
Integration of performance aspects

into formal methods for concurrency

�

Markus Siegle

Universit�at Erlangen-N�urnberg, IMMD VII

Martensstra�e 3, 91058 Erlangen

1 Introduction

Parallel and distributed systems have to ful�ll functional requirements (they should

function as expected) and temporal requirements (they should meet performance re-

quirements, e.g. o�er a certain throughput or assure real-time limits). To meet these

goals, designers need techniques and tools for both functional and temporal description

and analysis at an early stage of the system lifecycle.

Description of complex systems, as well as their analysis, can be extremely di�cult

and costly. In this note, after a brief survey of classical methods, we discuss stochastic

process algebras, a new constructive approach which promises to overcome some of the

tractability problems.

2 Classical methods for functional description and

analysis

The following is a list of formal methods for describing concurrency:

� Finite state automata (FSA) which communicate via messages (assuming either

synchronous or asynchronous communication). Languages built on top of ex-

tended FSA (e.g. SDL [OFM

+

94] or Estelle [BD87]) are practice-oriented, with

existing tool support for many aspects of system design, from functional analysis

to code generation.

� Petri nets (PN), comprising a large number of PN classes, ranging from basic

place/transition nets to extended high-level nets.

�

for Colloquium on Formal Methods for Concurrency, LMU M�unchen, July 5, 1996.

1

� Process algebras (PA). In addition to the \classical" process algebras such as

CSP [Hoa85] and CCS [Mil89] there are now languages such as LOTOS [BB89],

which come with tool support, aiming at practical system design.

� Event structures (ES) [Win86].

� Graph grammars (GG) [Nag79].

The various formalisms employ algebraic, textual or graphical methods for system

description. Some methods, for instance Petri nets and graph grammars, provide a

combination thereof.

The notion of event is common to all of the above methods. An event is an atomic,

timeless \action" which can describe any aspect of system behaviour, such as the

sending or receipt of a signal, the creation or termination of a process, etc.. While

events describe actions, there is a dual view, namely that of state. The two views are

interchangeable: While an event causes the transition from one state to another, a

state is characterized by the set of events which can take place in that state.

Since behaviour is abstracted to discrete events, in concurrent systems events may

occur either sequentially or in parallel. A system is completely characterized by all

possible sequences of events it can exhibit, or { the dual view { by all possible se-

quences of states it can go through. Therefore, the purpose of system description is to

unambiguously specify all possible sequences of events. This is achieved by describing

causal relations between events, with the help of partial orders of events or pre- and

post-conditions of events (graphically, causality relations are often depicted by directed

arcs). In addition, it is important to de�ne the initial state of a system, i.e. the starting

point of its behaviour.

What is special about concurrent systems as opposed to sequential systems? In

concurrent systems, we can observe truly concurrent behaviour, i.e. several activities

which proceed in parallel. There is some interaction between components, but some

parts may behave completely independently of each other. One can look at a concurrent

system from the local point of view of one selected component (e.g. a process), or

from a global point of view (that of an (ideal) external observer who sees the system

as a whole). In concurrent systems, there is the phenomenon of non-determinism,

i.e. under the same conditions (the same stimulus from the environment) di�erent

system behaviour is possible. This can be caused, for instance, by unpredictable signal

delays in systems which communicate via asynchronous communication.

Analysis techniques for formal descriptions of (concurrent) systems can be classi�ed

as follows:

� Direct, algebraic techniques (such as the computation of invariants for Petri nets).

� Reduction techniques, which aim at transforming a given system into an equiva-

lent but simpler one (e.g. one whose properties are already known).

2

� Indirect techniques, usually state-space-based. All states of the system are gener-

ated and every single state is checked for the property of interest (e.g. reachability

analysis of Petri nets).

3 Classical methods for performance evaluation

We only consider model-based techniques for performance evaluation, disregarding ex-

periments on the real system (e.g. measurement). The following list contains the most

well-known modelling methods:

� Markov models [Ste94], a very universal and mathematically well-understood

technique. The main disadvantage is their relatively low level, which makes it

very di�cult to describe complex systems. Therefore, higher-level formalisms

have been developed on top of Markov processes, with Markov processes being

the underlying \semantic model".

� Queueing networks (QN) [Kle75], a very popular technique.

� Stochastic graph models [ST87, Har93], also known as task graphs or precedence

graphs. These are especially suited for modelling parallel programs and for work-

ow analysis.

� Stochastic Petri nets (SPN, GSPN [BK96]), an extension of Petri nets by sto-

chastic time. Some properties of untimed PNs get lost. SPNs nets are now a

well-established technique with many existing computer tools.

Analysis techniques:

� Algebraic, symbolic analysis.

� Specialized (very e�cient) algorithms, e.g. product form solutions for QNs.

� Reduction techniques, e.g. series-parallel reduction of stochastic graph models,

critical path analysis, bounding techniques.

� State space generation and numerical methods for Markov (semi-Markov, re-

newal, . . .) processes.

� Simulation is always an option, but expensive.

4 A combined method:

Stochastic Process Algebras

4.1 Overview

Stochastic Petri nets, in spite of their being very popular, have some disadvantages,

which make it di�cult to specify and analyze complex models: Petri nets are
at,

3

unstructured, monolithic objects. Due to their lack of structure information, net design

can easily become an intractable task even for experts. Furthermore, there is no way

to approach the state space explosion problem, which often occurs during net analysis,

by exploiting structure information.

Stochastic Process Algebras (SPAs) have a potential to overcome some of these

problems through the concept of constructivity. The term constructivity describes the

combination of the following features:

1. Building large models from small components. This results in multi-layered hi-

erarchical models. The parallel composition and choice operators are used to

compose components.

2. Abstraction, i.e. hiding of internal details which are not relevant to higher layers

of the hierarchy. This is realized by a hiding operator.

3. There is a calculus which allows to compare two components with respect to

some well-de�ned equivalence relation, such as functional bisimulation or Markov

bisimulation.

As a result, PA descriptions are hierarchic, well-structured, modular objects. While

being suitable for describing even complex systems down to their intricate details, they

are | at each level of the hierarchy | simple enough for humans to comprehend. The

third of the above features, that of equivalence, contains a great potential for model

simpli�cation, i.e. replacing components by equivalent ones which are easier to handle

(e.g. with respect to the size of their state space).

The basic idea behind the extension of process algebras by the concept of time

is somewhat similar to the idea which led to the development of SPNs: It is also an

extension of a purely functional formalism by stochastic timing information. In SPAs, a

subset of the actions is timed, i.e. there is a stochastic delay between the activation and

the completion of the action. It is desireable to use generally distributed stochastic

delays. From the point of view of model analysis, life is a lot easier if delays are

exponential or of phase type. If this is this case, the underlying stochastic process is

Markovian and can be easily analyzed using standard numerical techniques.

SPA research does not yet have a very long history. The beginnings date back to the

late 1980ies. There is an early paper by Herzog [Her90], and major contributions can

be found in the dissertations of G�otz [G�ot94], Hillston [Hil94] and Rettelbach [Ret96].

4.2 Example: The language TIPP

We brie
y introduce the language TIPP, a simple SPA, which is de�ned by the following

grammar:

P ::= 0 j X j (a; �):P j P +P j P k

S

P j recX : P j P nL j !

n

S

P

4

The non-terminal symbol P represents a process. The symbol a 2 Act is an action

with its associated rate �. The rate is interpreted as the parameter of an exponential

distribution. 0 denotes a stopped process. X 2 V ar is a process variable. The

operators for pre�xing, choice, parallel composition, recursion and hiding have the

usual meaning (cf., e.g. [GHH

+

95]). S � Act is the set of synchronizing actions for

parallel composition of two processes. L � Act is the set of actions which are hidden

from the environment. Seen from the outside, actions in L are replaced by the invisible

action � .

The somewhat unusual replication operator is de�ned as:

!

n

S

P := P k

S

P k

S

: : : k

S

P

| {z }

n times

Thus, the replication operator !

n

S

is a specialisation of the general parallel composition

operator k

S

. It is a shorthand notation intended to ease the description of systems

with replicated components. It also helps to automatically recognize symmetries and

apply state space reduction techniques.

4.3 Analyzing SPA descriptions: state of the art

Having de�ned the language, the next step is to formally specify its meaning. The

meaning of SPA speci�cations is usually given by structural operational semantics

(SOS). Semantic rules are used for building a labelled transition system (LTS) which

consists of states and state transitions. (In �nite state models) the LTS covers all

possible behaviour of the system. It is therefore a suitable basis for functional analysis.

For performance evaluation, the underlying stochastic process has to be studied.

In the easiest case, a continuous time Markov chain (CTMC) is derived from the SPA

description. If all actions have an exponential delay, the CTMC is isomorphic to the

LTS. In case of both exponential and timeless (immediate) actions, some states of the

LTS do not contribute to the performance measures and therefore can be eliminated

[Ret96]. This is somewhat similar to the elimination of vanishing states during GSPN

analysis.

A set of axioms has been established for the language TIPP which allows to check

on a syntactical level, whether two descriptions are equivalent [HR94]. The underlying

concept of equivalence is that of Markov bisimulation, i.e. both functional and temporal

behaviour are covered. It has been shown that this set of axioms is both sound and

complete.

Tool support is provided through the TIPP-tool. It has a LOTOS-like input lan-

guage and includes algorithms for functional and temporal analysis. Its performance

evaluation part o�ers numerical methods for steady-state and transient CTMC solu-

tion, some of which can exploit system properties (e.g. use coupling degree between

components during iterative aggregation/disaggregation).

5

4.4 Current focus of SPA research

In view of the tractability problem of complex systems, there are some important

questions to be answered:

� How can minimal (non-redundant) representations of a model be generated e�-

ciently? A �rst approach towards the generation of a minimal semantic model

was made by developing a compositional semantics for SPA [RS94, Boh95]. In

this work, equivalent states are identi�ed at the earliest possible stage.

� Which sophisticated, structure-based solution techniques can be borrowed from

other domains? Promising candidates are, e.g. tensor techniques for structured

Markov analysis or matrix geometric solution for specially structured processes

with in�nite state space.

� Is hierarchical analysis possible? There are, for instance, hierarchical analysis

techniques for stochastic graph models which can be adapted for SPAs. First

ideas on graph-based SPAs and their numerical analysis are described in [Her96].

This approach works for generally distributed action delays.

� Can coding techniques be used for storing and handling large state spaces ef-

�ciently? Binary decision diagrams (BDDs) [EFT93] are possible candidates.

However, coding of temporal information is still an unsolved problem.

5 Conclusion

In this note, we brie
y surveyed classical methods for concurrency. We then described

SPAs, a combined formalism for functional and temporal speci�cation of parallel and

distributed systems.

As already stated in the introduction, tractability is the main problem during design

and analysis. When specifying complex models using SPAs, the concept of construc-

tivity is extremely helpful, because the designer can bene�t from modularity, concen-

trating on subsystems with well-de�ned interfaces. During analysis | both functional

and temporal | the main question is how to deal with the state space problem? Here

again, constructivity of SPAs can be exploited. Instead of blindly generating a (
at)

state space, thereby losing all structure information, it is possible to use structure in-

formation in order to build structured semantic models and structured performance

models.

References

[BB89] T. Bolognesi and E. Brinksma. Introduction to the ISO Speci�cation Lan-

guage LOTOS. In P.H.J. van Eijk, C.A. Vissers, and M. Diaz, editors,

6

The Formal Description Technique LOTOS, pages 23{73. North-Holland,

Amsterdam, 1989.

[BD87] S. Budkowski and P. Dembinski. An Introduction to Estelle. Computer

Networks, 14(1), 1987.

[BK96] F. Bause and P. Kritzinger. Stochastic Petri Nets. Vieweg, Braunschweig,

1996.

[Boh95] H. Bohnenkamp. Kompositionelle Semantiken stochastischer Proze�alge-

bren zur Erzeugung reduzierter Transitionssysteme. Master's thesis, Uni-

versit�at Erlangen{N�urnberg, IMMD VII, 1995.

[EFT93] R. Enders, T. Filkorn, and D. Taubner. Generating BDDs for symbolic

model checking in CCS. Distributed Computing, (6):155{164, 1993.

[GHH

+

95] N. G�otz, H. Hermanns, U. Herzog, V. Mertsiotakis, and M. Rettelbach.

Quantitative Methods in Parallel Systems, chapter Constructive Speci�ca-

tion Techniques { Integrating Functional, Performance and Dependability

Aspects. Springer, 1995.

[G�ot94] N. G�otz. Stochastische Proze�algebren { Integration von funktionalem Ent-

wurf und Leistungsbewertung Verteilter Systeme. Dissertation, Universit�at

Erlangen{N�urnberg, Martensstra�e 3, 91058 Erlangen, April 1994.

[Har93] F. Hartleb. Graph Models for Performance Evaluation of Parallel Programs.

In A. Bode and M. Dal Cin, editors, Paralle Computer Architectures: The-

ory, Hardware, Software, Applications, pages 80{86. Springer, 1993. LNCS

732.

[Her90] U. Herzog. Formal Description, Time and Performance Analysis. A Frame-

work. In T. H�arder, H. Wedekind, and G. Zimmermann, editors, Entwurf

und Betrieb Verteilter Systeme, pages 172{190. Springer Verlag, Berlin, IFB

264, 1990.

[Her96] U. Herzog. A Concept for Graph-Based Stochastic Process Algebras, Gen-

erally Distributed Activity Times and Hierarchical Modelling. Technical re-

port IMMDVII 4/96, Universit�at Erlangen{N�urnberg, Martensstr. 3, 91058

Erlangen, May 1996.

[Hil94] J. Hillston. A Compositional Approach to Performance Modelling. PhD

thesis, University of Edinburgh, 1994.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, Engle-

wood Cli�s, NJ, 1985.

7

[HR94] H. Hermanns and M. Rettelbach. Syntax, Semantics, Equivalences, and Ax-

ioms for MTIPP. In U. Herzog and M. Rettelbach, editors, Proc. of the 2nd

Workshop on Process Algebras and Performance Modelling, pages 71{88,

Erlangen-Regensberg, July 1994. IMMD, Universit�at Erlangen-N�urnberg.

[Kle75] L. Kleinrock. Queueing Systems, volume 1: Theory. John Wiley & Sons,

1975.

[Mil89] R. Milner. A Calculus of Communicating Systems. Prentice Hall, London,

1989.

[Nag79] M. Nagl. Graphgrammatiken: Theorie, Anwendungen, Implementierung.

Vieweg, 1979.

[OFM

+

94] A. Olsen, O. F�rgemand, B. M�ller-Pedersen, R. Reed, and J.R.W. Smith.

Systems Engineering Using SDL-92. Elsevier, 1994.

[Ret96] M. Rettelbach. Stochastische Proze�algebren mit zeitlosen Aktivit�aten

und probabilistischen Verzweigungen. Dissertation, Universit�at Erlangen{

N�urnberg, 1996.

[RS94] M. Rettelbach and M. Siegle. Compositional Minimal Semantics for the

Stochastic Process Algebra TIPP. In U. Herzog and M. Rettelbach, editors,

Proc. of the 2nd Workshop on Process Algebras and Performance Modelling,

pages 89{106, Regensberg/Erlangen, July 1994. Arbeitsberichte des IMMD,

Universit�at Erlangen-N�urnberg.

[ST87] R. Sahner and K. Trivedi. Performance Analysis and Reliability Analysis

Using Directed Acyclic Graphs. IEEE Transactions on Software Engineer-

ing, SE-13(10), October 1987.

[Ste94] W.J. Stewart. Introduction to the numerical solution of Markov chains.

Princeton University Press, 1994.

[Win86] G. Winskel. Event Structures. In Petri Nets: Applications and Relation-

ships to Other Models of Concurrency, Advances in Petri Nets, Part II,

chapter 325-392. Springer, LNCS 255, 1986.

8

