
Symbolic Minimisation of Stochastic Process Algebra Models
Holger Hermanns1 and Markus Siegle2

1Systems Validation Centre, FMG/CTIT, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands

e-mail: hermanns@cs.utwente.nl
2Informatik 7, University of Erlangen-Nürnberg,

Martensstraße 3, 91058 Erlangen, Germany
e-mail: siegle@informatik.uni-erlangen.de

Abstract: Stochastic process algebras have been introduced in order to enable compositional performance
analysis. The size of the state space is a limiting factor, especially if the system consistsof many cooperating
components. To fight state space explosion, compositional aggregation based on congruence relations can
be applied. This paper addresses the computational complexity of minimisation algorithms and explains
how efficient, BDD-based data structures can be employed forthis purpose.

1 Introduction
Stochastic Process Algebras (SPA) have been developed as a formal description technique for the
specification and design of distributed systems. A gentle introduction to SPAsis provided in [9].
In addition to classical process algebras, SPAs incorporate information abouta system’s temporal
behaviour, thereby enabling the modelling of performance and reliability aspects.We consider
SPAs where the delay of an action is either exponentially distributed (Markovian actions) or equal
to zero (immediate actions). Similar to other specification techniques,the phenomenon of state
space explosion can be frequently observed when working with SPA specifications.However, the
algebraic foundations of SPAs and their concept of compositionality enable efficient techniques
for state space reduction.

Compositional modelling of distributed systems with SPAs is particularly successful if the sys-
tem structure can be exploited during Markov chain generation. For this purpose, congruence
relations have been developed which justify minimisation of components without touching be-
havioural properties. Minimised components can be plugged into the original model in orderto
circumvent the state space explosion problem. This strategy, known ascompositional aggregation
has been applied successfully to handle very complex models (see, e.g. [11]).

Applicability of compositional aggregation relies on the existence ofalgorithmsto compute
minimised components. We discuss efficient algorithms for strong equivalence, and (strong and
weak) Markovian bisimulation. The algorithms are variants of well-known partition refinement
algorithms [19, 6, 15]. They compute partitions of equivalent states of a given state space by
iterative refinement of partitions, until a fixed point is reached.

For the compact representation of SPA models and for the practical realisation of the algorithms
we introduce data structures based on Binary Decision Diagrams (BDDs) [2]. During the recent
years, BDDs have established themselves as the state-of-the-art in such areas as digital circuit
verification and model checking. The success of BDDs is due to the fact that they enable an
efficient,symbolicencoding of state spaces. In the context of SPAs, it is particularly important
that parallel composition of components can be realised on the BDD data structurein a way which
avoids the usually observed exponential blow-up due to the interleaving of causally independent
transitions [5]!

Pure BDDs are not capable of representing the information on transition rates which is part of an
SPA specification. For that purpose, we have developed a stochastic extension of BDDs which we
call Decision Node BDDs (DNBDDs). A DNBDD is a BDD decorated with additional numerical
information. DNBDDs therefore make it possible to incorporate information about transition

rates into the symbolic representation. Unlike other numerical extensions of BDDs, DNBDDs
do not alter the basic BDD structure. We highlight how parallel composition and compositional
aggregation can both be performed efficiently in a stochastic setting with the help of DNBDDs.

This paper is organised as follows: Sec. 2 contains the definition of the languages andof the
bisimulation relations which we consider. Sec. 3 and Sec. 4 present the basicbisimulation algo-
rithms for non-stochastic process algebras and for the purely Markovian case. InSec. 5, we focus
on BDDs and DNBDDs and show how algorithms for parallel composition and bisimulation can
benefit from the use of these data structures. Sec. 6 contains the conclusion. This paper is an
abridged version of [12].

2 Basic definitions
In this section we define the SPA language and its operational semantics. In addition, we recall
the notions of strong and weak Markovian bisimilarity. We refer to [9] for moredetails.

Definition 1 Let Act be the set of valid action names andPro the set of process names. We
distinguish the actioni as an internal, invisible activity. Leta2Act , P;P

i

2L, A�Act n fig,
andX 2Pro. The setL of expressions consists of the following language elements:

stop inaction
a ; P action prefix (a; �) ; P Markovian prefix
P

1

[] P

2

choice P

1

j[A]j P

2

parallel composition
hide a in P hiding X process instantiation

A set of process definitions (of the formX := P) constitutes a process environment.

A set of operational semantic rules [12] defines a labelled transition system(LTS) containing
action transitions, a-----➤, and Markovian transitions, a;������

➤. For synchronisation of Markovian
transitions, a function� determines the rate of synchronisation, since different synchronisation
policies (minimum, maximum, product, . . . of the two partner rates) are possible.

Strong and weak Markovian bisimilarity are defined using the function : L�Act �2

L

7! IR,
often called thecumulative rate, defined as follows (we usefj andjg to denote multiset brackets):

(P; a;C) :=

P

�2E(P;a;C)

�; whereE(P; a;C) := fj � j P

a;�

�����

➤
P

0

^ P

0

2 C jg:

Definition 2 An equivalence relationB is a strong Markovian bisimulation, if(P;Q)2 B implies
(i) P a-----➤

P

0 impliesQ a-----➤
Q

0, for someQ0 with (P

0

; Q

0

) 2 B ,
(ii) for all equivalence classesC of B and all actionsa it holds that

(P; a;C) = (Q; a;C).
Two expressionsP andQ are strong Markovian bisimilar (writtenP � Q) if they are contained
in a strong Markovian bisimulation.

Weak bisimilarity is obtained from strong bisimilarity by basically replacing a-----➤ with a----------➤.
Here, a----------➤ denotes an observablea transition that is preceded and followed by an arbitrary number
(including zero) of invisible activities, i.e. a----------➤ :=

i�-------➤ a-----➤ i�-------➤. As discussed in [9], the
extension from strong to weak Markovian bisimilarity has to take into accountthe interplay of
Markovian and immediate transitions. Priority ofinternal immediate transitions gives rise to the
following definition.

Definition 3 An equivalence relationB is a weak Markovian bisimulation, if(P;Q) 2 B implies
(i) P a----------➤ P 0 impliesQ a----------➤ Q0, for someQ0 with (P

0

; Q

0

) 2 B ,

(ii) if P i------------➤ P 0

6

i------➤ then there existsQ0 such thatQ i------------➤ Q0

6

i------➤, and
for all equivalence classesC of B and all actionsa

(P

0

; a; C) = (Q

0

; a; C):

Two expressionsP andQ are weak Markovian bisimilar (writtenP � Q) if they are contained in
a weak Markovian bisimulation.

arrive arrive arrive arrive

Queue

0

Queue

1

Queue

2

Queue

3

deq deq deq

deq deq deq

i i i
arrive

arrivearrive

deq deq deq

deq

arrive

Figure 1: LTS of the queueing system example, before and after applying weak bisimilarity

In this definition,P 6

i------➤ denotes thatP does not possess an outgoing internal immediate tran-
sition. We call such a state atangiblestate, as opposed tovanishingstates which may internally
and immediately evolve to another behaviour (denotedP

i------➤).
It can be shown that strong Markovian bisimilarity is a congruence with respect to the language

operators, provided that� is distributive over summation of real values. The same result holds for
weak Markovian bisimilarity except for congruence with respect to choice, see [8].

In the sequel, we consider two distinct sub-languages ofL. The first,L
1

, arises by disallowing
Markovian prefix, resulting in a non-stochastic process algebra, a subset of Basic LOTOS [1],
where only action transitions appear in the underlying LTS. On this language, strong and weak
Markovian bisimilarity coincide with Milner’s non-stochastic strong and weak bisimilarity [18].
The complementary subset,L

2

, is obtained by disallowing the other prefix, action prefix. The
resulting language coincides with MTIPP à la [10] (if� is instantiated with multiplication), and
both strong and weak Markovian bisimilarity coincide with Markovian bisimilarity on MTIPP.
Note that Markovian bisimilarity agrees with Hillston’s strong equivalence [14]. The semantics
of L

2

only contains Markovian transitions, and we will refer to such a transition system as a
stochastic LTS (SLTS). For a treatment of the complete language where both prefixes coexist, we
refer the reader to [12].

3 The non-stochastic case
In this section, we introduce the general idea of iterative partition refinement, working with the
languageL

1

. To illustrate the key ideas, we use as an example a queueing system, consisting of
an arrival process and a finite queue. First, we model an arrival process asan infinite sequence of
incoming arrivals (arrive), each followed by an enqueue action (enq).

Arrival := arrive; enq; Arrival

The behaviour of the queue is described by a family of processes, one for each value of thecurrent
queue population.

Queue

0

:= enq; Queue

1

Queue

i

:= enq; Queue

i+1

[] deq; Queue

i�1

1 � i < max

Queue

max

:= deq; Queue

max�1

These separate processes are combined by parallel composition in order to describe the whole
queueing system. Hiding is used to internalise actions as soon as they are irrelevant for further
synchronisation.

System := hide enq in

�

Arrival j[enq]j Queue

0

�

Fig. 1 (left) shows the LTS associated with theSystem specified above for the case that the
maximum queue population ismax = 3. The LTS has 8 states, the initial state being emphasised
by a double circle. Fig 1 (right) shows an equivalent representation, minimised with respect to
weak bisimilarity. The original state space is reduced by replacing every class of weakly bisimilar
states by a single state.

Most algorithms for computing bisimilarity require afinite state space and follow an iterative
refinement scheme [19, 6, 15]. This means that starting from an initial partition of the state
space which consists of a single class (containing all states), classes are refined until the obtained
partition corresponds to a bisimulation equivalence. The result thus obtained is the largest existing
bisimulation, in a sense the “best” such bisimulation, since it has a minimal number of equivalence
classes. For the refinement of a partition, the notion of a “splitter” is very important. A splitter is a

pair (a;C
spl

), consisting of an actiona and a classC
spl

. During refinement, a classC is split with
respect to a splitter, which means that subclassesC

+ andC� are computed, such that subclassC

+

contains all those states fromC which can perform ana-transition leading to classC
spl

, andC�

contains all remaining states. In the following, an algorithm for strong bisimulation is presented
which uses a dynamic set of splitters, denotedSplitters. Note that here we only present a basic
version of the algorithm which can be optimised in many ways [6, 19]. By a deliberate treatment
of splitters, it is possible to obtain a time complexityO(m log n), wheren is the number of states
andm is the number of transitions [8].

1. Initialisation
Partition := fSg

/* the initial partition consists of only one class which containsall states */
Splitters := Act � Partition

/* all pairs of actions and classes have to be considered as splitters */

2. Main loop
while (Splitters 6= ;)

choosesplitter(a; C
spl

) 2 Splitters

forall C 2 Partition split(C; a; C

spl

; Partition; Splitters)

/* all classes (includingC
spl

itself) are split */
Splitters := Splitters� (a; C

spl

)

/* the processed splitter is removed from the splitter set */

It remains to specify the proceduresplit. Its task is to split a classC, using(a;C
spl

) as a splitter.
If splitting actually takes place, the input classC is split into subclassesC+ andC�.
procedure split(C; a; C

spl

; Partition; Splitters)

C

+

:= fP j P 2 C ^ 9 Q : (P

a-----➤
Q ^ Q 2 C

spl

)g /* the subclassC+ is computed */
if (C+

6= C ^ C

+

6= ;) /* only continue if classC actually needs to be split */
C

�

:= C � C

+ /* C

� is the complement ofC+ with respect toC */
Partition := Partition [fC

+

; C

�

g � fCg

Splitters := Splitters [(Act� fC

+

; C

�

g)� Act� fCg

/* the partition and the splitter set are updated */

4 The Markovian case
In this section, we consider the languageL

2

whereall actions are associated with an exponentially
distributed delay. In addition,� is instantiated with the product of rates, for reasons discussed
(for instance) in [9]. The semantic model of a process from the languageL

2

is an SLTS, only
containing transitions of the form a;�

�����

➤.
We return to our example of a queueing system. The arrival process is now modelledas follows,

employing the Markovian action prefix:
Arrival := (arrive; �); (enq; 1); Arrival

Action arrive occurs with rate�, whereas for actionenq we specify rate1, the neutral element of
multiplication. Via synchronisation, the queue process determines the actual rateof enq.

Queue

0

:= (enq; �); Queue

1

Queue

i

:= (enq; �); Queue

i+1

[] (deq; �); Queue

i�1

1 � i < max

Queue

max

:= (deq; �); Queue

max�1

Fig. 2 depicts the SLTS obtained from the parallel composition of processesArrival andQueue
0

synchronised over actionenq.
From a given SLTS one can immediately construct a continuous time Markov chain (CTMC

[16]). The arcs of the CTMC are given by the union of all the transitions joining the LTS nodes
(regardless of their action labels), and the transition rate is the sum of theindividual rates (this is

arrive;� arrive;� arrive;�

enq;� enq; � enq;�

Queue

0

Queue

1

Queue

2

Queue

3

arrive;�

deq; � deq; �

deq; �deq; �

deq; �

deq; �

Figure 2: Semantic model of the Markovian queueing system, isomorphic to a CTMC

. . .

split tree

1

k

C

1

C

k

Figure 3:split tree used by proceduresplit0

justified by the properties of the exponential distribution). Transitions leading back to the same
node (loops) can be neglected, since they would have no effect on the balance equations of the
CTMC. Performance measures can be derived by calculating the steady-state or transient state
probabilities of the CTMC.

As already mentioned, both strong and weak Markovian bisimilarity coincide with Markovian
bisimilarity à la MTIPP on this language. The technical reason is that the first clauses of Def-
inition 2 and Definition 3 are irrelevant, while the respective second clauses both boil down to
(P; a;C) = (Q; a;C) for all actionsa and classesC. This equivalence notion has a direct cor-
respondence to the notion oflumpabilityon CTMCs [16, 14]. The basic bisimulation algorithm
is the same as in Sec. 3, only the proceduresplit needs to be modified. Proceduresplit0 now
uses a data structuresplit tree which is shown in Fig. 3. It essentially sorts states according to
their-values. During refinement, when a classC is split by means of a splitter(a;C

spl

), possibly
more than two subclassesC

1

; C

2

; : : : ; C

k

will be generated. Input classC is split such that the
cumulative rate(P; a;C

spl

) =

j

is the same for all the statesP belonging to the same subclass
C

j

, a leaf of thesplit tree.

procedure split0(C; a; C
spl

; Partition; Splitters)

forall P 2 C

 := (P; a; C

spl

) /* the cumulative rate from stateP toC

spl

is computed */
insert(split tree; P;) /* stateP is inserted into thesplit tree */

/* now, split tree containsk leavesC

1

; : : : ; C

k

*/
if (k > 1) /* only continue ifC has been split intok > 1 subclasses */

Partition := Partition [fC

1

; C

2

; : : : ; C

k

g � fCg

Splitters := Splitters [(Act� fC

1

; C

2

; : : : ; C

k

g)�Act� fCg

/* the partition and the splitter set are updated */

In theforall loop of proceduresplit0, the cumulative rate is computed for every stateP in class
C, and stateP is inserted into thesplit tree such that states with the same cumulative rate belong
to the same leaf (procedureinsert). Thesplit tree hask leaves, i.e.k different values of have
appeared. If splitting has taken place (i.e. ifk > 1), the partition must be refined and the set of
splitters has to be updated.

The above algorithm computes Markovian bisimilarity on a given SLTS. It canbe implemented
such that the time complexity is of orderO(m log n) and the space complexity of orderO(m+n),
wheren is the number of states andm the number of transitions. The proof is given in [8].

5 Symbolic representation with BDDs
In this section, we discuss details of a BDD-based implementation of the above algorithms. BDDs
are graph-based representations of Boolean functions and have recently gained remarkable atten-
tion as efficient encodings of very large state spaces. In a process algebraiccontext, this efficiency

is mainly due to the fact that the parallel composition operator can be implemented on BDDs in
such a way that the size of the data structure only grows linearly in the number of parallel com-
ponents, especially for loosely coupled components. This compares favourably to the exponential
growth caused by the usual operational semantics, due to the interleaving of causally independent
transitions. We explain how LTSs can be encoded as BDDs and illustrate a wayto include the
rate information of SLTS into this data structure and the bisimulation algorithms. To complete the
picture, we also discuss parallel composition on BDDs.

5.1 Binary Decision Diagrams and the encoding of LTSs
A Binary Decision Diagram (BDD) [2] is a symbolic representation of a Boolean function
f : f0; 1g

n

! f0; 1g. Its graphical interpretation is a rooted directed acyclic graph, essentially
a collapsed binary decision tree in which isomorphic subtrees are merged and “don’t care” nodes
are skipped (a node is called “don’t care” if the truth value of the corresponding variable is ir-
relevant for the truth value of the overall function). It is known that BDDs provide a canonical
representation for Boolean functions, assuming a fixed ordering of the Boolean variables. Algo-
rithms for BDD construction from a Boolean expression and for performing Boolean operations
(and, or, not, . . .) on BDD arguments all follow a recursive scheme.

A LTS can be represented symbolically by a BDD. The idea is to encode states and actions by
Boolean vectors (for the moment, we look at the non-stochastic case where it is notnecessary
to consider information about transition rates). One transition of the LTS thencorresponds to a
conjunction ofn

a

+ 2n

s

literals (a literal is either a Boolean variable or the negation of a Boolean
variable)

V

n

a

i=1

a

i

V

n

s

j=1

s

j

V

n

s

j=1

t

j

, where literalsa
1

: : : a

n

a

encode the action,s
1

: : : s

n

s

identify the
source state andt

1

: : : t

n

s

the target state of the transition (we assume that the number of distinct
actions to be encoded is between2

n

a

�1 and2na + 1, so thatn
a

bits are suitable to encode them,
and similarly for the number of states). The overall LTS corresponds to the disjunction of the
terms for the individual transitions. The size of a BDD is highly dependent on the chosen variable
ordering. In the context of transition systems, experience has shown that the following variable
ordering yields small BDD sizes [5]:

a

1

< : : : < a

n

a

< s

1

< t

1

< s

2

< t

2

< : : : < s

n

s

< t

n

s

i.e. the variables encoding the action come first, followed by the variablesfor source and target
state interleaved. In particular, this ordering is advantageous in view of theparallel composition
operator discussed below.

To illustrate the encoding, Fig. 4 shows the LTS corresponding to theQueue

0

process from
Sec. 3 (assuming, again, thatmax = 3), the way transitions are encoded and the resulting BDD
(in the graphical representation of a BDD, one-edges are drawn solid, zero-edgesdashed, and for
reasons of simplicity, the terminal false-node and its adjacent edges are omitted). Since there are
only two different actions (enq anddeq), one bit would be enough to encode the action. However,
in view of actionarrive which will be needed for processArrival, we use two bits to encode the
action, i.e.n

a

= 2. The LTS has four states, therefore two bits are needed to represent the state,
i.e.n

s

= 2. In the BDD, one can observe the interleaving of the Boolean variables for the source
and target state.

The parallel composition operator can be realised directly on the BDD representation of the
two operand processes. Consider the parallel composition of two processes,P = P

1

j[A]j P

2

, and
assume that the BDDs which correspond to processesP

1

andP
2

have already been generated and
are denotedP

1

andP
2

. The setA can also be coded as a BDD, namelyA. The BDDP which
corresponds to the resulting processP can then be written as a Boolean expression:

P = (P

1

^ A) ^ (P

2

^ A)

_ (P

1

^ A ^ Stab

P

2

) _ (P

2

^ A ^ Stab

P

1

)

0 31 2
enq enq enq

deq deq deq

a

1

; a

2

; s

1

; t

1

; s

2

; t

2

0

enq---------➤
1 ! (0;1;0;0;0;1)

1

enq---------➤
2 ! (0;1;0;1;1;0)

2

enq---------➤
3 ! (0;1;1;1;0;1)

1

deq---------➤
0 ! (1;0;0;0;1;0)

2

deq---------➤ 1 ! (1;0;1;0;0;1)

3

deq---------➤
2 ! (1;0;1;1;1;0)

a

1

a

2

s

1

t

1

s

2

t

2

1

Figure 4: LTS, transition encoding and corresponding BDD forQueue

0

The term on the first line is for the synchronising actions in which bothP

1

andP
2

participate. The
first (second) term on the second line is for those actions whichP

1

(P

2

) performs independently
of P

2

(P

1

) — these actions are all from the complement ofA. The meaning ofStab
P

2

(Stab
P

1

)
is a BDD which expresses stability of the non-moving partner of the parallel composition, i.e. the
fact that the source state of processP

2

(P

1

) equals its target state.
The BDD resulting from the parallel composition,P, describes all transitions which are possible

in the product space of the two partner processes. Given a pair of initial states for P
1

andP
2

,
only part of the product space may be reachable due to synchronisation constraints. Reachability
analysis can be performed on the BDD representation, restrictingP to those transitions which
originate in reachable states.

5.2 Symbolic bisimulation
The basic bisimulation algorithm of Sec. 3 and its various optimisations can be realised effi-
ciently using BDD-based data structures. For convenience, the transition system is represented
not by a single BDD, but by a set of BDDsT

a

(s; t), one for each actiona (here,s and t de-
note vectors of Boolean variables of lengthn

s

). The current partition is stored as a set of BDDs
fC

1

(s); C

2

(s); : : :g, one for each class. When classC is split into subclassesC+ andC� during
execution of proceduresplit, those subclasses are also represented by BDDs. The dynamic set
of splitters,Splitters, is realised as a pointer structure. The computation of the subclassC

+ in
proceduresplit is formulated as a Boolean expression on BDD arguments

C

+

(s) := C(s) ^ 9 t : (T

a

(s; t) ^ C

spl

(t))

where the existential quantification is also performed on BDDs.

5.3 BDDs with rate information
Clearly, pure BDDs are not capable of representing the numerical information about the transition
rates of astochasticLTS. In the literature, several extensions of the BDD data structure have been
proposed for representing functions of the typef : f0; 1g

n

! IR. Most prominent among these
are multi-terminal BDDs [4], edge-valued BDDs [17] and Binary Moment Diagrams (BMD) [3].
In all of these approaches, the basic BDD structure is modified and the efficiency of the data struc-
ture, due to the sharing of isomorphic subtrees, may be diminished. Based on this observation,
we developed a different approach which we call decision-node BDD (DNBDD) [20]. The distin-
guishing feature of DNBDDs is that the basic BDD structure remains completely untouched when
moving from an LTS encoding to an SLTS encoding. The additional rate information is attached
to specific edges of this BDD in an orthogonal fashion.

In a BDD representing a LTS, apathp from the root to the terminal true-node corresponds to2

k

transitions of the transition system, wherek is the number of “don’t care” variables on that path.
Since these transitions are labelled by2

k distinct rates, we need to assign a rate list of length2

k

to that path. Letrates(p) denote a list of real values(�
0

; : : : ; �

2

k

�1

), wherek is the number of
“don’t cares” on pathp. The correspondence between transitions and individual rates of such a

1

Arrival

(1)

a

1

a

2

s

0

t

0

(�)

Queue

0

1

a

1

a

2

s

1

t

1

s

2

t

2

(�)

(�)

(�)

(�)

(�)(�)

1

(�)(�)

(�)(�)

X

X

a

2

a

1

s

0

t

0

s

1

t

1

s

2

t

2

Arrival j[enq]j Queue

0

(�(1; �))

(�)(�)

Figure 5: DNBDDs for the queueing example (shorthand notation:X = (�(1; �))(�)(�))

list is implicitly given by the valuation of the encoding of the transitions on “don’tcare” nodes,
which ranges from0 to 2

k

� 1. For the practical realisation of this concept, and in order to make
our representation canonical, we must answer the question of where to store the rate lists. This
leads to the following consideration: Instead of characterising a path by allits nodes, we observe
that a path is fully characterised by itsdecision nodes.

Definition 4 A decision nodeis a non-terminal BDD node whose successor nodes are both dif-
ferent from the terminal false-node. Adecision node BDD (DNBDD)is a BDD enhanced by a
function

rates : Paths! (IR)

+

wherePaths is the set of paths from the root node to the terminal true-node (and(IR)

+ is the set
of finite lists of real values), such that for any such pathp,

rates(p) 2 (IR)

2

k

if k is the number of “don’t cares” on pathp. The listrates(p) = (�

0

; : : : ; �

2

k

�1

) is attached to
the outgoing edge of the last decision node on pathp, i.e. the decision node nearest to the terminal
true-node.

To illustrate the DNBDD concept, we return to our queueing example. Fig. 5 showsthe DNBDDs
associated with processesArrival, Queue

0

andArrival j[enq]j Queue
0

(in the figure, decision
nodes are drawn black). On the left, rates� and1 are attached to the outgoing edges of the (single)
decision node of the BDD. In the middle, six individual rates are attached to the appropriate edges.
On the right, up to three rate lists, each consisting of a single rate, are attached to BDD edges. For
instance, the rate lists(�)(�) specify the rates of the two transitions encoded as bitstrings10110010

and10000010 whose paths share the last decision node.
In the case where several rate lists are attached to the same BDD edge(because several paths

share their last decision node) it is important to preserve the one-to-one mapping between paths
and rate lists. This could simply be accomplished by the lexicographical orderingof paths. For
algorithmic reasons, however, we use a so-called rate tree, an unbalancedbinary tree which makes
it possible to access rate lists during recursive descent through the BDD [20]. In our current
implementation of DNBDDs, the rate tree is implemented as illustrated in Fig. 6. This figure (left)
shows the encoding of the transitions of some SLTS, each of the transition being associated with a
rate. The first two transitions share the same path, a path which has a “don’t care” in the Boolean
variables. Therefore, the corresponding rate list(�

0

; �

1

) has length two. The other four paths do
not have any “don’t care” variables, they each correspond to exactly one transition of the SLTS
and the corresponding rate lists have length one. The latter four paths all share their last decision
node. Therefore each of the outgoing edges of that decision node carries two rate lists (of length
one). The rate tree is built as a separate data structure from the BDD. However, its internal nodes

t

s

a

1

1

(a

1

; a

2

; s; t) ! rate

(0;1;0;1) ! �

0

(0;1;1;1) ! �

1

(0;0;0;1) ! �

(0;0;1;0) ! �

(1;0;0;1) !

(1;0;1;0) ! �

a

2

(�

0

; �

1

)

(�)()

(�)(�)

Figure 6: Encoded transitions with rates, and corresponding DNBDD with rate tree

and the rate lists are associated with the decision nodes of the BDD as indicated in Fig. 6 (right).
The rate tree is manipulated by an appropriate extension of the procedures which manipulate the
BDD. This implementation of the rate tree has the drawback that it requires the explicit storage
of one rate for each encoded transition which may cause considerable overhead. In order to avoid
such redundancies, an efficient data structure to represent rate trees mightitself be based on BDDs.
We are currently investigating this issue.

Parallel composition of two SLTSs based on their symbolic representation follows the same
basic algorithm as sketched in Sec. 5.1. Similar to the fact that the operational rules in Sec. 2
are parametric in the synchronisation policy, the concept of DNBDDs is not bound to a particular
choice of function�, any arithmetic expression of the two partner rates can be employed.

5.4 Symbolic Markovian bisimulation
We now discuss aspects of a DNBDD-based algorithm which computes Markovian bisimulation
on SLTSs. The basic algorithm is the same as in Sec. 4, only proceduresplit

0 needs to be adapted.
When using DNBDDs, the cumulative rate of actiona from stateP to classC

spl

is computed as
follows: We computeT

P

a

!C

spl

(s; t), the DNBDD which represents alla-transitions from stateP to

states from classC
spl

. It can be obtained by restrictingT
a

(s; t) to the single source stateP and to
target states from classC

spl

(again, the transition relation is represented by individual DNBDDs
T

a

(s; t), one for every actiona, and classC is represented by a BDDC(t)). The cumulative
rate(P; a;C

spl

) is computed by applying the functionsum of all rates to T

P

a

!C

spl

(s; t). This
function simply sums up all the entries of all rate lists of a DNBDD (e.g., application of this
function to the DNBDD in Fig. 6 yields�

0

+�

1

+�+�++�). Furthermore, in thesplit tree used
by proceduresplit0 the subclassesC

1

; : : : ; C

k

are now also represented by BDDs.
procedure split0(C; a; C

spl

; Partition; Splitters)

forall P 2 C

T

P

a

!C

spl

(s; t) := T

a

(s; t) ^ (s�=P) ^ C

spl

(t) /* s�=P denotes that stateP is encoded ass */

 := sum of all rates(T

P

a

!C

spl

(s; t)) /* the cumulative rate fromP toC

spl

is computed */

insert(split tree; P;) /* stateP is inserted into thesplit tree */
/* now, split tree containsk leavesC

1

, . . . ,C

k

*/
if (k > 1)

. . . /* the remaining part of proceduresplit0 is as in Sec. 4, */
/* but Partition andSplitters are represented as BDDs */

6 Conclusion
In this paper, we have discussed efficient algorithms to compute bisimulation style equivalences
for Stochastic Process Algebras. In addition, we have presented details of a BDD-based imple-
mentation of these algorithms, describing DNBDDs to represent the additional rate information
which is relevant for the analysis of the underlying Markov chain.

The usefulness of BDDs to encode transition systems has been stressed by manyauthors. How-
ever, we would like to point out that the myth, saying that BDDs always provide a more compact
encoding than the ordinary representation (as a list or a sparse matrix data structure), does not hold

in general. A naı̈ve encoding of transition systems as BDDs does not save space.Heuristics for
encodings are needed, exploiting the structure of the specification. The implementation of parallel
composition on BDDs is indeed such a heuristics, and a very successful one, since an exponential
blow-up can be turned into a linear growth.

Apart from encoding transition systems as (DN)BDDs and parallel compositionon (DN)BDDs,
we have described how bisimulation algorithms can be implemented on these datastructures. As
a consequence, all the ingredients are at hand for carrying out compositional aggregationof SPA
specifications in a completely BDD-based framework. In this way, the state space explosion prob-
lem can be alleviated. We are currently implementing all these ingredientsin a prototypical tool
written in C, based on our own DNBDD package. However, in order to obtain performance results,
the (minimised) BDD representation still has to be converted back to the ordinary representation,
since we do not yet have a Markov chain analyser which works directly on DNBDDs.Numerical
analysis based on DNBDDs is one of our topics for future work. For this purpose, it seemsbenefi-
cial to investigate the relation between DNBDDs and MTBDDs, since MTBDD-based numerical
analysis methods have already been developed [7, 13].

References
[1] T. Bolognesi, E. Brinksma. Introduction to the ISO Specification Language LOTOS.Computer Networks and

ISDN Systems14:25-59, 1987.
[2] R.E. Bryant. Graph-based Algorithms for Boolean Function Manipulation.IEEE Transaction on Computers,

C-35(8):677–691, August 1986.
[3] R.E. Bryant, Y. Chen. Verification of Arithmetic Functions with Binary Moment Diagrams. InProc. 32nd

Design Automation Conference, 535-541, ACM/IEEE, 1995.
[4] E.M. Clarke, M. Fujita, P. McGeer, K. McMillan, J. Yang, X. Zhao. Multi-terminal Binary Decision Diagrams:

An efficient data structure for matrix representation. InProc. Int. Workshop on Logic Synthesis, Tahoe City,
May 1993.

[5] R. Enders, T. Filkorn, D. Taubner. Generating BDDs for symbolic model checking in CCS.Distributed Com-
puting, 6:155–164, 1993.

[6] J.C. Fernandez. An Implementation of an Efficient Algorithm for Bisimulation Equivalence.Science of Com-
puter Programming, 13:219–236, 1989.

[7] G.D. Hachtel, E. Macii, A. Pardo, F. Somenzi. Markovian Analysis of Large Finite State Machines.IEEE
Transactions on CAD, 15(12):1479–1493, 1996.

[8] H. Hermanns.Interactive Markov Chains. PhD thesis, Universität Erlangen-Nürnberg, 1998.
[9] H. Hermanns, U. Herzog, V. Mertsiotakis. Stochastic Process Algebras - Between LOTOS and Markov Chains.

Computer Networks and ISDN Systems, 30(9-10):901–924, 1998.
[10] H. Hermanns, M. Rettelbach. Syntax, Semantics, Equivalences, and Axioms for MTIPP. InProc. 2nd PAPM

Workshop. University of Erlangen-Nürnberg, IMMD 27(4):71-87, 1994.
[11] H. Hermanns, J.P. Katoen. Automated Compositional Markov Chain Generation for a Plain Old Telephony

System. to appear inScience of Computer Programming, 1998.
[12] H. Hermanns, M. Siegle. Bisimulation Algorithms for Stochastic Process Algebras and their BDD-based Im-

plementation. InProc. 5th Int. AMAST Workshop on Real-Time and Probabilistic Systems, LNCS, 1999.
[13] H. Hermanns, J. Meyer-Kayser, M. Siegle. Multi Terminal Binary Decision Diagrams to Represent and Analyse

Continuous Time Markov Chains. submitted for publication,1999.
[14] J. Hillston.A Compositional Approach to Performance Modelling. Cambridge University Press, 1996.
[15] P. Kanellakis, S. Smolka. CCS Expressions, Finite State Processes, and Three Problems of Equivalence.Infor-

mation and Computation, 86:43–68, 1990.
[16] J.G. Kemeny, J.L. Snell.Finite Markov Chains. Springer, 1976.
[17] Y.-T. Lai, S. Sastry. Edge-Valued Binary Decision Diagrams for Multi-Level Hierarchical Verification. In29th

Design Automation Conference,608-613, ACM/IEEE, 1992.
[18] R. Milner. Communication and Concurrency. Prentice Hall, London, 1989.
[19] R. Paige, R. Tarjan. Three Partition Refinement Algorithms.SIAM J. of Computing, 16(6):973–989, 1987.
[20] M. Siegle. Technique and tool for symbolic representation and manipulation of stochastic transition systems.

TR IMMD 7 2/98, Universität Erlangen-Nürnberg, March 1998.

