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Abstract

It is often very di�cult for programmers of parallel computers

to understand how their parallel programs behave at execu-

tion time, because there is not enough insight into the inter-

actions between concurrent activities in the parallel machine.

Programmers do not only wish to obtain statistical informa-

tion that can be supplied by pro�ling, for example. They need

to have detailed knowledge about the functional behaviour of

their programs. Considering performance aspects, they need

timing information as well. Monitoring is a technique well

suited to obtain information about both functional behaviour

and timing. Global time information is essential for determin-

ing the chronological order of events on di�erent nodes of a

multiprocessor or of a distributed system, and for determining

the duration of time intervals between events from di�erent

nodes. A major problem on multiprocessors is the absence

of a global clock with high resolution. This problem can be

overcome if a monitor system capable of supplying globally

valid time stamps is used.

In this paper, the behaviour and performance of a parallel

program on the SUPRENUM multiprocessor is studied. The

method used for gaining insight into the runtime behaviour

of a parallel program is hybrid monitoring, a technique that

combines advantages of both software monitoring and hard-

ware monitoring. A novel interface makes it possible to mea-

sure program activities on SUPRENUM. The SUPRENUM

system and the ZM4 hardware monitor are briey described.

The example program under study is a parallel ray tracer. We

show that hybrid monitoring is an excellent method to pro-

vide programmers with valuable information for debugging

and tuning of parallel programs.

Keywords: debugging, event-driven monitoring, multipro-

cessor, parallel program, performance evaluation, ray tracing,

SUPRENUM, tuning.

1 Introduction

It is often very di�cult for programmers of parallel computers

to understand how their parallel programs behave at execu-

tion time, because there is not enough insight into the inter-

actions between concurrent activities in the parallel machine.

Programmers need to have detailed knowledge of the func-

tional behaviour of their programs, and for the consideration

of performance aspects they need timing information as well.

Usually, methods such as pro�ling and accounting do not pro-

vide su�cient information, they only give summary statistical

results. Therefore users often resort to rudimentary methods,

such as writing log-�les during program execution, in order to

obtain debug information and performance information about

their programs. But only a relatively small fraction of the

needed information can be obtained that way. A major prob-

lem with multiprocessors is the absence of a global clock with

high resolution. Global timing information is essential for de-

termining the chronological order of events on di�erent nodes

of a multiprocessor or of a distributed system, and for de-

termining the duration of time intervals between events from

di�erent nodes.

Facing this problem, our approach is to apply event-driven

monitoring techniques [3] [8] [9] in order to �nd out how a

parallel program behaves. In particular, we decided to use

hybrid monitoring, which combines advantages of both hard-

ware monitoring and software monitoring. Using software

monitoring, it is relatively easy to relate the event traces ob-

tained from the measurements to the measured program. But

since monitoring is done within the object system (i.e. within

the system under study), and therefore constitutes an extra

workload, software monitoring changes the behaviour of the

object system. Also, it is usually impossible to obtain global

timing information because most parallel systems do not pro-

vide a global clock with high resolution. With hardware mon-

itoring there is no intrusion and the timing problem can be

solved by providing an external clock. But there is no easy

way to relate the recorded signals to the source code of the

measured program.

In hybrid monitoring, as in software monitoring, the pro-

gram under study is instrumented by inserting additional in-

structions at points of interest. The execution of such a mea-

surement instruction marks an event. It causes the output of

measurement data, containing a token identifying the event

and possibly some additional parameters, to an external in-

terface. A hardware monitor is connected to the interface.

It records the event stream coming from the interface, and

stores the sequence of events together with the respective

time stamps as an event trace. Since most of the work is

done by the external hardware monitor, hybrid monitoring

provides the capabilities of software monitoring at a much

lower level of intrusion. The hardware monitor we use is a

scalable distributed monitor system called ZM4. It is capable



of simultaneously recording event streams coming from an ar-

bitrary number of nodes. Since the ZM4 has a global clock

with high resolution, events coming from di�erent nodes can

be chronologically ordered by their time stamps.

In this paper, we use hybrid monitoring techniques to study

the behaviour of a parallel program on the German supercom-

puter SUPRENUM. The SUPRENUM project was launched

in 1984 as a government-funded project, and implementation

of a prototype started in 1986. The project resulted in a

commercial product in 1990. SUPRENUM is a distributed-

memory multiprocessor in which the processing nodes are in-

terconnected by a hierarchical bus system. The SUPRENUM

architecture and its software environment are discussed in

more detail in Section 2.

In section 3 the essential features of the hardware moni-

tor ZM4 are presented. Section 4 presents the application of

our method to the implementation of a parallel ray tracing

program on SUPRENUM. We show how measurements sup-

ported the implementation of a parallel program by providing

programmers with valuable information about the behaviour

of their program. Both debugging and tuning of the parallel

program were supported considerably by the measurements.

2 The SUPRENUM Multipro-

cessor

2.1 Hardware Architecture

The SUPRENUM system [5] [11] [13] [2] is a MIMD-type mul-

tiprocessor consisting of up to 256 processors (nodes). It is a

distributed-memory machine with a two-level interconnection

network. All the elements comprising one processing node are

accommodated on a single printed circuit board.

The main components of each node are a 32-Bit micro-

processor (MC68020) operating at a clock rate of 20 MHz,

8 MByte of main memory protected by 2-Bit error-detection

and 1-Bit error-correction logic, and four coprocessors:

� The paged memory management unit (PMMU)

(MC68851) checks access rights and page violation when

the node memory is being accessed by the CPU or at the

beginning of DMA.

� The oating-point unit (FPU) (MC68882) executes

scalar oating-point arithmetic.

� The vector oating-point unit (VFPU) consists of the

Weitek chip set WTL2264/2265 and 64 KByte of fast

static memory (vector cache). Peak performance is 10

MFlops for single-operation double-precision oating-

point computations, and 20 MFlops in the case of

chained operations. Peak performance is achieved even if

one of the two operands is being read from main memory

by DMA, provided a constant increment is used.

� The communication unit (CU) is a microprogrammable

coprocessor which takes care of the data transfer between

a node's main memory and other nodes in the system.

The CPU initiates the communication. The communi-

cation unit then handles the entire data transfer includ-

ing bus request, transfer with protocol checks, and bus

release. The functions of the communication unit are

realized mainly by gate arrays and hybrid modules.

Up to 16 processing nodes form a cluster. Nodes of the

same cluster communicate via the cluster bus. In order to

provide some degree of fault-tolerance, the cluster bus consists

of two independent parallel buses, each having a transfer rate

of 160 MByte/s. Thus the total bandwidth available for intra-

cluster communication is 320 MByte/s.

Figure 1 (left) shows the components of one SUPRENUM

cluster. In addition to the processing nodes, each cluster con-

tains 3 or 4 special purpose nodes: there are up to 2 communi-

cation nodes which handle the communication between clus-

ters. If a processing node in one cluster wants to communicate

with another processing node in a di�erent cluster, commu-

nication is done via a communication node. There is one disk

controller node which can connect up to 4 disks to the cluster.

Finally, there is one cluster diagnosis node which monitors the

clusterbus and maintains statistical records. Only communi-

cation activities can be monitored by the diagnosis node.

The clusters are interconnected in a toroid structure by bit-

serial buses, called SUPRENUM bus. Figure 1 (right) shows

the 16 cluster SUPRENUM system and a front-end computer.

A token ring protocol is employed for the SUPRENUM bus

with a data transfer rate of 25 MByte/s. By duplicating the

torus structure the bandwidth doubles and fault-tolerance is

achieved because the clusters in a ring can always be reached

via alternative routes.

2.2 The Programming Model

The SUPRENUM computer is a multi-user machine. Users

can access the SUPRENUM kernel via a front-end computer.

In order to execute a parallel program, a user must �rst re-

quest a certain number of clusters or nodes. If the requested

number of resources is not available at the moment, the user

has to wait. The code of the user program is then down-

loaded from the front-end computer to the partition assigned

to the user. When the user's job terminates, all processors

are released. There is a certain time limit which can be set

by the operator, after which the resources assigned to a user

are released, even if that user's job is not yet completed. This

is done to prevent monopolization.

The following programming model is employed for

SUPRENUM: user programs consist of one or more indepen-

dent processes. A process can create other processes at any

point of time. A user application starts with an initial pro-

cess. Termination of the initial process causes termination of

the whole application program. Otherwise a process can only

be terminated by itself.

Processes communicate by sending and receiving messages.

According to the speci�cations, both synchronous and asyn-

chronous communication between processes are supported.

Using synchronous communication, the sender of a message is

blocked until the receiver of the message accepts the message.

The sender cannot do any work while waiting for his commu-

nication partner to receive the message. In order to avoid this

waiting time, asynchronous communication can be used. In

this case the sender does not send the message directly to the

receiver but to a mailbox associated with the receiver. The
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Figure 1: The SUPRENUM cluster (left) and the 16-cluster SUPRENUM system

sender can continue with his work once the message is placed

in the receiver's mailbox. The message is actually read from

the mailbox by the receiver at a later time. In Section 4 we

will discuss the behaviour of SUPRENUM's synchronous and

asynchronous communication in detail.

3 The Hardware Monitor ZM4

3.1 The ZM4 Architecture

The ZM4 is a hardware monitoring system which has been

developed and built at the University of Erlangen-N�urnberg

[4] (The name indicates that the ZM4 is the fourth generation

of monitor systems built at our University). It is designed to

measure arbitrary parallel and distributed systems. Conse-

quently the ZM4 itself is a distributed system which is scal-

able and adaptable to any object system. This universality is

an important feature of the ZM4, considering that most so-

phisticated monitoring systems are dedicated to one special

object system [1] [3] [7] [14].

We now describe the components of the ZM4 in a bottom-

up fashion. The central component of the ZM4 is the dedi-

cated probe unit (DPU) which consists of probes interfacing

to the object system, an event detector, and an event recorder.

The event detector detects relevant measurement information

coming from the object system interface. The probes and the

event detector are the only parts of the ZM4 that depend on

the object system.

The event recorder of the ZM4 is realized as a plug-in board

for a monitor agent (MA). Standard PC/AT computers are

used as monitor agents. One event recorder can record up to

four independent event streams. Upon a request signal the

event recorder inputs data coming from the event detector.

It stores this data together with a time stamp and a ag �eld

into a FIFO bu�er of size 32K � 96 bits. The contents of the

FIFO bu�er are written simultaneously onto the disk of the

monitor agent. The FIFO is needed as a high-speed bu�er to

ensure that no events get lost during bursts of events.

The clock of the event recorder has a resolution of 100 ns.

About 10000 events per second can be written from the FIFO

bu�er onto the disk of the monitor agent. This limit is due

to the disk transfer rate of the monitor agent. However, a

bandwidth of 120 MByte/s at the input of the FIFO allows

for peak event rates of 10 millions of events per second during

bursts of events.

In order to monitor larger object systems, two or more

DPU's have to be employed. In this case the local clocks of

the event recorders have to be synchronized to obtain globally

valid time stamps. Another plug-in board, called measure

tick generator (MTG), is used for that purpose. It consti-

tutes the master part of the global clock of the ZM4. It is

connected to the event recorders via the tick channel. The

local clocks of the event recorders can be started simultane-

ously by a signal on the tick channel. A manchester-coded

signal which is transmitted continuously via the tick channel

prevents skewing of the local clocks. Thus the local clocks can

provide globally valid timing information. For details about

the global clock of the ZM4 see [4].

Up to four DPU's can be plugged into one monitor agent.

If one wishes to use more than four DPU's, more than one

monitor agent is needed. It is important to note that there

is still only one measure tick generator connected to all event

recorders by the tick channel. All monitor agents are con-

nected to a control and evaluation computer (CEC) by the
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Figure 2: The ZM4 distributed, scalable hardware mon-

itor

data channel (an Ethernet using TCP/IP). Figure 2 shows

the general con�guration of the ZM4.

When a measurement has been carried out, the event traces

recorded by the event recorders and stored on the disks of the

monitor agents are transmitted via the data channel to the

control and evaluation computer. There the local traces can

be merged to one global trace, since events can be sorted ac-

cording to their globally valid time stamps. Evaluation of the

global trace is done using the SIMPLE software package [10]

[4] which provides tools for statistical analysis, visualization,

and animation of measurement data.

3.2 Adaptation of ZM4 to SUPRENUM

As mentioned in the previous section, the interface between

object system and event recorder depends on the object sys-

tem. In the past, the ZM4 has been used for monitoring a

great variety of object systems such as Transputers, high-

speed networks, clusters of workstations, and robot systems.

Each such object system may provide a di�erent hardware

interface to which measurement data is output.

In the case of SUPRENUM we considered two candidate

interfaces for outputting measurement data. Each process-

ing node has a serial terminal interface (V.24) and a seven

segment display on its front cover. The terminal interface is

intended to be used by service personnel. The seven segment

display displays the internal state of communication �rmware.

Data transfer via the terminal interface is slow (less than 20

KBit/s). It would take more than 2.4 ms to output 48 bits of

event data, not including time for context switching. There-

fore we decided not to use the terminal interface.

The seven segment display is driven from a gate array on

the processing node board. It can display only 16 di�erent

patterns. Under normal operating conditions, the seven seg-

ment display is not intended to be addressed by the user.

We wished to output event data which is 48 bits wide via the

seven segment display. To code the event, 16 bits of the event

data are used, and a parameter �eld of 32 bits is provided for

outputting additional information relevant at the point of the

program where the event is initiated. In order to output 48

bits of data via a display which can only display 16 di�er-

ent patterns, we devised the following scheme: one pattern

is used as a triggerword T which signals to the monitoring

hardware that measurement data will follow. The 48 bits are

output as a sequence of 16 pairs T m

i

like

T m

0

T m

1

. . . T m

15

where each m

i

is a pattern that encodes 3 bits of the original

48 bits. There are two essential conditions:

� The triggerword T must be reserved for this application,

since it signals to the event detector that measurement

data will follow.

� The output of a pair T m

i

must be an atomic action. No

other information must be output to the seven segment

display between T and m

i

.

The routine that can be called from the user program in

order to output data via the seven segment display was im-

plemented in cooperation with the SUPRENUM company. It

is called as

hybrid mon(p1; p2)

where p1 is a 16-Bit integer de�ning the event and p2 is a 32-

Bit parameter which can be used to output additional relevant

data. One call of the routine hybrid mon takes less than one

twentieth of the time that would be needed to output an

event via the terminal interface. This results in a very low

level of intrusion and ensures that the time needed to output

an event is more than two orders of magnitude smaller than

the duration of the measured activities.

An interface was built whose probes are plugged into

the socket of the seven segment display on one side and

which connects to the event recorder of the ZM4 on the

other side as shown in Figure 3. Its event detector con-
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Figure 3: The interface between SUPRENUM and ZM4

tains recognition logic for the triggerword T and reconstructs

the original 48 bits of the event data from the sequence

T m

0

T m

1

. . . T m

15

. It is realized as a state machine

in programmable logic. Once a 48-Bit event is assembled the

interface issues a request signal and the event is recorded by

the event recorder of the ZM4.

4 Performance Evaluation of a

Parallel Ray Tracer

As mentioned in the introduction, the main di�culty when

writing parallel programs is the lack of insight into the in-

ternal activities of the parallel program and into the mutual

e�ect of the user program and the system software of the

underlying parallel architecture. Programmers wish to know

more about the functional behaviour as well as the perfor-

mance of their parallel programs. These problems are also
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encountered by people writing programs for the SUPRENUM

multiprocessor. In this paper, we investigate how hybrid mon-

itoring techniques can support the implementation of parallel

programs for a novel machine. Both debugging and tuning

are addressed.

We have chosen ray tracing as an attractive example ap-

plication, and we have implemented a parallel ray tracing

program for SUPRENUM [12]. It is important to note that

it was not the major aim of our work to build a highly so-

phisticated ray tracer, but to develop methods which make

writing of correct and e�cient parallel code easier.

4.1 Ray Tracing

An important �eld of research in computer graphics is the

generation of realistic images from formal descriptions of a

scene. Natural phenomena such as light and shadow, reec-

tion and refraction, or depth of �eld have to be simulated in

order to get such high-quality images. Ray tracing [15] [6] is

one of the most sophisticated and most powerful methods for

image generation.

The basic concept of ray tracing is illustrated in Figure 4.

The idea is to follow the trajectory of a ray (the eye ray)

originating at the eye of the observer and going through one

particular pixel of the image plane into the scene. The colour

value of the eye ray (i.e. of its associated pixel) has to be

computed. To do this, the closest point of intersection be-

tween the ray and objects in the scene is determined. The

colour value of the pixel depends on the surface properties

of the object at the intersection point in various ways. First

of all, the colour value depends on the colour of the object

at the intersection point and how that point is being illumi-

nated by light sources. If the object is \shiny", i.e. if light

hitting the object is reected, the colour value also depends

on the colour of a reected ray originating at the intersection

point. Finally, if the object is not opaque, the colour value

of the pixel also depends on the colour of a transmitted ray

originating at the point of intersection. The colours of both

the reected ray and the transmitted ray are computed re-

cursively. The colour of the eye ray is a combination of the

colour of the object, the colour of the reected ray, and the

colour of the transmitted ray.

Ray tracing is a very time-consuming process. Note that

256K pixels have to be processed in order to compute a 512

by 512 image. Depending on the resolution of the image to be

created, the complexity of the scene, and the shading model

used, it can take between seconds and days to render a scene.

This is a great challenge for computer architects and pro-

grammers. In the past many acceleration techniques for ray

tracing have been suggested [6].

Parallelization is a very promising approach for improv-

ing the performance of a ray tracing program. By dividing

the work to be done between a large number of processors,

computation time can be reduced signi�cantly. Many di�er-

ent ways to parallelize ray tracing have been proposed and

tested. There are two basic schemes to distribute the compu-

tation between several processors:

� Using object partitioning, each processor takes care of a

certain fraction of the objects in the scene to be rendered.

� With ray partitioning, di�erent rays are processed by

di�erent processors.

The second scheme, ray partitioning,works as follows: each

processor computes a part of the �nal image by computing

the colour values of a subset of all rays which have to be

processed. In doing this, each processor can work completely

independently of all other processors involved. There is no

communication between processors until the end, when the

complete image is put together from the local results. For

processing a ray, each processor needs information about the

whole scene to be rendered. This means that the information

contained in the scene description must be replicated on each

processor, which requires redundant storage. This may be a

disadvantage because scene descriptions are often very long

and need a lot of memory.

With ray partitioning, it may either be predetermined

which rays are processed by a particular processor (static ray

partitioning), or the assignment of a ray to a processor may

be made during the computation of an image (dynamic ray

partitioning). The performance of static ray partitioning is

often quite poor because the computation time for a single

ray varies signi�cantly, and therefore it is di�cult to predict

how long it will take to process a certain subset of rays. This

results in a load balancing problem which can be at least

partly solved by assigning discontinuous subsets of rays to

the processors, instead of assigning continuous subsets such

as rectangular patches to the processors.

4.2 Parallelizing Ray Tracing for

SUPRENUM

For our parallelization of ray tracing we chose a dynamic ray

partitioning approach in which the ray tracing algorithm is

executed in a distributed manner by one master processor and

several servant processors. As shown in Figure 5, the mas-

ter communicates with all the servant processors, but there is

no communication between any two servant processors. The

master is responsible for control of the high-level ow of the

algorithm, whereas the actual tracing of rays (the geomet-

ric intersection operations, mapping transformations, etc.) is

executed by the servants.

Figure 6 shows the basic structure of the master and ser-

vant processes. The horizontal bars in the �gure denote in-

strumentation points. At these points, measurement instruc-

tions were inserted into the program. The master adminis-
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trates the work to be done. He always keeps a certain number

of un�nished pixels in a queue. While there are more pixels to

process, the master assigns jobs to the servants (\Distribute

Jobs", \Send Jobs"), collects the results returned from the

servants (\Receive Results"), and writes the output picture

�le (\Write Pixels"). The number of times the code for \Send

Jobs" and \Write Pixels" is executed in each loop may vary.

An oversampling scheme, in which more than one ray is com-

puted per pixel in order to reduce aliasing problems, is also

organized by the master. The jobs assigned to the servants

consist of bundles of one or more rays whose colour values

have to be computed.

The servants receive messages containing a job, trace the

rays belonging to a job (\Work"), and return the results to

the master (\Send Results"). They can work independently

of each other because they all have the complete scene in-

formation available. Each servant has to communicate with

the master to receive jobs and return results, but there is no

communication between the servants.

The maximum number of outstanding jobs assigned by the

master to one particular servant is limited by a window ow

control scheme which works as follows: initially the master

has a �xed number of credits from each servant. The master

may send jobs to a servant as long as there are credits from

that servant available. With each result the master gets one

credit back from a servant. This load balancing scheme pre-

vents ooding of the servants with jobs coming from the mas-

ter, but it also ensures that the servants always have enough

work to do to keep them busy.

The time to compute a ray varies considerably. For in-

stance, a ray which does not intersect any object of the scene

gets assigned the background colour of the picture without

any further processing. A di�erent ray may hit an object,

generate secondary rays which in turn may generate more

rays recursively, so that much more processing is required.

The window ow control scheme described above guarantees

that the activities of the servants are completely decoupled.

Furthermore, the assignment of rays to processors is com-

pletely dynamic. Therefore processing of \long" rays on one

servant does not cause other servants to wait.

It is easy to see that the master constitutes a hot-spot

for communication because he must communicate with all

the servants. We expected that this would not cause any

problems, provided the following conditions hold:

� Communication is su�ciently fast.

� The time needed to process a ray is signi�cantly longer

than time needed to do administrative work associated

with a ray.

4.3 Evolution of the Parallel Program

In this section we describe four versions of a parallel ray

tracer. Evaluating measurements of each version motivated

the changes introduced for the following version.
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Version 1: SUPRENUM's Mailbox Mechanism

We started by implementing a basic ray tracing program for

SUPRENUM. The implementation of the �rst version was led

by the following considerations:

It is important for the communication between the master

and the servants that the sender of a message does not get

blocked until the message is actually received by the receiver.

Otherwise a lot of time would be spent idling while waiting

for the communication partner. Therefore asynchronous com-

munication has to be employed. In particular, we used the

mailbox mechanism of the SUPRENUM system. A mailbox

is a light-weight process owned by the receiving process. The

sender of a message does not send the message directly to the

receiver but to the receiver's mailbox. The receiver reads his

mailbox whenever he wishes to do so. According to the spec-

i�cations of SUPRENUM's mailbox mechanism the mailbox

process is always in a receive state and therefore the sender

of a message will never be blocked.

However, measurements of the mailbox communication be-

tween the master and one of the servants reveiled a di�erent

behaviour. Since the mailbox is a (light-weight) process, it

must be actually running in order to receive a message. The

mailbox process is running on the same processor as the re-

ceiving process (together with several other light-weight pro-

cesses) in a time-sharing manner. The scheduling strategy

used is plain round-robin. However, instead of using time-

slicing, each process that is scheduled may either run until

it gets blocked or until it decides to relinquish the processor

deliberately. The sender of a message is blocked until the

mailbox process on the receiver's processor is actually sched-

uled. This may not be the case until the receiver himself

becomes blocked because he is waiting for a message or be-

cause he wants to send some message himself. Consequently,

(asynchronous) mailbox communication behaves very much

like synchronous communication. This can be observed in

the Gantt-chart shown in Figure 7.

A Gantt-chart is a time-state diagram which depicts pro-

gram activities during the measurement. For the diagram in

Figure 7 we measured our ray tracing program running on

two processors. The activities of the master processor and

the servant processor are shown over a common time axis.

Communication between the master and the servant is done

using mailboxes. One can observe in the Gantt-chart that

the master goes through the following stages (numbers refer

to locations in the chart):

� During the activity \Distribute Jobs" (1) the master re-

�lls the pixel-queue and does some more administrative

work.

� During \Send Jobs" (2) he sends a job (in this case con-

sisting of a single ray) to the servant. After the send

activity the activity \Wait for Results" (3) begins.

� In \Receive Results" (4) the master receives a message

coming from the servant. The message contains results

computed by the servant. However, these are not the

results for the job just sent, but for a previous job (re-

member with the window ow control scheme the num-

ber of outstanding jobs per servant may be greater than

one).

� \Receive Results" is followed by the next \Distribute

Jobs" (5) activity.

Some of the master's cycles also contain a write activity (6)

(in the window shown in Figure 7 this is the case in every

third cycle). The duration of \Distribute Jobs" is signi�cantly

longer after such a write activity because new pixels must be

inserted into the pixel-queue, after pixels whose computation

is completed have been written onto disk.

The servant works on a job (\Work", 7), returns the results,

and waits for the next job (\Wait for Job", 8). It can be seen

that the servant spends most of the time in the \Work" state,

so servant utilization in this measurement is very good. Since

there is only one servant present, the master can easily keep

him busy and the servant has always enough work to do.

It can be observed in the diagram in Figure 7 that the mas-

ter becomes blocked during the \Send Jobs" activitiy. The

transition from \Send Jobs" to \Wait for Results" (2! 3) on

the master processor can only occur in a synchronized man-

ner with the transition from \Work" to \Wait for Job" (7



! 8) on the servant processor. This is a very disappointing

result, because in using mailbox communication we expected

that the master's \Send Jobs" and the servant's \Wait for

Job" would be decoupled. The reason for the observed be-

haviour is as follows. The servant's mailbox process can only

be scheduled after the servant relinquishes the processor be-

cause he is waiting for a message. Only then can the master

place his message in the servant's mailbox. This results in a

synchronous behaviour of SUPRENUM's mailbox communi-

cation.

We monitored another run of this version of our ray tracer.

The behaviour of the program is illustrated in the Gantt-chart

shown in Figure 8. These results were obtained from moni-
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Figure 8: Servant utilization using mailbox communica-

tion(ray tracer on 16 processors)

toring the program when it was rendering a scene of moderate

complexity (the scene contained 25 primitive objects). The

program ran on 16 processors, i.e. there is one master and

15 servants. Only one servant is shown in the �gure but the

other servants behave similarly. It can be easily seen that the

program's performance is very poor. The servants are only

working about 15 % of the total time. Each servant spends

the rest of the time waiting for the master to accept the re-

sults of the current job and to give the servant a new job.

In this measurement the window size for the number of out-

standing jobs per servant was 3, and a job consisted of one

single ray.

Version 2: Communication Agents (one direction)

Having evaluated this and other measurements, we decided to

implement our own asynchronous communication in order to

avoid such long waiting times. For the communication from

the master to the servants we introduced a pool of light-weight

processes which we call communication agents. Their task is

to forward a message from the master to one of the servants.

The agents are running on the same processor as the master.

Whenever the master wishes to send a message to a servant he

indicates this fact to an agent, who is currently not engaged

in some other communication, by setting a shared variable.

This agent will forward the master's message to the servant.

If no free agent is available a new agent is created and added

to the pool. Measurements showed that the number of agents

created remains quite small. After the indication the master

relinquishes the processor and all agents will be scheduled.

Context-switching between light-weight processes belonging

to the same team of processes is cheap (less than 1 ms).

Ray tracing the same scene as above with the modi�ed pro-

gram, servant processor utilization improved to about 29 %,

as can be seen in Figure 9 (during the measurement the ser-

vants spent about 29 % of the total time in the \Work" state).

A pool of 5 communication agents was created for rendering

this scene on 16 processors. For clarity of the �gure only

one communication agent is shown. Also, as before, only one

servant's activities are shown in the �gure.

Figure 9 (bottom) gives a more detailed view on the activ-

ities going on (numbers refer to locations in the chart): as in

Figure 7, one can observe the cycles the master goes through.

Again, writing the output �le is not done in every cycle. In

one of the cycles there are several pixels written to the output

�le at a time (1). This is because pixels have to be written in

correct ordering. So, whenever a continuous stretch of pixels

has been processed, the results are written onto disk. Wait-

ing times of the master are not signi�cant. Therefore one

way to solve the still existing communication bottleneck at

the master would be to reduce the number of messages sent,

by sending jobs consisting of more than one ray, as described

below.

For the Gantt-charts shown in Figure 7 and Figure 8 the

beginning of the servants' \Send Results" activity had not

been instrumented. In these charts there is a direct transition

from \Work" to \Wait for Job". Since we wished to know

the duration of the \Send Results" activity, we inserted an

additional measurement instruction at the beginning of \Send

Results" for the charts in Figure 9. In Figure 9 we can see

that the servant goes through the stages \Work" (2), \Send

Results" (3), and \Wait for Job" (4).

The behaviour of the communication agents can be ob-

served in the Gantt-chart in Figure 9 (bottom): if an agent is

scheduled (\Wake Up", 5) and �nds that there is no message

to be forwarded, he goes back to sleep immediately (\Sleep",

6). Otherwise he takes the message, forwards it to the receiver

(\Forward", 7), is freed whenever the message is received by

the receiver (\Freed", 8), and goes back to sleep (\Sleep", 9).

It can be seen from the chart that the time an agent spends

in the \Freed" state is extremely short (8).

Version 3: Communication Agents (both directions)

Using communication agents improved the servant processor

utilization by almost 100 %, but a utilization of 29 % is still

very poor. As introducing communication agents for sending

messages from the master to the servants turned out to be

helpful, we decided to use agents for the reverse communica-

tion (from a servant to the master) as well. Apart from this,

we wanted to relieve the communication problem by reduc-

ing the total communication volume. Sending a message for

every single ray is certainly not the best strategy. Therefore

we reduced the number of messages to be sent by sending

bundles of rays instead of single rays. More speci�cally, 50

rays are now sent to a servant at a time, and the servant re-

turns 50 results in one message. Measurements showed that

these changes resulted in a further improvement of the ray

tracer's performance. Now the servant utilization was more

than 46 %.

Version 4: Further Tuning

Measurement results from the previous version indicated that

the communication hot-spot at the master is still the major

problem. We wished to know whether it would be advanta-

geous to further increase the bundle size and chose a bundle
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Figure 9: Using communication agents for master-servant communication, bottom shows more detailed view of

measurement

size of 100 for the next measurement. A bundle size of 100 is

still small compared to the total number of rays which have

to be computed for a whole image (remember for a 512 by 512

image 256K rays have to be processed even if no oversampling

is done). Therefore distributing jobs of size 100 to the ser-

vants does not cause any signi�cant load balancing problems.

Also, a minor programming error in the previous version of

the program had been detected, namely the choice of an inad-

equate constant for the length of the master's queue of pixels

to be computed. This lead to a situation in which there were

not enough pixels in the pixel-queue to constitute a su�cient

amount of work for the servants. With these changes our ray

tracer �nally achieved 60 % servant processor utilization when

ray tracing the example scene. The improvement of servant

utilization for the example scene using the four described ver-

sions of our program is shown in �gure 10. For this scene, the

initial servant utilization of about 15 % could be improved to

60 %.

Rendering Complex Scenes

The more complex a scene, the more time it takes to trace

a single ray. More complex scenes result in a workload with

relatively more computation and less communication, i.e. a

good servant processor utilization can be achieved more easily

when rendering complex scenes. As mentioned before, the

example scene rendered during the measurements discussed

above was only of moderate complexity. Therefore, this scene

was a hard test candidate for our ray tracer. Rendering a

more complex scene comprising more than 250 primitives (a

fractal pyramid) we found that the servant processors reached

a utilization of over 99 %. Due to the complexity of this scene

the master did not become a bottleneck although he had to
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Figure 10: Improvement of servant utilization

keep 15 servants working. It should be mentioned that the

utilization percentages given refer to the actual ray tracing

phase of the program only, i.e. time for initializing the master

process, creating the servant processes, and reading the scene

description �le is not taken into account. However, for ray

tracing complex scenes, initialization is of orders of magnitude

smaller than time needed for computation.

5 Conclusion

In this paper, we have described how hybrid monitoring tech-

niques supported the development of a parallel program for

the SUPRENUM multiprocessor. Hybrid monitoring proved

to be an excellent method for debugging and tuning of par-

allel programs on a novel machine. The example application

is a ray tracer parallelized according to a dynamic ray parti-

tioning scheme. Measurements of the instrumented program

were carried out using the hardware monitoring system ZM4.

Event-driven hybrid monitoring with global timing infor-

mation provided insight into the runtime behaviour of the

parallel program which could not have been gained using

other methods. We have shown how a basic implementa-

tion of the ray tracer could be improved signi�cantly with

the help of measurements. E�ciency of the program could

be increased dramatically.

It would certainly be very interesting to measure the oper-

ating system and not only the application program. Instru-

menting SUPRENUM's operating system to �nd more de-

tailed information about the behaviour of the node scheduling

algorithm and internode communication is one of our goals.

In our future work we intend to make use of SUPRENUM's

vector processing capabilities. More precisely, we plan to im-

plement a hierarchical bounding volume scheme based on par-

allelopipeds. Plane intersection operations will be vectorized

to further increase the performance of the servant processes.
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