Symbolic Minimisation of Stochastic Process Algebra Models
Holger Hermann'sand Markus Siegfe

1Systems Validation Centre, FMG/CTIT, University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands
e-mail: hermanns@cs.utwente.nl
2Informatik 7, University of Erlangen-Nurnberg,
Martensstral3e 3, 91058 Erlangen, Germany
e-mail: siegle@informatik.uni-erlangen.de

Abstract: Stochastic process algebras have been introduced in @rdaaeble compositional performance
analysis. The size of the state space is a limiting factpe@ally if the system consists of many cooperating
components. To fight state space explosion, compositigygakgation based on congruence relations can
be applied. This paper addresses the computational coityptdxminimisation algorithms and explains
how efficient, BDD-based data structures can be employethi®purpose.

1 Introduction

Stochastic Process Algebras (SPA) have been developed as a formal aestegitnique for the
specification and design of distributed systems. A gentle introduction to SR#evided in [9].
In addition to classical process algebras, SPAs incorporate informationabygstiem’s temporal
behaviour, thereby enabling the modelling of performance and reliability aspétsonsider
SPAs where the delay of an action is either exponentially distributed (Menkactions) or equal
to zero (immediate actions). Similar to other specification technighesphenomenon of state
space explosion can be frequently observed when working with SPA specificafionsyver, the
algebraic foundations of SPAs and their concept of compositionality enable effieadmtiques
for state space reduction.

Compositional modelling of distributed systems with SPAs is particulaidgessful if the sys-
tem structure can be exploited during Markov chain generation. For this purpose, cw&rue
relations have been developed which justify minimisation of components withoutitmube-
havioural properties. Minimised components can be plugged into the original model int@rder
circumvent the state space explosion problem. This strategy, knovangsositional aggregation
has been applied successfully to handle very complex models (see, e.g. [11]).

Applicability of compositional aggregation relies on the existencalgbrithmsto compute
minimised components. We discuss efficient algorithms for strong equivalemtéstaong and
weak) Markovian bisimulation. The algorithms are variants of well-knownitpartrefinement
algorithms [19, 6, 15]. They compute partitions of equivalent states of a given sgate by
iterative refinement of partitions, until a fixed point is reached.

For the compact representation of SPA models and for the practical realiséthe algorithms
we introduce data structures based on Binary Decision Diagrams (BDD9){®ing the recent
years, BDDs have established themselves as the state-of-the-adhiraseas as digital circuit
verification and model checking. The success of BDDs is due to the fact that tla&jeean
efficient, symbolicencoding of state spaces. In the context of SPAs, it is particularly important
that parallel composition of components can be realised on the BDD data strincwey which
avoids the usually observed exponential blow-up due to the interleaving of caunshdlyeindent
transitions [5]!

Pure BDDs are not capable of representing the information on transition raigsig/part of an
SPA specification. For that purpose, we have developed a stochastic extension®©iBizh we
call Decision Node BDDs (DNBDDs). A DNBDD is a BDD decorated with dubstial numerical
information. DNBDDs therefore make it possible to incorporate information alvagsition

rates into the symbolic representation. Unlike other numerical extensions of , BEDNIBDDs
do not alter the basic BDD structure. We highlight how parallel composition and catiopas
aggregation can both be performed efficiently in a stochastic settinghvathetlp of DNBDDs.

This paper is organised as follows: Sec. 2 contains the definition of the languagetthad
bisimulation relations which we consider. Sec. 3 and Sec. 4 present thebizsialation algo-
rithms for non-stochastic process algebras and for the purely Markovian c&ec.15, we focus
on BDDs and DNBDDs and show how algorithms for parallel composition and bisfimoilean
benefit from the use of these data structures. Sec. 6 contains the conclusion. This zepe
abridged version of [12].

2 Basic definitions

In this section we define the SPA language and its operational semantics. lioadaé recall
the notions of strong and weak Markovian bisimilarity. We refer to [9] for nu@ils.

Definition 1 Let Act be the set of valid action names amtto the set of process names. We
distinguish the actiom as an internal, invisible activity. Lete Act, PP, € L, AC Act \ {i },
and X € Pro. The set of expressions consists of the following language elements:

stop inaction

a; P action prefix (A) s Markovian prefix
P[] P choice P |[A]| , parallel composition
hide « in P hiding X process instantiation

A set of process definitions (of the foth:= P) constitutes a process environment.

A set of operational semantic rules [12] defines a labelled transition sy&fE#) containing
action transitions;-¢--, and Markovian transitions;=* <. For synchronisation of Markovian
transitions, a functio determines the rate of synchronisation, since different synchronisation
policies (minimum, maximum, product, ... of the two partner rates) are possible
Strong and weak Markovian bisimilarity are defined using the funetiof x Act x 2 — IR,
often called theumulative ratedefined as follows (we usgand|}; to denote multiset brackets):
V(P a,C) =Y cppacy s WhereE (P a,C) :={ X | P—"=P' AP €C .
Definition 2 An equivalence relatiol is a strong Markovian bisimulation, {f, Q) € B implies
(i) P --%-= P"impliesQ --#-- @', for someR’ with (P', Q") € B,
(ii) for all equivalence classe§ of 5 and all actionsq it holds that
7(P7 a, C) = 7(@7 a, C)
Two expression® and () are strong Markovian bisimilar (writte® ~ ()) if they are contained
in a strong Markovian bisimulation.

Weak bisimilarity is obtained from strong bisimilarity by basicallylacing --2-= with ==¢z=.
Here,==¢== denotes an observahldransition that is preceded and followed by an arbitrary number
(including zero) of invisible activities, i.e=2=s :=--l-=-s--8-s--1. As discussed in [9], the
extension from strong to weak Markovian bisimilarity has to take into acctieninterplay of
Markovian and immediate transitions. Priorityiofernalimmediate transitions gives rise to the
following definition.

Definition 3 An equivalence relatioss is a weak Markovian bisimulation, (>,) € B implies
(i) P zzdzz P’ impIiesQ ===z (', for some@’ with (P, Q’) € B,

for all equivalence classes of B and all actionsu
¥(P'a,C) =~4(Q',a,C).
Two expressiong and () are weak Markovian bisimilar (writte®® =~ ()) if they are contained in
a weak Markovian bisimulation.

arrive arrive arrive

Figure 1: LTS of the queueing system example, before and after applying weak aigymil
In this definition, P -+1--- denotes thaf’ does not possess an outgoing internal immediate tran-
sition. We call such a statetangiblestate, as opposed t@nishingstates which may internally
and immediately evolve to another behaviour (dendted'---).

It can be shown that strong Markovian bisimilarity is a congruence with cespéhe language
operators, provided thatis distributive over summation of real values. The same result holds for
weak Markovian bisimilarity except for congruence with respect to choe=[§g].

In the sequel, we consider two distinct sub-languages. athe first,£,, arises by disallowing
Markovian prefix, resulting in a non-stochastic process algebra, a subset of IEAEDS [1],
where only action transitions appear in the underlying LTS. On this language, stidngeak
Markovian bisimilarity coincide with Milner’s non-stochastic strong andweisimilarity [18].

The complementary subsef,, is obtained by disallowing the other prefix, action prefix. The
resulting language coincides with MTIPP a la [10]ifs instantiated with multiplication), and
both strong and weak Markovian bisimilarity coincide with Markovian bitanily on MTIPP.
Note that Markovian bisimilarity agrees with Hillston’s strong equinake [14]. The semantics
of £, only contains Markovian transitions, and we will refer to such a transitystesn as a
stochastic LTS (SLTS). For a treatment of the complete language where bokepiexist, we
refer the reader to [12].

3 The non-stochastic case

In this section, we introduce the general idea of iterative partition refinemerking with the
language;. To illustrate the key ideas, we use as an example a queueing system, ogruisti
an arrival process and a finite queue. First, we model an arrival procassaf#ite sequence of
incoming arrivals ¢rrive), each followed by an enqueue actien{).

Arrival := arrive; eng; Arrival
The behaviour of the queue is described by a family of processes, one for each valueunfehé
gueue population.

Queuey = eng; Queue;
Queue; = eng; Queuey [| deq; Queue;_y 1 <v < max
Queue,,,, = deq; Queue,qm_1

These separate processes are combined by parallel composition in orderrtbedése whole
gueueing system. Hiding is used to internalise actions as soon as they neatdor further

synchronisation. System := hide eng in (Arrival [[enq]| Queueo)

Fig. 1 (left) shows the LTS associated with tR@stem specified above for the case that the
maximum queue populationis«x = 3. The LTS has 8 states, the initial state being emphasised
by a double circle. Fig 1 (right) shows an equivalent representation, mirdnaigh respect to
weak bisimilarity. The original state space is reduced by replaciny el@ss of weakly bisimilar
states by a single state.

Most algorithms for computing bisimilarity requirefiaite state space and follow an iterative
refinement scheme [19, 6, 15]. This means that starting from an initialiparof the state
space which consists of a single class (containing all states), classesgiaed until the obtained
partition corresponds to a bisimulation equivalence. The result thus obtailedasdest existing
bisimulation, in a sense the “best” such bisimulation, since it has a minimdeuohequivalence
classes. For the refinement of a partition, the notion of a “splitter” is vepprtant. A splitter is a

pair (a, C), consisting of an actiom and a clasg’,,;. During refinement, a clags is split with
respect to a splitter, which means that subclagseandC'~ are computed, such that subclass
contains all those states fromwhich can perform aa-transition leading to class;,;, andC~
contains all remaining states. In the following, an algorithm for strong hikition is presented
which uses a dynamic set of splitters, dena$ediiicrs. Note that here we only present a basic
version of the algorithm which can be optimised in many ways [6, 19]. By a dalibéreatment
of splitters, it is possible to obtain a time complexi®ym log n), wheren is the number of states
andm is the number of transitions [8].

1. Initialisation
Partition .= {S}
[* the initial partition consists of only one class which tainsall states */
Splitters := Act X Partition
/* all pairs of actions and classes have to be consideredligi®sp*/
2. Main loop
while (Splitters # ()
choosesplitter (a, Cy,;) € Splitters
forall C' € Partition split(C, a, Cypi, Partition, Splitters)
/* all classes (including’;,, itself) are split */
Splitters := Splitters — (a, Cspi)
/* the processed splitter is removed from the splitter set */

It remains to specify the procedusg!/it. Its task is to split a class, using(a, Cs,;) as a splitter.
If splitting actually takes place, the input classs split into subclasses* and('~.

procedure split(C, a, Cs,, Partition, Splitters)

Ct={P|PeCATQ: (P--2+Q AN QeCy)} /* the subclasg’* is computed */
if (CT£C AN CH£0) /* only continue if clasg” actually needs to be split */
C-=C-C* [* C~ is the complement af'+ with respect ta” */

Partition := Partition U{CT,C~} —{C}
Splitters := Splitters U (Act x {CT,C~}) — Act x {C}
/* the partition and the splitter set are updated */

4 The Markovian case

In this section, we consider the languaf@iewhereall actions are associated with an exponentially
distributed delay. In addition is instantiated with the product of rates, for reasons discussed
(for instance) in [9]. The semantic model of a process from the langdage an SLTS, only
containing transitions of the form-:2 =,

We return to our example of a queueing system. The arrival process is now mafitdidws,
employing the Markovian action prefix:

Arrival := (arrive, N); (eng, 1); Arrival

Action arrive occurs with rate\, whereas for actioang we specify rate, the neutral element of
multiplication. Via synchronisation, the queue process determines the actuai ¢ate

Queuey = (enq,n); Queue;
Queue; = (enq,n); Queue;ty [] (deq,d); Queue;_q 1 <4< mazx
UeUCmqar = (deq,d); Quetear_1

Q (deq, d);

Fig. 2 depicts the SLTS obtained from the parallel composition of processésal andQueueq
synchronised over actiamyg.

From a given SLTS one can immediately construct a continuous time Markov cBamM
[16]). The arcs of the CTMC are given by the union of all the transitions joining T® nodes
(regardless of their action labels), and the transition rate is the sum widivedual rates (this is

Figure 2: Semantic model of the Markovian queueing system, isomorphic to a CTMC
split_tree N

Y1 Jk

o

Figure 3:split tree used by procedureplit’

justified by the properties of the exponential distribution). Transitions leading toahe same
node (loops) can be neglected, since they would have no effect on the balance equatiens of t
CTMC. Performance measures can be derived by calculating the stetalyisteansient state
probabilities of the CTMC.

As already mentioned, both strong and weak Markovian bisimilarity coincitte Markovian
bisimilarity a la MTIPP on this language. The technical reason is that tbtecfauses of Def-
inition 2 and Definition 3 are irrelevant, while the respective secondsela both boil down to
Y(P,a,C) =~(Q,a,C) for all actionse and classes’. This equivalence notion has a direct cor-
respondence to the notion kimpabilityon CTMCs [16, 14]. The basic bisimulation algorithm
is the same as in Sec. 3, only the procedyré: needs to be modified. Procedurgit’ now
uses a data structusel:¢ _tree which is shown in Fig. 3. It essentially sorts states according to
theiry-values. During refinement, when a cla@sss split by means of a splittér, C,,), possibly
more than two subclasseés, , C.,,, ..., C,, will be generated. Input class is split such that the
cumulative ratey(P, a, C,,) = v; is the same for all the statésbelonging to the same subclass
C,,, aleaf of thesplit_tree.

procedure split'(C', a, Cgp1, Partition, Splitters)

forall P ¢ C
v i=v(P a,Csp) /* the cumulative rate from state to C';,,; is computed */
insert(split_tree, P,) [* state P is inserted into theplit_tree */
I* now, split_tree containskt leavesC,,, ..., C., */
if (k>1) * only continue ifC' has been splitinté > 1 subclasses */

Partition := Partition U{C,,,C,,,...,C,, } —{C}

Splitters := Splitters U (Act x {C.,,,C,,...,Cy,}) — Act x {C'}

/* the partition and the splitter set are updated */
In theforall loop of procedurepl:t’, the cumulative rate is computed for every state in class
(', and state” is inserted into thepl:t_tree such that states with the same cumulative rate belong
to the same leaf (proceduiesert). Thesplit_tree hask leaves, i.ek different values ofy have
appeared. If splitting has taken place (i.ekit> 1), the partition must be refined and the set of
splitters has to be updated.

The above algorithm computes Markovian bisimilarity on a given SLTS. Ibesimplemented

such that the time complexity is of ord@{(m log n) and the space complexity of ord@m +n),
wheren is the number of states amd the number of transitions. The proof is given in [8].

5 Symbolic representation with BDDs

In this section, we discuss details of a BDD-based implementation of the atgarithms. BDDs
are graph-based representations of Boolean functions and have recently gaiadabderatten-
tion as efficient encodings of very large state spaces. In a process algeintixt, this efficiency

is mainly due to the fact that the parallel composition operator can be implechentBDDs in
such a way that the size of the data structure only grows linearly in the numberatiepaom-
ponents, especially for loosely coupled components. This compares favourably tponeetial
growth caused by the usual operational semantics, due to the interleaving diycagsgpendent
transitions. We explain how LTSs can be encoded as BDDs and illustrate sovirsgiude the
rate information of SLTS into this data structure and the bisimulation algost To complete the
picture, we also discuss parallel composition on BDDs.

5.1 Binary Decision Diagrams and the encoding of LTSs

A Binary Decision Diagram (BDD) [2] is a symbolic representation of a Baoléunction
f:{0,1}" — {0,1}. Its graphical interpretation is a rooted directed acyclic graph, eskentia
a collapsed binary decision tree in which isomorphic subtrees are mergedamiticare” nodes
are skipped (a node is called “don’t care” if the truth value of the correspondimgpleis ir-
relevant for the truth value of the overall function). It is known that BDDs/l® a canonical
representation for Boolean functions, assuming a fixed ordering of the Booleahlear Algo-
rithms for BDD construction from a Boolean expression and for performing Booleaiatopes
(and, or, not, ...) on BDD arguments all follow a recursive scheme.

A LTS can be represented symbolically by a BDD. The idea is to encode statex@ons by
Boolean vectors (for the moment, we look at the non-stochastic case where itrisgestsary
to consider information about transition rates). One transition of the LTSdbeesponds to a
conjunction ofr, + 2n, literals (a literal is either a Boolean variable or the negation of a Boolea
variable)Ar2; a; \iz; s; \iz, t;, where literalsy, . . . a,,, encode the action, ... s,,, identify the
source state ang . . . ¢,,, the target state of the transition (we assume that the number of distinct
actions to be encoded is betwegn—! and2”« + 1, so thatr, bits are suitable to encode them,
and similarly for the number of states). The overall LTS corresponds to thendi®n of the
terms for the individual transitions. The size of a BDD is highly dependent on the chasehle
ordering. In the context of transition systems, experience has shown that thveiriglieariable
ordering yields small BDD sizes [5]:

a1 < ... < p, <8; <t <8y << <5y, <1y,
i.e. the variables encoding the action come first, followed by the varidtmesource and target
state interleaved. In particular, this ordering is advantageous in view qfatadiel composition
operator discussed below.

To illustrate the encoding, Fig. 4 shows the LTS corresponding t@)e:.c, process from
Sec. 3 (assuming, again, thatz = 3), the way transitions are encoded and the resulting BDD
(in the graphical representation of a BDD, one-edges are drawn solid, zerog=dtpesl, and for
reasons of simplicity, the terminal false-node and its adjacent edges ated)m&ince there are
only two different actionsdng anddeq), one bit would be enough to encode the action. However,
in view of actionarrive which will be needed for processrrival, we use two bits to encode the
action, i.e.n, = 2. The LTS has four states, therefore two bits are needed to representtéhe sta
i.e.n, = 2. Inthe BDD, one can observe the interleaving of the Boolean variables for theesour
and target state.

The parallel composition operator can be realised directly on the BDD eapeg®n of the
two operand processes. Consider the parallel composition of two proc&sses; |[A]| P, and
assume that the BDDs which correspond to proceBsesd P, have already been generated and
are denoted®; andP,. The setA can also be coded as a BDD, namgly The BDD P which
corresponds to the resulting procéssan then be written as a Boolean expression:

P = (PrANA)A (P2 A A)
vV (Py ANANAStabp,) vV (Py AAA Stabp,)

Q

,
ai /\j
,
,
I
I

ai,az,s81,t1, 82,t2 az
eng
enqg eng eng 0 o= (0,1,0,0,0,1)
0 _--a1--22--x3 1-2p2 o (0,1,0,1,1,0) 51 o
o_ 0. 4&6_ 0o eng |)
AT e 2 SR 93 - (0,1,1,1,0,1) 1 ™
d d d \
eq eq eq 1...d.§.q..ﬂ 0 — (17070707170) th Q Q 7 //O
! ’ ’
o.ded g (1,0,1,0,0,1) \\
3--ded00 (1,0,1,1,1,0) 52 ?

77777

to Q

Figure 4: LTS, transition encoding and corresponding BDD(Jakue,

The term on the first line is for the synchronising actions in which Bgtand 7, participate. The
first (second) term on the second line is for those actions which,) performs independently
of P, (P,) — these actions are all from the complement4ofThe meaning obtabp, (Stabp,)
is a BDD which expresses stability of the non-moving partner of the parallel cotigpose. the
fact that the source state of procdss P;) equals its target state.

The BDD resulting from the parallel compositidh, describes all transitions which are possible
in the product space of the two partner processes. Given a pair of initiad $tet&, and P,
only part of the product space may be reachable due to synchronisation constraintaldRiac
analysis can be performed on the BDD representation, restri¢titg those transitions which
originate in reachable states.

5.2 Symbolic bisimulation

The basic bisimulation algorithm of Sec. 3 and its various optimisations caedbsed effi-
ciently using BDD-based data structures. For convenience, the trangistensis represented
not by a single BDD, but by a set of BDDE,(s,?), one for each actioma (here,s andt de-
note vectors of Boolean variables of lengtl). The current partition is stored as a set of BDDs
{C1(s),C4(s),...}, one for each class. When classs split into subclasseS* and(C'~ during
execution of procedureplit, those subclasses are also represented by BDDs. The dynamic set
of splitters, Splitters, is realised as a pointer structure. The computation of the subctass
proceduresplit is formulated as a Boolean expression on BDD arguments

CH(s):=C(s) NI t: (Tu(s,t) A Cop(t))
where the existential quantification is also performed on BDDs.

5.3 BDDs with rate information

Clearly, pure BDDs are not capable of representing the numerical informéioan ene transition
rates of estochastid_TS. In the literature, several extensions of the BDD data structure have be
proposed for representing functions of the type {0,1}" — IR. Most prominent among these
are multi-terminal BDDs [4], edge-valued BDDs [17] and Binary Momenigbaans (BMD) [3].

In all of these approaches, the basic BDD structure is modified and the efficEte data struc-
ture, due to the sharing of isomorphic subtrees, may be diminished. Based on thisbbser
we developed a different approach which we call decision-node BDD (DNBDD) T2 distin-
guishing feature of DNBDDs is that the basic BDD structure remains complateébuched when
moving from an LTS encoding to an SLTS encoding. The additional rate informatidtached

to specific edges of this BDD in an orthogonal fashion.

In a BDD representing a LTS, @athp from the root to the terminal true-node correspondx’to
transitions of the transition system, whéeres the number of “don’t care” variables on that path.
Since these transitions are labelled¥ydistinct rates, we need to assign a rate list of lertjth
to that path. Letates(p) denote a list of real valugs, ..., A,x_;), wherek is the number of
“don’t cares” on pathp. The correspondence between transitions and individual rates of such a

Arrival Queueq Arrival |[eng]| Queueg

Figure 5: DNBDDs for the queueing example (shorthand notatlor: (¢(1,7))(5)(4))

list is implicitly given by the valuation of the encoding of the transitions on “doaite” nodes,
which ranges frond to 2 — 1. For the practical realisation of this concept, and in order to make
our representation canonical, we must answer the question of where to storeethstsa This
leads to the following consideration: Instead of characterising a path kig athdes, we observe
that a path is fully characterised by dscision nodes

Definition 4 A decision nodes a non-terminal BDD node whose successor nodes are both dif-
ferent from the terminal false-node. d&cision node BDD (DNBDDj)s a BDD enhanced by a

function rates : Paths — (IR)*
wherePaths is the set of paths from the root node to the terminal true-node (#tid is the set
of finite lists of real values), such that for any such path

rates(p) € (IR)Qk
if & is the number of “don’t cares” on path. The listrates(p) = (Ao, ..., Ay_;) IS attached to
the outgoing edge of the last decision node on patle. the decision node nearest to the terminal
true-node.

To illustrate the DNBDD concept, we return to our queueing example. Fig. 5 shevRNBDDs
associated with processésrival, Queuey and Arrival |[eng]| Queueq (in the figure, decision
nodes are drawn black). On the left, rakesnd1 are attached to the outgoing edges of the (single)
decision node of the BDD. In the middle, six individual rates are attached tpfre@riate edges.
On the right, up to three rate lists, each consisting of a single ratettached to BDD edges. For
instance, the rate listg)(4) specify the rates of the two transitions encoded as bitsttinig$)010
and10000010 whose paths share the last decision node.

In the case where several rate lists are attached to the same BDbedgese several paths
share their last decision node) it is important to preserve the one-to-one mappuwegbeaths
and rate lists. This could simply be accomplished by the lexicographical ord#rpeths. For
algorithmic reasons, however, we use a so-called rate tree, an unbaamagdree which makes
it possible to access rate lists during recursive descent through the BDD If2@ur current
implementation of DNBDDSs, the rate tree is implemented as illustiat€&ig. 6. This figure (left)
shows the encoding of the transitions of some SLTS, each of the transition bedegsss with a
rate. The first two transitions share the same path, a path which has a “defi’'ircehe Boolean
variables. Therefore, the corresponding rate [ist, A;) has length two. The other four paths do
not have any “don’t care” variables, they each correspond to exactly onetivarddi the SLTS
and the corresponding rate lists have length one. The latter four paths all shalasthaecision
node. Therefore each of the outgoing edges of that decision node carries two sgi& lishgth
one). The rate tree is built as a separate data structure from the BDuvApWis internal nodes

rate

1

(a1, az,s,t)

> >
<

N
o ooo
«H «O «H uO uH uO
O~ O~
RSN NSNON
L4lidd
&2 @R

[=NolNeNol Sl

Figure 6: Encoded transitions with rates, and corresponding DNBDD with ese tr

and the rate lists are associated with the decision nodes of the BDD ageaditcdrig. 6 (right).
The rate tree is manipulated by an appropriate extension of the procedures whighilate the
BDD. This implementation of the rate tree has the drawback that it reqiieesxplicit storage
of one rate for each encoded transition which may cause considerable overheaterlto avoid
such redundancies, an efficient data structure to represent rate treegseifbé based on BDDs.
We are currently investigating this issue.

Parallel composition of two SLTSs based on their symbolic representatimwfothe same
basic algorithm as sketched in Sec. 5.1. Similar to the fact that the apeaktules in Sec. 2
are parametric in the synchronisation policy, the concept of DNBDDs is not bound ttaujza
choice of functiony, any arithmetic expression of the two partner rates can be employed.

5.4 Symbolic Markovian bisimulation

We now discuss aspects of a DNBDD-based algorithm which computes Markoviamulaison
on SLTSs. The basic algorithm is the same as in Sec. 4, only procedureneeds to be adapted.
When using DNBDDs, the cumulative rate of actiofrom stateP to classC’,; is computed as
follows: We computd’, . O (s,t), the DNBDD which represents afttransitions from staté to

states from clas§’;,,. It can be obtained by restrictifig (s, ¢) to the single source stateand to
target states from class,,; (again, the transition relation is represented by individual DNBDDs
T.(s,t), one for every action, and class” is represented by a BDD'(¢)). The cumulative
ratey(P, a, Cy,) is computed by applying the functiowm_of _all_rates to Tpiﬂpl(s, t). This
function simply sums up all the entries of all rate lists of a DNBDD (e.ppliaation of this
function to the DNBDD in Fig. 6 yield3,+ X, +a+5+++4). Furthermore, in thepl:t _tree used

by procedurepl:t’ the subclasses,, , ..., C.,, are now also represented by BDDs.
procedure split'(C, a, Cy,, Partition, Splitters)
forall P € C
TP1>OSPZ (8,8) :=To(s,t) A (s=P) AN Cyp(t) [* s=P denotes that state is encoded as */
v = sum-of_all rates(Tp l(s, t)) [* the cumulative rate frond to C';,,; is computed */
sp
insert(split_tree, P,) [* state P is inserted into theplit_tree */
I* now, split_tree containst leavesC',, , ...,C., */

if (k>1)
e /* the remaining part of procedusglit’ is as in Sec. 4, */
[* but Partition andSplitters are represented as BDDs */

6 Conclusion

In this paper, we have discussed efficient algorithms to compute bisimul&yieregjuivalences
for Stochastic Process Algebras. In addition, we have presented detailsDiD-d&sed imple-
mentation of these algorithms, describing DNBDDs to represent the additeteahformation
which is relevant for the analysis of the underlying Markov chain.

The usefulness of BDDs to encode transition systems has been stressed authany. How-
ever, we would like to point out that the myth, saying that BDDs always provide a narpact
encoding than the ordinary representation (as a list or a sparse matrixdatarst), does not hold

in general. A naive encoding of transition systems as BDDs does not save bjgarestics for

encodings are needed, exploiting the structure of the specification. The implemenfatarallel

composition on BDDs is indeed such a heuristics, and a very successful oeeasiaxponential
blow-up can be turned into a linear growth.

Apart from encoding transition systems as (DN)BDDs and parallel composti¢fN)BDDs,
we have described how bisimulation algorithms can be implemented on thestrdatares. As
a consequence, all the ingredients are at hand for carrying out compositional aggref)&fén
specifications in a completely BDD-based framework. In this way, the sface explosion prob-
lem can be alleviated. We are currently implementing all these ingredreatprototypical tool
writtenin C, based on our own DNBDD package. However, in order to obtaionpeance results,
the (minimised) BDD representation still has to be converted back to theswy representation,
since we do not yet have a Markov chain analyser which works directly on DNBRDserical
analysis based on DNBDDs is one of our topics for future work. For this purpose, it besmis-
cial to investigate the relation between DNBDDs and MTBDDs, sin@d@BBD-based numerical
analysis methods have already been developed [7, 13].

References
[1] T. Bolognesi, E. Brinksma. Introduction to the ISO Spieation Language LOTOSComputer Networks and
ISDN System$4:25-59, 1987.
[2] R.E. Bryant. Graph-based Algorithms for Boolean FunictManipulation.|EEE Transaction on Computers
C-35(8):677-691, August 1986.

[3] R.E. Bryant, Y. Chen. Verification of Arithmetic Functie with Binary Moment Diagrams. IRroc. 32nd
Design Automation Conferencg35-541, ACM/IEEE, 1995.

[4] E.M. Clarke, M. Fujita, P. McGeer, K. McMillan, J. Yang, Zhao. Multi-terminal Binary Decision Diagrams:
An efficient data structure for matrix representation.Phoc. Int. Workshop on Logic Synthesigmhoe City,
May 1993.

[5] R. Enders, T. Filkorn, D. Taubner. Generating BDDs fom@plic model checking in CCDistributed Com-
puting 6:155-164, 1993.

[6] J.C. Fernandez. An Implementation of an Efficient Alglom for Bisimulation EquivalenceScience of Com-
puter Programming13:219-236, 1989.

[7] G.D. Hachtel, E. Macii, A. Pardo, F. Somenzi. Markovianalysis of Large Finite State Machine$EEE
Transactions on CAP15(12):1479-1493, 1996.

[8] H.Hermanns.nteractive Markov ChainsPhD thesis, Universitat Erlangen-Nurnberg, 1998.

[9] H. Hermanns, U. Herzog, V. Mertsiotakis. Stochasticdess Algebras - Between LOTOS and Markov Chains.
Computer Networks and ISDN Syste3(9-10):901-924, 1998.

[10] H. Hermanns, M. Rettelbach. Syntax, Semantics, Edgms, and Axioms for MTIPP. IRroc. 2nd PAPM
WorkshopUniversity of Erlangen-Nurnberg, IMMD 27(4):71-87, 129

[11] H. Hermanns, J.P. Katoen. Automated Compositionalk@arChain Generation for a Plain Old Telephony
System. to appear iBcience of Computer Programmirip98.

[12] H. Hermanns, M. Siegle. Bisimulation Algorithms foroBhastic Process Algebras and their BDD-based Im-
plementation. IProc. 5th Int. AMAST Workshop on Real-Time and ProbahilStistems.NCS, 1999.

[13] H.Hermanns, J. Meyer-Kayser, M. Siegle. Multi TermiBaary Decision Diagrams to Represent and Analyse
Continuous Time Markov Chains. submitted for publicatib®99.

[14] J. Hillston.A Compositional Approach to Performance Modelli@ambridge University Press, 1996.

[15] P. Kanellakis, S. Smolka. CCS Expressions, FiniteeSeaibcesses, and Three Problems of Equivalendéet-
mation and Computatiqi86:43—-68, 1990.

[16] J.G. Kemeny, J.L. Snelkinite Markov Chains Springer, 1976.

[17] Y.-T. Lai, S. Sastry. Edge-Valued Binary Decision Diagns for Multi-Level Hierarchical Verification. 189th
Design Automation Conferené®8-613, ACM/IEEE, 1992.

[18] R. Milner. Communication and ConcurrenciPrentice Hall, London, 1989.
[19] R. Paige, R. Tarjan. Three Partition Refinement Aldoms. SIAM J. of Computingl6(6):973—-989, 1987.

[20] M. Siegle. Technique and tool for symbolic represdéntatind manipulation of stochastic transition systems.
TR IMMD 7 2/98, Universitat Erlangen-Nurnberg, March B99

