
Dependability Model Transformation -
A Stochastic Process Algebra Semantics for ZuverSicht Models

M. Riedl, J. Schuster, M. Siegle
University of the German Federal Armed Forces Munich
Department of Computer Science
{martin.riedl, johann.schuster, markus.siegle}@unibw.de

M. Blum, F. Schiller
Technische Universität München TUM
Department of Mechanical Engineering
Chair of Information Technology in Mechanical Engineering
{blum,schiller}@itm.tum.de

This paper presents a generic method for the automatic transformation from an application-oriented high-level
dependability formalism to a low-level formal model. We start with ZuverSicht, a modelling framework for
dependability and safety analysis of mechatronic systems. The target formalism is Stochastic Process Algebra
(SPA), which has the advantage that the transformation can be done in a fully compositional manner. Trans-
formation patterns for different dependability and safety aspects, such as failure and repair, error propagation,
or failure with common cause are presented. The advantages of this approach are twofold: Firstly, the trans-
formation defines a formal semantics for ZuverSicht models, and secondly, analysis of the low-level model can
benefit from the efficient algorithms implemented in the SPA tool CASPA.

1 Introduction

Proper quantification of safety and reliability is a
major issue in industrial automation. Plant opera-
tors are required by law to provide safety param-
eters (IEC61508 2000; ISO13849-1 2006), and the
market requires the declaration of reliability param-
eters. Nowadays, machinery in industrial automation
is made up of complex mechatronic devices and their
associated complex safety functions. There are var-
ious methods for evaluating a system’s safety, e.g.
FMEA (Failure Mode and Effects Analysis), FTA
(Fault Tree Analysis) (Vesely, Goldberg, Roberts, and
Haasl 1981) or Markov models (Stewart 2009). A
comparison of such methods can be found in (Rou-
vroye and van den Bliek 2002).

Markov models are among the most suitable meth-
ods for evaluating the safety of complex functions.
However, working directly at the Markov chain level
is not practicable for the human modeller, since
model construction is very error-prone, especially if
dynamic aspects such as error propagation, failures
with common cause or different repair strategies need
to be considered. Working with formalisms such as
Stochastic Petri Nets (SPN) (Marsan, Balbo, Conte,

Donatelli, and Franceschinis 1995) or Stochastic Pro-
cess Algebra (SPA) (Hermanns, Herzog, and Katoen
2002) improves the situation but still requires an ex-
pert modeller. Therefore, there is a strong need for
high-level application-oriented modelling languages
with an automatic translation to the low-level Markov
model which can then be analysed. Within the project
ZuverSicht (Blum and Schiller. 2009) a user-friendly
graphical notation was developed to specify all rele-
vant properties of safety functions. ZuverSicht sup-
ports safety engineers providing the complete tool
chain to perform specification work and calculate
safety measures such as PFH (Probability of Fail-
ure per Hour). A database stores the specifications as
safety patterns to enable re-use. The original Zuver-
Sicht approach generates a Markov model of an over-
all safety function by means of the Kronecker sum of
predefined component models. Afterwards, this sys-
tem model is adapted by hard-coded operations to in-
tegrate all relevant information about diagnosis, error
propagation, common cause failures and the specifi-
cation of dangerous and safe system states. After the
system model is parametrised with failure rates, test
rates and repair rates, the user is able to calculate all
relevant safety characteristics for the implementation

of a predefined safety function.
This paper focuses on a new approach to gener-

ate calculation models from ZuverSicht models by
means of a translation to SPA (instead of Kronecker
sum and hard-coded manipulations). This has two ad-
vantages: Firstly, the translation to SPA provides a
formal semantics for ZuverSicht models. Secondly,
translating into SPA makes it possible to exploit the
highly efficient analysis algorithms implemented in
the tool CASPA (Kuntz, Siegle, and Werner 2004;
Bachmann, Riedl, Schuster, and Siegle 2009), which
is based on the symbolic data structure MTBDD and
therefore able to cope with very large state spaces.
This paper provides patterns and transformation rules
that automatically transform a ZuverSicht model into
a CASPA SPA model. However, the composition
scheme presented here is generic, such that it could be
abstracted and provided for other formalisms as well.

The paper is structured as follows: Sec. 2 presents
an informal introduction to the ZuverSicht depend-
ability domain, explaining how the components be-
have, and introducing the different dependability as-
pects of the formalism. Sec. 3 provides the neces-
sary basics about the CASPA SPA. Sec. 4, the main
part, presents the transformation rules and patterns.
In Sec. 5, we discuss a case study of a simplified pro-
duction cell. Our prototypical implementation is also
briefly described. The paper finishes with a conclu-
sion and some issues concerning future work.

2 The ZuverSicht Dependability Domain

In the ZuverSicht dependability domain, a system is
modelled as a set of components which are subject to
failure. In addition to the set of components, differ-
ent dependability and safety aspects can be modelled.
These will be described in the sequel:

2.1 Component behaviour

Fig. 1 depicts a component’s behaviour. There are
four possible states: The ok state (OK), the safe de-
tected state (SD), the dangerous detectable state (DD)
and the dangerous undetectable state (DU). The fol-
lowing events, inherent to the component, can oc-
cur: Event safe detected means that an error oc-
curs, but this error is properly detected and does
not lead to a dangerous situation. Event dangerous
detectable is an error that leads to a dangerous situ-
ation, but this can afterwards be detected by a test rou-
tine test. Event dangerous undetectable is an er-
ror that is dangerous and cannot be detected. States OK
and SD are considered safe, whereas states DD and DU
are considered dangerous.

2.2 Safety Aspect: Safety Property and Hazards

The condition under which the overall system is con-
sidered safe is specified by a Reliability Block Dia-
gram (RBD). As usual, an existing path through the

Figure 1. Internal behaviour of a component

RBD means that the system is safe, and a situation
where no path through the RBD exists is dangerous.
While the system is in such a dangerous situation, an
external event can occur that brings the system as a
whole into a hazardous state. Such an event repre-
sents the demand of the safety function. In Zuver-
Sicht, these demand events occur randomly after an
exponentially distributed time. After the occurrence
of such a hazard, the system as a whole must be re-
newed in order to reach a clean state, where all com-
ponents are again in the OK state.

In the example shown in Fig. 2, the overall system
is safe if components C3 and C4 are both safe and at
least one of the components C1 and C2 is safe.

Figure 2. Example for a hazard condition

2.3 Dependability Aspect: Error Propagation

In ZuverSicht, error propagation may be caused by
an arbitrary condition which is again specified by an
RBD. The effect is that the affected components are
no longer able to perform the self-test routine test.

In the example shown in Fig. 3, Component C3
would no longer be able to perform test if the con-
dition specified by the RBD is satisfied.

Figure 3. Error propagation affecting component C3

2.4 Dependability Aspect: Common Cause Failure

An external event, occurring at a certain rate, may be
the common cause for the simultaneous failure of two
or more components. As a result, the affected com-
ponents transition to the DD or DU state. However, the
common cause failure can only occur, if all affected
components were originally in the OK state.

2.5 Dependability Aspect: Recovering by Repair

As soon as the first component moves to the SD
state, the global repairman (GRM) is notified and will
immediately start to repair the component. If other

components move to their SD state while repair is
in progress, they will also be repaired together with
the previously failed components. When repair is fin-
ished, all components that are currently in the SD state
move simultaneously to the OK state and the GRM be-
comes inactive again.

3 Syntax and Semantics of CASPA SPA

In this section, we give a short overview of the
CASPA input language as far as it is needed for the
transformation patterns given in Sec. 4. This language
is a stochastic process algebra that has been extended
recently to support both Markovian and timeless ac-
tions (Bachmann, Riedl, Schuster, and Siegle 2009).
The basic building blocks of the language are sequen-
tial processes that can be combined by a parallel com-
position operator. To specify the behaviour of a se-
quential process, actions have to be used. An action
in CASPA is a 2-tuple (l,v) consisting of a label l
and a numerical value v. Two kinds of actions are dis-
tinguished:
• a Markovian action, denoted by (m,v), is driven by

an exponentially distributed random variable with
parameter v. In the sequel we also write

m,v→ .
• an immediate action, denoted by (*i,w*), defines

a timeless probabilistic transition i with a proba-
bility given by its normalised weight w. Again, we

may also write
i,w
99K.

3.1 Definition of sequential processes

Fig. 4 shows an exemplary definition of a
parametrised sequential process. Line (1) de-
fines the name of the process (C1) and the name
(state) and range (0,1) of its process parameter.
One can identify a single process parameter with the
state of the process, i.e. parameter state=i will be
referenced as state i. The behaviour of the process

(1) C1(state [1]) :=
(2) [state=0] -> (fail,3.0);C1(1) + (work,2.0);C1(0)
(3) [state=1] -> (*C1_fail,1.0*);C1(1)
(4) [*] -> (*occ,1.0*);HAZC1(0)

Figure 4. Sequential process example 1

C1_ref(state [1]) := [state=0] -> (*C1_fail,1.0*);C1_ref(1)

Figure 5. Sequential process example 2

is defined in lines (2)-(4). Line (2) has a guard
[state=0] meaning that the given transitions em-
anate from state 0. The choice operator (+) offers two
concurring Markovian transitions: Either fail with
rate 3 leading to state 1 or work with rate 2 returning
to state 0 (self loop). In line (3) an immediate action
C1_fail is given (a self-loop of state 1 with weight
1). Line (4) is valid for every state (guard [*]) and
defines an immediate action occ with weight 1 that
leads to state 0 of process HAZC1 (to be defined).

3.2 Parallel Composition

The crucial point for the transformation patterns given
in Sec. 4 is that they have to be composed in parallel
in a reasonable way. The CASPA language provides
the following notation of parallel composition of the
processes P1 and P2 with respect to a synchronisation
set S resulting in a composed process P:

P:=P1|[S]|P2

That means that P consists of both P1 and P2 but
with the constraint that the sequential processes are
forced to perform all the actions in S together. The
product state space consists of 2-tuples (x1, x2) where
x1 is a state of P1 and x2 a state of P1. A formal
approach can be found in (Hermanns, Herzog, and
Katoen 2002; Bachmann, Riedl, Schuster, and Siegle
2009). We look at the parallel composition C of C1
(given in Fig. 4) and C1_ref (given in Fig. 5) starting
in state (0,0):

C:=C1(0)|[C1_fail]|C1_ref(0)

Examples for possible transitions in the product state
space are:
• (0,0)

fail,3.0→ (1,0). Here C1 fails by its local
transition fail, which does not affect C1_ref
(i.e. C1_ref remains in its local state 0).

• (1,0)
C1 fail,1.0
99K (1,1). Here C1 notifies C1_ref: C1

performs its self-loop while synchronously C1_ref
changes its state.

3.3 Hiding actions

The CASPA input language also provides a hid-
ing operator that can be used to hide internal
behaviour. After the parallel composition of the
example models C1(0)|[C1_fail]|C1_ref(0) the
synchronisation set is not needed anymore, so the
action C1_fail can be converted into an internal
action named tau (so it cannot be used for further
synchronisations). In the CASPA syntax one writes
hide C1_fail in C1(0)|[C1_fail]|C1_ref(0).
Note that for the transformations given in Sec. 4 it
is not always allowed to hide the entire synchro-
nisation set as some actions are needed for further
synchronisations.

4 Transformation Patterns

In this section, we provide all transformation patterns
and define a composition scheme needed to map a Zu-
verSicht model into a stochastic process algebra.

At first, in Sec. 4.1, the pattern for a ZuverSicht
component is defined. In the following sections 4.2 -
4.6, all relevant patterns for the aspects are defined.
In the last section 4.7, we provide rules how those
patterns are composed together to obtain the overall
process algebra model for the system.

4.1 Component Behaviour Pattern

The mapping of the ordinary ZuverSicht behaviour
to process algebra is done directly. For the aspect of
the system being in a safe or unsafe state the com-
ponent processes has to provide information about its
local safeness property. Assuming a component’s pro-
cess instance name C as shown in Fig. 6 (where �
is used as a placeholder for the rate parameters), the
component pattern will be explained in the context
of its aspects. At first the aspect of a global repair-
man is considered for a component, i.e. if a compo-
nent reaches the safe detected state, a repairman
must be notified (denoted by action nr). Whenever
the repair process is completed, all component pro-
cesses are notified using rd, which means that all pro-
cesses that are currently in the safe detected state
transition to their initial state and all the processes
that were not in the safe detected state will re-
main in their current state. For each component, in-
formation can be retrieved concerning a certain prop-
erty, e.g. if the component is currently safe or if it
is functional. Therefore, each state has a number of
self-loops corresponding to a certain property. The in-
formation whether or not a property is fulfilled can
be obtained by synchronising with the correspond-
ing self-loop actions. E.g. self-loops labelled C safe,
C dang indicate if a component is currently safe or
not. C func and C nonf indicate whether the system
is functional, i.e. is in the OK-state, or not. If a com-
mon cause failure occurs then the affected compo-
nents are notified by synchronising with C dd,C du,
moving their state in either dangerous detectable or
dangerous undetectable. The last important thing is
that the system has an extra state that represents a
system hazard. This means if a certain property is un-
satisfied, the event occ converts all components inde-
pendent of their current state simultaneously into the
hazardous state. From the hazardous state, an event
new moves all components simultaneously to their
initial state. To reduce complexity and keep the reader

C(state [3]) :=
[state=0] -> (sd,�);C(1)
[state=0] -> (dd,�);C(2)
[state=0] -> (du,�);C(3)
[state=0] -> (*C_dd,1.0*);C(2)
[state=0] -> (*C_du,1.0*);C(3)
[state=2] -> (C_test,�);C(1)
[state=0] -> (*C_safe,1.0*);C(0)
[state=1] -> (*C_safe,1.0*);C(1)
[state=2] -> (*C_dang,1.0*);C(2)
[state=3] -> (*C_dang,1.0*);C(3)
[state=0] -> (*C_func,1.0*);C(0)
[state!=0] ->

(*C_nonf,1.0*);C(state)
[state=1] -> (*nr,1.0*);C(state)
[state=1] -> (*rd,1.0*);C(0)
[state!=1] -> (*rd,1.0*);C(state)
[*] -> (*occ,1.0*);HAZC(0)

HAZC(state [0]) :=
[state=0] -> (*new,1.0*);C(0)

Figure 6. Component pattern

focused on the relevant parts, we henceforth do not
show the sequential process part leading to the haz-
ard state anymore, as this is the same as shown in
the component pattern. This means that all subsequent
process algebra definitions and figures are shortened

by the hazard state and all involved actions.

4.2 Aspect Pattern of a Global Repairman

The first aspect introduced here is the global repair-
man aspect (see Fig. 7). If one component reaches the
safe-detected state, the repairman (as the only repair
process existing in that system) is notified nr. The re-
pairman synchronises over the action by nr, i.e. start-
ing to repair the system. After a certain time, the re-
pair process is finished (represented by the Markovian
action r) and the repairman signals that the repair pro-
cess is complete with rd. All component process in-
stances synchronise with rd simultaneously.

GRM(state [2]) :=
[state=0] -> (*nr,1.0*);GRM(1)
[state=1] -> (r,�);GRM(2)
[state=2] -> (*rd,1.0*);GRM(0)

Figure 7. Global repairman pattern

4.3 Aspect Pattern of a Common Cause Failure

In ZuverSicht, a common cause failure affects
two components. However, there are different error
modes: either one component fails with dangerous
undetectable and the other one with dangerous
detectable, or both fail with the same dangerous
failure type. The state S in Fig. 8 represents the sit-
uation where both components are in the OK state,
while state U indicates that both components are non-
functional. If one of these components becomes non-
functional, the common cause process synchronises
with an immediate action of the component (e.g.
C1 nonf or C2 nonf) and can no longer perform the
external common cause event. If one component be-
comes functional again (reaches the components OK
state), the common cause process synchronises with
C1 func or C2 func. If both components reach their
OK state again, the common cause process transitions
to its S state. The possible failure types are repre-
sented by Markovian actions labelled with the com-
mon cause identifier and the types of the dangerous
failures: CC1 dddu, CC1 dudd, CC1 dddd, CC1 dudu.
The rates for the Markovian common cause fail-
CC_CC1(state [3]) :=

[state=0] ->
(dudd,�);(*C1_du,1.0*);(*C2_dd,1.0*);CC_CC1(1)

+ (dddu,�);(*C1_dd,1.0*);(*C2_du,1.0*);CC_CC1(1)
+ (dudu,�);(*C1_du,1.0*);(*C2_du,1.0*);CC_CC1(1)
+ (dddd,�);(*C1_dd,1.0*);(*C2_dd,1.0*);CC_CC1(1)

/* evaluation part */
[state=0] ->

(*C1_nonf,1.0*);CC_CC1(2)
+ (*C2_nonf,1.0*);CC_CC1(3)

[state=2] ->
(*C2_nonf,1.0*);CC_CC1(1)

+ (*C1_func,1.0*);CC_CC1(0)
[state=3] ->

(*C1_nonf,1.0*);CC_CC1(1)
+ (*C2_func,1.0*);CC_CC1(0)

[state=1] ->
(*C1_func,1.0*);CC_CC1(3)

+ (*C2_func,1.0*);CC_CC1(2)

Figure 8. Common Cause Pattern

ures are calculated (according to (Blum and Schiller.
2009)) in the form

λdudd = β ·min{λC1du
, λC2dd

} ,

C1_safe_ref(state [1]) :=
[state=0] ->

(*C1_dang,1.0*);(*pu,1.0*);C1_safe_ref(1)
[state=1] ->

(*C1_safe,1.0*);(*ps,1.0*);C1_safe_ref(0)

Figure 9. Pattern for retrieving the safeness aspect of a
component

SBM(state [n]) :=
[state<n] -> (*pu,1.0*);SBM(state+1)
[state>0] -> (*ps,1.0*);SBM(state-1)
[state=0] -> (*s,1.0*);SBM(state)
[state>0] -> (*u,1.0*);SBM(state)

Figure 10. Pattern for composing evaluation processes in
series

PBM(state [n]) :=
[state<n] -> (*pu,1.0*);PBM(state+1)
[state>0] -> (*ps,1.0*);PBM(state-1)
[state<n] -> (*s,1.0*);PBM(state)
[state=n] -> (*u,1.0*);PBM(state)

Figure 11. Pattern for composing evaluation processes in
parallel

where β represents the ratio of common cause failures
from the components failures.

4.4 Series-Parallel Evaluation Pattern

The ZuverSicht formalism allows arbitrary conditions
to be defined in an RBD-style for the error propaga-
tion and hazard aspects. E.g. the safety property of
a system can be defined by a series parallel RBD
representing a logical formula. The RBD does not
directly use a component instance, instead it uses a
reference to a component instance. Therefore, arbi-
trary systems can be specified, i.e. also bridges or
more complex networks (by using multiple references
to the same component). In Fig. 9, a referencing
process definition for a Component C1 is shown. It
has to be synchronized with C1 using the synchroni-
sation set C1 dang, C1 safe. The referencing pro-
cess indicates whether the referenced process is in
a safe state (ps) or in a dangerous state (pu). Other
properties such as functional or nonfunctional, i.e.
synchronising with C1 func, C1 nonf, C2 func,
C2 nonf instead, can be expressed in a similar way.
Assume now that n component references C1 ref and
C2 ref are put in series. Then a counting process
has to be introduced to determine (e.g. see Fig. 10)
whether the series composition is safe or dangerous,
e.g. if one component reference becomes unsafe (syn-
chronized event pu has taken place) the series compo-
sition also exhibits an dangerous situation (self-loop
u). The parallel composition is almost identical, only
the s- and u-self-loops are different (see Fig. 11). To
build nested structures a renaming process pattern is
introduced (see Fig. 12), synchronizing with either a
parallel or a serial process behaviour, that hides the
actions s and u to the environment but synchronizing
with them to provide the corresponding actions ps in-
stead of s and pu instead of u to the outside.

RENAME(state [1]) :=
[state=0] ->

(*u,1.0*);(*pu,1.0*);RENAME(1)
[state=1] ->

(*s,1.0*);(*ps,1.0*);RENAME(0)

Figure 12. Pattern to allow nested parallel/series evaluation
structures

4.5 Aspect Pattern for an Hazard

SYSHAZARD(state [2]) :=
[state=0] ->

(*pu,1.0*);SYSHAZARD(1)
[state=1] ->

(*ps,1.0*);SYSHAZARD(0)
[state=1] ->

(demand,�);(*occ,1.0*);SYSHAZARD(2)
[state=2] ->

(sysrep,�);(*new,1.0*);SYSHAZARD(0)

Figure 13. Syshazard aspect

As mentioned above, a ZuverSicht model has a
certain global state that represents the system to be
in a hazardous situation. The process instance of the
nested evaluation patterns described before represents
this safeness property of the system. To this evalua-
tion process the hazard process (see Fig. 13) is com-
posed. The Syshazard aspect which is synchronised
within the evaluation process can either be in a un-
satisfied state U or a satisfied state S. If the expres-
sion is unsatisfied, the Syshazard process can perform
a Markovian action demand, afterwards synchronis-
ing over occ with all other processes, leading to the
hazardous state. This hazardous state can only be left
by performing a Markovian action sysrep and tran-
sitioning all processes into their initial state via action
new.

4.6 Aspect of Error Propagation

An error propagation occurs if an arbitrary RBD ex-
pression is unsatisfied, affecting another component
such that it is not able to perform its test any more.
This evaluation takes place in the same form as intro-
duced in Sec. 4.4. The evaluation process is composed
with the error propagation process (Fig. 14), synchro-
nising via the actions ps,pu. If the evaluation is sat-
isfied, the self-loop to which the affected process has
to be synchronised by Cx test is enabled. If the eval-
uation is unsatisfied the error propagation process is
in state U where no synchronised step over Cx test is
possible.

EPM_name(state [2]) :=
[state=0] -> (*pu,1.0*);EPM_name(1)
[state=1] -> (*ps,1.0*);EPM_name(0)
[state=0] -> (Cx_test,1.0);EPM_name(state)

Figure 14. Error propagation aspect

4.7 Composition of the overall model

At first we provide a rule on how to compose an eval-
uation process used by the error propagation aspects
and the hazard aspect. Evaluation processes contain
reference processes to components providing the ac-
tions ps,pu evaluating if the given property is sat-
isfied within a single component. In Fig. 15, one can

see how parallel and series RBD expressions are com-
posed in process algebra terms. An arbitrary evalua-
tion expression can be substituted to the clouds. Their
composition can be composed to a series, respectively
a parallel behaviour model (denoted as SBM, resp.
PBM), both synchronising over the actions ps,pu. Af-
terwards those actions can be made internal by ap-
plying the hide operator. Now, the composition ex-
poses the actions s,u. Therefore the renaming pro-
cess is composed to it performing the actions ps,pu
whenever the actions s,u take place. Finally, the ac-
tions s,u can be hidden. Now, those series/parallel
constructs provide the same actions to the outside and
can be nested arbitrarily.

The model has a global hazard state into which
each process has to move when a demand occurs by
providing the immediate action occ. Reversely by the
action new each process can move over into its initial
state again. All processes in the system move over to
the hazard state and back to their initial states simul-
taneously. Therefore one can find the actions occ and
new in all following synchronisation sets.

Figure 15. Evaluation composition scheme

The state of an evaluation is represented by its root
process. A hazard aspect or an error propagation as-
pect can now be composed to it. In Fig. 16, one can
also see the synchronisation set including ps,pu. Fi-
nally, these actions can be hidden. In Fig. 17, one

Figure 16. Aspect composition scheme

can see that for each component a process is instanti-
ated and composed with other components processes.
The repairman aspect repairs all component simulta-
neously, therefore the action rd must be part of the
synchronisation set. Furthermore, all aspects are com-
posed in parallel. In a final step, the components are

composed with the aspects. Therefore, all synchro-
nising actions used for the reference processes inside
the evaluation structures are put into the synchroni-
sation set: The actions Cx du,Cx dd of the affected
component performed by a common cause failure, all
Cx test actions that are affected by an error prop-
agation, rn,rd for the interaction with the repairman
and finally of course occ,new to synchronise with the
system hazard process.

Figure 17. System composition scheme

5 Case Study

To demonstrate our approach, we use a typical safety
relevant pneumatic application (see Fig. 18) consist-
ing of two valves and a cylinder with an additional
brake. The safety function is to stop the movement
of the piston immediately and stay in position until
another command occurs. The double-acting cylinder
A1 can be moved and stopped by the 5-port/3-way
valve S1, which is also used for the normal process.
In order to stop the movement, both electromagnetic
coils M1 and M2 are turned off and two return springs
ensure that the valve returns to mid position, which
blocks the entire air flow. To ensure a safety relevant
stop, the 3-port/2-way valve S2 de-aerates the brake
A2. The air tank Z1 and the non return valve V3 en-
sure the power supply of the pneumatic return spring
of valve S2. The check valves with choke V1 and V2
enable a smooth movement and can be neglected in
safety calculations. The cylinder is equipped with two
sensors to detect the end positions of the piston (B1
and B2). These sensors enable a very good diagnosis
of nearly all safety relevant components used in this
application.

5.1 Textual Input Language

The graphical representation of the model and its as-
pects (see Fig. 19) can be serialised into textual form.
For this purpose a domain specific textual language
has been defined for the ZuverSicht language using
the parser combinator library of Scala, a hybrid lan-

Figure 18. Typical safety relevant application

Figure 19. System aspects definition

guage that combines object orientation and a func-
tional paradigm (see (Odersky, Spoon, and Venners
2008)). There, combinators can be defined in-place
using an internal EBNF style domain language, with-
out having to use parser generators. Each rule corre-
sponds to a combinator as a basic building block (that
is the parser for that rule). With the use of higher
order functions, these building blocks can be com-
bined until the whole language is covered. Without
going into details, the components must be defined
first. Then all aspects, starting with an RBD repre-
senting the evaluation formula of the property re-
quested are specified. In Fig. 20, one can see our case
study example transformed into its textual representa-
tion: At the beginning, the components S1, S2, B1
are defined with rate parameters (λsd, λdd, λdu, λtest).
Then the aspect of safety is given with rate parame-
ters (λdemand, λsysrep), implying a hazardous situation
if its evaluation remains unsatisfied. A common cause
failure affecting S1, S2 with β is defined and lastly,
two error propagation aspects are given such that, if
B1 is not functional, both S1 and S2 will not be able
to perform a test.

5.2 Internal Representation, Transformation and
Analysis

Combinator operators compose those parsers and
therefore define the language. The abstract model is
built up whilst combinatory-parsing takes place. Next,
the internal model is traversed and all transformation
Components:

S1(7.0E-7, 7.0E-7, 7.0E-9,0.125, 1),
S2(3.0E-7, 3.0E-7, 3.0E-9,0.125, 0.0416666666666667),
B1(5.0E-6, 5.0E-6, 5.0E-7,0.125, 1)

{ 0 -> 1
0 -s- S1 -> 1
0 -s- S2 -> 1 } => HAZ(0.0416666666666667,0.125)

{ } => GRM(0.125)

CCF <- { } => CC(S1,S2,0.02)

EP1 <- { 0 -> 1
0 -f- B1 -> 1 } => EP(S1)

EP2 <- { 0 -> 1
0 -f- B1 -> 1 } => EP(S2)

Figure 20. Textual model

rules that have been described in Sec. 4 are applied,
resulting in an abstract process algebra model that is
transformed to the concrete CASPA syntax. In Fig.
21, one can see the resulting process algebra model.
First, one can see that the process instantiations of the
components S1, S2 and B1 are composed in parallel,
synchronising over the actions rd, occ, new. Then,
the subtree of the composed aspects is synchronised
over the actions corresponding to the evaluation and
aspect processes. The subtree includes the hazard pro-
cess and its evaluation part, two error propagations
EP1, EP1 (both composed with one reference process
representing the simplest possible evaluation formula
including only one component), a common cause fail-
ure CCF and the global repairman GRM. Remaining un-
synchronised immediate actions are inhibited by syn-
chronisation with a stop process, in order to prevent
the existence of timeless traps, which is done here
for the actions B1 safe,B1 dang,B1 dd,B1 du. The

Figure 21. SPA model & composition hierarchy

textual process algebra model is then streamed into
the CASPA tool (see (Hermanns, Herzog, and Katoen
2002; Bachmann, Riedl, Schuster, and Siegle 2009)).

5.3 Experimental Results

In this subsection, we present some numerical results
for the model. The generated model has 1389 reach-
able states. After elimination of the immediate transi-
tions used for the synchronisations, only 65 reachable
states remain. The elimination is done in 8 symbolic
elimination rounds (cf. (Bachmann, Riedl, Schuster,
and Siegle 2009)). Our measure of interest is the av-
erage probability of failure per hour (PFHt0) for a mis-
sion time of t0 = 20 years. PFHt0 is defined as

PFHt0 :=
rdemand

t0

∫ t0

0

∑
i∈Unsafe

Pi(t)dt (1)

where
∑

i∈UnsafePi(t) is the probability that the
system is in the state where the demand transition
is enabled and rdemand is the global demand rate.
In terms of Fig. 13, rdemand corresponds to the rate
assigned to the Markovian action demand and the
states where demand is enabled are those where
SYSHAZARD is in state 1. Since CASPA does not
directly provide means to calculate the integral
in Eq. (1), we were restricted to transient analy-
sis. We calculated

∑
i∈UnsafePi(t) by the measure

statemeasure demand SYSHAZARD (state=1)
from 0 to 20 years. The product

PFH(t) :=
∑

i∈Unsafe

Pi(t) · rdemand

is given in Fig. 22 (left: first year, right: 0.5 to
20 years). Note that in the first year a quasi-
jump occurs during the bootstrapping process.
Using Simpson’s rule for the supporting points
{0, 3

365.25
, 1

2
,1,2,3, . . . ,20} years we got the result

PFH20 = 1.71063 · 10−9 1/h. The ODE solver of the
ZuverSicht framework calculated 1.71052 · 10−9 1/h

as the result, which fits quite well with our result
(ZuverSicht under-approximates the result by calcu-
lating the flow out of the global hazard state). Look-
ing at the steady-state, we obtain a very rough over-
estimation of PFH20: The CASPA result hereof is
1.7668 · 10−7 1/h, which is also the result of the Zu-
versicht framework solver.

Figure 22. PFH(t)

6 Conclusion and Outlook

We have presented an approach to automatically de-
rive stochastic process algebra models from Zuver-
Sicht models in a compositional fashion by denot-
ing a transformation semantics. Patterns in the form
of sequential processes and rules on how to com-
pose those processes, including the synchronisation
needed, have been defined. Moreover, we demon-
strated the automatism by a pneumatic safety appli-
cation and analysed the relevant PFH measure. Still,
immediate synchronisation leads to very large inter-
mediate potential state spaces, so currently the elim-
ination of immediate actions is the bottleneck of this
approach. In the future, we plan to perform the elimi-
nation within the CASPA tool compositionally, there-
fore keeping the potential state space much smaller.

REFERENCES

Bachmann, J., M. Riedl, J. Schuster, and M. Siegle
(2009). An Efficient Symbolic Elimination Al-
gorithm for the Stochastic Process Algebra
Tool CASPA. In SOFSEM ’09: Proceedings
of the 35th Conference on Current Trends in
Theory and Practice of Computer Science,
Berlin, Heidelberg, pp. 485–496. Springer
LNCS 5404.

Blum, M. and F. Schiller. (2009). Effiziente Sicher-
heitsmodellierung in der Automatisierung-
stechnik. SPS/IPC/DRIVES, Bender et al.
(Hrsg.), VDE, 189–197.

Hermanns, H., U. Herzog, and J.-P. Katoen (2002).
Process algebra for performance evaluation.
Th. Comp. Sci. 274(1-2), 43–87.

IEC61508 (1998-2000). Functional Safety of
electrical/electronic/programmable electronic
safety-related Systems, Parts 1-7. IEC.

ISO13849-1 (2006). Safety of machinery - Safety-
related parts of control systems - Part 1: Gen-
eral principles for design. ISO.

Kuntz, M., M. Siegle, and E. Werner (2004). Sym-
bolic Performance and Dependability Evalu-
ation with the Tool CASPA. In M. Nunez,
Z. Maamar, and F. Pelayo (Eds.), Applying For-
mal Methods: Testing, Performance and M/E
Commerce: FORTE 2004 Workshops, Euro-
pean Performance Engineering Workshop, pp.
293–307. Springer, LNCS 3236.

Marsan, M. A., G. Balbo, G. Conte, S. Donatelli,
and G. Franceschinis (1995). Modelling with
generalized stochastic Petri nets. Wiley.

Odersky, M., L. Spoon, and B. Venners (2008,
November). Programming in Scala: A Com-
prehensive Step-by-step Guide (1st ed.). Ar-
tima Inc.

Rouvroye, J. and E. van den Bliek (2002). Compar-
ing safety analysis techniques. Reliability En-
gineering and System Safety 3, 289–294.

Stewart, W. (2009). Probability, Markov Chains,
Queues, and Simulation. Princeton University
Press.

Vesely, W., F. Goldberg, N. Roberts, and D. Haasl
(1981). Fault Tree Handbook. U.S. Nuclear
Regulatory Commission.

