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Abstract. The tool OpenSESAME offers an easy-to-use modeling frame-
work which enables realistic availability and reliability analysis of fault-
tolerant systems. Our symbolic engine, which is based on an extension
of binary decision diagrams (BDDs), is capable of analyzing Markov re-
ward models consisting of more than 108 system states. In this paper,
we introduce a tool chain where OpenSESAME is employed for specify-
ing models of fault-tolerant systems, and at the back end our symbolic
engine is employed for carrying out numerical Markov reward analysis.
For illustrating the applicability of this approach, we analyze a model
of a fault-tolerant telecommunication service system with N redundant
modules, where the system is available as long as at least K modules
are available. Based on this model, it is shown, that the suggested tool
chain has more modeling power than traditional combinatorial methods,
e.g. simple reliability block diagrams or fault trees, is still easy-to-use if
compared to other high-level model description techniques, and allows
the analysis of complex system models where other tools fail.
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1 Introduction

Motivation: Obtaining measurement data in order to quantify the reliabil-
ity and availability (RA) of a system is often very difficult in practice, or even
impossible. Thus one is restricted to analyzing a system (or high-level) model,
rather than analyzing the system directly. Reliability block diagrams (RBD) are
an adequate technique for describing systems, when RA-issues are emphasized.
Furthermore, RBDs are a well accepted method in industrial practice. However,
using RBDs assumes that, firstly, all failure and repair events in the system are
stochastically independent, and secondly, that each component can be in two
states only (active or failed). In contrast, Markov Reward models (MRMs) pro-
vide a powerful mathematical framework for computing system state probabili-
ties and thus quantifying a system under study. The modeling power of MRMs



is much higher than that of RBDs: Each component can be described by an
arbitrary number of states (e.g. active, passive, and several failed states), and
arbitrary inter-component dependencies (such as failure propagation, failures
with a common cause, or limited repair capacities) can be specified. In contrast
to empirical evaluation as provided by simulation studies, which is the most ac-
cepted technique in industry, MRM-based studies are restricted to models where
events occur with an exponential or zero delay. However, this restriction comes
at the benefit that MRMs allow an extensive (!) analysis, such that rare events
of fatal impact can also be assessed, where simulation studies may fail to do so.
Consequently, MRMs are an adequate formal model for analyzing in particular
industrial critical systems.

In this work we consider a tool chain, in which the tool OpenSESAME (sim-
ple but extensive structured availability modeling environment) is used as the
user interface. In this tool, systems are modeled using RBDs, which can be
enriched with intercomponent dependencies. Thus, the traditional limitations
of these easy-to-use models were overcome. OpenSESAME automatically con-
verts these diagrams into a high-level model specification (e.g. a stochastic Petri
net (SPN)). The interleaving semantics of standard high-level model descrip-
tion methods, such as SPN among others, applied for transforming the obtained
high-level model into its low-level representation (commonly denoted as state
graph (SG)), may lead to an exponential blow-up in the number of system
states. This phenomenon, commonly addressed as state space explosion prob-
lem, often hampers the analysis of complex and large systems, if not making
it impossible at all. Here symbolic methods have shown to ease the problem,
such that system models consisting of more than, say, 108 system states are still
treatable and their RA-measure are still obtainable on commodity computers.
Therefore, in the approach presented here, OpenSESAME diagrams are first con-
verted into stochastic activity networks (SAN) as accepted by the tool Möbius
[DCC+02]. Internally, the generated SANs are analysed by the zero-suppressed
multi-terminal decision diagram (ZDD)-based symbolic framework as presented
in [LS06a,LS06b]. In this paper we show, that

1. using OpenSESAME, it is much easier to create sophisticated availability
models than by e.g. directly creating the corresponding SAN manually, and

2. the proposed tool chain, which is based on ZDDs, is much more efficient
in terms of time and space compared to traditional solution methods. The
advantages stem from the fact that the traditional methods require the ex-
plicit generation of the system’s complete state space and the storage of its
transition matrix in a sparse matrix format.

Organization: The paper is organized as follows: Sec. 2 introduces the em-
ployed tool infrastructure. The model world is introduced in Sec. 3 by giving
basic definitions. The general idea of symbolically representing and numerically
solving MRMs is introduced in Sec. 4. An industrial case study for evaluating
our framework is presented in Sec. 5. Sec. 6 concludes the paper by indicating
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some related work, by summarizing the achieved innovations and mentioning
future steps.

2 Tool Chain

For analyzing systems we employ the tool chain as illustrated in Fig. 1. Via the
process of abstraction and simplification one builds a system model, specified
as an extended RBD within the tool OpenSESAME. The obtained RA-model
is then mapped onto a Stochastic Activity Network (SAN). A SAN is a form of
extended Generalized Stochastic Petri Net (GSPN), which also contains reward
functions, employed here for describing the RA-measures of interest. The mod-
eling tool Möbius supports the specification of high-level models of that kind.
Our new symbolic engine, which possesses an interface to Möbius, can then be
employed for generating a symbolic representation of the specified MRM (SAN
+ reward functions). The numerical solution of the symbolically represented
low-level MRM allows finally the computation of the RA-measures of interest.
In the following we briefly introduce the different components as employed in
the suggested tool chain.

OpenSESAME [WT04,WT05]: The graphical user interface of OpenSESAME
allows for the creation of traditional combinatorial availability models, which can
be enriched with inter-component dependencies. In these models, a system is de-
fined by its components, each specified by a Mean Time To Failure (MTTF) and
Mean Time To Repair (MTTR). In addition, reliability block diagrams specify
the redundancy structure of the system, i.e. they determine which components
have to be available at the same time to make the overall system available. Sev-
eral kinds of inter-component dependencies can be specified in an OpenSESAME
input model which greatly increases the modeling power without compromising
its usability as shown in Sec. 3.1 of this paper.

Möbius modeling tool: Möbius is a software tool for performance and re-
liability evaluation of discrete event systems. Currently, Möbius supports sev-
eral model specification formalisms [DCC+02], including Stochastic Activity Net-
works (SAN), an extension of GSPNs. Since OpenSESAME can generate GSPNs
out of its input diagrams, Möbius can be used in our tool chain.



Within Möbius, the SANs are mapped onto the Abstract Functional Interface
(AFI), which is implemented in C++ and constitutes the interface between the
state graph generator and the (high-level) SAN model specification. Each place
of the SAN is hereby mapped onto a state variable (SV). Consequently, during
state graph exploration, a state of the system model is represented by the values
of the SVs, where the ordered tuple of n SVs is commonly denoted as the state
vector. However, rather than specifying now the RA-measures directly on the
level of the state graph, one may define reward functions on the level of the
SAN model specification. In the tool chain presented here, these rate rewards
are created automatically by OpenSESAME.

Symbolic Engine: The new symbolic engine for analyzing Möbius models with
very large state graphs is based on ZDDs, where the implementation consists of
the following four modules:

1. A module for the explicit generation of states, which make uses of Möbius’
AFI and thus constitutes the interface between the symbolic engine and
Möbius.

2. The symbolic state graph generation engine, which generates a symbolic
representation of the CTMC of the low-level MRM.

3. A ZDD-library, which is based on the CUDD-package [Som]. This library
mainly contains the C++ class definition of ZDDs, the new recursive algo-
rithms for manipulating them and their operator-caches.

4. A library for computing the desired RA-measures on the basis of the sym-
bolically represented MRM. This module contains:
(a) steady state and transient numerical solvers for computing the state

probabilities.
(b) algorithms for efficiently generating symbolic representations of rate re-

ward functions and for computing the first and second moment of their
probability distributions.

3 Model world

3.1 OpenSESAME input model

An OpenSESAME model as seen by the user comprises component tables, re-
liability block diagrams, failure dependency diagrams, repair group tables, and
variable tables. Not all model parts are necessary, usually one starts with one
component table and a block diagram only. Then the model can be refined by
adding additional tables and diagrams. In the following, the individual parts of
the model are described.

The component tables list all components of which the system consists. Each
component type has a unique name, a mean time to failure (MTTF), and a
mean time to repair (MTTR). If the system contains several components of the
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Fig. 2. “3-out-of-5:G” system. The system is available, if at least 3 out of 5 configura-
tions are available. In this case, each configuration comprises two components: part A
and part B.

same type, the table also lists the number of components of this type. Further-
more, each component may have either a dedicated repair person or is allotted
to a repair group (see below). For small and medium sized models, a single
component table will be sufficient. For large models, several tables can be used
to group related components. An extended version of reliability block diagrams
(RBD) is used to model the redundancy structure of the system. RBDs are
undirected graphs where each edge is labeled with a component. A component
may appear several times in the same RBD. Two special nodes s and t define a
Boolean system which is available, if there is a connection between these nodes
and unavailable otherwise. As components can be unavailable so can the edges:
calculating the probability whether s and t are connected yields the availability
of the modeled system. In OpenSESAME, several modern extensions to tradi-
tional RBDs were implemented. First, the user may specify more than two border
nodes. This allows for calculating the availabilities of subsystems in addition to
the overall availability. Second, edges may be labeled with a sub-RBD instead
of a component. This allows for building a hierarchy of RBDs. Thus, even large
systems can be modeled in a concise way. Third, so-called “k-out-of-N:G” edges
are supported.

As an example, Figure 2 shows a “3-out-of-5:G” system which is available if at
least 3 of its 5 so-called configurations are available. A configuration may be a
simple component, or an arbitrarily large sub-diagram. Alternatively, the system
could be modeled using regular RBDs without “k-out-of-N:G” edges, however,
such an RBD would comprise 30 edges.

Finally, as a unique feature of OpenSESAME, the model can be enriched
with inter-component dependencies. Because some dependencies are related to
the redundancy structure of the system, it makes sense to add these dependen-
cies to the RBD. For example, in many systems fault tolerance is achieved using
fault recovery techniques. In these systems, the redundant components are in
passive or standby mode as long as the system is fault free. In contrast to so-
called active-active systems which are based on fault masking, the redundant
components can be used for non-critical tasks. Furthermore, in systems with
fault recovery, a redundant component can possibly replace several components,



which allows the construction of N+1 redundant systems. However, such sys-
tems also have a drawback compared to systems based on fault masking: the
failure of an active component must be detected, localized and isolated, and the
redundant component must be activated after the failure of the primary com-
ponent. During this so-called fail-over time, the system is unavailable. To avoid
over-optimistic results and unfair comparisons, availability models should there-
fore take into account possible fail-over times of fault recovery mechanisms. In
OpenSESAME, k-of-N:G edges can therefore be attributed with a fail-over time.

A detailed description of all features of OpenSESAME is outside the scope of
this paper. Instead, the interested reader is referred to previous publications
[WS05,WT05]. For an overview on the transformation process of OpenSESAME
input models into GSPNs and SANs one may refer to [WT04].

3.2 Properties of high-level MRMs

Via state graph generation a high-level model description and its set of user-
defined rate rewards can be mapped to a continuous time Markov chain (CTMC),
where each system state is equipped with a rate reward3. This yields what is
commonly denoted as (low-level) Markov reward model (MRM). In the following
we define some properties of high-level model descriptions, as required for our
symbolic framework for efficiently generating symbolic representations of MRMs.

Static properties: A high-level model M consists of a finite ordered set of dis-
crete state variables (SVs) si ∈ S, where each can take values from a finite subset
of the naturals. Each state of the model is thus given as a vector ~s ∈ S ⊂ N|S|. A
model has a finite set of activities (Act), where the enabling and execution of an
activity l depends on a set of SVs (SD

l
). Two activities are defined to be depen-

dent if their sets of dependent SVs are not disjoint. We also define a projection

function χ : (SD
l

, N|S|) −→ N
|SDl | which yields the sub-vector consisting of the

dependent SVs only. We use the shorthand notation ~sdl
:= χ(SD

l
, ~s ), where ~sdl

is called the activity-local marking of state ~s with respect to activity l.

Dynamic properties: When an activity is executed, the model evolves from
one state to another. For each activity l ∈ Act we have a transition function
δl : S −→ S, whose specific implementation depends on the model description
method. Concerning the target state of a transition, we use the superscript of a
state descriptor to indicate the sequence of activities leading to that state. It is
assumed that the computation of δl depends solely on those positions of ~s refer-
ring to the SVs contained in SD

l
. By state graph exploration one can construct

the successor-state relation as a set of quadruples T ⊆ (S×Act×R>0×S), which
is the set of transitions of a stochastic labeled transition system (SLTS), i.e. the

3 The presented methodology can also take care of impulse rewards, but these are not
used for the considered application case study.



underlying activity-labeled CTMC. If activity labels are removed, transitions
between the same pair of states are aggregated via summation of the individual
rates.

Rate rewards: Rate rewards enable the modeler to define complex performance
measures on the basis of the high-level model, rather than on the level of the
underlying CTMC [SM91]. A rate reward defines the reward gained by the model
in a specific state. This gives us the following setting: A rate reward r defined
on a high-level model is specified by the rate reward returning function Rr :
S → R+, and where SD

r ⊆ S is the set of SVs on which the computation of
r actually depends. Analogously to activity-local markings we will also employ
the shorthand notation ~sdr

:= χ(SD
r , ~s ). The set of all rate rewards defined for

a given high-level model, will be denoted as R.

4 Symbolic Representation and Solution of MRMs

4.1 Symbolic representation of low-level Markov reward models

In this section, zero-suppressed multi-terminal binary DDs (ZDDs) are intro-
duced, and it will be shown how this symbolic data structure can be employed
for representing CTMCs and their reward functions.

The ZDD data structure: Different types of symbolic data structures have
been employed successfully for compactly representing very large labeled Markov
chains. In a Zero-suppressed BDD (ZBDD) [Min93], the skipping of a variable
means that this variable takes the value 0. Thus, ZBDDs are more compact than
the original BDDs [Bry86] when representing Boolean functions whose satisfac-
tion set is small and contains many 0-assignments. A previous paper [LS06a]
introduced the multi-terminal version of ZBDDs, which we call zero-suppressed
multi-terminal binary decision diagrams (ZDD). Analogously to algebraic de-
cision diagrams (ADDs) [ADD97], ZDDs permit the representation of pseudo-
Boolean functions. It has been found that, for our area of application, the ZDD-
based representation is more compact than the ADD-based representation by
a factor of approximately two to three, which has the positive effect that the
construction and manipulation times of the symbolic representations, as well as
the times for the numerical solution of the represented MRM are reduced by
about the same factor [LS06a,LS06b].

ZDD-based representation of SLTS: By state graph exploration one can
construct the set of transitions of the stochastic labeled transition system (SLTS).
Each transition within an activity-labeled SLTS T can then be encoded by ap-

plying a binary encoding scheme which represents the transition (~s
l,λ

−→ ~s l) as
the bit-vector

(

EAct(l), ES(~s ), ES(~s l)
)

. The rate λ is hereby unaccounted, since
it will be stored in a terminal node of the ZDD. The individual bit positions of
the obtained vectors correspond to the Boolean variables of the ZDD. Given a



ZDD-based representation of a SLTS, one simply has to abstract over the bi-
nary encoded activity labels, in order to obtain a symbolic representation of the
corresponding transition rate matrix. Hereby the boolean variables holding the
binary encoded row and column indices are ordered in an interleaved way. Such
an ordering is a commonly accepted heuristics for obtaining small BDD sizes,
and it also works well for ZDDs.

Symbolic representation of rate reward functions: Having pairs of binary
encoded system states and rate rewards, one obtains a pseudo-boolean function
for each reward specification. This function can once again be represented by
means of a ZDD.

4.2 Generating and solving the low-level Markov reward model

The top-level algorithm for generating and solving low-level Markov reward mod-
els can be divided into three main phases: At first one derives a symbolic rep-
resentation of the CTMC from the high-level model. Secondly one computes
steady-state or transient state probabilities. In the third phase, the symbolically
represented CTMC enables one to generate symbolic representations of the rate
reward functions. Their different stochastic moments can be efficiently computed
via BDD-traversal. The main idea of our approach is to limit the explicit explo-
ration and explicit execution of reward functions only to fractions of the low-level
MRM, where the missing parts are generated via ZDD manipulations. In con-
trast to standard methods, this strategy leads to significant runtime-benefits,
where the employment of ZDDs yields significant reductions in memory space.

Phase 1: Constructing a symbolic representation of a CTMC [LS06a]:
The main idea of the activity-local state graph generation scheme is the parti-
tioning of the CTMC or the SLTS T to be generated into sets of transitions with
label l ∈ Act, where each state is reduced to the activity-dependent markings:

T l := {(~sdl
, l, λ, ~s l

dl
) | ~sdl

= χ(SD
l , ~s ) ∧ ~s l

dl
= χ(SD

l , ~s l ) ∧ (~s, l, λ, ~s l) ∈ T} (1)

During state graph generation the activity-local transitions T l are successively
generated, where each is encoded by its own (activity-local) ZDD Zl, which solely
depends on the Boolean variables encoding the dependent SVs of activity l. The
overall transition relation is then obtained by executing a symbolic composition
scheme:

ZT :=
∑

l∈Act

Zl · 1⊥l,

where in the above equation 1⊥l represents the pairwise identity over the Boolean
variables encoding activity l’s set of independent SVs (SI

l
= S \ SD

l
). One may

note, that due to the Apply-algorithm of [Bry86] and derivatives thereof, that
Zl · 1⊥l may in general not yield the Kronecker-product of the encoded matrices.
The ZDD ZT thus constructed encodes a set of potential transitions, therefore



at this point it is necessary to perform symbolic reachability analysis. On the
other hand symbolic composition might also result in states triggering new model
behavior. In case where such states exist, a new round of explicit state graph
exploration, encoding, composition and symbolic reachability analysis follows.
Several rounds may be required until a global fix point is reached and a com-
plete representation of the user-defined CTMC is constructed.

The advantages of the activity-local scheme can be summarized as follows:

1. In general, only a small fraction of the transitions of the Markov chain needs
to be generated explicitly, whereas the bulk of the transitions is generated
during symbolic composition.

2. The scheme does not require any particular model structure. In particular,
the method is not restricted to structures that can be represented by a
Kronecker descriptor.

3. The model is partitioned automatically at the level of the individual activi-
ties, i.e. a user-defined partitioning is not necessary.

4. The composition of the individual “activity-local” portions of the Markov
chain is carried out efficiently at the level of the symbolic data structure.

Phase 2: ZDD-based solution [LS06b]: Once the symbolic representation
of the CTMC, i.e. its transition rate matrix, is generated, probabilities for each
system state are computed. The solvers considered in this paper employ an ap-
proach in which the generator matrix is represented by a symbolic data structure
and the probability vectors are stored as arrays [Par02]. If n Boolean variables
are used for state encoding, there are 2n potential states, of which only a small
fraction may be reachable. Allocating entries for unreachable states in the vectors
would be a waste of memory space and would severely restrict the applicability
of the algorithms (as an example, storing probabilities as doubles, a vector with
about 134 million entries already requires 1 GByte of RAM). Therefore a dense
enumeration scheme for the reachable states has to be implemented. This is
achieved via the concept of offset-labeling. In an offset-labeled ZDD, each node
is equipped with an offset value. While traversing the ZDD encoding the ma-
trix, in order to extract a matrix entry, the row and column index in the dense
enumeration scheme can be determined from the offsets, basically by adding the
offsets of those nodes where the then-Edge is taken.

The space efficiency of symbolic matrix representation comes at the cost of com-
putational overhead, caused by the recursive traversal of the ZDD during access
to the matrix entries. For that reason, Parker [Par02] introduced the idea of
replacing the lower levels of the ADD by explicit sparse matrix representations,
which works particularly well for block-structured matrices. In the context of our
work, we call the resulting data structure hybrid offset-labeled ZDD. The level
at which one switches from symbolic representation to sparse matrix represen-
tation, called sparse level s, depends on the available memory space, i.e. there is
a typical time/space tradeoff.



For numerical analysis, it is well-known that the Gauss-Seidel (GS) scheme and
its over-relaxed variants typically exhibit much better convergence than the Ja-
cobi, Jacobi-Over-relaxation or Power method. However, Gauss-Seidel requires
row-wise access to the matrix entries, which, unfortunately, cannot be realized
efficiently with ZDD-based representations. As a compromise, Parker [Par02]
developed the so-called pseudo-Gauss-Seidel (PGS) iteration scheme, where the
matrix is partitioned into blocks (not necessarily of equal size). Within each
block, access to matrix entries is in arbitrary order, but the blocks are accessed
in ascending order. PGS requires one complete iteration vector and an additional
vector whose size is determined by the maximal block size. Given a ZDD which
represents the matrix, each inner node at a specific level corresponds to a block.
Pointers to these nodes can be stored in a sparse matrix, which means that effec-
tively the top levels of the ZDD have been replaced by a sparse matrix of block
pointers. The ZDD level at which the root nodes of the matrix blocks reside is
called block level b. Overall, this yields a memory structure in which some levels
from the top and some levels from the bottom of the ZDD have been replaced by
sparse matrix structures. We call such a memory structure a block-structured
hybrid offset-labeled ZDD. The choice of an adequate s and an adequate b is
an optimization problem. In general, increasing b improves convergence of the
PGS scheme (but also increases the time per iteration), and replacing more ZDD
levels by sparse structures improves speed of access.

Phase 3: Generating symbolic representations of rate reward func-
tions: After the system state probabilities are computed, one needs to generate
the symbolic representations of the rate reward functions. Hereby the main idea
is once again to exploit locality, so that the explicit evaluation of each reward
function is limited to a fraction of states of the CTMC, rather than evaluating
the reward functions for each state. I.e. similar to activity-local transition sys-
tems one restricts oneself to processing rate-reward-local states. The symbolic
representation Rr of the characteristic (pseudo-boolean) function of the set:

Sr := {~sdr
∈ S | Rr(~sdr

) 6= 0}

gives hereby a rate-reward-local reward function, such that Rr · S yields the rate
reward for each system state concerning rate reward definition r. Once state
probabilities and also symbolic representations of all rate reward functions have
been constructed, their moments can be computed via BDD-traversal. Due to
the nature of the traversal, one only visits hereby those states individually whose
reward value is not zero. The obtained stochastic moments are the desired RA
measure, e.g. unavailability.

5 Case Study: Fault-Tolerant Adjunct Processor

In the digital telephone network, so-called adjunct processors translate easy-
to-remember, location-independent virtual phone numbers (used e.g. by emer-



parameter default value description

N 6 number of configurations
K 4 number of initially active configurations
MTTF-SBCi 5 · 104 hours mean time to failure of SBC i
MTTF-RTBi 1 · 105 hours mean time to failure of RTB i
MTTR-SBCi 1 hour mean time to repair of SBC i
MTTR-RTBi 1 hour mean time to repair of RTB i

fail-over-time from configuration i
FOTij 0.1 hours to configuration j

Table 1. Default parameters of the I/O-unit submodel investigated in this paper.

gency departments) into their location-dependent physical equivalent.4 Because
adjunct processors play a crucial role in the network, they must be highly avail-
able. Typically, an availability of 99.999% is demanded for such a system which
corresponds to a mean downtime of less than 5 minutes per year. In a previous
work, we investigated the availability of an adjunct processor implementation
[GLW00] by a SPN-based model. We will now apply the proposed method to
this model to point out its benefits.

5.1 System Description

From a top-level view, the adjunct processor is a series system comprising host
units, I/O-units, hot-swap controllers, power supplies, a RAID system and so
on. Due to place restrictions, we will evaluate the I/O-subsystem only, as it is
the most complex part of the system. The other parts can be evaluated in a
similar way which is not shown here.

The I/O-unit consists of N configurations, each comprising a single board
computer (SBC) and a so-called rear transition board (RTB). All cabling is con-
nected to the RTB which allows for a quick replacement of the SBC in case of a
failure. We assume, that K <= N configurations have to be available at the same
time to make the I/O-unit available. Furthermore, we assume that each config-
uration can be in three states: active, failed, or passive. A passive (or stand-by)
configuration does not perform any work but waits until an active configuration
fails. After failure detection and localization, the I/O-unit is reconfigured which
means that one of the passive configurations becomes activated. The overall time
interval which lies between a failure and the completion of the reconfiguration
is called the fail-over-time.

A configuration fails, if either its SBC or RTB fails. This can happen to both
the active and the passive configurations. Modern architectures in the telecom-
munication systems are open systems and may contain boards from different
vendors. Thus, in general, all components of the system will have different fail-
ure and repair rates and also the fail-over times may vary. The parameters of our
model are given in Table 1. For the sake of simplicity, we assume exponentially

4 For example, if one calls 112 in Germany, one will be connected to the closest fire
department.
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Fig. 3. Single component specified as SPN

distributed time intervals in the following evaluations. This is acceptable for the
mean time to failures, because the effects of aging can be neglected in electronic
devices. Analytic evaluation of models with non-exponentially distributed time-
intervals is an active area of research.
Using OpenSESAME, the I/O-unit can be modeled using the RBD shown in
Fig. 2 for the case N = 5. This model is enriched with information on the re-
spective fail-over-times which are necessary to switch from one configuration to
another. We think that the OpenSESAME model is quite intuitive and easy to
modify. In contrast, a SPN-based model as sketched in Fig. 3 is much more com-
plex. The figure shows only one sixth of the overall SPN structure for the case
N = 6. It represents configuration 1 which is one of the configurations which
are active after system startup. The remaining five configurations are modeled
with equivalent subnets, however, all subnets share the six places conf. 1-6

deact. As it can be seen, even a small fraction of the overall net is much less
readable than the RBD from Fig. 2. Moreover, changing the parameters N or
K requires a work-intensive and error-prone modification of the SPN structure.
This exemplifies the benefit of the proposed method, where OpenSESAME is
used to generate the SPN from an OpenSESAME input model which comprises
the RBD from Fig. 2, attributed with the respective fail-over-times.

5.2 Model Evaluation

Table 2.A shows the evaluation results in terms of the I/O unit’s unavailability
for the default values given in Tab. 1 and different fail-over-times. As can be
seen, the fail-over time has a significant impact on the result. Please note that if
traditional combinatorial methods like a simple RBD or fault tree analysis were
used, this would imply the assumption that the fail-over-time is zero. Thus, the
result would be highly over-optimistic as it is several orders of magnitude lower
than the correct results even for small fail-over-times.



(A) Model specific RA-measures (system unavailability)

mean fail-over time
0 sec 10 sec 1 min 5 min 6 min

“4-out-of-6” < 5.99 · 10−13 1.67 · 10−7 9.97 · 10−7 4.93 · 10−6 5.91 · 10−6

“6-out-of-8” < 1.60 · 10−12 2.49 · 10−7 1.49 · 10−6 7.40 · 10−6 8.86 · 10−6

(B) Model specific data

states trans transe

“4-out-of-6” 9.48720 ·105 1.45607 ·107 240

“6-out-of-8” 2.61671 ·108 5.86973 ·109 544

(C) Solution times

DSPNexpress Symbolic Approach
peak mem. SG time iter. time # iter. peak mem. SG time iter. time # iter.

“4-out-of-6” 7.4 GByte 123.014 0.7315 12 36 MByte 2.50562 0.093181 46

“6-out-of-8” xxx xxx xxx xxx 4105 MByte 15.8026 40.533267 49

Table 2. Data as obtained for analyzing the case study

For evaluating the efficiency of our symbolic framework, we analyzed the adjunct
processor for two different parameter sets. In the first set, we investigated a “4-
out-of-6” system (i.e. N = 6 and K = 4) whereas in the second set a “6-out-of-8”
system was analyzed (N = 8 and K = 6). The numerical values were equal to
the ones presented in Tab. 1. We stress that the sub-units were not assumed
to be symmetric, which resulted in Markov reward models of substantial size
to be analyzed. If sub-units were symmetric, lumping techniques for state space
reduction could be exploited.

Table 2.B shows the size of the analyzed low-level MRM models as derived
from the OpenSESAME input model, via the translation to a SAN and finally
applying the symbolic state graph generation scheme. Consequently, Table 2.B
contains the number of system states (states), the number of transitions among
these system states (trans) and the number of transitions explicitly established
by our activity-local ZDD-based state graph generation scheme (transe). The
latter is extremely small, which is the main source of efficiency of the approach.

Table 2.C shows the memory and CPU-times as required for generating and
solving the MRM. Hereby the two different configurations were analyzed on a
64-bit Opteron system with 8 GByte of RAM and a Linux OS. For demonstrating
the effectiveness of our ZDD-based framework, we also exported and analyzed
the system models with the GSPN-based tool DSPNexpress [Lin98]. Table 2.C
gives the peak memory consumption, the CPU time in secs. required for gener-
ating the CTMC (SG time), the CPU times in secs. required for each numerical



iteration for computing the state probabilities (iter. time) and their number (#
iter.) as executed under the respective numerical solution method. As numeri-
cal solution method, we decided to employ the pseudo-Gauss-Seidel method of
[Par02] in case of ZDDs, whereas DSPNexpress employs the generalized mini-
mal residual method (GMRES). As convergence criteria a relative convergence
of 10−6 was taken. The data of Table 2.C indicates that the ZDD-based frame-
work is much more efficient than the standard sparse matrix approach employed
within the DSPNexpress-tool. In case of the “6 out 8”-configuration, DSPNex-
press was unable to analyze the system model, due to a lack of RAM. Even for
the smaller configuration (“4-out-of-6”), our ZDD-based framework is more effi-
cient. Hereby, and in contrast to sparse matrix techniques, the bottleneck is the
state-probability vector, since even for very large systems the block-structured
hybrid ZDD-based representation of the transition rate matrix of the Markov
reward model is still very compact. E.g. for the “4-out-of-6”-configuration the
ZDD-based representation of the transition rate matrix requires 0.226 MByte
only, whereas the probability vector, the iteration vector and the vector holding
the diagonal entries of the generator matrix require 14.5 MByte of RAM. Con-
sequently the ZDD-based methodology clearly eases the restriction on Markov
reward analysis. Thus it is not surprising that the suggested ZDD-based tool
chain is still capable of computing the desired RA-measures in approx. 34 min-
utes, where standard methods as employed within the DSPNexpress-tool fail to
do so.

6 Conclusion

Related Work: Several techniques have been proposed to simplify the cre-
ation of state-based dependability models. One possibility is to combine several
modeling methods in one user-interface (see, e.g. [STP96,THMH98]). Another
possibility is to extend Boolean methods (e.g. [DSC00]). The approach favored
in our work, i.e. automatically creating the models from a high-level input can
also be found (see [MPB03,BB03]). Please refer to our previous work [WT04]
for a detailed comparison with OpenSESAME. However, none of these methods
uses symbolic data structures for the representation of the state space.

Based on the original Binary Decision Diagram (BDD) data structure [Bry86],
several extensions have been developed for representing not only Boolean but
also pseudo-Boolean functions, i.e. functions of the type f : Bn 7→ R, where
Algebraic Decision Diagrams (ADDs) [ADD97] are one of the best known types.
In recent years, powerful state space generation algorithms based on symbolic
data structures have been developed and implemented in software tools such
as PRISM [KNP05] and SMART [CJMS03]. While PRISM is based on ADDs,
SMART employs multi-valued decision diagrams and matrix diagrams. Using
these techniques, generating the state space and transition structure of the un-
derlying Markov model from the high-level specification is extremely fast, and
the resulting symbolic representation can be very memory efficient. Numerical



analysis based on the symbolic representation is still an active area of research.
Using the approach of offset-labeling, combined with hybrid matrix represen-
tation, as first proposed for ADDs in [Par02], it has been demonstrated that
iterative solution techniques based on symbolic data structures can be almost as
fast as sparse matrix approaches, while being much more memory efficient and
therefore able to solve much larger systems.

Summary: In this paper we presented a tool chain which takes a set of high-
level diagrams as its input. These diagrams, which comprise component tables,
reliability block diagrams, failure dependency diagrams, repair group tables, and
variable tables, yield an input model for the tool OpenSESAME. The tool auto-
matically converts this high-level model specification into a SAN as accepted by
the tool Möbius. In a second step, the obtained SAN is converted by our ZDD-
based symbolic engine into a symbolic representation of a MRM. On the basis
of this symbolic representation numerical analysis is carried out, finally yielding
the desired reliability- and availability measures of the system under study.
For illustrating the advantages of such an approach, we presented a model of
a fault-tolerant telecommunication service system with N redundant modules,
where the system is available as long as at least K modules are available. Each
module comprises two components and can be either in failed, stand-by or ac-
tive mode. Reconfiguring the system after a failure takes some time during which
the system is not available. All failure-, repair- and reconfiguration-rates can be
different. Considering a “4 out of 6” and “6 out of 8” configuration, where in
case of the latter the obtained MRM already consist of more than 2.61 × 108

system states, we illustrate, that our tool chain is capable of computing the rel-
evant measures of interest without problems, where standard techniques, such
as included in the tool DSPNexpress, are less efficient or even fail.

Future work: Since we develop our implementations in the context of Möbius,
we are currently implementing an efficient symbolic realization of the “Replicate”
feature [SM91], so that modeled symmetries lead to much smaller Markov reward
models to be solved. Furthermore, an adaptation of aggregation methods for the
approximate solution of CTMCs to the case of ZDD-represented MRMs seems
to be a promising starting point for future research.
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