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1 Introduction

Dependability metrics such as availability and survivability are crucial for modern ICT
systems, especially in the area of critical infrastructures. System architects seek to achieve
these features by providing for fault-tolerance and automatic dynamic reconfiguration.
In order to assess dependability-related properties, Markov reward models (MRM) can
be employed, from which a wide range of measures of interest can be computed. The
LARES modelling language (“LAnguage for REconfigurable Systems”, first described in
[Gouberman et al., 2009]) with its associated toolset offers a comfortable and powerful
environment for the generation and analysis of MRMs.

LARES provides means to define elementary behaviour in the form of labelled automata,
and self-contained modules comprising behaviour or submodule instantiations. Abstract
definitions of behaviours and modules can be instantiated which enables the modeller to
specify clearly structured (i.e. modular and hierarchic) models with clear visibility and
scoping semantics. Complex interactions between modules may be specified, by triggering
a specific reaction if a composed state satisfies a certain condition. Hereby, the reaction may
involve non-trivial synchronisation.

The transformation semantics of LARES to a stochastic process algebra (SPA), which
serves as a low-level evaluation formalism, has been sketched in [Riedl and Siegle, 2012].
The present paper is an extended version of the workshop paper [Gouberman et al., 2013],
albeit with different focus. Its main contributions are as follows: We consider a very
general class of LARES.re MRMs (where “re” stands for reward extension) with Markovian
and immediate transitions, with rate and impulse rewards and different analysis types for
the reward measures. For this class of models, we define the semantics by a sequence
of transformations, first to a continuous-time Markov reward model with fast transitions
(CTMRMfast), and from there further to a continuous-time Markov reward model with
stochastic discontinuities (CTMRMdisc). In particular, it is shown that this methodology
provides a sound semantics for models containing immediate transitions associated with
impulse rewards.

Related Work: Among earlier approaches to the modelling of rewards in a Markovian
context we mention Stochastic Reward Nets [Muppala et al., 1994], Stochastic Activity
Networks [Qureshi et al., 1996] and the models accepted by the model checker MRMC
[Katoen et al., 2011]. In comparison with these, LARES models are at a higher level of
abstraction, which offers much more structure and flexibility, thus easing the modelling
process. LARES and its reward extension are intended to be used as engineering
formalisms on a similar level as, for instance, AltaRica [Point, 2000] or the SLIM
language [Bozzano et al., 2009b]. Similar to LARES, AltaRica and SLIM offer means
for hierarchical modelling. While AltaRica is a mature language with many extensions
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focusing mainly on functional verification, SLIM aims at detecting flaws in early design-
stages of hardware/software systems in an automated manner. For SLIM models, it can be
checked whether they meet quantitative requirements specified with the help of the logics
PCTL or CSL. For that purpose, SLIM models are transformed to their underlying Markov
chain which is then checked with the model checker MRMC [Bozzano et al., 2009a].
Compared to these approaches, the distinguishing feature of LARES is an easy specification
of combinatorial aspects spanning across multiple hierarchy levels. In addition to that, the
extension LARES.re offers a very expressive specification of rate rewards and impulse
rewards which is fully integrated with LARES’ concepts of modularity and hierarchy. These
concepts enable a very clear and flexible modelling of rewards whose value may depend on
complex conditions. For GSPNs without rewards, [Ammar et al., 1987] proposed a method
of analysis based on stochastically discontinuous Markov processes, which is related to the
approach described in this paper.

Organisation of the paper: The paper is organised as follows: Following this
introduction, Sec. 2 recapitulates the theoretical background, providing the basic definitions
and properties of continuous-time Markov reward models (CTMRMs), Markov chains with
stochastic discontinuities and Markov chains with fast transitions. Sec. 3 introduces the
reward extension LARES.re of the language by means of a running example. In Sec. 4 we
sketch the LTS semantics on the basis of which the reachable state space is constructed. We
omit the formal definition of the semantics, since that can be found in the previous paper
[Gouberman et al., 2013]. Sec. 5 discusses the transformation (involving multiple steps)
of the LTS to an analysable MRM in which the immediate transitions (which may carry
impulse rewards) have been eliminated. Finally, Sec. 6 concludes the paper.

2 Theoretical Background

2.1 Continuous Time Markov Reward Models

Notation: For n ∈ N let S := {1, . . . , n} be a finite state space. We consider probability
distributions over S as row vectors in R1×n and define Dn ⊆ R1×n as the set of all
probability distributions over S. Let δij denote the Kronecker-δ and for s ∈ S let 1s ∈ Rn
be the column vector with (1s)s′ := δss′ such that 1Ts ∈ Dn and define 1 :=

∑
s 1s. For

a matrix A ∈ Rn×n define ∆(A) ∈ Rn as its diagonal and for a vector v ∈ Rn define
Diag(v) ∈ Rn×n as the diagonal matrix with diagonal v.

A continuous-time Markov chain (CTMC) overS is anS-valued stochastic process (Xt)t≥0

and its probabilistic behavior is uniquely characterized by a transition matrix function P :
[0,∞)→ Rn×n that fulfills for all s, t ≥ 0 the properties

P (t) ≥ 0, P (t)1 = 1 and P (s+ t) = P (s)P (t) with P (0) = I, (1)

i.e. P (t) is a stochastic matrix and fulfills the Chapman-Kolmogorov equation. From (1) it
follows that P (t) is continuous for all t > 0. In literature one often demands as a further
regularity condition the continuity at t = 0, i.e. limt→0 P (t) = P (0). In this case the CTMC
is called regular and P (t) = eQt where Q = limt→0

1
t (P (t)− I) ∈ Rn×n. The matrix Q

has zero row sums and nonnegative off-diagonal entries that can be regarded as rates of
exponentially distributed times for transition. In a more general setting, if the regularity
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condition is not assumed in addition to (1), then P (t) = ΠeQt where Π = limt→0 P (t) and
Q = limt→0

1
t (P (t)−Π) [Coderch et al., 1983]. The matrices Π and Q fulfill

Π ≥ 0, Π1 = 1, Π2 = Π, (2)
ΠQ = QΠ = Q, Q1 = 0 and Q+ cΠ ≥ 0 for some c ≥ 0. (3)

Moreover, every such tuple (Π, Q) that fulfills (2) and (3) uniquely characterizes a CTMC
by setting P (t) := ΠeQt. The matrix Π is referred to as the ergodic projection at zero and
Q as the generator matrix. If Π 6= I then P (t) has a discontinuity at t = 0 and Xt is a
stochastically discontinuous process with sample paths that almost surely have an infinite
number of jumps within a finite time interval. On the other hand, if Π = I then Xt is a
regular CTMC that is stochastically continuous and its number of jumps within finite time is
almost surely finite. We additionally consider a CTMC with an initial distribution σ ∈ Dn
over states such that a CTMC is given by the triple (Π, Q, σ) and a regular CTMC by the
tuple (Q, σ). The more general discontinuous CTMCs are considered in the forthcoming
Sec. 2.2. For the remainder of this subsection, we stick to regular CTMCs.

A regular continuous-time Markov reward model (CTMRM) over S is a quadruple
(Q, σ, r, i) that consists of a regular CTMC (Q, σ), a rate reward vector r ∈ Rn over states
and an impulse reward matrix i ∈ Rn×n over transitions with iss = 0 for all s. Let a path ω
of Xt be represented by ω := s0

t0−→ s1
t1−→ s2

t2−→ s3 . . . where si is a visited state and
ti > 0 the sojourn time in si. Along ω the total accumulated reward up to time T > 0 is
given by

∑
k≤NT

(
rsktk + isksk+1

)
where NT is the number of performed transitions up

to time T . The finite-horizon total value function VT ∈ Rn (represented as a vector) assigns
for each state s the expected value (VT )s of accumulated rewards over all paths starting in s.
In order to compute VT we can transform the CTMRM (S,Q, r, i) into a CTMRM (S,Q, r)
without impulse rewards [Gouberman and Siegle, 2014]. Hereby the impulse reward iss′
are weighted with the corresponding rates Qss′ and merged with r into

rs := rs +
∑
s′ 6=s

iss′Qss′ . (4)

We refer to r as the continuized rate reward. Since iss = 0 we can also write r in vector
notation as r = r + ∆(QiT ), where ∆(M) ∈ Rn is the diagonal of the matrix M . We will
stick to the CTMRM structure with impulse rewards, since it is more natural to distinguish
time-based rewards from time-independent rewards, especially in the context of modular
model specification. If R(t) := P (t)r ∈ Rn (with P (t) = eQt) denotes the expected rate
reward at point in time t ≥ 0 then the finite-horizon total value vector for the CTMRM
(Q, r) is given by

VT =

∫ T

0

R(t) dt (5)

and the finite-horizon total value for the initial distribution σ by σVT ∈ R. In the following
we briefly outline the most important infinite-horizon reward measures that are based on
VT [Guo and Hernandez-Lerma, 2009].
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(i) The total value function V∞ ∈ Rn is the expectation over all paths of all rewards
accumulated along these paths over infinite time. If this accumulation process
absolutely converges, then V∞ = limT→∞ VT and it is the unique solution to

QV∞ = −r (6)

with the property that (V∞)s = 0 for all recurrent states s.

(ii) The α-discounted value function V α :=
∫∞

0
e−αtR(t) dt ∈ Rn with α > 0 is the

accumulation of rewards along all paths where rewards gained in the future are
continuously discounted with rate α. It holds that the accumulation process converges
for all α > 0 and V α is the unique solution to

(Q− αI)V α = −r. (7)

(iii) The average value function g := limT→∞
1
T VT measures the accumulated reward

over all paths averaged over the infinite time horizon. Let P ∗ := limt→∞ P (t) be the
limiting distribution matrix, i.e. the row corresponding to the s-th state is the limiting
distribution of the CTMRM when starting in s. Then

g = P ∗r. (8)

2.2 Stochastically Discontinuous CTMRMs

In this section we briefly outline the probabilistic semantics of a discontinuous CTMC
(Π, Q) with state process Xt. For general Π that fulfills (2) and (3), the generator Q can
have negative off-diagonal entries in contrast to the case of regular CTMCs. [Coderch
et al., 1983] showed that Π partitions the state space into ergodic classes at zero Ek0 ,
k = 1, . . . ,K and transient states at zero T0 such that S =

⋃K
k=1 Ek0 ∪ T0. It further holds

that Π has the canonical product decomposition Π = RL, where L ∈ RK×n contains
the ergodic probability distributions (of the K ergodic classes at zero) and R ∈ Rn×K
contains the trapping probabilities into the ergodic classes. The value Πss′ can be regarded
as the probability to find the system in state s′ immediately after entering state s since
limh→0 P (Xt+h = s′ | Xt = s) = Πss′ . The ergodic class Ek0 can be seen as a macro state
containing all of its states s ∈ Ek0 .

Consider the case that Ek0 has at least two states. If at some point in time t ≥ 0 the
process Xt enters (an arbitrary state of) the class Ek0 and the state of Xt is measured at
time t, then this state is not deterministically predictable. Instead, one can only find the
system in a certain state s′ ∈ Ek0 with probability Πss′ > 0, where s ∈ Ek0 is arbitrary. This
means that if state s is entered at time t, then it is immediately redistributed among states
s′ ∈ Ek0 according to the probabilities Πss′ . This behavior is reflected in the sample paths
ω : [0,∞)→ S of the process that have almost surely an infinite number of jumps between
the states in Ek0 . If there is a timed transition from some state s ∈ Ek0 to a state s′ ∈ S \ Ek0
given by the generator Q, then the ergodic class at zero Ek0 can be almost surely left within
finite time. In case Ek0 contains only one state s then s is called regular and corresponds to
a state of a regular Markov chain.

A discontinuous CTMC (Π, Q, σ) can be reduced to a regular CTMC (Q̂, σ̂) with
generator Q̂ := LQR ∈ RK×K and initial distribution σ̂ := Lσ. Hereby the ergodic classes
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at zero Ek0 are aggregated to regular states and all transient states at zero are eliminated. The
transition function of the reduced CTMC satisfies P̂ (t) = LP (t)R and can be disaggregated
back by P (t) = RP̂ (t)L. Thus, from a probabilistic point of view a discontinuous CTMC
with state process Xt and its aggregated version are the same modulo reduction. However,
when we are concerned with modelling the uncertainty of states, the formalism of
discontinuous CTMCs is more appropriate then that of regular CTMCs. Furthermore, we
will see in Section 2.3 another advantage of discontinuous CTMCs as a limiting process of
Markov chains with fast transitions.

In order to deal with rewards, the discontinuous CTMC (Π, Q, σ) can be enhanced to
a discontinuous CTMRM (Π, Q, σ, r) with a rate reward vector r ∈ Rn [Markovski et al.,
2009]. The reward function is given byR(t) := P (t)r and its s-th componentRs(t) denotes
the expected reward that is gained at time t if s is the initial state. Note that P (t) = P (t)Π
and thus the rate reward r can be modified to Πr without having an influence on the reward
function R(t). This means that in an ergodic class Ek0 the gained rate reward Rs(t) is
constant for all s ∈ Ek0 and it is the weighted sum of the rate rewards rs′ with weights
Πss′ . In analogy to (5), the finite-horizon total value is given by VT :=

∫ T
0
R(t) dt. The

reduction of (Π, Q, σ) to (Q̂, σ̂) induces the according reduction of the rate reward r (or Πr)
to r̂ := Lr. Furthermore, the reduction of (Π, Q, σ, r) to (Q̂, σ̂, r̂) and the evaluation of the
reward function commute since R̂(t) = P̂ (t)r̂ = (LP (t)R)(Lr) = L(P (t)r) = LR(t).

2.3 Continuous Time Markov Reward Models with Fast Transitions

A CTMC with fast transitions is a triple (S, F, σ) where S ∈ Rn×n and F ∈ Rn×n are rate
matrices of slow (or rare) and fast transitions and σ ∈ Dn an initial distribution. In this
subsection we consider the case that ∆(S) = 0 and ∆(F ) = 0, i.e. there are no self-loops
on states. We will relax this restriction in Section 2.4. LetQS := S − Diag(S1) andQF :=
F − Diag(F1) denote the corresponding regular generator matrices. Consider for each τ ≥
0 the regular generator matrix Qτ := QS + τQF with transition function Pτ (t) := eQτ t.
The probabilistic semantics of (S, F, σ) is defined as the limiting behavior of Pτ (t) as
τ →∞. It can be shown thatPτ (t) converges pointwise in t ∈ [0,∞) and locally uniformly
on (0,∞) to the transition function P (t) := ΠeQt of a discontinuous CTMC (Π, Q, σ)

where the ergodic projection at zero Π := limτ→∞ eQ
F τ is the limiting matrix of the fast

transitionsF (i.e. the ergodic projection at infinity ofF ) and the generator matrix is given by
Q := ΠSΠ [Coderch et al., 1983, Theorem 4.3]. We denote the transient resp. ergodic states
of the CTMC F as F -transient resp. F -ergodic states. Thus, the decomposition of the state
space by Π into transient states and ergodic classes at zero is precisely the decomposition
by F into F -transient states and F -ergodic classes.

[Markovski et al., 2009] extended the notion of a CTMC with fast transitions by a rate
reward r ∈ Rn and defined its semantics by transformation to a discontinuous CTMRM
(Π, Q, σ, r). The semantics can be alternatively given in form of a limit ofRτ (t) := Pτ (t)r
for τ →∞ and coincides with the semantics of the discontinuous CTMRM. For the purpose
of this paper we consider a CTMRM with fast transitions C := (S, F, σ, r, i) that also
includes an impulse reward matrix i ∈ Rn×n over transitions. The semantics of C regarding
the reward accumulation process is given by the finite-horizon total value VT which we are
going to define in the following.

As an example, consider Figure 1. From initial state 1 a slow transition with rate λ12 can
be performed and an impulse reward i12 is gained. State 2 is F -transient and there can be
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Figure 1 Moving impulse rewards from fast transitions to impulse rewards on slow transitions by
computing the infinite-horizon total value function, e.g. I2 =

(
V F
∞
)
2
.

cycles with state 3 along which the impulse rewards i23 and i32 are accumulated until one
of the F -ergodic classes E1

0 := {4} or E2
0 := {5, 6} is reached. The expected accumulated

impulse rewards from state 2 until getting trapped in some F -ergodic class is given by
the infinite-horizon total value I2 := 1T2 V

F
∞ ∈ R, where V F∞ =

∫∞
0
eQ

Fu∆(FiT ) du. Note
that we have implicitly assumed that V F∞ is finite, and this is the case if there are no impulse
rewards on transitions between recurrent states in the same recurrent class (as for states 5
and 6 in E2

0 ). Otherwise, if V FT diverges with T →∞ we define the model C as invalid.
The total sojourn time along F -transient states until absorption in an F -ergodic class is 0
with probability 1. Therefore, we can regard I2 as an impulse reward that is gained when
some F -ergodic class E i0 is reached from state 2, i.e. I2 is gained at the point in time of
arrival in E i0. Since the semantics of a fast-transition CTMC is given by a discontinuous
CTMC, the point in time of the transition from state 1 to state 2 coincides with the point
in time of departure in state 1 and the point in time of arrival in some F -ergodic class.
Thus, we can alternatively accumulate the impulse reward I2 by an arrival to state 2 from
state 1 and therefore integrate I2 into the impulse reward for transition to state 2, i.e.
modify the impulse reward i12 to i12 + I2. This first intermediate transformation results
in a CTMRM Cint with no impulse rewards for fast transitions and thus only for slow
transitions. In a second step we transform Cint to a CTMRM Cfinal = (S, F, σ, r) without
impulse rewards by continuizing all impulse rewards into a rate reward, e.g. for state 1 it
holds that r1 = r1 + λ12(i12 + I2) + λ13(i13 + I3). Since Cfinal has no impulse rewards it
can be analysed by its underlying discontinuous CTMRM Cdisc := (Π, Q, σ, r). However,
this transformation is not yet complete, since there can be an initial state in the support
of σ that is F -transient. In such a state the accumulated impulse rewards up to absorption
in some F -ergodic class can be included into the model Cfinal by defining additionally an
initial rewardR0 that is gained when such an F -ergodic class is reached. As above, it holds
that R0 = V F∞ . Collecting all together, the finite-horizon total value function VT is given
for T > 0 by

VT := V F∞ +

∫ T

0

ΠeQtr dt, where r := r + ∆(SiT ) + SV F∞ . (9)

The s-th component in VT is the total expected accumulated reward in the interval [0, T ]
from initial state s. Thus, the assigned value for the CTMRM model C is given by the real-
valued function T 7→ σVT ∈ R for T ≥ 0. Note that V0 := 0 and limT→0 VT = V F∞ such
that VT is continuous at T = 0 if and only if V F∞ = 0. This is the case if and only if there
are no impulse rewards on fast transitions (since we assumed that the reward accumulation
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Figure 2 Processing of impulse rewards on self-loops by means of an intermediate fast-transition
CTMRM with an auxiliary F -transient state and its subsequent elimination by reduction.

over infinite time converges absolutely). We refer to r as the continuized rate reward and
it involves the following three contributions for the reward accumulation process: the rate
reward r for states, the impulse rewards i for slow transitions continuized into ∆(SiT )
and the accumulated impulse rewards for fast transitions continuized into the rate reward
SV F∞ . Note that instead of r we can alternatively consider the rate reward Πr, since the
accumulation of rate rewards over F -transient states is 0 and over F -ergodic classes they
can be averaged with respect to the stationary distributions in the classes. This has the
implication that there are also other possible equivalent definitions for a continuized rate
reward r′ as long as Πr = Πr′. As an example, since (V F∞)s = 0 for everyF -ergodic state s
it follows that Π Diag(S1)V F∞ = 0 and thus ΠSV F∞ = ΠQSV F∞ such that one can consider
the continuized rate reward r′ := r + ∆(SiT ) +QSV F∞ which leads to the same total value
function VT .

2.4 Adding self-loops

In this section we consider a CTMRM model C = (S, F, σ, r, i) where S and F are allowed
to have self-loops, i.e. these rate matrices can have positive rates on their diagonal. Although
self-loops do not have any effect on the probabilistic behavior of the system, they are
necessary if we are concerned with the accumulation of impulse rewards for self-loops.
Note that the generator matrices QS := S − Diag(S1) and QF := F − Diag(F1) do not
involve the rates for such self-loop transitions. As in the previous section, we can transform
C to a discontinuous CTMRM Cdisc = (Π, Q, σ, r) with

r := r + ∆(SiT ) + SV F∞ , where V F∞ :=

∫ ∞
0

eQ
Fu∆(FiT ) du.

In the following, we are going to justify this relation. For each self-loop we can extend
the state space with an auxiliary F -transient state as shown in Figure 2. The transitions
are rebuilt in such a way that both the probabilistic behavior of the model and the reward
accumulation process are not influenced. If we order the states in the sequence (1, 1′, 2)
then

Π =

1 0 0
1 0 0
0 0 1

 , Q =

−λ12 0 λ12

−λ12 0 λ12

0 0 0

 , L =

(
1 0 0
0 0 1

)
and R =

1 0
1 0
0 1

 .

A further elimination of the auxiliary intermediate state by reduction yields

Q̂ := LQR =

(
−λ12 λ12

0 0

)
= QS , r̂ := Lr =

(
r1 + λ11i11

0

)
= r + ∆(SiT ).
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Thus, one can eliminate self-loops and thereby continuize the impulse reward on such a
transition by weighting it with the corresponding rate. If there are self-loops on F -transient
states then impulse rewards on those are accordingly accumulated by considering the fast
transitions separately as slow transitions for the regular CTMRM (F, σ, 0, i). With same
arguments as above, the continuized rate reward is given by ∆(FiT ) and therefore the finite-
horizon total value for the original fast-transition CTMRM by V F∞ =

∫∞
0
eQ

Fu∆(FiT ) du.

3 LARES.re (Reward Extension)

A reward structure can be defined in LARES inside a Module definition. A rate reward can
be modelled by a StateReward statement that consists of a state reward expression, which
is an arithmetic expression and extends arithmetic atoms (number value or reference to
some parameter) by state reward atoms. A state reward atom can be either an indicator [A]
over some condition A or a reference to another state reward statement (within its visibility
scope). The indicator [A] is evaluated to either 1 or 0 depending on whether the condition A is
satisfied or not. An impulse reward is specified by a TransitionReward statement that differs
from a StateReward statement only in the indicator [A→ B] that needs both a precondition
A and a postcondition B. Since indicators can be evaluated to 0 we do not allow to divide
reward expressions by other reward expressions. A RewardMeasure statement assigns to a
state reward or a transition reward (or a tuple consisting of both) one of the reward analysis
types total, discounted or average.

Before showing the semantics of LARES.re in Section 5 (by a transformation into a
CTMRM), we first present a running example that among others comprises deadlocks. The
transformation maps these deadlocks to stochastic discontinuities and thus resolves them
in a probabilistical way.

3.1 Running Example

Figure 3 provides the specification of the running example used throughout this paper. It
shows a system main (line 42) which consists of two instances C1 and C2 representing
the components of the system. The container component C2 contains two subcomponents
SC1 and SC2 (line 26). Each of these basic components C1, SC1 and SC2 inherits from
a behavior B (line 13) which provides the necessary states and transitions for the failure
and repair behavior (lines 1..11). From an active state, a component may fail with rate
0.1, and it has the capability to heal itself with rate 0.01. Alternatively, the component can
move immediately via the 〈rep〉 guard label to the inRep state, which denotes an ongoing
repair process (with the rate mu set to the value 2.0) that runs in parallel to the self-healing
process. The repair process of each component can be stopped by the 〈stop〉 guard label.
In contrast to the basic components, which fail if their behavior is not active (defined by
the condition failed, line 16), the container component C2 is a series network that fails if
one of its subcomponents fails (line 31). The whole system is a parallel network of C1 and
C2 (line 47). By the Initial statements, the initial state for each instantiated behavior is set
to active.

The first guards statement (lines 49-52) is responsible for the repair process, which will
be triggered (only) in case the condition C1.failed is satisfied. The reactive part C1.〈rep〉
triggers the forward label 〈rep〉 in the Component module, which in turn triggers the 〈rep〉
guard label in the behavior B. In case C2 has also already failed, the repair is processed in
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1 Behavior B(mu) {
State active , failed , inRep
Transitions from active

i f 〈true〉→ failed , delay exponential 0.1
Transitions from failed

6 i f 〈true〉→ active , delay exponential 0.01
i f 〈rep〉→ inRep, weight 1.0

Transitions from inRep
i f 〈true〉→ active , delay exponential mu + 0.01
i f 〈stop〉→ failed , weight 1.0

11 }

Module Component : B(mu=2.0) {
Initial in i t = B. active

16 Condition failed = !B. active
Condition inRep = B.inRep

forward 〈rep〉 to B.〈rep〉
forward 〈stop〉 to B.〈stop〉

21
StateReward energy = 2.5∗[B. active ]
TransitionReward rs t = 5.0∗[B. inRep→B. active ]

}

26 Module Container {
Instance SC1 of Component
Instance SC2 of Component
Initial in i t = SC1. init , SC2. in i t

31 Condition failed = SC1. failed | SC2. failed
Condition inRep = SC1.inRep | SC2.inRep

forward 〈rep〉 to maxsync{SC1.〈rep〉 ,SC2.〈rep〉}
forward 〈stop〉 to maxsync{SC1.〈stop〉 ,SC2.〈stop〉}

36
StateReward cEnergy = SC1.energy + SC2.energy
StateReward energy = 0.9∗cEnergy + 0.5
TransitionReward rs t = 6.0∗[ failed→ ! failed ]

}

41
System main {

Instance C1 of Component
Instance C2 of Container
Initial in i t = C1. init , C2. in i t

46
Condition failed = C1. failed & C2. failed

C1. failed guards {
C1.〈rep〉

51 C2.〈rep〉 i f C2. failed
}

C1.inRep & C2.inRep guards
sync{C1.〈stop〉 , C2.〈stop〉}

56
StateReward energy = C1.energy + C2.energy
RewardMeasure M1 = energy discounted 0.01

TransitionReward rs t = C1. rs t + C2. rs t +
61 10.0∗[failed→ ! failed ]

RewardMeasure M2 = (energy , rs t ) average
}

Figure 3 Running example: LARES.re model

the form of a choice: C2.〈rep〉 triggers in parallel to C1.〈rep〉 the forward label 〈rep〉 in
the Container module which is responsible for the repair of both of its subcomponents
SC1 and SC2 by way of a maximal synchronisation. All subcomponents which are failed
are thus put to repair synchronously, i.e. all of them move to the inRep state immediately in
one transition. If both C1 and C2 are in repair then the total repair process will be overloaded
and can break down for both components synchronously. This behavior is modelled by
the second guards statement (lines 54-55). Hereby, all components that are in repair are
triggered to be failed immediately such that the first guards statement can be activated again.
This can lead to a repair of both C1 and C2 which induces in turn an overload of the repair
process. As a consequence, this repair-and-stop process induces a deadlock which however
can be resolved probabilistically by the semantics of a discontinuous CTMRM.

We assume that every component consumes energy and that we want to measure the
global energy consumption of the system. A basic component continuously consumes 2.5
units of energy per time unit if it is active (line 22). If the repair process of a component
is successful, an impulse reward of 5.0 energy units for the restart is consumed (line 23).
The term cEnergy inside the Container module describes the energy consumed by its
subcomponents over time, and the total energy decreases the energy consumption of its
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components by 10% and adds its own consumption of 0.5. Furthermore, when restarting the
Container there is only energy cost for the container itself but not for its subcomponents
(line 39). In the System definition, we finally define the total energy of its components
(line 57).

The reward measure M1 specifies all the ingredients that are necessary in order to
compute the discounted consumption of the continuous energy for the whole system with
a discount rate of 0.01. This discount rate can be interpreted as a rate for an exponential
distribution that describes the random time length (horizon) in which the rewards are
accumulated. Therefore, the expected horizon length for reward accumulation is 100 time
units. Note that since the system can get repaired, the total energy consumption over an
infinite horizon without discounting would lead to a value function that diverges to ∞.
The reward measure M2 specifies the average reward measure for the complete energy
consumption which is composed of the continuous components’ energy and some restart
energy for the components and the system.

4 The LTS semantics of LARES

A LARESFLAT model is obtained by a number of transformations applied to standard
LARES to construct the instance tree (resolve parameters, Condition, forward and
guards statements, cf. [Riedl and Siegle, 2012]) and perform a flattening process from
LARES to obtain a planar representation of a system. A LARESFLAT model

(B,G,M) ∈ P(B)×multiset(G)× P(M) (10)

comprises a set of instantiated behavioursB, a multiset of guards statementsG denoting the
interaction between the instantiated behaviours and a set of probability measure statements
M . A behaviour instance b ∈ B can be denoted as a tuple (S, TU , TG, s

0), where S is the
set of states, TG is the multiset of guarded transitions (its underlying set is given by TG),
TU is the multiset of unguarded transitions (with the underlying set TU ) and s0 denotes
the initial state. The universal set of unguarded transitions is a cartesian product between
source and target states and the possible distributions D:

TU = S × S ×D

where a distribution d ∈ D is either a (delayed) exponential distribution comprising a
rate or an (immediate) discrete distribution comprising a weight. The universal set of
guarded transitions is a cartesian product between source and target states and the possible
distributions D but comprises in addition to the unguarded transitions a guard label l ∈ L:

TG = S × S × D × L

Let the set of behaviour instancesB containn ∈ N distinguishable elements b1, b2, ... , bn ∈
B. Each behaviour instance bi (with i ∈ IB , where IB := {1, ..., n} denotes the index set
of the behaviours) is represented by a tuple (Si, TU i, TGi, s

0
i ) = bi. For two behaviour

instances bi and bj , where i 6= j, the elements are disjoint, i.e. Si ∩ Sj = ∅, TU i ∩ TUj = ∅
and TGi ∩ TGj = ∅. We define the potential state space S := S1 × ...× Sn and denote
a composed state s ∈ S as the tuple (s1, s2, ... , sn) = s. For each system of instantiated
behaviours the initial composed state s0 ∈ S is given by s0 := (s0

1, ..., s
0
n). The goal is to

define the semantics of how the system behaves to construct the reachability graph in terms
of an LTS.
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Figure 4 Composed initial state for the running example model

4.1 Semantics: Unguarded Transitions

If one of the instantiated behaviours bi can perform an unguarded immediate transition
w
99K from state si to state s′i then also the composed state s comprising si can make
the corresponding move. The Structural Operational Semantics (SOS) rule for such an
unguarded transition, defined in the style of Plotkin [2004], is:

si
w
99K s′i

(s1, . . . , si, . . . , sn)
w
99K (s1, . . . , s′i, . . . , sn)

(11)

A similar SOS rule describes the case for si performing an unguarded Markovian transition
λ−→ into the state s′i:

si
λ−→ s′i

(s1, . . . , si, . . . , sn)
λ−→ (s1, . . . , s′i, . . . , sn)

(12)

For illustration, the example model given in Figure 3 is revisited, for which the composed
initial state of the example model (cf. Figure 4) is derived. For brevity, the identifiers of the
states are renamed, i.e. a, f and iR instead of active, failed and inRep. As one can see,
only a Markovian transition can take place from each of the initial states of the behaviour
instances. For determining the states reachable from the composed initial state, the matching
SOS rule (12) is applied for each behaviour instance and each unguarded transition leaving
the initial state, which yields the next three reachable composed states (cf. Figure 5).

4.2 Semantics: Guarded Transitions

We now provide an informal definition of the semantics for the guarded transitions controlled
by guards statements (we do not provide a formal definition of the guarded behaviour
semantics in this paper, the interested reader can find it in [Gouberman et al., 2013]).

As depicted by Figure 4, transitions with the guard label 〈rep〉 may take place from
the failed states f if triggered by the environment. The events to do so are generated by
the guards statement specified in Figure 3 in lines 49..52, which denotes how the behaviour
instances interact: as long as C1 is not failed, the SOS rules for the unguarded transitions
can be safely used to further construct the state space (cf. Figure 5). If C1 and C2 are failed,
the choices C1.〈rep〉 and C2.〈rep〉 as reactions may be triggered, whereas only the reaction
C1.〈rep〉 is available if C2 has not failed.

The container componentC2 is considered to be failed if either subcomponentSC1orSC2
has failed. Whenever the container instance is triggered from the environment via 〈rep〉, a
repair reaction within its behaviour instances is initiated. Due to the delay introduced by the
environment, waiting for C1 to fail before a repair event is generated, it might be the case that
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Figure 5 Recurring Application of Rule (12) from the composed initial state for the running
example model. Only a subset of all possible unguarded transitions are depicted.

sync{<a>,<b>,<c>}

maxsync{<a>,<b>,<c>}

choose{<a>,<b>,<c>}

<a>

<b>

<c>

<a>

<b>

<a>

Figure 6 Reactive operator semantics

both subcomponents SC1 or SC2 have already failed. Using the maxsync operator to denote
the repair reaction, both subcomponents are repaired at once if needed, or else just one of
them. The synchronisation semantics of the operators available to define reactive expressions
is illustrated in Figure 6 in a schematic, exemplary fashion. It depicts the cooperation among
the behaviour instances from the viewpoint of the current composed state. The operands
refer to transition guard labels of the behaviour instances. The content of the table depicts
for each operator and the currently available addressed guard labels whether the transitions
into the next composed state can be performed simultaneously. As an example from the
figure, the choose operator with the operands a, b and c leads to a composed transition,
since a minterm abc in the disjunctive normal form of the choose operator abc ∨ abc ∨ abc
is fulfilled.

Due to the transformation and flattening process to obtain a LARESFLAT model from a
user level LARES specification, the guards statement in lines 49..52 is resolved to

not C1.B.a guards {
C1.〈rep〉
maxsync{
C2.SC1.〈rep〉, C2.SC1.〈rep〉

} if (not C2.SC1.B.a) or (not C2.SC2.B.a)
}

As an example, in Figure 5 the state (fC1, fSC1, fSC2) could be reached. One can see that the
generative part of the guards statement is satisfied by this state:

(fC1, fSC1, fSC2) � not C1.B.a
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As a consequence the reactive part has to be considered. Two reactive expressions have been
defined, i.e. C1.〈rep〉 and the conditional reactive comprising the maxsync operator. Since
(fC1, fSC1, fSC2) satisfies also the by-condition (not C2.SC1.B.a) or (not C2.SC2.B.a), a
choice between both reactions C1.〈rep〉 and maxsync{C2.SC1.〈rep〉, C2.SC1.〈rep〉} is
possible. This case corresponds to the second row first column of Figure 6, i.e. all guard
labels referred to by the operands of the maxsync operator are available in the current
state (fC1, fSC1, fSC2). As a result a composed successor state is (fC1, iRSC1, iRSC2) as the
addressed transitions with guard label 〈rep〉 of SC1 and SC2 are performed synchronously.
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Figure 7 Generated state space for the running example model. It consists of three non-trivial
F -ergodic classes (coloured) and five F -transient states (grey). Markovian transitions
from F -ergodic classes have the same color as the ergodic class. From F -transient states
only immediate transitions are depicted as justified by the maximum progress assumption.

4.3 Performing Reachability Analysis

Taking the initial composed state s0, the recursive application of the SOS rules (11), (12)
and similar rules for synchronised guarded transitions (detailed in [Gouberman et al.,
2013]) explores all reachable states as done in Figure 7 for the example model. The
generated reachability graph is represented by a transition system E = (S,L, , , s0)
with reachable composed state space S, a set of labels L, weighted immediate transitions
⊆ multiset(S × S × R+ × L), Markovian transitions ⊆ multiset(S × S × R+ ×

L) and initial state s0.
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Figure 8 Evaluation of the reward measure M for the flat representation E of a LARES.re model
by a sequence of model transformations.

5 Analysis of LARES Reward Models

In Section 3 we introduced LARES.re as an extension to LARES and described its syntax
and informal semantics in Section 4. We now define formal semantics for LARES.re
which allows to analyse reward measures. For that purpose we first introduce a planar
representation of LARES.re models by extending the LARESFLAT formalism presented in
Section 4. The semantics regarding the reward accumulation process is then defined through
model transformation into a CTMRM with fast transitions.

5.1 Planar Representation of LARES.re

The planar representation for LARES.re models builds upon the LARESFLAT formalism as
defined in (10). The set of measuresM comprises reward measuresMRE in addition to
the probability measuresMPR of LARES, i.e.M :=MPR ∪MRE . A reward measure
M ∈MRE is a structure (SE ,TE , type) where SE is a state reward expression, TE is a
transition reward expression and type is the specified reward analysis type, i.e. either total,
average or α-discounted (cf. Section 3). The difference between user-level LARES.re and
its planar representation is that parameters and hierarchy are resolved, such that all reward
expressions consist of atoms which are either numerical values or indicators over conditions
which directly point to states of instantiated behaviors.

If one of the state reward or the transition reward expressions is not referenced by the
textual specification of the RewardMeasure statement, the associated value will be set to 0.
As an example, the reward measure M1 defined in Figure 3 by C1.energy + C2.energy
discounted 0.01 is resolved to an element (SE ,TE , type) ∈MRE , where

SE = (2.5 ∗ [C1.B.active]) +

(0.9 ∗ (2.5 ∗ [C2.SC1.B.active] + 2.5 ∗ [C2.SC2.B.active]) + 0.5),

TE = 0 and type = discounted 0.01.

(13)

5.2 Transformation to CTMRM with fast transitions

The reachability analysis performed on a LARESFLAT model as described in Section 4.3
yields a transition system E = (S,L, , , s0). In this section, we describe the evaluation
process for a fixed reward measureM := (SE ,TE , type) ∈MRE which results in a value
function V : S → R. This evaluation is based on a sequence of transformations as depicted
in Figure 8. In step 1© we first transform the pair (E ,M) to a CTMRM with fast transitions
Cfast := (S, F, σ, r, i) over the state space S. Hereby we choose a representation of S as
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integers {1, . . . , n} with n := |S| and regard states as indices (as in Sect. 2.1). The initial
distribution is given by σ := 1Ts0 ∈ Dn. The rate reward r ∈ Rn is the evaluation of the
state reward expression SE on states and the impulse reward i ∈ Rn×n is the evaluation of
the transition reward expression TE on pairs of states (s, s′), i.e.

rs := eval(SE , s) and iss′ := eval(TE , (s, s′)).

If A and B are condition expressions then eval([A], s) := 1 if s � A and 0 otherwise and
eval([A→ B], (s, s′)) := eval([A], s) · eval([B], s′). A Markovian transition (s, s′, λ, l)
is transformed to a slow transition from s to s′ with rate λ. Accordingly, an immediate
transition (s, s′, w, l) is transformed to a fast transition with rate w. Due to the multiset
nature of transitions in E , there can be several Markovian and immediate transitions from s
to s′. As a consequence of the race condition of exponential distributions these transitions
can be merged together by summing up their rates and weights. Thus, we define for all pairs
of states (s, s′):

Sss′ :=
∑

λ∈kΛss′

kλ and Fss′ :=
∑

w∈kWss′

kw where

Λss′ :=
⋃
l∈L

[
λ(k) | (s, s′, λ, l) ∈k

]
and Wss′ :=

⋃
l∈L

[
w(k) | (s, s′, w, l) ∈k

]
collect all rates and weights with their total multiplicity in a multiset.
A further transformation 2© from Cfast to a discontinuous CTMRM Cdisc := (Π, Q, σ, r) and
a subsequent reduction 3© by aggregating ergodic classes at zero and eliminating transient
states at zero results in a regular CTMRM Creg := (Q̂, σ̂, r̂) with Q̂ := LQR, σ̂ := Lσ and
r̂ := Lr. The specified reward measure type is evaluated on Creg to the value function V̂ as
described in Section 2.1, i.e. V̂ can be the total value V̂∞, the α-discounted value V̂ α or the
average value ĝ. In order to retrieve the evaluation of type back to the LARES.re model,
we perform a disaggregation of the value function V̂ ∈ RK by computing V := RV̂ ∈ Rn
and consider V as a real-valued function from the set of composed states S.

Note that in LARES.re the transition expression TE is evaluated on a pair of states (s, s′)
and not on a fixed transition in E . If there are several transitions from s to s′ then the
impulse reward iss′ is not summed up for each of these transitions but gained only for the
case that some of these transitions is performed. This choice of semantics is due to the
syntactical definition of a TransitionReward as an expression in a Module definition where
the particularly performed transition in the Behavior is not visible at the Module level. This
slightly reduces the expressivity of LARES towards greater modularity and is a typical
trade-off in the design of modelling languages.

5.3 Implementation issues

The implementation of the transformation of a LARES.re model to a CTMRM with fast
transitions can be made more efficient if states s that are not reachable from s0 are neglected
in the CTMRM model. Moreover, pairs of states (s, s′) that are not connected by a transition
in E do not have to be considered for the evaluation of impulse rewards. This results in a
smaller state space and fewer evaluations of reward expressions. We can also make use of the
maximum progress assumption which means that Markovian transitions can be neglected
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(a,a,a) (a,a,f) (a,a,iR) (a,f,a) (a,f,f) (a,f,iR) (a,iR,a) (a,iR,f) (a,iR,iR)
514.05 502.44 513.40 502.44 490.86 501.79 513.40 501.79 512.74
(f,a,a) (f,a,f) (f,a,iR) (f,f,a) (f,f,f) (f,f,iR) (f,iR,a) (f,iR,f) (f,iR,iR)
513.68 510.61 510.61 510.61 507.62 507.62 510.61 507.62 507.62
(iR,a,a) (iR,a,f) (iR,a,iR) (iR,f,a) (iR,f,f) (iR,f,iR) (iR,iR,a) (iR,iR,f) (iR,iR,iR)
513.68 510.61 510.61 510.61 507.62 507.62 510.61 507.62 507.62

Table 1 Evaluation of reward measure M1 for the running example model. The composed states are
encoded in the order (C1, SC1, SC2), e.g. (a,a,a) means (aC1, aSC1, aSC2).

in a state s if there is at least one outgoing immediate transition from s. However, due to
the underlying semantics by means of a discontinuous CTMRM, the maximum progress
assumption is only valid in states that are F -transient. Furthermore, a direct transformation
from (E ,M) to the regular CTMRM Creg = (Q̂, σ̂, r̂) can be performed without establishing
the intermediate models Cfast and Cdisc. All reachable F -transient states can be eliminated
and during elimination of such an F -transient state s its total value (V F∞)s can be computed
by a local embedding into a discrete-time Markov reward model together with a geometrical
series argument. For the F -ergodic classes that are reached by the eliminated F -transient
states the stationary distributions must be computed. Assuming that in practice ergodic
classes at zero consist of only a few states, these stationary distributions can be established
on the fly during the reachability analysis. During this extended reachability process, a
validation of the LARES.re model can be performed by checking for impulse rewards on
transitions between states in the same F -ergodic class.

5.4 Analysis of Running Example

In Section 3 we introduced the running example (see Figure 3) for which we now present
the evaluation of the specified reward measures M1 and M2. The model consists of 3
instances of Behavior B, such that the composed potential state space has 27 states. As one
can see in Figure 7 all of these 27 states are reachable from initial state (aC1, aSC1, aSC2)
and the state space is partitioned into 5 transient states at zero, 10 trivial ergodic classes at
zero that consist of a single absorbing state and 3 non-trivial ergodic classes at zero each
of them consisting of 4 states. Therefore, the reduced regular CTMRM has 13 states. The
α-discounted value function V α with discount rate α = 0.01 is shown in Table 1 and was
computed by the evaluation process as outline in Figure 8. Since the reduced CTMRM is
ergodic (i.e. has only one recurrent class), the stationary distribution is independent of the
initial state, such that P ∗ has constant rows (8). Therefore, the value function g = P ∗r for
the average reward measure M2 is constant on S with value g = 6.57 · 1.

6 Conclusion and Outlook

We have presented LARES.re as an extension to standard LARES, which allows its
users to specify performability measures for dependable, fault-tolerant and dynamically
reconfigurable systems. Beside the user-level language, we have defined a planar
representation for LARES.re models. The behavioral semantics for standard LARES was
originally defined by a model transformation into a state-based LTS formalism, which finally
was transformed into a Markov chain. In this paper, we have extended this transformation,
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by describing a transformation of reward measures into the CTMRM formalism, thereby
employing the mathematical concepts of Markov chains with stochastic discontinuities and
Markov chains with fast transitions. This finally makes it possible to compute the value
functions corresponding to the desired reward measures of interest.

As a next step, we want to formally prove that the semantics for the reward accumulation
in form of the finite-horizon total value function VT as defined in (9) can be also derived
as a limit of finite-horizon total value functions V τT with the regular generator Qτ as
τ →∞. Furthermore, we want to combine the LARES reward extension with the LARES
decision extension (LARES.de) in order to be able to model Markov Decision Processes
(MDP) with both Markovian and immediate transitions that lead to continuous-time MDPs
with stochastic discontinuities. The reward measures as defined for LARES.re can be
used as target functions for optimization criteria. An optimal policy can be computed by
solving the non-linear Bellman equations on a reduced regular MDP which maximizes
the value function [Guo and Hernandez-Lerma, 2009]. We are also going to complete
the implementation of the LARES toolset with respect to both the reward extension and
the decision extension (http://lares.w3.rz.unibw-muenchen.de/). As future
work it is also planned to employ LARES.re and LARES.de in a case study of a real-world
critical infrastructure.
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