumpabil-ity.Let us regard a partition
 = f!1; !2; : : :g of the state space of a CTMC. TheCTMC is ordinarily lumpable [KS76, Buc94a] with respect to this partition if for anytwo states i; j 2 !I from the same subset !I the total rate to another subset !J is thesame: 8I : 8i; j 2 !I : 8J : riJ = rjJ where riJ =Xj2J rij:Here, rij denotes the transition rate from state i to state j. On the matrix level thiscondition can be conveniently expressed by a partial row sum criterion.The measures of an original CTMC and its lumped counterpart are strongly related.The (macro-)probability of the lumped Markov chain being in state I is equal to thesum of the associated (micro-)probabilities:8I : p(I) = Xi2!I p(i)This is true for both transient and stationary probabilities.If a CTMC is not further lumpable we call it minimal. This existence of a min-imality notion for CTMCs justi�es the fact that we focus on the matrix world anduse lumpability arguments when deriving minimal representations for process algebraterms. The relation between process algebra equivalence and Markov chain lumpabilityhas been noticed previously by [Hil94] and [Buc94b].3

3 Compositional Minimal SemanticsIn this section we will formulate semantic rules for the operators of the languageTIPPMS. The idea is to de�ne a direct mapping from process terms to transition ratematrices. The latter unambiguously specify the Markov chain underlying a TIPPMS-description.If A is a TIPPMS-term, then the semantics QA = (aij) = [[A]]MS of A is an n � nmatrix where aij 2 R+ [V ar. The entry aij denotes the rate of transition from statei to state j due to an action, whose type | for the moment | is implicitly knownto be the single action type a. In particular, self-loops are allowed, which means thatdiagonal entries aii are also non-negative reals. We do not use in�nitesimal generatortype matrices (whose diagonal entries equal the negative row sums).We will impose the following conditions on the type of matrices we use for describingprocess behaviour:1. In order to avoid waste of memory space for unreachable states (which do notcontribute to the behaviour anyway) we impose the restriction that all states ofthe matrix have to be reachable from the �rst state.2. For the reasons explained in Sec. 1 we require the matrices to be minimal in thesense that there are no subsets of equivalent states in the matrix.3. By convention, the �rst state has the special meaning to be the initial state ofthe behaviour, i.e. the starting point.We will refer to these three conditions as R, M and I, and call the respective matricesof RMI-type.To start with, for the terminated process 0 and the process term consisting of onlya single process variable X we trivially obtain the following matrix semantics:[[0]]MS := (0) (1 � 1 �matrix)[[X]]MS := (X) (1 � 1 �matrix)3.1 Pre�xingLet us suppose that the semantics of the process term A is described by the matrixQA which is already known. We are interested in the matrix semantics of the processterm (a; �):A. Pre�xing usually changes the initial state of a process by adding a newinitial state and making the old initial state the (single) successor of the new initialstate. If one looks at this from a matrix perspective, one notices that pre�xing with(a; �) attaches a vector (0 � 0 : : : 0)to the top of the matrix QA (see Fig. 1). 4

[[(a; �):A]]MS = QA0 : : : 0... 000 �Figure 1: Pre�xing regularIt is, however, possible that our demand for minimality of the matrix is not ful�lled.This is the case if and only if there already exists a state within the matrix QA, fromwhere only a single transition is possible, namely to the old initial state with the samerate � (see Fig. 2). Such a state and the new starting state would be equivalent.QA = 00 : : :� Q(a;�):A = � 0: : :0 0Figure 2: Pre�xing specialThis special situation can be recognised very easily through the existence of a row(say number i) of the form (� 0 : : : 0)within the matrix QA. In this case, as a consequence of the pre�xing with (a; �), statei will become the new starting state, so by convention it has to be made the �rst stateof the matrix. This can be achieved by permuting the rows and columns of the matrix,so that the former number i is now number 1, and all positions 1 : : : i� 1 get increasedto 2 : : : i (see Fig. 2).3.2 ChoiceThe behaviour of a process A +B is easily described: The �rst transition can be anytransition possible either for process A or for process B. The �rst transition takendetermines whether the process will in the sequel behave as either process A or processB. Consider the two matrices QA and QB (cf. Fig. 3). Their �rst rows are denoted qAand qB, respectively. The matrix resulting from the operation [[+]] is sketched in Fig. 4.5

QBqBQAqAFigure 3: Matrices QA and QBQA+B = 0... 000 QBqAQA qBqBqA
Figure 4: Matrix QA+BThe possible transitions from the two (old) initial states (rows qA and qB) are copiedand pasted together (with a leading 0) to de�ne the transitions which are possible fromthe new initial state (0 qA qB) :From this initial state the system can either reach the matrix QA or QB. Once it haschosen one of both, there is no chance to get back again to the initial state or to theother submatrix.This matrix describes completely the behaviour of the process A + B but unfor-tunately does not necessarily ful�l the RMI-conditions established at the beginning ofthis Section, due to the two following reasons.First, considering condition R, one �nds that some states might not be reachableany more. As long as the matrices QA and QB were of RMI-type, this can only happento the two former initial states. This situation is easy to recognise, because for a state ito be reachable, the ith column must contain at least one non-zero element. Therefore,if the �rst column of QA (QB) contains only zero elements, the state which correspondsto the initial state of A (B) has to be deleted.The second reason for the possible lack of RMI-property is the fact that both pro-cessesA and B might engage in some common patterns of behaviour. As a consequence,6

constructing the matrix for A+B in the manner explained above will result in a matrixwith equivalent states, i.e. condition M is violated.This second case is more complicated and cannot be recognised easily. In order tocope with this problem we de�ne a normal form of a transition rate matrix Q whichsimpli�es the recognition of common behaviour of two processes. For a motivation ofthis normal form, see Fig. 5 which shows the general form of a transition system.Q2*Q3 Q4 Q6Q5 Q1
Figure 5: General form of a transition systemIt can be observed from the Figure that the whole state space can be divided intoislands, where the notion of an island is de�ned as follows: Within an island all statesare mutually reachable, but once the system has left an island it will never return to thesame island. As a consequence, islands can consist of a single (transient or absorbing)state, or of several states. Islands itself may be transient or absorbing.According to the notion of an island we can organise a transition rate matrix Qas follows, in order to put it into normal form. States belonging to the same islandare located in consecutive rows. The initial island is the one containing the initialstate. The islands occur in the matrix in such an order, that there is no transitionfrom island j to island i if j > i (cf. Fig. 6). Such an ordering of islands can always befound, because otherwise there would exist two mutually reachable states i and j fromdi�erent islands, which would contradict the condition on an island.It is also important to note that the normal form of a transition rate matrix is notuniquely de�ned because of two reasons:� More than one possible ordering of the islands may exist (for example, in Fig. 5the islands Q2 and Q3 may be exchanged).� The ordering of states within each of the islands is not �xed. In fact, this orderingis completely arbitrary, with the exception that in the �rst island the initial statemust be in the �rst position. 7

0 QijQ1 Q3 Q4 Q6Q2 Q5Figure 6: Normal form of a transition rate matrix QIn the sequel we need the notion of a permutation matrix: An n�n-matrix P withexactly one 1-entry in each row and in each column and all other entries equal to zerois called a permutation matrix. The multiplication PQ causes a permutation of therows of matrix Q, while the multiplicationQP T causes the corresponding permutationof columns.Using the normal form of the matrices based on their island structure makes iteasier to recognise common behaviour. Assuming that both matrices QA and QB areof RMI-type, the crucial point is that a state i of QA represents the same behaviour asa state j of QB if and only if the following three conditions hold:1. There is a permutation matrix P1 such that QAi = P1QBj P T1 , where QAi is theisland of QA containing i and QBj is the island of QB containing j.2. For each island QAi0 of QA that is reachable from QAi there exists a correspond-ing island QBj0 reachable from QBj which describes the same behaviour as QAi0 ,i.e. QAi0 = P2QBj0P T2 .3. The transitions from QAi to QAi0 correspond to the transitions from QBj to QBj0 ,i.e. QAii0 = P1QBjj0P T2 .These conditions are not as complicated as it seems from the �rst view. Theexistence of common behaviour within matrices QA and QB, both of normal form, canbe checked easily in the following fashion: Starting at the absorbing islands one has tolook for pairs of islands with equivalent behaviour. This only requires a test whetherone of them is a permutation of the other, because absorbing islands have no successorislands. If all pairs of absorbing islands are mutually di�erent from each other, i.e. ifthere is no pair of absorbing islands with equivalent behaviour, one can be sure to haveno common behaviour within QA and QB. On the other hand, if there is a pair of8

equivalent islands, one continues by checking their direct predecessors in both matricesQA and QB, and if there are equivalent ones one has to compare also the transitionmatrices from there to the absorbing islands. This procedure has to be repeated untilno more equivalent islands are found.After having determined the equivalent parts, both matrices QA and QB are re-ordered as shown in Fig. 7 where the matrix QC contains the common behaviour.QtAQCQ0Aq0A qtAQA = QB = QtBQCq0B qtBQ0B0 0Figure 7: Matrices QA and QB before the application of the choice operator. Islandsand states within islands are reordered such that the common behaviour is describedby the common submatrix QC.In general, the submatrices Q0A, Q0B and QC are not single islands but comprisegroups of islands. For the computation of the matrix QA+B the now reordered matricesQA and QB have to be composed in the way shown in Fig. 8. As mentioned above, ithas to be checked whether the old initial states of A and B are still reachable. If not,these states have to be eliminated.Further remarks on the normal form We have introduced the normal form of atransition rate matrix as our standard way for describing systems. It is worth men-tioning that this form is preserved by all other operators which we have discussed upto now, namely 0, X and pre�xing. This observation is trivial for 0 and X becausethe corresponding matrices contain just one element. The normal form of the matrixQ(a;�):A follows obviously if a new state is added to the matrix QA which is alreadyin normal form. Even in the case when a permutation is necessary (as described inSec. 3.1) this remains true: State i, the state which is equivalent to the new initialstate, must belong to the �rst island, because the �rst state is reachable from state i.Thus the permutation only a�ects the �rst island, but does not destroy the requirednormal form. 9

q0A qtAQtAq0Bq0A
QCq0B qtB qtA + qtBQ0B QtBQ0A...0 0

0 0Figure 8: Combination of the reordered matrices QA and QB for implementing thechoice operator3.3 RecursionIn this subsection we describe the matrix semantics for the recursion operator, i.e. weare interested in the matrix associated with the process term recX : A. In the trivialcase where A does not contain the process variable X the recursion operator takes noe�ect, such that [[recX : A]]MS = [[A]]MS. In the interesting case the process term Ahas one or more occurrences of X which implies that QA = [[A]]MS is of the form shownin Fig. 9 (left). There is one absorbing island containing the single state X. It shouldbe noted that even if A contains more than one X the matrix QA will still have onlyone entry X, assuming that the matrix QA is of RMI-type. Several X's in QA wouldhave been detected as common behaviour in an earlier step and replaced by a singleisland X.The basic idea for the semantics of the recursion operator is simple. For the moment,let the X-island be placed at the last position of the matrix. Entering state X has thesame e�ect as entering the initial state of the process term. Therefore, as depicted inFig. 9, column qXA of the matrix QA is added to the �rst column, and afterwards therow and column corresponding to X are eliminated.We observe that the matrix resulting from this simple scheme is not necessarily innormal form, the reason being that we have assumed that the X-island is in the lastposition. For an explanation, see the Fig. 10, which shows two possible normal formsof an example matrix QA (top). If the recursion semantics is applied to the matrix onthe left, the resulting matrix will not be in normal form. On the other hand, applyingrecursion semantics to the matrix on the right results in a matrix of normal form. Thismatrix has just two islands: The new initial island corresponding to the former islands10

Q0Aq1A : : : qXA Q0AQrexX:A =QA = q1A+qXAX0 0Figure 9: Basic idea for recursionQ1 and Q3, and the remaining old island Q2. In both cases, submatrix Q01 is obtainedfrom submatrix Q1 by adding to its �rst column the vector qX1 . We observe that theresulting matrix will be in normal form if and only if the following condition holds: Allislands from which X cannot be reached must be positioned after X.In addition, there is the problem that after following the basic idea for recursion theresulting matrix may violate condition M. It is clear that the only part of the matrixwhich can possibly contain equivalent states is the new initial island which is formed bya combination of all the original islands from which X was reachable. The new initialisland di�ers from the corresponding part of the old matrix only in the �rst column(to which the column X was added). For an example of this situation cf. Fig. 11.The general treatment of all such possible situations seems to be very hard. How-ever, it will not exceed the e�ort for general lumping within the �rst new island. Thereis furthermore a strong guess that one has to consider only pairs of states, where onestate is out of the old initial island and the other one is new. Further conditions mightbe found such that the e�ort for lumping of the new initial state can be decreased.3.4 ReplicationThe new replication operator produces a state space which always includes subsets ofequivalent states. It is an important property that, due to the regularity of the statespace, these subsets are easily identi�ed, i.e. it is not di�cult to generate a minimalmatrix [[!nSA]]MS. The considerations in this subsection are based on the general workon symmetries resulting from the replication of subsystems as described in [Sie94].Let us for the moment assume that the set of synchronising actions S is empty. Itis well known that, given the matrix QA, the matrix describing the behaviour of !n�Ais given by the tensor expressionQ = [[!n�A]]MS = QA �QA � : : :�QA| {z }n times11

Q3Q3qX3 Q1;3qX3
Q1 Q2 Q3Q1;2 Q1;3 Q1 Q3Q1;3 X Q2qX3X Q1;2qX1qX1qX3

Q2Q1;2 Q1;3Q01 [[recX]]MSQ1;2Q2Q01[[recX]]MS0
00 00 0

0 0000
0Figure 10: Recursion: Di�erent forms of QA = [[A]]MS. Only on the right is theresulting matrix of normal form.

lumping

�1 ��0BBB@ 0 �1 �2 0� 0 0 00 0 0 �0 0 0 X 1CCCA 0B@ 0 �1 �2� 0 0� 0 0 1CA 0 �1 + �2� 0 !�2recX :X� ��1 �2 �1 + �2 �Figure 11: Recursion example that makes further lumping necessaryFor an introduction to tensor algebra refer to [Dav81].Assuming that QA is of dimension s, it follows that Q is of dimension sn. The snstates of Q can be numbered using n-tuples built from the digits f0; 1; : : : ; s � 1g in12

ascending lexicographical ordering:state 0 = (0 ; 0 ; : : : ; 0)state 1 = (0 ; 0 ; : : : ; 1)...state sn � 1 = (s� 1 ; s� 1 ; : : : ; s� 1)In general, the tuple (i1; i2; : : : ; in) denotes a state in which the k-th replica of theprocess A is in state ik, k = 1 : : : n. From symmetry considerations we know that allstates marked by tuples which are just permutations of each other, constitute a subsetof equivalent states. In total, there exist �n+s�1s�1 � such di�erent subsets of equivalentstates.The minimalmatrix [[!n�A]]MS describing the behaviour of !n�A therefore has �n+s�1s�1 �states. One can think of two possible ways for its construction from QA, see Fig. 12.
[[!n�A]]MSQA QA �QA � : : :�QA

Figure 12: Two ways for constructing [[!n�A]]MSThe explicit computation of the tensor sum and the subsequent combination ofequivalent states would be extremely costly. We have seen that the intermediatematrixis of dimension sn ! Instead we propose an algorithm which generates the reducedmatrix [[!n�A]]MS directly from QA, corresponding to the direct arrow in Fig. 12.Rather than giving a complicated formal description of the algorithmwe will explainthe scheme by using an example. In Fig. 13 a matrix QA of dimension 3 is given. Forsimplicity its non-zero transition rates are chosen to be di�erent natural numbers. Thischoice of transition rates makes it easy to follow the example because no ambiguity willarise. The �gure also depicts the matrices [[!2�A]]MS and [[!3�A]]MS. It can be observedthat the entries of the latter are derived in a straight-forward manner from the entriesof QA.For formally specifying the entries of the matrix Q = [[!n�A]]MS we de�ne the helpfunction ndi�(t1; t2) which returns the number of digits which are di�erent between thetuples t1 and t2, where the position of a digit within the tuple is irrelevant (i.e. tuplesare regarded as multi-sets). For example, ndi�(000; 001) = 1, ndi�(011; 112) = 1 and13

QA = 01 243510 212 Q !2�A = 22 2�1 2�21+3 2�3 045 1 25 3 4200 02 2�411
2�5

2201 1200001021112
Q !3�A = 2�22�3 2�41+32�5 3�3 3�42�3 2�40

05 4 222 001 5 3
5 4

4
000 001 002 011 012 022

2�5
111

3�5
112 122 222002

222122112111011012022001000 +3 1+3�1 3�22�1 2�22�1
Figure 13: Example for constructing [[!n�A]]MSndi�(011; 122) = 2. We further de�ne the weight wi(t) of a digit in a tuple as thenumber of occurrences of the digit i in the tuple t. For instance, w0(001) = 2 andw1(001) = 1.Let o and t be the tuples denoting the originating state and the target state of atransition, respectively. Then the transition rate from the originating to the targetstate is of the general formro;t = 8>><>>: Pi2owi(o)aii if ndi�(o; t) = 0wi(o)aij if ndi�(o; t) = 10 otherwise14

The �rst of the three cases corresponds to the entries on the diagonal of Q. If there isa self-loop from state i to state i in QA, its rate aii is multiplied by the weight of thedigit i.In the second case, the target state di�ers from the originating state by exactly onedigit (again disregarding positions). We assume that a digit has changed from i to j.Then the transition rate is given by aij multiplied by the weight of the digit i in theoriginating state.In the third case, the target state di�ers from the originating state in more thanone digit. Since simultaneous transitions occur with probability 0 in a Markovianenvironment, the transition rate is 0 in this case.Before we conclude this subsection, two important questions must be addressed:� In the case where S 6= � the matrix Q can be computed in a similar way.Assuming S = fag we havero;t = 8>><>>: Pi2o aii if t = oaij if t = oi:=j0 otherwiseHere, oi:=j denotes the tuple o with all entries i changed to j.� If QA is reducible, i.e. if it consists of more than one island, the states of thematrix Q must be generated according to the island structure of QA in order tokeep the resulting matrix Q in normal form.4 Future Work and ConclusionThe language TIPPMS has several obvious shortcomings which will be addressed brieynow:� It is necessary to enhance the set of actions Act such that more than one actiontype is permitted. This can be dealt with in a straight forward way: Matrixentries become tuples, one component for each action a 2 Act. Checking forequivalence does then mean to check the behaviour with respect to all actiontypes. Two states can be considered equivalent only if equivalent behaviour isensured for all action types.� The language TIPPMS lacks a general parallel composition operator A kS B.Only the case A 6= B is of interest here, otherwise we can refer back to thenew replication operator. Given the two matrices QA = QA;l + QA;e and QB =QB;l + QB;e (the transitions corresponding to the action e are extracted into aspecial matrix), we have the known relationsQA k� B = QA �QBQA kfeg B = QA;l �QB;l +QA;e
QB;e15

but some problems regarding minimality and reachability have to be studied. IfA and B have common behaviour, the resulting matrix is lumpable in a fashionrelated to the lumping of processes generated by replication. If S 6= � there isa potential problem with unreachable states which have to be eliminated in anextra step.� We intend to enhance TIPPMS by a hiding operator.The proposed way of generating a transition rate matrix from a process termhas some signi�cant advantages over traditional approaches. Applying the conceptof lumpability to an existing very large state space requires a lot of memory, oftenmore than what is available, thus making the approach infeasible. In contrast, ap-plying our proposed method for the generation of the state space leads to a minimaltransition rate matrix in every single step of the construction procedure. Thereforethere is never a waste of memory space.When analysing large and complex process terms the matrix generation can beeasily parallelised according to the structure of the given process term. Sub-expressionscan be translated into their corresponding matrices independently of each other. Onlythe last step (the composition at the highest level) must be performed in a completelysequential manner.Besides the fact that the resulting matrix is minimal, i.e. not further lumpable,this matrix is also in normal form. Because of the special block diagonal structure ofthis matrix smart algorithms for stationary or transient analysis can be applied. Asa simple example, applying stationary analysis to a normal form matrix with a singleabsorbing island results in the same state probabilities as applying stationary analysisto the absorbing island directly.References[Buc94a] P. Buchholz. Exact and Ordinary Lumpability in Finite Markov Chains.Journal of Applied Probability, 1994. scheduled March 1994.[Buc94b] P. Buchholz. On a Markovian Process Algebra. Forschungsbericht 500, In-formatik IV, Universit�at Dortmund, 1994.[Dav81] M. Davio. Kronecker Products and Shu�e Algebra. IEEE Transactions onComputers, C-30(2):116{125, February 1981.[GHR93] Norbert G�otz, Ulrich Herzog, and Michael Rettelbach. Multiprocessor anddistributed system design: The integration of functional speci�cation andperformance analysis using stochastic process algebras. In Proc. of the 16thInt'l Symposium on Computer Performance Modelling, Measurement andEvaluation, PERFORMANCE '93. Springer, 1993. LNCS 729.16

[G�ot94] Norbert G�otz. Stochastische Proze�algebren { Integration von funktionalemEntwurf und Leistungsbewertung Verteilter Systeme. Dissertation, Univer-sit�at Erlangen, 1994.[Hil93] J. Hillston. PEPA - Performance Enhanced Process Algebra. TechnicalReport CSR-24-93, Dept. of Computer Science, University of Edinburgh,March 1993.[Hil94] J. Hillston. A Compositional Approach to Performance Modelling. PhDthesis, Department of Computer Science, University of Edinburgh, 1994.[HR94] H. Hermanns and M. Rettelbach. Syntax, Semantics, Equivalences, andAxioms for MTIPP. In U. Herzog and M. Rettelbach, editors, Proceeding ofthe 2nd Workshop on Process Algebra and Performance Modelling. Universityof Erlangen-N�urnberg, IMMD, 1994.[KS76] J.G. Kemeny and J.L. Snell. Finite Markov Chains. Springer, 1976.[Sie94] M. Siegle. Reduced Markov Models of Parallel Programs with ReplicatedProcesses. In 2nd EUROMICRO Workshop on \Parallel and DistributedProcessing", pages 126{133, Malaga, Spain, January 1994.

17

18

