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ABSTRACT

Stochastic Process Algebras (SPA) have been proposed as
compositional specification formalisms for quantitative mod-
els. Here we apply these compositional features to SPAs ex-
tended by rewards. State space reduction of performability
models can be achieved based on the behaviour-preserving no-
tion of Markov Reward Bisimulation. For a framework ex-
tended by immediate actions we develop a new equivalence re-
lation which allows further model reduction. We show that both
bisimulations are congruences concerning the composition op-
erators of the SPA, which enables a compositional reduction
technique.

INTRODUCTION

Classical process algebras (e.g. CCS (Milner 1989), CSP
(Hoare 1985), LOTOS (Bolognesi and Brinksma 1987)) were
designed as formal description techniques for concurrent sys-
tems. Basically, a process algebra simply provides a language
for describing systems as a cooperation of smaller components,
which themselves belong to the language. The basic con-
structs for all specifications are actions and processes, where
processes may perform actions. The Stochastic Process Alge-
bra (SPA) modelling paradigm is aimed at the integration of
functional and temporal aspects in a single specification and
modelling approach for distributed systems (Götz et al. 1993),
(Hillston 1996) (e.g. multiprocessor systems, communication
networks, production lines, workflow systems, ...). In order to
achieve this integration, temporal information is attached to ac-
tions, in the form of continuous random variables representing
activity durations. In addition, we integrate rewards into SPAs,
reflecting the measure of interest concerning the performance
and dependability evaluation. With rewards as part of the syn-
tax of a SPA we bridge the gap between high-level functional
specification and low-level definition of quantitative measures,
see (Klehmet 1998) for details.
The concept of stochastic process algebras follows the lines of
classical process algebras: The system behaviour is described
by an abstract language from which a labelled transition sys-
tem (LTS) is generated, using structural operational rules (Her-
manns et al. 1998b). The additional time and reward informa-
tion in the semantic model makes it possible to evaluate differ-
ent system aspects:

� functional behaviour (e.g. liveness or deadlocks)
� temporal behaviour (e.g. throughput,waiting times, reliabil-

ity)
� combined properties (e.g. probabilityof timeout, durationof

certain event sequences)
A special feature of (S)PAs is compositionality, which means
that complex models can be constructed in a stepwise fashion
out of smaller building blocks. In such a way it is possible
to build highly modular and hierarchical system descriptions
using the composition operators of the SPA-specification lan-
guage. Among other operators, a parallel composition operator
is used to express concurrent execution and possible synchroni-
sation of processes. An abstractionmechanism provides means
for treating components as black boxes, making their internal
behaviour transparent for the environment. One of the distin-
guishing features of process algebras is the existence of differ-
ent notions of equivalence of processes. These basic features of
(S)PAs, namely compositionality, abstraction and equivalence,
often summarised by the term constructivity, are graphically
depicted in Fig. 1.
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Figure 1: Constructivity – basic principle

Equivalence relations allow the comparison of system descrip-
tions for the purpose of validation or for model reduction (a
class of equivalent states can be replaced by a single macro
state). Dependent on the point of view and the current aim
of analysis, different concepts of equivalence may apply. For-
mal definition of equivalence supports transformations from
one description to another while similar behaviour is guaran-
teed. The most important class of equivalence relations is the



class of bisimulation equivalences or bisimilarities (Hermanns
et al. 1998b). The basic idea is that bisimilar systems can sim-
ulate each other’s behaviour.

AN EXTENSION OF MARKOVIAN REWARD BISIMU-
LATION

We first consider the languageL
1

which is given by the follow-
ing grammer:

P ::= Stop j (a; �; r);P j P [ ]P j P j[S]jP j

hide S in P

The productions’ meaning is (from left to right) inactivity, pre-
fixing, choice, parallel composition and hiding. The prefix by
action a has two additional parameters: The rate � which is the
parameter of the exponentiallydistributeddelay, and the reward
rate r. The reward, a real number or a functional expression,
reflects the quantitative characteristics or enables the compu-
tation of the measures of interest (see (Klehmet 1998), for in-
stance, for a further explanation of these language elements). In
(Klehmet 1998) we defined a performance- and dependability-
related equivalence relation for L

1

, called Markovian Reward
Bisimulation (�

MR

), which is based on Markov chain lumpa-
bility (Nicola 1990). In addition to functionally and tempo-
rally equivalent behaviour, equivalence of processes according
to �

MR

guarantees that the same rewards are derived. This
means for process terms P;Q with P �

MR

Q we are sure to
observe the same properties concerning the quantitative mod-
elling.

Definition 1 Markovian Reward Bisimulation
P and Q are Markovian Reward bisimilar, written P �

MR

Q,
if they are contained in an equivalence relationS onL such that
each (
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(we use fj � � � jg to denote multiset brackets)

With Markovian Reward Bisimulation we have the possibil-
ity of reducing the state space of the underlying Markov Chain
(MC) and therefore the Markov Reward Model (MRM). How-
ever, an important question arises: Is there another equivalence
relation which guarantees the same reward and results, but en-
ables further state space reduction? Using the hiding operator
we can abstract from actions which are not relevant to a spe-
cific performance or dependability analysis. But unfortunately,
relaxing the observability of actions by making them invisible
(through the hide-operator any named action a is changed to
the special invisible action � ) is not sufficient in the stochastic
setting, because only the name of the action is invisible. The
stochastic delay of an action (�; �; r) remains visible for an ob-
server. Consider a process (a; �; r

�

); (�; �; r

�

);Stop: As the
sequence of two exponentially distributed phases is no longer
exponentially distributed, it is impossible to find a rate � such
that (a; �; r);Stop is equivalent to the above process with re-
spect to their random distributions. But there is another obser-
vation: Some activities may require only a very small amount

of time compared to the duration of other activities. They can
be considered as non-time-consuming at the level of detail at
which the model is developed. Therefore, only their functional
(and not their temporal and performance-related) behaviour is
significant to modelling. For instance, a model of a multi-
processor system described at a high level of abstraction may
neglect the durations of task switching, since these operations
require a very small amount of time in contrast to task exe-
cutions. We call such events immediate actions, denoted by
a; b; : : : and add them to the language L

1

. This gives rise to
the language L

2

whose grammar is as above but extended by
the production

P ::= a;P

The corresponding set of action names of L
2

is now
Act

L

2

= Act

M

[ f�g [ Act

I

with
– Act

M

the set of (Markovian) delayed actions a, b, : : :
– � the (immediate) invisible action and
– Act

I

the set of (visible) immediate actions a, b, : : :
We allow synchronization of immediate actions as well as
Markovian actions but not between Markovian and immediate
actions.

Example:
As an example we consider a simple queueing system. It con-
sist of an arrival process Arrival, a queue with finite capacity
named Queue and a Server. We assume that the process of
incoming arrivals – modelled by action arrive – is a Poisson
process with rate �. It is followed by an enqueue action enq

which has negligible time delay. Therefore it is specified as an
immediate action.

Arrival := (arrive; �; 0); enq; Arrival

The behaviour of a finite queue can be described by a family of
processes, one for each value of the current queue population.
Depending on the population, the queue may permit to enqueue
a job (enq), dequeue a job (deq) or both. The latter possibility
is described by a choice operator [ ] between two alternatives.
Again, dequeueing happens without relevant time delay, i.e. it
is modelled as an immediate action, too.
Queue

0

:= enq; Queue

1

Queue

i

:= enq; Queue

i+1

[ ] deq; Queue

i�1

(1 � i < max)

Queue

max

:= deq; Queue

max�1

Next, we define a server process whose service time is exponen-
tially distributed with rate �.

Server := deq; (serve; �; 1); Server

These separate processes can now be combined by the paral-
lel composition operator j[: : :]j in order to describe the whole
queueing system. This operator is parametrised with a list ‘: : :’
of actions on which the partners are required to synchronise:
System := Arrival j[enq]j Queue

0

j[deq]j Server

Considering the rewards, we want to compute the utilisation
of the server. The server of the queueing system will be utilised
whenever it performs a serve activity. Therefore the reward
function results in a mapping of the Markovian actions of the
process System as follows:

reward : fAct

M

g

System

�! f0; 1g with

reward(serve) := 1

reward(arrive) := 0

A formal semantics of our language L
2

associates each lan-
guage expression with an unambiguous interpretation, a la-
belled transition system (LTS). It is obtained by structural op-
erational rules which define for each language expression a
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Figure 2: Semantic model of the example (LTS)

specific LTS as the unique semantic model. Fig. 2 shows the
semantic model for our example queueing system (assuming
that the maximal population of the queue is max = 3). There
are 16 states, the initial state being indicated by a double circle.
Note that there are two kinds of transitions between states:
Timed transitions (representing Markovian delayed actions)
which are associated with an exponential delay and a reward,
and immediate transitions which happen as soon as the respec-
tive action is enabled. The timed transitions are drawn by solid
arrows. They are labelled with an action name, a rate and the

corresponding reward (
action;rate;reward

�����������������

➤). The immediate
transitions, represented by dashed arrows, are labelled with the

name of the corresponding immediate action (
action

-----------➤).
As we can see in Fig. 2, immediate actions imply a seman-

tic model that cannot be directly transformed into a CTMC
or MRM, because it may contain instantaneous transitions be-
tween states, which are not allowed in a CTMC. However, both
visible immediate actions a, b, : : : and invisible immediate ac-
tions � do not have any impact on the quantitative properties.
Because of this fact and based on the semantic model we ex-
tend the�

MR

-equivalence and define Weak Markovian Reward
Bisimulation (�

WMR

). It is obtained from the Markovian Re-
ward Bisimulation by replacing

a

-----➤ with a----------➤. Here a----------➤
denotes an (observable) immediate action that is preceded and
followed by an arbitrary number (including zero) of invisible

immediate actions, i.e. a----------➤ :=

�

�

-------➤ a-----➤ �

�

-------➤. If a is in-
ternal (a = � ), a----------➤ abbreviates �

�

-------➤.
The main properties of �

MR

were
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if bP and b

Q are Markovian Reward bisimilar. But for the exten-
sion from �

MR

to �
WMR

we do not have to check this con-
dition for every state of the LTS, but only for those states that
cannot immediately and invisibly evolve to another state, i.e.
do not posses an emanating immediate � -transition. The reason
for this is a stochastic one: The probability that a continuously
distributed duration finishes immediately (i.e. at time zero) is
zero whereas the probability for the internal immediate transi-
tion to take place immediately is obviously one, since nothing
can prevent the internal immediate action. Thus, we do not have
to compare distributions for processes that possess an emanat-
ing immediate � -transition. We use P 6

�-----➤ to denote the ab-
sence of such immediate internal transitions.

Definition 2 Weak Markovian Reward Bisimulation
P and Q are Weak Markovian Reward bisimilar, written
P �

WMR

Q, if they are contained in an equivalence relationS
on L
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with the meaning of expressions 

M

( ) and 

R

( ) like in De-
finition 1.

Two processes P and Q are Weak Markovian Reward bisim-
ulation equivalent, written P �

WMR

Q, if (P;Q) 2 B for
some Weak Markov Reward BisimulationB . We see, the rela-
tion�

WMR

extends�
MR

by additionallyallowing abstraction
from internal immediate actions. Based on this equivalence re-
lation we can obtain reduced MRMs, preserving their perfor-
mance/dependability features, but with a smaller state space.

Let us return to the previous example. We know that from the
point of view of performance/dependability modelling, e.g. the
utilisation of the server, the immediate actions enq and deq do
not have any relevance. That means, we are not interested in the
internal details of interaction between Arrival andQueue, but
more in activities described by actions arrive and serve. This
requires abstraction from internal details, and is achieved by
employing the hide-operator:

hide enq, deq in System

The resulting semantic model is shown in Fig. 3. Here, the pre-
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Figure 3: Semantic model after hiding enq and deq

vious actions enq and deq are changed to the special internal
� -action which is not visible from the environment. Using now
the relation �

WMR

defined above, the � -actions can be elimi-
nated from the semantic model. After applying�

WMR

the re-
sulting semantic model is the LTS in Fig. 4, from which we get
the CTMC. After solving the CTMC and taking into considera-
tion the reward function defined before, we can derive the util-
isation U of the server as the total reward:
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Figure 4: Reduced LTS

U :=

P

P2L

2

probabilityfPg � reward(a)

with P

a;�;reward(a)

�������������

➤
P

0

:

COMPOSITIONAL REDUCTION

Process algebras are used as abstract concurrent languages.
Due to their algebraic structure, process terms reflect compo-
sitionality, i.e. how complex terms are composed by operators
(such as choice and parallel composition) from simpler ones.
In the presence of composition operators it is highly desirable
that equivalence notions are substitutive. Intuitively, substitu-
tivity allows to replace components by equivalent ones within
a larger specification or context C without changing the overall
behaviour. Formally, for an arbitrary context C which contains
subexpression P , written C := C(P ), and P � Q, substitutiv-
ity implies C(P ) � C(Q). For instance, for process terms P;Q
with P �

MR

Q:

(a; �; r):P �

MR

(a; �; r):Q and
P j[S]jR �

MR

Qj[S]jR

Substitutive equivalences are also called congruences (Her-
manns et al. 1998a). Practically important for performance
and dependability modelling, such equivalences allow compo-
sitional reduction techniques, where the size of a component’s
state space may be reduced by the corresponding equivalence,
without affecting any significant property of the overall model.
This can be exploited in a stepwise reduction of process compo-
nents and their subsequent composition using the composition
operators. Thus, for quantitative modelling it may be possible
to reduce the state space of a whole system by dealing only with
parts of this system. Compositional reduction has successfully
been applied to a variety of systems, see e.g. (Chehaibar et al.
1996) for an impressive industrial case study.
We now investigate whether the relations�

MR

and�
WMR

are
congruences with respect to the operators ofL

2

. �
MR

has been
proven to be a congruence concerning all operators (Klehmet
1999). On the other hand�

WMR

is a congruence, too, but with
the exception of the choice operator. In order to illustrate this,
we consider the following counterexample. By Definition 2 of
�

WMR

it is obvious that
� ; (a; �; r

�

);Stop �

WMR

(a; �; r

�

);Stop

holds. Supposing that �
WMR

is a congruence with respect to
choice, we can conclude that

� ; (a; �; r

�

);Stop [ ] (b; �; r

�

);Stop

| {z }

P

�

WMR

(a; �; r

�

);Stop [ ] (b; �; r

�

);Stop

| {z }

Q

must also hold. In P the transition labelled (b; �; r

�

) is not con-
sidered in Definition 2 because for P it is not true that P 6

�-----➤.
That means with probability one the � -action will take place in
P , i.e. the choice within P is decided in favour of the left side.
Thus we have
P �

WMR

� ; (a; �; r

�

);Stop �

WMR

(a; �; r

�

);Stop.
On the supposition that P �

WMR

Q we have:
(a; �; r

�

);Stop �

WMR

(a; �; r

�

);Stop [ ] (b; �; r

�

);Stop

| {z }

Q

.

But obviously these processes are not equivalent. Thus the as-
sumed congruence property with respect to the choice operator
([ ]) turns out to be false.
We will now demonstrate the performance-conserving compo-
sitional reduction through these congruences. Let us return
to our queueing system example. We now consider a queue-
ing system with one Poisson arrival process, two queues and
two servers. We can build this system from the same compo-
nents, i.e. processes Arrival, Queue and Server are defined
as above. The system is now:
System := Arrival j[enq]j ((Queue

0

j[deq]j Server)

j[ ]j (Queue

0

j[deq]j Server))

If the queue sizes are given by max = 3, the model has 128
states and 384 transitions. By hiding actions enq and deq and
applying Weak Markovian Reward Bisimulation to the com-
plete system, the state space can be reduced to 22 states and 48
transitions.
However, reduction can also be performed in a compositional

fashion: The subsystem consisting of one queue-server pair
has 8 states and 13 transitions, which can be reduced down to
5 states and 8 transitions. Combining both (reduced) queue-
server pairs, we obtain 25 states which can be reduced down
to 15 states (this reduction step mainly exploits symmetry of
the model). If this reduced system is combined with the ar-
rival process, we get 30 states which can again be reduced to
22 states. This concept of compositional reduction is illustrated
in Fig. 5, where the size of the state space and the number of
transitions are given for each reduction step. It is interesting

8 5
13 8

6
4

6Queue
4

2
2 2
2Server

6
4
6

4
Queue

2
2 2

2
Server

15
80 40
25

2 2
2 2Arrival

22
56 48
308 5

13 8

hide deq

hide deq

hide enq

Figure 5: Compositional reduction of the example queueing
system

to observe that this system exhibits so-called non-deterministic
behaviour: After the completion of a Markovian timed action
arrive, it is left unspecified which of the two queues synchro-
nises with the arrival process on immediate action enq (pro-
vided, of course, neither queue is full, in which case the be-
haviour is deterministic). As a consequence, the Markov chain
underlying this specification is formally not completely spec-
ified. One may assume that both alternatives occur with the
same probability. Alternatively, one may explicitly add infor-



mation (such as a scheduling strategy) in order to resolve non-
determinism.

The equivalences �
MR

and �
WMR

are defined in terms of
states and transitions, i.e. on the level of the LTS. The states
of the transition system are labelled with the corresponding
process descriptions. Therefore, the bisimulation equivalences
can be lifted to equalities on the syntactic level. These equal-
ities are characterized by a set of equational laws and are use-
ful as an additional tool for formal reasoning and as a means of
making practical use of equivalences. Some important laws for
Weak Markovian Reward Bisimulation are:

(a; �; r); � ; P = (a; �; r); P

� ; P [ ] (a; �; r); Q = � ; P

(a; �; r

1

); P [ ] (a; �; r

2

); P = (a; �+ �; r

1

+ r

2

); P

Such equational laws are the basis for process term rewriting,
used for replacing terms by smaller but behaviourally equiva-
lent ones. With the aid of these laws, model reduction can be
carried out before the LTS is constructed, i.e. purely at the syn-
tactic level.

CONCLUSION

In this paper we showed how one of the main features of Sto-
chastic Process Algebras, namely compositionality, can be ap-
plied to performability modelling, i.e. to quantitative mod-
elling. The application of compositionality in the modelling
context is two-fold: On the one hand it enables us to build
highly modular and hierarchical system descriptions out of
smaller components. On the other hand, we use the compo-
sitionality property for applying reduction techniques with re-
spect to the state space of Markov Reward Models.

Based on the powerful framework of bisimulation we
defined a new equivalence relation, the Weak Markovian

Reward Bisimulation, which preserves the measures of in-
terest. This equivalence notion is an extension of Markovian
Reward Bisimulation defined before. Both equivalence rela-
tions are substitutive concerning (almost) all compositional
operators of the SPA specification language.
This congruence property allows a stepwise reduction of
process components with subsequent composition. That means,
it may be possible to reduce the state space of the whole system
without the necessity to build the complete state space at any
time.
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