Compositional Minimal Semantics

for the Stochastic Process Algebra TIPP

Michael Rettelbach, Markus Siegle

Abstract

The problem of deriving the Markov chain underlying a stochastic process
algebra term is addressed. Transition rate matrices are used as a convenient
method for uniquely describing Markov chains. For a modified version of the
stochastic process algebra TIPP, we propose a set of new semantic rules which
specify the way in which process terms are translated into their corresponding
matrices. For each operator of the language, a semantic rule describes how the
(one ore more) operand matrices have to be combined in order to form the matrix
corresponding to the overall term. These semantic rules guarantee certain highly
advantageous properties of the resulting matrices, the two most important of
which are (i) the absence of non-reachable states and (ii) minimality with respect
to Markov chain lumpability. Thus avoiding redundancy, our new approach is a
contribution to the struggle against state space explosion.

1 Introduction

TIPP is a formal language for specifying Markovian models of behaviour, employing
a process algebra formalism. For a general introduction to TIPP see [GHR93, G6t94].
This paper deals with the problem of translating a TIPP description into its under-
lying Markov chain whose subsequent solution permits the calculation of performance
measures for the model. The major difficulty lies in the potential size of the resulting
Markov chain which in many cases can make its numerical solution impractical. On
the other hand, Markov chains resulting from TIPP descriptions often have subsets
of states which represent equivalent behaviour, such that their individual treatment is
redundant. Therefore we are interested in the generation of Markov chains which are
minimal, i.e. do not have states with equivalent behaviour.

One can think of the following three general schemes for translating a TIPP term
into a labelled transition system which is minimal with respect to a given notion of
equivalence:

o In a first step translating the term into a labelled transition system following
the ordinary structural operational TIPP semantics. Afterwards the transition

system is checked for sets of equivalent states. Given the existence of such sets
the transition system can be transformed into an equivalent but smaller one.

e Rewriting the term with respect to the rules of an axiomatisation [HR94], thereby
obtaining a normal form of the process term, and applying the structural opera-
tional semantics afterwards.

o Applying improved semantic rules which produce directly the reduced state space.

The new approach proposed in this paper follows the third scheme. It defines a
compositional semantics which guarantees in each step the generation of a minimal
Markov chain. We do not regard labelled transition systems but work on a related
formalism — the matrix representation of the underlying Markov chain.

2 Preliminaries

2.1 The Language

We define a new language, TIPPM? which is based on a subset of TIPP, enhanced by
a new replication operator. This language is defined by the following grammar:

P:=0 | X | (AP | P+P | reXP | P

where a € Act and X € Var is a process variable. For the moment, we restrict the set
of action types to one single action, i.e. Act = {a}. This restriction permits a simpler
notation and explanation of the semantic rules which will be established in Sec. 3.
Thereafter, the generalisation to more than a single action type will turn out to be
straight forward.

The operators of the language have the usual meaning (cf. e.g. [GHR93]). The new
replication operator % is defined as:

’Z‘A:AHSAHS HsA

n times

Thus, the replication operator !% is a specialisation of the general parallel composition
operator ||s which we have not included in the language TIPPM®. The language

TIPPM?S also does not provide a hiding operator.

2.2 Equivalence and Lumpability

Equivalent behaviour and bisimulation In an algebra it is important to provide a
means for comparing terms, in particular to establish the notion of equality between two
terms. A whole line of research has been directed towards the definition of equivalence
relations for process algebras. For process algebras in a Markovian context the major

contributions are [Hil94], [HR94] and [Buc94b].

In the following, we will talk on the one hand of the equivalence between two process
terms, and on the other hand of the equivalence between two states. Since states are
in fact (derived) process terms, the meaning is the same in both cases. Informally, two
states of a labelled transition system (two process terms) are equivalent if and only if
for all actions the overall rate to change the state to any state of a given equivalence
class is the same for both processes and for all equivalence classes. For a more detailed
explanation and a formal definition of the notion of equivalence that is used within this
paper, please see [HR94].

Having established the notion of equivalence, it is natural to look for a minimal
representation of a state, i.e. an equivalent and most concise description of a state.
This goal is very closely related to our goal in the work presented here: To derive a
minimal matrix representation of the behaviour specified by a process term.

Relation between MPA equivalence and CTMC lumpability In [Hil93], Hill-
ston showed that the stochastic process underlying a Markovian process algebra (MPA)
is a continuous time Markov chain (CTMC). A convenient way for unambiguously spec-
ifying a CTMC is its description by a transition rate matrix. There exists a notion of
minimality in the CTMC context which is induced by the concept of CTMC lumpabil-
ity.

Let us regard a partition = {wq,wy,...} of the state space of a CTMC. The
CTMC is ordinarily lumpable [KS76, Buc94a] with respect to this partition if for any
two states ¢, 7 € w; from the same subset w; the total rate to another subset wy is the
same:

VI:Vi,) €wr:VJ riy=r;; wherer;; = Zrij'
JeJ

Here, r;; denotes the transition rate from state ¢ to state j. On the matrix level this
condition can be conveniently expressed by a partial row sum criterion.

The measures of an original CTMC and its lumped counterpart are strongly related.
The (macro-)probability of the lumped Markov chain being in state [is equal to the
sum of the associated (micro-)probabilities:

VI:p(I)=>_ p(i)

iEwI

This is true for both transient and stationary probabilities.

It a CTMC is not further lumpable we call it minimal. This existence of a min-
imality notion for CTMCs justifies the fact that we focus on the matrix world and
use lumpability arguments when deriving minimal representations for process algebra

terms. The relation between process algebra equivalence and Markov chain lumpability
has been noticed previously by [Hil94] and [Buc94b].

3 Compositional Minimal Semantics

In this section we will formulate semantic rules for the operators of the language
TIPPMS. The idea is to define a direct mapping from process terms to transition rate
matrices. The latter unambiguously specify the Markov chain underlying a TIPPM5-
description.

If Ais a TIPPM5 term, then the semantics Q4 = (a;;) = [A],;¢ of A is an n x n
matrix where a;; € Rt U Var. The entry a;; denotes the rate of transition from state
1 to state j due to an action, whose type — for the moment — is implicitly known
to be the single action type a. In particular, self-loops are allowed, which means that
diagonal entries a;; are also non-negative reals. We do not use infinitesimal generator
type matrices (whose diagonal entries equal the negative row sums).

We will impose the following conditions on the type of matrices we use for describing
process behaviour:

1. In order to avoid waste of memory space for unreachable states (which do not
contribute to the behaviour anyway) we impose the restriction that all states of
the matrix have to be reachable from the first state.

2. For the reasons explained in Sec. 1 we require the matrices to be minimal in the
sense that there are no subsets of equivalent states in the matrix.

3. By convention, the first state has the special meaning to be the initial state of
the behaviour, i.e. the starting point.

We will refer to these three conditions as R, M and I, and call the respective matrices
of RMI-type.

To start with, for the terminated process 0 and the process term consisting of only
a single process variable X we trivially obtain the following matrix semantics:

[0, = (0) (1 x1— matriz)
[X1ys = (X) (1 x1—matriz)

3.1 Prefixing

Let us suppose that the semantics of the process term A is described by the matrix
() 4 which is already known. We are interested in the matrix semantics of the process
term (a, A).A. Prefixing usually changes the initial state of a process by adding a new
initial state and making the old initial state the (single) successor of the new initial
state. If one looks at this from a matrix perspective, one notices that prefixing with
(a, \) attaches a vector

© X 0 ... 0
to the top of the matrix Q4 (see Fig. 1).

Figure 1: Prefixing regular

It is, however, possible that our demand for minimality of the matrix is not fulfilled.
This is the case if and only if there already exists a state within the matrix () 4, from
where only a single transition is possible, namely to the old initial state with the same
rate A (see Fig. 2). Such a state and the new starting state would be equivalent.

0[A 0O .. 0

Qa= Qa4 =

Figure 2: Prefixing special

This special situation can be recognised very easily through the existence of a row
(say number 7) of the form

A0 ... 0

within the matrix Q4. In this case, as a consequence of the prefixing with (a, A), state
¢ will become the new starting state, so by convention it has to be made the first state
of the matrix. This can be achieved by permuting the rows and columns of the matrix,

so that the former number 2 is now number 1, and all positions 1...72 —1 get increased
to 2...17 (see Fig. 2).

3.2 Choice

The behaviour of a process A 4+ B is easily described: The first transition can be any
transition possible either for process A or for process B. The first transition taken
determines whether the process will in the sequel behave as either process A or process
B. Consider the two matrices Q4 and Qg (cf. Fig. 3). Their first rows are denoted ¢4
and ¢p, respectively. The matrix resulting from the operation [+] is sketched in Fig. 4.

Qa+B = |:

Figure 4: Matrix Qa4

The possible transitions from the two (old) initial states (rows ¢4 and ¢g) are copied
and pasted together (with a leading 0) to define the transitions which are possible from
the new initial state

(0 qa qB)

From this initial state the system can either reach the matrix ()4 or ¢Jg. Once it has
chosen one of both, there is no chance to get back again to the initial state or to the
other submatrix.

This matrix describes completely the behaviour of the process A + B but unfor-
tunately does not necessarily fulfil the RMI-conditions established at the beginning of
this Section, due to the two following reasons.

First, considering condition R, one finds that some states might not be reachable
any more. As long as the matrices ()4 and () were of RMI-type, this can only happen
to the two former initial states. This situation is easy to recognise, because for a state ¢
to be reachable, the ith column must contain at least one non-zero element. Therefore,
if the first column of Q4 (@) B) contains only zero elements, the state which corresponds
to the initial state of A (B) has to be deleted.

The second reason for the possible lack of RMI-property is the fact that both pro-
cesses A and B might engage in some common patterns of behaviour. As a consequence,

constructing the matrix for A+ B in the manner explained above will result in a matrix
with equivalent states, i.e. condition M is violated.

This second case is more complicated and cannot be recognised easily. In order to
cope with this problem we define a normal form of a transition rate matrix ¢) which
simplifies the recognition of common behaviour of two processes. For a motivation of
this normal form, see Fig. 5 which shows the general form of a transition system.

o |
. - Q:

Q4 ~ Qs
0 D

Figure 5: General form of a transition system

It can be observed from the Figure that the whole state space can be divided into
islands, where the notion of an island is defined as follows: Within an island all states
are mutually reachable, but once the system has left an island it will never return to the
same island. As a consequence, islands can consist of a single (transient or absorbing)
state, or of several states. Islands itself may be transient or absorbing.

According to the notion of an island we can organise a transition rate matrix @)
as follows, in order to put it into normal form. States belonging to the same island
are located in consecutive rows. The initial island is the one containing the initial
state. The islands occur in the matrix in such an order, that there is no transition
from island j to island ¢ if j > ¢ (cf. Fig. 6). Such an ordering of islands can always be
found, because otherwise there would exist two mutually reachable states ¢ and j from
different islands, which would contradict the condition on an island.

It is also important to note that the normal form of a transition rate matrix is not
uniquely defined because of two reasons:

e More than one possible ordering of the islands may exist (for example, in Fig. 5
the islands ()3 and ()5 may be exchanged).

e The ordering of states within each of the islands is not fixed. In fact, this ordering
is completely arbitrary, with the exception that in the first island the initial state
must be in the first position.

Q|

Qe

Figure 6: Normal form of a transition rate matrix @

In the sequel we need the notion of a permutation matrix: An n x n-matrix P with
exactly one l-entry in each row and in each column and all other entries equal to zero
is called a permutation matriz. The multiplication P() causes a permutation of the
rows of matrix), while the multiplication Q PT causes the corresponding permutation
of columns.

Using the normal form of the matrices based on their island structure makes it
easier to recognise common behaviour. Assuming that both matrices)4 and (g are
of RMI-type, the crucial point is that a state ¢ of ()4 represents the same behaviour as
a state j of @)p if and only if the following three conditions hold:

1. There is a permutation matrix P, such that Q4 = PlePIT, where Q% is the
island of ()4 containing ¢ and Qf is the island of ¢)p containing j.

2. For each island Q% of Q4 that is reachable from Q# there exists a correspond-

ing island Qf, reachable from Qf which describes the same behaviour as Q#,
: A _ B pT
l.e. o= PQQ]‘/PQ .

B

3. The transitions from Q# to Q# correspond to the transitions from Qf to 7,

K3
: A B pT
l.e. Q“’/ == P1 jj/PQ .

These conditions are not as complicated as it seems from the first view. The
existence of common behaviour within matrices ()4 and ()5, both of normal form, can
be checked easily in the following fashion: Starting at the absorbing islands one has to
look for pairs of islands with equivalent behaviour. This only requires a test whether
one of them is a permutation of the other, because absorbing islands have no successor
islands. If all pairs of absorbing islands are mutually different from each other, i.e. if
there is no pair of absorbing islands with equivalent behaviour, one can be sure to have
no common behaviour within ()4 and ()g. On the other hand, if there is a pair of

equivalent islands, one continues by checking their direct predecessors in both matrices
()4 and @), and if there are equivalent ones one has to compare also the transition
matrices from there to the absorbing islands. This procedure has to be repeated until
no more equivalent islands are found.

After having determined the equivalent parts, both matrices ()4 and ()p are re-
ordered as shown in Fig. 7 where the matrix)¢ contains the common behaviour.

_____ R
q. qt 7 t
IREEEEEE EEL Q' QB

O | QY s =

0 Qo 0 Qo

Figure 7: Matrices Q4 and () before the application of the choice operator. Islands
and states within islands are reordered such that the common behaviour is described
by the common submatrix Q)¢.

In general, the submatrices ()4, @5 and Q)¢ are not single islands but comprise
groups of islands. For the computation of the matrix ¢) 445 the now reordered matrices
Q)4 and () have to be composed in the way shown in Fig. 8. As mentioned above, it
has to be checked whether the old initial states of A and B are still reachable. If not,
these states have to be eliminated.

Further remarks on the normal form We have introduced the normal form of a
transition rate matrix as our standard way for describing systems. It is worth men-
tioning that this form is preserved by all other operators which we have discussed up
to now, namely 0, X and prefixing. This observation is trivial for 0 and X because
the corresponding matrices contain just one element. The normal form of the matrix
((a,n).4 follows obviously if a new state is added to the matrix ()4 which is already
in normal form. Even in the case when a permutation is necessary (as described in
Sec. 3.1) this remains true: State ¢, the state which is equivalent to the new initial
state, must belong to the first island, because the first state is reachable from state 2.
Thus the permutation only affects the first island, but does not destroy the required
normal form.

| __da__] L _qa] ¢ + 45

0 Qc

Figure 8: Combination of the reordered matrices ()4 and ()p for implementing the
choice operator

3.3 Recursion

In this subsection we describe the matrix semantics for the recursion operator, i.e. we
are interested in the matrix associated with the process term recX : A. In the trivial
case where A does not contain the process variable X the recursion operator takes no
effect, such that [recX : A],,s = [A],;5- In the interesting case the process term A
has one or more occurrences of X which implies that) 4 = [A],, is of the form shown
in Fig. 9 (left). There is one absorbing island containing the single state X. It should
be noted that even if A contains more than one X the matrix ()4 will still have only
one entry X, assuming that the matrix ()4 is of RMI-type. Several X’s in ()4 would
have been detected as common behaviour in an earlier step and replaced by a single
island X.

The basic idea for the semantics of the recursion operator is simple. For the moment,
let the X-island be placed at the last position of the matrix. Entering state X has the
same effect as entering the initial state of the process term. Therefore, as depicted in
Fig. 9, column ¢} of the matrix Q4 is added to the first column, and afterwards the
row and column corresponding to X are eliminated.

We observe that the matrix resulting from this simple scheme is not necessarily in
normal form, the reason being that we have assumed that the X-island is in the last
position. For an explanation, see the Fig. 10, which shows two possible normal forms
of an example matrix Q4 (top). If the recursion semantics is applied to the matrix on
the left, the resulting matrix will not be in normal form. On the other hand, applying
recursion semantics to the matrix on the right results in a matrix of normal form. This
matrix has just two islands: The new initial island corresponding to the former islands

10

QA — QrexX:A —

04
!
| Q4 T T Q4
X
q4
0 01X

Figure 9: Basic idea for recursion

()1 and @3, and the remaining old island (). In both cases, submatrix) is obtained
from submatrix), by adding to its first column the vector ¢i¥. We observe that the
resulting matrix will be in normal form if and only if the following condition holds: All
islands from which X cannot be reached must be positioned after X.

In addition, there is the problem that after following the basic idea for recursion the
resulting matrix may violate condition M. It is clear that the only part of the matrix
which can possibly contain equivalent states is the new initial island which is formed by
a combination of all the original islands from which X was reachable. The new initial
island differs from the corresponding part of the old matrix only in the first column
(to which the column X was added). For an example of this situation cf. Fig. 11.

The general treatment of all such possible situations seems to be very hard. How-
ever, it will not exceed the effort for general lumping within the first new island. There
is furthermore a strong guess that one has to consider only pairs of states, where one
state is out of the old initial island and the other one is new. Further conditions might
be found such that the effort for lumping of the new initial state can be decreased.

3.4 Replication

The new replication operator produces a state space which always includes subsets of
equivalent states. It is an important property that, due to the regularity of the state
space, these subsets are easily identified, i.e. it is not difficult to generate a minimal
matrix [6A],,s. The considerations in this subsection are based on the general work
on symmetries resulting from the replication of subsystems as described in [Sie94].

Let us for the moment assume that the set of synchronising actions 5 is empty. It
is well known that, given the matrix)4, the matrix describing the behaviour of !jA
is given by the tensor expression

Q=['6Alys=QaDPRsAD...0 Q4

n times

11

o Ql,z Q1,3 Qf(o Q1,3 Qf(Q1,2

X
0

Q: | 0 |0 G %
X 0

0 Qs |a3 0
(2
X

[recX] s [recX] s

Q1 | @iz | Qs Qy | Qs | Qe

a5 0 (s 0 Q2

Figure 10: Recursion: Different forms of Q4 = [A],;s. Only on the right is the
resulting matrix of normal form.

X C—
’ZAI DN 7 X Atz [
L1

_reeX i _ lumping
0 M| Az 0
g 000 0 Ay 0 A +X
g 0 0
0 010 |pu 0 0 ,u 0
0 0 0]X A

Figure 11: Recursion example that makes further lumping necessary

For an introduction to tensor algebra refer to [Dav81].

Assuming that () 4 is of dimension s, it follows that () is of dimension s”. The s"
states of) can be numbered using n-tuples built from the digits {0,1,...,s — 1} in

12

ascending lexicographical ordering:

state0 = (0 , 0 , ..., 0)
statel = (0 , 0 , ..., 1)
state s" =1 = (s=1 , s—=1 , ... , s—1)

In general, the tuple (i1,%2,...,7,) denotes a state in which the k-th replica of the
process A is in state 7, £ = 1...n. From symmetry considerations we know that all
states marked by tuples which are just permutations of each other, constitute a subset

”"’5_1) such different subsets of equivalent

of equivalent states. In total, there exist ()

states.
The minimal matrix [!%A]]MS describing the behaviour of ! A therefore has (”":;1)
states. One can think of two possible ways for its construction from @) 4, see Fig. 12.

o QaDdQaD...0Q4

Figure 12: Two ways for constructing [A],,¢

The explicit computation of the tensor sum and the subsequent combination of
equivalent states would be extremely costly. We have seen that the intermediate matrix
is of dimension s” ! Instead we propose an algorithm which generates the reduced
matrix [!GA],, s directly from @4, corresponding to the direct arrow in Fig. 12.

Rather than giving a complicated formal description of the algorithm we will explain
the scheme by using an example. In Fig. 13 a matrix ()4 of dimension 3 is given. For
simplicity its non-zero transition rates are chosen to be different natural numbers. This
choice of transition rates makes it easy to follow the example because no ambiguity will
arise. The figure also depicts the matrices [13A],,¢ and [1§ A],, s It can be observed
that the entries of the latter are derived in a straight-forward manner from the entries
of QA-

For formally specifying the entries of the matrix @ = [!§A],,; we define the help
function ndiff(#1, ¢2) which returns the number of digits which are different between the
tuples #; and t3, where the position of a digit within the tuple is irrelevant (i.e. tuples
are regarded as multi-sets). For example, ndiff(000,001) = 1, ndiff(011,112) = 1 and

13

00 01 02 11 12 22

00 |2-1 2-2 0
0 1 2
01 L+3 4 2
0|1 2
QA— Q!2A_02 5 1 2
1 3 4 ?
11 2-3 24
2 5
12 0 5 3 4
22 2.5

000 001 002 011 012 022 111 112 122 222

000 |3-1 3-2 0 0

2-1
001 43 4 2-2

002 5 2-1 2-2

1+
011 2.3 2-4 2

Qw4 = 012 5 143 4 2

%

022 2-5 1 2

111 3-3 34
112 0 5 23 24
122 25 3 4

222 35

Figure 13: Example for constructing [!GA],, ¢

ndiff(011,122) = 2. We further define the weight w;(?) of a digit in a tuple as the
number of occurrences of the digit 7 in the tuple . For instance, wy(001) = 2 and
w(001) = 1.

Let 0 and ¢ be the tuples denoting the originating state and the target state of a
transition, respectively. Then the transition rate from the originating to the target
state is of the general form

Yico wi(0)ay; if ndiff(o,) =0
Tog = w;(0)a; if ndiff(o,t) =1

0 otherwise

14

The first of the three cases corresponds to the entries on the diagonal of (). If there is
a self-loop from state ¢ to state ¢ in ()4, its rate a;; is multiplied by the weight of the
digit ¢.

In the second case, the target state differs from the originating state by exactly one
digit (again disregarding positions). We assume that a digit has changed from i to j.
Then the transition rate is given by «;; multiplied by the weight of the digit 2 in the
originating state.

In the third case, the target state differs from the originating state in more than
one digit. Since simultaneous transitions occur with probability 0 in a Markovian
environment, the transition rate is 0 in this case.

Before we conclude this subsection, two important questions must be addressed:

e In the case where S # () the matrix) can be computed in a similar way.
Assuming S = {a} we have

Yicoti ift=o0
Tot = 5 ift= 05:=j

)

0 otherwise
Here, 0;.—; denotes the tuple o with all entries ¢ changed to j.

o If)4 is reducible, i.e. if it consists of more than one island, the states of the
matrix () must be generated according to the island structure of ()4 in order to
keep the resulting matrix () in normal form.

4 Future Work and Conclusion

The language TIPPM5 has several obvious shortcomings which will be addressed briefly
now:

e It is necessary to enhance the set of actions Act such that more than one action
type is permitted. This can be dealt with in a straight forward way: Matrix
entries become tuples, one component for each action ¢ € Act. Checking for
equivalence does then mean to check the behaviour with respect to all action
types. Two states can be considered equivalent only if equivalent behaviour is
ensured for all action types.

e The language TIPPMS lacks a general parallel composition operator A ||s B.
Only the case A # B is of interest here, otherwise we can refer back to the
new replication operator. Given the two matrices Q4 = Q4+ Q4. and Qp =
@B+ @B, (the transitions corresponding to the action e are extracted into a
special matrix), we have the known relations

QajyB = QaDEsB
Qa4 ey B = Qi DQBi+ Qae®@ QB

15

but some problems regarding minimality and reachability have to be studied. If
A and B have common behaviour, the resulting matrix is lumpable in a fashion
related to the lumping of processes generated by replication. If S £ () there is
a potential problem with unreachable states which have to be eliminated in an
extra step.

e We intend to enhance TIPPMS by a hiding operator.

The proposed way of generating a transition rate matrix from a process term
has some significant advantages over traditional approaches. Applying the concept
of lumpability to an existing very large state space requires a lot of memory, often
more than what is available, thus making the approach infeasible. In contrast, ap-
plying our proposed method for the generation of the state space leads to a minimal
transition rate matrix in every single step of the construction procedure. Therefore
there is never a waste of memory space.

When analysing large and complex process terms the matrix generation can be
easily parallelised according to the structure of the given process term. Sub-expressions
can be translated into their corresponding matrices independently of each other. Only
the last step (the composition at the highest level) must be performed in a completely
sequential manner.

Besides the fact that the resulting matrix is minimal, i.e. not further lumpable,
this matrix is also in normal form. Because of the special block diagonal structure of
this matrix smart algorithms for stationary or transient analysis can be applied. As
a simple example, applying stationary analysis to a normal form matrix with a single
absorbing island results in the same state probabilities as applying stationary analysis
to the absorbing island directly.

References

[Buc94a] P. Buchholz. Exact and Ordinary Lumpability in Finite Markov Chains.
Journal of Applied Probability, 1994. scheduled March 1994.

[Buc94b] P. Buchholz. On a Markovian Process Algebra. Forschungsbericht 500, In-
formatik IV, Universitat Dortmund, 1994.

[Dav81] M. Davio. Kronecker Products and Shuffle Algebra. IEEE Transactions on
Computers, C-30(2):116-125, February 1981.

[GHRI93] Norbert Goétz, Ulrich Herzog, and Michael Rettelbach. Multiprocessor and
distributed system design: The integration of functional specification and
performance analysis using stochastic process algebras. In Proc. of the 16th
Int’l Symposium on Computer Performance Modelling, Measurement and

Evaluation, PERFORMANCE "93. Springer, 1993. LNCS 729.

16

[G5t94]

[Hi193]

[Hi194]

[HR94]

(KST76]
[Sie94]

Norbert Gotz. Stochastische Prozeflalgebren — Integration von funktionalem
Entwurf und Leistungsbewertung Verteilter Systeme. Dissertation, Univer-
sitat Erlangen, 1994.

J. Hillston. PEPA - Performance Enhanced Process Algebra. Technical
Report CSR-24-93, Dept. of Computer Science, University of Edinburgh,
March 1993.

J. Hillston. A Compositional Approach to Performance Modelling. PhD
thesis, Department of Computer Science, University of Edinburgh, 1994.

H. Hermanns and M. Rettelbach. Syntax, Semantics, Equivalences, and
Axioms for MTIPP. In U. Herzog and M. Rettelbach, editors, Proceeding of
the 2nd Workshop on Process Algebra and Performance Modelling. University
of Erlangen-Nurnberg, IMMD, 1994.

J.G. Kemeny and J.L. Snell. Finite Markov Chains. Springer, 1976.

M. Siegle. Reduced Markov Models of Parallel Programs with Replicated
Processes. In 2nd EUROMICRO Workshop on “Parallel and Distributed
Processing”, pages 126-133, Malaga, Spain, January 1994.

17

18

