
The Interlocking Bus Network

For Fault-Tolerant Processor Arrays

Markus G. Siegle

1

Douglas S. Reeves

2

Krzysztof Kozminski

3

Abstract

A method of fault-tolerance in mesh-connected processor arrays is presented. This method is based on a

new type of interconnection network called the Interlocking Bus Network. The array can be recon�gured

in the presence of faulty processors, using an algorithm for bipartite graph matching. The survivability

of this method and its hardware/delay overhead are presented and compared to other schemes. The

new technique is very general, leading to a number of important extensions. Application of the method

to the BLITZEN parallel computer is also discussed.

Keywords: Fault-tolerance, reliability, recon�guration, yield, processor array, interconnection network,

bus, graph matching, BLITZEN.

1 Introduction

In modern high-performance computer systems there is usually some sort of parallelism involved.

Massively parallel computers are being proposed and built, promising to provide outstanding

computing power for many classes of applications. These computers are constructed from very

simple processors (processing elements), each with its own local memory. The processors normally

operate in SIMD mode (single instruction stream, multiple data stream), in which all processors

execute the identical instruction stream under the control of a master processor (host). Examples

of such computers are Illiac-IV[1], the Connection Machine[2], the MPP[3], and BLITZEN[4].

The processors are connected by some sort of interconnection network over which they ex-

change data. Most massively parallel computers use a two-dimensional mesh as the basic inter-

connection network (processor array). The two-dimensional mesh is attractive because it is easy

to design and manufacture (e.g., it is planar, which matches current technology well) and the

dataow is simple to control. In addition, it has excellent performance characteristics.

Computers with thousands of processors and tens or hundreds of thousands of interconnec-

tions are likely to have severe fabrication yield and reliability problems. To make these computers

practical, they must include techniques for tolerating faults. One way of achieving fault-tolerance

is to provide hardware redundancy, in which case \spare" elements are provided which can re-

place faulty elements. This process is called recon�guration. We have developed a new type of

1

Institut f�ur Informatik VII, Universit�at Erlangen, Martensstr.3, 8520 Erlangen,Germany.

e-mail siegle@faui77.informatik.uni-erlangen.de

2

Department of Computer Science, North Carolina State University, Raleigh, NC 27965.

3

MCNC Center for Microelectronics, Research Triangle Park, NC 27709.



interconnection network which supports, among others, the two-dimensional mesh interconnec-

tion pattern, and which is highly fault-tolerant. This network is called the Interlocking Bus

Network (IBN). The most important features of this network are:

1. The level of fault-tolerance provided, considering the amount of additional hardware and

delay introduced, is superior to previous methods;

2. A well-known graph algorithm (bipartite graph-matching) provides provably optimal re-

con�guration with modest complexity; and

3. IBN can be easily generalized to provide arbitrarily high fault-tolerance, at the cost of

additional hardware.

In the next two sections, we present the network and the recon�guration algorithm. This is

followed by a discussion of the overhead incurred and a description of some important extensions

and applications.

2 The Interlocking Bus Network

Our investigation of this problem was motivated by the BLITZEN project[4]. BLITZEN is a

prototype SIMD computer, with 128 processors (and their associated memory) integrated onto

a single chip of approximately 1.1 million transistors. Each processor is quite simple, and has

a word width of 1 bit, i.e. it is bit-serial. In the full-scale version, 128 chips are con�gured to

provide a 128�128 array of processors. Attaining satisfactory yield and reliability is a formidable

challenge; this is due to the aggressiveness of the technology and the low production volume. A

�rst-generation version of 128 processors per chip has been successfully tested, and applications

are being ported to it. Plans for the second-generation mandate some form of fault-tolerance.

In BLITZEN, processors are connected by the \X-grid".

4

With this interconnection network,

each processor can communicate with eight neighbours (in the N, NE, E, SE, S, SW, W, NW

directions), with only 4 wires per processor. During data transfers, each processor outputs data

on one of its four wires, accepts data on one of its other wires, and sets the remaining two wires

to the high-impedance state. For our further discussion it is important to notice that each \X"

in the grid can be viewed as a bus to which four processors are attached. At any one time, only

one processor may be transmitting on the bus, while all others are merely receiving (i.e., the

output is tri-stated). Logical and physical views of this interconnection network are shown in

Figure 1a and Figure 1b. In this basic con�guration there is no ability to tolerate faults, neither

in the processors nor in the interconnection network.

It is well known that the bus is a basic communication medium which is highly tolerant

of faults in processors; the loss of one processor on a bus does not prevent communication

between any other processors also on that bus. However, a single bus is not a suitable method of

interconnection for thousands of processors, because of excessive contention problems. A possible

combination of high fault-tolerance with low contention would be to provide many small buses,

4

This interconnection network is also being used in commercial computers supplied by the MasPar Corporation.



1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

Processor X-Grid

b
2,3

1,1 1,2 1,4

2,1 2,4

3,1 3,2 3,3 3,4

1,3 1,4

2,2 2,3 2,4

3,2 3,3 3,43,1

Processor BusConnection

Figure 1: The BLITZEN architecture (processors and X-grid), a) logical view, b) physical con-

struction (processors and connections not drawn to scale).

each with a small number of processors attached. To implement this idea, a way must be found of

interconnecting these buses, so that the network will not be partitioned into non-communicating

parts. As mentioned above, in BLITZEN the buses are connected by the processors, each of

which is attached to multiple buses. In IBN, each processor may be con�gured to be connected

to certain buses in its neighbourhood. Each processor contains switching logic to determine

dynamically to which buses it is connected.

An example of our architecture follows. Let us �rst describe the basic non-fault-tolerant

architecture. We will use the symbol b

i;j

to represent the X-grid bus which connects together

processors [i; j], [i; j+1], [i+1; j], and [i+1; j+1]. We will denote by B[i; j] the set of four buses

that are immediately adjacent to processor [i; j]. For example, B[2; 3] is shown highlighted in

Figure 1a. In this basic architecture, B[2; 3] = (b

1;2

; b

1;3

; b

2;2

; b

2;3

). Alternatively, we de�ne N

i;j

as the neighbourhood of bus b

i;j

, that is, the set of processors which it connects. In this same

example, N

2;3

= ([2; 3]; [2; 4]; [3; 3]; [3; 4]).

In order to provide fault-tolerance, the interconnection network is expanded by additional

connections which can be opened or closed by switches. Now each corner of a processor may

connect to one out of three buses. This is illustrated in Figure 2. Note that in Figure 2 only

the connections originating at one of the four corners of a processor are shown. There are three

similar connections at each of the other corners. The extra connections allow a processor [i; j]

to be con�gured into the array in one of four ways:

1. Connected normally, to B[i; j];

2. Connected North, to B[i� 1; j];

3. Connected West, to B[i; j � 1]; or

4. Unconnected (i.e., con�gured out of the array).

To the array of processors, we will also add one extra row and one extra column of \spare"

processors on the South and East borders. The additional bus connections and spare processors



2,4

3,3 3,4

Figure 2: Possible connections between a corner of a processor and three buses

1,1 1,2 1,4

2,1 2,4

3,1 3,2 3,3 3,4

1,3

1,4

2,2

2,3 2,4

3,1 3,2 3,3 3,4

Figure 3: Example of recon�guration, using one extra row and one extra column of processors.

The indices represent logical processors.

allow the network to be recon�gured in the presence of faulty processors. The recon�guration can

be done by setting switches in the interconnection network. An example of recon�guration using

this architecture is shown in Figure 3. In this �gure, a 3�4 array of processors is enhanced by one

row and one column of spares. In the �gure, faulty processors are shown shaded. In the example,

logical processor (1; 3) is mapped onto physical processor [2; 3] because physical processor [1; 3]

is faulty. This in turn causes logical processor (2; 3) to be moved right one position onto physical

processor [2; 4], etc.

In this expanded network, each bus b

i;j

has connections to eight processors (four of which

will be open and four of which will be closed). This means the neighbourhood of bus b

i;j

has

changed. For example:

N

2;2

= ([2; 2]; [2; 3]; [3; 2]; [3; 3]; [4; 2]; [4; 3]; [2; 4]; [3; 4])

and

N

2;3

= ([2; 3]; [2; 4]; [3; 3]; [3; 4]; [4; 3]; [4; 4]; [2; 5]; [3; 5]).



In general, the de�ning features of the class of Interlocking Bus Networks are (i) processors

are interconnected by buses and (ii) the buses must have partially overlapping neighbourhoods.

In the above case,

N

2;2

\ N

2;3

= ([2; 3]; [3; 3]; [4; 3]; [2; 4]; [3; 4])

If a circle is drawn for each bus, with center at the midpoint of the bus and circumference just

including those processors in the neighbourhood of the bus, the resulting diagram looks like a

group of interlocking circles. Hence the name \Interlocking Bus Network". In addition to the

present example, many other architectures (with di�erent adjacency domains, interconnections,

and location of spares) are also included in the IBN class according to these criteria.

A number of methods for recon�guring processor arrays have been proposed in the past.

In the fault-tolerant array taxonomy of Chean and Fortes[5], the IBN architecture would be

classi�ed as a method that is Globally Redundant, Processor Switched, and Locally Switched.

Other recon�gurable architectures in this class are Direct Recon�guration and Complex Fault-

Stealing[6], FUSS[7], and CHIP[8]. Advantages shared by members of this class are:

1. With global redundancy, spares are allocated globally. A particular spare is not assigned

to one element, but may potentially replace one out of a large set of elements. This gives

a high degree of exibility.

2. Using processor switching, a single fault does not cause a whole set of elements to be

discarded which means improved fault-tolerance.

3. Local switching means strictly local communications; as a result, communication delays

are tightly bounded.

We compare our method with the other members of this same class in more detail below. The

hardware and delay overhead are estimated in section 4.

3 The Interlocking Bus Network and Graph Matching

We now explain how the array is successfully recon�gured when faults occur. The task in the

example given in Section 2 is to produce a mapping of an array of i � j logical processors onto

an array of (i + 1) � (j + 1) physical processors, augmented with the additional connections.

Following the terminology of Negrini et al.[6], we de�ne the Inverse Adjacency Domain of a

logical processor (i; j) (IAD(i; j)) as the set of physical processors it can be mapped onto. In

the example architecture, the Inverse Adjacency Domain of logical processor (i; j) is the set

([i; j]; [i + 1; j]; [i; j + 1]) of physical processors. A logical processor can be mapped onto its

\twin" (physical processors with same indices) or the eastern or southern neighbour of its twin.

On the other hand, the Adjacency Domain of a physical processor [i; j] (denoted AD[i; j]) is the

set of logical processors which can be mapped onto this physical processor.

Let us de�ne a feasible mapping as any mapping in which every logical processor is assigned

to a non-faulty physical processor in its Inverse Adjacency Domain. Furthermore, any feasible

mapping of logical to physical processors that assigns at most one logical processor to any physical



1,1 1,2 1,3 1,4 2,1 2,2 2,3 3,1 3,2 3,3 3,4

1,1 1,2 1,5 2,1 2,3 2,4 2,5 3,1 3,2 3,3 3,4 3,5 4,1 4,2

2,4

Figure 4: Bipartite graph representing the mapping problem of Figure 3. A logical array of size

3� 4 must be mapped onto a physical array of size 4� 5. An optimal matching is shown by the

darkened lines.

processor will produce a workable recon�guration. The key property of the IBN can now be

mentioned. The only e�ect of an assignment of a logical processor to a physical processor is the

removal of this physical processor from all other Inverse Adjacency Domains to which it belongs.

The interlocking bus connections guarantee that the network can be recon�gured to implement

such a mapping. This property is the major novel feature of IBN and the major �nding of this

paper.

Because of this property, we can formulate the recon�guration task as an instance of a graph

matching problem. This approach has previously been used for the Interstitial Redundancy

Array[9]. A bipartite graph consists of two sets of vertices, X and Y , and a set of edges, E. The

task in bipartite graph matching is to �nd a subset of edges, E

0

� E, such that no two edges

in E

0

share an end point, and such that every vertex in X is connected to exactly one vertex

in Y by an edge in E

0

. For our purposes, there is one vertex in X for each logical processor

in the array; similarly, there is one vertex in Y for each physical processor in the array. Each

edge connects a vertex x

i

in X with a vertex y

j

in Y . An edge from x

i

to y

j

represents the

fact that the the physical processor represented by y

j

is in the Inverse Adjacency Domain of the

logical processor represented by x

i

. The bipartite graph which corresponds to Figure 3 is shown

in Figure 4.

There are well-known graph algorithms for solving this problem optimally; that is, if there is

any way to recon�gure the array in the presence of a speci�c pattern of faults, such a way will

be found by the algorithm. Note that some fault patterns (e.g., a large cluster of neighbouring

faulty processors) may make it impossible to recon�gure, despite the fact that the number of

faults does not exceed the number of spare processors. Algorithms for graph matching have low

complexity. For non-weighted matching, the complexity of solution is O(jEj � jXj

1=2

) [10]. In

the example architecture, jEj � 3jXj, which results in a bound of O(jXj

3=2

) in this particular

case. The recon�guration algorithm for all networks that fall into the IBN class is always the

same, regardless of the extra connections or number/location of spares. We return to this point

in section 5.

As mentioned above, there are other proposals for array recon�guration which are Globally

Redundant, Locally-, and Processor-Switched methods. In order to quantitatively compare IBN



Spare Demand (%)

S
ur

vi
va

bi
lit

y 
(%

)

0 20 40 60 80 100

0
20

40
60

80
10

0

DR
IBN
CFS
FUSS

Figure 5: Comparison of survivability of a 20 � 20 processor array, for four recon�guration

methods, including the proposed method (IBN).

with these other methods, we have simulated the recon�guration of a 20 � 20 array. In this

simulation, faults were assumed to be independent and equally likely at every location in the

array (including the spares). After 100,000 trials, the results were tabulated as Survivability vs.

Spare Demand; survivability is de�ned as (# successful recon�gurations / # trials) and spare

demand is de�ned as (# faulty processors / # spares).

The results are shown in Figure 5. Data for Direct Recon�guration (DR), Complex Fault

Stealing (CFS), and Full Utilization of Suitable Spares (FUSS) come from the article by Chean

and Fortes[5]. We note the following from this graph:

� Survivability of IBN is considerably higher than for Direct Recon�guration.

� Survivability is lower than for Complex Fault Stealing and FUSS.

One has to take into account several other issues which are not addressed in this graph, most

importantly the additional (redundant) hardware required and the extra delay incurred during

communication. These are now discussed.

4 Hardware Design and Cost

The hardware overhead of IBN consists of increased switch complexity and extra wiring. In the

non-fault-tolerant X-grid, there is a bi-directional pad at each corner of a processor for connecting

to the adjacent bus. This is illustrated in Figure 6a. In the fault-tolerant version, a multiplexer



in

out

mux

demux &
tristate

enable

2
address

in

out

enable

Figure 6: (a) I/O bu�er at each corner of each processor for the non-fault-tolerant BLITZEN.

(b) Architecture of a switch at each corner of each processor for the fault-tolerant version of

BLITZEN (IBN).

must be used to determine which bus to read from, and a demultiplexer determines which bus

is being written to (when enable is high). The switch design for our example architecture

is illustrated in Figure 6b. While the switches are obviously more complex in IBN, they are

straightforward to implement.

The logic for setting the \direction" bits is part of the recon�guration mechanism. In the

simplest implementation the graph matching algorithm is run on a host computer. Input for

the recon�guration algorithm are the number and location of faulty processors. Recon�guration

information is computed on a per processor basis and this information is then downloaded into

the processor array. One could also think of computing the recon�guration information on-

line in the processor array using e�cient hardware mechanisms. Each processor [i; j] requires

log

2

(jAD[i; j]j+1) bits of storage to hold the direction information. For the example architecture

this is 2 bits (corresponding to the 4 ways each processor can be con�gured). The area overhead

for the extra switching logic and con�guration registers in the recon�guration example of this

paper is less than 3% of the normal (non-fault-tolerant) processor area.

As for wiring overhead, the number of wires per processor is equal to 4jAD[i; j]j. In the

example architecture this is 12 wires, as illustrated in Figure 7. Maximum wire length is de-

termined solely by the location of the processors in the Inverse Adjacency Domain. Again, for

the example architecture, the extra wiring adds less than 1% to the total array area. The only

signi�cant increase in area is due to the additional spare processors along the array boundaries.

Overall, hardware complexity for this example of the IBN architecture is comparable to

the Direct Recon�guration scheme of [6] (called \Simple Fault-Stealing, Fixed Choice" in that

source), and considerably less than the Complex Fault Stealing method. As a result, we claim the

network attains good fault-tolerance with very reasonable hardware requirements. Survivability



Figure 7: Wiring required for the fault-tolerant network, with Inverse Adjacency Domain [i; j],

[i+ 1; j], and [i; j + 1].

very similar to Complex Fault Stealing is achieved if the Inverse Adjacency Domain of each

logical processor (i; j) is expanded to include physical processor [i+ 1; j + 1].

In previous work on array recon�guration, area overhead is almost always acknowledged,

while delay \overhead" (penalty) is often given much less attention. In the authors' experience,

delay is a much more important factor than area. For IBN there is extra delay due to the multi-

plexing/demultiplexing of the switches, and delay due to the extra wire length and capacitance.

In typical implementations, neither of these is very severe. By contrast, methods such as CFS,

FUSS, and CHIP rely on a switched-bus mechanism for recon�gurability. With a switched-bus,

communication paths between \adjacent" processors may be quite long. In addition, the delay

incurred by passing data through multiple switches in series can seriously degrade performance.

The IBN network is a reasonable balance of high fault-tolerance with modest hardware over-

head. It does not su�er the serious delay penalty of some of the other methods. What is more,

the basic technique is highly exible; some extensions are now shown.

5 Applications and Extensions

As was stated, the recon�guration of an IBN requires only that the bipartite graph be provided;

the algorithm (graph matching) remains the same. This graph captures all information about

array size (number of vertices in X), adjacency domains (edges), location of spares (by suitable

labeling of the vertices in Y ), and location of faults (by removal of edges and vertices for faulty

processors). As a result, we can immediately adapt the method to the following situations:

� Vary the number and location of spares, for example, by providing two extra columns and

rows of spares.

� Vary the adjacency domains. For example, the adjacency domain may be customized

on a per processor basis. This might reect some specialization of processors or some



concentration of hardware redundancy based on predicted local failure probabilities.

� Vary the interconnection topology. The technique is not restricted to rectangular two-

dimensional meshes. For example, it can be used with hexagonal meshes. Even more

promising, it can be used with three-dimensional networks. Emerging technologies for

connecting die to substrates and printed circuit boards to printed circuit boards are likely

to be three-dimensional in nature. Most recon�guration methods previously proposed do

not extend obviously to three dimensions.

� When recon�guration fails (because there is no possibility of recon�guration with the given

pattern of faults), a maximal matching is guaranteed. In this case, \maximal" means that

no recon�guration algorithm could match more logical processors to available physical

processors. Thus the method provides a measure of graceful degradation with increasing

number of faults.

We now discuss the application of the proposed method to the BLITZEN computer, our

original motivation. As mentioned, the basic component of BLITZEN is a one-million transistor

chip which contains an 8�16 array of processing elements, each with 1-Kbit of memory. A serious

challenge with this level of integration is attaining satisfactory chip yield. For the example IBN

architecture (Adjacency Domain of [i; j]; [i; j + 1]; [i+ 1; j]), we can determine the yield of chips

for di�erent fault probabilities.

Let p

k

represent the probability of k faults occurring in an array of size s. If each processor is

assumed independently faulty (non-faulty) with probability f (1-f), then p

k

can be approximated

by the binomial distribution: p

k

� b(k; s; f). The expected yield Y under these assumptions can

be computed as Y =

P

s

k=0

p

k

� succ

k

, where succ

k

is the probability that an array with k faults

can be successfully recon�gured, and is tabulated directly from the above simulation results. The

expected yield without fault-tolerance is simply p

0

.

For the example architecture of this paper, we have calculated expected yield Y vs. probability

of failure f . For the non-fault-tolerant array, the size of the array (s) is equal to 128 processors

(8 � 16). For the fault-tolerant array, the size is 152 processors (128 + 8 + 16), reecting the

increased area (and thus increased likelihood of defects) of the fault-tolerant version. The results

are shown in Figure 8 and are quite favourable. Yield may be dramatically increased using the

IBN architecture. It should be stated that in practice faults are not uniformly and independently

distributed. More research is required to precisely measure the impact of fault-tolerance on yield.

A special requirement of the current BLITZEN chip is that all processors in the same row

are connected to a single, special I/O bus. To avoid di�culties of rerouting the I/O bus, it

would be much better in this situation only to allow substitutions of processors in the same row.

As an example, the Inverse Adjacency Domain for logical processor (i; j) can be restricted to

[i; j�1]; [i; j]; [i; j+1], with a spare column on either side of the array, and no spare rows. Again,

the architecture and algorithm adapts easily to this restriction.

Occasionally, a chip may develop faults so numerous or so serious that on-chip fault-tolerance

is to no avail. In such a case, there should be another fault-tolerance scheme for replacing faulty

chips. The method presented in this paper can be extended to work in a hierarchical fashion.

For each level of the hierarchy there will be a bipartite graph representing the mapping of logical



Fault Probability

E
xp

ec
te

d 
Y

ie
ld

 (
%

)

0.005 0.010 0.050 0.100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Non-FT
FT

Figure 8: Comparison of yield for non-fault-tolerant and fault-tolerant versions of the BLITZEN

chip.

to physical \blocks". At level 0 of the hierarchy, a block is simply a single processor; at level 1,

a block might be an m � n region of processors; and so forth. Each level of the hierarchy will

require additional connections between logically adjacent blocks. If chip interconnections on the

printed circuit board or substrate must be kept simple, the method of this paper is probably not

the best choice for recon�guration on that level. A technique with lower survivability and lower

complexity, such as row or column substitution[3], might be a better choice for recon�guration

on that level. This concludes our discussion of applications of IBN.

6 Conclusions

We have developed a fault-tolerant architecture for massively parallel computers, based on the

Interlocking Bus Network. This method balances high survivability with modest hardware over-

head and very little additional delay. A highlight of this architecture is that recon�guration can

be optimally computed using bipartite graph matching. As a result, the method is very power-

ful, and can be generalized in a number of useful ways. An open question is whether there are

e�cient hardware mechanisms for performing the graph matching \on-line" in the array itself.

We have discussed its application to the BLITZEN computer, for which we hope to develop

a fault-tolerant version. Hierarchical fault-tolerance can be used to deal with fault clustering,

which thwarts the (local) recon�guration scheme. A problem which remains to be fully addressed

is how to cope with faults in the interconnect and in the switches. We are currently investigating

this important issue.



References

[1] R. Michael Hord. The Illiac-IV: The First Supercomputer. Computer Science Press, 1982.

[2] D. Hillis. The Connection Machine. MIT Press, 1985.

[3] K.E. Batcher. Design of a Massively Parallel Processor. IEEE Trans. Comp., C-29:836{840,

sep 1980.

[4] D.W. Blevins, E.W. Davis, R.A. Heaton, and J.H. Reif. BLITZEN: A Highly Integrated

Massively Parallel Machine. Journal of Parallel and Distributed Computing, pages 150{160,

aug 1990.

[5] M. Chean and J.A.B. Fortes. A Taxonomy of Recon�guration Techniques for Fault-Tolerant

Arrays. IEEE Computer, pages 55{69, jan 1990.

[6] R. Negrini, M. G. Sami, and R. Stefanelli. Fault Tolerance Through Recon�guration in VLSI

and WSI Arrays. MIT Press, 1989.

[7] M. Chean and J. A. B. Fortes. Fuss: A recon�guration scheme for fault-tolerant processor

arrays. In Intl. Wkshp. on Hardware Fault Tolerance in Multiprocessors, pages 30{32, June

1989.

[8] K. S. Hedlund and L. Snyder. Wafer-scale integration of con�gurable, highly-parallel archi-

tectures and processors. In Proc. 1982 Intl. Conf. on Parallel Processing, pages 262{264.

IEEE Computer Society Press, 1982.

[9] A. Singh. Interstitial Redundancy: An Area E�cient Fault Tolerance Scheme for Large

Area VLSI Processor Arrays. IEEE Trans. Comp., C-37(11):1398{1410, nov 1988.

[10] K. Mehlhorn. Data Structures and Algorithms 2: Graph Algorithms and NP-Completeness.

Springer-Verlag, 1984.


