
Reduced Markov Models of Parallel Programs with Replicated Processes

Markus Siegle

Universität Erlangen–Nürnberg, IMMD VII, Martensstraße 3, 91058 Erlangen, Germany
siegle@informatik.uni-erlangen.de

The behaviour of parallel programs with replicated
processes is modelled by continuous time Markov chains.
For high-level model description, we use stochastic
automata networks. We are particularly interested in
models of parallel programs which exhibit symmetries.
Exact lumpability is exploited for reducing the model’s state
space, thus making complex models of large real systems
computationally tractable. Complexity analysis of a new
reduction algorithm shows that the method can be applied
efficiently in practice.
Keywords: Parallel Programming, Markov Models,
Lumpability, State Space Reduction

1. Introduction

When developing solutions for real application problems on
modern parallel machines, the programmer is faced with a
large number of questions. Many degrees of freedom exist
during the design of a suitable parallel algorithm and during
its subsequent implementation for a class of machines. The
writing of parallel programs is a very cumbersome and
time-consuming process since environments for parallel
software engineering have not yet reached a satisfying
degree of maturity. It is usually prohibitive for the
programmer to code several possible alternatives in order
to decide which one performs best. Among existing
implementation alternatives the most promising has to be
chosen. This choice can be greatly supported by the use of
models for predicting the behaviour of a parallel program.

Markov models have been widely used to study per-
formance issues in computer systems. They provide a
framework for describing stochastic behaviour while being
amenable to analytic solution. The most eminent problem
in Markovian modelling is the state space explosion which
often makes large models intractable. State spaces are
often so large that they cannot be stored in the memory of
available computers, and the solution of a Markov chain
with a very large state space can consume an excessive
amount of computation time. In this paper, we discuss
an approach to overcoming this problem in the context of
modern parallel systems containing a number of similar
components. This is motivated by the fact that many
parallel programs consist of one or more sets of similar
processes. Several processes of such replication-type par-
allel programs are running in parallel on different nodes

of the machine. While processing different data they obey
the same stochastic rule.

For the specification of Markovian models different forma-
lisms can be employed. High-level description techniques
include queueing networks [13] and stochastic Petri nets
[1]. Tools exist which support comfortable model design
through graphical or textual user interfaces [17, 7, 9, 15].
They perform the translation of the high-level description
into the underlying Markov chain, its solution and the
computation of performance measures. In this paper we use
stochastic automata networks (SANs) for model description
and we restrict ourselves to the discussion of models with
continuous time scale. An in-depth description of the SAN
formalism can be found in [4] and [3] (the latter focuses
on discrete time scale SAN models).

Section 2 includes a brief survey of state-of-the-art tech-
niques for structured model description. In the following
two Sections, a novel approach to the reduction of the
state space of SAN models is presented. It is based
on the concept of Markov chain lumpability and can be
conveniently applied to SAN models of parallel programs
with replicated processes. An algorithm for the efficient
computation of the matrices describing the reduced SAN
model is discussed in Section 5.

2. Survey of Techniques for
Structured Model Description

There is a large number of approaches which fall into the
structured model description category. In [14], Plateau
showed how interdependent stochastic automata can be
combined to a joined model. Tensor algebra is used to
obtain the structure of the combined generator matrix. It is
shown that an iterative solution technique (power method)
can be applied to solve the combined model, without
explicitly generating the joined generator matrix. A similar
approach is described by Donatelli [11] for superimposed
stochastic automata, a special class of stochastic Petri nets.
Balbo et al. described a technique in which queueing
networks and GSPNs are combined for solving complex
models [2]. A similar approach is followed by Buchholz
[6] in the hierarchical multi-paradigm modelling approach.
The joined model consists of a number of low level
models which can be specified by multi-class queueing
networks or coloured stochastic Petri nets, and a high

In: Proceedings of the 2nd Euromicro Workshop on Parallel
and Distributed Processing, Malaga, January 26–28 1994

Stochastic
Automata

Identical
GSPN

Subnets

Stoch. Activity
Network

Components

Submodel
Specification

Combination
of Submodels

(Reduced)
Joined Model

Use Tensor Algebra
to Define

Joined Generator

Exploit
Symmetries

Identical Low-Level Models
Equivalent Entity Classes

Colour
Permutations

Replicated
Components

Inter-
Dependence

High-
Level
Model

Folding

Replicate/
Join

Iterative Solution on
Submodel Generators

--> Save Memory Space
Multi-

Paradigm
Submodels

State Equivalence Classes
Representative State
--> Reduced Number

of States

Figure 1: Structured Model Description: Common Features

level model which describes the flow of entities (customers
or tokens) between the low level models. Buchholz
also uses tensor algebra to obtain the combined generator
matrix. He shows that beside the power method, other
iterative solution techniques (Jacobi and Gauss-Seidel) can
be applied based on the submodel generator matrices. In a
recent paper, this technique is extended to the exploitation
of symmetries in order to reduce the cardinality of the state
space [5]. Symmetry exploitation is also the basic idea
which led to the use of coloured Petri nets for the purpose
of performance evaluation [8]. A similar technique has
been described for another class of stochastic Petri nets –
stochastic activity networks – by Sanders et al. [16]. Here
also, the exploitation of symmetries allows to solve the
model efficiently.

The common features of different structured model de-
scription techniques are pointed out by the table in Fig1.
The first column states the technique which is used for
submodel specification. The second column is divided
into two subcolumns: The technique for combining the
submodels is given, and special features which are used
during the combination process are mentioned. Properties
of the resulting joined model and of its solution method
are listed in the third column.

It is common to all approaches that submodels are first
specified individually, and then combined in order to
obtain the joined model. Different mechanisms are used
to specify the way in which the combination takes place.
For stochastic automata, the combination is determined by
the interdependences which exist between the components.
In the hierarchical multi-paradigm modelling approach,
the high-level model specifies how low-level models are

combined. Using coloured GSPNs, submodels cannot be
identified quite as easily: They can be seen as identical
subnets of a GSPN model, where the interaction is given
by the arcs and places between them. To build the coloured
GSPN, these identical subnets are folded together, and the-
reafter only distinguishable by colour domains associated
with them. Stochastic activity network components can
be combined using two operations: There is the replicate
operation to generaten instances of one component, where
a subset of distinguished places is not replicated, i.e. is
common to alln instances, and there is the join operation,
to join two components by merging two subsets of places,
one in each component.

For combined stochastic automata and the hierarchical
multi-paradigm modelling approach, the generator matrix
of the joined model is given as an expression, in which
the matrices describing the behaviour of the components
are combined by tensor operations. Knowledge about the
structure of the joined generator matrix is sufficient in
order to apply iterative solution techniques for obtaining the
steady-state solution of the model, i.e. the joined generator
matrix does not have to be created explicitly. Since the
joined generator is often a very large sparse matrix, this
helps to save a lot of storage space. A second important
advantage may be seen by the fact that this kind of iterative
solution technique, based on the components’ generator
matrices, is amenable to parallel processing.

For the hierarchical multi-paradigm modelling approach,
coloured GSPNs and stochastic activity networks, it has
been shown how the exploitation of model symmetries may
reduce the cardinality of the state space dramatically. In
the former, symmetries may be present due to a number

2

0

1

2

σ

µ

λ
0

1

2

σ

µ

λ

SM1 SM2

Figure 2: SAN of two independent processes

of identical low-level models, or to the identical beha-
viour of different entity classes [5]. Entities are either
customers (in queueing network submodels) or tokens (in
GSPN submodels). In coloured GSPNs, it is also the
identical behaviour of different token classes which enables
reduction. Here symmetries are recognized by permuting
these token classes. Using stochastic activity networks,
symmetries are present wherever the replicate operation is
used. Symmetries lead to the partition of the state space
into classes of equivalent states, and it suffices to choose
one state from each equivalence class – usually determined
by lexicographical ordering – to represent this class. The
steady-state probability of the representative state in the
reduced joined model is equal to the sum of the steady-
state probabilities in its equivalence class in the original
model.

3. Component Replication and State
Space Reduction: An Example

We introduce our own ideas with a very simple example:
Consider an overall model consisting of two submodels
SM1 andSM2. The two are similar independent processes
which move through states 0,1 and 2 in a cyclic fashion
as illustrated in Fig. 2.

The state transitions take place after the elapse of a time
which is exponentially distributed with rate�; � or �. The
state transitions are described by the infinitesimal generator
matricesQ(1) andQ(2) of SM1 andSM2 which are given
by

Q(1) = Q(2) =

24�� � 0
0 �� �
� 0 ��

35
We are interested in the combined stochastic process of
SM1 andSM2. This process has3 � 3 = 9 states, each
state corresponding to a tuple(s1; s2), wheresi denotes
the state ofSMi. It is known [4] that its generator matrix
Q is given by

Q = Q(1) �Q(2)

σµ
2λ

SM120, 0

0, 2

2, 2

0, 1

1, 2

1, 1

λ

λ
2µ

µ
2σ

σ

Figure 3: Reduced SAN

where the operator� denotes the tensor sum. For the
definition of tensor operations the reader is referred to the
Appendix and to [10].
For the computation of the steady-state probability vector
�, the linear system of equations�Q = 0 has to be
solved. This is usually done using iterative solution
techniques. It is not necessary to construct the matrix
Q explicitly. Instead, iteration can be performed on the
tensor description ofQ [4].

Let us now assume that there is a larger numbern of
such similar independent processes. While the generator
Q of the overall model can still be described in a compact
manner byQ = �n

i=1Q
(i), the number of states is now

3n. Already for modest values ofn, this leads to an
overall model with a very large state space. However,
due to the symmetry of the SAN we can identify sets
of equivalent states which have the same steady-state
probability. The idea of symmetry exploitation is to
combine similar submodels and to replace them by a
reduced model. During the construction of the reduced
model, only one state is chosen as a representative for each
set of equivalent states. For example, in the casen = 2,
states (0, 1) and (1, 0) constitute a pair of equivalent
states. Fig. 3 shows the reduced model in which this pair
is represented by the single state (0, 1). The pairs (0, 2),
(2, 0) and (1, 2), (2, 1) are treated similarly such that the
reduced model has only6 states instead of32 = 9.
We continue with an extension of the same example in
order to demonstrate how different SAN submodels can
interact. Fig. 4 shows a SAN consisting of 3 submodels.
SM0 represents a resource which can be either idle or busy.
SM1 and SM2 have the same structure as before. They
represent two processes which access the common resource
under the mutual exclusion discipline. Each of the two
processes behaves in a cyclic manner: Having done some
work it performs a synchronization in order to obtain the
resource, accesses the resource and goes back to work.

The transition fromwork to sync is still a purely local
event. It does not depend on the other submodels, nor
does it affect any of the other submodels. The transitions

3

work

sync

acc

idle

busy
(e , σ)

λ

1

(e , µ)2e 2e 1

work

sync

acc
(e , σ)

(e , µ)

λ

1

2

SM 0 SM1 SM2

Figure 4: SAN of two Processes Accessing a Common Resource with Mutual Exclusion

from syncto acc and fromacc to work are labellede1 and
e2 and force a synchronization with the same transitions
in SM0.
The infinitesimal generator matrixQ of the overall model
can still be constructed from matrices associated with
the submodels and by use of tensor algebra [4]. In our
example, the matricesQ(i)

l ; Q
(i)
ek ; Q

(i)
ekn with i 2 f0; 1; 2g

and k 2 f1; 2g are defined. MatricesQ(i)
l contain transi-

tions local toSMi. SinceSM0 does not have any local
transitionsQ(0)

l is an identity matrix.

Q
(0)
l =

�
1 0
0 1

�

Q
(1)
l = Q

(2)
l =

24�� � 0
0 0 0
0 0 0

35
MatricesQ(i)

ek describe the synchronization of submodels
by the eventek, and matricesQ(i)

ekn are needed to correct
the diagonal entries ofQ accordingly. For the evente1
we have

Q(0)
e1 =

�
0 1
0 0

�
; Q(0)

e1n =

�
1 0
0 0

�

Q(1)
e1 = Q(2)

e1 =

240 0 0
0 0 �
0 0 0

35
Q(1)

e1n = Q(2)
e1n =

240 0 0
0 � 0
0 0 0

35
and the matrices for evente2 are given by

Q(0)
e2 =

�
0 0
1 0

�
; Q(0)

e2n =

�
0 0
0 1

�

Q(1)
e2 = Q(2)

e2 =

240 0 0
0 0 0
� 0 0

35
Q(1)

e2n = Q(2)
e2n =

240 0 0
0 0 0
0 0 �

35

The generator matrixQ of the overall model is then given
by

Q = �2
i=0Q

(i)
l +

�2
k=1

�
Q(0)

ek

�
Q(1)

ek � Q(2)
ek

�
�Q(0)

ekn

�
Q(1)

ekn � Q(2)
ekn

��

In the inner parentheses of this expression, the tensor sum
operator (not the tensor product) has to be used, because
eitherSM1 or SM2 – but not both – participates in the
synchronization withSM0.
As in the original example, it is again possible to reduce
the combined state space ofSM1 andSM2. The resulting
SAN, in which the combined stochastic process of former
SM1 andSM2 is represented bySM12, is shown in Fig. 5.
It leads to an overall model which has only2�6 = 12 states
instead of2 � 3 � 3 = 18. It is clear that not all of these
states are actually reachable because of the synchronization
constraints. In particular, all states in whichSM1 andSM2

are both in stateacc are unreachable.

4. Lumpability and Symmetry Exploitation

In this section we will look at a general SAN framework
and give a formal description of the reduction of a number
of similar SAN submodels.

Suppose we have a SAN consisting ofn submodels
SM1; . . . ; SMn. Furthermore, let this set of submodels
be the union ofc classes such that all similar submodels
belong to the same class, i.e. a class contains multiple
copies of the same submodel. Let classi contain ni

submodels, each havingsi states. We have the relation
�c

i=1ni = n, and the number of statess of the overall
model is given bys = �c

i=1s
ni
i .

Let us now focus our attention to classi, and without loss
of generality assume that the submodels in this class are
denotedSM1; . . . ; SMni . The combined state spaceSi

of all submodels of classi has sni

i states, where every
state is anni-tuple with elements fromf0; . . . ; si � 1g.
We consider two statesx = (x1; . . . ; xni) and y =
(y1; . . . ; yni) equivalent if y is a permutation ofx, i.e.

4

idle

busy

(e , σ)(e , µ)

2λ

ee

SM 0 SM12work, work

work, acc

acc, acc

work, sync

sync, acc

sync, sync

λ

λ
(e , 2µ)

(e , µ)

(e , 2σ)

(e , σ)

1

1

1

1

2

2

2

2

Figure 5: Reduced SAN for the Mutual Exclusion Model

Q̂ = UQV =

2666664
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1

3777775

2666666666664

� � �
� � �

� � �
� � �

� � �
� � �

� � �
� � �

� � �

3777777777775

2666666666664

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3777777777775

=

2666664
� 2�

� � �
� � �

� 2�
� � �

2� �

3777775

Figure 6: The full structure of the matrixQ̂

if there exists a permutation matrixPi of dimensionni
such thaty = xPi. The state spaceSi is now partitioned
in such a way that all equivalent states are in the same
partition. This partition is clearly an equivalence relation.
The construction guarantees that the sum of the transition
rates from a given state to all states in another partition is
the same for all states within the same partition. Therefore
the Markov process with state spaceSi is lumpable [12]
with respect to this partition. A reduced model can then be
built which contains only one state per equivalence class.

To illustrate this concept, we return to the first example
(from Fig. 2) where the overall model consists of only
one class of submodels, class 1. In this class we have
two similar submodels each having 3 states, i.e.n1 = 2
and s1 = 3. The generator matrixQ(1) is associated
with each submodel in this class 1. The combined state
spaceS1 of class 1 is given by the set of tuplesS1 =
f(0; 0); (0; 1); (0; 2); (1; 0); (1; 1); (1; 2); (2; 0); (2; 1); (2; 2)g.
This set is partitioned in the following way:

S1 = f(0; 0)g [f(0; 1); (1; 0)g [f(0; 2); (2; 0)g [
f(1; 1)g [f(1; 2); (2; 1)g [f(2; 2)g.
The state spaceS1 is lumpable with respect to this partition
and the lumped generator matrix̂Q for class 1 can be
computed with the help of a projection matrixV and a
selection matrixU [12]. It is given by

Q̂ = UQV = U
�
Q(1) �Q(1)

�
V

The productQ(1) �Q(1) is a9� 9 matrix and matricesU
andV have dimensions6�9 and9�6. The full structure
of matrix Q̂ is shown in Fig. 6.

Entries � denote negative row sums. By multiplying
Q and the projection matrixV , columns corresponding
to equivalent states are added. In the resulting matrix
QV , all rows corresponding to equivalent states are equal.
Therefore, for every equivalence class, only one such row
is chosen by the selection matrixU .
This reduction technique works also in the presence of
submodel synchronization. Returning to the example of

5

Fig. 4, the matrices describing the behaviour of the reduced
model ofSM1 andSM2 can be computed as

Q̂
(12)
l = U

�
Q
(1)
l � Q

(2)
l

�
V

Q̂(12)
ek = U

�
Q(1)

ek � Q(2)
ek

�
V

Q̂(12)
ekn = U

�
Q(1)

ekn �Q(2)
ekn

�
V; k 2 f1; 2g

The reduced overall generator matrix is then given by

Q̂ = Q
(0)
l � Q̂

(12)
l +

�2
k=1

�
Q(0)

ek
 Q̂(12)
ek � Q(0)

ekn
 Q̂(12)
ekn

�

In general, the structure of matricesU andV depends only
onsi andni. Their dimensions areCni

si �snii andsnii �Cni
si

whereCni
si =

�
ni+si�1
si�1

�
. Lumping equivalent states in

the combined stochastic process of classi reduces the state
space of this process fromsnii to

�
ni+si�1
si�1

�
.

5. The Fast Symmetric Lumping Algorithm

In this Section we discuss the problem of building the redu-
ced model efficiently in practice. We present an algorithm
for computing the matrices describing the reduced Markov
chain of submodel classi. The complexity of the scheme
will be analyzed and compared to the complexity of the
algorithm to compute the non-reduced tensor descriptor.

The following is a new algorithm to compute matrices

of the type Q̂(i) = U ~Q(i)V = U

niN
j=1

Q(i)

!
V “on

the fly”, i.e. directly from the submodel matrixQ(i)

without explicitly computing the tensor product inside the
parentheses. MatricesU andV do not appear explicitly in
the algorithm. The idea is to compute only those rows of
~Q(i) which will be selected by the left-multiplication with
the selector matrixU . Within each row, the projection
of all symmetric states onto each other (usually achieved
by the right-multiplication with the projection matrixV)
is carried out immediately. In order to be able to do
this, for each matrix entry the algorithm keeps track of
the state description of the originator state(o1; . . . ; oni)
and of the target state(t1; . . . ; tni). Incrementing the
state description is done in a special way by the function
increment_ordered(), which follows the lexicographical
ordering but skips those states(o1; . . . ; oni) where the
condition o1 � . . . � oni is violated. Elements of~Q(i)

are given by

~Q(i)((o1; . . . ; oni); (t1; . . . ; tni)) =
niY
j=1

Q(i)(oj ; tj)

Therefore the entries of̂Q(i) are computed as

Q̂(i)((o1; . . . ; oni); (t1; . . . ; tni))

=
X

(m1;:::;mni)=Pi(t1;:::;tni)

niY
j=1

Q(i)(oj; mj)

where Pi(t1; . . . ; tni) denotes a permutation of
(t1; . . . ; tni). The following is a description of the
algorithm in pseudo-code:
(1) row = 1
(2) (o1; . . . ; oni) = (1; . . . ; 1)
(3) while ((o1; . . . ; oni) 6= (si; . . . ; si))
(4) {col = 1
(5) (t1; . . . ; tni) = (1; . . . ; 1)
(6) while ((t1; . . . ; tni) 6= (si; . . . ; si))
(7) {Q̂(i)(row; col)

=
P

(m1;:::;mni)=Pi(t1;:::;tni)

niQ
j=1

Q(i)(oj; mj)

(8) increment_ordered((t1; . . . ; tni))
(9) col++
(10) }
(11) increment_ordered((o1; . . . ; oni))
(12) row++
(13) }
For the complexity analysis of this algorithm we use
the following scheme, which indicates the number of
computation steps needed for the respective line.

(1) 1
(2) + ni
(3) + Cni

si *
(4) {1
(5) + ni
(6) + Cni

si *
(7) {ni � snii =Cni

si

(8) + ni
(9) + 1
(10) }
(11) + ni
(12) + 1
(13) }
Altogether,

1 + ni + Cni
si

�
2 + 2ni + Cni

si

�
1 + ni + nis

ni
i =Cni

si

��
=1+ni+2Cni

si +2niC
ni
si +

�
Cni
si

�2
+ni

�
Cni
si

�2
+niC

ni
si s

ni
i

steps are required. Here we have used the information, that
on the averagesnii =Cni

si permutations have to be considered
for a given target state(t1; . . . ; tni).
The non-reduced generator matrix~Q(i) can be computed
by an algorithm which has similar structure but uses the

6

1.0 2.0 3.0 4.0 5.0 6.0
n

1

10

100

1000
R

ed
uc

tio
n

s=10
s=30
s=100

Figure 7: Gain of the Reduction for Various Parameter Sets

ordinary incrementation function and on line (7) employs
the expression for~Q(i)((o1 ; . . . ; tni); (t1; . . . ; tni)). Its
number of computation steps is given by

1 + ni + snii (2 + 2ni + snii (1 + ni + ni))

=1 + ni + 2snii + 2nis
ni
i + s2nii + nis

2ni
i + nis

2ni
i

Comparing the dominant terms of both complexities, it
can be observed that the construction of the reduced
generator is cheaper than the construction of the non-
reduced generator by at least a factor ofsnii =Cni

si .

This gain is actually what would be expected. For the
computation of one row of the reduced matrix̂Q(i), every
entry of matrix ~Q(i) has to be considered (through the
permutations), so within a row we do not expect a gain. But
since onlyCni

si rows instead ofsnii have to be computed,
we expected the above gain. For the illustration of the gain
for various parameter setssi andni we refer to Fig. 7.

The algorithm to computêQ(i) = U

niL
j=1

Q(i)

!
V has

the same form, only the expression on line (7) has to be
substituted by

Q̂(i)(row; col) =
X

(m1;:::;mni)=Pi(t1;:::;tni)

(

niX
j=1

Q(i)(oj ; mj)1(8k 6= j : ok = mk))

The function1() used here evaluates to either1 or 0, depen-
ding on the condition given in the parentheses. Complexity
results for this case are the same as above.

Further optimizations are possible if the sparsity of the
matrices is taken into account. In particular, the product
on line (7) of the algorithm equals zero if one of the entries
Q(i)(oj; mj) is zero.

The analysis of complexity shows that the computation of
Q̂(i) “on the fly” is already cheaper than the computation
of ~Q(i). This is a very important result. It states that one
does not have to pay anything in order to benefit from the
reduction of the state space for the subsequent analysis of
the Markov chain.

6. Conclusion

The state space reduction achieved by the lumping of
equivalent states can be massive! The reduction of the
combined state space of similar submodels implies the
reduction of the overall model’s state space by the same
factor. In this way, the overall model benefits fully from
the reduction within its classes. Since the sum of the
steady-state probabilities of equivalent states is equal to
the steady-state probability of the representative state in
the reduced model, the technique provides exact results.

The technique presented in this paper makes it possible to
carry out model experiments before making final imple-
mentation decisions for parallel programs with replicated
processes. Modelling helps to avoid expensive program-
ming effort leading to unsuccessful solutions. Even if a
model would be intractable using conventional techniques,
its evaluation can be made feasible by the state space
reduction technique we have described.

References

[1] M. Ajmone Marsan, G. Balbo, and G. Conte. A
Class of Generalized Stochastic Petri Nets for the
Performance Evaluation of Multiprocessor Systems.
ACM Transactions on Computer Systems, 2(2):93–
122, May 1984.

[2] G. Balbo, S. Bruell, and S.Ghanta. Combining Queu-
eing Networks and Generalized Stochastic Petri Nets
for the Solution of Complex Models of System Beha-
viour. IEEE Transactions on Computers, 37(10):1251–
1268, Oct. 1988.

[3] B.Plateau and K. Atif. Stochastic Automata Network
for Modeling Parallel Systems.IEEE Transactions on
Software Engineering, 17(10):1093–1108, 1991.

[4] B.Plateau and J.-M. Fourneau. A Methodology for
Solving Markov Models of Parallel Systems.Journal
of Parallel and Distributed Computing, 12:370–387,
1991.

[5] P. Buchholz. Hierarchical Markovian Models - Sym-
metries and Reduction. In R. Pooley and J. Hillston,
editors, 6th International Conference on Modelling
Techniques and Tools for Computer Performance
Evaluation, pages 305–319, Edinburgh, September
1992.

7

[6] P. Buchholz. Numerical Solution Methods Based on
Structured Descriptions of Markovian Models. In
G. Balbo and G. Serazzi, editors,Proceedings of the
5th International Conference on Modelling Techniques
and Tools for Computer Performance Evaluation,
pages 242–258. Elsevier Science Publisher B.V.,
1992.

[7] G. Chiola. GreatSPN 1.5 Software Architecture. In
G. Balbo and G. Serazzi, editors,Proceedings of the
5th International Conference on Modelling Techniques
and Tools for Computer Performance Evaluation,
Torino, Feburary 1991, pages 117–132. Elsevier
Science Publisher B.V., 1992.

[8] G. Chiola, C. Dutheillet, G. Franceschinis, and
S. Haddad. On Well-Formed Coloured Nets and their
Symbolic Reachability Graph. InProceedings of the
11th International Conference on Application and
Theory of Petri Nets, pages 387–410, Paris, June 1990.

[9] G. Ciardo and J. Muppala.Manual for the SPNP
Package Version 3.1. Duke University, October 1991.

[10] M. Davio. Kronecker Products and Shuffle Algebra.
IEEE Transactions on Computers, C-30(2):116–125,
February 1981.

[11] S. Donatelli. Superposed Stochastic Automata: a class
of Stochastic Petri Nets amenable to parallel solution.
In Proceedings of the Fourth International Workshop
on Petri Nets and Performance Models, pages 54–63,
Melbourne, December 1991.

[12] J. Kemeny and J. Snell.Finite Markov Chains.
Springer, 1976.

[13] L. Kleinrock. Queueing Systems, volume 1: Theory.
John Wiley & Sons, 1975.

[14] B. Plateau. On the Synchronization Structure of
Parallelism and Synchronization Models for Dis-
tributed Algorithms. In Proceedings of the ACM
Sigmetrics Conference on Measurement and Modeling
of Computer Systems, pages 147–154, Austin, TX,
August 1985.

[15] B. Plateau, J.-M. Fourneau, and K.-H. Lee. PEPS:
A Package for Solving Complex Markov Models

of Parallel Systems. InProceedings of the 4th
International Conference on Modelling Techniques
and Tools for Computer Performance Evaluation,
pages 341–360, Palma (Mallorca), September 1988.

[16] W. Sanders and J. Meyer. Reduced Base Model Con-
struction Methods for Stochastic Activity Networks.
IEEE Journal on Selected Areas in Communications,
9(1):25–36, January 1991.

[17] M. Veran and D. Potier. QNAP2: A Portable Envi-
ronment for Queueing Systems Modelling. InPro-
ceedings of the First International Conference on
Modelling Techniques and Tools for Computer
Performance Evaluation, Paris, May 1984.

Appendix

Let M(r; c) be the set of matrices withr rows andc
columns. The tensor product (Kronecker product) of two
matricesA 2M(rA; cA) andB 2 M(rB ; cB) is the matrix
C 2 M(rArB; cAcB) such that

C = A
B =

2664
a11B a12B . . . a1cAB
a21B

...
...

arA1B . . . arAcAB

3775
For example,�

a11 a12 a13
a21 a22 a23

�

�
b11 b12
b21 b22

�

=

264
a11b11 a11b12 a12b11 a12b12 a13b11 a13b12
a11b21 a11b22 a12b21 a12b22 a13b21 a13b22
a21b11 a21b12 a22b11 a22b12 a23b11 a23b12
a21b21 a21b22 a22b21 a22b22 a23b21 a23b22

375

The tensor sum of two square matricesA 2M(dA; dA) and
B 2M(dB ; dB) is defined asA�B = A
 IdB +IdA
B
whereId denotes an identity matrix of dimensiond.

For example,

24a11 a12 a13
a21 a22 a23
a31 a32 a33

35� �b11 b12
b21 b22

�
=

2666664
a11 + b11 b12 a12 a13

b21 a11 + b22 a12 a13
a21 a22 + b11 b12 a23

a21 b21 a22 + b22 a23
a31 a32 a33 + b11 b12

a31 a32 b21 a33 + b22

3777775

8

